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ABSTRACT

Stresses at grain boundaries resulting from elastic incompatibilities have long been known to
drive the premature failure and loss of desirable macroscopic properties in polycrystalline mate-
rials. As a result, there have been significant efforts in the field of grain boundary engineering
to understand the sources of grain boundary incompatibilities in polycrystals and potential mit-
igation strategies through microstructure manipulation. Thus, understanding the relationship
between grain incompatibility and failure is important for the practical use of polycrystalline
materials.

Surrogate models based on machine learning methods have gained broad popularity due to
their ability to furnish a functional, albeit approximate, description of complex phenomena. The
goal of this thesis is to predict quantitative metrics of incompatibility from various triple junction
configurations using a surrogatemodel. High-fidelity finite element simulations of a cubic-crystal
triple junction under hydrostatic extension were used to generate a synthetic dataset for training
the surrogate model. A set of 𝐽 integrals computed around microcracks placed along the triple
junction boundaries were used to quantify the elastic incompatibilities between the grains. A
multi-layer perceptron network was trained using the grain rotation angles and 𝐽 integrals as
the feature and label data respectively. We demonstrate that the trained network establishes
an accurate functional dependence between the triple junction angles and the 𝐽 integrals. We
use the surrogate model to efficiently sweep the configuration space and create contour maps
of the largest stress intensification at the triple junction as a function of the grain rotation an-
gles. Furthermore, we show that the surrogate model can be utilized to identify the most and
least compatible triple junction configurations via optimization. These configurations are then
compared to those identified as favorable through the theory of coincident site lattices.

Thesis supervisor: Raul A. Radovitzky
Title: J. C. Hunsaker Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Role of Grain Incompatibilities in Material Failure

Therole of grain boundaries as sources of incompatibility stresses resulting from crystal anisotropy
and grain misorientation has long been established. These stresses can severely compromise the
macroscopic properties of polycrystals, such as ductility, by inducing premature intergranular
fracture originating at grain boundaries [1–9]. Examples of such grain boundary fractures are
given in Figure 1.1. These failures are in contrast to single crystalline structures, where the de-
sirable properties of many materials are realized to their maximum extent due to the absence of
internal grain boundary constraints. However, multiple reasons preclude the use of single crys-
tals alone in engineering applications: conventional materials synthesis and processing methods
can only produce polycrystalline microstructures [10]; manufacturing single crystals is often ex-
pensive, time-consuming, and impractical for high-throughput applications [11–14]; polycrys-
tallinity often imparts desirable properties, such as so-called grain boundary strengthening in
metals [15–18].

In recognition of these challenges, the field of “grain boundary engineering” (GBE) has emerged.
A key objective of GBE is to manipulate microstructures using materials processing techniques
to address the aforementioned limitations on polycrystals [4, 10, 20–24]. Detailed chronologies
of the development of GBE have been provided by Randle [23] and Watanabe [10]. Techniques
utilized in GBE include changes to the processing, morphology, and/or chemistry of materials
to achieve desirable microstructures. An example of GBE through processing is the work by
Schuh on copper-based shape memory alloys, which showed that the crystallographic texture
produced by melt-casting enabled large recoverable strains without failure [25]. Recent work on
superelastic zirconia polycrystals [26, 27] demonstrates the use of morphology to reduce crack-
ing. By creating smaller zirconia samples with oligocrystalline microstructures, the martensitic
transformation incompatibilities were mitigated; the resulting zirconia samples withstood 50 to
100 load cycles without fracture [27] and achieved entirely recoverable strains on the order of
10% [26]. For comparison, zirconia polycrystals often crack within a few cycles and at strains be-
low 2%. Experimental demonstrations of both the improved ultimate strain and cycle life of grain
boundary-engineered zirconia are given in Figure 1.2. Nanocrystalline alloys are another class of
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Figure 1.1: Examples of grain boundary fracture. The left is from a polycrystal of Fe-0.8 at.%
Sn [5], the right is a copper polycrystal [19].

materials that have benefitted from grain boundary engineering [28]. While these materials have
superlative properties including strength [29–32], hardness [33–36], and wear resistance [31, 37,
38], these grain boundary structures are typically unstable. However, these structures can be
stabilized by alloying a nanocrystalline metal with a species that preferentially segregates to the
grain boundary [39–42].

Grain boundary incompatibilities are clearly determined by the grain boundary configura-
tions, through the anisotropy mismatch between adjacent grains. It is, therefore, of great im-
portance to develop methodologies that relate microstructural features and the resulting grain
boundary incompatibilities. Through extensive and continued experimental work [3, 7, 9, 43–
49] our understanding of grain boundary incompatibilities and how to obviate them through
GBE has improved immensely. Furthermore, significant analytical [50–61] and numerical [62–
71] work has been conducted to study grain boundary incompatibilities for a variety of materials
and grain boundary geometries.

In the specific context of grain boundary incompatibility, analytical works that describe the
stress and strain fields at grain interfaces have primarily focused on bicrystals [50, 54–57] and
triple junctions [51, 52, 58, 59], although other simple configurations have been considered [53,
60, 61]. These analyses solve boundary value problems of linear anisotropic elastostatics to char-
acterize the stress concentration associated with grain incompatibility. For completeness, in the
absence of body forces, these equations are as follows:

𝜀 = 1
2
(∇u + ∇u⊤) ,

∇ ⋅ 𝜎 = 0,
𝜎 = ℂ ∶ 𝜀,

(1.1)

where u is the displacement field, 𝜀 is the infinitesimal strain field, 𝜎 is the stress, and ℂ are
the elastic moduli. In general, ℂ contains 21 independent constants, however simplifications to
ℂ can be derived for certain crystal structures through imposing crystal symmetry [72]. How-
ever, grain boundary interfaces introduce discontinuities in the solution to (1.1). Thus, analytical
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Figure 1.2: Stress-strain curve for both standard polycrystalline zirconia and grain boundary-
engineered zirconia, showing the premature fracture of the zirconia polycrystal (left). Stress-
strain curves for a cyclically loaded grain boundary-engineered zirconia pillar, demonstrating
stable, repeatable behavior after many cycles. Both figures are from [26].

Figure 1.3: Bicrystals (left) and triple junctions (right) are two common classifications of grain
boundaries found in polycrystals [6].
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study of the mechanical fields in bodies with interfaces requires a mathematical description of
the jump conditions at the interface. These jump conditions are often derived though analysis
of the the configuration shown in Figure 1.4, which depicts a region consisting of two materials
with interface normal n. If the displacement, strain, and stress fields in each material are denoted
as u(𝑖), 𝜀(𝑖), 𝜎(𝑖) (𝑖 = 1, 2), then physical considerations induce the following restrictions on these
fields when evaluated at the interface1:

Displacement continuity ⟹ {
u(1) = u(2)

𝜀(1) − 𝜀(2) = 1
2 (a ⊗ n + n ⊗ a)

(1.2)

Force equilibrium ⟹ 𝜎(1)n = 𝜎(2)n.

The first condition enforces that the interface remain bonded through the deformation, i.e. that
no cracks form. Displacement continuity also implies the second condition, which enforces that
the out-of-plane strain components cannot jump across the interface. The third condition on the
stress enforces that the stress components normal to the interface remain constant. It is worth
mentioning that alternate formulations of the jump conditions (1.2) have been derived [76, 77].

Ω1 Ω2n𝑥3

𝑥2

𝑥1

Figure 1.4: An internal interface within a body such as those found at grain boundaries, where
properties and orientations can vary discontinuously across the interface 𝜕Ω1 ∩ 𝜕Ω2. The cross-
hatching indicates the different material orientations across the interface.

The relations (1.2) were used by Gemperlova et al [50] to identify the so-called compatibil-
ity stresses induced by the elastoplastic deformation of anisotropic bicrystals. Their analysis
contemplates two half-spaces welded at an interface 𝑥2 = 0 (i.e. the vector n in Figure 1.4 and
equations (1.2) is e2), each of which possesses both different elastic compliances and a different

1While this thesis is primarily concerned with infinitesimal deformations, large deformation analogs of (1.2) can
be derived. In particular, the large deformation version of the strain condition (1.2)2 is known as the Hadamard
jump condition and is foundational to the study of materials that develop internal interfaces in response to external
stimuli, such as the formation of martensite in shape memory materials [73, 74] and domains in ferroelectrics [75].
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set of slip systems that govern the plastic response. By recourse to the superposition of a “com-
patibility” stress and strain field onto the stresses and strains in each material and an application
of the constitutive law, they derive the following system for the non-zero compatibility stresses
𝜏𝑖𝑗:

(
𝜏11
𝜏33
𝜏13

) = −sgn(𝑥2) (
𝑠+11 𝑠+13 𝑠+15
𝑠+13 𝑠+33 𝑠+35
𝑠+15 𝑠+35 𝑠+55

)

−1

(
Δ𝑒11
Δ𝑒33
Δ𝑒13

) , (1.3)

where 𝑠+𝑖𝑗 is the sum of the elastic compliances (in Voigt notation) of both materials and Δ𝑒𝑖𝑗 is the
jump in incompatibility strain across the interface. Using the system (1.3), specific solutions were
obtained for cubic bicrystals rotated about the ⟨100⟩ and ⟨110⟩ axes. A similar analysis of elastic
bicrystals with cubic anisotropy was conducted by Liu et al. [57], who identified via optimiza-
tion that a bicrystal arrangement of ⟨100⟩ versus ⟨111⟩ led to the largest incompatibility stress
for any cubic material, i.e. independently of the specific elastic constants. Richeton and Berbenni
adopted a different approach by using Field Dislocation Mechanics [78], which augments the
standard field equations of solid mechanics with additional fields related to so-called geomet-
rically necessary dislocations. Using this theory, they decomposed the incompatibility stress in
general anisotropic bicrystals into elastic and plastic contributions [55] and computed the incom-
patibility stress in a cubic bicrystal as a function of a single misorientation angle [56]. Evans [58]
calculated the stress intensification at grain boundaries due to thermal anisotropy mismatch by
introducing defects at the boundary and approximating the mechanical response of the grains
as isotropic. The analysis identified triple junctions as the main site for microcrack nucleation
and estimated the critical crack size for microfracture based on material properties, defect size
distribution, and grain boundary energy. Tvergaard and Hutchinson [59] used the singularity
analysis technique from Williams [79] to characterize the stress singularity at triple junctions in
cubic and orthotropic crystals subject to mechanical and thermal loading. In this technique, the
radial and circumferential displacement components of the displacement are assumed to have a
separable form:

(𝑢𝑟, 𝑢𝜃) = 𝑘𝑟𝜆+1 (�̃�𝑟, �̃�𝜃) , (1.4)

where 𝑘 is an “amplitude factor,” 𝜆 is the singularity exponent, and �̃�𝑟(𝜃), �̃�𝜃(𝜃) encode the angular
variation of the displacement field components. Substitution of the above displacement into the
strain-displacement relation and the constitutive relation for each grain results in a system of
differential equations, which is supplemented with boundary conditions arising from the jump
conditions (1.2) and the symmetry attendant to the problem under their consideration. Through
this analysis, they identified the strength of the triple junction singularity (as measured by 𝜆) as a
function of grain anisotropy andmisorientation. Vakaeva et al. [52] derived an approximate stress
distribution around triple junctions in the presence of pores with three-fold symmetry using
Goursat-Kolosov [80] stress potential functions, but did not investigate the role of anisotropy in
the resulting stress distribution.

Analytical results not only provide insights and quantitative metrics of incompatibility but
also a parameterization of these metrics on the problem inputs, which can include the grain
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boundary configuration, material properties, and applied loading. This functional dependence
enables the identification of configurations that mitigate incompatibilities with simple optimiza-
tion, e.g. [57]. However, analytical models are often subject to significant simplifications of ma-
terial responses and geometries. By contrast, computational approaches have emerged as an
important tool to quantify complex stress fields at the microstructural scale in bicrystals [62–
64], triple junctions [65, 66, 69], and general polycrystals [70, 71, 81–88]. Early computational
work regarding polycrystals can be found in the seminal work of Sir G.I. Taylor on plastic de-
formation in metals [89]. In particular, Sir Taylor considers the effect of applied loads on the
development of plastic slip in polycrystals. Using “Mallock’s equation-solving machine,” an early
analog computer [90], Sir Taylor identifies the active slip planes for crystal aggregates under
isochoric deformation. Although this analysis does not consider explicit interactions between
grains, it represents an early effort towards the use of computing to understand the response of
polycrystals.

Typically, finite element methods have been used to quantitatively describe the stress and
strain fields along grain boundaries in micromechanics problems. Early applications of the finite
element method to grain-scale problems often studied incompatibilities in multi-phase materials
such as steels [91], tungsten carbides [92, 93], as well as other metal alloys [94, 95]. In these
cases, elastic incompatibilities are induced by property differences, i.e. stiffness, between phases.
Meyers and Ashworth [96] conducted a set of plane strain simulations of bicrystals to identify
the extent to which elastic incompatibilities can be used to explain the dependence of the yield
stress in metals on the grain size. In their simulations, the orientations of the constituent grains
in the bicrystal were fixed to be [100] and [111]. By including a thin, compliant layer between the
bicrystals to model grain boundary segregation or denudation and varying the domain size, the
shear strain at the interface was observed to decrease with grain size. Based on this result, Mey-
ers and Ashworth suggest that grain boundary segregation and denudation are physical mecha-
nisms that affect the size dependence of yield strength in metals. It is worth mentioning that in
these early computational efforts, feasible finite element simulations were constrained to be two-
dimensional and utilized coarse meshes, which precluded the ability to obtain high-resolution
stress and strain fields.

Improved computational resources enabled the simulation of three-dimensional problems
with more complex geometries and improved resolution. In the study of Peralta et al [62], three-
dimensional finite element simulations of copper bicrystals in both twist and tilt grain boundaries
were conducted. Upon subjecting the bicrystals to uniaxial tension perpendicular to the grain
boundary plane, they found that the average values of the stresses in the interior of the bicrystal
were in agreement with the predictions of Gemperlova et al [50], but that there were large stress
gradients near the free boundary. In the aforementioned study of Tvergaard and Hutchinson [59],
they also performed simulations to characterize the critical defect size for grain-boundary mi-
crofracture initiated at triple junctions. They quantified the level of incompatibility at a triple
junction using finite element simulations combined with the calculation of the 𝐽-integral [97]
around a single crack placed along one of the triple junction boundaries. They demonstrated
that elastic anisotropy mismatch can further decrease the critical defect size for microfracture
initiation beyond thermal expansion mismatch alone.
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Computational methods have been used to analyze the mechanical fields over a large set of
grain orientations that are not accessible experimentally due to challenges related to synthesis,
processing, and/or cost. Optimal configurations are typically identified by recourse to paramet-
ric sweeps over the input space [63, 98–103]. These sweeps typically result in significant com-
putational costs, however through improved sampling techniques, i.e. Monte Carlo methods, the
portions of the input space requiring sampling can be reduced [101, 104]. In the study ofWang et
al [63] on elastic and transformation incompatibilities in superelastic zirconia, multiple bicrystal
configurationswere simulated under uniaxial compression using finite element analysis. Through
these simulations, the examined orientations could be classified into those that induced large elas-
tic incompatibilities and those with small elastic compatibilities but large phase-transformation-
related incompatibilities. Finite element analysis has also been used in the microstructural design
of ferroelectrics [102]. It is worth mentioning that in addition to crystallographic orientation, mi-
crostructure optimization incorporating variables such as volume fractions of various phases and
the inclusion of fibers or other inclusions has been considered [98, 100], in addition to approaches
that integrate the microstructural problem within a multi-scale model [99].

A drawback to physics-based computational models is the requirement of a separate simu-
lation for each set of input parameters. As a result, the microstructure optimization problem is
challenging due to the lack of a parametric functional dependence on the problem inputs. Sur-
rogate models based on machine learning methods can approximate the response of physical
systems and have become valuable in diverse fields [105–121]. Generally, surrogate models are
a class of high-dimensional interpolants that can be used to develop an approximate functional
representation of an unknown relationship. This functional relationship can be developed algo-
rithmically by “learning” from previously acquired data in a process called “training”. Trained
surrogate models furnish, in effect, a functional relationship between feature and label sets which
is much cheaper to evaluate than the original physics model. In cases where experimental data
is sparse, synthetic data from numerical simulations can be used for generating the label set.
The typical label generation procedure in this case involves evaluating a high-fidelity, expensive
numerical model on a large sample of the feature set, encompassing a suitable range of input
parameters. The resulting outputs are collected with the associated features to form the training
dataset for the surrogate model. Furthermore, surrogate models enable the solution of inverse
problems. For example, Peurifoy et al [122] demonstrated that the analytical properties of amulti-
layer perceptron network can be utilized to obtain gradients, which were used to solve inverse
design problems involving nanophotonics. A similar approach was adopted in [118] for the in-
verse design of optical meta-surfaces. Similar approaches have also been used in the materials
design community, where gradient descent has been used to identify novel compositions and
chemical structures [123, 124] with optimal properties. A different approach was taken in [120],
which extended the physics-informed neural network methodology to solve inverse problems by
supplementing the training loss function with an additional term that penalizes deviations of the
model output from the desired set of values.

The specific application of machine learning to grain boundary engineering has seen multi-
ple recent successes. In the realm of classification models, where the model output is discrete,
Mangal and Holm [125, 126] used a random forest method to identify whether grains were “stress
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hotspots” in both face-centered cubic [125] and hexagonal close-packed [126] polycrystals based
on data from crystal plasticity simulations. A similar approach was taken by Zhang et al. [127]
to predict whether grain boundaries in magnesium polycrystals would develop strain incompati-
bilities or stress concentrations. In the category of regression models, where the model output is
continuous, Frankel et al. [128] employed crystal plasticity simulations to generate stress-strain
responses for steel oligocrystals and predicted these responses utilizing a hybrid network archi-
tecture with features extracted from images of synthetic microstructures. Donegan et al. [129]
followed a similar approach in a study of thermally-induced incompatibility stresses. Random
forest regression models were used in the work of Guziewski et al. [104] to predict the energy
and strength of grain boundaries in silicon carbide using a combination of molecular dynam-
ics simulations, crystallographic data, and physical chemistry information. A neural network
was used with experimental digital image correlation data by Vieira and Lambros [130] to learn
the components of the plastic strain field at grain boundaries in steel as a function of the angle
between the grain boundary and the applied loading direction. Liu et al. [131] employed a net-
work trained on crystal plasticity simulations to identify microstructures that optimized chosen
properties.

1.2 Thesis Objectives and Approach

Wefind a number of deficiences in the approaches outlined above in the setting of themicrostruc-
ture optimization problem pertinent to grain boundary engineering; analytical methods are often
restricted to simple geometries and loading, and classical numerical approaches do not furnish
a parametric relationship between the grain boundary configuration and the incompatibilities.
Although surrogate models generally do provide such a relationship, classification networks that
produce binary output cannot be subject to standard optimization methods to minimize incom-
patibilities. Regression networks realize these aims, providing a functional relationship between
the model inputs and outputs that is continuous and can thus be optimized.

The goal of this thesis is to develop and apply a framework that combines physics-based
simulations of grain incompatibility with surrogate modeling to predict quantitative metrics of
incompatibility from grain boundary configurational data, for the purposes of identifying opti-
mal grain orientations. As microfracture typically nucleates from triple junctions in polycrystals,
we return to the triple junction model studied by Hutchinson and Tvergaard [59] to characterize
grain incompatibilities. Concretely, we aim to predict the incompatibilities at a triple junction
composed of cubic crystals rotated about the [001] axis by arbitrary angles through the training
of a neural network. These three angles will be adopted as the feature set. Regarding the label set,
we adopt the 𝐽 integral [97] as a quantitative metric of incompatibility. In particular, we consider
three values of 𝐽 computed around three microcracks placed radially along the triple junction
interfaces in order to analyze the stress intensification arising from each of the triple junction
boundaries. The training dataset was formed by conducting 100,000 finite element simulations
of the described triple junction. The TensorFlow [132] and Keras [133] packages were used to
train a multi-layer perceptron network to predict each 𝐽-integral given the grain rotation angles.
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We show that the model trained on this dataset can predict the value of 𝐽 for the three micro-
cracks with high accuracy on the validation set. We then demonstrate that the trained model
can be optimized with respect to the feature set to identify configurations that minimize or max-
imize grain incompatibilities. In Chapter 2, the physics-based model of grain incompatibility is
presented. Firstly, the boundary value problem used to simulate the triple junction behavior is
presented. Some salient features of the finite element solution to this problem are shown. Then,
the 𝐽 integral is introduced and its numerical implementation is discussed and then verified. In
Chapter 3, the fundamentals and training procedure for the multi-layer perceptron network used
in this thesis are then presented. The performance of the network is then assessed on the train-
ing and validation sets as a verification of the chosen network architecture. In Chapter 4, the
computational framework is applied concretely to the problem of quantifying elastic incompati-
bilities at triple junctions using the surrogate model. Demonstrations of forward predictions from
the trained surrogate model are presented. Then, the integration of the surrogate model into an
optimization routine to identify the most and least compatible configurations is presented, and
the ensuing configurations are compared to those predicted from the crystallographic theory of
coincident site lattices. Chapter 5 presents the summary and main conclusions of this thesis.
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Chapter 2

Physics-Based Model of a Triple Junction
with Microcracks

This chapter summarizes the physics-based model of grain boundary incompatibility adopted in
this thesis. Full-field and high-resolution simulations of the elastic response of the triple junction
are required for the surrogate model to accurately predict incompatibilities. To this end, the finite
element method is adopted, as implemented in the research code∑MIT [134]. In typical analyses
of triple junctions, the grains are taken to be conforming. This assumption, which is seldom
physical, introduces a stress singularity [59]. This singularity poses challenges from a numerical
perspective, as obtaining the mechanical fields at the triple junction requires extremely high
resolution. A more reasonable approach is the one proposed by Tvergaard and Hutchinson [59],
where microcracks are placed at the triple junction. These microcracks lead to asymptotic stress
fields around each crack tip, whose strength can be characterized by the 𝐽-integral of fracture
mechanics [97]. This enables the quantification of the level of incompatibilities at each of the
three individual interfaces comprising the triple junction.

In this section, the boundary value problem used to model the triple junction is presented
along with representative finite element solutions of a few grain boundary configurations. Then,
theoretical and physical results regarding 𝐽 are presented and the numerical implementation in
∑MIT is described. The numerical implementation is verified in two problems. The first prob-
lem uses the method of manufactured solutions using the analytical results for a semi-infinite
crack [97]. The second problem verifies that the adopted numerical calculation reproduces the
path-independence properties of 𝐽.

2.1 Statement of Boundary Value Problem

Training the surrogate model involves conducting high-resolution finite element simulations of
the stress field at a triple junction to generate a synthetic dataset. The geometry of the triple
junction is illustrated in Figure 2.1. The triple junction is modeled using a disk split equally into
three portions, each representing a grain. This geometry represents the region local to a triple
junction in the hexagonal array studied by Tvergaard and Hutchinson [59]. A similar 3D cylin-

23



drical model was employed by Li et al. to compute the stress and strain distributions around
triple junctions [65]. Following the use of grain boundary defects by Evans [58] and Tvergaard
and Hutchinson [59], three microcracks of length 𝑎 were concurrently placed radially along the
triple junction boundaries. Micrographs of microstructures indicate that triple junctions gen-
erally contain an initial flaw or pore [58, 135–145]. In particular, morphologies similar to the
trifurcated geometry adopted herein have been shown to occur in experiments [146–152] and
atomistic simulations of crack nucleation at triple junctions [153]. The disk was subjected to hy-
drostatic extension by prescribing a radial displacement ̄𝑢 = 𝑅𝜀𝑟 𝑟 on the boundary of the disk,
where 𝑅 is the radius of the disk and 𝜀𝑟 𝑟 is a radial strain. Elastic incompatibilities are introduced
by rotating each grain about its [001] axis by an angle 𝜃. The triple junction configuration is thus
characterized by the tuple (𝜃1, 𝜃2, 𝜃3), which we also denote by 𝜃𝑖, where 𝑖 = 1, 2, 3.

̄𝑢

𝑅

𝜃1

𝜃2

𝜃3

𝑎

Figure 2.1: Schematic of the triple junction geometry with radial extension condition (left), and
the mesh of this geometry used in the finite element simulations (right).

For concreteness, the mechanical response was simulated using the model for cubic materials
proposed by Kambouchev et al. [154]. This finite deformation elasticity model satisfies the so-
called polyconvexity property of the strain energy function 𝑊. This property affords theoretical
guarantees regarding the existence of solutions to the nonlinear elasticity boundary value prob-
lem [155, 156]. Within the linear theory considered in this thesis, the constitutive model reduces
to the standard linear elasticity model 𝜎 = ℂ ∶ 𝜀, where the elasticity tensor ℂ for cubic materials
is given by [157]:

ℂ = 𝐶121 ⊗ 1 + 2𝐶44𝕀sym + (𝐶11 − 𝐶12 − 2𝐶44) (a ⊗ a ⊗ a ⊗ a
+b ⊗ b ⊗ b ⊗ b + c ⊗ c ⊗ c ⊗ c) , (2.1)

where 𝐶11, 𝐶12, and 𝐶44 are the cubic elastic constants, 1 is the second-order identity tensor, 𝕀sym
is the fourth-order symmetric identity tensor, and a, b, c are the unit vectors defining the cubic
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lattice. The degree of anisotropy of cubic crystals can be characterized by its anisotropy or Zener
ratio 𝐴 = 2𝐶44

𝐶11−𝐶12
, where 𝐴 = 1 corresponds to isotropy [158] and materials with 𝐴 significantly

different from 𝐴 = 1 are strongly anisotropic. The model proposed by Kambouchev [154] is suit-
able for cubic materials with 1

2 ≤ 𝐴 ≤ 1, a condition which is satisfied, for instance, by a set
of transition metals with a body-centered cubic crystal structure. In this thesis, we adopt the
material properties of chromium for definiteness. The elastic constants of chromium, in addi-
tion to other materials that satisfy the aforementioned condition on 𝐴, are given in Table 2.1. It
bears emphasis that while other classes of anisotropy could be considered in this framework, the
cubic model was used for simplicity. Finally, it is worth mentioning that the nonlinear, consis-
tent, elastic tangent moduli are provided in [154], although these moduli reduce to (2.1) in the
linear theory. Access to these moduli enables the implicit solution of the boundary value prob-
lem described in the previous section. Implicit solution methods enable converged solutions that
accurately resolve the crack tip fields, which will be used to compute the 𝐽-integral, as described
in Section 2.3.

Table 2.1: The elastic properties and anisotropy ratios of some cubic materials and compounds
that satisfy 1

2 ≤ 𝐴 ≤ 1 [158, 159]

Material 𝐶11 (GPa) 𝐶12 (GPa) 𝐶44 (GPa) 𝐴
Cr 350 57.8 101 0.6913
Mo 460 176 110 0.7746
W 521 201 160 1.0000
V 228 119 42.6 0.7817
Nb 246 134 28.7 0.5125

AgBr 56.3 33.0 7.2 0.6180
NaCl 48.7 12.4 12.6 0.6942

2.2 Finite Element Solution

The boundary value problem described in Section 2.1 was solved using the finite element method
implemented in the ∑MIT research code. In particular, after effecting the finite element dis-
cretization, the resulting linear system was then solved using the PETSc [160] library. A sample
solution showing the displacement and stress fields for the case 𝜃𝑖 = 0 is given in Figure 2.2. As
a result of the fine mesh used for the problem, the fields are well-resolved.

Hydrostatic stress contours of various triple junction configurations are given in Figure 2.3.
An illustration of the effect of the grain orientation on the finite element solution can be seen
in Figure 2.3; changes in the triple junction orientation cause the crack-tip singularity to rotate,
demonstrating the asymmetric loading incurred by grain misorientation.

The hydrostatic stress field is shown near one of the crack tips in Figure 2.4. Far from the
crack tips, the stress field becomes ostensibly hydrostatic, which is consistent with Saint Venant’s
principle.
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Figure 2.2: Displacement magnitude and stress contours for the case (𝜃1, 𝜃2, 𝜃3) = (0, 0, 0), in the
region local to the microcracks. A warp factor of 10 has been applied to aid in visualization.
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Figure 2.3: The region local to the triple junction shown on the warped geometry, for triple
junction configurations (𝜃1, 0, 0) with 𝜃1 = 0∘, and 60∘.

2.3 Characterization of Stress Intensification: The 𝐽-integral
The mathematical statement of solid mechanics involves force and moment balances, supple-
mented with compatibility relations and constitutive assumptions. In various circumstances, it
has been useful to introduce additional quantities and related conservation laws to help describe
the effect of cracks, defects, and internal material surfaces [161]. In this section, we describe the
celebrated 𝐽-integral [97], which is of great importance in fracture mechanics1. In this work, 𝐽
will be used to quantify elastic incompatibilities between the grains at the triple junction.

2.3.1 Definition and Interpretation of 𝐽
Boundary value problems involving cracks and notches are commonplace in solid mechanics due
to both theoretical and practical interest. However, mathematical analysis of themechanical fields
can be complicated by the crack-tip singularity present in this class of problems. The 𝐽-integral
provides a robust mathematical formalism to analyze the mechanics of notches and cracks and is
defined as follows:

𝐽 = lim
Γ→0∮Γ

n ⋅ (𝑊I − 𝝈∇u) q𝑑𝑠 = lim
Γ→0∮Γ

n ⋅ Hq𝑑𝑠, (2.2)

1It is worth mentioning that in addition to 𝐽, there are many other examples of so-called conservation inte-
grals [97, 162–169]. Many of these quantities have interpretations in the context of Noether’s theorem [170] on
invariant variational principles [171].
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Figure 2.4: Contours of hydrostatic stress for the entire domain and local to the crack tip.
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where n is the normal vector to the contour, 𝑊 is the strain energy density, 𝝈 is the stress tensor,
∇u is the displacement gradient, q is the so-called virtual crack extension direction, and Γ is a
counter-clockwise contour that shrinks onto the crack tip.

Γ

n

q

Figure 2.5: A sharp crack tip with the crack extension direction q, contour Γ, and associated
normal vector n shown.

It is worth mentioning that H is the transpose of Eshelby’s elastic energy-momentum ten-
sor [172]. Following the explanation by Eshelby, the integral (2.2) can be interpreted as the energy
per unit area required to displace the crack-tip singularity by a unit distance in the direction q. In
linear elastic fracture mechanics, this interpretation is equivalent to the energy release rate [157,
173]. Importantly, 𝐽 is also directly related to the stress intensification factor at the crack tip [157]
and therefore serves as an excellent metric of elastic incompatibilities at triple junctions. Under
certain conditions, the integral (2.2) is path-independent and the limit can be removed [174].
Furthermore, in the case that q = e1 and the integral is path-independent, the expression given
by (2.2) reduces to the original result provided by Rice [97, 157]:

𝐽 = ∮
Γ
𝑊𝑑𝑥2 − 𝑡𝑖

𝜕𝑢𝑖
𝜕𝑥1

𝑑𝑠. (2.3)

In the case that Γ encircles a region containing no singularity, 𝐽 = 0, which is the conservation
law associated with the 𝐽-integral [171]. For linear, isotropic, homogeneous solids, the 𝐽-integral
can be explicitly expressed in terms of the three stress intensity factors 𝐾I, 𝐾II, 𝐾III, corresponding
to opening, in-plane sliding, and anti-plane sliding modes [97, 157]:

𝐽 = 1 − 𝜈2

𝐸
(𝐾2

I + 𝐾2
II) +

1 + 𝜈
𝐸

𝐾2
III, (2.4)

where 𝜈 is Poisson’s ratio and 𝐸 is Young’smodulus. The equation (2.4) will be usedwhen verifying
the computational framework in Section 2.3.3.
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2.3.2 Calculation of 𝐽
In this thesis, we choose to compute 𝐽 directly via the line integral form (2.2). First, Γ is restricted
to be a circle with radius 𝑟 centered at the crack tip. Substituting this form of Γ into (2.2) yields:

𝐽 = ∫
2𝜋

0
[n ⋅ Hq]Γ(𝑡)‖Γ

′(𝑡)‖𝑑𝑡 = ∫
2𝜋

0
[n ⋅ Hq]Γ(𝑡)𝑟𝑑𝑡, (2.5)

where 𝑡 is the parameterization, which in the case of circular contours coincides with the angle
from the horizontal axis. Then, 𝑡 is discretized at 𝑄 integration points. For the corresponding
points along the contour, the finite element solution is evaluated to obtain 𝑊, 𝜎, and ∇u. If the
integration points do not coincide with the nodes of the finite element mesh, these values are
obtained through interpolation of the nodal values using the finite element shape functions. These
fields are then used as input into the Riemann sum:

𝐽 ≈
𝑄
∑
𝑞=1

[n ⋅ Hq]Γ(𝑡𝑞) 𝑟Δ𝑡, (2.6)

where Δ𝑡 = 2𝜋/𝑄. This integration procedure is illustrated in Figure 2.6. It is worth mentioning
that domain integral forms of the 𝐽-integral are commonplace in finite element calculations [157,
174], although direct evaluation of the contour integral (2.2) has been done in experimental frac-
ture mechanics [175–177]. In Section 2.3.3, it will be shown that the line integral calculation
presented herein can be used to compute 𝐽 accurately and reproduces the path-independence
property in the case that the body is homogeneous.

2.3.3 Verification of 𝐽-Integral Calculation
In this section, we verify that the numerical calculation of the 𝐽-integral described in 2.3.2 re-
produces both the analytical value of 𝐽 for a standard problem in fracture mechanics, that of the
finite crack in an infinite body and that for a homogeneous material, 𝐽 is path-independent.

In the original paper of Rice [97], the 𝐽-integral for a narrow crack of length 2𝑎 in an infinite
plate is given as:

𝐽 =
𝜋 (1 − 𝜈2)

𝐸
𝜎2∞𝑎. (2.7)

where 𝜎∞ is the far-field loading. A diagram of this geometry is given in Figure 2.7. Near the
crack tip, the displacement field can be found analytically via complex variable method [178, 179]
and is given by:

𝑢1(𝑟 , 𝜃) =
𝐾𝐼
2𝜇√

𝑟
2𝜋

cos ( 𝜃
2
) (𝜅 − 1 + 2 sin2 ( 𝜃

2
)) , (2.8)

𝑢2(𝑟 , 𝜃) =
𝐾𝐼
2𝜇√

𝑟
2𝜋

sin ( 𝜃
2
) (𝜅 + 1 − cos2 ( 𝜃

2
)) , (2.9)
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Figure 2.6: A schematic of the contour integration procedure shown around one of the microc-
racks (left).

where 𝐾𝐼 = 𝜎∞√𝜋𝑎 is the Mode I stress intensity factor, 𝜇 is the shear modulus, 𝜅 = 3−4𝜈, and 𝑟 , 𝜃
are the polar coordinates of a point in a system centered at the crack tip. It bears emphasis that
according to the displacement field (2.8), the crack is only subject to Mode I loading, thus the 𝐽
integral can be found by substituting 𝐾𝐼 = 𝜎∞√𝜋𝑎, 𝐾𝐼 𝐼 = 𝐾𝐼 𝐼 𝐼 = 0 into (2.4) to obtain (2.7).

This example furnishes a verification case for the numerical implementation described in Sec-
tion 2.3.2 and is done via the method of manufactured solutions. We restrict the analysis to the
rectangular domain Ω = [0, 1] × [−1

2 ,
1
2] with a line crack along 0 ≤ 𝑥1 ≤ 1

2 , 𝑥2 = 0. On the
boundary, the displacement is constrained to be equal to the analytical displacement field (2.8).
For demonstration purposes, the parameters used in this simulation were 𝐸 = 50 Pa, 𝜈 = 0.45, and
𝜎∞ = 0.1 Pa. Then, 𝐽 was computed for varying mesh sizes and polynomial orders to investigate
the convergence properties of the numerical integration method (2.6). Furthermore, the conver-
gence of the finite element solution uℎ was monitored using theℋ1 norm on the error e = u−uℎ.
The finite element solution and contours of the stress are given in Figure 2.8.

The errors in both 𝐽 and uℎ as a function of mesh size and polynomial order are given in
Figure 2.9. Clearly, the convergence of these two quantities are closely related, as the rates of
convergence are very similar. It is worth mentioning that the reduced rate of convergence is con-
sistent with finite element error estimates in the presence of cracks, where the stress singularity
and resulting large strain-gradient can slow convergence [180]. It can be seen that the errors in
the finite element solution are smaller than those in the value of 𝐽. However, for most mesh sizes
examined and all polynomial orders, the relative error in 𝐽 is of order 10−2 or smaller, indicating
that the numerical implementation can compute 𝐽 sufficiently accurately for the purposes of the
current work.
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𝑎
𝜃

𝑟

Figure 2.7: Crack in an infinite body subjected to uniaxial remote stress 𝜎∞.

Figure 2.8: Displacement and stress contours associated with the semi-infinite crack problem
shown on the warped geometry with a warping factor of 10 for clarity.
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Figure 2.9: Errors in the finite element solution and the 𝐽 integral as a function of mesh size
(left) and polynomial order (right). The black dots correspond to errors in uℎ and the blue dots
correspond to errors in 𝐽ℎ.

It has been established the 𝐽-integral is path-independent for homogeneous bodies under
static loading. We choose to demonstrate this property using the triple junction geometry, where
the configuration (𝜃1, 𝜃2, 𝜃3) = (0, 0, 0) corresponds to a homogeneous body. In particular, we veri-
fied the path-independence property by computing 𝐽𝑖 for varying contour radii 𝑟. We also verified
the convergence of the computed numerical values of 𝐽𝑖 by varying the number of integration
points 𝑄. Figure 2.10 shows the impact of these parameters on the calculated 𝐽 integrals. For
convenience, these results are expressed using the following non-dimensional parameters:

𝑟∗ = 𝑟
𝑎
, Δ𝑠∗ = 2𝜋𝑟

𝑄
1
ℎ
, (2.10)

where ℎ is the characteristic length scale of the mesh, 𝑟∗ is the ratio of the contour size to the
crack length, and Δ𝑠∗ is the ratio between the arclength step in the discretization of Γ and the
mesh length scale ℎ. The three 𝐽 integrals for different 𝑟∗, Δ𝑠∗ are given in Figure 2.10. For each
microcrack, the values for 𝐽 approach a comparable value for all values of 𝑟∗ as Δ𝑠∗ decreases.
Furthermore, 𝐽2 and 𝐽3 approach similar values, which can be expected due to the 𝑥1−𝑥3 symme-
try of the boundary value problem. The error between the largest and smallest values of 𝐽 for each
microcrack is of order 0.5%. While further mesh refinement could decrease this error, this level
of error over the examined range of 𝑟∗, Δ𝑠∗ suggests that 𝐽 is reasonably path-independent and
that the current mesh is suitable for the present work. Furthermore, this demonstrates that the
numerical implementation described in Section 2.3.2 preserves this property of 𝐽 to a reasonable
level of precision.
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Figure 2.10: The three 𝐽-integrals at the triple junction expressed as a function of the nondimen-
sional contour size 𝑟∗ and discretization size Δ𝑠∗.
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Chapter 3

Surrogate Models Using Neural Networks

In this chapter, we summarize important concepts related to multi-layer perceptron (MLP) net-
works. We first review the general structure of an MLP, then describe the training procedure
that computes the weights of the MLP. We show that the adopted network architecture is able to
produce accurate predictions on the validation set. Finally, we explain how this architecture can
be utilized for inverse problems related to optimization of the surrogate model outputs.

3.1 Multi-Layer Perceptron Networks

In the current problem, we seek to predict the 𝐽𝑖 given a triple junction configuration parameter-
ized by 𝜃𝑖. In general, this relationship is expected to be nonlinear. Furthermore, we allow each
𝐽 integral to be potentially affected by all three of the grain rotation angles. As will be shown in
Chapter 4, this dependence occurs in the boundary value problem considered in Chapter 2. The
multi-layer perceptron (MLP) network, a type of supervised learning model, affords a powerful
regression method that can naturally account for this nonlinear coupling of 𝜃𝑖 and 𝐽𝑖.

An MLP is a nonlinear function that maps an input vector 𝑋 ∈ ℝ𝑛 to an output vector 𝑌 ∈ ℝ𝑚.
At a high level, MLPs compose nonlinear functions and affine transformations of the features to
obtain the outputs. More concretely, this mapping is achieved through a successive composition
of “layers,” which map an intermediate input 𝑈 ∈ ℝ𝑘 to an intermediate output 𝑉 ∈ ℝ𝑞 through
the following set of operations; 𝑈 is affinely transformed using a matrix of weights𝑊 ∈ ℝ𝑘×𝑞 and
a vector of offsets, also known as biases, 𝑊0 ∈ ℝ𝑞. The resulting transformed quantity is then
acted upon by a pre-defined “activation function” 𝑓, which is applied component-wise. Typical
choices of 𝑓 include the sigmoid and rectified linear unit (ReLU) functions:

𝑓sigmoid(𝑥) =
1

1 + 𝑒−𝑥
,

𝑓ReLU(𝑥) = max (0, 𝑥) .

This set of operations can be written succinctly as:

𝑉 = 𝑓 (𝑊⊤𝑈 + 𝑊0) . (3.1)
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By setting the outputs of one layer equal to the inputs of the next, the network can approximate
nonlinear functions. It has been shown that neural networks with sufficiently smooth activation
functions can approximate certain functions to arbitrary accuracy provided sufficiently many
intermediate, also known as “hidden,” layers are used [181]. Due to this property, MLPs are also
known as “universal approximators”.

In the current problem, the first layer accepts 𝑈 = (𝜃1, 𝜃2, 𝜃3) as an input, while the last layer
produces the approximation 𝑉 = ( ̂𝐽1, ̂𝐽2, ̂𝐽3) as an output. We denote the weights and biases for
layer ℓ as 𝑊 ℓ and 𝑊 ℓ

0 respectively, for ℓ = 1, … , 𝐿., i.e. for a network with 𝐿 layers. Additionally,
as the activation function can be different for each layer, the activation functions for the 𝐿 layers
are denoted as 𝑓 ℓ, ℓ = 1, … , 𝐿. For ease of notation, the range of ℓ will not be stated explicitly.
Thus, we write the functional form of the neural network as:

̂𝐽𝑖 = NN(𝜃𝑖; 𝑊 ℓ, 𝑊 ℓ
0), (3.2)

to indicate that the neural network is a function of the features, parameterized by 𝑊 ℓ and 𝑊 ℓ
0 . A

schematic of the MLP architecture used in this thesis is presented in Figure 3.1.

{𝜃1, 𝜃2, 𝜃3} 𝑓 1 (𝑊 1𝑉0 + 𝑊 1
0 ) 𝑓 2 (𝑊 2𝑉1 + 𝑊 2

0 ) … { ̂𝐽1, ̂𝐽2, ̂𝐽3}

Figure 3.1: Diagram of the MLP network used in this thesis.

3.2 Network Training Procedure

As stated in the previous section, the weights𝑊 ℓ and biases𝑊 ℓ
0 parameterize the network. These

serve as the fitting parameters to be tuned in the network training process. Specifically, the
weights and biases are chosen such that NN(𝜃𝑖; 𝑊 ℓ, 𝑊 ℓ

0) best approximates the known label data,
i.e. as the solution to an optimization problem that minimizes the error between the predictions
of the model and the feature data. This requires a scalar measure of network prediction error,
which is provided by the so-called loss function, denoted herein as ℒ. A common loss function,
and the one used in this thesis, is the mean-squared-error (MSE) loss, which has the following
form for the current MLP:

ℒ(𝜃𝑖; 𝑊 ℓ, 𝑊 ℓ
0) =

1
3

3
∑
𝑖=1

1
𝑁train

𝑁train

∑
𝑘=1

(𝐽 𝑘𝑖 − NN (𝜃𝑖; 𝑊 ℓ, 𝑊 ℓ
0))

2
. (3.3)

It is worthmentioning that (3.3) can be appended by an 𝐿2 regularization of the form 𝜆 (‖𝑊 ℓ‖22 + ‖𝑊 ℓ
0 ‖22),

where ‖•‖2 is the 𝐿2 norm. This regularization term is added to improve the predictive accuracy of
the surrogate model on out-of-data samples [182], however as will be demonstrated in Section 3.3,
this regularization was not necessary in the current work. It bears emphasis that the loss func-
tion, like the network itself, is a function of the angles 𝜃𝑖, but can be manipulated through changes
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to the parameters 𝑊 ℓ, 𝑊 ℓ
0 . Thus, the network training process can be conceived of as fixing the

𝑁train sets of 𝜃𝑖 to be those in the training feature data, and performing the optimization with
respect to 𝑊 ℓ, 𝑊 ℓ

0 to obtain the optimal 𝑊 ℓ∗, 𝑊 ℓ∗
0 , i.e.:

𝑊 ℓ∗, 𝑊 ℓ∗
0 = arg min

𝑊 ℓ,𝑊 ℓ
0

ℒ(𝜃𝑖; 𝑊 ℓ, 𝑊 ℓ
0). (3.4)

Given the composition of layers needed to obtain an accurate interpolant, the optimization prob-
lem (3.4) is generally non-convex and nonlinear. An immediate consequence of these character-
istics is that𝑊 ℓ∗, 𝑊 ℓ∗

0 depend on the starting point of the optimization process. This can be easily
addressed by samplingmultiple initial guesses and simply choosing the solutionwith the best per-
formance. More fundamentally, the size of the optimization problem associated with (3.4) poses
a significant computational challenge. In practice, modern MLPs can contain hundreds of thou-
sands to millions of trainable parameters. This renders second-order (or higher-order) methods
such as Newton-Raphson impractical due to the requisite matrix inversion [183]. While quasi-
Newton schemes have occasionally been used [184–186], the standard optimization algorithm for
training is based on the first-order gradient descent update:

𝑊 ℓ,𝑘+1 = 𝑊 ℓ,𝑘 − 𝛼
𝜕ℒ(𝜃𝑖; 𝑊 ℓ,𝑘, 𝑊 ℓ,𝑘

0 )

𝜕𝑊 ℓ , (3.5)

where 𝑘 is the current iterate of gradient descent, and 𝛼 is the step size. It is worth mentioning
that 𝛼 is often called the “learning rate” in the machine learning community. While 𝛼 can be
computed through a line search at each iterate, in this thesis 𝛼was taken as constant. The update
for 𝑊 ℓ

0 is done analogously to (3.5). First-order methods such as (3.5) require fewer derivative
calculations than higher-order methods, at the cost of a reduced convergence rate.

However, the gradient descent update (3.5) still poses multiple computational challenges.
Firstly, naive computation of 𝜕ℒ

𝜕𝑊 ℓ is generally intractable due to layer composition, which causes
ℒ to depend on each of the components of the weights in a highly nonlinear and complicated
manner. However, these gradients can be efficiently computed by recourse to the so-called back-
propagation procedure, which is the successive application of the chain rule through the layers
of the network. The gradient of the loss function with respect to the weights of an arbitrary layer
ℓ can be expressed as follows by an application of the chain rule:

𝜕ℒ
𝜕𝑊 ℓ =

𝜕𝑍 ℓ

𝜕𝑊 ℓ (
𝜕ℒ
𝜕𝑍 ℓ)

⊤

= 𝑉 ℓ−1 ( 𝜕ℒ
𝜕𝑍 ℓ)

⊤
,

where 𝑍 ℓ = 𝑊 ℓ𝑉 ℓ−1 + 𝑊 ℓ
0 is the intermediate quantity computed by the network before the

activation function 𝑓 ℓ is applied. Through once again applying the chain rule consecutively, the
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loss function gradient can be expanded further:

𝜕ℒ
𝜕𝑍 ℓ =

𝜕𝑉 ℓ

𝜕𝑍 ℓ
𝜕𝑍 ℓ+1

𝜕𝑉 ℓ
𝜕𝑉 𝑙+1

𝜕𝑍 ℓ+1 …
𝜕𝑍𝐿

𝜕𝑉 𝐿−1
𝜕𝑉 𝐿

𝜕𝑍𝐿
𝜕ℒ
𝜕𝑉 𝐿

= 𝑓 ℓ′(𝑍 ℓ)𝑊 ℓ+1𝑓 ℓ+1′(𝑍 ℓ+1) …𝑊 𝐿𝑓 𝐿
′
(𝑍𝐿) 𝜕ℒ

𝜕𝑉 𝐿 .
(3.6)

This expansion allows for the expression of the derivative of the loss function with respect to
any of the training parameters to be expressed in terms of quantities from previous layers. Thus,
the training process involves “forward” passes that simply evaluate ℒ with fixed weights and
biases on different portions of the training set, and “error backpropagation” that evaluates the
gradient (3.6) and updates the weights according to (3.5).

Despite the approach to tractably compute gradients of the loss function described above,
the size of the optimization problem still poses challenges — the matrix multiplications present
in (3.6) render the calculation of the gradient impractical for all trainable parameters in the case
of large networks. Furthermore, the gradient descent update (3.5) with constant step size is not
guaranteed to avoid local minima in the loss function, which can hinder the accuracy of the
interpolant. The stochastic gradient descent (SGD) algorithm is typically used to circumvent
both of these challenges [187]. SGD can be applied to so-called “separable” objective functions 𝑓:

𝑓 (x) = 1
𝑛

𝑛
∑
𝑖=1

𝑓𝑖(x).

It is obvious that the MSE loss function (3.3) is of this form. In the SGD algorithm, the gradient
∇𝑓 (x) is approximated by an unbiased estimator ∇̃𝑓 (𝑥). For example, this can be taken as the
gradient of one of the terms in the sum, i.e. by ∇𝑓𝑘(x) for some randomly chosen index 𝑘. More
typically, so-called batches are used, which approximate the true gradient by the average of some
∇𝑓𝑖(x). This leverages additional information about 𝑓 (x) to improve convergence and regularize
stochasticity associated with the random update. The computational cost of SGD is significantly
lower than standard gradient descent as it requires fewer derivative calculations. Furthermore,
the randomized nature of SGD allows the algorithm to avoid local minima, as the terms 𝑓𝑖(x) do
not necessarily share optimizers with 𝑓 (x). Interestingly, the noise provided by the SGD update
also improves the predictive accuracy of the surrogate model by avoiding the minimizers of ℒ
arising from the specific selection of training data.

As the SGD algorithm uses less information than standard gradient descent, it has a slower
convergence rate. However, it is worth mentioning that SGD typically converges in two “stages,”
the first of which is rapid convergence to a neighborhood of a stationary point, followed by a
lack of convergence within a so-called noise ball. The size of the noise ball is controlled, in part,
by the step size 𝛼. Thus, once convergence stalls, the optimal solution is typically chosen as the
best solution visited within the noise ball. A schematic demonstrating the convergence behavior
of SGD is given in Figure 3.2.

Modern network training approaches further improve upon the SGD algorithmoutlined above
through the use of the “AdaGrad” [188] algorithm, which uses an adaptive learning rate for each
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b

True Optimal Solution

Noise Ball

Figure 3.2: Schematic demonstrating convergence behavior of SGD algorithm. Initial iterates
quickly reduce the objective but subsequent iterates remain trapped in a “noise ball” where con-
vergence stalls.

of the optimization variables. This, in effect, acts as a preconditioner for the gradient descent
update, which accounts for variance in scale across the different optimization variables. This is
similar to the well-known invariance of Newton-Raphson under affine transformations of the
optimization variable space. The performance of AdaGrad is further improved through the in-
clusion of “momentum,” where the descent direction in the update includes information from
prior gradients. Momentum can be useful for escaping local minima and accelerating conver-
gence in favorable descent directions. This augmentation of AdaGrad is called Adam [189] and
has become standard for modern machine-learning problems based on its empirically good per-
formance. However, it is worth mentioning that Adam does not share the theoretical guarantees
of GD, SGD, or AdaGrad — it has been shown to diverge even for convex problems [190].

Standard practice in cases where the total dataset is sufficiently large is to randomly partition
the dataset into training, testing, and validation datasets [191]. The training dataset is usually
taken to be the largest portion and is used to fit the training parameters. The validation dataset
is used to estimate the error of the model during training, which will be explained in more detail
in the following paragraph. Finally, the testing dataset is used post-training to evaluate the per-
formance of the model, i.e. not “seen” during the training process at all. An additional measure
to evaluate the accuracy of the trained model is cross-validation. A standard example of cross-
validation is 𝐾-fold cross-validation, where the training data set is split into 𝐾 parts. During
training, 𝐾 − 1 parts are used as the training data set and compared to the remaining part. This
is done multiple times with different parts removed from the training set, and the average loss is
reported in order to monitor the model performance more accurately. 𝐾 = 5, 10 are typical values
that balance computational cost, the error in predictions, and the variability of predictions [191].

In the current work, the TensorFlow [132] and Keras [133] packages were used to instantiate
the neural network. The Adam optimizer [189] was used during training to learn the network
parameters. Additional information regarding the MLP architecture is given in Table 3.1. Here,
“epochs” is the maximum number of iterations of the optimization algorithm performed before
stopping. However, following the discussion of SGD above, the “patience” parameter refers to
the number of subsequent iterations after which the training is stopped if no improvement is
observed. The learning rate and batch size have the same meaning as that described above. These
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“hyperparameters” were found to lead to reasonable accuracy of the trained model. However, for
general problems, hyperparameter tuning is often employed to improve the training and perfor-
mance of the surrogate model.

Table 3.1: Hyperparameters used during the model training procedure.

Parameter Value
Layers [256,256,256,3]

Activation Functions [ReLU, ReLU, ReLU, Linear]
Learning Rate 0.001
Batch Size 256
Max Epochs 2000
Patience 10

The validity and accuracy of the surrogate model are also dependent on the quality of the
feature set and the chosen network architecture. Error analyses of neural networks [192] iden-
tify these two components of the network training problem as central to the performance of the
trained model. A method to evaluate whether the feature set and network architecture accu-
rately model the label data is to compare the training and validation loss as a function of dataset
size [121]. One possibility is that the training loss is significantly lower than the validation loss.
This suggests that either the feature set does not contain sufficient information to describe the
statistical variations in the label set, or that the network has too many trainable parameters and is
suffering from overfitting. Another possibility is that the training and validation losses are com-
parable to each other, but remain large. In this case, the model did not learn meaningful trends
from the training data and is said to be underfit. These cases are schematically demonstrated
in Figure 3.3. This analysis will be used with the synthetic data produced by the physics-based
model to validate our choice of network architecture in Section 3.3.

ℒ(𝜃𝑖; 𝑊ℓ, 𝑊 0
ℓ )

𝑁

Overfit

Underfit

Correctly trainedTraining loss

Figure 3.3: Schematic of the possible outcomes when training the MLP as the dataset size is
increased, classified based on the behavior of the validation loss (green, blue, red) compared to
the training loss (black).
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3.3 Network Training

In order to form the synthetic dataset for training the MLP, a set of feature data is needed. In this
case, the three angles 𝜃𝑖 were all sampled independently from a uniform distribution on [0, 2𝜋]
100,000 times each. Then, the finite element simulation described in Section 2.1 was conducted
for each set of 𝜃𝑖. Using the integration method described in Section 2.3, the three 𝐽-integrals
were post-processed from the finite element solution and collected to form the label data portion
of the synthetic dataset. In machine learning, the distribution of the label data is important in
statistical analyses of neural networks [191]. Thus, histograms of the 𝐽𝑖 produced by the physics-
based model are provided in Figure 3.4. It is interesting to note that the three histograms are
approximately identical, due to both the rotational symmetry of the problem and the uniform
sampling of the angles. However, it is worth mentioning that the histograms are not identical
due to finite sample size; if more angles were to be sampled, these histograms would approach
each other to a greater degree.
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Figure 3.4: Histograms of the values of 𝐽 for each crack.

Following the discussion on error analysis of neural networks from Section 3.1, the training
and validation losses were computed at the end of the training of five different networks for a
range of training dataset sizes; multiple trials are used to account for the random initialization
of weights and biases at the start of training. The mean and standard deviation of the training
and validation loss over the five trials are plotted in Figure 3.5. As the dataset size increases,
the training and validation losses can be seen to decrease in tandem, which indicates that the

41



chosen feature set is representative of the variations in the label set. This also indicates that
the model has not been overfitted. Finally, the low values of the loss function (𝒪(10−4)) relative
to the size of the labels at the largest dataset size indicate that underfitting has not occurred.
Figure 3.5 demonstrates that the surrogate model is sufficiently accurate for the purposes of this
work, obviating the need for further sweeps over the network parameter space to improve the
performance of the model.
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Figure 3.5: Training and validation loss for increasing amounts of training data.

3.4 Inverse Problem Solution Procedure

The trained surrogate model provides forward prediction capabilities, i.e. the prediction of the
three 𝐽-integrals given the grain boundary configuration. However, as stated in Section 1, one of
the core aims of grain boundary engineering is to determine which grain configurations lead to
either favorable or deleterious properties. While inverting the forward relationship is generically
challenging in the most general setting, the explicit functional form furnished by the surrogate
model enables the inversion of this relationship for the purposes of optimizing the stress inten-
sification at the triple junction. This can be done following the procedure described in the work
of Peurifoy et al. [122], where the input parameters of the MLP are adjusted to either optimize
or obtain a desired output. In the current work, the inverse problem is finding the angles 𝜃𝑖 that
optimize a given scalar measure of the 𝐽𝑖. For demonstration purposes, we take this function to
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be the ∞-norm ‖𝐽 ‖∞:

‖𝐽 ‖∞ = max {|𝐽1|, |𝐽2|, |𝐽3|} . (3.7)

‖𝐽 ‖∞ can be interpreted as related to the largest stress intensification among all three crack tips.
Note that given the trained network, ‖𝐽 ‖∞ can be evaluated for any feasible set of input angles.
Then, using the trained surrogate model, the angles that minimize ‖𝐽 ‖∞ can also be found through
gradient descent:

𝜃𝑘+1𝑖 = 𝜃𝑘𝑖 − 𝛼
𝜕‖𝐽 ‖∞
𝜕𝜃𝑖

. (3.8)

This is done by instantiating a new model with the same weights as the original forward model,
but with the loss function set to the objective (3.7). It bears emphasis that this optimization prob-
lem is in contrast to that associated with training the network; during training, the 𝜃𝑖 are the fixed
data and 𝑊 ℓ, 𝑊 ℓ

0 are iteratively tuned to minimize the loss function, and the functional relation-
ship is written as (3.2). In this case, 𝑊 ℓ, 𝑊 ℓ

0 are held fixed and the 𝜃𝑖 are varied to minimize (3.7),
thus the functional relationship in the inverse problem can be stated as ̂𝐽𝑖 = NN(𝑊 ℓ, 𝑊 ℓ

0 ; 𝜃𝑖). The
sign of the update in (3.8) simply needs to be changed to maximize ‖𝐽 ‖∞.

The gradients 𝜕‖𝐽 ‖∞
𝜕𝜃𝑖

present in (3.8) can also be efficiently computed by recourse to backprop-
agation. This can be done as follows

𝜕‖𝐽 ‖∞
𝜕𝜃𝑖

=
3
∑
𝛼=1

𝜕‖𝐽 ‖∞
𝜕𝐽𝛼

𝜕𝐽𝛼
𝜕𝜃𝑖

, (3.9)

where each derivative 𝜕𝐽𝛼
𝜕𝜃𝑖

can be computed by a chain rule expansion similar to (3.6), as the
functional form of 𝐽𝑖 is obtained from the training process.
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Chapter 4

Quantification of Elastic Incompatibilities at
Triple Junctions

In this section, we combine the components of the computational framework presented in Chap-
ter 2 and Chapter 3 both efficiently sweep configurational space and to identify optimal grain
boundary configurations. First, we perform a set of forward calculations that demonstrate both
the accuracy of the model as well as its capability to furnish fast and direct evaluations of the
stress intensification resulting from elastic incompatibilities. Then, using the method of Peurifoy
et al [122], the surrogate model is then used to solve the inverse problem of finding the triple
junction configurations that minimize and maximize the incompatibility-induced stress intensi-
fication. Then, the theory of coincident site lattices (CSLs), an important concept in GBE [4, 10,
20, 193], is summarized and used to compare the angles identified via optimization with those
configurations considered favorable due to good atomic fit.

4.1 Forward Predictions Using Trained Surrogate Model

For a further illustration of the network accuracy, we compare the physics-based and surrogate
models for a subset of the feature space. For simplicity, we consider the one-dimensional subsets
of the feature space (𝜃1, 0, 0), (0, 𝜃2, 0), and (0, 0, 𝜃3) where 𝜃1, 𝜃2, 𝜃3 ∈ [0, 𝜋/2] respectively (the
restriction to [0, 𝜋/2] is due to the cubic symmetry of the grains). Figure 4.1 shows the comparison
between the surrogate model and finite element calculation. In these three cases, the surrogate
model accurately reproduces the values produced by the finite element simulation, with a low
relative error. This is consistent with the small loss function value obtained during training.
While the relative errors are small, it is worth mentioning that the model appears to slightly
underestimate 𝐽1 and overestimate 𝐽3, at least over this subset of the feature space. These errors
could be reduced by increasing the complexity of the network, i.e. increasing the number of
nodes or layers. However, due to standard results in machine learning analysis regarding the
bias-variance tradeoff [192, 194, 195], this increase in model complexity may introduce noise in
the predictions that do not accurately represent the physical model.

The surrogate model can now be used to provide a complete understanding of the influence of
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Figure 4.1: The predictions of the surrogate model (dots) compared to the values from the finite
element simulation (lines).
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the triple junction configuration on elastic incompatibilities. To this end, Figure 4.2 shows con-
tour maps of the largest stress intensification of the three cracks as a function of the triple junc-
tion, as measured by (3.7). Concretely, we consider the 2D parameter spaces (𝜃1, 𝜃2, 0), (𝜃1, 0, 𝜃3),
and (0, 𝜃2, 𝜃3), where here 𝜃1, 𝜃2, 𝜃3 ∈ [0, 2𝜋] as appropriate. In all three contour plots, ‖𝐽 ‖∞ is
approximately 𝜋/2-periodic in the features, as expected from the material symmetry of cubic
crystals. Furthermore, it is interesting to note that the contour plots 4.2c and 4.2a show qualita-
tively similar contour patterns. As with the histograms in Figure 3.4, this is once again due to
the symmetry present in the triple junction geometry. It bears emphasis that repeated evaluation
of the surrogate model to produce these visualizations took a practically insignificant amount of
compute time.

4.2 The Inverse Problem: Identification of Optimal Configura-
tions

4.2.1 Identification of Extremal Configurations

To illustrate the convergence process, Figure 4.3 shows the results of the optimization procedure
for a minimization and maximization problem with a shared initial guess. Figures 4.3a and 4.3b
show that whenminimizing ‖𝐽 ‖∞, the gradient descent algorithmmanipulates the angles to set all
of the 𝐽 integrals equal to each other. Once they are equal, the largest 𝐽 integral alternates between
the three cracks due to finite step size, causing the 𝐽𝑖 to oscillate. Interestingly, the angles can
be seen to evolve near the end of the iteration, even as the resulting change in ‖𝐽 ‖∞ is small.
This indicates that in certain configurations, the minimum value of ‖𝐽 ‖∞ is somewhat insensitive
to perturbations in 𝜃𝑖. For the maximization problem, 𝐽3 simply increases until it plateaus; the
tradeoff between the cracks observed in the minimization problem does not occur. Accordingly,
the angles also cease to change noticeably within a few hundred iterations.

We now seek to identify all favorable or unfavorable configurations, which correspond to the
minimizers and maximizers of ‖𝐽 ‖∞ respectively. This was done by conducting the optimization
procedure described above for 100 random initial guesses each for the minimization and maxi-
mization problems separately. After the iteration concluded, the optimal set of 𝜃𝑖 in either case
was collected. These sets are shown in the full configurational space in Figure 4.5. Projections
of these angles into 𝜃1 − 𝜃3 and 𝜃2 − 𝜃3 space are given in Figure 4.6. In these plots, the angles
were further restricted to be contained in [0, 𝜋/2] using the modulo function, as this was found to
make the structure of the extremal configurations more apparent. For the minimization problem,
the configurations appear to approximately form lines in both 𝜃1 − 𝜃2 and 𝜃2 − 𝜃3 spaces. This
can be related to the aforementioned insensitivity of ‖𝐽 ‖∞ to changes in 𝜃𝑖. Along these lines, the
configurations share a similar value of ‖𝐽 ‖∞. The maximization problem, however, shows three
distinct clusters, each of which likely corresponds to the configuration that sets one of the three
𝐽 integrals as the largest. Based on the projections in Figure 4.6, it can be seen that some of the
configurations lie on the lines 𝜃1 = 𝜋/2 − 𝜃3 and 𝜃2 = 𝜋/2 − 𝜃3, which represent the symmetric
boundaries (the 𝜋/2 arises due to crystal symmetry considerations), are some of the bicrystallo-
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Figure 4.2: Contour maps of ‖𝐽 ‖∞ for various two-dimensional subsets of the feature space.

48



Figure 4.3: The angles and 𝐽-integrals obtained during the gradient descent when minimizing
‖𝐽 ‖∞.
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Figure 4.4: The angles and 𝐽-integrals obtained during the gradient descent when maximizing
‖𝐽 ‖∞.
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graphies of interest in grain boundary engineering. Based on the identified configurations, the
symmetric minimizing configurations correspond to small or large rotations of the lattice, while
the maximizing configurations are found near the moderate rotations of the lattice

4.2.2 Application of Coincident Site Lattice Theory

Atomistic considerations have been used in grain boundary engineering to identify favorable
configurations. An important example of these considerations is furnished by the theory of coin-
cident site lattices (CSLs). Given the lattices of adjacent grains (e.g. cubic, orthorhombic, triclinic,
etc.), CSL theory seeks to find rotations of one grain relative to the other such that a fraction
of the atoms in both lattices spatially coincide. Examples of CSLs for cubic lattices are given in
Figure 4.7.

If 𝑛 is the reciprocal of the fraction of coincident atoms in a unit cell of the CSL lattice taken
as a subset of the parent lattice, the configuration is denoted as Σ𝑛, as demonstrated in Figure 4.8.
Here, the CSL lattice is cubic, and there are four non-CSL points and four CSL points within one
unit cell. However, as the unit cell only contains a quarter of each corner lattice point, the unit
cell in total contains five lattice points (in the plane), out of which a total of one is a CSL point,
thus 𝑛 = 5 in this case. In cases where multiple configurations share 𝑛 but have different rotation
axes, additional letters are used to distinguish between these configurations, i.e. Σ𝑛𝑎. CSL grain
boundaries are expected to have low energy due to good atomic fit, and CSL analysis has been
used experimentally to characterize the probability of failure in materials [196, 197].

A description of CSL configurations requires some measure of misalignment between grains,
which is usually taken to be themisorientation angle and is computed as follows: given rotations
Q1,Q2 of each grain, the rotation of grain 1 relative to grain 2 is given by ΔQ12 = Q2Q−1

1 . Then,
the associated misorientation axis r and angle Θ is computed as follows:

cos(Θ) =
tr(Q12) − 1

2
, (4.1)

r = 1
sin(Θ)

vec [1
2
(Q12 − Q⊤

12)] ,

where vec is the operation that maps skew-symmetric tensors to the associated vector. However,
as the component lattices are invariant under symmetry operations within the associated point
group, the above equations do not yield a unique value ofΘ. The disorientation angleΘ∗ remedies
this non-uniqueness and is defined through the following optimization problem:

Θ∗ = min
R1∈𝒫1

min
R2∈𝒫2

Θ(R2Q2 (R1Q1)
−1) , (4.2)

where𝒫1, 𝒫2 are the respective symmetry groups of each lattice, andΘ(•) indicates calculation of
the angle through (4.1)1. The optimization problem (4.2) applies all possible symmetry operations
to find the smallest possible angle to describe the grain configuration. These symmetry operations
are established and commonplace in the crystal physics literature, e.g. [198].
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Upon calculation of the disorientation angle for the configurations identified via gradient
descent, they are compared to the CSL angles from [199] with axis [001] in Figure 4.9. The con-
figurations that maximize ‖𝐽 ‖∞ are mostly contained in the lower left-hand portion of the figure,
where there are no CSL boundaries, indicating that this region has poor atomic fit between the
adjacent grains. In contradistinction, the configurations that minimize ‖𝐽 ‖∞ are generally spread
over the upper right-hand region of the plot, and many configurations are near a CSL configura-
tion for either one, or both, grain boundaries. In particular, many minimizing configurations are
close to the Σ17 configuration with disorientation angle 28.07∘. However, comparatively fewer
minimizing configurations are found at the Σ13 and Σ5 configurations at 22.61∘ and 36.86∘ re-
spectively, which have a greater fraction of coincident atoms. Thus, to a limited extent, the grain
configurations expected to be favorable from atomistic considerations are reproduced by the sur-
rogate model.

Also prominent in Figure 4.9 is the lack of exact coincidence between the CSL sites and the
ones identified from the inverse design. Thus, beyond the qualitative discussion of CSL sites
in the previous paragraph, several criteria have been proposed in the literature to identify the
maximum possible angular deviation of a grain boundary from a CSL boundary while still being
classified as one. Some standard selection criteria are of the form:

Θ𝑥 = 𝜃0Σ
−𝑝
𝑥 , (4.3)

where 𝜃0 ≈ 15∘ is the low-angle boundary limit, and 𝑝 is an exponent between 1/2 and 1. The
commonly used Brandon [200] and Palumbo-Aust [201] criteria correspond to 𝑝 = 1/2, 5/6 re-
spectively. In the context of triple junctions, Frary and Schuh [202] proposed the combination of
the “sigma combination rule” and the “deviation limit rule”:

Σ1Σ2 = 𝑑2Σ3,
𝜃max ≤ 𝜃1 + 𝜃2.

(4.4)

where Σ𝑖 is the CSL value of the 𝑖th grain boundary, 𝑑 is a common divisor of Σ1 and Σ2, 𝜃max
is the largest deviation of any of the three triple junction boundary from the CSL orientation,
and 𝜃1, 𝜃2 are the deviations of the other two boundaries. The deviation limit rule affords an ex-
tension of the sigma combination rule to the case of triple junctions with deviations from the
ideal CSL configurations. These different criteria were evaluated on the configurations obtained
via inverse design to quantitatively understand the degree of deviation from the ideal configu-
rations. According to the Brandon criterion, 95% and 100% of the minimizers and maximizers
are within the acceptable deviation from their nearest CSL configuration respectively. For the
Palumbo-Aust criterion, these percentages are 46% and 99%, which is both due to the clustering
of maximizers in the low-angle region, as well as the stricter nature of the Palumbo-Aust criterion
as compared to the Brandon criterion. The Palumbo-Aust criterion was adopted to create the un-
certainty bands for the CSL configurations shown in Figure 4.9 as the lightly-shaded blue regions.
However, when using the augmented combination rule, only 19% of the maximizers satisfied both
conditions, while none of the minimizers did. The failure to satisfy the augmented criterion was
often due to a failure in the sigma combination rule. One potential reason for this failure is that
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Palumbo-Aust criterion 4.4.
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the inclusion of microcracks renders the incompatibility mostly local to the crack tip, which is
generally dominated by the two grains on either side. As a result, the triple junction connectivity
that is used to derive (4.4) is not maintained in the geometry under current consideration.
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Chapter 5

Conclusions

The goal of this thesis is to develop and apply a framework that combines physics-based simula-
tions of grain incompatibility with surrogate modeling to predict quantitative metrics of incom-
patibility from grain boundary configurational data, for the purposes of identifying optimal grain
orientations.

To this end, we developed a physics-based model of grain incompatibilities at a triple junc-
tion. The choice of triple junctions was influenced by analytical studies [58, 59] that identify triple
junctions as the most likely sites of microfracture initiation in polycrystals. In particular, a triple
junction embedded in a disk and subjected to hydrostatic extension was adopted as the model ge-
ometry and loading. The resulting stress and strain fields were obtained using the finite element
method. Grain incompatibilities were introduced by recourse to rotations of each grain about its
[001] axis. Following the approach of Tvergaard and Hutchinson [59], microcracks were intro-
duced along the triple junction boundaries, and the 𝐽-integral of fracture mechanics was used to
quantify the level of grain incompatibility. Accordingly, the 𝐽-integral was implemented in∑MIT
as a post-processing step through directly discretizing and evaluating the line integral definition
of 𝐽.

We then designed a surrogate model to predict the 𝐽-integrals for each microcrack as a func-
tion of the grain boundary rotation angles. The weights and the biases of the model were cal-
culated using a synthetic dataset produced by the finite element simulations, where the grain
rotation angles and 𝐽-integrals are the feature and label sets respectively. To form the dataset,
100,000 finite element simulations were conducted. Using the TensorFlow and Keras packages, a
multi-layer perceptron was trained using this synthetic dataset.

Then, the physics-based continuum model was verified. The calculation of 𝐽was first verified
using the method of manufactured solutions with the 𝐾-field associated to a plate with a semi-
infinite crack. In the case of a homogeneous triple junction, the numerical implementation of 𝐽
was shown to reproduce path-independence over contours with widely varying size. Regarding
the surrogate model, the suitability of the adopted network architecture and training data was
assessed by computing the training and validation loss as a function of training dataset size. This
demonstrated that the surrogate model was able to achieve very low normalized error and that
the network was not subject to overfitting, as the training and validation losses were comparable.
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The surrogate model was also shown to accurately reproduce the 𝐽-integrals for one-dimensional
subsets of the feature space.

We then demonstrated the surrogate model in two contexts. First, we swept over configu-
ration space to create contour maps of the largest energy release rate as a function of the grain
boundary angles. It bears emphasis that such a parameter sweep is enabled by the fast and di-
rect evaluation afforded by surrogate models. These contour plots also showed that the learned
interpolant accurately reproduces the expected cubic symmetry of the crystal system considered
in this thesis. The surrogate model was then also used for the inverse problem of identifying
the configurations that minimize or maximize the largest 𝐽-integral across the three microcracks.
This optimization was done using the method of Peurifoy et al [122], which utilizes the analytical
properties of the surrogate model for gradient descent updates. These configurations were then
compared to the CSL boundaries commonly used in grain boundary engineering. While some of
the minimizers did coincide with CSL angles, the optimization identified many of the maximizing
configurations as low-angle boundaries. Application of CSL criteria from the literature suggests
that the two materials at each microcrack interface present the dominant physical effect during
microstructure optimization.
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