
Training Human-AI Teams

by

Hussein Mozannar

Submitted to the Institute for Data, Systems, and Society
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOCIAL AND ENGINEERING SYSTEMS AND STATISTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Hussein Mozannar. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to
exercise any and all rights under copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access license.

Authored by: Hussein Mozannar
Institute for Data, Systems, and Society
May 20, 20224

Certified by: David Sontag
Professor of Computer Science, Thesis Supervisor

Certified by: Arvind Satyanarayan
Associate Professor of Computer Science, Thesis Supervisor

Certified by: Elena Glassman
Assistant Professor of Computer Science, Thesis Supervisor

Certified by: Eric Horvitz
Chief Scientific Officer, Microsoft, Thesis Supervisor

Accepted by: Fotini Christia
Program Chair, Social and Engineering Systems

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Training Human-AI Teams
by

Hussein Mozannar

Submitted to the Institute for Data, Systems, and Society
on May 20, 20224 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOCIAL AND ENGINEERING SYSTEMS AND STATISTICS

ABSTRACT

AI systems are augmenting humans’ capabilities in settings such as healthcare and programming,
forming human-AI teams. To enable more accurate and timely decisions, we need to optimize the
performance of the human-AI team directly. In this thesis, we utilize a mathematical framing of the
human-AI team and propose a set of methods that optimize the AI, the human, and the interface
in which they communicate to enable better team performance. We first show how to provably
train AI classifiers that complement humans and can defer the decision to humans when it is best
to do so. However, in specific settings, AI cannot autonomously make decisions and thus only
provides advice to humans. In that case, we build onboarding procedures that train humans to have
an accurate mental model of the AI to enable appropriate reliance. Finally, we study how humans
interact with large language models (LLMs) to write code. To understand current inefficiencies, we
developed a taxonomy to categorize programmers’ interactions with the LLM. Motivated by insight
from the taxonomy, we leverage human feedback to know when to best display LLM suggestions.

Thesis supervisor: David Sontag
Title: Professor of Computer Science

Thesis supervisor: Arvind Satyanarayan
Title: Associate Professor of Computer Science

Thesis supervisor: Elena Glassman
Title: Assistant Professor of Computer Science

Thesis supervisor: Eric Horvitz
Title: Chief Scientific Officer, Microsoft

3

4

Acknowledgments

I first want to thank the Institute for Data, Systems, and Society at MIT for admitting me as a
PhD student and funding my first year. Notably, I want to thank Ali Jadbabaie, Munther Dahleh,
and Beth Milnes. I am incredibly grateful for the supervision of my advisor David Sontag. David
and I started working together informally at the end of my first semester at MIT, and it didn’t take
long for me to figure out that David was not only brilliant but incredibly supportive on a personal
basis. It was incredibly fun to work with David, from long walks around Boston to whiteboard
sessions in E25, which led to us doing creative and impactful research. I am also incredibly thankful
to my thesis committee: Arvind Satyanarayana, Eric Horvitz, and Elena Glassman. Arvind taught
me most of what I know about HCI, and helped me develop a more critical and thoughtful research
method. By chance of luck, I got to work with Eric during my internship at Microsoft, and I got to
witness an incredibly creative researcher who has incredible joy in his work, which I hope to carry
on. Elena has been a great sounding board for my research ideas on programming and helped me
find my rigor in HCI.

I have been very lucky to have only amazing collaborators during my PhD. Mesrob Ohannessian
and Nati Srebro, who supported me as an undergrad, helped me get a head start on my first semester
in the PhD. Mohammad-Amin Charusaie and Samira Samadi invited me to work with them on
learning to defer, and I have great memories of late nights and early mornings working on proofs
with Amin. I lured Hunter Lang to also work with me on learning to defer and had a lot of fun
proving computational hardness results on the whiteboards at MIT. I was very fortunate to intern in
Saleema Amershi’s group with Gagan Bansal and Adam Fourney at Microsoft Research and had
the most productive summer of my career working on Copilot. I am also lucky that they decided
they want more of me, so I am looking forward to our future work. I have been very lucky to
mentor incredibly talented students. Working with Yuria Utsumi and Irene Chen on pregnancy
risk management with IBC was one of the most impactful things of my PhD. It was a lot of fun
working with Jimin J Lee on the onboarding project. Notably, I want to acknowledge the support
and funding of MIT-IBM Watson AI Lab for most funding the last 3 years of my PhD. For the
past three years, every Thursday at 1 pm ET, I was lucky to work with Dennis Wei, Subhro Das,
and Prassana Sattigieri at MIT-IBM. This collaboration has been incredibly fruitful, leading us to
co-author four papers together. Finally, I want to thank my most recent collaborators, Valerie Chen
and Ameet Talwalkar; while the work we did together did not make it to this thesis, it was very
helpful for my overall research.

I want to thank the numerous friends and lab mates at MIT and Boston who have I have been
lucky to have: Andy, Arnab, Hamaad, Erin, Sarah, Eric, Manon, Siri, Bernardo, Tony, Rabih, Alaa,
Abbas, Mohammed(s), Monica, Hunter, Irene, Ilker, Chandler, Sharron, Zeshan, Christina, Rebecca,
Mike. I also want to thank my friends from back home: Nadeem, Bassem, Rawad, Firas, Wassim,

5

Roula, Elie, Karl, Carla, Anthony, and Rami. I want to especially thank Pratibha for her unwavering
support and encouragement during my PhD which I am forever grateful for. Most important of
all, I want to thank my siblings and parents from the bottom of my heart for their support and
encouragement.

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 13

List of Tables 21

1 Introduction 25
1.1 Overview . 25
1.2 Deferral Systems . 27
1.3 AI-Assisted Decision Making . 29
1.4 Interactive Human-AI Collaboration . 31

I Conditional Delegation with AI: Learning to Defer 33

2 Sample Efficient Learning to Defer 35
2.1 Introduction . 35
2.2 Related Work . 36
2.3 Problem Setting . 37
2.4 Staged Learning of Classifier and Rejector . 39

2.4.1 Model Complexity Gap . 39
2.4.2 Data Trade-offs . 40

2.5 Surrogate Losses For Joint Learning . 42
2.5.1 Family of Surrogates . 42
2.5.2 Theoretical Properties of Surrogate . 44

2.6 Active Learning for Expert Predictions . 45
2.6.1 Theoretical Understanding . 45
2.6.2 Disagreement on Disagreements . 47

2.7 Experimental Illustration . 48

7

3 Exact Algorithms for Learning to Defer 53
3.1 Introduction . 53
3.2 Related Work . 55
3.3 Learning with Deferral: Problem Setup . 56
3.4 Computational Complexity of Learning with Deferral 57
3.5 Mixed Integer Linear Program Formulation . 59
3.6 Realizable Consistent Surrogate . 61

3.6.1 Consistency vs Realizable Consistency 61
3.6.2 Derivation of Surrogate . 63
3.6.3 Theoretical Guarantees . 64
3.6.4 Underfitting The Target . 65

3.7 Experiments . 66
3.7.1 Human-AI Deferral Benchmark . 68
3.7.2 Synthetic and Semi-Synthetic Data . 69
3.7.3 Realistic Data . 70

II AI-Assisted Decision Making: Onboarding 73

4 Teaching Humans When To Defer to a Classifier via Exemplars 75
4.1 Introduction . 75
4.2 Related Work . 76

4.2.1 Relation to Learning to Defer . 76
4.2.2 Further Related Work . 77

4.3 Problem Setup . 79
4.4 Human Mental Model . 81
4.5 Teaching a Student Learner . 83
4.6 Experimental User Study . 86

4.6.1 Experimental Preliminaries . 86
4.6.2 Simulated Users . 87
4.6.3 Crowdsourced Experiments Details . 90
4.6.4 User Study Observations and Results . 92

4.7 Additional Synthetic Experiments . 94
4.8 Discussion . 95

5 Effective Human-AI Teams via Learned Natural Language Rules and Onboarding 97
5.1 Introduction . 97
5.2 Related Work . 99
5.3 AI Assisted Decision Making . 100
5.4 Learning Rules for Human-AI Cooperation: IntegrAI 103

5.4.1 Region Discovery Algorithm . 104
5.4.2 Region Description Algorithm . 105

5.5 Onboarding and Recommendations to Promote Rules 108
5.6 Method Evaluation . 111
5.7 User Studies to Evaluate Onboarding Effect . 113

8

III Interactive Human-AI Collaboration: Case Study in LLM-Assisted
Programming 119

6 Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Pro-
gramming 121
6.1 Introduction . 121
6.2 Background and Related Work . 124
6.3 Copilot System Description . 126

6.3.1 Influences of CodeRec on Programmer’s Activities 127
6.3.2 Programmer Activities in Telemetry Segments 127

6.4 A Taxonomy for Understanding Programmer-CodeRec Interaction: CUPS 128
6.4.1 Creating the Taxonomy . 128
6.4.2 Taxonomy of Telemetry Segments . 131

6.5 CUPS Data Collection Study . 132
6.5.1 Procedure . 132
6.5.2 Participants . 133

6.6 Understanding Programmer Behavior with CUPS: Main Results 134
6.6.1 Aggregated Time Spent in Various CUPSs 136
6.6.2 Patterns in Behavior as Transitions Between CUPS States 137
6.6.3 Programmers Often Defer Thought About Suggestions 140
6.6.4 CUPS Attributes Significantly More Time Verifying Suggestions than Sim-

pler Metrics . 141
6.6.5 Insights About Prompt Crafting . 142
6.6.6 Post-Study Survey Answers . 144

6.7 Limitations . 145

7 When to Show a Suggestion? Integrating Human Feedback in AI-Assisted Program-
ming 147
7.1 Introduction . 147
7.2 Related Work . 149
7.3 Problem Setting . 149
7.4 Theoretical Formulation of Suggestion Utility . 151
7.5 Conditional Suggestion Display From Human Feedback 154
7.6 Experiments . 155

7.6.1 Dataset and Feature Engineering. 156
7.6.2 Model Evaluation . 157
7.6.3 Retrospective Evaluation of CDHF . 158

7.7 Which Suggestion to Show? . 160

8 Conclusion 163

A Additional Information for Chapter 2 169
A.1 Proof of Theorem 1 . 169
A.2 Proof of Proposition 1 . 179
A.3 Proof of Proposition 2 . 185

9

A.4 Proof of Theorem 2 . 186
A.5 Proof of Theorem 3 . 190
A.6 Proof of Proposition 3 . 196
A.7 An example on which CAL algorithm fails . 199
A.8 Proof of Theorem 4 . 200
A.9 Experimental Details . 201

B Additional Information for Chapter 3 203
B.1 Practitioner’s guide to our approach . 203

B.1.1 MILP . 203
B.1.2 Realizable Surrogate . 206

B.2 MILP . 207
B.2.1 Verification . 207

B.3 Experimental Details and Results . 208
B.3.1 Baseline Implementation . 208
B.3.2 Training Details . 209
B.3.3 Synthetic Data . 209
B.3.4 NIH Chest X-ray . 211
B.3.5 CIFAR-10H . 212

B.4 Deferred Proofs and Derivations . 212
B.4.1 Related Work . 212
B.4.2 Section 3.4 (Hardness) . 212
B.4.3 Section 3.5 (MILP) . 219
B.4.4 Section 3.6 (RealizableSurrogate) . 221

C Additional Information for Chapter 4 227
C.1 Extended Related Work . 227
C.2 Theoretical Results and Proofs . 230

C.2.1 Further Derivations . 230
C.2.2 Proofs . 231
C.2.3 Hardness result . 233
C.2.4 Efficient Implementation of Greedy Selection 234

C.3 SAE Model Error Analysis . 235
C.3.1 Factors of difference . 235
C.3.2 Embedding clustering . 238

C.4 Synthetic Experiments Details and Results . 241
C.4.1 Misspecification results . 241

C.5 Additional Synthetic Experiments . 242
C.5.1 CIFAR-10 . 242
C.5.2 Guassian Data Illustration . 245

C.6 Crowdsourced Experiments Details and Results 247
C.6.1 Experiment Details . 247

C.7 Extended Discussion . 248
C.8 User Interface Screenshots . 251

10

D Additional Information for Chapter 5 265
D.1 Extended Related Work . 265
D.2 Region Finding Algorithm - Details . 267
D.3 Region Description Algorithm - Details . 269
D.4 Onboarding and Recommendations to Promote Rules - Details 271
D.5 Method Evaluation - Details . 272
D.6 User Studies - Details . 276

D.6.1 BDD Study . 276
D.6.2 MMLU Study . 277
D.6.3 Screenshots of User Study Interface for BDD 279
D.6.4 Screenshots of User Study Interface for MMLU 286

E Additional Information for Chapter 6 289
E.1 Programmer Behavior by Task . 289
E.2 Predicting CUPS from Telemetry . 289
E.3 Details User Study . 291

E.3.1 Interfaces . 291
E.3.2 Task Instructions . 292
E.3.3 Survey Questions Results . 297
E.3.4 Full User Timelines . 301
E.3.5 Full CUPS Graph . 303

F Additional Information for Chapter 7 305
F.1 Extended Related Work . 305
F.2 Derivation of P∗ . 306
F.3 Model Evaluation and Analysis . 307
F.4 Which Suggestion to Show: Plots . 310

References 313

11

12

List of Figures

1.1 The Human-AI Team: an overview of the three thesis parts showcasing opportunities
for training the human-AI team: the human, the AI, and the interface. 26

1.2 Human-AI interaction settings studied in this thesis. In subfigure (a), the AI-assisted
decision-making setting where onboarding helps humans build better mental models
of AI (part II). In (b), an AI rejector dictates who should predict between the human
and AI (part I). Finally, in (c) is my work on programmers interacting with LLMs
and interventions to selectively display suggestions (part III). 27

2.1 Illustration of our active learning algorithm Disagreement on Disagreements (DoD)
(1). At each round, we compute the disagreement set for our predictors of the human
label disagreement, we then query the human for their prediction on these points.
After we learn the expert error boundary, we then learn a consistent classifier-rejector
pair. 45

2.2 Difference of accuracy between joint learning and staged learning of the classifier-
rejector pair (y-axis is log scale of number of parameters). 49

2.3 Performance of joint learning and staged learning as we increase the ratio of the
data labeled by the expert nl

nu+nl
. 50

2.4 Error of the DoD algorithm compared to staged and joint learning for increasing
number of training data that are labeled by human. 51

3.1 The learning to defer setting with the RealizableSurrogate illustrated in the
application of making predictions for chest X-rays. 53

3.2 The realizable LWD-H setting illustrated. The task is binary classification with
labels {o,+}; the human is perfect on the green-shaded region, and the data outside
the green region is linearly separable. As a result, the optimal classifier and rejector
obtain zero error. Assumption 2 is illustrated graphically as well as the MILP
variables of equations (3.9)-(3.14). 57

3.3 Accuracy vs coverage (fraction of points where classifier predicts) plots across the
real world datasets showcasing the behavior of our method and the baselines. On
each plot, we showcase the test accuracy of each method with a large marker, with
the curve representing varying the rejector threshold on the test set. To achieve
different levels of coverage, we sort the rejection score for each method on the test
set and vary the threshold used, for RealizableSurrogate the rejector is defined
as r(x) = Ig⊥(x)−maxy gy(x)≥c where the optimal solution is at c = 0 and we vary
c ∈ R to obtain the curve. 67

13

3.4 (a) Test performance of the different methods on synthetic data as we increase the
training data size and repeat the randomization over 10 trials to get standard errors.
(b) Test performance on the semi-synthetic CIFAR-K dataset vs. the number of
classes K for which the expert is perfect. 68

3.5 Sensitivity of the RealizableSurrogate to the hyperparameter α. We vary the hy-
perparameter α in the RealizableSurrogate surrogate loss and show the different
metrics including overall accuracy, accuracy when we defer, accuracy when we
don’t defer, and finally coverage. 70

4.1 The AI assisted decision making pipeline. The AI first sends to the human a message
A, then the human decides with their rejector r(Z,A) if they should follow the AI’s
advice and predict πY (X) or they should predict on their own using h(Z,A). . . . 79

4.2 Illustration of human rejector on toy example. The task is classification with labels
{o,+}, the human prediction h is the blue line and the prior g0 is the shaded orange
region surrounding the boundary. Points in red is where the human is incorrect, in
blue correct and in black point deferred to the AI. The AI is assumed to be correct
on examples far from the human boundary. The human receives a teaching example
z1 (in green) with radius γ1. Also shown are the two contrasting examples zj1 and
zjk (in pink) that define the region. 83

4.3 Teaching set size versus the negative difference between the human’s learner test
accuracy under the different methods compared to ORACLE. We plot the average
result across 10 trials and standard deviation as error bars. 88

4.4 On the left in subfigure (a) is the testing interface shown for an example. This is the
same interface that is also shown at the beginning of each teaching example. After
the human predicts and we are in the teaching phase, we show them the correct
answer and transition to the interface in subfigure (b) that shows the two supporting
examples for the example in (a), the top weighted words in the region and asks the
user to write down their rule for the example. 90

4.5 Synthetic experiment on CIFAR-10, showing difference between the performance
of the methods and ORACLE (defined as taking the optimal decision at test time)
for expert k = 6. 95

5.1 The proposed onboarding approach with the IntegrAI algorithm. 98
5.2 The setting of AI-assisted decision making studied in this work. We show an

example of an AI system providing assistance to a human driver to inform them
about traffic lights in a low visibility situation. The AI provides advice to the human
who then incorporates it to make a final decision. 101

5.3 The IntegrAI-Describe algorithm illustrated. To obtain a description for a region
of points, the algorithm first samples a set of points inside and outside the region
and gets a description from an LLM that contrasts inside versus outside (Step 0).
We then embed the obtained description in our cross-modal embedding space (Step
1) and find counterexamples to that description, both points outside the region with
high similarity to the description and points inside the region with low similarity to
the description (Step 3). The process is repeated for as many rounds as necessary
(Step 4). 108

14

5.4 Test Error (↓) of the human-AI system when following the decisions of the different
integrators as we vary the number of regions maximally allowed for each integrator
on the BDD dataset. 111

5.5 (a) Interface for humans to detect a traffic light in images from BDD dataset in the
presence of AI’s prediction, confidence score, and bounding box and (b) interface
for humans to answer multiple choice questions from MMLU dataset with AI’s
prediction and explanation. 114

6.1 Profiling a coding session with the CodeRec User Programming States (CUPS). In
(a) we show the operating mode of CodeRec inside Visual Studio Code. In (b) we
show the CUPS taxonomy used to describe CodeRec related programmer activities.
A coding session can be summarized as a timeline in (c) where the programmer
transitions between states. 123

6.2 Schematic of interaction telemetry with Copilot as a timeline. For a given coding
session, the telemetry contains a sequence of timestamps and actions with associated
prompt and suggestion features (not shown). 126

6.3 Taxonomy of programmer’s activities when interacting with CodeRec– CUPS. . . 128
6.4 Screenshot of retrospective labeling tool for coding sessions. Left: Navigation

panel for telemetry segments. Right: Video player for reviewing video of a coding
session. Bottom: Buttons and text box for labeling states. 130

6.5 Visualization of CUPS labels from our study as timelines, a histogram, and a state
machine. 135

6.6 Myriad of CUPS patterns observed in our study. 139
6.7 Illustration of a coding scenario with Copilot where the programmer may choose

to defer verifying a suggestion (‘Deferring Thought’). Here, Copilot suggests
an implementation for the class Logistic Regression line-by-line (illustrated
from left to right). And the programmer may need to defer verifying intermediate
suggestion of self.cost (middle screenshot) because the method that implemented
it is suggested later (right screenshot). 140

6.8 Illustration of one of the adjustments required for measuring the total time a pro-
grammer spends to verify a suggestion. Here, when a programmer defers thought
for a suggestion, they spend time verifying it after accepting it and may also have to
wait beforehand for the suggestion to be shown. 143

7.1 Operating mode of CodeRec inside Visual Studio Code showing how CDHF influ-
ences the interaction by selectively hiding certain suggestions. Data collected by
the interaction is stored in telemetry and used to train CDHF to create a feedback loop.147

7.2 Schematic of telemetry with CodeRec as a timeline. For a given coding session, the
telemetry contains a sequence of timestamps and actions with associated prompts
and suggestions. 150

7.3 Graphical depiction of analysis of Proposition 6 when the latency is zero. The
y-axis shows total time and the x-axis is the programmer’s probability of accepting
P(A = accept|X,S, ϕ). At probability P∗, showing and not showing the suggestion
have equal time cost. 153

15

7.4 Features used to build action prediction model in Experiments, including from the
suggestion, prompt, and session. 156

7.5 Evaluation of CDHF for selectively hiding suggestions. For a given constraint on
FNR (accuracy when a suggestion is hidden) on the x-axis, we show on the y-axis
the fraction of the total suggestions we can hide while guaranteeing the desired
FNR. We plot these curves while varying how often the decision is made generating
suggestions (R:=E[r(x)], when R=0, we generate the suggestion then decide to hide
or not, when R=1, we decide to hide without knowing the suggestion). 159

B.1 (Test performance of the different methods on realizable synthetic data as we
increase the training data size and repeat the randomization over 10 trials to get
standard errors on uniform data. 210

B.2 (Test performance of the different methods on unrealizable (d = 10, pm =
0.1, ph0 = 0.4, ph1 = 0.1, Gaussian distribution with 20 clusters) synthetic data as
we increase the training data size. 210

B.3 Runtime of the MILP on the realizable synthetic data with uniform data distribution.
Note that the test accuracy of the MILP is demonstrated in Figure 3.4a and the
MILP always reaches 0 training error across the different data dimensions and
training set sizes. 211

B.4 NIH Chest X-ray results on the two remaining tasks with the baselines and our
method and red with circle markers. We see that all methods aren’t able to obtain
a performance of a human-AI team with better performance than the human, our
method on both tasks defers to the human. 211

B.5 On CIFAR-10H, classifier accuracy on non-deferred set and human accuracy when
deferred vs coverage (fraction of points where classifier predicts). 212

B.6 Data Distribution for our example: the data consists of four regions R0,R1,R2 and
R3. Each region respectively has mass 1/4 + α, 1/4, 1/4 − α, 1/4 . Each region
respectively has label Y = 0, Y = 1, Y = 0, Y = 2. The Human is only accurate
on Region 0. 224

C.1 Performance across lengths of passages in terms of words. First bin contains very
little samples to be significant. 236

C.2 Performance across number of supporting sentences. Black bars indicate 95%
confidence interval around the mean, the x axis is: (number of sentences, number
of examples with that many sentences) . 237

C.3 Performance across LDA topics . 237
C.4 Performance (left EM, right F1) across question words 238
C.5 Performance (left EM, right F1) across model embeddings clusters. 238
C.6 Performance across passage embeddings clusters. No differences emerge signifi-

cantly. 239
C.7 Performance across question embeddings clusters. 239
C.8 Performance across answer embeddings clusters. 240
C.9 Difference in Oracle accuracy at teaching size @T=30 for the DOUBLE-GREEDY

method assuming an error in h by δ in setting B. 241

16

C.10 Comparing a 1-nearest neighbor rejector model to the radius nearest neighbor model
introduced in Assumption 4 for expert k = 6. The "1-NN" line is obtained by first
obtaining T points using K-medoids and then running a 1-NN rejector on these
points with the label assigned to each point being the optimal deferral decision ri.
We can see that 1-NN struggles with less than 6 examples, but then reaches a steady
state that has the same error as the radius nearest neighbor model. The effectiveness
of the radius nearest neighbor model when the teaching set is very small is due to
the local nature of each update with the addition of a teaching example. 242

C.11 Performance of the AI-Behavior baseline as we vary the parameter K: the AI-
Behavior baseline uses a K-nearest neighbor rejector and at each teaching step
selects the point that best reduces the error of the rejector at detecting the AI’s errors.
We show results for the human expert k = 6 with the consistent radius strategy
α = 1. We can see that the parameter K has little effect and thus we use a natural
choice of K = 6. 242

C.12 Extended legend: Varying the human parameter k (number of classes human can
classify) and plotting the difference to oracle accuracy for all the baselines when
using the consistent radius strategy including the surrogate-loss learning to defer
method of [26] at 3 different teaching set sizes. 243

C.13 Extended legend: Varying the human parameter k (number of classes human can
classify) and plotting the difference to oracle accuracy for all the baselines when
using DOUBLE-GREEDY including the surrogate-loss learning to defer method of [26]
at 3 different teaching set sizes. 244

C.14 Teaching complexity plot for synthetic Gaussian data setup. The x-axis shows the
difference in test human accuracy between our method and the baselines. Plotted
are the averages over the 100 trials along with 95% confidence interval error bars
for the average. 245

C.15 Extended legend: blue dots indicate a correct decision while red dots indicate
mistakes. Points with an "x" are labels 1 while points with an "o" are labels 0 (in
the Y space). The lines labeled human and machine are the respective classifiers. . 246

C.16 Consent form to be confirmed before entering experiment 251
C.17 Information collected about workers prior to experiment. MTurk worker ID was

only saved for cross-checking and then deleted. 252
C.18 First step of the tutorial introducing the task . 253
C.19 Second step of the tutorial solving without AI help 254
C.20 Third step of the tutorial solving with AI help . 255
C.21 Teaching instructions . 256
C.22 Teaching initial example to be solved by the human. 257
C.23 Feedback shown after human solves the example along with supporting examples. . 258
C.24 Top words for the teaching example along with instructions for lesson writing . . . 259
C.25 The LIME-Teaching user teaching introduction 259
C.26 The LIME-Teaching feedback after answering teaching question. 260
C.27 The LIME-Teaching teaching introduction to second part of the teaching phase . . 260
C.28 The LIME-Teaching user interface of the second part of the teaching phase where

users observe examples and the AI answers. 261
C.29 Interface during testing. 262

17

C.30 Questions collected after workers complete experiment for the Teaching condition. 263

D.1 Test Error (↓) of the human-AI system when following the decisions of the different
integrators baselines as we vary the number of regions maximally allowed for each
integrator on the MS-COCO dataset. 274

D.2 Test Error (↓) of the human-AI system when following the decisions of the different
integrators baselines as we vary the number of regions maximally allowed for each
integrator on the MMLU dataset. 274

D.3 Test Error (↓) of the human-AI system when following the decisions of the different
integrators baselines as we vary the number of regions maximally allowed for each
integrator on the Dyanasent dataset. 275

D.4 Consent Form . 280
D.5 User Information Collection . 280
D.6 Practice Task instructions . 281
D.7 Prediction without AI interface . 281
D.8 Instructions for the onboarding phase . 282
D.9 Model card information shown during onboarding. 282
D.10 Prediction with AI interface (AI predicts no traffic light) 282
D.11 Feedback shown during onboarding phase after human predicts. 283
D.12 Feedback shown during onboarding phase after human predicts (sets of examples

from region) . 283
D.13 Prediction with AI interface (AI predicts there is a traffic light) 283
D.14 Feedback shown during onboarding phase after human predicts (correct feedback) . 284
D.15 Testing phase instructions . 284
D.16 Testing phase instructions that include AI-integration recommendation 284
D.17 Prediction interface with AI and with AI-integration recommendations. 285
D.18 Model Card for MMLU study . 286
D.19 Prediction Interface for MMLU study . 286
D.20 Feedback shown to user during teaching phase . 287
D.21 Prediction Interface for MMLU study with AI-integration recommendations. 287

E.1 Screenshot of Labeling Tool represented in Figure 6.4 291
E.2 Screenshot of Virtual Machine interface with VS Code 292
E.3 Data Manipulation Task. 292
E.4 Algorithmic Problem Task. 293
E.5 Data Analysis Task. 293
E.6 Classes and Boilerplate Code Task. 294
E.7 Logistic Regression Task . 294
E.8 Editing Code Task . 295
E.9 Machine Learning Task . 295
E.10 Writing Tests Task . 296
E.11 User Study Survey results (1) . 297
E.12 User Study Survey results (2) . 298
E.13 User Study Survey results (3) . 299
E.14 User Study Survey results (4) . 300

18

E.15 Participants timelines for the first 10 minutes of their sessions (P1 to P10) 301
E.16 Participants timelines for the first 10 minutes of their sessions (P11 to P21) 302
E.17 CUPS diagram with all transitions shown that occur with probability higher than

0.05 . 303

F.1 Calibration curve for the XGBoost stage 2 model. 308
F.2 Sample complexity analysis of the XGBoost stage 2 model when trained on a

fraction of the training data and plotting the AU-ROC on the full test set. 309
F.3 Feature importance for the seven highest-rated unique features of the model for

predicting the likelihood of accepting a suggestion. The feature importance is in
terms of the F score which counts how often a feature was split on in the tree
ensemble. 309

F.4 Plots for the experiment on ranking suggestions by the probability of acceptance.
Histogram (a) shows in which length percentile bin the maximizing suggestion lies
and Graph (b) shows the acceptance score by increasing the length of the suggestion.
These plots are for k = 0 (docstring only) . 310

F.5 Plots for the experiment on ranking suggestions by the probability of acceptance.
Histogram (a) shows in which length percentile bin the maximizing suggestion lies
and Graph (b) shows the acceptance score by increasing the length of the suggestion.
These plots are for k = 1 (docstring + first line of solution) 311

F.6 Plots for the experiment on ranking suggestions by the probability of acceptance.
Histogram (a) shows in which length percentile bin the maximizing suggestion lies
and Graph (b) shows the acceptance score by increasing the length of the suggestion.
These plots are for k = 2 (docstring + first two lines of solution) 311

F.7 Plots for the experiment on ranking suggestions by the probability of acceptance.
Histogram (a) shows in which length percentile bin the maximizing suggestion lies
and Graph (b) shows the acceptance score by increasing the length of the suggestion.
These plots are for k = 3 (docstring + first three lines of solution) 312

19

20

List of Tables

3.1 Datasets used for our benchmark for learning with deferral to humans. We note
the total number of samples n, the target set size |Y|, the number of tasks in each
dataset (a task is a set of human and target labels), the human expert where ’random
annotator’ means that for each point we have multiple human annotations and we let
the target be a consensus and the human label be a random sample while ’separate
human annotation’ means that the human label is completely separate from the
label annotations and finally the model class for both the classifier and rejector. . . 68

3.2 Test accuracy of the operating point of the different methods on the datasets tested
on. The baselines are LCE [26], ΨOvA [62], Selective Prediction (SP), Compare
Confidence (CP) [25], DIFT [27] and MoE [28]. 71

4.1 Comparison on different dimensions between the teaching to defer framework in
this paper (TTD) and the learning to defer framework (LTD) from [26], [28], [87]. 78

4.2 Test Accuracy gap between DOUBLE-GREEDY and ORACLE at teaching set of size
30 under various conditions. This is performed under setting B. 89

4.3 Comparison of the metrics between our teaching condition (split into all participants,
those who gave accurate lessons (acc) and those who didn’t (inacc), see description
below), the No-teaching+AI-prediction condition and LIME teaching. Shown
are averages across all participants with 95% confidence interval error bars. The F1
of the AI alone in this setting is 46.7%; we did not separately measure the F1 of the
human in isolation. 91

4.4 Comparison of the metrics on clusters that were seen during teaching with our
method (ID for in distribution) compared to performance on clusters that were not
seen during teaching (OOD for out of distribution). We also show the performance
of the no-teaching baselines on the two cluster sets as a reference point. The errors
on the OOD estimates are much higher as there are much fewer samples in the
not-seen clusters. 92

4.5 Synthetic experiment on CIFAR-10, showing the test Accuracy for our method
DOUBLE-GREEDY at different teaching set sizes and learning to defer baselines. . . . 95

5.1 Human-AI Card presented to the human as part of onboarding 109
5.2 The exact Human-AI card used in the user study for BDD. 110
5.3 Error (↓) on the test set (in %) of the human-AI system when following integrators

resulting from different region discovery methods with 10 regions on the different
non-synthetic datasets. 112

21

5.4 Clustering metrics (Adjusted Rand index [161] ↑, Fowlkes–Mallows index [162] ↑)
of the regions (10 regions) found by the different methods on the synthetic dataset
setup. 112

5.5 Evaluation of our region description algorithm (Algorithm 4) on selected subsets of
MS-COCO where the different algorithms try to describe a set of images that all
contain a given object. For example, a region may be defined by images containing
the object “apple”. Then we compare the descriptions resulting from the different
algorithms to the description “apple”. 113

5.6 Results from our user studies for BDD. For accuracy, time per example, and AI-
reliance we report mean and standard error across participants. The "Test vs H-AI"
row reports the adjusted p-value and t-test statistic for a two-sample t-test between
the human+AI condition and the other conditions (columns). 116

5.7 Results from our user studies for MMLU. 116

6.1 Description of each state in CodeRec User Programming States (CUPS). 129
6.2 Description of the coding tasks given to user study participants and task assignment.

Participants were randomly allocated to tasks for tasks which they had familiarity
with. 133

6.3 We compute the percentage of suggestions accepted given the programmer was in
the CUPS state while the suggestion is being shown (% Ss accepted while shown).
We compute the percentage of suggestions accepted given the programmer was
in the CUPS state before the suggestion is shown, the state just before the one
where the suggestion is shown (% Ss accepted before S is shown). We compute the
standard error for the acceptance rate (%). 141

B.1 Training details for each dataset, we use the Adam optimizer [227] and AdamW
[226] . 209

C.1 Performance on the dev set without yes/no questions. 235
C.2 Performance based on question types. 235
C.3 Cluster main theme (manually obtained) and top 3 Wikipedia categories of examples

in clusters for the AI used in the MTurk study. 248
C.4 Example of lessons that users in the Ours-Teaching condition wrote during the teach-

ing phase. We show examples of the lessons on the first 3 examples in the teaching
phase and separate the participant lessons into 4 categories: participants who wrote
accurate lessons, participants who wrote irrelevant lessons (not relevant to the
question or required no effort to write), participants who wrote complex lessons
that don’t pertain to the example topic and finally participants who wrote narrow
lessons that are on topic but only apply to the example and not the neighborhood of
the example. 250

22

D.1 Datasets for "Learning Accurate Integrators (Aim 1)". We note the total number
of samples n, the target set size |Y|, the human expert finally the model of the AI.
When we note human "XX% accurate", this indicates a synthetic human model
that is accurate uniformly at random with probability XX%. For DynaSent, the AI
model is a a pre-trained sentiment analysis roBERTa-base model [160] on Twitter
data and achieves 75% accuracy. For both BDD and MS-COCO we blur the images
using a Guassian Blur with scale 21 and variance 5. 273

D.2 Region descriptions found by IntegrAI for the BDD user study. 277
D.3 Region descriptions found by IntegrAI for the MMLU user study. 279

E.1 Acceptance rate and the top three CUPS states in terms of time spent as a fraction
of session time for each of the tasks. We include standard errors of the acceptance
rate aggregated across participants. 304

F.1 Comparison of different classifiers on the test set based on AU-ROC, accuracy, and
macro f1 for the full model to predict programmer suggestion acceptance. FCNN
refers to a fully connected neural network. 308

23

24

Chapter 1

Introduction

1.1 Overview

As artificial intelligence (AI) becomes more ubiquitous and sophisticated, humans are increas-
ingly working alongside AI systems to accomplish various tasks, ranging from medical diagnosis
[1], [2], content moderation [3] to writing [4] and programming [5]. The promise of AI is to
enhance human performance and efficiency by providing fast and accurate solutions. Furthermore,
the emergence of assistants based on large language models (LLMs), such as ChatGPT [6] and
Copilot [7], holds the potential to enhance productivity in various industries. What enables these
applications is work that bridges the interface between humans and AI, which this thesis focuses on.
For such human-AI teams to function effectively, the human must have an accurate mental model
of the AI to understand when to trust its advice. Moreover, the AI also has to model the human’s
expertise and behavior to be an effective partner. To make progress, I utilize a mathematical framing
of the problem setting informed by a deep understanding of practice. This framing allows me to
develop provable methods for human-AI teams leveraging techniques from machine learning (ML)
and human-computer interaction (HCI).

To start, a human-AI team is an abstraction of a system that consists of both a human and an
artificially intelligent agent (the AI) that aims to solve a concrete task. This task could be defined
as making a classification decision (medical diagnosis), producing an artifact that meets certain
specifications (code that passes unit tests), or providing a free-form answer to a question. We
assume that given an attempted task solution, we can measure the quality of the solution as well as
measure metrics around the effort in generating the solution, for instance, time. The human and
the AI interact in this system according to a certain interaction scheme. For instance, the AI may
provide a suggestion to the human, who then incorporates the suggestion to solve the task; this is
illustrated in Figure 1.1. As an example, suppose a radiologist wishes to diagnose a patient given
their chest X-ray. The AI provides a candidate diagnosis and assigns a confidence score to their

25

certainty about the diagnosis. The radiologist can observe this suggestion and then make a final
diagnosis. This type of interaction is denoted as AI-assisted decision-making; we will explore this
further in this thesis alongside other interaction schemes.

Human AI

suggestion

Human-AI Team

Part 3: Adapt suggestions (interface) from human feedback

Part 1: Train AI
to complement
and not mimic

human

Part 2: Train
human how to
interact with AI

2
Figure 1.1: The Human-AI Team: an overview of the three thesis parts showcasing opportunities
for training the human-AI team: the human, the AI, and the interface.

The human-AI team consists of four components: the interaction scheme, the human, the AI,
and the interface in which they communicate. In our radiology example, the four components are:
the interaction scheme is having the AI provide their suggestion to the human first, the human is
the radiologist, the AI we assumed is a model that is trained to make predictions and provide a
confidence score, and finally, the interface is how the AI’s suggestion is communicated, e.g., is
the confidence score displayed as a percentage or communicated as being "low" or "high". These
four components present targeted opportunities to optimize the performance of the human-AI team,
which we will explore in this thesis.

The first challenge is that current AI models are often trained without considering the human
in the loop. Since the AI is part of a team, we should optimize the AI model to increase team
performance rather than creating the best-performing AI independently. In the first part of this thesis
I, we build a set of methods to allow AI classifiers to complement their human counterparts and
to defer when it is best to do so in Chapters 2 and 3. This enables the AI to be the best teammate
possible instead of the best model in isolation. The second challenge is that the human prior mental
model of the AI is usually incorrect, leading to inefficient collaboration. In settings where AI
provides advice to a human, such as providing a radiologist with a candidate diagnosis, we propose
in part II of this thesis a set of procedures to explicitly teach humans how to collaborate with the AI:
when to trust, ignore, or modify the AI advice. Moreover, the AI has to improve from the feedback
of the human continuously interacting with it to allow for alignment with human needs. For AI
models that provide code suggestions to programmers, we show in part III of this thesis, how to

26

improve the interface and the suggestions based on feedback from programmer actions. We will
now discuss our contributions and the problem settings for each part of the thesis.

AI suggestion: selective display

“replace eggs with
water!
ingredients:
- 2 cups flour …”

Chest X-ray
AI rejector

RadiologistAI assistant

Model
Of

Human

“patient is
healthy”

(b)

AI assistant

(a)

Mental
model
of AI

Human

(c)

Onboarding Lesson:
“Ignore AI for
dessert recipes”

AI assistant Programmer

“buttermilk
instead of eggs”

AI suggestion

request from programmer

 (prompt)

or

Task:
recipe for waffles without eggs

Task:
Code for logistic regression

Figure 1.2: Human-AI interaction settings studied in this thesis. In subfigure (a), the AI-assisted
decision-making setting where onboarding helps humans build better mental models of AI (part
II). In (b), an AI rejector dictates who should predict between the human and AI (part I). Finally,
in (c) is my work on programmers interacting with LLMs and interventions to selectively display
suggestions (part III).

1.2 Deferral Systems

How do we combine AI systems and human decision makers to both reduce error and alleviate
the burden on the human? AI systems are starting to be frequently used in combination with human
decision makers, including in high-stakes settings like healthcare [1] and content moderation [3]. A
possible way to combine the human and the AI is to learn a ’rejector’ that queries either the human
or the AI to predict on each input illustrated in Figure 1.2(b). This allows us to route examples to
the AI model, where it outperforms the human, so as to simultaneously reduce error and human
effort. Moreover, this formulation allows us to jointly optimize the AI so as to complement the
human’s weaknesses, and to optimize the rejector to allow the AI to defer when it is unable to
predict well. This type of interaction is typically referred to as a deferral system and the learning
problem is that of jointly learning the AI classifier and the rejector. Empirically, this approach
has been shown to outperform either the human or the AI when predicting by their own [8], [9].
A motivating application arises in health care settings; for example, deep neural networks can
outperform radiologists in detecting pneumonia from chest X-rays [10], however, many obstacles
are limiting complete automation.

Formalization. We frame the learning with deferral setting as the task of predicting a target
Y ∈ Y = {1, · · · , C}. The classifier has access to features X ∈ X = Rd, while the human (also

27

referred to as the expert) has access to a potentially different set of features Z ∈ Z which may
include side-information beyond X . The human is modeled as a fixed predictor h : Z → Y . The
AI system consists of a classifier m : X → Y and a rejector r : X → {0, 1}. When r(x) = 1,
the prediction is deferred to the human and we incur a cost if the human makes an error, plus an
additional, optional penalty term: ℓHUM(x, y, h) = Ih̸=y + cHUM(x, y, h). When r(x) = 0, then
the classifier makes the final decision and incurs a cost with a different optional penalty term:
ℓAI(x, y,m) = Im ̸=y + cAI(x, y,m). We can put this together into a loss function for the classifier
and rejector:

Ldef(m, r) = EX,Y,Z [ℓAI
(
X, Y,m(X)

)
· Ir(X)=0 + ℓHUM(X, Y, h(Z)) · Ir(X)=1].

The joint learning optimization problem in the deferral system is:

minimize
m,r

Ldef(m, r) (1.1)

Existing deployments tend to ignore that this system has two components and typically, the AI
is trained without taking into account the human—and deferral is done by routing low-confidence
examples to the human. By learning the AI jointly with the rejector as above, the aim is for the
AI to complement the radiologist so that the human-AI team performance is higher. We formulate
a natural loss function for the combined human-AI system and showed a reduction from this
setting to cost-sensitive learning. We then prove that minimizing the human-AI system loss is
computationally difficult. Therefore, we proposed a family of novel convex surrogate losses that
consistently estimates the human-AI system loss and resolves an open problem in cost-sensitive
learning [11].

Furthermore, a main limitation of complementing the human is the availability of samples of
human predictions. For example, suppose we wish to deploy a system for diagnosing pneumonia
from chest X-rays in a new hospital. To know when to defer to the new radiologists, we need to
understand their specific strengths and weaknesses. We design a provable active learning scheme
that first understands the human error boundary and then learns an AI classifier-rejector pair that
adapts to it. We evaluate these approaches compared to baselines on tasks of chest X-ray diagnoses,
content moderation, image classification, and income prediction. Specifically the contributions of
part I of this thesis are:

• Chapter 2: we prove bounds on the gap between joint learning and staged learning, we
propose a novel family of consistent surrogates that generalizes prior work and analyze
asymptotic and sample properties, and finally, we provide an algorithm that is able to learn a
classifier-rejector pair by minimally querying the human on selected points.

28

• Chapter 3: we prove the computational hardness of PAC-learning with deferral in the linear
setting, we show how to formulate learning to defer with halfspaces as a MILP and provide a
novel surrogate loss and we showcase the performance of our algorithms on a wide array of
datasets and compare them to several existing baselines. We contribute a publicly available
repository with implementations of existing baselines and datasets.

1.3 AI-Assisted Decision Making

The mode of interaction whereby the automated agent serves only to provide a recommendation
to the human decision maker, a setting typically named AI assisted decision making illustrated in
Figure 1.2(a), is the focus of our study in part II of this thesis. A key question is how does the human
expert know when to rely on the AI for advice. The literature on human-AI collaboration has often
revealed that humans often underperform expectations when working with AI systems [12]–[15].
The negative results of human-AI performance may be attributed to a few possible reasons. First,
humans can have miscalibrated expectations about AI’s ability, which leads to over-reliance [16].
Second, the cost of verifying the AI’s answer with explanations might be too high thus providing a
bad cost-benefit tradeoff for the human and leading to either over-reliance [17] or under-reliance on
the AI [18]. Finally, the AI explanations do not able the human to verify the correctness of the AI’s
answer and thus are not as useful for human-AI collaboration [19].

We make the case for the need to initially onboard the human decision maker on when and
when not to rely on the automated agent. We propose that before an AI agent is deployed to assist
a human decision maker, the human is taught through a tailored onboarding phase how to make
decisions with the help of the AI. The purpose of the onboarding is to help the human understand
when to trust the AI and how the AI can complement their abilities. This allows the human to have
an accurate mental model of the AI agent, and this mental model helps in setting expectations about
the performance of the AI on different examples.

Formalization. We consider a setting where a human is making decisions with the help of an
AI agent who provides advice to complete a task. Formally, the human has to make a decision
Y ∈ Y given access to information about the context as X ∈ X and the AI’s advice A ∈ A. We
denote the human as a potentially randomized function H(X,A; θh) with parameters θh which are
unobservable. On the other hand, the AI agent provides advice based on its viewpoint of the context
X according to M(X; θm) := A ∈ A. The advice always includes a candidate decision Â and
possibly an explanation of the decision. We assume that the observed tasks are drawn from an
underlying distribution, PX,Y , over the contexts of AI and human, and the ground truth. The setting
is illustrated in Figure 5.2.

29

The human wants to make a decision that optimizes various metrics of interest. Given a ground
truth decision Y and a chosen decision Ŷ , the loss is given by l(Y, Ŷ) : Y × Y → R+. In our
example, this could be the 0-1 loss IY=ŷ. We denote the loss L(H,M) of the Human-AI team over
the entire domain as:

L(H,M) := Ex,y∼P [l (y,H (x,M(x; θm); θh))] (1.2)

We propose a two-stage framework for the human to cooperate with the AI: the human first
decides whether to ignore the AI advice, use the AI’s decision or integrate the AI advice to make a
decision with explicit cooperation. Each of these three cases provides a clear path to the second
stage of making the final output decision. The AI-integration function R(X,A; θr), also referred to
as integrator, formalizes a framework for the human to cooperate with the AI:

R(X,A; θr) =

0 → H(X; θh) (ignore AI)

1 → Â (use AI decision as is)

2 → H(X,A; θh) (collaborate with AI)

(1.3)

The integration function can be thought of as a specific formalization of the human mental model of
the AI [16], [20].

Our onboarding phase consists of letting the human predict on a series of specially selected
teaching examples in a setting that mimics the deployment use case. The examples are chosen
to give an overview of AI’s strengths and weaknesses, especially when they complement human
abilities. After predicting on each example, the human agent then receives feedback on their
performance and that of the AI. To allow the human to generalize from each example, we display
features of the region surrounding the example including a description. Our approach is inspired by
research in the education literature that highlights the importance of feedback and lesson retention
for learning [21], [22].

To select the teaching examples, we need to have a mathematical framework of how the human
mental model evolves after we give them feedback. We model the human thought process as first
deciding whether to rely on the AI’s prediction or not using an internal integrator. This rejector is
what we refer to as the human mental model of the AI. We propose to model the human integrator
as consisting of a prior rejector and a nearest neighbor rule that only applies in local regions
surrounding each teaching example. Assuming this mental model, we give a near-optimal greedy
strategy for selecting a set of representative teaching examples that allows us to control the examples
and the region surrounding them. We conducted user studies on question answering and object
detection with AI models to evaluate the onboarding method. The contributions are as follows:

30

• Chapter 4: we propose a mathematical formulation of human’s mental model of AI based on
a local neighbor rule, based on this formulation, we create an example selection procedure
that picks examples that best improve On a user study for question answering, our onboarding
method outperforms baseline onboarding methods and allows us to reveal participants’ mental
models

• Chapter 5: we propose a region description algorithm to automatically create natural language
algorithms of regions found for onboarding to extend our prior work. We evaluate an improved
version of our onboarding procedure on a questions answering task and an object detection
showcasing that onboarding helps improve humans performance.

1.4 Interactive Human-AI Collaboration

The previous setting of AI-assisted decision-making consisted of one-sided interaction between
humans and AI. The advent of LLMs allows the human to indicate their intent for support through a
textual prompt to the AI, who can respond back through text. We focus on the code suggestion sys-
tem, GitHub Copilot, powered by the Codex LLM, which is being used by millions of programmers
daily illustrated in Figure 1.2(c). Given the nascent nature of these systems, numerous questions
exist regarding the behavior of their users, e.g., what activities do users undertake in anticipation
of or to trigger a suggestion? How costly for users are these various new tasks, and which take
the most time and effort? To answer these and related questions systematically, we developed a
taxonomy called CUPS, shown in Figure 6.3 for the different activities programmers perform while
coding with Copilot.

Given the initial taxonomy, we conducted a user study with 21 developers who were asked to
retrospectively review videos of their coding sessions and explicitly label their intents and actions.
The study discovered that participants spend 22.4% of their time verifying suggestions from the
LLM and that more than half of total coding time is spent interacting with the LLM: prompt crafting,
and editing suggestions, among other activities. This signals a major shift in how programmers write
code. Moreover, we uncovered that existing metrics that measure the time to verify suggestions
underestimate actual verification time by a factor of two.

From this analysis, programmers spend the most time verifying Copilot suggestions and reject
more than 80% of them; how can we reduce that verification time? The suggestions programmers
accept and reject can provide a window into their preferences of which suggestion they benefit from
and which they do not. We formalized the interaction between programmers and Copilot in a utility
theory framework that assigns a utility value of showing a given suggestion. Using data from 535
programmers at Microsoft, we materialized the framework to learn a model that assigns a value

31

https://github.com/features/copilot

to each suggestion. This model can be leveraged to conditionally hide suggestions that have low
utility. The specific contributions are as follows:

• Chapter 6: we propose a novel taxonomy of common activities of programmers (called CUPS)
when interacting with code recommendation systems. We collect data in a user study where
programmers retrospectively label their activities with CUPS resulting in a new dataset of
coding sessions annotated with user actions, CUPS, and video recordings available publicly.
We further propose a new instrument for measuring and analyzing patterns in user behavior,
time spent in different states, and adjustments required for better estimating the time impact
of code-generation tools.

• Chapter 7: we propose a mathematical framework for AI-Assisted programming named CDHF,
that decides when to show code suggestions to save programmers time. We train a prediction
model of the programmer’s actions learned from hundreds of users to operationalize CDHF.
We further conduct an experimental analysis of the consequences of ranking suggestions by
probability of acceptance.

32

Part I

Conditional Delegation with AI: Learning to
Defer

33

Chapter 2

Sample Efficient Learning to Defer

Acknowledgements of Co-authors. This chapter is based on the published work in [23]. I would
like to thank my co-authors, Mohammad-Amin Charusaie and Samira Samadi, for their help in
this chapter. This work was an equal contribution between Mohammad-Amin and myself and his
contributions were essential to proving the theorems in this chapter.

2.1 Introduction

How do we combine AI systems and human decision makers to both reduce error and alleviate
the burden on the human? AI systems are starting to be frequently used in combination with human
decision makers, including in high-stakes settings like healthcare [1] and content moderation [3].
A possible way to combine the human and the AI is to learn a ’rejector’ that queries either the
human or the AI to predict on each input. This allows us to route examples to the AI model, where
it outperforms the human, so as to simultaneously reduce error and human effort. Moreover, this
formulation allows us to jointly optimize the AI so as to complement the human’s weaknesses,
and to optimize the rejector to allow the AI to defer when it is unable to predict well. This type
of interaction is typically referred to as expert deferral, and the learning problem is that of jointly
learning the AI classifier and the rejector. Empirically this approach has been shown to outperform
either the human or the AI when predicting by their own [8], [9]. One hypothesis is that humans and
machines make different kinds of errors. For example, humans may have bias on certain features
[24] while AI systems may have bounded expressive power or limited training data. On the other
hand, humans may outperform AI systems as they may have side information that is not available to
the AI, for example, due to privacy constraints.

Existing deployments tend to ignore the fact that the system has two components: the AI
classifier (henceforth, the classifier) and the human. Typically, the AI is trained without taking
into account the human—, and deferral is done using post-hoc approaches like model confidence

35

[25]. The main problem of this approach which we refer to as staged learning, is that it ignores the
possibility of learning a better-combined system by accounting for the human (and its mistakes)
during training. More recent work has developed joint training strategies for the AI and the rejector
based on surrogate losses and alternating minimization [26], [27]. However, we lack a theoretical
understanding of the fundamental merits of joint learning compared to the staged approach. In
this work, we study three main challenges in expert deferral from a theoretical viewpoint: 1)
model capacity constraints, 2) lack of data of human expert’s prediction, and 3) optimization using
surrogate losses.

When learning a predictor and rejector in a limited hypothesis class, it becomes more valuable
to allocate model capacity to complement the human. We prove a bound on the gap between the
approach that learns a predictor that complements humans and the approach that learns the predictor
ignoring the presence of the human in Section 2.4. To practically learn to complement the human,
the literature has shown that surrogate loss functions are successful [26], [28]. We propose a family
of surrogate loss functions that generalizes existing surrogates such as the surrogate in [26], and
we further prove surrogate excess risk bounds and generalization properties of these surrogates in
Section 2.5. Finally, a main limitation of being able to complement the human is the availability of
samples of human predictions. For example, suppose we wish to deploy a system for diagnosing
pneumonia from chest X-rays in a new hospital. To be able to know when to defer to the new
radiologists, we need to understand their specific strengths and weaknesses. We design a provable
active learning scheme that is able to first understand the human expert error boundary and learn
a classifier-rejector pair that adapts to it in Section 2.6. To summarize, the contributions of this
chapter are the following:

• Understanding the gap between joint and staged learning: we prove bounds on the gap
when learning in bounded capacity hypothesis classes and with missing human data.

• Theoretical analysis of Surrogate losses: we propose a novel family of consistent surrogates
that generalizes prior work and analyze asymptotic and sample properties.

• Actively learning to defer: we provide an algorithm that is able to learn a classifier-rejector
pair by minimally querying the human on selected points.

2.2 Related Work

A growing literature has focused on building models that can effectively defer predictions to
human experts. Initial work posed the problem as that of a mixture of experts [28]. However,
their approach does not allow the model to adapt to the expert. A different natural baseline that is

36

proposed in [25] learns a predictor that best classifies the target and then compares its confidence
to that of the expert. This is what we refer to as staged learning, and in our work, we provide the
first theoretical results on the limitations of this approach. [29] and [30] jointly learn a classifier
and rejector based on the mixture of experts loss, but the method lacks a theoretical understanding
and requires heuristic adjustments. [26] proposes the first consistent surrogate loss function for the
expert deferral setting, which leads to an effective joint learning approach with subsequent work
building on their approach [31], [32]. In this chapter, we generalize the surrogate presented in [26]
and present generalization guarantees that enable us to effectively bound performance when learning
with this surrogate. [33] proposes a surrogate loss which is the sum of the loss of learning the
classifier and rejector separately but which is not a consistent surrogate. [27] proposes an iterative
method that alternates between optimizing the predictor and the rejector and shows that it converges
to a local minimum and empirically matches the performance of the surrogate in [26]. Multiple
works have used the learning-to-defer paradigm in other settings [34]–[37].

In our work, we derive an active learning scheme that enables us to understand the human expert
error boundary with the least number of examples. This bears similarity to work on onboarding
humans on AI models where the objective is reversed: teaching the human about the AI models
error boundary [38]–[40] and work on machine teaching [41], [42]. However, our setting requires
a distinct methodology as we have no restrictions on the parameterization of our rejector, which
the previous line of work assumes. Works on Human-AI interaction usually keep the AI model
fixed and optimize for other aspects of the interaction, while in our work we optimize the AI to
complement the human [20], [43].

The setting when the cost of deferral is constant has a long history in machine learning and
goes by the name of rejection learning [44]–[47] or selective classification (only predict on x% of
data) [48]–[51]. [52] explored an online active learning scheme for rejection learning; however,
their scheme was tailored to a surrogate for rejection learning that is not easily extendable to expert
deferral. Our work also bears resemblance to active learning with weak (the expert) and strong
labelers (the ground truth) [53]

2.3 Problem Setting

We study classification problems where the goal is to predict a target Y ∈ {1, · · · , K} based
on a set of features X ∈ X , or via querying a human expert opinion M ∼ µM |XY that has access
to a domain Z . Upon viewing the input X , we decide first via a rejector function r : X → {0, 1}
whether to defer to the expert, where r(x) = 1 means deferral and r(x) = 0 means predicting using
a classifier h : X → [K]. The expert domain may contain side information beyond X to classify
instances. For example, when diagnosing diseases from chest X-rays the human may have access to

37

the patient’s medical records while the AI only has access to the X-ray. We assume that X, Y,M
have a joint probability measure µXYM .

We let deferring the decision to the expert incur a cost equal to the expert’s error and an
additional penalty term: ℓexp(x, y,m) = Im̸=y + cexp(x, y,m) that depends on the features x, the
value of target Y = y, and the expert’s prediction M = m. Moreover, we assume that predicting
without querying the expert incurs a different cost equal to the classifier error and an additional
penalty: ℓAI(x, y,m) = Ih(x)̸=y + cAI(x, y,m) where h(x) is the prediction of the classifier. With
the above in hand, we write the true risk as

Ldef(h, r) = EX,Y,M [ℓAI
(
X, Y, h(X)

)
· Ir(X)=0 + ℓexp(X, Y,M) · Ir(X)=1] (2.1)

In the setting when we only care about misclassification costs with no additional penalties, the
deferral loss becomes a 0− 1 loss as follows:

L0−1
def (h, r) = E [Ih(X) ̸=Y Ir(X)=0 + IM ̸=Y Ir(X)=1] (2.2)

We focus primarily on the 0 − 1 loss for our analysis; it is also possible to extend parts of the
analysis to handle additional cost penalties. We restrict our search to classifiers within a hypothesis
classH and a rejector function within a hypothesis classR. The optimal joint classifier and rejector
pair is the one that minimizes (3.1):

h∗, r∗ = argmin
h∈H,r∈R

L0−1
def (h, r) (2.3)

To approximate the optimal classifier-rejector pair, we have to handle two main obstacles: (i)
optimization of the non-convex and discontinuous loss function and (ii) availability of the data on
human’s predictions and the true label.

In the following section 2.4 and in section 2.6, we restrict the analysis to binary labels Y = {0, 1}
for a clearer exposition. The theoretical results in the following section are shown to apply further
for the multiclass setting in a set of experimental results. However, in section 2.5, where we discuss
practical algorithms, we switch back to the multiclass setting for full generality. In the following
section, we compare two strategies for expert deferral across these two dimensions.

38

2.4 Staged Learning of Classifier and Rejector

2.4.1 Model Complexity Gap

Staged learning. The optimization problem framed in (2.3) requires joint learning of the classifier
and rejector. Alternatively, a popular approach comprises of first learning a classifier that minimizes
average misclassification error on the distribution and then learning a rejector that defers each point
to either classifier or the expert, depending on who has a lower estimated error [25], [29].

Formally, we first learn h to minimize the average misclassification error:

ĥ = argmin
h∈H

EX,Y [Ih(X)̸=Y] (2.4)

and in the second step we learn the rejector r to minimize the joint loss (3.1) with the now fixed
classifier ĥ:

r̂ = argmin
r∈R

L0−1
def (ĥ, r) (2.5)

This procedure is particularly attractive as the two steps (2.4) and (2.5) could be cast as classification
problems, and approached by powerful known tools that are devised for such problems. Despite
its convenience, this method is not guaranteed to achieve the optimal loss (as in (2.3)), since it
decouples the joint learning problem. Assuming that we are able to optimally solve both problems
on the true distribution, let (h∗, r∗) denote the solution of joint learning and (ĥ, r̂) the solution
of staged learning. To estimate the extent to which staged learning is sub-optimal, we define the
following minimax measure ∆(d1, d2) for the binary label setting:

∆(d1, d2) = inf
H,R∈Hd1,d2

sup
µXY M

L0−1
def (ĥ, r̂)− L0−1

def (h
∗, r∗)

To disentangle the above measure, the supremum supµXY M
is a worst-case over the data distribution

and expert pair, while the infimum infH,R∈Hd1,d2
is the best-case classifier-rejector model classes

with specified complexity d1 and d2 where Hd1,d2 = {(H,R) : d(H) = d1, d(R) = d2} and d(·)
denotes the VC dimension of a hypothesis class. As a result, this measure expresses the worst-case
gap between joint and staged learning when learning from the optimal model class, given the
complexity of the predictor and rejector model classes. The following theorem provides a lower-
and upper-bound on ∆(d1, d2).

Theorem 1. For every set of hypothesis classes H,R where d(·) denotes the VC-dimension of a

hypothesis class, the minimax difference measure between joint and staged learning is bounded

39

between:
1

d(H) + 1
≤ ∆(d(H), d(R)) ≤ d(R)

d(H) (2.6)

Proof of the theorem can be found in Appendix A.1. The theorem implies that for any classifier
and rejector hypothesis classes, we can find a distribution and an expert such that the gap between
staged learning and joint learning is at least 1 over the VC dimension of the classifier hypothesis
class. This means that the more complex our classifier hypothesis class is, the smaller the gap
between joint and staged learning is. On the other hand, the gap is no larger than the ratio between
the rejector complexity and the classifier complexity. This again implies if our hypothesis class is
comparatively much richer than the rejector class, the gap between the joint and staged learning
reduces. What this does not mean is that deferring to the human is not required for optimal
error when the classifier model class is very large, but that training the classifier may not require
knowledge of human performance.

2.4.2 Data Trade-offs

Current datasets in machine learning are growing in size and are usually in the form of feature
X and target Y pairs. It is unrealistic to assume that the human expert is able to individually provide
their predictions for all of the data. In fact, the collection of datasets in machine learning often relies
on crowd-sourcing where the label can either be a majority vote of multiple human experts, e.g., in
hate-speech moderation [54], or due to an objective measurement, e.g., a lab test result for a patient
medical data. In the expert deferral problem, we are interested in the predictions of a particular
human expert, and thus, it is infeasible for that human to label all the data and perhaps unnecessary.

In the following analysis, we assume access to fully labeled data Sl = {(xi, yi,mi)}nl
i=1 and data

without expert labels Su = {(xi, yi)}nl+nu

i=nl+1. This is a realistic form of the data we have available
in practice. We now try to understand how we can learn a classifier and rejector from these two
datasets. This is where we expect the staged learning procedure can become attractive as it can
naturally exploit the two distinct datasets to learn.

Joint Learning. Learning jointly requires access to the dataset with the entirety of expert labels,
thus we can only use Sl to learn

h̃, r̃ = argmin
h,r

∑
i∈Sl

Ih(xi)̸=yiIr(xi)=0 + Iyi ̸=mi
Ir(xi)=1

40

Staged learning. On the other hand, for staged learning we can exploit our expert unlabeled data
to first learn h:

ĥ = argmin
h

∑
i∈Su

Ih(xi)̸=yi

and in the second step we learn r̂ to minimize the joint loss with the fixed ĥ but only on Sl.

Generalization. Given that staged learning exploits both datasets, we expect that if we have much
more expert unlabeled data than labeled data, i.e., nu ≫ nl, then it may be possible to obtain better
generalization guarantees from staged learning. The following proposition shows that when the
Bayes optimal classifier is in the hypothesis class, then staged learning can possibly improve sample
complexity over joint learning.

Proposition 1. Let Sl = {(xi, yi,mi)}nl
i=1 and Su = {(xi+nl

, yi+nl
)}nu

i=1 be two iid sample sets

that are drawn from the distribution µXYM and are labeled and not labeled by the human, respec-

tively. Assume that the optimal classifier h̄ = argmin
h

EX,Y∼µXY
[Ih(X)̸=Y] is a member of H (i.e.,

realizability).

Let (ĥ, r̂) be the staged solution and let (h̃, r̃) be the joint solution obtained by learning only on

SL. Then, with probability at least 1− δ we have for staged learning

L0−1
def (r̂, ĥ) ≤L0−1

def (h
∗, r∗) +Rnu(H)+ 2Rnl

(R) + 2min
{
P (M ̸= Y),RnlP(M ̸=Y)/2(R)

}
+ C

√
log 1/δ

min(nl, nu)
+ P (M ̸= Y)e−nl

P(M ̸=Y)2

2 (2.7)

while for joint learning we have:

L0−1
def (r̃, h̃) ≤L0−1

def (h
∗, r∗) +Rnl

(H)+ 2Rnl
(R) + 2RnlP(M ̸=Y)/2(R) + C

√
log 1/δ

nl

+ P (M ̸= Y)e−nl
P(M ̸=Y)

2 (2.8)

Proof of the proposition can be found in Appendix A.2. From the above proposition, when
the Bayes classifier is in the hypothesis class, the upper bound for the sample complexity required
to learn the classifier and rejector is reduced by only paying the Rademacher complexity of the
hypothesis class on the unlabeled data compared to on the potentially smaller labeled dataset. The
Rademacher complexity is a measure of model class complexity on the data and can be related to
the VC dimension.

While in this case study, staged learning may improve the generalization error bound compared
to that of joint learning, the number of labeled samples for both to achieve ϵ-upper-bound on the true

41

risk is of order O(log 1/ϵ
ϵ2

). As we can see, there exist computational and statistical trade-offs between
joint and staged learning. While joint learning leads to more accurate systems, it is computationally
harder to optimize than staged learning. In the next section, we investigate whether it is possible to
solve the joint learning problem more efficiently while still retaining its favorable guarantees in the
multiclass setting.

2.5 Surrogate Losses For Joint Learning

2.5.1 Family of Surrogates

A common practice in machine learning is to propose surrogate loss functions, which often are
continuous and convex, that approximate the original loss function we care about [55]. The hope
is that these surrogates are more readily optimized and minimizing them leads to predictors that
also minimize the original loss. In their work on expert deferral, [26] reduces the learning to defer
problem to cost-sensitive learning which enables them to use surrogates for cost-sensitive learning
in the expert deferral setting. We follow the same route in deriving our novel family of surrogate
losses. We now recall the reduction in [26]: define the random costs c ∈ RK+1

+ where c(i) is the i′th
component of c and represents the cost of predicting label i ∈ [K + 1]. The goal of cost sensitive
learning is to build a predictor h̃ : X → [K + 1] that minimizes the cost-sensitive loss E[c(h̃(X))].
The reduction is accomplished by setting c(i) = ℓAI

(
X, Y, i

)
for i ∈ [K] while c(K + 1) represents

the cost of deferring to the expert with c(K + 1) = ℓexp(X, Y,M). Thus, the predictor h̃ learned in
cost-sensitive learning implicitly defines a classifier-rejector pair (h, r) with the following encoding:

h(x), r(x) =

h(x) = i, r(x) = 0, if h̃(x) = i ∈ [K]

h(x) = 1, r(x) = 1 if h̃(x) = K + 1
(2.9)

Note that when h̃(x) = K + 1, the classifier h is left unspecified, and thus, we assign it a dummy
value of 1. Cost-sensitive learning is a non-continuous and non-convex optimization problem that
makes it computationally hard to solve in practice. In order to approximate it, we propose a novel
family of cost-sensitive learning loss functions that extend any multi-class loss function to the
cost-sensitive setting.

First we parameterize our predictor h̃ with K +1 functions fi : X → R and define the predictor
to be the max of these K + 1 functions: h̃f (x) = argmaxi fi(x). Note that h̃f gives rise to the
classifier-rejector pair (hf , rf) according to the decoding rule (2.9).

Formally, let ℓϕ(y, f(x)) : [K + 1]× RK+1 → R be a surrogate loss function of the zero-one
loss for multiclass classification. We define the extension of this surrogate to the cost-sensitive

42

setting as:

ℓ̃ϕ(c, f(x)) =
K+1∑
i=1

[
max
j∈k+1

c(j)− c(i)
]
ℓϕ(i, f(x)) (2.10)

Note that if ℓϕ is continuous or convex, then because ℓc,ϕ is a finite positively-weighted sum of ℓϕ’s,
then ℓc,ϕ is also continuous or convex, respectively. We show in the following proposition, that
if ℓϕ is a consistent surrogate for multi-class classification, then ℓ̃ϕ is consistent for cost-sensitive
learning and by the reduction above is also consistent for learning to defer.

Proposition 2. Suppose ℓϕ(y, f(x)) is a consistent surrogate for multi-class classification, meaning

if the surrogate is minimized over all functions, then it also minimizes the misclassification loss:

let f ∗ = arg inff E [ℓϕ(Y, f(x))], then: h̃f∗ = arg infh E[IY ̸=h(X)], where h̃f∗ is defined as above.

Then, our surrogate ℓ̃ϕ(c,g(x)) defined in (2.10) is a consistent surrogate for cost-sensitive learning

and thus for learning to defer:

let f̃ ∗ = arg infg E
[
ℓ̃ϕ(c, f(x))

]
, then: h∗f , r

∗
f = arg infh,r L

0−1
def (h, r), with (h∗f , r

∗
f) defined in (2.9)

Proof of the proposition can be found in Appendix A.3. To illustrate the family of surro-
gates implied by Proposition 2, we first start by recalling a family of surrogates for multi-class
classification. Theorem 4 of [56] shows that there is a family of consistent surrogates for 0 − 1

loss in multi-class classification parameterized by three functions (u, s, t) and takes the form
ℓϕ(y, f(x)) = u(fy(x)) + s

(∑K+1
j=1 t

(
fj(x)

))
. This family is consistent under certain conditions

of the aforementioned functions.
Now we show with a few examples that this family encompasses some popular surrogates used

in cost sensitive learning:

Examples. (1) If we set u(x) = −2x, s(x) = x, and t(x) = x2, then we can obtain a weighted

quadratic loss:

L̃2 = E[π
K+1∑
i=1

|fi − q(i)|2], (2.11)

where q(i) is the normalized expected value of maxj∈[K+1] c(j)−c(i) givenX = x, and π represents

the normalization term.

(2) If we set u(x) = −x, and s(x) = log(x) and t(x) = ex, then we have aψ′(x) + t′(x) =

−a + ex = 0, and as a result x = log a, which is an increasing function of a. As a result, the

surrogate loss

L̃CE(f) = E[−
K+1∑
i=1

(
max

j
c(j)− c(i)

)
log

efi(X)∑K+1
k=1 e

fk(X)
] (2.12)

which is the loss defined in [26] and used for learning to defer.

43

2.5.2 Theoretical Properties of Surrogate

Goodness of a Surrogate. Given a surrogate, how can we quantify how well it approximates
our original loss? One avenue is through the surrogate excess-risk bound as follows. Let L̃ be a
surrogate for the loss function L, and let h̃∗ be the minimizer of the surrogate and h∗ the minimizer
of L. We call the excess surrogate risk [55] the following quantity if we can find a calibration

function ψ such that for any h we have:

ψ(L(h)− L(h∗)) ≤ L̃(h)− L̃(h̃∗) (2.13)

The excess surrogate risk bound tells us if we are ϵ-close to the minimizer of the surrogate, then we
are ψ−1(ϵ)-close to the minimizer of the original loss.

We now show that the family of surrogates defined in (2.10) has a polynomial excess-risk bound
and furthermore prove an excess-risk bound for the surrogate loss function L̃CE defined in [26].

Theorem 2. Suppose that ψ(x) = Cxϵ, for ϵ ∈ [1,∞) is a calibration function for the multiclass

surrogate ℓϕ and if |c(i)| ≤M for all i, then ψ′(x) = C
Mϵ−1x

ϵ is a calibration function of ℓ̃ϕ(c, ·).
As an example, for the surrogate L̃CE (2.12) the calibration function is ψ(x) = 1

16MK
x2.

Proof of the theorem can be found in Appendix A.4. Note that [57] proved that for the cross-
entropy loss, the calibration function ϕ is of order Θ(ϵ2), which is in accordance with our results.

Generalization Error. Equipped with the excess surrogate risk bound, we can now study the
sample complexity properties of minimizing the surrogates proposed. For concreteness, we focus
on the surrogate L̃CE of [26] when reduced to the learning to defer setting. The following theorem
proves a generalization error bound when minimizing the surrogate L̃CE for learning to defer.

Theorem 3. Let K denote the number of classes, and let F be a hypothesis class of functions

fi : X → R with bounded infinity norm ∥fi∥∞ < C. Given f̂ ∈ Fk+1 the empirical minimizer of

the surrogate loss L̃CE , then we have with probability at least 1− δ, we have

ψ
(
L0−1
def (hf̂ , rf̂)−min

f
L0−1
def (hf , rf)

)
≤ 2(K + 1)Rn

(
F
)
+

√
(8C − 4 log(K + 1)) log 2/δ

n

+ 2(K + 2)min{P(M ̸= Y),RnP(M ̸=Y)/2

(
F
)
}

+ CP(M ̸= Y)(k + 2)e−nP2(M ̸=Y)/2 + eϕ−appr, (2.14)

44

+
−
−+

+
−−
−−−+

+

DIS(Vi)

Query
DIS(Vi)
human’s

prediction

Step 1: Identify points to query
for human’s prediction

+
−
−+

+
−−
−−−+

+

d(x) Find
consistent
(h, r)

Step 2: Query for human’s predictions
and learn their error boundary d

+
−
−+

+
−−
−−−+

+
r(x)

h(x)

Step 3: Learn classifier-rejector
pair given human’s predictions

Human ̸= Y

Human = Y

Unlabeled
+ Y = 1

−Y = 0

Figure 2.1: Illustration of our active learning algorithm Disagreement on Disagreements (DoD) (1).
At each round, we compute the disagreement set for our predictors of the human label disagreement,
we then query the human for their prediction on these points. After we learn the expert error
boundary, we then learn a consistent classifier-rejector pair.

where eϕ−appr is the approximation error for the ϕ-surrogate, which is defined as

eϕ−appr = min
f∈Fk+1

L̃CE(f)−min
f
L̃CE(f). (2.15)

Proof of the theorem can be found in Appendix A.5. Comparing the sample complexity estimate
for minimizing the surrogate to that of minimizing the 0-1 loss as computed by [26], we find that
we pay an additional penalty for the complexity of the hypothesis class in addition to the higher
sample complexity that scales with O(log ϵ

ϵ4
) due to the calibration function. To compensate for such

increase in sample complexity, in the next section we seek to design active learning schemes that
reduce the required amount of human labels for learning.

2.6 Active Learning for Expert Predictions

2.6.1 Theoretical Understanding

In Section 2.4, we assumed that we have a randomly selected subset of data that is labeled by the
human expert. In a practical setting, we may assume that we have the ability to choose which points
we would like the human expert to predict. For example, when we deploy an X-ray diagnostic
algorithm to a new hospital, we can interact with each radiologist for a few rounds to build tailored
classifier-rejector pairs according to their individual abilities.

Therefore, we assume that we have access to the distribution of instances x and their labels, and
we could query for the expert’s prediction on each instance. The goal is to query the human expert
on as few instances as possible while being able to learn an approximately optimal classifier-rejector

45

pair. To make progress in theoretical understanding, we assume that we can achieve zero loss with
an optimal classifier-rejector pair:

Assumption 1 (Realizability). We assume that the data is realizable by our joint class (H,R):
there exists h∗, r∗ ∈ H ×R that have zero error L(h∗, r∗) = 0.

In this section, the algorithms we develop apply to the multiclass setting, but we restrict the
theoretical analysis to binary labels. The fundamental algorithm in active learning in the realizable
case for classification is the CAL algorithm [58]. The algorithm keeps track of a version class
of the hypothesis space that is consistent with the data so far and then, at each step, computes
the disagreement set: the points on which there exists two classifiers in the hypothesis class with
different predictions and then picks at random a set of points from this disagreement set. We start
by initializing our version space by taking advantage of Assumption 1:

V0 = {h, r ∈ H ×R :∀x, r(x) = 0→ h(x) = y} (2.16)

The above initialization of the version space assumes we know the label of all instances in our
support. Alternatively, one could collect at most O

(
1
ϵ
(d(H) log 1

ϵ
+ log 1

δ
)
)

labels of instances and
that would be sufficient to test for realizability of our classifier with error ϵ (see Lemma 3.2 of [58]).

The main difference with active learning for classification is that we are not able to compute the
disagreement set for the overall prediction of the deferral system as it requires knowing the expert
predictions. However, we know that a necessary condition for disagreement is that a feasible pair
of classifiers-rejectors exists where the rejectors disagree. Suppose (h1, r1) and (h2, r2) are in our
current version space. These two pairs can only disagree when on an instance x: r1(x) ̸= r2(x),
since otherwise, when both defer, the expert makes the same prediction, and when both do not defer,
both classify the label correctly by the realizability assumption. Thus, we define the disagreement
set in terms of only the rejectors that are in the version space at each round j:

DIS(Vj−1) = {x ∈ X | ∃(h1, r1), (h2, r2) ∈ Vj−1s.t. r1(x) ̸= r2(x)} (2.17)

Then we ask for the labels of k instances in DIS(Vj−1) to form Sj = {(xi, yi,mi) : xi ∈
DIS(Vj)} and we update the version space as

Vj = {(h, r) ∈ Vj−1 | ∀(x, y,m) ∈ Sj, if r(x) = 1→ y = m} (2.18)

Now, we prove that the above rejector-disagreement algorithm will converge if the optimal unique
classifier-rejector pair is unique:

46

Proposition 3. Assume that there exists a unique pair (h∗, r∗) ∈ H × R that have zero error

L(h∗, r∗) = 0. Let Θ be defined as:

Θ = sup
t>0

P (X ∈ DIS (B ((h∗, r∗), t)))

t
(2.19)

where B
(
(h, r), t

)
= {(h′, r′) ∈ H × R : P(r(X)M + (1 − r(X))h(X) ̸= r′(x)M + (1 −

r′(X))h′(X)) ≤ t}.
Then, running the rejector-disagreement algorithm with k = O

(
Θ2((d(H)+d(R) logΘ+log 1

δ
+

log log 1
ϵ
)
)

for log(1/ϵ) iterations will return classifier-rejector with ϵ error and with probability at

least 1− δ.

Proof of the proposition can be found in Appendix A.6.

2.6.2 Disagreement on Disagreements

If we remove the uniqueness assumption for the rejector-disagreement algorithm in the previous
subsection, we show in Appendix A.7 with an example that the algorithm no longer converges as
DIS(V) can remain constant. We expect that the uniqueness assumption may not hold in practice,
so we now hope to design algorithms that do not require it. Instead, we now make a new assumption
that we can learn the error boundary of the human expert via a function f ∈ D, that is given
any sample (x, y,m) we have f(x) = Iy ̸=m. This assumption is identical to those made in active
learning for cost-sensitive classification [59]. This assumption is formalized as follows:

Assumption 2. We assume that there exists f ∗ ∈ D such that P(IM ̸=Y ̸= f(X)) = 0.

Our new active learning will now seek to take advantage of Assumption directly 2. The algorithm
consists of two stages: the first stage runs a standard active learning algorithm, namely CAL, on
the hypothesis space D to learn the expert disagreement with the label with error at most ϵ. In the
second stage, we label our data with the predictor f̂ that is the output of the first stage, and then
learn a classifier-rejector pair from this pseudo-labeled data. Key to this two-stage process is to
show that the error from the first stage is not too amplified by the second stage. The algorithm is
named Disagreement on Disagreements (DoD) and is described in detail in Algorithm box 1.

In the following, we prove a label complexity guarantee for Algorithm 1.

Theorem 4. Let us define Θ2 as

Θ2 = sup
t>0

P (X ∈ DIS2 (B2(f
∗, t)))

r
, (2.20)

47

Algorithm 1: Active Learning algorithm DoD (Disagreement on disagreements)
Input: parameter nu, T , k, class D,H, andR
1. V ← D
2. for i ∈ {1, . . . , T} do

Sample from µX until you have k samples {xi}ki=1 within DIS2(V)
Query for {(yi,mi)}ki=1 for the samples {xi}ki=1

Update V ← {d ∈ V : ∀j d(xj) = Imj ̸=yj}
end
4. Collect nu samples {(x′

i, y
′
i)}nu

i=1 from µXY

Return: (h, r) ∈ H ×R such that
∑

(x′
i,y

′
i)
Ih(x′

i) ̸=y′i

(
1− r(x′

i)
)
+ r(x′

i)d(x
′
i) = 0, for

some d ∈ V

where B2(f, t) = {f ′ ∈ D | P(f ′(X) ̸= f(X)) ≤ t}, and DIS2(V) = {x ∈ X | ∃f1, f2 ∈
V, f1(x) ̸= f2(x)}.

Assume we haveH,R,D that satisfy assumption 1 and 2. Then for nu = O(log 1/δ+max{d(H),d(R)} log 1/ϵ
ϵ2

),

and k = d(D)Θ2 log(
Θ2

δ
log(1

ϵ
)), then Algorithm 1 takes T = O(log 1

ϵ
) iterations to output a solu-

tion with ϵ-upper-bound on deferral loss with probability at least 1 − δ. As a result, the sample

complexity of labeled data nl is O
(
d(D)Θ2 log(

Θ2

δ
log(1

ϵ
)) log(1

ϵ
)
)
.

Proof of the proposition can be found in Appendix A.8. Recall that in Proposition 1, where
the labeled data was chosen at random, the sample complexity nu is in order O(1

ϵ2
log 1

ϵ
). As we

see in Theorem 4, the proposed active learning algorithm reduces sample complexity to O(log 1
ϵ
),

with the caveat that realizability is assumed for active learning. Further, note that for this algorithm,
in contrast to the previous subsection, the uniqueness of the consistent pair (h, r) is not needed
anymore. However, this algorithm ignores the classifier and rejector classes when querying for
points, which makes the sample complexity nl dependent only on the complexity of D instead of
H,R. In the next section, we try to understand how to use surrogate loss functions to practically
optimize for our classifier-rejector pair.

2.7 Experimental Illustration

Code for our experiments is found in https://github.com/clinicalml/active_learn_to_defer.

Dataset. We use the CIFAR-10 image classification dataset [60] consisting of 32 × 32 color
images drawn from 10 classes. We consider the human expert models considered in [26]: if the
image is in the first 5 classes the human expert is perfect, otherwise the expert predicts randomly.
Further experimental details are in Appendix A.9.

48

https://github.com/clinicalml/active_learn_to_defer

Model and Optimization. We parameterize the classifier and rejector by a convolutional neural
network consisting of two convolutional layers followed by two feedforward layers. For staged
learning, we train the classifer on the training data optimizing for performance on a validation set,
and for the rejector we train a network to predict the expert error and defer at test time by comparing
the confidence of the classifier and the expert as in [25]. For joint learning, we use the loss Lα

CE , a
simple extension of the loss (2.12) in [26], optimizing the parameter α on a validation set.

Model Complexity Gap. In Figure 2.2, we plot the difference of accuracy between joint learning
and staged learning as we increase the complexity of the classifier class by increasing the filter size
of the convolutional layers and the number of units in the feedforward layers. Model complexity is
captured by the number of parameters in the classifier which serves only as a rough proxy of the VC
dimension that varies in the same direction. The difference is decreasing as predicted by Theorem 1
as we increase the classifier class complexity as we fix the complexity of the rejector.

104 105 106

Classifier Class Complexity (number of parameters)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

G
ap

in
S

ys
te

m
A

cc
ur

ac
y

(%
) Joint - Staged

Figure 2.2: Difference of accuracy between joint learning and staged learning of the classifier-
rejector pair (y-axis is log scale of number of parameters).

Data Trade-Offs. In Figure 2.3, we plot the of accuracy between joint learning and staged
learning when only a subset of the data is labeled by the expert as in Section 2.4.2. We plot the
average difference across 10 trials, and error bars denote the standard deviation. We only plot the
performance of joint learning when initialized first on the unlabeled data to predict the target and
then trained on the labeled expert data to defer, we denote this approach as ’Joint-SemiSupervised’.
For staged learning, the classifier is trained on all of the data Sl ∪ Su, while for joint learning
we only train on Sl. We can see that when there is more unlabeled data than labeled, staged
learning outperforms joint learning in accordance with Proposition 1. The heuristic method ’Joint-

49

SemiSupervised’ improves on the sample complexity of ’Joint’ but still lags behind the Staged
approach in low data regimes.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of data Labeled

45

50

55

60

65

70

75

80

S
ys

te
m

A
cc

ur
ac

y
(%

)

Joint

Staged

Joint-SemiSupervised

Figure 2.3: Performance of joint learning and staged learning as we increase the ratio of the data
labeled by the expert nl

nu+nl
.

DoD algorithm. In Figure 2.4, we plot corresponding errors of the DoD algorithm, and we
compare them to the staged and joint learning. The features x of the synthetic data in here is
generated from a uniform distribution on interval [0, 1], and the labels y are equal to 1 where x > 0.3

(full-information region) and are equal to random outcomes of a Bernoulli(0.5) distribution
otherwise (no-information region). The human’s decision is inaccurate (M ̸= Y) for X > 0.3 and
accurate (M = Y) otherwise. We further assume each hypothesis class of rejectors and classifiers
be 100 samples of half-spaces over the interval [0, 1]. The error plotted in Figure 2.4 is an average
of 1000 random generations of training data. The test set is formed by Ntest = 1000 samples
that are generated from the same distribution as training data. Here, we note that the number of
unlabeled data in staged learning is set Nu = 100. The result of this experiment shows that in the
DoD algorithm, one needs less number of samples that are labeled by human to reach a similar level
of error.

50

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Size of labeled samples by human

0.0

0.1

0.2

0.3

0.4

Te
st

 e
rro

r

DoD
ERM Staged
ERM Joint

Figure 2.4: Error of the DoD algorithm compared to staged and joint learning for increasing number
of training data that are labeled by human.

51

52

Chapter 3

Exact Algorithms for Learning to Defer

Acknowledgements of Co-authors. This chapter is based on the published work in [61]. I would
like to thank my co-authors, Hunter Lang, Dennis Wei, Prasanna Sattigeri, and Subhro Das, for
their help. Hunter Lang was essential in helping prove some of the results in this work especially on
computational complexity.

3.1 Introduction

Patient X-ray

.

.

.

Classifier-Rejector
AI system

Expert radiologist

Defer to expert

Classifier predicts

Proposed Realizable Surrogate

argm
ax

Figure 3.1: The learning to defer setting with the RealizableSurrogate illustrated in the applica-
tion of making predictions for chest X-rays.

The goal of this work is to jointly learn a classifier that can predict pneumonia and a rejector,
which decides on each data point whether the classifier or the human should predict illustrated in
Figure 3.1.

Failure of Prior Approaches. Existing literature has focused on surrogate loss functions for

53

deferral [26], [28], [62] including our work in Chapter 2 and confidence-based approaches [25], [27].
We give a simple synthetic setting where all of these approaches fail to find a classifier/rejector pair
with a low system error. In this setting, there exists a halfspace classifier and halfspace rejector that
have zero system error (illustrated in Figure 3.2), but our experiments in Section 3.7.2 demonstrate
that all prior approaches fail to find a good classifier/rejector pair in this setting.

To understand possible reasons for this failure, we first study the computational complexity of
learning with deferral using halfspaces for the rejector and the classifier, which we call LWD-H.
The computational complexity of learning with deferral has received little attention in the literature.
We prove that even in our simple setting where the data is realizable (i.e., there exists a halfspace
classifier and halfspace rejector achieving zero system error), there is no polynomial-time algorithm
that finds an approximately optimal pair of halfspaces unless NP = RP . We also extend our
hardness result to approximation algorithms and when the data is not realizable by halfspaces. In
contrast, training a linear classifier in the realizable linear setting can be solved in polynomial time
with linear programming [63].

Learning with deferral using halfspaces is also of significant practical importance. Sample
efficiency is critical in learning with deferral since the training data is expensive to collect—it
requires both human outputs and ground-truth labels. This motivates restricting to smaller model
classes, and in particular to linear classifiers and rejectors. Linear models have the benefit of being
interpretable with respect to the underlying features, which can be crucial for a human-AI deferral
system. Additionally, the head tuning or linear probing paradigm, where only the final (linear)
layer of a pretrained deep neural network is fine-tuned on different tasks, has become increasingly
common as pretrained representations improve in quality, and it can be more robust than full
fine-tuning [64]. However, as previously mentioned, existing surrogate approaches fail to find a
good linear classifier and rejector even when one is guaranteed to exist. This motivates the need for
an algorithm for exact minimization of the system training error.

We show that exact minimization of the system error can be formulated as a mixed integer
linear program (MILP). This derivation overcomes a naive quadratic formulation of the problem.
In addition to exactly minimizing the training loss, the MILP formulation allows us to easily
incorporate constraints to govern the human-AI system. We show that modern commercial solvers
such as Gurobi [65] are capable of solving fairly large instances of this MILP, making it a practical
algorithm for the LWD-H problem. To obtain similar gains over prior approaches, but with a
more scalable algorithm, we develop a new differentiable surrogate loss function LRS , dubbed
RealizableSurrogate , that can solve the LWD-H problem in the realizable setting by virtue
of being realizable-consistent [66] for a large class of hypothesis sets that includes halfspace
classifier/rejector pairs. We also show empirically that LRS is competitive with prior work in the
non-linear setting.

54

To summarize, the contributions of this chapter are the following:

• Computational Complexity of Deferral: We prove the computational hardness of PAC-
learning with deferral in the linear setting.

• Mixed Integer Linear Program Formulation and RealizableSurrogate : We show how
to formulate learning to defer with halfspaces as a MILP and provide a novel surrogate loss.

• Experimental Evaluation: We showcase the performance of our algorithms on a wide
array of datasets and compare them to several existing baselines. We contribute a publicly
available repository with implementations of existing baselines and datasets: https://github.
com/clinicalml/human_ai_deferral

3.2 Related Work

A natural baseline for the learning to defer problem is to first learn a classifier that minimizes av-
erage misclassification error, then learn a model that predicts the probability that the human makes an
error on a given example, and finally defer if the probability that the classifier makes an error is higher
than that of the human. This is the approach adapted by [25]. However, this does not allow the classi-
fier to adapt to the human. Another natural approach is to model this problem as a mixture of experts:
the human and the AI. This is the approach introduced by [28] and adapted by [29], [30] by introduc-
ing a mixture of experts surrogates. However, this approach has been to shown to fail empirically
as the loss is not easily amenable to optimization. Subsequent work [26] introduced consistent sur-
rogate loss functions for the learning with deferral objective, with follow-up approaches addressing
limitations including better calibration [31], [32]. Another consistent convex surrogate was proposed
by [62] via a one-vs-all approach. [23] provides a family of convex surrogates for learning with defer-
ral that generalizes prior approaches, however, our proposed surrogate does not belong to that family.
[33] proposes a surrogate loss which is the sum of the loss of learning the classifier and rejector sep-
arately but that is not a consistent surrogate. [67] proved the hardness of linear regression (not classi-
fication) where some training points are allocated to the human (not deferral but subset selection of
the training data). Finally, [27] proposes a method that iteratively optimizes the classifier on points
where it outperforms the human on the training sample, and then learns a post-hoc rejector to predict
who between the human and the AI has higher error on each point. The setting when the cost of
deferral is constant has a long history in machine learning and goes by the name of rejection learning
[44]–[47] or selective classification (only predict on x% of data) [48]–[51]. Our MILP formulation
is inspired by work in binary linear classification that optimizes the 0-1 loss exactly [68], [69].

55

https://github.com/clinicalml/human_ai_deferral
https://github.com/clinicalml/human_ai_deferral

3.3 Learning with Deferral: Problem Setup

We frame the learning with deferral setting as the task of predicting a target Y ∈ Y =

{1, · · · , C}. The classifier has access to features X ∈ X = Rd, while the human (also referred
to as the expert) has access to a potentially different set of features Z ∈ Z which may include
side-information beyond X . The human is modeled as a fixed predictor h : Z → Y . The AI
system consists of a classifier m : X → Y and a rejector r : X → {0, 1}. When r(x) = 1,
the prediction is deferred to the human and we incur a cost if the human makes an error, plus an
additional, optional penalty term: ℓHUM(x, y, h) = Ih̸=y + cHUM(x, y, h). When r(x) = 0, then
the classifier makes the final decision and incurs a cost with a different optional penalty term:
ℓAI(x, y,m) = Im ̸=y + cAI(x, y,m). We can put this together into a loss function for the classifier
and rejector:

Ldef(m, r) = EX,Y,Z [ℓAI
(
X, Y,m(X)

)
· Ir(X)=0 + ℓHUM(X, Y, h(Z)) · Ir(X)=1].

In this chapter we focus mostly on the cost of misclassification with no additional penalties,
the deferral loss becomes a misclassification loss L0−1

def (m, r) for the human-AI system, and the
optimization problem is:

minimize
m,r

L0−1
def (m, r) := P [((1− r(X))m(X) + r(X)h(Z)) ̸= Y] . (3.1)

Constraints. We may wish to constrain the behavior of the human-AI team when learning the
classifier and rejector pair. For example, we may have a limit on the percentage of times the AI can
defer to the human, due to the limited time the human may have. We express this as a coverage
constraint:

P(r(X) = 1) ≤ β. (3.2)

Finally, it is desirable that our system does not perform differently across different demographic
groups. Let A ∈ {1, · · · , |A|} denote the demographic identity of an individual. Then if we wish to
equalize the error rate across demographic groups, we impose the fairness constraint ∀a ∈ A:

P((1− r(X))m(X) + r(X)h(Z) ̸= Y |A ̸= a)

= P((1− r(X))m(X) + r(X)h(Z) ̸= Y |A = a) (3.3)

Data. We assume access to samples S = {(xi, h(zi), yi)}ni=1 where h(zi) is the human’s
prediction on the example, but note that we do not observe zi, the information used by the human.
We emphasize that the label yi and human prediction h(zi) are different, even though yi could also

56

come from humans. For example in our chest X-ray classification example, yi could come from a
consensus of 3 or more radiologists, while h(zi) is the prediction of a single radiologist not involved
with the label. Given the dataset S the system training loss is given by:

L̂0−1
def (m, r) :=

1

n

n∑
i=1

Im(xi)̸=yiIr(xi)=0 + Ih(zi)̸=yiIr(xi)=1 (3.4)

In the following section, we study the computational complexity of learning with deferral using
halfspaces, which reduces to studying the optimization problem (3.4) when m and r are constrained
to be halfspaces.

3.4 Computational Complexity of Learning with Deferral

Figure 3.2: The realizable LWD-H setting illustrated. The task is binary classification with labels
{o,+}; the human is perfect on the green-shaded region, and the data outside the green region is
linearly separable. As a result, the optimal classifier and rejector obtain zero error. Assumption 2 is
illustrated graphically as well as the MILP variables of equations (3.9)-(3.14).

The misclassification error of the human-AI team in equation (3.1) is challenging to optimize as
it requires searching over a joint set of functions for the classifier and rejector, in addition to dealing
with the nonconvex 0-1 aspect. To study the computational complexity of minimizing the loss, we
restrict our attention to a foundational setting: linear classifiers and linear rejectors in the binary
label scenario.

We begin with the realizable case when there exists a halfspace classifier and rejector that can
achieve zero loss:

57

Assumption 1 (Realizable Linear Setting). Let X = Rd and Y = {0, 1}. We assume that for the

given expert h there exists a linear classifier m∗(x) = IM⊤x>0 and a linear rejector r∗(x) = IR⊤x>0

that achieve 0 error:

E(x,y,z)∼P [Im∗(x)̸=yIr∗(x)=0 + Ih(z)̸=yIr∗(x)=1] = 0.

This setting is illustrated in Figure 3.2. Since the decision regions of m and r are halfspaces, we
also use the term “halfspace” interchangeably. Note that while the classifier is assumed to be linear,
the human can have a non-linear decision boundary. The analog of this assumption in the binary
classification without deferral setting is to assume that there exists a halfspace that can correctly
classify all the data points. In that case, we can formulate the optimization problem as a linear
program to efficiently find the optimal solution [63].

Hardness. In contrast to learning without deferral, we will prove that in general, it is computa-
tionally hard to learn a linear m and r under Assumption 1. Define the learning with deferral using

halfspaces (LWD-H) problem as that of finding halfspace m and halfspace r such that the system
error in (3.1) is approximately minimized.

Theorem 5. Let ϵ > 0 be an arbitrarily small constant. Under a guarantee that there exist

halfspaces m∗, r∗ with zero system loss (Assumption 1), there is no polynomial-time algorithm to

find a pair of classifier-rejector halfspaces with error 1/2− ϵ unless NP = RP .

This shows that even in the realizable setting (i.e., there exists a pair of halfspaces with zero
system loss), it is hard to find a pair of halfspaces that even gets system error 1/2− ϵ.

Corollary 6. There is no efficient proper PAC-learner for LWD-H unless NP = RP .

Proof Sketch. First, because the true distribution of points could be supported on a finite set, the
LWD-H problem boils down to approximately minimizing the training loss (3.4). Our proof relies
on a reduction from the problem of learning an intersection of two halfspaces in the realizable
setting. Let D = {xi, yi}ni=1 and suppose there exists an intersection of two half-spaces g1, g2
that achieve 0 error for D. This is an instance of learning an intersection of two halfspaces in the
realizable setting, which is hard to even weakly learn [70]. We show that this is an instance of the
realizable LWD-H problem by setting m = g1 and r = ḡ2 and the human H to always predict 0.
Hence, an algorithm for efficiently finding a classifier/rejector pair with error 1

2
− ϵ would also find

an intersection of halfspaces with error 1
2
− ϵ, which is hard unless NP = RP .

All proofs can be found in the Appendix. This hardness result holds in the realizable setting,
with proper learning, and with no further assumptions on the data distribution.

Extensions. Even if the problem is not realizable and the goal is to find an approximation
algorithm, this is still computationally hard as presented in the following corollary.

58

Corollary 1. When the data is not realizable (i.e., Assumption 1 is violated), there is no polytime

algorithm for finding a pair of halfspaces with error 1
2
− ϵ unless NP = RP .

Exact Solution. These hardness results motivate the need for new approaches to solving the
LWD-H problem. In the next section, we derive a scheme to exactly minimize the misclassification
error of the human/AI system using mixed-integer linear programming (MILP).

3.5 Mixed Integer Linear Program Formulation

In the previous section, we saw that in the linear setting it is computationally hard to learn an
optimal classifier and rejector pair. As discussed in the introduction, we are interested in the linear
setting due to the cost of labeling large datasets for learning with deferral. Linear predictors can
perform similar to non-linear predictors in applications involving high-dimensional medical data
[71]. Moreover, we can rely on pre-trained representations, which can allow linear predictors on top
of embedded representations to attain performance comparable to non-linear predictors [72].

A First Formulation. As a first step, we write down a mixed integer nonlinear program for the
optimization of the training loss L̂0−1

def in (3.4) over linear classifiers and linear rejectors with binary
labels. For simplicity, let Y = {−1,+1}. A direct translation of (3.4) with halfspace classifiers and
rejectors yields the following:

M∗, R∗, · = argmin
M,R,mi,ri

n∑
i=1

(1− ri)Imi ̸=yi + riIhi ̸=yi (3.5)

s.t. mi = sign(M⊤xi), ri = IR⊤xi≥0 ∀i ∈ [n], (3.6)

M ∈ Rd, R ∈ Rd.

The variables mi and ri are simply the binary outputs of the classifier and rejector. We observe that
the objective involves a quadratic interaction between the classifier and rejector. Furthermore, the
constraints (3.6) are indicator constraints that are difficult to optimize.

Making Objective Linear. We observe that since the ri’s are binary, the term (1− ri)Imi ̸=yi

can be equivalently rewritten as max(0, Imi ̸=yi − ri). This is a crucial simplification that avoids
having a mixed integer quadratic program. Below we use this to create a binary variable ti = Imi ̸=yi

representing the error of the classifier and a second continuous variable ϕi that upper bounds
max(0, ti − ri) and represents the classifier error after accounting for deferral.

Making Constraints Linear. Constraints (3.6) make sure that the binary variables ri and mi

are the predictions of half-spaces R and M respectively. As mentioned above, we will formulate the
problem using the classifier error variables ti instead of the classifier predictions mi. To reformulate
constraints (3.6) in a linear fashion, we have to make assumptions on the optimal M and R:

59

Assumption 2 (Margin). The optimal solution (M,R) that minimizes the training loss (3.4) has

margin and is bounded, meaning that (M,R) satisfy the following for all i ∈ [n] in the training set

and some γm, γr, Km, Kr > 0:

γm ≤ |M⊤xi| ≤ Km − γm, γr ≤ |R⊤xi| ≤ Kr − γr (3.7)

A similar assumption is made in [68]. The upper bounds in (3.7) are often naturally satisfied as
we usually deal with bounded feature sets X such that we can normalize xi to have unit norm, and
the norms of M and R are constrained for regularization.

Mixed Integer Linear Program. With the above ingredients and taking inspiration from the
big-M approach of [68], we can write down the resulting mixed integer linear program (MILP):

M∗, R∗, · · · =
argmin

M,R,{ri},{ti},{ϕi}

∑
i

ϕi + riIhi ̸=yi , s.t.

ϕi ≥ ti − ri, ϕi ≥ 0 ∀i ∈ [n]

Kmti ≥ γm − yiM⊤xi ∀i ∈ [n]

R⊤xi ≤ Krri + γr(ri − 1),

R⊤xi ≥ Kr(ri − 1) + γrri ∀i ∈ [n]

ri ∈ {0, 1}, ti ∈ {0, 1},
ϕi ∈ R+ ∀i ∈ [n], M,R ∈ Rd

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Please see Figure 3.2 for a graphical illustration of the variables. We show that constraints (3.12)
function as intended; the rest of the constraints are verified in the Appendix. When ri = 0, then
we have the constraints R⊤xi ≤ −γr and R⊤xi ≥ −Kr: this correctly forces the rejector to be
negative. When ri = 1, we have R⊤xi ≥ γr and R⊤xi ≤ Kr: which means the rejector is positive.
Note that we do not need to know the margin γr exactly, only a lower bound γ, 0 < γ ≤ γr; the
formulation is still correct with γ in place of γr. However, we cannot set γ = 0 as then the trivial
solution R = 0 is feasible and the constraint is void. The same statements apply to γm. This MILP
has 2n binary variables, n+2d continuous variables and 4n constraints. Finally, note that the MILP
minimizes the 0-1 error even when Assumption 1 is violated.

Regularization and Extension to Multiclass. We can add l1 regularization to our model by
adding the l1 norm of both M and R to the objective. This is done by defining two sets of variables
constrained to be the l1 norm of the classifier and rejector and adding their values to the objective
in (3.9). Adding regularization can help prevent the MILP solution from overfitting to the training
data. The above MILP only applies to binary labels but can be generalized to the multi-class setting

60

where Y = {1, · · · , C} (see Appendix).
Generalization Bound. Under Assumption 2 and non-realizability, assume ∥xi∥1 ≤ 1 and

constrain the search of the MILP to M and R with infinity norms of at most Km and Kr respectively.
We can relate the performance of MILP solution on the training set to the population 0-1 error.

Proposition 4. For any expert h and data distribution P over X × Y that satisfies Assumption 2,

let 0 < δ < 1
2
. Then with probability at least 1− δ, the following holds for the empirical minimizers

(m̂∗, r̂∗) obtained by the MILP:

L0−1(m̂
∗, r̂∗) ≤ L̂0−1

def (m̂
∗, r̂∗)

+
(Km +Kr)d

√
2 log d+ 10

√
log(2/δ)√

nP(h(Z) ̸= Y)
.

This bound improves on surrogate optimization since the MILP will achieve a lower training
error, L̂0−1

def (m̂
∗, r̂∗), than the surrogate, which optimizes a different objective.

Adding Constraints. A major advantage of the MILP formulation is that it allows us to provably
integrate any linear constraints on the variables with ease. For example, the constraints mentioned
in the problem setting can be added to the MILP as follows in a single constraint:

• Coverage:
∑

i ri/n ≤ β

• Fairness:
∑

i:A=1

(
ϕi + riIhi ̸=yi

)
/|{i : A = 1}| =∑i:A=0

(
ϕi + riIhi ̸=yi

)
/|{i : A = 0}|.

So far, we have provided an exact solution to the linear learning to defer problem. However, the
MILP requires significant computational time to find an exact solution for large datasets. Moreover,
we might need a non-linear classifier or rejector to achieve good error. The remaining questions
are (i) how to efficiently find a good pair of halfspaces for large datasets and (ii) how to generalize
to non-linear predictors. In the following section, we give a novel surrogate loss function that is
optimal in the realizable LWD-H setting, performs well with non-linear predictors, and can be
efficiently minimized (to a local optimum).

3.6 Realizable Consistent Surrogate

3.6.1 Consistency vs Realizable Consistency

Most machine learning practice is based on optimizing surrogate loss functions of the true loss
that one cares about. The surrogate loss functions are chosen so that optimizing them also optimizes
the true loss functions, and also chosen to be differentiable so that they are readily optimized. This
first property is captured by the notion of consistency, which was the main focus of much of the prior

61

work on expert deferral: [23], [26], [62]. We start by giving a formal definition of the consistency
of a surrogate loss function:

Definition 1 (Consistency1). A surrogate loss function L̃(m, r) is a consistent loss function for
another loss L0−1

def (m, r) if optimizing the surrogate over all measurable functions is equivalent to
minimizing the original loss.

For example, the surrogates LCE and ΨOvA both satisfy consistency for L0−1
def (m, r) [26], [62].

It is crucial to note that consistency only applies when optimizing over all measurable functions.
Conversely, in LWD-H, and in the setting of Figure 3.2, when we optimize with linear functions,
consistency does not provide any guarantees, which explains why these methods can fail in that
setting.

Since we normally optimize over a restricted model class, we want our guarantee for the
surrogate to also hold for optimization under a certain model class. The notion of realizable H-
consistency is such a guarantee that has proven fruitful for classification [66], [74] and was extended
by [26] for learning with deferral. We recall the notion when extended for learning with deferral:

Definition 2 (realizable (M,R)-consistency). A surrogate loss function L̃(m, r) is a realizable
(M,R)-consistent loss function for the loss L0−1

def (m, r) if there exists a zero error solution m∗, r∗ ∈
M×R with L0−1

def (m
∗, r∗) = 0. Then optimizing the surrogate returns such zero error solution:

m̃, r̃ ∈ arg inf
m,r∈M×R

L̃(m, r) =⇒ L0−1
def (m̃, r̃) = 0

Realizable (M,R)-consistency guarantees that when our data comes from some ground-truth
m∗, r∗ ∈M×R, then minimizing the (population) surrogate loss will find an optimal (m, r) pair.
We propose a novel, differentiable, and (M,R)-consistent surrogate for learning with deferral when
M andR are closed under scaling. A class G of scoring functions from X to RC is closed under
scaling if g ∈ G =⇒ αg ∈ G for any α ∈ R. For example, we can let G be the class of linear
scoring functions g(x) = G⊤x and G ∈ Rd×C . Our results hold for arbitrary G that are closed under
scaling, e.g., ReLU feedforward neural networks (FNN). We parameterize the (m, r) pair with
|Y| + 1 dimensional scoring function g : (g1, . . . , g|Y|, g⊥). We define m(x) = argmaxy∈Y gy(x)

and r(x) = Imaxy∈Y gy(x)≤g⊥(x). The joint classifier-rejector model class (M,R) is thus defined by
G, and we say (M,R) is closed under scaling whenever G is closed under scaling. The proposed
new surrogate loss LRS , dubbed RealizableSurrogate, is defined at each point (x, y, h) as:

1This is also referred to as Fisher consistency [73] and classification-calibration [55].

62

LRS(g, ·) = −2 log
(
exp(gy(x)) + Ih=y exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(3.15)

3.6.2 Derivation of Surrogate

We now derive our proposed surrogate RealizableSurrogate with a principled approach. In
this chapter, our primary goal is to predict a target Y given a set of covariates X while having the
ability to query a human H to predict. Our overall predictor is denoted as Ŷ , a function of both H
and X , our goal is learning a predictor that maximizes the agreement between Ŷ and Y :

E[IŶ (X,H)=Y] = EX

[
P(Ŷ (x,H) = Y |X = x)

]
It will be easier to maximize the logarithm of the probability and thus using Jensen’s inequality we
obtain an upper bound :

log
(
EX

[
P(Ŷ (x,H) = Y |X = x)

])
≤ EX

[
log
(
P(Ŷ (x,H) = Y |X = x)

)]
We now decompose our predictor into a classifier-rejector pair (m, r) where the rejector decides if
the classifier or the human should predict. This transforms our objective to:

L = EX

[
log
(
P(Ŷ = Y |X = x)

)]
=

EX [log(P(Ŷ = Y |X = x, r(x) = 0)P(r(x) = 0|X = x)

+ P(Ŷ = Y |X, r(x) = 1)P(r(x) = 1|X = x))]

= EX [log (P(m(x) = Y |X = x)P(r(x) = 0|X = x) + P(H = Y |X = x)P(r(x) = 1|X = x))]

(3.16)

In [28], their proposed loss splits the sum inside the log above into a sum of log-likelihoods of
the classifier and expert each weighted by the probability of predicting and deferring respectively.
Instead in this work, we try to optimize the above log likelihood L (3.16) directly.

Parameterization. We now try to understand how we can parameterize the classifier-rejector
pair. We first parameterize the classifier with a set of scoring functions gy : X → R for y ∈ Y
and define the classifier as the label y that attains the maximum value among the set {gy′}y′∈Y .
To parameterize the rejector r, we define a single scoring function g⊥ : X → R and defer if

63

g⊥ > maxy gy which induces a comparison between the function g⊥ and the classifier scores. One
could instead parameterize the rejector r with a single function g⊥ : X → R and defer if g⊥(x) is
positive, we find empirically that the previous parameterization has better performance 2.

However, with the characterization, both our classifier and rejector are deterministic. Plugging
in the parameterization of (m, r) into the loss in (3.16) would result in a loss function that is
non-differentiable in the parameters gy and g⊥ due to thresholding. Instead, we allow the classifier
and rejector to only be probabilistic during training by defining:

P(m(x) = Y |X = x) =
exp(gY (x))∑

y′∈Y exp(gy′(x))
, P(r(x) = 1|X = x) =

exp(g⊥(x))∑
i∈Y∪⊥ exp(gi(x))

This transforms the log liklelihood L to:

EX

[
log

(
exp(gY (x))∑

y′∈Y exp(gy′(x))
·
∑

y′∈Y exp(gy′(x))∑
i∈Y∪⊥ exp(gi(x))

+ P(H = Y |X) · exp(g⊥(x))∑
i∈Y∪⊥ exp(gi(x))

)]

= −EX

[
log

(
exp(gY (x)) + P(H = Y |X) exp(g⊥(x))∑

y′∈Y exp(gy′(x))

)]

We multiple the above likelihood by −2 so that we can instead minimize a loss and so that it
becomes an upper bound of the 0− 1 deferral loss L0−1

def (m, r). Given the dataset S, our proposed
loss then becomes:

LS
RS = −2

n∑
i=1

log

(
exp(gyi(xi)) + Ih(zi)=yi exp(g⊥(x))∑

y′∈Y exp(gy′(x))

)
(3.17)

3.6.3 Theoretical Guarantees

Notice in our proposed loss LRS that when the human is incorrect, i.e. Ih=y = 0, the loss
incentivizes the classifier to be correct, similar to cross entropy loss. However, when the human is
correct, the learner has the choice to either fit the target or defer: there is no penalty for choosing to
do one or the other. This is what enables the classifier to complement the human and differentiates
LRS from prior surrogates, such as LCE [26], that are not realizable-consistent (see Theorem 14
in Appendix B.4.4) and penalize the learner for not fitting the target even when deferring. This

2This parameterization form can achieve a halfspace rejector and results in the following loss:

LRS2 = EX

[
log

(
exp(gY (x))∑

y′∈Y · exp(gy′(x))

1

1 + exp(g⊥)
+ P(H = Y |X) · exp(g⊥)

1 + exp(g⊥)

)]

64

property is showcased by the fact that our surrogate is realizable (M,R)-consistent for model
classes that are closed under scaling. Moreover, it is an upper bound of the true loss L0−1

def (m, r).
The theorem below characterizes the properties of our novel surrogate function.

Theorem 7. The RealizableSurrogate LRS is a realizable (M,R)-consistent surrogate for L0−1
def

for model classes closed under scaling, and satisfies L0−1
def (m, r) ≤ LRS(m, r) for all (m, r).

This theorem implies that when Assumption 1 is satisfied and G is the class of linear scoring func-
tions, minimizing LRS yields a classifier-rejector pair with zero system error. The resulting classifier
is the halfspace I((G1−G0)

⊤x ≥ 0) and the form of the rejector is I((G⊤
⊥x−max(G⊤

1 x,G
⊤
0 x)) ≥

0), which is an intersection of halfspaces. One can obtain a halfspace rejector by minimizing instead
with the parameterization of LRS2.

The surrogate is differentiable but non-convex in g, though it is convex in each gi. Indeed,
a jointly convex surrogate that provably works in the realizable linear setting would contradict
Theorem 5. In practice, we observe that in the linear realizable setting, the local minima reached by
gradient descent obtain zero training error despite the nonconvexity. The mixture-of-experts surro-
gate in [28] is realizable (M,R)-consistent, non-convex and not classification consistent as shown
by [26], however, [26] also showed that it leads to worse empirical results than simple baselines.
We have not been able to prove or disprove that RealizableSurrogateis classification-consistent,
unlike other surrogates like that of [26]. It remains an open problem to find both a consistent and
a realizable-consistent surrogate.

3.6.4 Underfitting The Target

Minimizing the proposed loss leads to a classifier that attempts to complement the human. One
consequence is that the classifier might have high error on points that are deferred to the human,
resulting in possibly high error across a large subset of the data domain. We can explicitly encourage
the classifier to fit the target on all points by adding an extra term to the loss:

Lα
RS(g, x, y, h) = −α log

(
exp(gy(x)+Ih=y exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′ (x))

)
− (1− α) log

(
exp(gy(x))∑

y′∈Y exp(gy′(x))

)

(3.18)

The new loss Lα
RS with α ∈ [0, 1] (a hyperparameter) is a convex combination of LRS and the

cross entropy loss for the classifier (with the softmax applied only over the functions gy rather than
including g⊥). Empirically, this allows the points that are deferred to the human to still help provide
extra training signal to the classifier, which is useful for sample-efficiency when training complex,

65

non-linear hypotheses. Finally, due to adding the parameter α, the loss no longer remains realizable
consistent, thus we let the rejector be r(x) = Ig⊥(x)−maxy gy(x)≥τ and we learn τ with a line search
to maximize system accuracy on a validation set. In the next section, we evaluate our approaches
with an extensive empirical benchmark.

3.7 Experiments

66

0.0 0.2 0.4 0.6 0.8 1.0

Coverage

0.88

0.90

0.92

0.94

0.96

T
es

t
A

cc
u

ra
cy

HumanAlone

ClassifierAloneRandom Deferral

RealizableSurrogate (ours)

CrossEntropySurrogate

OvASurrogate

SelectivePrediction

CompareConfidence

DifferentiableTriage

MixOfExps

(a) CIFAR-10H

0.0 0.2 0.4 0.6 0.8 1.0

Coverage

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

T
es

t
A

cc
u

ra
cy

(b) COMPASS

0.0 0.2 0.4 0.6 0.8 1.0

Coverage

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

T
es

t
A

cc
u

ra
cy

(c) HateSpeech

0.0 0.2 0.4 0.6 0.8 1.0

Coverage

0.70

0.72

0.74

0.76

0.78

0.80

T
es

t
A

cc
u

ra
cy

(d) ImageNet-16H

0.0 0.2 0.4 0.6 0.8 1.0

Coverage

0.85

0.86

0.87

0.88

0.89

0.90

0.91

T
es

t
A

cc
u

ra
cy

(e) Chest X-ray - Airspace Opacity

0.0 0.2 0.4 0.6 0.8 1.0

Coverage

0.945

0.950

0.955

0.960

0.965

0.970

0.975

T
es

t
A

cc
u

ra
cy

(f) Chest X-ray - Pneumothorax

Figure 3.3: Accuracy vs coverage (fraction of points where classifier predicts) plots across the
real world datasets showcasing the behavior of our method and the baselines. On each plot, we
showcase the test accuracy of each method with a large marker, with the curve representing varying
the rejector threshold on the test set. To achieve different levels of coverage, we sort the rejection
score for each method on the test set and vary the threshold used, for RealizableSurrogate the
rejector is defined as r(x) = Ig⊥(x)−maxy gy(x)≥c where the optimal solution is at c = 0 and we vary
c ∈ R to obtain the curve.

67

Table 3.1: Datasets used for our benchmark for learning with deferral to humans. We note the
total number of samples n, the target set size |Y|, the number of tasks in each dataset (a task is a
set of human and target labels), the human expert where ’random annotator’ means that for each
point we have multiple human annotations and we let the target be a consensus and the human label
be a random sample while ’separate human annotation’ means that the human label is completely
separate from the label annotations and finally the model class for both the classifier and rejector.

Dataset n |Y| Number of Tasks Human Model Class
SyntheticData (ours) arbitrary 2 1 synthetic linear
CIFAR-K 60k 10 10 (per expert k) synthetic (perfect on k classes) CNN

CIFAR-10H [75] 10k 10 1 separate human annotation pretrained WideResNet [76]
Imagenet-16H [43] 1.2k 16 4 (per noise version) separate human annotation pretrained DenseNet121 [77], finetun-

ing last layer only
HateSpeech [54] 25k 3 1 random annotator FNN on embeddings from SBERT [78]
COMPASS [79] 1k 2 1 separate human annotation linear
NIH Chest X-ray [80], [81] 4k 2 4 (for different conditions) random annotator pretrained DenseNet121 on non-human

labeled data

1000 2000 3000 4000 5000 6000 7000

Training data size

0.80

0.85

0.90

0.95

1.00

T
es

t
A

cc
u

ra
cy

MILP (ours)

RealizableSurrogate(ours)

CrossEntropySurrogate

OvASurrogate

SelectivePrediction

CompareConfidence

DifferentiableTriage

MixOfExps

(a) Synthetic Data Sample Complexity

1 2 3 4 5 6 7 8 9

Expert (K)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
es

t
A

cc
u

ra
cy

RealizableSurrogate (ours)

CrossEntropySurrogate

OvASurrogate

SelectivePrediction

CompareConfidence

DifferentiableTriage

MixOfExps

HumanAlone

ClassifierAlone

(b) CIFAR-K Semi-Synthetic

Figure 3.4: (a) Test performance of the different methods on synthetic data as we increase the
training data size and repeat the randomization over 10 trials to get standard errors. (b) Test
performance on the semi-synthetic CIFAR-K dataset vs. the number of classes K for which the
expert is perfect.

3.7.1 Human-AI Deferral Benchmark

Objective. We investigate the empirical performance of our proposed approaches compared
to prior baselines on a range of datasets. Specifically, we want to compare the accuracy of the
human-AI team at the learned classifier-rejector pairs. We also check the accuracy of the system
when we change the deferral policy by varying the threshold used for the rejector, this leads to
an accuracy-coverage plot where coverage is defined as the fraction of the test points where the
classifier predicts.

Datasets. In Table D.1 we list the datasets used in our benchmark. We start with synthetic data

68

described below, then semi-synthetic data with CIFAR-K [26]. We then evaluate on 5 real world
datasets with three image classification domains with multiple tasks per domain, a natural language
domain and a tabular domain. Each dataset is randomly split 70-10-20 for training-validation-testing
respectively.

Baselines. We compare to multiple methods from the literature including: the confidence
method from [25] (CompareConfidence), the surrogate Lα

CE from [26] (CrossEntropySurrogate), the
surrogate ΨOvA from [62] (OvASurrogate), Diff-Triage from [27] (DifferentiableTriage), mixture of
experts from [28] (MixOfExps) and finally a selective prediction baseline that thresholds classifier
confidence for the rejector (SelectivePrediction). For all baselines and datasets, we train using
Adam and use the same learning rate and the same number of training epochs to ensure an equal
footing across baselines, each run is repeated for 5 trials with different dataset splits. We track the
best model in terms of system accuracy on a validation set for each training epoch and return the
best-performing model. For RealizableSurrogate , we perform a hyperparameter search on the
validation set over α ∈ [0, 1], and do hyperparameter tuning over Lα

CE .

3.7.2 Synthetic and Semi-Synthetic Data

Synthetic Data. We create a set of synthetic data distributions that are realizable by linear
functions (or nearly so) to benchmark our approach. For the input X , we set the dimension d, and
experiment with two data distributions. (1) Uniform distribution: we draw points X ∼ Unif(0, U)d

where U ∈ R+; (2) Mixture-of-Gaussians: we fix some K ∈ N and generate data from K equally
weighted Gaussians, each with random uniform means and variances. To obtain labels Y that satisfy
Assumption 1, we generate two random halfspaces and denote one as the optimal classifier m∗(x)

and the other as the optimal rejector r∗(x). We then set the labels Y on the side where r∗(x) = 0

to be consistent with m∗(x) with probability 1− pm and otherwise uniform. When r∗(x) = 1, we
sample the labels uniformly. Finally, we choose the human expert to have error ph0 when r∗(x) = 0

and have error ph1 when r∗(x) = 1. When pm = 0, ph0 ∈ [0, 1], and ph1 = 0, this process generates
datasets D = {xi, yi, hi}ni=1 that satisfy Assumption 1.

Sample Complexity. For realizable data with a feature distribution that is mixture of Gaus-
sians (d = 30, pm = 0, ph0 = 0.3, ph1 = 0), Figure 3.4a plots the test accuracy of the different
methods on a held-out dataset of 5k points as we increase the training data size. We observe that
MILP and RealizableSurrogate are able to get close to zero error, while all other methods fail
at finding a near zero-error solution. We also experiment with non-realizable data. For example,
when pm = 0.1, ph0 = 0.4, ph1 = 0.1 with n = 1000, the optimal test error is 7.5 ± 1.0% for the
generated data: the MILP obtains 11.2 error and RealizableSurrogate achieves 17.8± 1.0 error,
while the best baseline CrossEntropySurrogate achieves 21.4± 1.1 error. In the Appendix, we show

69

0.0 0.2 0.4 0.6 0.8 1.0

Parameter α

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
u

ra
cy

Overall Accuracy

Classifier accuracy (non-deferred)

Human accuracy (deferred)

Coverage (%)

Figure 3.5: Sensitivity of the RealizableSurrogate to the hyperparameter α. We vary the
hyperparameter α in the RealizableSurrogate surrogate loss and show the different metrics
including overall accuracy, accuracy when we defer, accuracy when we don’t defer, and finally
coverage.

results on the uniform data distribution, which shows an identical pattern, and we study the run-time
and performance of the MILP as we increase the error probabilities.

CIFAR-K. We use the CIFAR-10 image classification dataset [60] and employ a simple convolu-
tion neural network (CNN) with three layers. We consider the human expert models from [26], [62]:
if the image is in the first K classes the expert is perfect, otherwise the expert predicts randomly.
Figure 3.4b shows the test accuracy of the different methods as we vary the expert strength K.
RealizableSurrogate outperforms the second-best method by 0.8% on average and up to 2.8%
maximum showcasing that the method can perform well for non-linear predictors.

3.7.3 Realistic Data

Models. In Figure 3.3, we showcase the test accuracy of the different baselines on the real
datasets in Table D.1, and illustrate their behavior when we constrain our method and the baselines
to achieve different levels of coverage. The test accuracy of the operating point on the different
datasets is shown in Table 3.2. We can see that Lα

RS is competitive with the best baseline on each
dataset/task. Moreover, we see that the human-AI team is often able to achieve performance that is
higher than the human or classifier on their own. The methods often achieve peak performance at a
coverage rate that is not at the extremes of [0,1], and on each of the six datasets we notice variability
between the peak accuracy coverage rate indicating tat they are finding different solutions. This
demonstrates that deferral using Lα

RS is able to achieve complementary human-AI team performance

70

in practice. In summary, the new surrogate LRS performs as well as the MILP on synthetic data,
and as well as all the baselines (or better) on real-world data. Note that Differentiable Triage on
these datasets is underperforming as we are testing it on a setting beyond the chapter as here we
only have samples of expert predictions instead of probabilities from the expert.

Table 3.2: Test accuracy of the operating point of the different methods on the datasets tested on.
The baselines are LCE [26], ΨOvA [62], Selective Prediction (SP), Compare Confidence (CP) [25],
DIFT [27] and MoE [28].

Dataset Lα
RS (ours) LCE ΨOvA SP CC DIFT MoE

Synthetic Realizable 0.979 0.891 0.918 0.882 0.918 0.870 0.992
Synthetic Non-Realizable 0.879 0.828 0.839 0.797 0.836 0.770 0.774

Cifar-K (K=5) 0.795 0.785 0.786 0.747 0.621 0.749 0.550
Compass 0.670 0.668 0.682 0.678 0.677 0.662 0.663
Cifar-10H 0.969 0.960 0.963 0.966 0.968 0.949 0.953

Hate Speech 0.924 0.913 0.919 0.926 0.921 0.906 0.907
ImageNet16H (noise 80) 0.912 0.908 0.909 0.910 0.908 0.898 0.904
ImageNet16H (noise 95) 0.865 0.872 0.872 0.875 0.868 0.856 0.861

ImageNet16H (noise 110) 0.802 0.791 0.791 0.809 0.792 0.756 0.761
ImageNet16H (noise 125) 0.755 0.707 0.732 0.756 0.743 0.655 0.604

Pneumothorax 0.976 0.963 0.978 0.972 0.978 0.978 0.978
Airspace Opacity 0.913 0.908 0.906 0.899 0.905 0.894 0.894

Hyperparameter α. We show how the behavior of the classifier and rejector system changes
when we modify the hyperparameter α ∈ [0, 1] in Figure 3.5. When α is small, the behavior of the
surrogate is the same as selective prediction which is why we see the lowest accuracy of the human
when we defer. As α increases to 1, we can see that the system better adapts to the human.

Recommendations: Which Method to Use? Given our experimental results, the question to ask
is which method should be used for a given dataset and model class. The simple and natural baseline
of CompareConfidence should be the first tool one applies to their setting, it often achieves good
performance, outperforming the naive baseline SelectivePrediction. However, CompareConfidence
does not allow the classifier to adapt to the humans strengths and weaknesses. The surrogates
CrossEntropySurrogate and OvASurrogate when applied with expressive model classes such as
deep networks can find complementary classifiers. The surrogates offer other advantages, notably,
CrossEntropySurrogate has been shown to have better sample complexity over the CompareConfi-
dence baseline and can incorporate arbitrary costs of deferral and prediction [26]. However, as our
synthetic experiments have shown, there is a limit of the CrossEntropySurrogate and OvASurrogate

71

surrogats to how much they can complement the human and defer accordingly. This is where
our proposed methods MILPDefer and RealizableSurrogate come in. We recommend using
the MILP in settings with limited data where linear models are suitable as it can achieve optimal
performance, however, one must carefully tune regularization parameters to not overfit. If the data is
realizable, then the RealizableSurrogate is also optimal and is much easier to optimize, one can
apply the surrogate without knowing beforehand if the data is realizable. RealizableSurrogate
works well with linear and non-linear model classes, and performs the best under model resource
constraints, we recommend using it broadly when optimizing accuracy.

72

Part II

AI-Assisted Decision Making: Onboarding

73

Chapter 4

Teaching Humans When To Defer to a
Classifier via Exemplars

Acknowledgements of Co-authors. This chapter is based on the published work in [82]. I would
like to thank my co-author, Arvind Satyanarayan, for his help.

4.1 Introduction

Automated agents powered by machine learning are augmenting the capabilities of human
decision makers in settings such as healthcare [1], [2], content moderation [83] and more routine
decisions such as asking AI-enabled virtual assistants for recommendations [84]. This mode of
interaction whereby the automated agent serves only to provide a recommendation to the human
decision maker, a setting typically named AI assisted decision making, is the focus of our study
here. A key question is how the human expert knows when to rely on the AI for advice. In this
work, we make a case for the need to initially onboard the human decision-maker on when and
when not to rely on the automated agent. We propose that before an AI agent is deployed to assist
a human decision maker, the human is taught through a tailored onboarding phase how to make
decisions with the help of the AI. The purpose of the onboarding is to help the human understand
when to trust the AI and how the AI can complement their abilities. This allows the human to have
an accurate mental model of the AI agent, which helps set expectations about the AI’s performance
on different examples.

Our onboarding phase consists of letting the human predict on a series of specially selected
teaching examples in a setting that mimics the deployment use case. The examples are chosen to
give an overview of the AI’s strengths and weaknesses, especially when it complements the abilities
of the human. After predicting on each example, the human agent then receives feedback on their
performance and that of the AI. To allow the human to generalize from each example, we display

75

features of the region surrounding the example. Finally, to enable retention of the example, we
let the human write down a lesson indicating whether they should trust the AI in that region and
what characterizes the region. Our approach is inspired by research in the education literature that
highlights the importance of feedback and lesson retention for learning [21], [22].

To select the teaching examples, we need to have a mathematical framework of how the human
mental model evolves after we give them feedback. We model the human thought process as first
deciding whether to rely on the AI’s prediction or not using an internal rejector. This rejector
is what we refer to as the human mental model of the AI. We propose to model the human’s
rejector as consisting of a prior rejector and a nearest neighbor rule that only applies in local regions
surrounding each teaching example in section 4.4. This novel parameterization is inspired by work
in cognitive science that suggests that humans make decisions by weighing similar past experiences
[85]. Assuming this rejector model, we give a near-optimal greedy strategy for selecting a set of
representative teaching examples that allows us to control the examples and the region surrounding
them.

We first evaluate the efficacy of our algorithmic approach on a set of synthetic experiments and
its robustness to the misspecification of the human model. For our main evaluation, we conducted
experiments on Amazon Mechanical Turk on the task of passage-based question answering from
HotpotQA [86]. Crowdworkers first performed a teaching phase and were then tested on a randomly
chosen subset of examples. Our results demonstrate the importance of teaching: around half of the
participants who undertook the teaching phase were able to correctly determine the AI’s region of
error and had a resulting improved performance.

4.2 Related Work

4.2.1 Relation to Learning to Defer

Revised Section: Our framework of Human-AI assisted decision making, dubbed teaching to
defer (TTD), and its associated framing can be considered as the analog of the learning to defer
framework described in (LTD) [25], [26], [28], [29] which we discussed in Part I and Chapters 2
and 3. The main goal of LTD is to learn a rejector that determines which of the AI and the human
should predict on each example. However, there are numerous legal and accountability constraints
that may prohibit a machine from making final decisions in high-stakes scenarios. Additionally,
the actual test-time setting may differ from that which was used during training, but since in our
setting, the human makes the final decision, this allows them to adapt their decision-making and
detect any unexpected model errors. As an example, in a clinical use case, factors such as times
of substantially increased patient load may affect the human expert’s accuracy. The human may

76

also occasionally have side information that was unavailable to the AI that could improve their
decision-making. Compared to LTD, deployment may be simplified because the same AI is used
for all experts; as new experts arrive, our onboarding phase trains them to use the AI according to
their unique abilities. Our teaching setting and LTD also use very different techniques. Although
the objective that we present in Equation (4.3) is closely related to the objective used by [26], the
main task in our setting is that of teaching the human when to defer. This requires us to develop a
formalization of the human mental model and algorithms for selecting a subset of examples that
enables accurate learning.

In our setting, the human observes the AI prediction and then makes a prediction. In LTD, the
AI model first decides using a rejector whether to predict on its own or defer to the human. There
is no interaction in LTD between the human and the AI as the goal is to reduce the burden on the
human expert. We borrow the notion of a rejector to formalize the thought process of the human
deciding whether or not to use the AI prediction. Table 4.1 highlights some of the main differences
between the two frameworks.

System Objective. The objective in our framework is stated in equation (4.3), which can be
compared to the system objective from LTD [26]:

L(h, r) = E(x,y)∼P,m∼M |(x,y) [l(x, y, h(x))Ir(X)=0 + lexp(x, y,m)Ir(x)=1] (4.1)

Beyond the fact that in TTD, the human controls the rejector and in LTD the AI controls the rejector,
a technical difference is the input to the rejector function r: in LTD it’s the AI domain X , while in
TTD it’s the human domain Z and the AI prediction π(X).

Human-AI Interaction. In LTD, when the AI predicts or defers, it does so without observing the
human’s prediction, and when the human predicts, they do so without seeing the AI prediction. On
the other hand, in our framework, the human observes the AI’s prediction and explanation before
making their final prediction. This allows the human and AI to combine their predictions in a way
that the LTD framework does not allow.

4.2.2 Further Related Work

One of the goals of explainable machine learning is to enable humans to better evaluate the
correctness of the AI’s prediction by providing supporting evidence [88]–[97]. However, these
explanations do not inform the decision maker how to weigh their own predictions against those of
the AI or how to combine the AI’s evidence to make their final decision [98]. The AI explanations
cannot factor in the effect of the human’s side information, and thus the human has to learn what

77

Table 4.1: Comparison on different dimensions between the teaching to defer framework in this
paper (TTD) and the learning to defer framework (LTD) from [26], [28], [87].

Dimension LTD [26] TTD (this paper)

Information at training Samples from AI domain
X , label Y , human predic-
tion M

Samples from AI domain
X , Human domain Z, label
Y , and error distribution of
AI and Human

Information at testing AI domain X AI domain X , Human do-
main Z, AI prediction π

AI training joint training with rejector trained without knowledge
of human rejector

Knowledge about human samples of prediction error distribution
Form of rejector no constraint radius nearest neighbor de-

fined by Assumption 4
Interaction between Human and AI No by design, AI doesn’t

see the Human prediction
and Human doesn’t see the
AI prediction

Yes

Final decision maker AI or Human Human
Does Human observe each example No, since AI might not de-

fer
Yes

Ease of Deployment Needs re-training for every
human expert

Same deployment for any
human expert

their side information reveals about the performance of the AI or themselves. Moreover, if the
AI’s explanations are unfaithful or become so due to a distribution shift in the data [99], then the
human may then over-weigh the AI’s abilities. Another direct approach for teaching is presenting
the human with a set of guidelines of when to rely on the AI [100]. However, these guidelines need
to be developed by a set of domain experts and no standard approach currently exists for creating
such guidelines. As a byproduct of our teaching approach, each human writes a set of unorganized
rules that can then be more easily turned into such guidelines.

Related work has explored how to best onboard a human to trust or replicate a model’s prediction.
LIME, a black-box feature importance method, was used to select examples so that crowdworkers
could evaluate which of two models would perform better [38], [39]. Their selection strategy
does not take into account the human predictor, nor does their approach do more than display
the examples. On a task of visual question answering, [101] handpicked 7 examples to teach
crowdworkers about the AI abilities and found that teaching improved the ability to detect the
AI’s failure. [102] on a Quizbowl question answering task highlights the importance of modeling
the skill level of the human expert when designing the explanations; this further motivates our

78

incorporation of the human predictor into the choice of the teaching set. Through a study of 21
pathologists, [103] gathered a set of guidelines of what clinicians wanted to know about an AI prior
to interacting with it. [104] study the effect of initial debriefing of stated AI accuracy compared to
observed AI accuracy in deployment and find a significant effect of stated accuracy on trust, but that
diminishes quickly after observing the model in practice; this reinforces our approach of building
trust through examples that simulate deployment. [16] investigate the role of the human’s mental
model of the AI on task accuracy, however, the mental model is formed through test time interaction
rather than through an onboarding stage. [105] propose a theoretical model for AI-assisted decision
making, assuming that the human has a perfect mental model of the AI and that the human has
uniform error.

Finally, our work was inspired by the literature on machine teaching [42], [106]–[109] and
curriculum learning [110], [111]. Our work differentiates itself from the machine teaching literature
by the use of our novel radius neighbor human model and the goal of teaching how to defer to an
AI rather than teaching concepts to humans. Studies have also explored the use of reinforcement
learning as a tool for online education [112]–[114]. We further expand the related work in Appendix
C.1.

4.3 Problem Setup

Figure 4.1: The AI assisted decision making pipeline. The AI first sends to the human a message A,
then the human decides with their rejector r(Z,A) if they should follow the AI’s advice and predict
πY (X) or they should predict on their own using h(Z,A).

Our formalization is based on the interaction between two agents: the AI, an automated agent,
and a human expert who both collaborate to predict a target Y ∈ Y based on a given input context.
The setup is as follows: the AI perceives a view of the input X ∈ X , then communicates a message
A ∈ A that is perceived by the human. The human expert then integrates the AI message A and
their own view of the input Z ∈ Z to make a final decision M(Z,A) which can either be to predict

79

on their own or allow the AI agent to predict. The input space of the human Z and that of the
AI X could be different since the human may have side information that the AI can’t observe.
This is essentially the AI-Assisted Decision Making setup illustrated in Figure 4.1 which is the
more common mode of interaction between humans and artificially intelligent agents in high-stakes
scenarios.

More formally, the AI consists of a predictor πY : X → Y that can solve the task on its own
and a policy π : X → A which serves to communicate with the human. The message space A may
consist for example of the AI’s prediction πY (X) alongside an explanation of their decision. On
the other hand, the human when seeing the AI’s message consists of a predictor h : Z ×A → Y
parameterized by θh and the human decides to allow the AI to predict or not according to a rejector
r : Z ×A → {0, 1} parameterized by θr, where if r(Z,A; θr) = 1 the human uses the AI’s answer
for its final prediction. This implies that the final human decision M is as follows:

M(Z,A) =

πY (x) , if r(Z,A; θr) = 1

h(Z,A; θh) , otherwise
(4.2)

System objective. Given the above ingredients and a performance measure on the label space
l(y, ŷ) : Y × Y → R+ (e.g. 0-1 loss), the loss that we incur is the following:

L(π, πY , h, r) =Ex,z,y[l(πY (x), y)︸ ︷︷ ︸
AI cost

AI predicts︷ ︸︸ ︷
Ir(x,π(x))=1+ l(h(z, π(x)), y)︸ ︷︷ ︸

Human cost

Human predicts︷ ︸︸ ︷
Ir(x,π(x))=0] (4.3)

We put ourselves in the role of a system designer who has knowledge of both the human and the
AI and wishes to minimize the loss of the system L (4.3).

The central Human-AI interaction problem. Given a fixed AI policy, and human parameters
(θh, θr), the manner in which the human expert integrates the AI’s message depends only on the
expert context Z and the message itself A. In particular, for two different policies π1 and π2 that
output the same message A on input Z, our framework tells us that the resulting behavior of the
human expert would be identical in both cases. However, if it is known to the human that AI π1 has
very high error compared to AI π2, then is more likely for them to trust the message if it is coming
from π2 rather than from π1. Thus it is more realistic to assume that the expert has a mental model

of the policy π that they have arrived at from either a description of the policy or from previously
interacting with it; the rejector here formalizes the mental model. This insight forces us to now
consider the parameters (θh, θr) as variables that are learned by the human as a function of the
underlying AI policy π. This makes the optimization of the loss now much more challenging as

80

whenever the policy π changes, the human’s mental model, (θh, θr), needs to update. Therefore, we
need to first understand how the human’s mental model evolves and how we can influence it.

Teaching Humans about the AI. In this work, we focus on exemplar based strategies to allow
the human to update their mental models of the AI. The question is then how do we select a minimal
set of examples that teaches the human an accurate mental model of the AI. To make progress, we
need to first understand the form of the human’s rejector and how it evolves, which we elaborate on
in the following section. Crucially, we will keep the AI in this work as a fixed policy and not look
to optimize for it. Once we understand this first step, future work can then look to close the loop
which entails learning an updated AI with the knowledge of the human learner dynamics.

4.4 Human Mental Model

We now introduce our model of the human’s rejector and the elements of the teaching setup. The
tasks we are interested in are where humans are domain experts, where we define domain experts to
mean that their knowledge about the task and their predictive performance are fixed. We further
extend this to how they may incorporate the AI message in their prediction, but crucially not how
they decide when to use the AI. This assumption translates in our formulation as follows.

Assumption 3. The human predictor does not vary as they interact with the AI, i.e. we assume θh
to be fixed.

While we have assumed θh is fixed and have so far spoken about a singular human, in reality,
the AI might be deployed in conjunction with multiple human experts. These experts might have
different parameters θh individually, however; for the rest of this chapter, we focus on a singular
expert that we are interacting with.

We now move our attention to the human’s rejector, which represents their mental model of the
AI, and learned after observing a series of labeled examples. Research on human learning from
the cognitive science literature has postulated that for complex tasks humans make decisions by
sampling similar experiences from memory [85], [115], [116]. Moreover, [85] makes the explicit
comparison with nearest neighbor models found in machine learning. However, standard nearest
neighbor models don’t allow for prior knowledge to be incorporated. For this reason, we postulate a
nearest neighbor model for the human rejector that starts with a prior and updates in local regions
of each shown example in the following assumption.

Assumption 4 (Form of Human’s rejector). The human’s rejector consists of a prior rejector rule

and a nearest neighbor rule learned after observing teaching examples DT = {zi, ai, ri}mi=1.

81

Formally, let g0(Z,A) : Z×A → {0, 1} be the human’s prior rejector. Figure 4.2 illustrates the

scenario: the prior is the region at the boundary of the human predictor h. LetK(., .) : Z×Z → R+

be the similarity measure that the human employs to measure the degree of similarity between two

instances.

The human’s rejector uses a learned rule if they had observed an example similar with respect

to K(., .) during teaching, otherwise falling back on their prior:

r(Z,A; θr) =

vote(B(Z)) , if B(Z) ̸= ∅
g0(Z,A) , otherwise

(4.4)

where B(Z) is the set of all points in DT that they observed in training sufficiently similar to Z:

B(Z) = {i ∈ [m] | K(Z, zi) > γi} (4.5)

The degree of similarity is measured by a scalar γi that the human sets for each teaching example,

in figure 4.2 all the points in the shaded ball have B(Z) = {z1}. The rule vote(B(Z)) defines the

label for all points similar to Z based on a weighted decision:

vote(B(Z)) = arg max
k∈{0,1}

∑
i∈B(Z) I{ri = k}K(Z, zi)∑

i∈B(Z)K(Z, zi)
(4.6)

Where ri is the deferral rule that the human has learned on example zi.

We can possibly further assume that the prior takes a rather simple form of thresholding the

predictor’s error: g0(Z,A) = I{P(h(Z,A) ̸= Y |Z,A) ≥ ϵ} for some ϵ > 0. One possibility for ϵ

is the error rate of the AI.

Discussion on the Assumptions. In our assumptions above, we assumed knowledge of the
following parameters: the human predictor h(Z,A), the prior human rejector g0(Z,A) and the
human similarity measure K(, , .). In fact, as we will see, we only need to know the expert error
distribution E[l(h(Z,A), Y)|Z,A] rather than the full expert predictor; it may be reasonable to
estimate the expert’s error distribution from previously collected data. The prior rejector g0 can also
be learned by testing the human prior as evidenced by prior work on capturing human priors [117],
[118], otherwise, a reasonable guess is the human deferring by just thresholding their own error rate.
Finally to teach the human, we need a proxy for the similarity measure K(., .). This can be obtained
in many ways: one can learn this metric with separate interactions with the human, see [119], [120],
or rely on an AI based similarity measure e.g. from neural network embeddings [78]. This last
proxy is readily available and in the framework of our study, we believe it is reasonable to use.

82

v

vv

: incorrect

: correct

: deferred

: teaching
example

: contrasting
examples

𝑧1

𝛾1
𝑧𝑗1
𝑧𝑘1

Figure 4.2: Illustration of human rejector on toy example. The task is classification with labels
{o,+}, the human prediction h is the blue line and the prior g0 is the shaded orange region
surrounding the boundary. Points in red is where the human is incorrect, in blue correct and in
black point deferred to the AI. The AI is assumed to be correct on examples far from the human
boundary. The human receives a teaching example z1 (in green) with radius γ1. Also shown are the
two contrasting examples zj1 and zjk (in pink) that define the region.

An important part of the rejector is the associated radius γi with each teaching example i, the
radius allows the human to generalize from each teaching example to the entire domain. The human
learning process leaves the setting of γi completely up to the human and is not observed. However,
we hope to directly influence the value of γi that the human sets during teaching.

4.5 Teaching a Student Learner

Formulation. The previous section introduced the model of the human learner, in this section
we will set out our approach to select the teaching examples for the onboarding stage. Essentially,
our approach is trying to find local regions, balls with respect to K(., .), that best teach the human
about the AI. We assume access to a labeled dataset S = {xi, zi, yi}ni=1 that is independent from the
training data of the AI model. For each point we can assign a deferral decision ri that the human
should undertake that minimizes the system loss. Explicitly, the optimal deferral decision ri is
defined to select who between the human and AI has lower loss on example i:

ri = I{E[l(h(zi, ai), yi)] ≥ E[l(πY (xi), yi]]} (4.7)

83

Note that to derive ri we only need to know the loss of the human on the teaching set and not their
predictions. Define then S∗ = {xi, zi, ri}ni=1 as a set of examples alongside deferral decisions. As
mentioned previously, the human is also learning a radius γi with each example. The radius γi
should be set large enough to enable generalization to the domain, but small enough for the region
to be coherent so that the human can interpret why should they follow the optimal deferral decision.

Let Dz ⊂ S∗ and let Dγ be the set of radiuses associated with each point in Dz and define
D = (Dz, Dγ). Define the loss of the human learner M(., .;D) now only parameterized by the
teaching set D as follows:

L(D) =
∑
i∈S

l (M(zi, ai;D), yi) (4.8)

Greedy Selection. Note that since the radiuses set by the human are learned only after observing
the example, we try to jointly optimize for the teaching point and the radius to teach. To optimize
for D, consider the following greedy algorithm (GREEDY-SELECT) which starts with an empty set
D0 , and then repeats the following step for t = 1, · · · ,m to select the example z and radius γ that
leads to the biggest reduction of loss if added to the teaching set:

z, γ =arg min
zi∈S\Dt,γ

L(Dt ∪ {zi, γ}), (4.9)

s.t. ∃k ∈ [n] s.t. γ = K(zi, zk), (4.10)

and

∑
j∈[n],K(zi,zj)>γ Irj=ri

|{j ∈ [n], K(zi, zj) > γ}| ≥ α (4.11)

Constraint (D.2) restricts γ to be the similarity between z and another data point and constraint
(D.3) ensures that α% of all points inside the ball centered at z share the same deferral decision as
z. The scalar α is a hyperparameter that controls the consistency of the local region: when α = 1,
the region is perfectly consistent and we call this setting CONSISTENT-RADIUS, and when α = 0 the
constraint is void and we dub the algorithm as DOUBLE-GREEDY.

Contrasting examples. Note that the radius γ is actually defined by two points: the point zk in
equation (D.2) that defines the boundary and an interior point zj that is the least similar point to z
with similarity at least γ; these two points are illustrated in Figure 4.2 with the color pink. These
two points must actually share opposing deferral actions with rk ̸= rj and thus are contrasting
points later used as a way to describe the local region.

Theoretical Guarantees. Let Dt be the solution found by the greedy algorithm and D∗ the
optimal solution. We now try to see how we can compare Dt to D∗. To do so, we make a further
assumption on the choice of radiuses that the human sets.

84

Assumption 5 (Radius consistency). We assume that if j ∈ B(zi) ∩ S then ri = rj . This implies

that if zj is at least γj close to zi, then the best deferral choice for j is the same as that for i. This

assumption is an assumption on the choice of γi’s for each example in the teaching set.

Assumption 5 in essence says that the human is always conservative enough such that the lesson
drawn from example i is consistent on S. This translates to setting α = 1 in our algorithm; when
α < 1 the guarantees may not hold. Given this assumption we can deduce that our objective
function is now submodular and monotone. Furthermore, equipped with the fact that our problem
is submodular we can derive the following guarantee on the gap of performance of our algorithm
versus the optimal teaching set, as the next theorem demonstrates.

Theorem 8. Let F (X) = L(∅)− L(X), when α = 1, F (.) is submodular, monotone and positive.

Moreover, the GREEDY-SELECT algorithm described above achieves the following performance

compared to the optimal set D∗:

L(Dm)︸ ︷︷ ︸
loss of chosen set

≤ (1− 1

e
) L(D∗)︸ ︷︷ ︸

loss of optimal set

+
1

e
L(∅)︸︷︷︸

loss of prior rejector

All proofs can be found in Appendix C.2.
Theorem 8 gives a guarantee on the subset chosen by the greedy algorithm with an 1 − 1

e

approximation factor, one can ask if we can do better. We prove that a generalization of our problem
is in fact NP-hard in the appendix. In what was previously discussed, the dataset that we measure
performance on and that we teach from are the same. We generalize to have a separate training set
ST and a validation set SV and define the loss of the human with respect to SV and now define our
optimization problem in terms of finding a minimal size subset D that achieves a certain loss δ ≥ 0:

D∗
δ = arg min

D⊂ST

|D| s.t.
∑
i∈SV

l (M(zi, ai;D), yi) ≤ δ (4.12)

Proposition 5. Problem (4.12) is NP-hard.

The reduction is to the set cover problem and can be found in Appendix C.2.

Human Teaching Approach. After running our greedy algorithm, we obtain a teaching set D that
we now need to teach to the human. We rely on a four stage approach for teaching on each example
so that they are able to learn and generalize to the neighborhood around it shown in Algorithm 2.
The human first predicts on the example z, then they receive feedback on their prediction and the
AI’s prediction. We then show them a description of the region around the example that helps them
learn the radius. Specifically, we show them the two contrasting examples zj and zk defined by γi

85

Algorithm 2: Our Human Teaching Approach
Input: Teaching set D

1: for i = 1, · · · ,m do
2: Stage 1: Testing. Test the human on example zi with AI message ai
3: Stage 2: Feedback. Show human feedback of actual label yi, AI prediction πi, and

recommended deferral action ri
4: Stage 3: Lesson Generalization. Show the two contrasting examples zj and zk and high

level features about the region to allow generalization around zi.
5: Stage 4: Lesson Reinforcement. We ask the human to write a rule Ri that describes the

region surrounding the example zi and which action they should take.
6: end for

and high level features about the neighborhood. Finally, we ask them to formalize in writing a rule
describing the region and the action to take inside that region. This rule that they write per example
helps the human in creating a set of guidelines to remember for when to rely on the AI and ensures
that they reflect on the teaching material.

4.6 Experimental User Study

We provide code to reproduce our experiments 1. Additional experimental details and results
are left to Appendix C.6.

4.6.1 Experimental Preliminaries

Experimental Task and Dataset. Our focus will be on passage-based question answering tasks.
These are akin to numerous real world applications such as customer service, virtual assistants and
information retrieval. It is of interest as relying on an AI can reduce the time one needs to answer
questions by not reading the entire passage and as an experimental setup it allows a greater range in
the type of sub-expertise we can allow for compared to experimental tasks in the literature. We rely
on the HotpotQA dataset [86] collected by crowdsourcing based on Wikipedia articles. We slightly
modify the HotpotQA examples for our experiment by removing at random a supporting sentence
from the two paragraphs. The supporting sentence removed does not contain the answer, so that
each question always has an answer in the passage, however, it may not always be possible to arrive
at that answer. This was done to make the task harder and create incentives for expert humans to
use the AI. We further remove yes/no questions from the dataset and only consider hard multi hop
questions from the train set of 14631 examples and the dev set of 6947 examples.

1https://github.com/clinicalml/teaching-to-understand-ai

86

https://github.com/clinicalml/teaching-to-understand-ai

Simulated AI. One of the top performing models on HotpotQA is SAE-large: a graph neural
network on top of RoBERTa embeddings [121]. We performed a detailed error analysis in Appendix
C.3 of the SAE-large model predictions on the dev set. However, our analysis uncovered only few
and small regions of model error. For our experimental study, we want to evaluate the effect of
teaching in two ways: 1) through systematically checking the validity of the user lessons and 2)
through objective task metrics. The SAE model makes it harder for us to do both especially with a
limited number of responses from crowdworkers. For this reason, we decided to create a simulated
AI whose error regions are more interpretable. We first cluster the dataset using K-means with kp
clusters based on only the paragraph embeddings obtained from a pre-trained SentenceBERT model
[78]. The simulated AI model is parameterized by a vector errp ∈ [0, 1]kp where the probability
of error of the AI on cluster i by errp[i]. The answer of the AI when it is incorrect is manually
constructed to be reasonably incorrect: for example if the answer asks for a date, we provide an
incorrect date rather than a random sentence. To summarize, the AI for each cluster in the data has
a specified probability of error that is constant on the cluster. To show that each cluster computed
has a distinct meaningful theme, we retrieve the top 10 most common Wikipedia categories in
each cluster. The full categories are shown in Appendix C.6; example cluster categories include
singers/musicians, movies and soccer (but not football).

Metrics. Our aim will be to measure objective task performance and effort through the proxy of
time spent on average per example. Our task performance metric is the F1 score on the token level
[122]; we will measure this when considering the final predictions (Overall F1), on only when the
human defers (Defer F1) and when the human does not defer (Non-Defer F1). We will also measure
AI-reliance: this is calculated as how often they rely on the "Let AI answer for you" button in Figure
4.4a.

4.6.2 Simulated Users

Before we experiment with real human users, we evaluate the teaching complexity, i.e. the
relation between teaching set size and human accuracy, of our teaching algorithm on simulated
human learners that follow our assumptions. We further evaluate the robustness of our approach
when we do not have full knowledge of the human parameters.

AI and Human model. We use the simulated AI model with kp = 15 and a vector of errors errp
where for each i, errp[i] is drawn i.i.d. from Beta(αai, βai). The human predictor is analogous to
the AI model with a different vector of probabilities err′p sampled from Beta(αh, βh). The human
prior thresholds the probability error of the human to a constant ϵ. Finally, the human similarity

87

0 20 40 60 80 100

Teaching set size

8

10

12

14

16

18

20

D
iff

er
en

ce
to

O
ra

cl
e

A
cc

u
ra

cy

GREEDY-SELECT (Ours)

K-Medoids

AI-Behavior

Random

LIME

Human alone

(a) Setting B and CONSISTENT-RADIUS

0 10 20 30 40 50

Teaching set size

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

D
iff

er
en

ce
to

O
ra

cl
e

A
cc

u
ra

cy

DOUBLE-GREEDY (Ours)

K-Medoids

AI-Behavior

Random

LIME

Human alone (30.28 ± 2.81)

(b) Setting A and GREEDY-RADIUS

0 20 40 60 80 100

Teaching set size

5

10

15

20

25

D
iff

er
en

ce
to

O
ra

cl
e

A
cc

u
ra

cy

GREEDY-SELECT (Ours)

K-Medoids

AI-Behavior

Random

LIME

Human alone 23.26 ± 3.36

(c) Setting A and CONSISTENT-RADIUS

0 10 20 30 40 50

Teaching set size

5.0

7.5

10.0

12.5

15.0

17.5

20.0

D
iff

er
en

ce
to

O
ra

cl
e

A
cc

u
ra

cy

DOUBLE-GREEDY (Ours)

K-Medoids

AI-Behavior

Random

LIME

Human alone 14.30 ± 1.39

(d) Setting B and GREEDY-RADIUS

Figure 4.3: Teaching set size versus the negative difference between the human’s learner test
accuracy under the different methods compared to ORACLE. We plot the average result across 10
trials and standard deviation as error bars.

measure is the RBF kernel on the passage embeddings i.e. K(x, x′) = e−|x−x|2 . In this setup both
the human and AI contexts are identical and the AI does not send any messages to the human.

Baselines. We implement a domain cover subset selection baseline in K-Medoids, the LIME
selection strategy by [38] with 10 features per example following [39] (LIME), random selection
baseline (RANDOM) and a baseline that greedily selects the point that helps a 1-nearest neighbors
learner best predict the AI errors (AI-BEHAVIOR). Finally, we also compare to the optimal
rejection rule computed with knowledge of the human and AI error rates by picking the lower one
(ORACLE). The ORACLE rejector is an upper bound on achievable performance by any possible
rejector regardless of the human student model.

Experimental setup. We will compare to the baselines as we vary the size of the teaching set DT .
To illustrate the effectiveness of the teaching methods, we focus on two settings: A) the Human is
less accurate than the AI but their prior rejector rarely defers where we set the following and B) the

88

Condition Oracle Gap @n=30

Full Information 6.38 ± 1.56
Missing g0 6.90 ± 1.80
Noisy Radius 9.74 ± 3.0
Missing h 13.47 ± 5.07
No Information+Noise 15.12 ± 4.00

Prior only 16.72 ± 1.22
Human Alone 19.8 ± 2.80

Table 4.2: Test Accuracy gap between DOUBLE-GREEDY and ORACLE at teaching set of size 30
under various conditions. This is performed under setting B.

Human is more accurate than the AI but their prior rejector over defers to the AI. These two settings
is where teaching is most beneficial as the prior is erroneous. Specifically in setting A) we set the
following: (αai = 2, βai = 1) (the pdf is a straight line from the origin to (1, 2)), (αh = 1, βh = 1)

(uniform distribution) and ϵ = 0.1 and B) we set (αai = 1, βai = 1), (αh = 2, βh = 1) and ϵ = 0.9.
We evaluate for each setting 10 different random settings of the human and AI error probability
vectors and average the results.

Results. Figure 4.3 shows the gap between Oracle and human accuracy on the dev set compared
to the size of the teaching set for each of the methods. We can see that our approach is able
to outperform the baselines under setting B with CONSISTENT-RADIUS. We observe a wide gap
between our method and the baselines, this is because the teaching examples here must focus on
only a select number of the clusters and cover them sufficiently. With the greedy radius selection,
we require fewer examples to reach high accuracy and the gap between our method and the baselines
narrows.

Robustness to Misspecification of Human model. We evaluate accuracy when the human
is not learning the correct radius; this simulates noise in the learning process. The radius γi
that the human learns is a noisy version of γ̂i where we add a uniformly distributed noise δ ∼
U(−(1− γ̂i)/2, (1− γ̂i)/2) to it. We then evaluate when we have no knowledge of the prior rejector
g0 or/and no knowledge of the human predictor h. When we don’t know either of these parameters,
we replace them by a random binary vector Bernoulli(1/2)n on the teaching set. Results are shown
in Table 4.2. We can see that even if we don’t have knowledge about the prior, accuracy is not
impacted. However, if we don’t have knowledge about the predictor h, then performance drops
significantly. To evaluate how much information about h we need to properly teach the human, we
learn a teaching set assuming the human’s error probability is err′p+δ where δ has each component

89

Passage:

Nothoscordum is a genus of New World plants in
the onion tribe within the Amaryllis family. It is
probably paraphyletic. [...] .
Callirhoe is a genus of flowering plants in the
mallow family, Malvaceae. Its nine species are
commonly known as poppy mallows and all are
native to the prairies and grasslands of North
America. Of the nine, some are annuals while
others are perennial plants.

Question:

Which genus is native to more continents,
Nothoscordum or Callirhoe?

Select your own answer or use the AI’s answer:

Press to manually highlight answer

Let AI answer for you

AI lessons when
correct:
Good at soccer but
not other sports

AI lessons when
incorrect:
bad at chemistry and
flowers, but not on
geology or geography.

(a) Testing interface

Passage:

Citric acid is a weak organic tricarboxylic acid
having the chemical formula CHo. In biochemistry,
it is an intermediate in the citric acid cycle, which
occurs in the metabolism of all aerobic organisms.
A clementine ("citrus × clementina") is a hybrid
between a mandarin orange and a sweet orange, so
named in 1902. The exterior is a deep orange
colour with a smooth, glossy
appearance. clementines can be separated into 7 to
14 segments. [...]

Question:

What is the formula of the organic material that
clementines have less of than oranges?

Passage:

The ogallala aquifer is a shallow water
table aquifer surrounded by sand, silt, clay and
gravel located beneath the great plains in the
united states. one of the world's largest aquifers. It
was named in 1898 by geologist N. H. Darton from
its type locality near the town
of ogallala, Nebraska.
[...] . The population was 4,737 at the 2010

census. It is the county seat of keith county.

Question:

What shallow water table aquifer is located near
the county seat of Keith County, Nebraska?

AI is incorrect
For all examples as similar as this.

AI is correct
For examples not as similar.

The following words are most representative of this example and its surrounding:
subspecies, fabaceae, genus of, shrubs, plant, plants, species, flowering, genus

Write a sentence to describe the theme of the example you solved, be
inspired by the words above and the two supporting examples.

AI is bad at chemistry and flowers, but not on
geology or geography.

(b) Teaching interface

Figure 4.4: On the left in subfigure (a) is the testing interface shown for an example. This is the
same interface that is also shown at the beginning of each teaching example. After the human
predicts and we are in the teaching phase, we show them the correct answer and transition to the
interface in subfigure (b) that shows the two supporting examples for the example in (a), the top
weighted words in the region and asks the user to write down their rule for the example.

drawn from {−δ, δ} uniformly where δ > 0. On setting B with DOUBLE-GREEDY, we can tolerate up
to 0.25 error in knowledge about cluster error probability with no noticeable drop in performance;
full results are in Appendix C.4. Note that when we don’t have any knowledge about the human
and the learning process is noisy, teaching is impacted.

4.6.3 Crowdsourced Experiments Details

Testing user interface. Our user interface during testing is shown in Figure 4.4a which shows a
paragraph and its associated question. The human can either submit their own answer or let the AI
answer for them using a special button. However, the interface does not display the AI’s answer
or any explanation, which forces the user to rely solely on their mental model and the teaching
examples to make a prediction. This was done so that we can control for the effect of teaching
solely, as showing the AI prediction at test time leaks information about the AI beyond what was
shown in the teaching set. Moreover, not showing the AI prediction forces the human to explicitly
think about the AI performance. The right panel next to the passage shows the lessons that the user
wrote down during teaching.

90

Metric Ours-Teaching (all) No-Teaching LIME (all) Ours (acc) Ours (inacc) LIME (acc) LIME (inacc)

Overall F1 58.2 ± 3.4 57.6 ± 3.4 52.9 ± 3.4 62.8 ± 4.7 53.5 ± 4.9 56.5 ± 6.4 52.0 ± 4.2
Defer F1 50.7 ± 4.7 57.8 ± 4.9 48.1 ± 5.3 53.4 ± 6.7 50.0 ± 6.8 44.6 ± 9.0 49.9 ± 6.5
Non-Defer F1 67.6 ± 4.7 57.6 ± 4.7 56.9 ± 4.6 73.92± 6.2 60.6 ± 7.1 70.0 ± 8.6 53.7 ± 5.4
Time/ex (min) 0.60 ± 0.03 0.62 ± 0.03 0.68 ± 0.04 0.54 ± 0.04 0.68 ± 0.05 0.65 ± 0.08 0.69 ± 0.05
AI-Reliance (%) 55.2 ± 3.6 48.9 ± 3.6 45.4 ± 3.6 53.3 ± 4.9 58.9 ± 5.0 52.8 ± 3.6 43.6 ± 4.3

Table 4.3: Comparison of the metrics between our teaching condition (split into all participants,
those who gave accurate lessons (acc) and those who didn’t (inacc), see description below), the
No-teaching+AI-prediction condition and LIME teaching. Shown are averages across all
participants with 95% confidence interval error bars. The F1 of the AI alone in this setting is
46.7%; we did not separately measure the F1 of the human in isolation.

Teaching user interface. Following our teaching algorithm, during teaching, the worker is first
faced with the same user interface as in test time. The difference is that after they answer, they
receive feedback on the correctness of their answer and can see the AI’s answer. We then show the
human the two constrasting examples with LIME word highlights. As a high level description of the
local region, we show the top 10 most weighted words obtained by LIME in the ball surrounding the
original teaching example [38] (see Figure 4.4b). After they observe the two supporting examples,
they are asked to write a sentence that describes the lesson of the example. These sentences are
available during test-time for the workers to review as help for answering new questions.

Experimental Design and Baselines. The experimental teaching setup proceeds in three stages.
The first stage (Stage 0) is a tutorial that introduces the task with two examples and where we gather
the worker’s demographic information, knowledge of machine learning and how often they visit
Wikipedia. Stage 1 is the teaching stage where the worker solves 9 teaching examples and stage 2 is
the testing phase where the worker solves 15 questions with no feedback. After the two stages is
an exit survey where users are asked about their decision process for using the AI. The two stage
experimental design mimics what we believe would be a realistic deployment in practice; we don’t
expect feedback to be possible during deployment, but rather only in a specialized teaching phase.
We randomly assign each participant to one of three conditions.

In the first condition the participants go through the entire pipeline described above (Ours
Teaching). The second is condition is called (LIME-Teaching) where LIME is first used to obtain
18 examples. During teaching, users are asked to solve the first 9 questions and are then shown:
LIME highlights of the example, performance feedback and asked to write a lesson of what
they learned. Then users view the 9 remaining examples with LIME highlights without needing
to solve them or write lessons. The difference with our method is that workers don’t see the
supporting examples or the word level description of the regions. The third is a baseline condition
(No-teaching+AI-prediction) that makes the following modifications to the experimental design:

91

Metric Ours-Teaching (ID) No-Teaching (ID) Ours (OOD) No-Teaching (OOD)

Overall F1 56.8 ± 3.6 56.0 ± 3.6 70.9 ± 10.5 72.86 ± 10.7
Defer F1 51.42 ± 4.9 57.8 ± 5.2 42.95 ± 17.2 56.7 ± 18.8
Non-Defer F1 63.7 ± 5.2 54.4 ± 5.1 96.05± 5.82 85.0 ± 11.5
AI-Reliance (%) 56.1 ± 3.8 49.4 ± 3.8 47.3 ± 11.6 42.9 ± 11.8

Table 4.4: Comparison of the metrics on clusters that were seen during teaching with our method
(ID for in distribution) compared to performance on clusters that were not seen during teaching
(OOD for out of distribution). We also show the performance of the no-teaching baselines on the
two cluster sets as a reference point. The errors on the OOD estimates are much higher as there are
much fewer samples in the not-seen clusters.

the participants skip the teaching stage (Stage 1) and immediately proceed to the testing phase
(Stage 2). However, during the testing phase, the participants can see the AI prediction before they
press the use AI button which gives them an edge compared to the teaching condition.

Participants We recruited 50 US based participants from Amazon Mechanical Turk per each
condition (150 total) and initial pilot studies were also conducted with graduate students in computer
science at a US university. Participants in the non-teaching baseline were paid $3 for 10 minutes of
work and those in the teaching condition received $6 for 20 minutes of work. Any demographic
information we gathered in our study is kept confidential and workers were asked to consent to their
use of their responses in research studies.

AI and Test Set details. The simulated AI had kp = 11 and was randomly chosen to have
probability of error 0 or 1 on each cluster. This means there are clusters where the AI is perfect
on and other clusters where the AI is always wrong. We split the HotpotQA dev set into two
parts 80:20 for the teaching and testing set respectively. To obtain the 9 teaching examples we run
GREEDY-SELECT with the consistent radius strategy with no knowledge of g0 or h. The examples in
the testing phase was obtained first by filtering the data using K-medoids with K = 200 as a way to
get diverse questions. Then each participant received 7 random questions from the filtered set on
which the AI was correct and 8 on which the AI is incorrect.

Further details can be found in Appendix C.6.

4.6.4 User Study Observations and Results

Teaching enables participants to better know when to predict on their own, but not when
to defer to the AI. The first three columns of Table 4.3 display the metrics measured across
both conditions on all participants. We can first note that participants with teaching are able to

92

predict overall just as well as participants in the baseline no-teaching condition who have additional
information about the AI prediction at test time. Moreover, participants who received teaching can
better recognize when they are able to predict better than the AI. There is a difference significant at p-
value 0.05 (t = 2.9, from a two sample t-test) of the F1 score when the human doesn’t defer between
our method and the no-teaching baseline and significant at p-value 0.001 (t = 3.2) compared to
LIME. However, the participants in the teaching condition deferred to the AI when it was incorrect
more often than those in the no-teaching baseline condition. A positive difference significant at
p-value 0.05 (t = −2.0) in F1 when the humans defers for No-teaching+AI-prediction workers.
An explanations for this is that the participants might press the use AI button on examples where
their own prediction agrees with that of the AI instead of manually selecting the answer which takes
more effort.

Accurate teaching lessons might predict improved task performance and our method teaches
more participants than LIME. Given our knowledge about the clusters and the AI, the correct
form of the teaching lesson of each example is "AI is good/bad at TOPIC" where TOPIC designates
the theme of each cluster amongst a set of 11 topics which include soccer, politics, music and more.
Manually inspecting the lessons of the 50 participants without seeing their test performance, we
found that 25 out of 50 participants in our teaching condition were able to properly extract the right
lesson from each teaching example. The remaining 25 participants were split into two camps: those
who gave explanations on question/answer type or too broad or narrow of explanations e.g. "AI
is good at people" rather than a specific subgroup of musicians for example (14 out of 50), and
those who gave irrelevant explanations (11 out of 50, this group performed non trivially and so
could not be disqualified). Table C.4 in Appendix C.6 gives examples of the actual lessons that
users wrote. Results for participants who had accurate vs not accurate lessons are shown in the
last four columns of Table 4.3. The participants who had accurate lessons had a 9 point average
overall F1 difference significant at p-value 0.01 compared to those with inaccurate lessons. With
LIME-Teaching we found that only 14 out of 50 participants were able to properly extract the right
lessons. The difference between LIME and our method in enabling teaching is significant at p-value
0.02 with t = 2.3, however, we observe that accurate teaching has a similar effect in both conditions.
Note, that even when participants have accurate lessons, they often don’t always follow their own
recommendations as evidenced by the low Defer F1 score. This provides evidence that the impact of
onboarding is potentially bimodal, with one group having a significant increase in its performance
and one group getting no benefit from onboarding.

Differences in performance on in-distribution and out-of-distribution examples. During
teaching with our method we let the users solve 9 examples, each corresponding to a unique cluster.

93

The data domain is in fact split into 11 clusters where the AI has a different error probability in {0, 1}
on each of them. Thus, there are 2 clusters where users have not seen examples from, which we call
the out-of-distribution examples (OOD), and 9 from which they have, the in-distribution examples
(ID). In table 4.4 we show the different metrics split into ID and OOD distribution for teaching
participants in our method and for the no-teaching participants as a reference point. LIME-Teaching
participants observe all the clusters during teaching so there is no distinction between ID and OOD.
We can first observe a very high F1 for OOD examples where the human predicts (Non-Defer F1)
for our method. This is also the case for the non-teaching participants, thus the increase in F1 lies
with the nature of the examples in the OOD clusters rather than the distinction of them being ID
versus OOD. On the other hand, we observe that Defer F1 is higher by 8.36 points on average for
ID examples compared to OOD with our teaching method while we do not observe a difference in
Defer F1 for the baseline non-teaching group. However, the results are not significant as the 95%
confidence intervals overlap.

4.7 Additional Synthetic Experiments

Dataset. To complement our NLP-based experiments, we run a study on the CIFAR-10 image
classification dataset [60] consisting of 32× 32 color images drawn from 10 classes. For CIFAR
we use a WideResNet [76] with no data augmentation that achieves 90.46% test accuracy and the
model is trained to minimize the cross entropy loss with respect to the target. We split the dataset
into three distinct parts: training set for AI model (90% CIFAR train, 45k), teaching set to obtain
teaching images (10% of CIFAR train set, 5k) and test set for the human learner (CIFAR test set,
10k).

Setup. We let X = Z and use the respective models’ last layer encodings as the input space
to the teaching algorithm. The message the AI sends is the pair A = (ŷ, ĉ) consisting of the AI
prediction and a confidence score (softmax output of model). We assume the human is following
the human rejector Assumption 2 and is perfectly learning the radius and actions. We consider the
human expert models considered in [26]: let k ∈ [10], then if the image is in the first k classes the
expert is perfect, otherwise the expert predicts randomly. The human prior rejector defers if the
AI’s confidence ĉ is less than ϵ = 0.5.

Results. We show the results in Table 4.5 for various teaching set sizes for the expert k = 6 and
a learning curve in Figure 4.5; full results are in Appendix C.4. We compare our approach to solving
the problem as learning to defer with the AI deferring to the human: we compare to the surrogate loss
baseline in [26], the confidence baseline in [25] and a ModelConfidence baseline which optimizes
over the prior parameter ϵ. We find that with only 4 teaching examples, DOUBLE-GREEDY increases
accuracy from 90.98 to 96.3 ± 0.1 on the test set.

94

Method CIFAR (acc)

Prior only 90.98 ± 0.0

DOUBLE-GREEDY @T=4 96.3 ± 0.1

DOUBLE-GREEDY @T=8 96.4 ±0.1

DOUBLE-GREEDY @T=14 96.5 ±0.1

K-Medoids @T=4 94.58 ±0.3

K-Medoids @T=8 95.5 ± 0.2

K-Medoids @T=14 96.5 ± 0.2

Random @T=8 95.3 ± 0.5

Oracle 97.91

Surrogate Loss [26] 97.1

Confidence [25] 95.5

ModelConfidence 93.94

Table 4.5: Synthetic experiment on CIFAR-10, showing the test Accuracy for our method
DOUBLE-GREEDY at different teaching set sizes and learning to defer baselines.

0 2 4 6 8 10 12 14

Teaching set size

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
iff

er
en

ce
to

O
ra

cl
e

A
cc

u
ra

cy

DOUBLE-GREEDY (Ours)

K-Medoids

Random

AI-Behavior

LIME

Figure 4.5: Synthetic experiment on CIFAR-10, showing difference between the performance of the
methods and ORACLE (defined as taking the optimal decision at test time) for expert k = 6.

4.8 Discussion

One limitation of our human experiments is that we used a simulated AI that has an easier to
understand error boundary. This enabled us to have a more in-depth study of the crowdworker
responses than otherwise would have been possible. Having a simulated AI which we perfectly
understand where its error regions are, enables us to define what the "lessons" should be and

95

thus evaluate if users are learning correctly. Future user studies will evaluate with non-simulated
AI models. We hypothesize that the example selection algorithm presented in this work will be
sufficient, however, we might require better methods to illustrate the neighborhood for each example.
Another limitation is that our test-time interface did not include model explanations, which was
done to eliminate additional confounding factors when comparing approaches. Future work will
evaluate whether the effect of teaching remains as significant when evaluating with test-time model
explanations. Other limitations include the fact that we are using a proxy task of passage based
question answering and proxy tasks have been documented to be misleading for evaluating AI
systems [123]. Another limitation is the use of MTurk which may not ensure high quality workers
and the final limitation is that our study only focuses on the onboarding phase of AI deployment.

Teaching is used in our work to influence human’s perception of an AI model; this can be
potentially used to manipulate workers into relying on AI agents in high stakes settings if the
AI predictions during teaching were fabricated. While our work was conducted in a low stakes
scenario and was designed to portray an accurate reflection of the AI performance, it is possible by
manipulating the AI predictions during teaching to have the worker learn any desired rejector. We
believe if the data used during teaching is not manipulated, then our approach can serve to give an
unbiased overview of the AI.

96

Chapter 5

Effective Human-AI Teams via Learned
Natural Language Rules and Onboarding

Acknowledgements of Co-authors. This chapter is based on the published work in [124]. I
would like to thank my co-author Jimin J Lee for her help with building the interface for the user
study and preliminary analysis of user study results.

5.1 Introduction

How can we collaborate better with AI models? In this chapter, we propose an intuitive
framework for thinking about human-AI collaboration where the human first decides on each
example whether they should rely on the AI, ignore the AI, or collaborate with the AI to solve the
task extending the previous chapter. We refer to these three actions as the AI-integration decisions.
The human-AI team will perform optimally if the human knows which action is best on a task-
by-task basis. We propose IntegrAI (Figure 5.1), an algorithm that leverages data from baseline
human interactions with the AI to learn near-optimal integration decisions, in the form of natural

language rules that are easily understandable. These rules are then taught to the human through
an onboarding stage, analogous to an onboarding class that humans might take before operating
machines and equipment. Onboarding additionally calibrates the human’s expectations about AI
performance. We further investigate surfacing the AI-integration decisions found by IntegrAI as
recommendations to the human within an AI dashboard used after onboarding. The hope is that
onboarding and the dashboard help the human know which action they should take, thereby leading
to effective AI adoption for enhanced decision-making.

Learning AI-integration rules requires a dataset of paired examples and human predictions
(Figure 5.1 Step 1). Each rule is defined as a bounded local region centered around a learned
point in a potentially multi-modal embedding space spanning the task space and natural language

97

Yes

No Use AI Answer

AI Predicts:
 Yes, score 0.9

Is there a Traffic Light?

Step 1: Human Data Collection
Understand Human performance and prior
reliance on AI

Step 2: Discover Regions
Find regions of the data space where human
collaborates incorrectly with AI

(d)

Step 3: Describe Regions
Describe regions in text with an LLM

Large Language Model
(GPT-3.5-turbo)

Ignore AI when it's a
"highway during the night"

VS

Step 4: Teach Regions to Human
In an onboarding stage, teach humans each
region

Region 1:
Ignore AI when it's a
"highway during the night“
Region 2:
Use AI when it's a
“city during the day“
 …
Region k:

Figure 5.1: The proposed onboarding approach with the IntegrAI algorithm.

(Figure 5.1 Step 2). For example, CLIP embeddings [125] connect image and text spaces for tasks
involving images, and typical text embeddings [126] are used for natural language tasks such as
question answering. The regions are obtained with a novel region discovery algorithm. Then, a text
description of the region is generated, resulting in a rule that indicates whether the human should
ignore, rely on, or collaborate with the AI. We obtain descriptions using a novel procedure that
connects the summarization ability of a large language model (LLM) [127] with the retrieval ability
of embedding search to find similar and dissimilar examples. The procedure first queries the LLM
to describe points inside the region (Figure 5.1 Step 3). The embedding space is then leveraged to
find counterexamples inside and outside the region to refine the description.

We first evaluate the ability of our region finding and region description algorithms to find
regions that will aid the human-AI team in several real-world datasets with image and text modalities.
We then investigate the efficacy of both algorithms in synthetic scenarios where we know the ground
truth regions. Finally, we conduct user studies on tasks with real-world AI models to evaluate
our onboarding and AI-integration recommendation methodology. Our main task is detecting
traffic lights in noisy images [128] from the perspective of a road car, motivated by applications to
self-driving cars. The user study reveals that our methodology significantly improves the accuracy
of the human-AI team by 5.2% compared to no onboarding. We investigate a second task of multiple
choice question answering using the MMLU dataset [129] and find that onboarding has no effect on

98

performance and that only displaying AI-integration recommendations has a negative effect. To
summarize, the key contributions of this chapter are as follows:

• Our region discovery algorithm finds regions that help the human know when to rely on the
AI (IntegrAI-Discover Section 5.4.1).

• Our region description algorithm can describe regions using an LLM by contrasting points in-
side and outside the region. (IntegrAI-Describe Section 5.4.2). We evaluate the performance
of our algorithms in isolation in experiments in Section 5.6.

• We demonstrate the effect of onboarding and displaying AI-integration recommendations on
two real-world tasks, and find that onboarding has a significant positive effect in one task
whereas the integration recommendations are not useful in the second task(Section 5.7). In
all studies, we present users with information about both human and AI performance in a
Human-AI card (Section 5.5).

5.2 Related Work

This work builds on the previous chapter 4 where we proposed an onboarding procedure
that involved participants describing different regions of the data space where AI made significant
mistakes or was significantly better than human performance. We found that only 50% of participants
had accurate descriptions of the underlying regions; we could measure this percentage as the AI
model was synthetic. The participants who accurately guessed the correct regions had significantly
better performance than those who didn’t. This motivates our work on automating the process of
describing the regions and more rigorously evaluating the impact of onboarding.

A growing literature of empirical studies on AI-assisted decision making has revealed that
human-AI teams do not perform better than the maximum performance of the human or AI alone
even with AI explanations [13], [130], [131]. This can be summarized with the following conjecture
in equation form: Human + AI ≤ max(Human,AI) (where accuracy is the unit). Note that
equality can be achieved by an expert deferral system where a second AI model decides who
between the human or the AI should predict [26].

[132] proposes a method for human-AI collaboration via conditional delegation rules that
the human can write down. Our framework enables the automated learning of such conditional
delegation rules for more general forms of data that can also depend on the AI output. [15] proposes
to modify the confidence displayed by the AI model to encourage and discourage reliance on the AI
model appropriately. However, this technique deliberately misleads the human on the AI model
ability. Our methodology incorporates similar ideas by learning the human prior function of reliance

99

on the AI and then improving on it with the learned integration recommendations; however, we
display these recommendations in a separate dashboard without modifying the AI model output.
A related approach to our methodology by [133] is to adaptively display or hide the AI model
prediction and display the estimated confidence level of the human and the AI on a task of predicting
whether a person’s income exceeds a certain level. They show that displaying the confidence of the
human and the AI to the human improves performance. Our method is able to learn the confidence
level of the human and the AI, but also incorporates how the human utilizes the AI and describes the
regions where AI vs human performance is different. [134] presents a similar approach to our AI
recommendations, however, they use simulated and faked AI models and descriptions of behavior
while we are able to obtain automated generation of these descriptions of AI behavior.

A growing literature exists on onboarding humans to work with AI models [38], [39], [82],
[103], [134], [135]. Our work differs in enabling the automated creation of onboarding material
without any human in the loop. We compare our approach to a representative work from a body
of research on discovering regions of errors in AI models [136]–[144]. Note however that our
work focuses on regions of disparate performance between human and AI. Learning to defer
methods learn models that decide using a secondary AI model who between the human and the AI
classifier should predict [23], [25], [26], [28], [61], whereas [145], [146] propose methods to ensure
fairness in such selective deferral settings. This chapter, in contrast, focuses on the reverse setting
where the human makes all decisions but we do utilize some of the thinking from that literature.
Our AI-integration recommendations are also related to personalized policies [147]. Our MMLU
experiments share similarities with recent work [148]–[151]. Further comparison to prior work can
be found in Appendix D.1.

5.3 AI Assisted Decision Making

Setting. We consider a setting where a human is making decisions with the help of an AI agent
who provides advice to complete a task. Formally, the human has to make a decision Y ∈ Y given
access to information about the context as X ∈ X and the AI’s advice A ∈ A. We denote the human
as a potentially randomized function H(X,A; θh) with parameters θh which are unobservable. On
the other hand, the AI agent provides advice based on its viewpoint of the context X according
to M(X; θm) := A ∈ A. The advice always includes a candidate decision Â and possibly an
explanation of the decision. We assume that the observed tasks are drawn from an underlying
distribution, PX,Y , over the contexts of AI and human, and the ground truth. The setting is illustrated
in Figure 5.2.

100

Green Light 92%

Figure 5.2: The setting of AI-assisted decision making studied in this work. We show an example
of an AI system providing assistance to a human driver to inform them about traffic lights in a low
visibility situation. The AI provides advice to the human who then incorporates it to make a final
decision.

Task Metrics. The human wants to make a decision that optimizes various metrics of interest.
Given a ground truth decision Y and a chosen decision Ŷ , the loss is given by l(Y, Ŷ) : Y×Y → R+.
In our example, this could be the 0-1 loss IY=ŷ. We denote the loss L(H,M) of the Human-AI
team over the entire domain as:

L(H,M) := Ex,y∼P [l (y,H (x,M(x; θm); θh))] (5.1)

We are further interested in metrics that convey efforts undertaken by the human during the process.
Particularly, we focus on time to make a decision, which can be measured when the human makes
decisions.

Human-AI team. The decision of the Human-AI team is represented by the functionH(X,A; θh).
The human without the AI is denoted by H(X, ∅; θh) := H(X; θh), which is obtained by setting the
AI advice to the empty set, i.e. no advice. In theory, we expect the human with advice to perform at
least as well as without advice, simply because the human can always ignore the advice. However,
the literature on Human-AI teams has clearly demonstrated that this is often not the case [152]. An
effective Human-AI team is one where the human with the AI’s advice achieves a more favorable
trade-off in terms of the metrics than without the advice.

101

Framework for Cooperation. Our insight into forming an effective team is to explicitly recom-
mend when the human should consider the advice and how to incorporate it into their decision. We
propose a two-stage framework for the human to cooperate with the AI: the human first decides
whether to ignore the AI advice, use the AI’s decision or integrate the AI advice to make a decision
with explicit cooperation. Each of these three cases provides a clear path to the second stage of
making the final output decision.

Definition 3. The AI-integration function R(X,A; θr), also referred to as integrator, formalizes a
framework for the human to cooperate with the AI:

R(X,A; θr) =

0 → H(X; θh) (ignore AI)

1 → Â (use AI decision as is)

2 → H(X,A; θh) (collaborate with AI)

(5.2)

In this work, we only consider the actions of ignoring or using the AI decision, R ∈ {0, 1}, and
leave the action of R = 2 for future work.

The integration function can be thought of as a specific formalization of the human mental model
of the AI [16], [20]. Given an integration function R and a human H , we can define a hypothetical
human decision maker HR who first computes R and then follows its recommendation to make a
final decision. Similarly, for each human H(X,A; θh), we can associate an integration function
RH , such that HRH

= H . By fixing H(X; θh), one can try to minimize the loss L(HR,M) over all
possible choices of R, an optimal point of such an integration function is denoted R∗. Following
the recommendations of the optimal AI-integration function leads to an effective Human-AI team.

Learning Rules and Onboarding. There are two problems that need to be solved to achieve
this vision: how do we learn such an R∗ and how can we ensure that the human follows the
recommendations of this R∗? In the next section, we outline how we approximate the optimal
integration function; this is fundamentally a machine-learning problem with its own challenges
that we tackle in Section 5.4. The second obstacle is that the human should know to follow
the recommendations of R∗. To ensure this, we propose an onboarding stage where the human
learns about the AI and the optimal integration function. We additionally propose displaying the
recommendations as part of an AI dashboard. In the onboarding stage, we will help the human shape
their internal parameters (θh, θr) to improve performance. This is a human-computer interaction
(HCI) problem that we tackle in Section 5.5.

102

5.4 Learning Rules for Human-AI Cooperation: IntegrAI

In this section, we discuss how to learn an integrator function R̂ : X × A → {0, 1} to
approximate an optimal integrator while being understandable to the human. We first describe
the ingredients for this learning (integrator as a set of regions, objective function, dataset) before
detailing how we learn regions and describe them in Sections 5.4.1 and 5.4.2 respectively.

Integrator as a Set of Regions. Since the integrator R̂ will be used to both onboard the human and
provide test-time recommendations as part of an AI dashboard, it should be easily understandable
to humans. If the goal was simply to build the most accurate integrator, we could use work on
learning to defer [23], [26], [61]. To address the requirement of understandability, we propose to
parameterize the integrator in terms of a set of local data regions, each with its own integration
decision label as well as a natural language description. More specifically, we aim to learn a variable
number of regions N1, N2, · · · as functions of (X,A), the observable context and the AI’s advice.
Each region Nk consists of the following: 1) an indicator function INk

: X × A → {0, 1} that
indicates membership in the region, 2) a textual description of the region Tk, and 3) a takeaway for
the region consisting of an integration decision r(Nk) ∈ {0, 1}. We additionally want these regions
to satisfy a set of constraints so that they are informative for the human and suitable for onboarding.

Maximizing Human’s Performance Gain. Since we are working with human decision-makers,
we have to account for the fact that the human implicitly has a prior integration function R0, which
represents how the human would act without onboarding. Thus, in learning integrator regions, our
goal is to maximize the human performance gain relative to their prior. The performance gain is
defined as follows for points in a region N :

G(N, R̂, R0) =
∑
i∈N

l(yi, HR0(xi, ai))− l(yi, HR̂(xi, ai)), (5.3)

where l is the loss defined in our problem setting. Note that the notion of a human’s prior mental
model was also discussed by [82] but we expand on the notion and are able to learn priors as we
discuss below.

Dataset with Human Decisions. We assume we have access to a dataset D = {xi, yi, hi, r0i}ni=1

sampled from P, where xi is the AI-observable context, yi is the optimal decision on example i, hi is
a human-only decision as H(xi; θh), and r0i ∈ {0, 1} is an indicator of whether the human relied on
AI on example i. We thus regard the samples {r0i}ni=1 as a proxy for prior human integration function
R0. The prior integration decisions of the human r0i are collected through a data collection study

103

where the human predicts with the AI without onboarding. For example in Figure 6.4, when the
human presses on the "Use AI" button we record r0i = 1, and 0 otherwise. The human predictions
hi are collected through a second data collection study where the human makes predictions without
the AI. We also assume that we are given an AI model M , from which we obtain AI decisions
âi ∈ ai from the AI advice ai =M(xi; θm)

1. Given the dataset D, AI decisions âi, and loss l(., .),
we can define optimal per-example integration decisions r∗i by comparing human and AI losses on
the example: r∗i = I (l(yi, hi) > l(yi, âi)).

5.4.1 Region Discovery Algorithm

In this subsection, we describe a sequential algorithm that starts with the prior integration
function R0 and adds regions Nk one at a time.

Representation Space. The domain X for the task may consist of images, natural language, or
other modalities that possess an interpretable representation space. We follow a similar procedure
for all domains. The first step is to map the domain onto a potentially cross-modal embedding
space using a mapper E(.), where one of the modes is natural language. The motivation is that
such an embedding space will have local regions that share similar natural language descriptions,
enabling us to learn understandable rules. For example, for natural images, we use embeddings
from the CLIP model [125]. The result of this step is to transform the dataset {xi}ni=1 into a dataset
of embeddings {ei}ni=1 where ei ∈ EX ⊆ Rd.

Region Parameterization. We define regionNk in terms of a centroid point ck, a scaled Euclidean
neighborhood around it, and an integration label rk ∈ {0, 1}. The neighborhood is in turn defined
by a radius γk ∈ R and element-wise scaling vector wk. Both ck and wk are in EX × A, the
concatenation of the embedding space and the AI advice space. The indicator of belonging to the
region is then INk

(ei, ai) = I||wk◦((ei,ai)−ck)||2<γk , where ◦ is the Hadamard (element-wise) product.

Region Constraints. We add the following constraints on each region Nk to make them useful to
the human during onboarding. First, the region size in terms of fraction of points contained must be
bounded from below by βl and above by βu. Second, the examples in each region must have high
agreement in terms of their optimal per-example integration decisions r∗i . Specifically, at least a
fraction α of the points in a region must have the same value of r∗i . Finally, each region must have
at least a gain (5.3) of δ, simply speaking adding the region to our integrator provides a gain of δ in
terms of our loss l.

1Moreover, we assume the AI was not trained on the dataset D so that we can use D to obtain an unbiased
measurement of AI performance; this is crucial, as otherwise, we might overestimate its performance.

104

IntegrAI-Discover. Our procedure is fully described in Algorithm 3. In round k, we add a kth
region to the integrator Rk−1 from the previous round (with k − 1 regions) to yield Rk. After
T rounds, the updated integrator RT is defined as follows: Given a point (x, e, a) where e is the
embedding of x, if it does not belong to any of the regions N1, . . . , NT , then we fall back on the
prior. Otherwise, we take a majority vote over all regions to which (x, e, a) belongs:

RT (x, e, a) =

R0(x, a) if INk
(e, a) = 0, k = 1, . . . , T

majority ({r(Nk) : k s.t. INk
(e, a) = 1}) otherwise.

(5.4)
In round k, we compute the potential performance gain for each point if we were to take decision

r on the point as gi,r = l(yi, HRk−1
(xi, ai)) − l(yi, r); this vector of gains is denoted by g. The

optimization problem to find the optimal regions is non-differentiable due to the discontinuous
nature of the region indicators. To make this optimization problem differentiable, we relax the
constraints to be penalties with a multiplier λ and replace the indicators with sigmoids scaled by
a large constant C1. To find a new region R given a gain vector g we need to solve the following
optimization problem:

max
c,γ,w,r

J(c, γ, w, r;g) :=
n∑

i=1

σ(C1(−||w ◦ ((ei, ai)− c)||+ γ)) · gi,r (maximize gain) (5.5)

− λmax(
n∑

i=1

σ(C1(−||w ◦ ((ei, ai)− c)||+ γ)) · Ir∗i =r + αn), 0) (consistent takeaway) (5.6)

− λmax

(
n∑

i=1

σ(C1(−||w ◦ ((ei, ai)− c)||+ γ))− βun, 0
)

(region max size) (5.7)

− λmax

(
−

n∑
i=1

σ(C1(−||w ◦ ((ei, ai)− c)||+ γ)) + βln, 0

)
(region min size) (5.8)

The optimization variables c, γ, w, and r to find the region are all real-valued except for r which
is a binary variable. Thus to optimize the objective J , we use AdamW to optimize over (c, γ, w)
twice: once for r = 0 and once for r = 1 and pick the solution that has the highest objective value
between the two. The hyperparameters of the algorithm are the minimum size of the region βl,
maximum size of the region βu, consistency of the region α , and minimum gain of the region δ.
Further details can be found in Appendix D.2.

5.4.2 Region Description Algorithm

We now describe our region description algorithm aimed at making the rules for integration
human-understandable. Natural language descriptions are a good match for this objective. Specifi-

105

Algorithm 3: IntegrAI-Discover
Input: Dataset D, prior integrator R0, maximum number of regions T

1: N ← ∅ (regions found so far)
2: C0 = {c01, · · · , c0100}: set of possible initializations from K-medoids on D
3: for k = 1, · · · , 2T do
4: for r ∈ {0, 1} do
5: Compute Gain Vector: g (gain from action r on each point given Rk−1)
6: Initialization: c0, γ0, w0 = argmaxc∈C0,γ,w J(c, γ, w, r;g) (search over C0 with 200

epochs (5.5))
7: Full Optimization: c, γ, w = argmaxc,γ,w,r J(c, γ, w, r;g) (optimization starts from

initialization above for 2000 epochs)
8: Form candidate region: N r

k (from c, γ, w, r)
9: end for

10: Form potential integrators: R̂0, R̂1 by adding N0
k and N1

k respectively
11: r∗ = argmaxr∈{0,1}G(N

r
k , R̂r, Rk−1) (find best takeaway decision from last step

following (5.3))
12: if G(N r∗

k , R̂r∗ , Rk−1) ≥ δ then
13: N = N ∪N r∗

k (add region to set - as it has high enough gain)
14: Form new integrator: Rk by adding region N r∗

k following (5.4).
15: else
16: Form integrator: Rk ← Rk−1 (no update)
17: end if
18: if |N |==T then
19: break (exit for loop) - we have enough regions
20: end if
21: end for
Return: Set of Regions discovered N

cally, we would like to find a contrastive textual description Tk of each region Nk that describes it
in a way to distinguish it from the rest of the data space. The algorithm is formally described in
Algorithm 4 and illustrated in Figure 5.3.

Textual Descriptions for Regions: The first step is to have a textual description ti for each
example in our dataset D based on xi. If textual descriptions are not available, we can obtain
them by utilizing models that map from the domain X to natural language, such as captioning
models for images, summarization models for text, or exploiting metadata to construct a natural
language description. The information that is captured in the textual description of each example is
a bottleneck for the description of the region, as the region descriptions can only summarize what is
described in the example textual descriptions. If the domain of the example is text, this is less of an
issue as we can easily generate and tweak the textual descriptions with summarization methods. If
the domain is images, commonly found image captions are not always sufficiently descriptive [153];

106

Algorithm 4: IntegrAI-Describe
Input: Dataset D, region Nk

1: S+ ← 15 random examples from Nk, S− ← 5 random examples outside Nk

2: Initial Region Description: T 0
k ← Ô(S+, S−) (LLM call)

3: for i = 1, · · · ,m do
4: Find Counterexample outside region. s− = argmaxj /∈Nk

sim(E(T i
k), ej) (most similar

outside region)
5: Find Counterexample inside region. s+ = argminj∈Nk

sim(E(T i
k), ej) (least similar

inside region)
6: Update Inside and Outside Sets. S− ← S− ∪ ts− and S+ ← S+ ∪ ts+
7: Get New Region Description: T i

k ← Ô(S+, S−) (LLM call)
8: end for

Return: Region description Tm
k

thus, one can use image-to-text methods to describe the example; however, in our experiments, they
underperform text-to-text summarization.

To obtain a region description, one idea is to ask an LLM (such as GPT-3.5) to summarize all tex-
tual descriptions of points inside the region. However, there are two issues with this approach: first,
the region may contain thousands of examples so we need an effective way to select which points to
include, and second, the obtained region description may not contrast with points outside the region.
To resolve these issues, we propose an algorithm that iteratively refines region descriptions with
repeated calls to an LLM (Ô) in Algorithm 4 (IntegrAI-Describe). The algorithm starts with an
initial description and then at each round finds two types of counterexamples to that description:
examples outside the region (type −) with high cosine similarity in terms of embeddings (sim) to
the region description, and examples inside the region (type +) with low similarity to the region
description. Then we add those counterexamples to our example sets and derive a new region
description. We use a specially created prompt with an exemplar to the LLM to get the region
description at each round; this prompt can be found in Appendix D.3.

Illustrative Example. Suppose we want to describe a region consisting of images of highways
during the night, with no cars present (see Figure 5.3 for images of BDD [128]). Our method’s initial
description is “The highway during the night with clear, rainy or snowy weather,” not mentioning
that the highway has no cars, particularly because the captions of examples ti only mention the
presence of cars and not their absence. In the second round, the algorithm finds the counterexample
s− with caption “city street during the night with clear weather with a lot cars” and counterexample
s+ “highway during the night with clear weather.” The new description T 1

k becomes “clear highway
during the night with various weather conditions, while outside the region are busy city street at
night with clear weather.” After one more round, the description T 2

k becomes “driving on a clear

107

REGION = “Empty Highway at night”

LLM “highway during the night"

VS

Cross-modal embedding space

Step 1: Embed description

Step 0: Initial description:

LLM “highway during the night
with no cars"

Step 2: Find counter-
examples outside with
high similarity and inside
with low similarity

Step 3: iterate description with new sets

Step 4:
repeat

Figure 5.3: The IntegrAI-Describe algorithm illustrated. To obtain a description for a region of
points, the algorithm first samples a set of points inside and outside the region and gets a description
from an LLM that contrasts inside versus outside (Step 0). We then embed the obtained description
in our cross-modal embedding space (Step 1) and find counterexamples to that description, both
points outside the region with high similarity to the description and points inside the region with
low similarity to the description (Step 3). The process is repeated for as many rounds as necessary
(Step 4).

and uncongested highway during the night in various weather conditions.” A simplified version
of this example is shown in Figure 5.3. We now proceed in the next section to describe how we
onboard the human decision maker using the regions.

5.5 Onboarding and Recommendations to Promote Rules

Once rules for integration have been learned as described in the previous section, the task is
to teach these rules to the human with an onboarding stage and encourage their use at test time.
We accomplish this through an onboarding process followed by test-time recommendations, as
described next.

Human-AI Card. The onboarding process accordingly consists of an introductory phase and a
teaching phase. In the introductory phase, the user is first asked to complete a few practice examples
of the task on their own to gain familiarity. The user is then presented with general information
about the AI model in the form of a human-AI card, very similar to a model card [154] and inspired
by [103]. The card structure showcased in Table 5.1 includes the AI model inputs and outputs,

108

training data, training objectives, overall human and AI performance along with AI performance
on subgroups where performance deviates from average performance. This card represents the
bare minimum that humans should know about the AI model before collaborating with it. The
instantiation of the Human-AI card for the BDD user study is shown in Table 5.2.

Table 5.1: Human-AI Card presented to the human as part of onboarding

Information Description

AI Input What the AI uses to make its prediction
AI Output What the AI provides as output (predictions, ex-

planations, ...)
Source of Training Data for AI Description of data used to train the AI
Source of Pre-Training Data of AI Description of pre-training data that AI is based

on
Training Objective of AI What the AI is trying to achieve (minimize clas-

sification error, detect objects, next word predic-
tion)

Average AI Performance Relevant metrics of overall AI performance (ac-
curacy, FPR, ...)

Average Human Performance Relevant metrics of overall human performance
(accuracy, FPR, ...)

AI vs Human Performance on Subgroups

The teaching phase aims to provide a more detailed picture of how the human should collaborate
with the AI. It is structured as a sequence of “lessons”, each corresponding to a region Nk resulting
from the algorithm of Section 5.4.1. The specific steps in each lesson are as follows:

• Step 1: Human predicts on example. A representative from the region is selected at random
that has an optimal integration decision identical to that of the region. The human is asked to
perform the task for the chosen representative and is shown the AI’s output along with the
option to use the AI’s response.

• Step 2: Human receives feedback. After submitting a response, the user is told whether the
response is correct and whether the AI is correct.

• Step 3: From example to region learning. The user is informed that the representative
belongs to a larger region Nk and is provided with the associated recommendation rk, textual

109

description tk, and AI and human performance in the region as well as the raw examples from
the region in a gallery viewer.

After completing all lessons as above, a second pass is done where the user is re-shown all
lessons for which their response was incorrect. This serves to reinforce these lessons and is similar
to online learning applications such as Duolingo for language learning [155]. Our teaching approach
is motivated by literature showing that humans learn through examples and employ a nearest
neighbor type of mechanism to make decisions on future examples [85], [115], [116]. We follow
this literature by showing concrete data examples in the belief that it effectively teaches humans
how to interact with AI. We improve on the approach in [82] by incorporating an introductory phase
with the Human-AI card, showing pre-defined region descriptions for each region, and iterating on
misclassified examples in the teaching phase.

Recommendations in AI Dashboard. At test time, we can check whether an example x and its
corresponding AI output a fall into one of the learned regions Nk. If they do, then our dashboard
shows the associated recommendation rk and description tk alongside the AI output a.

Table 5.2: The exact Human-AI card used in the user study for BDD.

Attribute Description

Average AI Accuracy 78%
Average Human Accuracy 72%
AI Model Input Blurry Image
AI Model Output Prediction of traffic light, bounding box on im-

age showing its location and a score indicating
its confidence

Source of Training Data Dataset of road images from New York and San
Francisco Bay Area

AI Training Objective Detect traffic lights and other objects in image

Category Accuracy

more than 5 traffic lights in image 90%
1 to 4 traffic lights 62%
no traffic lights 86%
no cars 83%
daytime or overcast weather 75%
few pedestrians 76%

110

5.6 Method Evaluation

Objective. In this experimental section2, we evaluate the ability of our algorithms to achieve three
aims: (Aim 1) Learn an integration function that leads to a human-AI team with low error; (Aim 2)
discover regions of the data space that correspond to the underlying regions where human vs AI
performance is different; and, for our region description algorithm, (Aim 3) come up with accurate
descriptions of the underlying regions. Full experimental details are in Appendix D.5.

6 8 10 12 14 16 18 20

Number of Regions

0.18

0.19

0.20

0.21

0.22

T
es

t
L

os
s

IntegrAI (ours)

DOMINO

K-MEANS

DoubleGreedy

Human

AI

Figure 5.4: Test Error (↓) of the human-AI
system when following the decisions of the
different integrators as we vary the number
of regions maximally allowed for each inte-
grator on the BDD dataset.

Datasets and AI Models. The experiments are per-
formed on two image object detection datasets and
two text datasets. The image datasets include Berke-
ley Deep Drive (BDD) [128] where the task is to de-
tect the presence of traffic lights from blurred images
of the validation dataset (10k), and the validation
set of MS-COCO (5k) where the task is to detect
whether a person is present in the image 3 [156]. The
text-based validation datasets are Massive Multi-task
Language Understanding (MMLU) [129], and Dy-
namic Sentiment Analysis Dataset (DynaSent) [157].
The pre-trained Faster R-CNN models [158] are con-
sidered for BDD and MS-COCO. For MMLU, a
pre-trained flan-t5 model [159] is utilized, whereas a
pre-trained sentiment analysis model roBERTa-base
is used for DynaSent [160]. Each dataset is split into
a 70-30 ratio for training and testing five different
times so as to obtain error bars of predictions. We ob-
tain embeddings using a sentence transformer [126]
for the text datasets and CLIP for the image datasets [125]

Baselines. We benchmark our algorithm with different baseline methods that can find regions of
the space. The baselines include: (a) DOMINO [136] which is a slice-discovery method for AI
errors, (b) K-Means following the approach of [143], and (c) the double-greedy algorithm from
[82] that finds regions for Human-AI onboarding. For the regions obtained from these baselines,
we compute the optimal integration decision that results in minimal loss. For our method, we set

2Code is available in https://github.com/clinicalml/onboarding_human_ai.
3We extend this to detecting the presence of any object.

111

https://github.com/clinicalml/onboarding_human_ai

βu = 0.5, βl = 0.01, α = 0.0 for Aim 1 and βu = 0.2, βl = 0.01, α = 0.8 for Aim 2, random
prior decisions (50-50 for 0 and 1), and δ = 2. In the context of region-description algorithms, we
compare to the SEAL approach [143], a simple baseline that picks the best representative description
from the existing dataset (best-caption), and ablations of our method. For Aim1 and Aim2, we
repeat each experiment 5 times and report the average value and standard error (standard deviation
divided by

√
5).

Table 5.3: Error (↓) on the test set (in %) of the
human-AI system when following integrators result-
ing from different region discovery methods with
10 regions on the different non-synthetic datasets.

BDD MMLU DynaSent MS-COCO

IntegrAI (ours) 17.8 ± 0.2 45.3 ± 0.3 20.2 ± 0.3 22.6 ± 0.4
DOMINO [136] 18.9 ± 0.4 48.1 ± 0.2 20.0 ± 0.2 22.7 ± 0.4
K-MEANS [143] 19.0 ± 0.5 45.3 ± 0.3 20.0 ± 0.2 23.2 ± 0.1
DoubleGreedy [82] 18.9 ± 0.1 46.1 ± 0.6 20.0 ± 0.2 23.8 ± 0.4

Table 5.4: Clustering metrics (Adjusted Rand
index [161] ↑, Fowlkes–Mallows index [162]
↑) of the regions (10 regions) found by the
different methods on the synthetic dataset
setup.

BDD MMLU MS-COCO

IntegrAI (ours) (0.02,0.24) (0.17, 0.53) (0.07,0.43)
DOMINO [136] (0.05,0.20) (0.11,0.45) (0.04,0.35)
K-MEANS [143] (0.05,0.20) (0.09,0.35) (0.03,0.27)
DoubleGreedy [82] (0.01,0.21) (0.04,0.36) (0.03,0.29)

Learning Accurate Integrators (Aim 1). The goal is to measure the ability of our method in
learning integration functions that lead to low Human-AI team error (the loss L(H,M)). This can
be well represented by measuring the errors on the training set (discovering regions of error) and the
test set (generalization ability). In Table 5.3, we show the results of our method and the baselines at
learning integrators and find that our method can find regions that are more informative with respect
to Human vs AI performance on the test data. Figure 5.4 shows that on BDD our method can find an
integrator that leads to lower loss at test time than the baselines with a minimal number of regions.

Recovering Ground truth Regions (Aim 2). We just established that the regions discovered by
our algorithm result in a Human-AI team with lower error than human or AI alone. However, it
still needs to be verified if the regions are indeed meaningful and consistent regions of space. We
utilize a synthetic setup by simulating the AI model and the human responses such that there exist
(randomized) regions in the data space where either the human or the AI are accurate/inaccurate
(though the regions may slightly overlap). These regions are defined in terms of metadata. As an
example on the BDD dataset, we can define the AI to be good at daytime images and bad at images
of highways, and the human to be good at nighttime images and bad at images of city streets. We
employ our algorithm and the baselines to discover regions and compare them with the ground truth
regions corresponding to the partition of the data, which is essentially a clustering task with ground
truth clusters. Results are shown in Table 5.4 and show that we have clustering metrics mostly
higher than the baselines.

112

Describing Regions (Aim 3). We conduct an ablation study where we evaluate the power of
the contrasting and self-correcting ability of Algorithm 4 against baselines. On the MS-COCO
dataset, we take regions defined in terms of the presence of a single object (e.g., ‘apple’) and try to
obtain a single-word description of the region from the image captions. We use standard captioning
metrics that compare descriptions from the algorithms to the object name, we include a metric called
"sent-sim" that simply measures cosine similarity with respect to a sentence transformer [126].
We compare to ablations of Algorithm 4 with m ∈ {0, 5, 10} (rounds of iteration) and without
having examples outside the region (IntegrAI, S− = ∅). Results are in Table 5.5 and show that
including examples outside the region improves all metrics while increasing iterations (m) further
improves results slightly. For the apple example, IntegrAI (S− = ∅) finds the description to be
“fruit” whereas our IntegrAI (m = 5) finds it to be “apple”.

Table 5.5: Evaluation of our region description algorithm (Algorithm 4) on selected subsets of
MS-COCO where the different algorithms try to describe a set of images that all contain a given
object. For example, a region may be defined by images containing the object “apple”. Then we
compare the descriptions resulting from the different algorithms to the description “apple”.

best-caption SEAL IntegrAI (S− = ∅) IntegrAI (m=0) IntegrAI (m=5) IntegrAI (m=10)

METEOR 12.9± 1.9 9.16± 1.89 24.3± 3.3 25.4± 3.2 26.1± 3.3 25.4± 3.3
sent-sim 39.8± 1.9 44.1± 2.5 65.1± 3.2 67.0± 3.1 66.0± 3.2 68.0± 3.3
ROUGE 5.81± 1.2 0.0± 0.0 25.6± 4.9 32.6± 5.4 27.9± 5.1 35.6± 5.5
SPICE 12.7± 1.9 7.53± 2.3 41.1± 5.8 43.8± 5.8 45.2± 5.8 45.2± 5.8

5.7 User Studies to Evaluate Onboarding Effect

Tasks. We perform user studies on two tasks: 1) predicting the presence of a traffic light in road
images from the BDD dataset [128] and 2) answering multiple-choice questions from the MMLU
[129] dataset. For BDD, we blur the images with Gaussian blur to make them difficult for humans
and use the Faster R-CNN model as the AI. Participants can see the AI’s prediction, bounding box
on the image as an explanation and the model’s confidence score. For MMLU, participants are
shown a question, four possible answers and the prediction of GPT-3.5-turbo [6], and then have
to pick the best answer. We also obtain an explanation from GPT-3.5 by using the prompt “Please
explain your answer in one sentence.” Both the AI answer and the explanation are shown. GPT-3.5
obtains an accuracy of 69% during our evaluation and we restrict our attention to specific subjects
within the MMLU dataset. Specifically, we sample 5 subjects (out of the 57 in MMLU) where
ChatGPT has significantly better performance than average, 5 where it’s significantly worse, and
4 subjects where performance is similar to average performance. We sample 150 questions from
each subject and additionally sample 150 questions from the OpenBookQA dataset [163] to use as

113

Yes

No Use AI Answer

AI Predicts: Yes with score 0.9

Is there a Traffic Light?

Recommendation: Rely on AI
Region: mostly highways at night and during clear weather,

with a mix of cars, trucks, buses, traffic lights, ”

Hide AI box Show Instructions

12/20

(a) BDD

A

B

Use AI Answer

AI Predicts: A
Tooth gap because physical traits, such as
the gap between teeth, are primarly
determined by genetics and can be passed
down from parents to children

Recommendation: Ignore AI Answer
AI often wrong when various questions on different topics
such as algebra, biology, public relations, and statistics […]

Show Instructions

6/15

C

D

Question: If a child inherits a physical trait
from his father he will likely receive

A: tooth gap
B: favorite color
C: sense of fun
D: liking dogs

(b) MMLU

Figure 5.5: (a) Interface for humans to detect a traffic light in images from BDD dataset in the
presence of AI’s prediction, confidence score, and bounding box and (b) interface for humans to
answer multiple choice questions from MMLU dataset with AI’s prediction and explanation.

attention checks. We show the prediction interfaces in Figure 6.4. Details are in Appendix D.6.

Participants. We submitted an IRB application and the IRB declared it exempt as is. All
participants agreed to a consent form for sharing study data. We recruited participants from the
crowdsourcing website Prolific [164] from an international pool, filtering for those who are fluent
in English, have above a 98% approval rating, have more than 60 previous submissions, and
have not completed any of our studies before. For BDD, participants are compensated $3 per 20
examples in the study and then some receive a bonus of $2 for good performance. For MMLU,
we pay participants $3 for every 15 questions. We collected information about participants’ age,
gender (52% identify as Female), knowledge of AI, and other task-specific questions. Participants
have to correctly answer on three initial images without blur in the case of BDD (questions from
OpenBookQA for MMLU). They encounter attention checks throughout the study to further filter
them as we exclude participants who fail all attention checks.

Experimental Conditions. For BDD, we initially collect responses from 25 participants who
predict without the AI and then predict with the help of AI (but no onboarding). We use this data
as the basis of the dataset D of prior human integration decisions and human predictions to find
10 regions using IntegrAI. We then run four different experimental conditions with 50 unique
participants in each where each participant predicts on 20 examples: (1) human predicts alone
(H) and human predicts with the help of AI (H-AI) but no onboarding and random order between

114

with and without AI, (2) human receives onboarding using our method and then in a random order
also receives recommendations (Onboard(ours)+Rec) or no recommendations (Onboard(ours)),
(3) human goes through a modified onboarding procedure that only uses step 1 and step 2 from
Section 5.5 and then uses regions from DOMINO [136] (Onboard(baseline)), and finally (4) human
does not receive onboarding but receives the AI-integration recommendations (Rec). For MMLU,
participants are tested on 15 examples per condition and onboarding goes through 7 regions found
by our algorithm. We run IntegrAI twice: once on both the dataset embeddings and metadata
(subject name), and once on an embedding of ChatGPT explanations separately. We find 10 regions
based on the metadata and 2 regions based on the ChatGPT explanations, we show participants
the 7 regions that have the highest gain. Due to budget constraints, we only run conditions 1-2-4
for MMLU. Note that all participants receive the introduction phase of the onboarding (AI model
information) regardless of whether they go through the teaching phase or not.

Results. In Table 5.6 and Table 5.7 we display various results from the user studies for BDD
and MMLU respectively across all experimental conditions. We show the average accuracy (±
standard error) across all participants of their final predictions, AI reliance as measured by how
often they pressed the “Use AI Answer” button, and the average time it took for them to make
a prediction per example (we remove any time period of more than 2 minutes). Finally, we
compute using a two-sample independent t-test the p-value and t-test statistic when comparing each
condition (the columns) to the Human-AI condition where the human receives no onboarding (to
compare the Human-only condition to Human-AI we use a paired t-test for this pair only). Since
we perform multiple tests, we need to correct for multiple hypothesis testing so we rely on the
Benjamini/Hochberg method [165].

Analysis. For BDD, we first observe that human and AI performance are very comparable at
around 79%, which reduces slightly to 77.2% when the human collaborates with the AI without
onboarding. Participants who go through onboarding have a significantly higher task accuracy
compared to those who didn’t go through onboarding (corrected p-value of 0.042) with a 5.4%
increase. The onboarding baseline fails to significantly increase task accuracy, showcasing that the
increase is not just due to task familiarity but possibly due to insights gained from regions found by
IntegrAI. Displaying recommendations in addition to onboarding (Onboard(ours)+Rec) does not
improve performance but adds time to the decision-making process (7.6s compared to 5.9s without).
For MMLU, we note that there is a 20% gap between human and AI performance, but human+AI
with and without onboarding can obtain an accuracy of around 75% which is slightly higher than
AI alone; onboarding had no additional effect. Onboard(ours) does result in slightly lower time per
example than Human+AI without onboarding. Interestingly, we find a weakly significant negative

115

Metric AI only Human Human+AI Onboard(ours)+Rec Onboard(ours) Onboard(baseline) Rec

Accuracy (%) 79.0± 0.7 78.5± 1.7 77.2± 1.4 79.9± 1.4 82.6± 1.3 80.4± 1.4 81.4± 1.8
Test vs H-AI 0.272, 1.211 0.455, 0.752 N/A 0.268, 1.352 0.042, 2.747 0.261, 1.525 0.206, 1.839
AI reliance (%) N/A N/A 16.5± 3.1 66.5± 2.4 25.5± 3.4 24.4± 4.4 21.4± 3.2
Time/example (s) N/A 5.408± 0.289 7.78± 0.517 7.622± 0.371 5.936± 0.288 6.841± 0.543 8.717± 0.516

Table 5.6: Results from our user studies for BDD. For accuracy, time per example, and AI-reliance
we report mean and standard error across participants. The "Test vs H-AI" row reports the adjusted
p-value and t-test statistic for a two-sample t-test between the human+AI condition and the other
conditions (columns).

Metric AI only Human Human+AI Onboard(ours)+Rec Onboard(ours) Rec

Accuracy (%) 72.9± 0.6 52.8± 2.2 75.0± 1.7 73.7± 1.8 74.4± 1.7 69.8± 1.8
Test vs H-AI 0.230,−1.488 0.0,−7.899 N/A 0.747,−0.53 0.792,−0.265 0.101,−2.08
AI reliance (%) N/A N/A 40.0± 3.6 34.5± 3.7 40.6± 3.8 34.2± 2.9
Time/example (s) N/A 30.608± 2.109 23.623± 1.66 22.917± 1.362 20.977± 1.509 29.535± 1.883

Table 5.7: Results from our user studies for MMLU.

effect of only showing AI-integration recommendations, which decreases accuracy by 5% and adds
6 seconds of time per example.

(Informal) Qualitative Analysis. At the end of each experiment, we asked the participant the
following question: “What was your decision process for relying on the AI answer and for when to
ignore the AI answer?” For the BDD task, we compare the responses of participants who were in the
baseline Human+AI condition versus participants in the Onboard(ours) condition. To summarize the
responses, we use IntegrAI-Describe with m = 0,4 first with the region of interest corresponding
to the responses from the Onboard(ours) condition (asking it to contrast with Human+AI responses).
We get the following description verbatim (and add bolding for emphasis):

Points inside the region involve scenarios primarily where the individual uses or relies
on AI when uncertain, particularly when visibility is poor or objects are too distant.
In contrast, points lying outside the region pertain to cases where individuals often
ignore the AI either because they feel confident in their own judgment, the picture is
clear, or they believe the AI is not accurate enough.

On the other hand, when we describe the region corresponding to Human+AI responses, we get:

The region comprises descriptions wherein individuals primarily rely on their own
judgement to identify traffic lights in images, resorting to the AI’s aid when the image
is too blurry, unclear or when doubt exists. In stark contrast, points outside the region

4No iteration because we can fit all responses in the context of the LLM which is GPT-4 in this analysis. We changed
the prompt to ask for 100 words instead of the usual 20-word limit.

116

detail instances where reliance on AI is more pronounced or where external factors
like road type and presence of cars are considered.

One theme that emerges is using AI more in the onboarding condition, which is confirmed quantita-
tively as participants in the Onboard(ours) condition relied on AI 9% more (see Table 5.6). Another
theme is that of participants in onboarding relying on external factors, which can potentially be
attributed to lessons learned during onboarding.

Discussion. We believe that for MMLU, due to the wide gap between human and AI accuracy and
the availability of GPT-3.5 explanations, onboarding did not improve performance. We note that in
a lot of instances, GPT-3.5 explanations express uncertainty over the answer, as in the following
examples:

- ‘Unfortunately, the options provided do not provide a clear answer to what happens
after the Meyer tree’s flower petals drop. Can you please provide more information or
context about the question’

- ‘The answer cannot be provided with the given information as it does not specify
which president is being referred to.’

- ‘[...] the answer cannot be provided with the given information as it does not specify
which president is being referred to.’

Such statements about uncertainty can already help the human more accurately know when not
to trust the AI and try harder to find the correct answer. In cases where GPT-3.5 does not express
uncertainty, it tries to explain its answer and often does so correctly, but it is not clear whether the
explanations allow the human to easily verify the answer. Moreover, it is clear that in its current
form, displaying the AI-integration recommendation is not an effective strategy and that onboarding
on its own is sufficient. Finally, note that even the Human-AI baseline benefits from the human-AI
card, which might explain why the team is at least as good as its components in our experiments.

Limitations. Onboarding and recommendations can significantly affect human decision making.
If the recommendations are inaccurate, they could lead to drops in performance and thus require
safeguarding. Onboarding and recommendations can be tailored to the specific human by leveraging
their characteristics to few-shot learn their prior integrator and prediction abilities.

117

118

Part III

Interactive Human-AI Collaboration: Case
Study in LLM-Assisted Programming

119

Chapter 6

Reading Between the Lines: Modeling User
Behavior and Costs in AI-Assisted
Programming

Acknowledgements of Co-authors. This chapter is based on the published work in [166]. I
would like to thank my co-authors, Gagan Bansal, Adam Fourney, and Eric Horvitz, for their help.

6.1 Introduction

Programming-assistance systems based on the adaptation of large language models (LLMs) to
code recommendations have been recently introduced to the public. Popular systems, including
Copilot [7], CodeWhisperer [167], and AlphaCode[168], signal a potential shift in how software
is developed. Though there are differences in specific interaction mechanisms, the programming-
assistance systems generally extend existing IDE code completion mechanisms (e.g., IntelliSense 1)
by producing suggestions using neural models trained on billions of lines of code [169]. The
LLM-based completion models can suggest sentence-level completions to entire functions and
classes in a wide array of programming languages. These large neural models are deployed with the
goal of accelerating the efforts of software engineers, reducing their workloads, and improving their
productivity.

Early assessments suggest that programmers do feel more productive when assisted by the
code recommendation models [170] and that they prefer these systems to earlier code completion
engines [171]. In fact, a recent study from GitHub, found that Copilot could potentially reduce task
completion time by a factor of two [172]. While these studies help us understand the benefits of

1https://code.visualstudio.com/docs/editor/intellisense

121

https://code.visualstudio.com/docs/editor/intellisense

code-recommendation systems, they do not allow us to identify avenues to improve and understand
the nature of interaction with these systems.

In particular, the neural models introduce new tasks into a developer’s workflow, such as writing
AI prompts [173] and verifying AI suggestions [171], which can be lengthy. Existing interaction
metrics, such as suggestion acceptance rates, time to accept (i.e., the time a suggestion remains
onscreen), and reduction of tokens typed, tell only part of this interaction story. For example,
when suggestions are presented in monochrome popups (Figure 6.1), programmers may choose to
accept them into their codebases so that they can be read with code highlighting enabled. Likewise,
when models suggest only one line of code at a time, programmers may accept sequences before
evaluating them together as a unit. In both scenarios, considerable work verifying and editing
suggestions occurs after the programmer has accepted the recommended code. Prior interaction
metrics also largely miss user effort invested in devising and refining prompts used to query the
models. When code completion tools are evaluated using coarser task-level metrics such as task
completion time [174], we begin to see signals of the benefits of AI-driven code completion but lack
sufficient detail to understand the nature of these gains, as well as possible remaining inefficiencies.
We argue that an ideal approach would be sufficiently low level to support interaction profiling
while sufficiently high level to capture meaningful programmer activities.

Given the nascent nature of these systems, numerous questions exist regarding the behavior of
their users:

• What activities do users undertake in anticipation for, or to trigger a suggestion?

• What mental processes occur while the suggestions are onscreen, and, do people double-check
suggestions before or after acceptance?

• How costly for users are these various new tasks, and which take the most time?

To answer these and related questions in a systematic manner, we apply a mixed-methods
approach to analyze interactions with a popular code suggestion model, GiHub Copilot2 which has
more than a million users. To emphasize that our analysis is not restricted to the specifics of Copilot,
we use the term CodeRec to refer to any instance of code suggestion models, including Copilot.
Through small-scale pilot studies and our first-hand experience using Copilot for development, we
develop a novel taxonomy of common states of a programmer when interacting with CodeRec
models (such as Copilot), which we refer to as CodeRec User Programming States (CUPS). The
CUPS taxonomy serves as the main tool to answer our research questions.

Given the initial taxonomy, we conducted a user study with 21 developers who were asked to
retrospectively review videos of their coding sessions and explicitly label their intents and actions

2https://github.com/features/copilot

122

https://github.com/features/copilot

Thinking/
Verifying

Suggestion
22.4%

Deferring
thought
for later
1.39%

Looking up
Documentation

7.45%

Debugging/
Testing Code

11.31%

Prompt
crafting
11.56%

Writing
Documentation

0.53%Editing Last
Suggestion

11.90%

Editing
Written Code

4.28%

Writing New
Functionality

14.05%

Waiting For
Suggestion

4.20%

Not Thinking
0.01%

Thinking
about New

Code to Write
10.91%

import numpy as np
class LogisticRegression:

def __init(self):
self.w = None
self.b = None

implement the fit method
def fit(self, X, y):

initialize the parameters
self.w = np.zeros(X.shape[1])
self.b = 0
for i in range(100):

calculate the gradient
dw = (1/X.shape[0]) * np.dot(X.T,

(self.sigmoid(np.dot(X, self.w) + self.b) - y))
db = (1/X.shape[0]) *

np.sum(self.sigmoid(np.dot(X, self.w) + self.b)
- y)

update the parameters
self.w = self.w - dw
self.b = self.b - db

| # implement the predict method suggestion

prompt

shown shown shownrejected acceptedshown rejected

1

2

4

3

5

7

6

(a) (b)

(c)

21 43 5 76

Figure 6.1: Profiling a coding session with the CodeRec User Programming States (CUPS). In
(a) we show the operating mode of CodeRec inside Visual Studio Code. In (b) we show the
CUPS taxonomy used to describe CodeRec related programmer activities. A coding session can be
summarized as a timeline in (c) where the programmer transitions between states.

123

using this model, with an option to add new states if necessary. The study participants labeled a
total of 3137 coding segments and interacted with 1096 suggestions. The study confirmed that the
taxonomy was sufficiently expressive, and we further learned transition weights and state dwell
times —something we could not do without this experimental setting. Together, these data can be
assembled into various instruments, such as the CUPS diagram (Figure 6.1), to facilitate profiling
interactions and identify inefficiencies. Moreover, we show that such analysis nearly doubles our
estimates for how much developer time can be attributed to interactions with code suggestion
systems, as compared with existing metrics. We believe that identifying the current CUPS state
during a programming session can help serve programmer needs. This can be accomplished using
custom keyboard macros or automated prediction of CUPS states, as discussed in our future work
section and the Appendix. Overall, we leverage the CUPS diagram to identify some opportunities
to address inefficiencies in the current version of Copilot.

In sum, our main contributions are the following:

• A novel taxonomy of common activities of programmers (called CUPS) when interacting
with code recommendation systems (Section 6.4)

• A dataset of coding sessions annotated with user actions, CUPS, and video recordings of
programmers coding with Copilot (Section 6.5).

• Analysis of which CUPS states programmers spend their time in when completing coding
tasks (Subsection 6.6.1).

• An instrument to analyze programmer behavior (and patterns in behavior) based on a finite-
state machine on CUPS states (Subsection 6.6.2).

• An adjustment formula to properly account for how much time do programmers spend
verifying CodeRec suggestions (Subsection 6.6.4) inspired by the CUPS state of deferring
thought (Subsection 6.6.3).

6.2 Background and Related Work

Large language models based on the Transformer network [175], such as GPT-3 [127], have
found numerous applications in natural language processing. Codex [169], a GPT model trained
on 54 million GitHub repositories, demonstrates that LLMs can very effectively solve various
programming tasks. Specifically, Codex was initially tested on the HumanEval dataset containing
164 programming problems, where it is asked to write the function body from a docstring [169]
and achieves 37.7% accuracy with a single generation. Various metrics and datasets have been

124

proposed to measure the performance of code generation models [5], [168], [176], [177]. However,
in each case, these metrics test how well the model can complete code in an offline setting without
developer input rather than evaluating how well such recommendations assist programmers in
situ. This issue has also been noted in earlier work on non-LLM based code completion models
where performance on completion benchmarks overestimates the model’s utility to developers [178].
Importantly, however, these results may not hold to LLM-based approaches, which are radically
different [179].

One straightforward approach to understanding the utility of neural code completion services,
including their propensity to deliver incomplete or imperfect suggestions, is to simply ask developers.
To this end, Weisz et al. interviewed developers and found that they did not require a perfect
recommendation model for the model to be useful [180]. Likewise, Ziegler et al. surveyed over
2,000 Copilot users [170] and asked about perceived productivity gains using a survey instrument
based on the SPACE framework [181] – we incorporate the same survey design for our own study.
They found both that developers felt more productive using Copilot and that these self-reported
perceptions were reasonably correlated with suggestion acceptance rates. [182] administered a
survey to 410 programmers who use various AI programming assistants, including Copilot, and
highlighted why the programmers use the AI assistants and numerous usability issues. Similarly,
[183] surveyed how introductory programming students utilize Copilot.

While these self-reported measures of utility and preference are promising, we would expect
gains to be reflected in objective metrics of productivity. Indeed, one ideal method would be to
conduct randomized control trials where one set of participants writes code with a recommendation
engine while another set codes without it. GitHub performed such an experiment where 95
participants were split into two groups and asked to write a web server. The study concluded by
finding that task completion was reduced by 55.8% in the Copilot condition [172]. Likewise, a
study by Google showed that an internal CodeRec model had a 6% reduction in ’coding iteration
time’ [184]. On the other hand, [171] showed in a study of 24 participants showed no significant
improvement in task completion time – yet participants stated a clear preference for Copilot. An
interesting comparison to Copilot is Human-Human pair programming, which [185] details.

A significant amount of work has tried to understand the behavior of programmers[186]–[189]
using structured user studies under the name of "psychology of programming." This line of work
tries to understand the effect of programming tools on the time to solve a task or ease of writing
code and how programmers read and write code. Researchers often use telemetry with detailed
logging on keystrokes [190], [191] to understand behavior. Moreover, eye-tracking is also used to
understand how programmers read code[192], [193]. Our research uses raw telemetry alongside
user-labeled states to understand behavior; future research could also utilize eye-tracking and raw
video to get deeper insights into behavior.

125

This wide dispersion of results raises interesting questions about the nature of the utility afforded
by neural code completion engines: how, and when, are such systems most helpful; and conversely,
when do they add additional overhead? This is the central question to our work. The related
work closest to answering this question is that of Barke et al. [194], who showed that interaction
with Copilot falls into two broad categories: the programmer is either in “acceleration mode” where
they know what they want to do, and Copilot serves to make them faster; or they are in “exploration
mode”, where they are unsure what code to write and Copilot helps them explore. The taxonomy we
present in this chapter, CUPS, enriches this further with granular labels for programmers’ intents.
Moreover, the data collected in this work was labeled by the participants themselves rather than by
the researchers interpreting their actions, allowing for more faithful intent and activity labeling and
the data collected in our study can also be used to build predictive models as in [195]. The next
section describes the Copilot system formally and describes the data collected when interacting
with Copilot.

6.3 Copilot System Description

…

shown

t0=0

accepted shown rejected shown browse accepted

t1 t2 t3 t4 t5 t6 t7

A1 A2 A3 A4 A5 A6 A7

Figure 6.2: Schematic of interaction telemetry with Copilot as a timeline. For a given coding
session, the telemetry contains a sequence of timestamps and actions with associated prompt and
suggestion features (not shown).

To better understand how code recommendation systems influence the effort of programming,
we focus on GiHub Copilot, a popular and representative example of this class of tools. Copilot3 is
based on a Large Language Model (LLM) and assists programmers inside an IDE by recommending
code suggestions any time the programmer pauses their typing. Figure 6.1 shows an example of
Copilot recommending a code snippet as an inline, monochrome popup, which the programmer can
accept using a keyboard shortcut (e.g., <tab>).

To serve suggestions, Copilot uses a portion of the code written so far as a prompt, P , which
it passes to the underlying LLM. The model then generates a suggestion, S, which it deems to
be a likely completion. In this regime, programmers can engineer the prompt to generate better
suggestions by carefully authoring natural language comments in the code such as “# split the

3The version of Copilot that this manuscript refers to is Copilot as of August 2022.

126

data into train and test sets.” In response to a Copilot suggestion, the programmer can
then take one of several actions A, where A ∈ {browse, accept, reject}. The latter of these actions,
reject, is triggered implicitly by continuing to type something that differs from the suggestion or
by pressing the escape key. The browse action enables the programmer to change the suggestion
shown with a keyboard shortcut from a set of at most three suggestions. Copilot logs aspects of
the interactions via telemetry. We leverage this telemetry in the studies described in this chapter.
Specifically, whenever a suggestion is shown, accepted, rejected, or browsed, we record a tuple to
the telemetry database, (ti, Ai, Pi, Si), where ti represents the within-session timestamp of the ith

event (t0 = 0), Ai details the action taken (augmented to include ‘shown’), and Pi and Si capture
features of the prompt and suggestion, respectively. Figure 7.2 displays telemetry of a coding
session, and Figure 6.1a shows Copilot implemented as a VSCode plugin. We have the ability to
capture telemetry for any programmer interacting with Copilot; this is used to collect data for a user
study.

6.3.1 Influences of CodeRec on Programmer’s Activities

Despite the limited changes that Copilot introduces to an IDE’s repertoire of actions, LLM-
based code suggestions can significantly influence how programmers author code. Specifically,
Copilot leverages LLMs to stochastically generate novel code to fit the arbitrary current context.
As such, the suggestions may contain errors (and can appear to be unpredictable) and require that
programmers double-check and edit them for correctness. Furthermore, programmers may have to
refine the prompts to get the best suggestions. These novel activities associated with the AI system
introduce new efforts and potential disruptions to the flow of programming. We use time as a
proxy to study the new costs of interaction introduced by the AI system. We recognize that this
approach is incomplete: the costs associated with solving programming tasks are multi-dimensional,
and it can be challenging to assign a single real-valued number to cover all facets of the task [196].
Nevertheless, we argue that, like accuracy, efficiency-capturing measures of time are an important
dimension of the cost that is relevant to most programmers.

6.3.2 Programmer Activities in Telemetry Segments

Copilot’s telemetry captures only instantaneous user actions (e.g., accept, reject, browser), as
well as the suggestion display event. By themselves, these entries do not reveal such programmer’s
activities as double-checking and prompt engineering, as such activities happen between two
consecutive instantaneous events. We argue that the regions between events, which we refer to
as telemetry segments, contain important user intentions and activities unique to programmer-
CodeRec interaction, which we need to understand in order to answer how Copilot affects

127

…

shown

t0=0

accepted shown rejected shown browse accepted

t1 t2 t3 t4 t5 t6 t7

User
Typing

or
Paused

User
Typing

or
Paused

User Typing
or Paused

User
Before
Action

User
Before
Action

User
Before
Action

User
Before
Action

A1 A2 A3 A4 A5 A6 A7

Typing Paused

Thinking Verifying
Suggestion

Deferring thought
for later

Thinking about
New Code to write

Prompt crafting Looking up
Documentation

Not Thinking

Waiting For
Suggestion

Writing New
Functionality

Editing Last
Suggestion

Editing Written
Code

Writing
Documentation

Debugging/
Testing Code

ti ti+1

User Before
Action

shown accepted

…

Figure 6.3: Taxonomy of programmer’s activities when interacting with CodeRec– CUPS.

programmers—and where and when Copilot suggestions are useful to programmers.
Building on this idea, telemetry segments can be split into two groups (Figure 7.2). The first

group includes segments that start with a suggestion shown event and end with an action (accept,
reject, or browse). Here, the programmer is paused and has yet to take action. We refer to this as
‘User Before Action’. The second group includes segments that start with an action event and end
with a display event. During this period, the programmer can be either typing or paused; hence we
denote it as ‘User Typing or Paused’. These two groups form the foundation of a deeper taxonomy
of programmers’ activities, which we will further develop in the next section.

6.4 A Taxonomy for Understanding Programmer-CodeRec In-
teraction: CUPS

6.4.1 Creating the Taxonomy

Our objective is to create an extensive, but not complete, taxonomy of programmer activities
when interacting with CodeRec that enables a useful study of the interaction. To refine the taxonomy
of programmers’ activities, we developed a labeling tool and populated it with an initial set of
activities based on our own experiences from extensive interactions with Copilot (Figure 6.4). The
tool enables users to watch a recently captured screen recording of them solving a programming task
with Copilot’s assistance and to retrospectively annotate each telemetry segment with an activity
label. We use this tool to first refine our taxonomy with a small pilot study (described below) and
then to collect data.

128

Table 6.1: Description of each state in CodeRec User Programming States (CUPS).

State Description

Thinking/Verifying Suggestion Actively thinking about and verifying a shown or accepted
suggestion

Not Thinking Not thinking about suggestion or code, programmer away
from keyboard

Deferring Thought For Later Programmer accepts suggestion without completely verify-
ing it, but plans to verify it after

Thinking About New Code To Write Thinking about what code or functionality to implement and
write

Waiting For Suggestion Waiting for CodeRec suggestion to be shown
Writing New Code Writing code that implements new functionality
Editing Last Suggestion Editing the last accepted suggestion
Editing (Personally) Written Code Editing code written by a programmer that is not a CodeRec

suggestion for the purpose of fixing existing functionality
Prompt Crafting Writing prompt in the form of comment or code to obtain

desired CodeRec suggestion
Writing Documentation Writing comments or docstring for purpose of documenta-

tion
Debugging/Testing Code Running or debugging code to check functionality may in-

clude writing tests or debugging statements
Looking up Documentation Checking an external source for the purpose of understand-

ing code functionality (e.g. Stack Overflow)
Accepted Accepted a CodeRec suggestion
Rejected Rejected a CodeRec suggestion

129

81 (353.25,353.52) 0.27 Prompt_Crafting_(V)

82 (353.52,359.36) 5.84 Prompt_Crafting_(V)

83 (359.36,361.22) 1.86 Thinking/Verifying_Suggestion_(

A)

84 (261.22,370.84) 9.62 Debugging/Testing_Code_(H)

85 (3708437161) 077 Debugging/Testing_Code_(H)

86 (371.61,397.57) 25.9

6

Debugging/Testing_Code_(H)

87 (397.57,410.46) 12.8

9

Thinking/Verifying_Suggestion_(

A

88 (410.46,459.95) 49.4

9

Edditing_Last_Suggestion_()

89 (459.94,499.29) 38.3

4

Edditing_Last_Suggestion_()

90 (498.29,500.58) 2.29 Writing_New_Functionality(Z)

91 (50058,505.83) 5.25 Edditing_Last_Suggestion_()

92 (505.83,515.51) 9.68 Writing_New_Functionality_(Z)

93 (51551,517.29) 178 Writing_New_Functionality_(Z)

94 (517.29,517.45) 0.16 Writing_New_Functionality_(Z)

You are given a data matrix X, the goal is to plot the

two most correlated features in X.

Step 1

Compute correlations between all features in X

Step 2

Pick out the two features that are the most highly

correlated

Step 3

Plot on a graph, where one axis is one feature, and

the other axis is the other feature.

Step 4

Plot a linear trend between the two features.

Thinking Verifying
Suggestion (A)

Deferring thought for
later (D)

Thinking about New
Code to Write (F)

Prompt crafting
(V)

Looking up
Documentation (N)

Not Thinking
(S)

Waiting For
Suggestion (G)

Writing New
Functionality (Z)

Editing Suggestion
(X)

Editing Written Code
(C)

Writing
Documentation (B)

Debugging/ Testing
Code (H)

IDK
(I)Type Custom State

Submit Custom
State

Playback Speed Navigate Events Stop Replay< >

Show Shortcut Keys Definition

Current Suggestion:

corr[i][i]=0

import numpy as np
import pickle

with open('data.pkl', 'rb') as file:
X, Y = pickle.load(file)
#print out first column of X
print(X[:,0])

#computer correlations between all columns of X
corr = np.corrcoef(X)
print(corr)

#print the max value of all the rows in corr
maxval = np.amax(corr, axis=1)
print(maxval)

print out the two features that are most correlated
maxcor = np.where(corr == np.amax(corr))
print(maxcor)

maxval = 0
for i in range(len(corr)):

(a) (b)

(c)

Figure 6.4: Screenshot of retrospective labeling tool for coding sessions. Left: Navigation panel for
telemetry segments. Right: Video player for reviewing video of a coding session. Bottom: Buttons
and text box for labeling states.

The labeling tool (Figure 6.4) contains three main sections: a) A navigation panel on the
left, which displays and allows navigating between telemetry segments and highlights the current
segment being labeled in blue. The mouse or arrow keys are used to navigate between segments. b)
A video player on the right, which plays the corresponding video segments in a loop. The participant
can watch the video segments any number of times. c) Buttons on the bottom corresponding to the
CUPS taxonomy, along with an “IDK” button and a free-form text box to write custom state labels.
Buttons also have associated keyboard bindings for easy annotation.

To label a particular video segment, we asked participants to consider the hierarchical structure
of CUPS in Figure 6.3. The hierarchical structure first distinguishes segments by whether a typing
segment occurred in that segment and then decides based on the typing or non-typing states. For
example, in a segment where a participant was initially double-checking a suggestion and then
wrote new code to accomplish a task, the appropriate label would be "Writing New Functionality"
as the user eventually typed in the segment. In cases where there are two states that are appropriate
and fall under the same hierarchy, e.g., if the participant double-checked a suggestion and then
looked up documentation, they were asked to pick the state in which they spent the majority of the
time. These issues arise because we collect a single state for each telemetry segment.

130

Pilot. Through a series of pilots involving the authors of this work, as well as three other
participants drawn from our organization, we iteratively applied the tool to our own coding sessions
and to the user study tasks. We then expanded and refined the taxonomy by incorporating any
“custom state” (using the text field) written by the pilot participants. The states ’Debugging/Testing
Code’, ’Looking up Documentation’, and ’Writing Documentation’ were added through the pilots.
By the last pilot participant, the code book was stable and saturated as they did not write a state
that was not yet covered. We observed in our study that the custom text field was rarely used. We
describe the resultant taxonomy in the sections below.

6.4.2 Taxonomy of Telemetry Segments

Figure 6.3 shows the finalized taxonomy of programmer activities for individual telemetry
segments with Copilot. As noted earlier, the taxonomy is rooted in two segment types: ‘User
Typing or Paused’, and ‘User Before Action’. We first detail the ‘User Typing or Paused’ segments,
which precede shown events (Figure 7.2) and are distinguished by the fact that no suggestions are
displayed during this time. As the name implies, users can find themselves in this state if they are
either actively ’Typing’4, or have ’paused’ but have not yet been presented with a suggestion. In
cases where the programmer is actively typing, they could be completing any of a number of tasks
such as: ‘writing new functionality,’ ’editing existing code,’ ’editing prior (CodeRec) suggestions,’
‘debugging code,’ or authoring natural language comments, including both documentation and
prompts directed at CodeRec (i.e., ‘prompt crafting’). When the user pauses, they may simply
be “waiting for a suggestion” or can be in any number of states common to ‘User Before Action’
segments.

In every ‘User Before Action’ segment, CodeRec is displaying a suggestion, and the programmer
is paused and not typing. They could be reflecting and verifying that suggestion, or they may not be
paying attention to the suggestion and thinking about other code to write instead. The programmer
can also defer their efforts on the suggestion for a later time period by accepting it immediately, then
pausing to review the code at a later time. This can occur, for example, because the programmer
desires syntax highlighting rather than grey text or because the suggestion is incomplete, and the
programmer wants to allow Copilot to complete its implementation before evaluating the code as a
cohesive unit. The latter situation tends to arise when Copilot displays code suggestions line by line
(e.g., Figure 6.7).

The leaf nodes of the finalized taxonomy represent 12 distinct states that programmers can find
themselves in. These states are illustrated in Figure 6.3 and are further described in Table 6.1. While
the states are meant to be distinct, siblings may share many traits. For example, "Writing New

4Active typing allows for brief pauses between keystrokes.

131

Functionality" and "Editing Written Code" are conceptually very similar. This taxonomy also bears
resemblance to the keystroke level model in that it assigns a time cost to mental processes as well as
typing [197], [198]. As evidenced by the user study—which we describe in the next section—these
12 states provide a language that is both general enough to capture most activities (at this level
of abstraction), and specific enough to meaningfully capture activities unique to LLM-based code
suggestion systems.

6.5 CUPS Data Collection Study

To study CodeRec-programmer interaction in terms of CodeRec User Programming States, we
designed a user study where programmers perform a coding task, then review and label videos of
their coding session using the telemetry segment-labeling tool described earlier. We describe the
procedure, the participants, and the results in the sections that follow.

6.5.1 Procedure

We conducted the study over a video call and asked participants to use a remote desktop
application to access a virtual machine (VM). Upon connecting, participants were greeted with
the study environment consisting of Windows 10, together with Visual Studio Code (VS Code)
augmented with the Copilot plugin.

Participants were then presented with a programming task drawn randomly from a set of eight
pre-selected tasks (Table 6.2). If the participant was unfamiliar with the task content, we offered
them a different random task. The task set was designed during the pilot phase so that individual
tasks fit within a 20-minute block and so that, together, the collection of tasks surfaces a sufficient
diversity of programmer activities. It is crucial that the task is of reasonable duration so that
participants are able to remember all their activities since they will be required to label their session
immediately afterward. Since the CUPS taxonomy includes states of thought, participants must
label their session immediately after coding, and each study took approximately 60 minutes in total.
To further improve diversity, task instructions were presented to participants as images to encourage
participants to author their own Copilot prompts rather than copying and pasting from the problem
description. The full set of tasks and instructions is provided as an Appendix.

Upon completing the task (or reaching the 20-minute mark), we loaded the participant’s screen
recording and telemetry into the labeling tool (previously detailed in Section 6.4.1). The researcher
then briefly demonstrated the correct operation of the tool and explained the CUPS taxonomy.
Participants were then asked to annotate their coding session with CUPS labels. Self-labeling
allows us to easily scale such a study and enables more accurate labels for each participant, but may

132

cause inconsistent labeling across participants. Critically, this labeling occurred within minutes
of completing the programming task so as to ensure accurate recall. We do not include a baseline
condition where participants perform the coding task without Copilot, as this work focuses on
understanding and modeling the interaction with the current version of Copilot.

Finally, participants completed a post-study questionnaire about their experience mimicking the
one in [170]. The entire experiment was designed to last 60 minutes. The study was approved by
our institutional review board (IRB), and participants received a $50.00 gift card as remuneration
for their participation.

Table 6.2: Description of the coding tasks given to user study participants and task assignment.
Participants were randomly allocated to tasks for tasks which they had familiarity with.

Task Name Participants Description

Algorithmic Problem P4,P17,P18 Implementation of TwoSum, ThreeSum and FourSum
Data Manipulation P1,P2,P11,P20 Imputing data with average feature value and feature engineering for quadratic terms
Data Analysis P5,P8 Computing data correlations in a matrix and plotting of most highly correlated features
Machine Learning P3,P7,P12,P15 Training and Evaluation of models using sklearn on given dataset
Classes and Boilerplate Code P6,P9 Creating different classes that build on each other
Writing Tests P16 Writing tests for a black box function that checks if a string has valid formatting
Editing Code P10,P14,P21 Adding functionality to an existing class that implements a nearest neighbor retriever
Logistic Regression P13,P19 Implementing a custom Logistic Regression from scratch with weight regularization

6.5.2 Participants

To recruit participants, we posted invitations to developer-focused email distribution lists within
our large organization. We recruited 21 participants with varying degrees of experience using
Copilot: 7 used Copilot more than a few times a week, 3 used it once a month or less, and 11
had never used it before. For participants who had never used it before, the experimenter gave
a short oral tutorial on Copilot explaining how it can be invoked and how to accept suggestions.
Participants’ roles in the organization ranged from software engineers (with different levels of
seniority) to researchers and graduate student interns. In terms of programming expertise, only 6
participants had less than 2 years of professional programming experience (i.e., excluding years
spent learning to program), 5 had between 3 to 5 years, 7 had between 6 to 10 years, and 3 had
more than 11 years of experience. Participants used a language in which they stated proficiency
(defined as language in which they were comfortable designing and implementing whole programs).
Here, 19 of the 21 participants used Python, one used C++, and the final participant used JavaScript.

On average, participants took 12.23 minutes (sample standard deviation, sN = 3.98 minutes) to
complete the coding task, with a maximum session length of 20.80 minutes. This task completion
time is measured from the first line of code written for the task until the end of the allocated time.
During the coding tasks, Copilot showed participants a total of 1024 suggestions, out of which

133

they accepted 34.0%. The average acceptance rate for participants was 36.5% (averaging over the
acceptance rate of each participant), and the median was 33.8% with a standard error of 11.9%; the
minimum acceptance rate was 14.3%, and the maximum was 60.7%. In the labeling phase, each
participant labeled an average of 149.38 (sN = 57.43) segments with CUPS, resulting in a total of
3137 CUPS labels. The participants used the ‘custom state’ text field only three times total, twice a
participant wrote ‘write a few letters and expect suggestion’ which can be considered as ‘prompt
crafting’ and once a participant wrote ‘I was expecting the function skeleton to show up[..]’ which
was mapped to ’waiting for suggestion’. The IDK button was used a total of 353 times, this sums
to 3137 CUPS + 353 IDKs = 3490 labels, the majority of its use was from two participants (244
times) where the video recording was not clear enough during consecutive spans, and was used by
only five other participants more than once with the majority of the use also being due to the video
not being clear or the segment being too short. The IDK segments represent 6.5% of total session
time across all participants, mostly contributed by five participants. Therefore, we remove the IDK
segments from the analysis and do not attempt to re-label them. Note that while the "Not Thinking"
state is part of the CUPS taxonomy, we do not observe any occurrence of the state in the user study.
This is because participants were being observed while coding and did not have any interruptions
that may occur during real-life coding, such as checking emails or drinking coffee. The activities
outside of coding are represented by the not thinking state.

Together, these CUPS labels enable us to investigate various questions about programmer-
CodeRec interaction systematically, such as exploring which activities programmers perform most
frequently and how they spend most of their time. We study programmer-CodeRec interaction
using the data derived from this study in the following Section 6.6 and derive various insights and
interventions.

6.6 Understanding Programmer Behavior with CUPS: Main
Results

The study in the previous section allows us to collect telemetry with CUPS labels for each
telemetry segment. We now analyze the collected data and highlight suggestions for 1) metrics to
measure the programmer-CodeRec interaction, 2) design improvements for the Copilot interface,
and finally 3) insights into programmer behavior. Each subsection below presents a specific result
or analysis which can be read independently. Code and Data is available at 5.

5https://github.com/microsoft/coderec_programming_states

134

https://github.com/microsoft/coderec_programming_states

1 21 30 41 68 77 86 12
1

9 59 64 77 10
7

11
1

13
3

14
1

17
0

1 56 65 72 79 88 10
3

10
7

11
7

12
4

13
1

13
7

14
2

17
5

1 32 93 11
9

14
3

17
2

1 8 21 25 44 58 11
4

12
1

14
5

15
8

16
4

Time (s)

Suggestion Rejected Suggestion Accepted Suggestion Shown

(a) Individual CUPS timelines for 5/21 study participants for the first 180 secs show the richness of and
variance in programmer-CodeRec interaction.

0
5

10
15

20
25

%
of

S
es

si
on

sp
en

t
in

S
ta

te

N
ot

T
hi

nk
in

g
(S

)

W
ri

ti
ng

D
oc

um
en

ta
ti

on
(B

)

D
ef

er
ri

ng
T

ho
ug

ht
F

or
L

at
er

(D
)

E
di

ti
ng

W
ri

tt
en

C
od

e(
C

)

W
ai

ti
ng

F
or

S
ug

ge
st

io
n

(G
)

L
oo

ki
ng

up
D

oc
um

en
ta

ti
on

(N
)

P
ro

m
pt

C
ra

ft
in

g
(V

)

E
dd

it
in

g
L

as
t

S
ug

ge
st

io
n

(X
)

D
eb

ug
gi

ng
/T

es
ti

ng
C

od
e

(H
)

T
hi

nk
in

g
A

b
ou

t
N

ew
C

od
e

T
o

W
ri

te
(F

)

W
ri

ti
ng

N
ew

F
un

ct
io

na
lit

y
(Z

)

T
hi

nk
in

g/
V

er
if

yi
ng

S
ug

ge
st

io
n

(A
)

(b) The percentage of total session time
spent in each state during a coding session.
On average, verifying Copilot suggestions
occupies a large portion of session time.

Debugging/Testing
Code

Deferring Thought
For Later

Edditing Last
Suggestion

Editing Written
Code

Looking up
Documentation

Not Thinking

Prompt Crafting

Thinking About
New Code To Write

Thinking/Verifying
Suggestion

Waiting For
Suggestion

Writing
Documentation

Writing New
Functionality

(c) CUPS diagram showing 12 CUPS states (nodes) and
the transitions among the states (arcs). Transitions occur
when a suggestion is shown, accepted, or rejected. We hide
self-transitions and low-probability transitions for simplicity

Figure 6.5: Visualization of CUPS labels from our study as timelines, a histogram, and a state
machine.

135

6.6.1 Aggregated Time Spent in Various CUPSs

In Figure 6.5a, we visualize the coding sessions of individual participants as CUPS timelines,
where each telemetry segment is labeled with its CUPS label. At first glance, CUPS timelines show
the richness in patterns of interaction with Copilot, as well as the variance in usage patterns across
settings and people. CUPS timelines allow us to inspect individual behaviors and identify patterns,
which we later aggregate to form general insights into user behavior.

Figure 6.5b shows the average time spent in each state as a percentage normalized to a user’s
session duration.

Metric Suggestion: Time spent in CUPS states as a high-level diagnosis of the interaction

For example, time spent ‘Waiting For Suggestion’ (4.2%, sN = 4.46) measures the real
impact of latency, and time spent ‘Editing Last Suggestion’ provides feedback on the quality
of suggestions.

We find that averaged across all users, the ‘verifying suggestion’ state takes up the most time
at 22.4% (sN = 12.97), it is the top state for 6 participants and in the top 3 states for 14 out of 21
participants taking up at least 10% of session time for all but one participant. Notably, this is a new
programmer task introduced by Copilot. The second-lengthiest state is writing new functionality’
14.05% (sN = 8.36), all but 6 participants spend more than 9% of session time in this state.

More generally, the states that are specific to interaction with Copilot include: ‘Verifying
Suggestions’, ‘Deferring Thought for Later’, ‘Waiting for Suggestion’, ‘Prompt Crafting’, and
‘Editing Suggestion’. We found that the total time participants spend in these states is 51.5 %
(sN = 19.3) of the average session duration. In fact, half of the participants spend more than 47%
of their session in these Copilot states, and all participants spend more than 21% of their time in
these states.

By Programmer Expertise and Copilot Experience. We investigate if there are any differences
in how programmers interacted with Copilot based on their programming expertise and their previous
experience with Copilot. First, we split participants based on whether they have professional
programming experience of more than 6 years (10 out of 21) and who have less than 6 years (11
out of 21). We notice the acceptance rate for those with substantial programming experience is
30.0% ± 14.5 while for those without is 37.6% ± 14.6. Second, we split participants based on
whether they had used Copilot previously (10 out of 21) and those who had never used it before (11
out of 21). The acceptance rate for those who have previously used Copilot is 37.6 % ± 15.3, and
for those who have not, it is 29.3 ± 13.7. Due to the limited number of participants, these results
are not sufficient to determine the influence of programmer experience or Copilot experience on

136

behavior. We also include in Appendix a breakdown of programmer behavior by task solved.

6.6.2 Patterns in Behavior as Transitions Between CUPS States

To understand if there was a pattern in participant behavior, we modeled transitions between
two states as a state machine. We refer to the state machine-based model of programmer behavior as
a CUPS diagram. In contrast to the timelines in Figure 6.5a, which visualize state transitions with
changes of colors, the CUPS diagram Figure 6.5c explicitly visualizes transitions using directed
edges, where the thickness of arrows is proportional to the likelihood of transition. For simplicity,
Figure 6.5c only shows transitions with an average probability higher than 0.17 (90th quantile,
selected for graph visibility).

The transitions in Figure 6.5c revealed many expected patterns. For example, one of the most
likely transitions (excluding self-transitions from the diagram), ‘Prompt Crafting 0.54−−→ Verifying
Suggestion’ showed that when programmers were engineering prompts, they were then likely
to immediately transition to verifying the resultant suggestions (probability of 0.54). Likewise,
Another probable transition was ‘Deferring Thought 0.54−−→Verifying Suggestion’, indicating that if a
programmer previously deferred their thought for an accepted suggestion, they would, with
high probability, return to verify that suggestion. Stated differently: deference incurs verification
dept, and this debt often “catches up” with the programmer. Finally, the single-most probable
transition, ‘Writing New Functionality 0.59−−→ Verifying Suggestion’, echos the observation from the
previous section, indicating that programmers often see suggestions while writing code (rather than
prompt crafting), then spend time verifying it. If suggestions are unhelpful, they could easily be
seen as interrupting the flow of writing.

The CUPS diagram also revealed some unexpected transitions. Notably, the second-most proba-
ble transition from the ‘Prompt Crafting’ state is ‘Prompt Crafting 0.25−−→ Waiting for Suggestion’.
This potentially reveals an unexpected and unnecessary delay and is a possible target for refinement
(e.g., by reducing latency in Copilot). Importantly, each of these transitions occurs with a probability
that is much higher than the lower bound/uniform baseline probability of transitioning to a random
state in the CUPS diagram (1/12=0.083). In fact, when we compute the entropy rate (a measure
of randomness) of the resulting Markov Chain [199] from the CUPS diagram we obtain a rate of
2.24; if the transitions were completely random the rate would be 3.58, and if the transitions were
deterministic then the rate is 0.

137

Interface Design Suggestion: Identifying current CUPS state can help serve programmer
needs

If we are able to know the current programmer CUPS state during a coding session we can
better serve the programmer, for example,

• If the programmer is observed to have been deferring their thought on the last few
suggestions, group successive Copilot suggestions and display them together.

• If the programmer is waiting for the suggestion, we can prioritize resources for them at
that moment

• While a user is prompt crafting, Copilot suggestions are often ignored and may be
distracting; however, after a user is done with their prompt, they may expect high-quality
suggestions. We could suppress suggestions during prompt crafting, but after the prompt
crafting process is done, display multiple suggestions to the user and encourage them to
browse through them.

Future work can, for example, realize these design suggestions by allowing custom keyboard
macros for the programmer to signal their current CUPS state, or a more automated approach
by predicting their CUPS state.

We also investigated longer patterns in state transitions by searching for the most common
sequence of states of varying lengths. We achieved this by searching over all possible segment
n-grams and counting their occurrence over all sessions. We analyzed patterns in two ways: in
Figure 6.6a, we merged consecutive segments that have the same state label into a single state (thus
removing self-transitions), and in Figure 6.6b we looked at n-grams in the user timelines (including
self-transitions) where we include both states and participants actions (shown, accepted and rejected).
The most common pattern (#1) in Figure 6.6a was a cycle where programmers repeatedly wrote
new code functionality and then spent time verifying shown suggestions, indicating a new mode for
programmers to solve coding tasks. At the same time, when we look at pattern (#B) in Figure 6.6b,
which takes a closer look into when programmers are writing new functionality, we observe that
they don’t stop to verify suggestions and reject them as they continue to write. Other long patterns
include (#2) (also shown as pattern #D), where programmers repeatedly accepted successive
Copilot suggestions after verifying each of them. Finally, we observe in (#3) and (#A) programmers
iterating on the prompt for Copilot until they obtain the suggestion they want. We elaborate more
on this in the next subsection.

138

#1.

Writing new functionality Verifying suggestion Verifying suggestionWriting new functionality

n=31

#2.

Waiting for suggestion Verifying suggestion Verifying suggestionWaiting for suggestion

#3.

Prompt Crafting Verifying suggestion Verifying suggestionPrompt Crafting

#4.

Deferring Thought Verifying suggestion

5.

Thinking about code to write Writing new functionality

n=104 n=52

n=12n=49 n=19

n=11n=52 n=14

n=33 n=37

(a) Common patterns of transitions between distinct states. In individual participant timelines, the patterns
visually appear as a change of color, but here we measure how often they appear across all participants (n=).

#A.

#B.

#C.

#D.

shown shown

shown

shown

shownaccepted accepted

accepted

rejected rejected

rejected rejected

n=88

n=56

n=43

n=16

Writing new functionality

Prompt Crafting

Verifying suggestion Verifying suggestion

Verifying suggestion Verifying suggestion

Prompt CraftingPrompt Crafting

Writing new functionalityWriting new functionality

Waiting for suggestion

(b) Common patterns of states and actions (including self transitions). Each pattern is extracted from user
timelines and we count how often it appears in total (n=)

Figure 6.6: Myriad of CUPS patterns observed in our study.

139

6.6.3 Programmers Often Defer Thought About Suggestions

class LogisticRegression:
def __init__(self,X,y,alpha=0.01):

self.X = X
self.y = y
self.alpha = alpha
self.theta = np.zeros(X.shape[1])
self.cost = []
self.theta_history = [

class LogisticRegression:
def __init__(self,X,y,alpha=0.01):

self.X = X
self.y = y
self.alpha = alpha
self.theta = np.zeros(X.shape[1])
self.cost = []
self.theta_history = [

self.theta
]
self.cost_history = [

self.cost()

class LogisticRegression:
def __init__(self,X,y,alpha=0.01):

self.X = X
self.y = y
self.alpha = alpha
self.theta = np.zeros(X.shape[1])
self.cost = []
self.theta_history = [

self.theta
]
self.cost_history = [

self.cost()
]

def cost(self):
return (-1 / len(self.y)) *

np.sum(self.y * np.log(self.hypothesis())) + …

4 single line
Accepts
later

3 single line
Accepts
later

Open left brace [indicates
that suggestion is not a
complete code segment

Suggestion references a
method cost() not yet
implemented

The function cost references a
method hypothesis() not yet
implemented

Figure 6.7: Illustration of a coding scenario with Copilot where the programmer may choose to
defer verifying a suggestion (‘Deferring Thought’). Here, Copilot suggests an implementation for
the class Logistic Regression line-by-line (illustrated from left to right). And the programmer
may need to defer verifying intermediate suggestion of self.cost (middle screenshot) because the
method that implemented it is suggested later (right screenshot).

An interesting CUPS state is that of ’Deferring Thought About A Suggestion’. This is illustrated
in Figure 6.7, where programmers accept a suggestion or series of suggestions without sufficiently
verifying them beforehand. This occurs either because programmers wish to see the suggestion
with code highlighting, or because they want to see where Copilot suggestions leads to. Figure 6.5b
shows that programmers do in fact, frequently defer thought– we counted 61 states labeled as such.
What drives the programmer to defer their thought about a suggestion rather than immediately
verifying it? We initially conjectured that the act of deferring may be partially explained by the
length of the suggestions. So, we compared the number of characters and the number of lines for
suggestions depending on the programmer’s state. We find that there is no statistical difference
according to a two-sample independent t-test (t = −0.58, p = 0.56)6 in the average number of
characters between deferred thought and suggestions (75.81 compared to 69.06) that were verified
previously. The same holds for the average number of lines.

However, when we look at the likelihood of editing an accepted suggestion, we find that it is
0.18 if it was verified before, but it is 0.53 if it was deferred. This difference is significant according
to a chi-square test (χ2 = 29.2, p = 0). In fact, the programmer CUPS state has a big effect on their
future actions. In Table 6.3, we show the probability of the programmer accepting a suggestion
given the CUPS state the programmer was in while the suggestion is being shown. We also show
the probability of the programmer accepting a suggestion as a function of the CUPS state the
programmer was in just before the suggestion was displayed. We observe there is a big variation

6All p-values reported are corrected for multiple hypothesis testing with the Benjamin/Hochberg procedure with
α = 0.05.

140

in the suggestion acceptance rate by the CUPS state. For example, if the programmer was in the
"Deferring Thought For Later" state, the probability of acceptance is 0.98 ± 0.02 compared to when
a programmer is thinking about new code to write, where the probability is 0.12 ± 0.04. Note that
the average probability of accepting a suggestion was 0.34.

What are the programmers doing before they accept a suggestion? We found that the average
probability of accepting a suggestion was 0.34. However, we observed that when the programmer
was verifying a suggestion their likelihood of accepting was 0.70. In contrast, if the programmer
was thinking about new code to write, the probability dropped to 0.20. This difference was
statistically significant according to Pearson’s chi-squared test (χ2 = 12.25, p = 0). Conversely,
when programmers are engineering prompts, the likelihood of accepting a suggestion drops to 0.16.
One reason for this might be that programmers want to write the prompt on their own without
suggestions, and Copilot interrupts them. We show the full results in the Appendix for the other
states.

Table 6.3: We compute the percentage of suggestions accepted given the programmer was in the
CUPS state while the suggestion is being shown (% Ss accepted while shown). We compute
the percentage of suggestions accepted given the programmer was in the CUPS state before the
suggestion is shown, the state just before the one where the suggestion is shown (% Ss accepted
before S is shown). We compute the standard error for the acceptance rate (%).

State % Ss accepted while shown % Ss accepted before S is shown

Thinking/Verifying Suggestion 0.80 ± 0.02 0.56 ± 0.04
Prompt Crafting 0.11 ± 0.02 0.22 ±0.03
Looking up Documentation 0.00 ± 0.00 0.29 ± 0.17
Writing New Functionality 0.07 ± 0.02 0.31 ± 0.03
Thinking About New Code To Write 0.12 ± 0.04 0.27 ± 0.04
Editing Last Suggestion 0.03 ± 0.03 0.23 ± 0.05
Waiting For Suggestion 0.10 ± 0.05 0.58 ± 0.06
Editing Written Code 0.07 ± 0.04 0.17 ± 0.07
Writing Documentation 0.40 ± 0.22 0.33 ± 0.19
Debugging/Testing Code 0.23 ± 0.07 0.26 ± 0.06
Deferring Thought For Later 0.98 ± 0.02 1.0 ± 0.0

6.6.4 CUPS Attributes Significantly More Time Verifying Suggestions than
Simpler Metrics

We observed that programmers continued verifying the suggestions after they accepted them.
This happens by definition for ’deferred thought’ states before accepting suggestions, but we find
it also happens when programmers verify the suggestion before accepting it and this leads to a

141

significant increase in the total time verifying suggestions. First, when participants defer their
thought about a suggestion they accepted, 53.2% of the time they verify the suggestion immediately
afterward. When we adjust for the post-hoc time spent verifying, we compute a mean time of
15.21 (sN = 20.68) seconds of verification and a median time of 6.48s. This is nearly a five-times
increase in average time and a three-time increase in median time for the pre-adjustment scores of
3.25 (sN = 3.33) mean and 1.99 median time. These results are illustrated in Figure 6.8 and is a
statistically significant increase according to a two-sample paired t-test (t = −4.88, p = 1.33 ·10−5).
This phenomenon also occurs when programmers are in a ’Thinking/Verifying Suggestion’ state
before accepting a suggestion where 19% of the time they posthoc verify the suggestion which
increases total verification time from 3.96 (sN = 8.63) to 7.03 (sN = 14.43) on average which is
statistically significant (t = −4.17, p = 5e−5). On the other hand, programmers often have to wait
for suggestions to show up due to either latency or Copilot not kicking in to provide a suggestion. If
we sum the time between when a suggestion is shown and the programmer accepts or rejects this in
addition to the time they spend waiting for the suggestion (this is indicated in the state ’Waiting
for suggestion’), then we get an increase from 6.11s (sN = 15.52) to 6.51s (sN = 15.61) which
is minor on average but adds 2.5 seconds of delay when programmers have to explicitly wait for
suggestions.

Metric Suggestion: Adjust verification time metrics and acceptance rates to include
suggestions that are verified after acceptance

The previous analysis showed that the time to accept a suggestion cannot be simply measured
as the time spent from the instance a suggestion is shown until a suggestion is accepted– this
misses the time programmers spend verifying a suggestion after acceptance. Similarly, since
deferring thought is a frequent behavior observed, it leads to an inflation of acceptance rates.
We recommend using measures such as the fraction of suggestions accepted that survive in the
codebase after a certain time period (e.g. 10 minutes).

6.6.5 Insights About Prompt Crafting

Insights about Prompt Crafting. We take a closer look into how participants craft prompts to
obtain Copilot suggestions. Our first insight is that programmers consistently ignore suggestions

while prompt crafting. Among 234 suggestions that were shown while participants were actively

prompt crafting, defined as a suggestion where a programmer was prompt crafting while the

suggestion was being displayed, only 10.7% were accepted. We hypothesize this behavior could
be due to programmers wanting to craft the prompt in their own language rather than relying on

142

2.5s ± 3.1,
occurs only 16%

22.5s ± 21.2
occurs only 53%

Waiting for
suggestion

Deferring Thought Verifying suggestion

3.3s ± 3.3

shown accepted

15.21s ± 20.68

Pre-adjustment Adjustment

Figure 6.8: Illustration of one of the adjustments required for measuring the total time a programmer
spends to verify a suggestion. Here, when a programmer defers thought for a suggestion, they spend
time verifying it after accepting it and may also have to wait beforehand for the suggestion to be
shown.

Copilot to help them prompt craft. This also indicates that Copilot is unnecessarily interrupting
participants’ prompt crafting attempts.

However, programmers often iterate on their prompts until they obtain the suggestion they desire
and often do not abandon prompt crafting without accepting a suggestion. We define a prompt
crafting attempt as a segment of the coding session that starts from when the programmer first enters
the CUPS "prompt crafting" state and lasts until the programmer enters a non-Copilot centric state 7.
We count 59 such prompt crafting attempts wherein 81.3% of them a suggestion is accepted.

Prompt crafting is often an iterative process, where the programmer writes an initial prompt,
observes the resulting suggestion, then iterates on the prompt by adding additional information
about the desired code or by rewording the prompt. For example, P5 wanted to retrieve the index of
the maximum element in a correlation matrix and wrote this initial prompt and got the suggestion:

print the indices of the max value excluding 1 in corr

maxval = np.amax(corr, axis=1) # Copilot suggestion

This code snipped returns the value of the maximum value rather than the index, so it was not
accepted by the participant. They then re-wrote the prompt to be:

print the two features most correlated

Copilot suggestion

maxcor = np.where(corr == np.amax(corr))

and accepted the above suggestion.
Finally, we observe that there are three main ways participants craft prompts:

1) through writing a single line comment with natural language instructions, although the comment
may resemble pseudo-code [173], an example:

7The non-Copilot centric states are: ’Writing New Functionality,’ ’Editing Written Code,”Thinking About New
Code To Write,”DebuggingTesting Code,’ ’Looking up Documentation,’ ’Writing Documentation.’

143

impute missing values in X_train as average of column

where missinggn value is -1

2) through writing a docstring for the function:

def distance(self, query):

'''

query: single numpy arrray

return: l2 distances from query to the vectors

'''

and finally, 3) through writing function signatures (or variable names) e.g., writing "def add_time"
then pausing to wait for a suggestion. Often, programmers combine the three prompt crafting
strategies to get better code suggestions.

6.6.6 Post-Study Survey Answers

After completing the study, participants were asked to complete a survey based on the productiv-
ity survey in [170], which focuses on the SPACE framework of programmer productivity [181]. We
also included a free-form text box at the end of the survey where participants can add any additional
thoughts about their experience using Copilot for the task assigned. The full results of the survey
can be found in the Appendix.

We found that 6/21 participants agreed or strongly agreed with the statement that they were
concerned about the quality of their code when using Copilot. Participant #9 noted, "I worry
that bugs can sneak-in and go unnoticed, especially in weakly-dynamically typed languages" and
Participant #19 noted that "My main concern with Copilot is whether it is teaching me to do things
the wrong (or old) way (e.g. showing me a Python 3.6 way instead of a Python 3.10 way and so
on)". On the other hand, 14/21 participants agreed that using Copilot helped them stay in flow and
spend less time searching for information. Participant #3 noted that "Collaborating with Copilot felt
like I was googling what I wanted to do except instead of going through several stack overflow links
that Google would show me, the code just appeared inline saving me time and keeping my flow
of coding" and Participant #6 "Going into the exercise I genuinely thought there would be a point
when I pull up stack overflow. Because that’s the kind of tiny stuff you sometimes need to search for.
With copilot, it really reduced my worry of doing so." Finally, 17/21 participants agreed with the
statement that by using Copilot, they completed the task faster, and 16/21 participants agreed that
they were more productive using Copilot. These survey responses highlight the costs and benefits
of writing code with Copilot and reinforcing existing results in [170].

144

6.7 Limitations

The observations from our study are limited by several decisions that we made. First, our
participants solved time-limited coding tasks that were provided by us instead of real tasks they
may perform in the real world. Furthermore, the selection of tasks was limited and did not cover
all tasks programmers might perform. We mostly conducted experiments with Python with only
two participants using C++ and JavaScript when Copilot is capable of completing suggestions
for myriads of other languages. We also made an assumption about the granularity of telemetry
where each segment at most contained one state when, in a more general setting, programmers may
perform multiple activities within a single segment. We also did not capture longer-term costs of
interacting, e.g., from accepting code with security vulnerabilities or longer horizon costs. To this
end, security vulnerabilities and possible overreliance issues [200]–[202], are important areas of
research that we do not address in this chapter.

145

146

Chapter 7

When to Show a Suggestion? Integrating
Human Feedback in AI-Assisted
Programming

Acknowledgements of Co-authors. This chapter is based on the published work in [203]. I
would like to thank my co-authors, Gagan Bansal, Adam Fourney, and Eric Horvitz, for their help.

7.1 Introduction

import numpy as np
class LogisticRegression:

def __init(self):
self.w = None
self.b = None

| # implement the predict
method

suggestion

prompt

Pr(accept|P) = 0.5

…

shown accepted

t1 t2

A1 A2

(S1,P1)

Telemetry Data of
Suggestions and
Actions

Stage 2 Acceptance Model

Pr(accept|P,S) = 0.1

Stage 1 Acceptance Model

Hide Suggestion

Train models using
Telemetry Feedback

CDHF

programmer

Copilot

Figure 7.1: Operating mode of CodeRec inside Visual Studio Code showing how CDHF influences
the interaction by selectively hiding certain suggestions. Data collected by the interaction is stored
in telemetry and used to train CDHF to create a feedback loop.

Code-recommendation systems are powered by large language models (LLMs) such as GPT

147

that are trained on standard language modeling objectives using the Common Crawl data [204], and
then fine-tuned on public code repositories [169]. The public roll-out of the code recommendation
models has attracted millions of programmers, enabling a unique opportunity to leverage the data of
programmers interacting with the models. In this work, we study GitHub’s Copilot which is used by
millions of programmers [7]. For a set of programmers within our organization who consented to
have their usage data collected, we collected telemetry data of Copilot suggestions, along with their
associated prompts and the programmer’s action to accept or reject the suggestions. We leverage
this telemetry data to design mechanisms and interventions that can improve the interaction between
programmers and CodeRec.

Specifically, we seek to identify when to show a code suggestion. We first define the expected
utility of a displaying a suggestion, a value that measures the impact of showing a suggestion on
the overall time to write a specific piece of code. This value provides an optimal criterion for
when to show a suggestion. However, computing the utility of suggestions is difficult and not
currently feasible. Instead, we rely on the result that suggestion utility increases the more likely a
suggestion is to be accepted and decreases with increasing latency to generate a suggestion—two
quantities we can reliably estimate and control, respectively. We develop a procedure, named
conditional suggestion display from human feedback (CDHF) which guides whether to show or
hide suggestions. At each pause in keystrokes, CDHF decides whether if it is worthwhile to generate
a suggestion and if the programmer is likely to accept the generated suggestion. CDHF employs a
cascade of models that predict acceptance of suggestions. The optimization procedure guarantees
that any suggestion that was hidden (or not generated) would have been rejected if it was shown
with a probability of at least p, where, e.g., p can be 0.99.

Using data from programming sessions of 535 programmers with feedback on 168k suggestions,
we perform a retrospective evaluation of CDHF. We show that we can hide 25% of suggestions
that were shown while guaranteeing that 95% of them would have been rejected. Further, we
avoid generating 13% of these suggestions. The results show that CDHF would increase the
acceptance rate by 7.2%. The procedure allows for controlling a trade-off that balances the number
of suggestions that are displayed with increases in latency, controlled with a parameter that halts
generations. We note that a minimal version of CDHF has been implemented in a newer version of
GitHub Copilot [205] following the presentation of earlier versions of our work to GitHub. Our
work provides a roadmap for building and fielding better forms of suggestion display.

Beyond decisions about displaying recommendations, we examine the feasibility of using
suggestion acceptance as a reward signal to select which suggestions to display and show how
partial completions can be prioritized over the generations of complete code segments. While we
investigate Copilot in this work, we believe our insights extend to other AI models and non-code-
based tasks.

148

7.2 Related Work

The closest related work to ours is the procedure to selectively hide suggestions in [206]
(quality estimation before completion, QEBC). In distinction to this work, QEBC [206] is not
based on human feedback of accepting suggestions but rather is based on constructing a learned
estimator of the quality of code completions from datasets of paired code segments and model
completions. Our CDHF estimator uses real programmer behavior data and is based on data from
a code-recommendation system in current use (Copilot) as opposed to custom-trained ones in
[206]. Different metrics and datasets have been proposed to evaluate the performance of code
recommendation models, but these typically assess how well the model can complete code in an
offline setting without developer input rather than evaluating how well it assists programmers in situ
[5], [168], [170], [177]. Integrating human preferences when training machine learning models has
long been studied in the literature [207], [208]. In particular, reinforcement learning from human
feedback (RLHF) has been used to improve LLMs used as conversational chatbots [209], [210],
notably ChatGPT [211]. In contrast, CDHF uses human feedback collected organically through
telemetry. The objective is fast inference to reduce latency and hiding suggestions rather than
updating the LLM. Further related work can be found in the appendix. Our theoretical formulations
build on earlier work on harnessing machine learning and utility to guide AI versus human-powered
contributions in human-AI interactive settings [212], which we apply to our setting.

7.3 Problem Setting

CodeRec. We consider CodeRec, which is a commonly used and exemplary tool of AI-powered
code recommendations used by millions of programmers [7]. CodeRec is powered by a large
language model (LLM) to provide code suggestions to programmers within an IDE whenever the
programmer pauses their typing. An illustration of CodeRec suggesting code as an inline, single-
colored snippet is displayed in Figure 7.1. The programmer can choose to accept this suggestion
via a keyboard shortcut (e.g., tab).

AI-Assisted Programming. We attempt a mathematical formalization of programming with the
help of a code recommendation model such as CodeRec, which we dub AI-Assisted Programming.
The programmer wishes to complete a certain task T , for example, to implement a logistic regression
classifier. As the programmer writes code starting from time 0, CodeRec attempts to provide code
suggestions at different times. At a given time t, CodeRec1 uses a portion of the code Xt to generate
a prompt Pt, which is passed to the underlying LLM. CodeRec then generates a code suggestion

1We discuss implementation details of Copilot at a high level; our work is based on the August 2022 version of
Copilot.

149

…

shown

t0=0

accepted shown rejected

t1 t2 t3 t4

A1 A2 A3 A4

(S1,P1) (S3,P3)(S1,P1) (S3,P3)

Figure 7.2: Schematic of telemetry with CodeRec as a timeline. For a given coding session, the
telemetry contains a sequence of timestamps and actions with associated prompts and suggestions.

St, which is shown to the user at time t + τ where τ accounts for the LLM latency. Once the
suggestion is shown, the programmer must make an action at a certain time t′ > t+ τ , the action is
At′ ∈ { accept, reject}; the reject action is triggered implicitly by continuing to type.

Telemetry. CodeRec logs aspects of the interactions via telemetry, which we leverage in
our study. We refer to event positions drawn from a discretization of times spanning a session.
Specifically, whenever a suggestion is shown, accepted or rejected, we record a tuple to the telemetry
database, (ti, Ai, Pi, Si), where ti represents the within-session timestamp of the ith event (t0 = 0),
Ai details the action taken (augmented to include ‘shown’), and Pi and Si capture the prompt
and suggestion, respectively. Figure 7.2 displays a portion of timeline built from telemetry data
drawn from a coding session. Telemetry data from each programmer is stored in a database
D = {(ti, Ai, Pi, Si)}ni=1 and represents a discretized representation of the interaction and provides
the human feedback data we leverage.

Programmer State. When faced with a suggestion, is a programmer looking and verifying it,
or rather engaged in other activities such as thinking about their code or looking at documentation?
The state of the programmer is important in the expected value of the recommendation. However,
we cannot answer this question as the telemetry does not capture the programmer’s activities and
thinking between two consecutive time stamps ti and ti+1, i.e., the space in between the arrows
in Figure 7.2 which we refer to as the programmer’s latent state. In the previous Chapter 6, we
describe a study of 21 participants focused on gaining an understanding of sequences of states
visited during the writing of code, including latent states. The work employed videos and interviews
to acquire information about the latent states. We showed in the work that including information
about latent states can significantly boost predictions about accepting recommendations, motivating
the collection of data beyond that captured in telemetry.

In this work, we endeavor to understand the impact of the programmer latent state denoted as ϕt

150

and its effect on our ability to leverage the telemetry (human feedback data) to improve AI-code
recommendation systems.

7.4 Theoretical Formulation of Suggestion Utility

A critical design question in programmer-CodeRec interaction is when should the model inject
a suggestion into the IDE? The version of that we CodeRec provides a suggestion when it detects
a brief pause in the IDE. Alternative interaction designs would require the programmer to ask
for suggestions using a keyboard shortcut or to enable a mix of human and machine initiatives.
Requiring the programmer to ask may lead to sub-optimal interactions because its success would
rely on programmers having an accurate mental model of CodeRec abilities [179] which can require
long-term interactions with the model [16] or training as in Chapter 4. Second, requiring an explicit
invocation can disrupt the natural flow of programming, breaking a state of flow achieved during
intensive focus [213]. Designs requiring user initiative as well as those automatically displaying
content can burden users with interruptions that decrease task performance [214], [215]. We note
that such costs can be inferred and accounted for formally in utility-theoretic systems [216], [217].

Ideally, CodeRec should display suggestions when the suggestions provide net value to program-
mers. For example, consider the task of completing a function and the time taken to complete it as
a proxy for the total effort. If the expected time required to verify and edit CodeRec’s suggestion
exceeds the time to write the code by themselves (counterfactual cost), then CodeRec should not
show its suggestions. Conversely, if the expected time to write exceeds the time to verify and edit, it
may be useful to display the suggestion. We now formalize this intuition with a utility-theoretic
formulation and, in the next section, discuss the methodology to make it practical.

Programmer Model. At a given time instance time during a session, CodeRec extracts a
prompt P from the code file X and generates a code suggestion S. If this suggestion is shown, we
assume the programmer spends an expected time E[verification|X,S, ϕ] to verify it and accepts the
suggestion with probability P(A = accept|X,S, ϕ). Once a suggestion is accepted, the programmer
may further edit the suggestion with expected time E[editing|X,S, ϕ,A = accept] to achieve their
task. On the other hand, if the programmer rejects the suggestion, they would have to spend time
writing code that achieves their task, denoted by E[writing|X,S,A = reject]. Thus, the total time
incurred with showing a suggestion, denoted as E[S shown|X,S, ϕ], is:

E[S shown|X,ϕ] = E[verification|X,S, ϕ] (7.1)

+ P(A = accept|X,S, ϕ) · E[editing|X,S, ϕ,A = accept]

+ P(A = reject|X,S, ϕ) · E[writing|X,S, ϕ,A = reject]

151

While editing and writing, CodeRec may further make more suggestions; thus, the editing time
and writing time should include interactions with future suggestions. Now, on the other hand, if
the suggestion is not shown, the programmer will spend time E[writing|X] writing code for their
task. We also need to factor in latency, the time cost τ to compute a suggestion once we decide to
create a suggestion. Latency is only experienced by the programmer if their latent state ϕ includes
expecting a suggestion and waiting for it. If the programmer is expecting a suggestion, we should
add τ to the total time when we show a suggestion; otherwise, the programmer continues to write
code not expecting a suggestion.

We now define suggestion utility, a value that indicates the change in programmers’ coding time
due to showing the suggestion.

Definition 4 (Suggestion Utility). The time impact δ, denoted as the suggestion utility, of showing
S versus not showing is defined as:

δ = E[writing|X,ϕ]︸ ︷︷ ︸
S not shown

−E[S shown|X,ϕ]︸ ︷︷ ︸
S shown

−E[τ |X,ϕ]︸ ︷︷ ︸
latency

(7.2)

From the above, a suggestion S at a given time should only be shown if δ > 0 (Equation 7.2),
where the programmer will spend less time to achieve their task if it is shown. An optimal scheme
to know when to show suggestions would be to generate suggestions as frequently as possible,
compute their suggestion utility δ, and display them if δ > 0.

Feasibility of Estimating δ. Per Equation (7.1), computing suggestion utility requires the
computation of four quantities: (1) the expected time spent verifying a suggestion, (2) the expected
time editing a suggestion, (3) the expected time to write a segment of code and (4) the probability
of accepting a suggestion. One can attempt to build an estimator for (1), by predicting from the
prompt and suggestion the time spent verifying a suggestion i which would be ti+1 − ti using
standard regression estimators. Unfortunately, using the same features and the dataset detailed in
our experimental section, our best estimator is only able to achieve an R2 = 0.13, which is not much
better than a naive median time estimate. This may be due to the high variance and unobserved
confounders governing verification time. Estimating editing and verification time (quantities 2 and
3 above) is only more complex and challenging. Thus, we restrict our methodology to seeing when
we can evaluate δ using only our estimator for the probability of acceptance (4).

Learning Programmer’s Acceptance Decisions. The full conditional for the probability that
the programmer accepts a suggestion is P(A = accept|X,S, ϕ). Given the telemetry, we can only
compute P(A = accept|X,S) where the programmer’s latent state cannot be observed. Using
standard calibrated classification methods, we can estimate the probability P(A = accept|X,S) by
using the actions Ai as the labels. We show that a simple mechanism of thresholding the estimated

152

1.00.0

P(A|X,S, ϕ)

P*

write

Not Shown
Ti

m
e

verify

edit

verify

Figure 7.3: Graphical depiction of analysis of Proposition 6 when the latency is zero. The y-axis
shows total time and the x-axis is the programmer’s probability of accepting P(A = accept|X,S, ϕ).
At probability P∗, showing and not showing the suggestion have equal time cost.

probability that the programmer accepts a suggestion is equivalent under certain assumptions to
checking if δ < 0:

Proposition 6. Under assumptions that the programmer spends more time writing code when

they reject a suggestion compared to when they accept a suggestion and edit it, given specific

code, suggestion, and latent state (X,S, ϕ), if the programmer’s probability of accepting P(A =

accept|X,S, ϕ) a suggestion is below P∗, which is defined as:

P∗ =
E[verification] + E[latency]

E[writing|A = reject]− E[editing|A = accept]
(7.3)

then the suggestion should not be shown. Note that P∗ is defined as a function P∗(X,S, ϕ) evaluated

pointwise.

The formal statement and proof are available in the appendix. The above proposition shows that
comparing the probability of acceptance to P∗ can guide when to show the suggestion. We provide
a graphical view of the analysis in Figure 7.3, in the spirit of related analyses on utility-guided
interactive interfaces [212]. Practically, if we compare the probability of acceptance to a constant
lower bound of P∗, we can guarantee that we hide suggestions only when δ < 0.

Effect of Programmer Latent State. As mentioned previously, the programmer’s latent state
is not available via telemetry. Thus, we can only provide predictions of P(A = accept|X,S)
versus explicit consideration of the latent state, P(A = accept|X,S, ϕ). In the earlier Chapter

153

6, we collected telemetry data of 21 programmers performing various tasks and had participants
retrospectively label the telemetry with their latent state from a set of twelve unique states (1096
suggestions). We use this data to build predictive models with and without the latent state using
the same methodology in the experiments section. Using a leave-one-out programmer evaluation
strategy, the model without the latent state achieves accuracy 61.9± 1.9 while the model with the
latent state achieves 83.6 ± 2.4, a statistically significant difference according to a paired t-test
(p = 6.9e− 7, t = 7.11); a similar result occurs when comparing areas under the receiver operating
characteristic curve (AUC). These results highlights an opportunity to gather external data beyond
telemetry to build such predictive models and indicates that acceptance may not simply be a property
of suggestions and code context.

7.5 Conditional Suggestion Display From Human Feedback

In this section, we describe the CDHF method that can be implemented using telemetry data
to identify when to show suggestions, as illustrated in Figure 7.1. We note from Equation (7.3)
that the higher the probability of accepting the suggestion and the lower the latency to generate the
suggestion, the more likely the suggestion is useful (δ > 0). Our proposed approach is as follows:
Each time the programmer pauses typing, we decide using a predictor whether to show a suggestion.
Crucially, we do this using a two-stage scheme to avoid generating suggestions when we know the
programmer would reject them.

Display Decision. Let m(X,S) be a binary predictor that denotes whether, at a given moment in
the code X , we should show the suggestion S; we call this the display decision. If m(X,S) = 1, we
display the suggestion; otherwise, we do not. The most straightforward way to build such a function
m is to estimate the programmer’s probability of accepting the suggestion: P(A = accept)|X,S)
and then threshold the probability so that suggestions that fall below a probability t are hidden.
However, this will lead us to generate suggestions including those that will never be shown, thus
wasting computing resources. We propose to decompose the function m so that we first decide
using only the code whether we can make the display decision without generating the suggestion
S with a function r(X). If r(X) = 1, we make the display decision using a stage 1 model m1(X)

without generating the suggestion, otherwise if r(X) = 0 we generate the suggestion S and make
the display decision with a stage 2 model m2(X,S) as follows:

m(X,S) = r(X) ·m1(X) + (1− r(X)) ·m2(X,S) (7.4)

This formulation allows us to avoid generating suggestions when we can make an accurate display
decision in advance of knowing the suggestion. For example, in a setting where the programmer

154

has rejected the last 30 suggestions, they are unlikely to accept the next suggestion.
Objective and Guarantees. Our objective in learning the functions r,m1,m2 is to (1) hide as

many suggestions that would have been rejected and (2) maximize the number of display decisions
made without generating the suggestion to reduce latency on the system. There is an inherent
trade-off between these two objectives as making decisions with access to the suggestions would be
more accurate. Moreover, we want to make sure we do not hide suggestions that would have been
accepted, as this would limit the usefulness of the code assistant. Therefore, we impose a constraint
that, whenever we hide a suggestion, there is at least a probability p it would have been rejected, a
constraint on the true negative rate (TNR). We translate the objectives and the constraint into the
following optimization problem:

max
r,m1,m2

λE[1−m(X,S)] + (1− λ)E[r(x)] (7.5)

s.t. P(A = reject|m(X,S) = 0) ≥ p (7.6)

Parameterization. We can control the trade-off between the two objectives with a hyperparam-
eter λ ∈ [0, 1]. Equivalently, instead of controlling the trade-off with λ, we can set a constraint on
E[r(x)] := R and set λ = 1. We propose an intuitive post-hoc procedure to solve the optimization
problem (7.5): We first learn calibrated estimators of the probability of accepting suggestions
P̂(A = accept|X,S) (with suggestion) and P̂(A = accept|X) (without suggestion). We then
parameterize:

m1(X) = IP̂(A=accept|X)≥t1
,m2(X) = IP̂(A=accept|X,S)≥t2

and r(X) = IH(P̂(A=accept|X))≤tr
(H(.) is Shannon’s Entropy), and optimize jointly over the tuple

of thresholds t1, t2, tr over [0, 1]3. This is a fairly efficient procedure that can achieve good results.
We note that this procedure saves latency indirectly by reducing the number of LLM calls across
the session and across different users, and that we should still enable the user to see the suggestion
with a special keyboard shortcut to override the display decisions. In the next section, we perform a
retrospective evaluation of CDHF.

7.6 Experiments

Our main aim with experiments is to understand how well the CDHF procedure can make
display decisions in a retrospective evaluation. Code is available2 and additional details can be
found in the appendix.

2https://github.com/microsoft/coderec_programming_states

155

https://github.com/microsoft/coderec_programming_states

class LogisticRegression:
def __init__(self, X, y, alpha=0.01, max_iter=1000):

self.X = X
self.y = y
self.alpha = alpha
self.max_iter = max_iter
self.theta = np.zeros(X.shape[1])
self.costs = []
self.theta_history = [

self.theta
]
self.cost_history = [

self.cost()
]

def cost(self):
return np.sum(self.y * np.log(self.h())

session

prompt

suggestion

Probability of programmer accepting suggestion

29
1

0.95
3
0
…
1

427
4
1
1
1
1
1

5.7
-8.3
1.3
1.5
…

9,4
-2.3

Doc length
Event index

Previous
5 actions

length
n of lines
LLM confidence
n of tokens

1 if ‘def’
…
1 if ‘return

Prompt
Embedding
(dim=768)

29
1

0.95

1
…
0

length
n of lines
n of tokens

1 if ‘def’
…
1 if ‘return

-3.1
4.2
1.0
4.5
…

1.2
3.5

Suggestion
Embedding
(dim=768)

codeBERTa

Figure 7.4: Features used to build action prediction model in Experiments, including from the
suggestion, prompt, and session.

7.6.1 Dataset and Feature Engineering.

Dataset. To build and evaluate our methods, we extract a large number of telemetry logs from
CodeRec users (mostly software engineers and researchers) at Microsoft. Programmers provided
consent for the use of their data, and its use was approved by Microsoft’s ethics advisory board.
Specifically, for a two-week time period, we extracted all the telemetry events for 535 users who
coded in Python. This totals 4,749 coding sessions, where a session is defined as a continuous
sequence of user actions with at most 30 minutes between consecutive events. These sessions are
from real-world usage of CodeRec for daily tasks of the software engineers and researchers, the data
was collected prior to the inception of our work. On average, each user contributes nine sessions,
with each session lasting 21 minutes (median, 12 minutes). Sessions contain an average of 97 events
(show, accept, and reject). This totals to almost 1,675 hours of coding with 168,807 shown events
and 33,523 accept events, yielding an acceptance rate of 21.4% (not meant to represent Copilot’s
average acceptance rate).

Model Features. The telemetry dataset D described above contains for each user a list of
events in each of their coding sessions; we denote Di,j to be the list of events for the j’th session
of the i’th user. The dataset D = {Di,j} contains for each user i and session j, a list of events
occurring in the corresponding coding session. We extract only the accept and reject events, as well

156

as prompt and session features of the corresponding shown events. For each prompt and suggestion
pair, we extract: the programmer id as one hot vector, the length of the document, the previous five
actions, suggestion features (e.g., suggestion length), previous features of the last five suggestions
shown, the confidence reported by CodeRec, an embedding using codeBERTa [218] of prompt
and suggestion, presence of Python keywords (e.g., import, def try, etc.), and the output of the
Tree-sitter Parser [219]. Finally, we extract features of the prompt, including its embedding, textual
features, and parser outputs. Figure 7.4 summarizes the feature engineering. It is crucial to note
that the features do not leak any information about future events and can be computed as soon as a
suggestion is generated by CodeRec. For the first stage model (m1) in CDHF, suggestion features
are omitted while we include all features for the second stage model (m2). This feature engineering
incorporates past actions and suggestions that the programmer has seen and allows us to use regular
ML algorithms instead of time-series methods.

7.6.2 Model Evaluation

Before we evaluate CDHF, we perform an evaluation of the programmer acceptance model
m2(X,S). We split the telemetry dataset in a 70:10:20 split for training, validation, and testing
respectively. Importantly, we do this split in two ways: (1) by randomly splitting over programmers
so that no single programmer is shared across the three splits and, (2) by randomly splitting over
sessions so that users in training can also be seen in testing to allow for personalization.

Results. We evaluate different standard machine learning models on this task and find that the
best-performing model is eXtreme Gradient Boosting (XGB) [220]. When we split across users,
XGB is able to achieve 81.1% (95% CI 80.7-81.6) accuracy and, more importantly, 0.780 (95%
CI 0.775-0.786) AUC. In the appendix, we show metrics for different models evaluated, including
deep networks. The results indicate that the model is able to distinguish between suggestions that
are likely to be accepted versus those likely to be rejected. The model is also well calibrated: the
expected calibration error is 0.10 [221].

We note a significant increase in AUC when we allow for personalization: including programmer
ID as a feature and splitting across sessions, this leads to an AUC of 0.795 (95% CI 0.789-0.801), a
significant increase (basis of m2 model). When we remove suggestion features from the model, the
resulting model (basis of m1 model) achieves an AUC of 0.631 (95% CI 0.624-0.638). The time to
compute the features needed for the models and performing inference on a single data point can take
10ms with a GPU and less than 1ms on a CPU when omitting embeddings, in addition to latency of
sending and receiving information between server and client. In the appendix, we show results for
different ablation of model features, sample complexity plots, and feature importance plots.

157

7.6.3 Retrospective Evaluation of CDHF

We train the models m1 and m2 using the training set per the previous subsection. We set the
thresholds t1, t2, tr on the validation set for CDHF and evaluate on the test set.

Results. In Figure 7.5, we vary the desired TNR rate (accuracy when a suggestion is hidden)
and plot how many suggestions we can hide from those previously displayed while guaranteeing
the desired TNR rate. We show the behavior of the CDHF method with different λ values, or,
equivalently, with different constraints on how often them1 model (first stage) is used: R := E[r(x)].
To illustrate what CDHF can accomplish, we can hide 25.3% of suggestions that were shown
while guaranteeing that 94.7% of them would have been rejected and avoid generating 12.9% of
the suggestions. If we have no concerns for latency, we can hide 52.9% of suggestions while
guaranteeing that 91.3% of them would have been rejected. Figure 7.5 shows how we can achieve
different trade-offs by selecting an operating point on any given curve. CDHF is able to satisfy the
constraint of FNR on the test set with a violation of at most 0.3% i.e., a guarantee of 95% FNR on
the validation set equates to 94.7-95.3% on the test set.

Counterfactual Increase in Acceptance Rate. On the test set, the acceptance rate of sugges-
tions is 22.5%. Retrospectively, if we had used CDHF to hide 52.9% of suggestions, we could
compute a counterfactual acceptance rate. The counterfactual acceptance rate can be computed as:
S accepted·(1−% hidden·(1−TNR))

S shown·% not hidden = 22.5(1−0.529·0.087)
0.471

= 45.6%, which is a 23.1 point increase, a value we
expect to be an overestimate.

Discussion and Limitations. The retrospective evaluation shows that CDHF has promise
in reducing developer time spent verifying suggestions or waiting for suggestions. We note that
our evaluation is retrospective. Although GitHub has shown that conditional suggestion filters
similar to CDHF increase the acceptance rate of suggestions, a user study is required to verify
whether the method makes programmers more productive. As Goodhart’s law states, once a metric
becomes a target, it ceases to become a good measure; acceptance rate is no exception. Moreover, if
CDHF is not trained with sufficient data that captures the programmer’s use cases, it can make the
programming experience worse by hiding useful suggestions. Moreover, a rejected suggestion may
still be useful, which we do not account for here. The optimization problem in (7.5) is amenable to
procedures inspired by learning to defer [26] that can outperform the post-hoc procedure proposed.
Finally, one issue with the scheme presented is that we might hide suggestions that programmers
would reject but might want to see anyway. We could remedy this issue by building a secondary
model that predicts whether the user would request a suggestion at a given point in time. If that
model predicts a high likelihood of a user request, then we should show the suggestion regardless of
the likelihood of acceptance. However, if we predict a low likelihood of request, we should then use
the scheme presented in this chapter as is.

158

78 80 82 84 86 88 90 92 94 96 98 100

Accuracy When Hiding Suggestions (TNR)

0

10

20

30

40

50

60

70

80

90

100

S
u

gg
es

ti
on

s
H

id
d

en
(%

)

CDHF with R=0.0 (m2 only)

CDHF with R=0.1

CDHF with R=0.25

CDHF with R=0.5

CDHF with R=0.75

CDHF with R=0.9

CDHF with R=1.0 (m1 only)

Figure 7.5: Evaluation of CDHF for selectively hiding suggestions. For a given constraint on
FNR (accuracy when a suggestion is hidden) on the x-axis, we show on the y-axis the fraction
of the total suggestions we can hide while guaranteeing the desired FNR. We plot these curves
while varying how often the decision is made generating suggestions (R:=E[r(x)], when R=0, we
generate the suggestion then decide to hide or not, when R=1, we decide to hide without knowing
the suggestion).

159

7.7 Which Suggestion to Show?

We focus in this study on the problem of when to display suggestions. We did not tackle the
question of which suggestions to display among a candidate set. Given access to telemetry data,
which consists of contextualized suggestions with accept and reject signals, one can interpret an
accept as the act of preferring a suggestion over no suggestion. It is reasonable to harness the
telemetry data as a preference dataset and build a reward model of programmers’ preferences, which
would be equivalent to estimating the programmer’s acceptance probability P̂(A = accept|X,S).
Thus, a reasonable procedure is to take a candidate set of suggestions S and display the suggestion
that maximizes the probability of acceptance across the set; this is essentially the best-of-n baseline
approach in RLHF [222].

Potential Bias Towards Short Suggestions. We hypothesize that such a ranking scheme would
not be productive and can lead to poor suggestions of short length. Our rationale is the following:
suppose the LLM is able to generate a multi-line suggestion S for a user query that approximately
matches what the user desires. To maximize the probability that the user accepts the suggestion, it
would be advantageous to split the suggestion S line-by-line and display it to the user step-by-step.
The reasoning is that it is more likely for the first line of S to be correct rather than all of S being
correct, hence being more likely to be accepted.

Experiment. To test this hypothesis, we perform the following experiment: We learn a model
m of suggestion acceptance given only the prompt and suggestion embeddings with no session
features on the telemetry data from the previous section. We then leverage the HumanEval dataset
[169], which consists of 164 Python problems, each with an associated docstring and a ground truth
function body solution. Solutions have at least two lines and seven median lines of code. Given the
model m and each problem, we let the prompt be the concatenation of the docstring and the first k
lines of the solution and let the candidate set of suggestions S be as follows: Given the solution S
represented as an array of tokens of length N , we let S = {S[: i]}Ni=1. For example, if the solution
S was "return np.mean(x)", then S = {"return", "return np.mean(x)"}.

Results. We vary the parameter k in the set {0, 1, 2, 3} so that the prompt goes from the
docstring to include lines of the solution. When k = 0, the normalized length of the highest-rated
suggestion, according to the model across the 164 problems, is almost uniform across [0, 1], a
Kolmogorov–Smirnov test compared to the uniform distribution has a p-value of 0.53 (KS=0.06).
Optimally, we want the normalized length to cluster around 1 to include the full solution. However,
when k > 0, meaning that the prompt includes lines of code, we find that for over 60 of the 164
problems, the highest-scored suggestion lies in [0, 0.2], and, for at least 40 problems, it is the first
token. This provides some evidence that optimizing for acceptance can be biased toward shorter
suggestions since the highest-ranked suggestion is often in the first few lines of the solution.

160

Limitations. However, there are important limitations in our experiment. First, the model m is
only trained on Copilot suggestions. Thus, the bias towards short suggestions can be due in part to
Copilot potentially showing short suggestions. Maximizing acceptance would not alleviate such a
bias. Second, while the use of embeddings of the suggestions for the reward model led to accurate
predictions of accepts (AUC=0.701), they might be biased in some ways as compared to alliance on
fine-tuning the language model.

161

162

Chapter 8

Conclusion

In this thesis, we explored three different settings for human-AI collaboration and proposed
approaches to improve the performance of the human-AI team in each of them. We first studied
conditional delegation with AI in Part I, where we train a secondary AI called rejector that decides
on each instance who between the AI and the human should predict. In Chapter 2, we analyzed
the gap in performance between jointly learning a classifier and rejector, and a staged learning
approach. We further analyzed a popular approach to jointly learning to defer, namely consistent
surrogate loss functions. To that end, we proposed a novel family of surrogates that generalizes
prior work and gives criteria, namely the surrogate excess-risk bound for evaluating surrogates.
Driven by the limited availability of human data, we sought to design active learning schemes
that require a minimal amount of labeled data to learn a classifier-rejector pair. Following that in
Chapter 3, we showed that properly learning halfspaces with deferral is computationally hard and
that existing approaches in the literature fail in this setting. Understanding the computational limits
of learning to defer led to the design of a new exact algorithm (the MILP) and a new surrogate
(RealizableSurrogate) that both obtain better empirical performance than existing surrogate
approaches.

Future work should try to instantiate members of the family of surrogate losses discovered
that minimize the excess-risk bound and provide improved empirical performances. While our
active learning results hold for the realizable setting, we believe it is feasible to generalize to the
agnostic setting. Future work should also build and test practical active learning algorithms inspired
by our theoretical analysis. We studied two forms of classification consistency in Part I, general
classification consistency, and (M,R)-consistency. However, no single surrogate loss satisfied
both notions of consistency at the same time; it remains an open problem to find a surrogate that
satisfies both notions of consistency. We studied the offline version of the learning to defer problems
in our work, and extending our work to the online learning setting is of interest. In the online
setting, when not deferring, the classifier can no longer obtain information on the expert’s behavior.

163

Furthermore, when deferring, there might be natural reasons why the classifier may not receive
feedback on its predictions: at the extreme, we have a lack of feedback when we defer and when we
don’t. This causes us to inherit all the problems that may occur when deploying a classifier to a
new setting due to environmental shifts in addition to possibly changing human decision-makers.
Moreover, the deferral system may cause the human’s abilities to change over time as the human
no longer observes examples in the distribution that are not deferred. Future work should attempt
to make deferral systems more robust to distribution changes in either the human’s abilities or the
environment.

In Part II, we studied the AI-assisted decision making setting where AI provides advice to a
decision maker. Our work provides a general recipe for onboarding human decision makers to
AI systems. In Chapter 4 we proposes an exemplar based teaching strategy where humans are
asked to predict on real examples and then with the help of similar examples and top features for
the neighborhood, the human derives an explanation for the AI performance. The initial study
on question answering we performed showed that 50% of participants derived a correct mental
model of the AI and had improved performance on the task. Following that in Chapter 5, we
introduced IntegrAI, a novel algorithmic framework designed to enhance human-AI collaboration
and automate the process of describing the AI performance. At the core of our framework is the
AI-integration function, which represents the human’s mental model to either rely on, ignore, or
collaborate with AI on a task-specific basis. The first step of our algorithm is to collect data about
human performance on the task and about their prior expectations and reliance on the AI model.
The objective is to teach the human in order to correct their prior about how to cooperate with the
AI. The second step is to discover regions of the data as local neighborhoods in an embedding space
where the human prior is incorrect. The third step is to describe the regions with natural language
and label them with the correct action the human should take in that region: either use or ignore the
AI. Finally, in the onboarding phase, we teach these regions to the participants using our proposed
method. We found that on an object detection task our onboarding procedure significantly improved
performance and that in another question-answering task, it did not have a significant effect

There are many directions for future work to explore both on the algorithmic side and on the
behavioral side. For instance, our region discovery and region description algorithms are decoupled,
ideally we can jointly discover and describe regions so that only regions with interpretable language
descriptions are found. Second, our user studies only handled the case when the human can either
use or ignore the AI, collaboration with the AI was implicitly done by the participants but it was
not captured in our data, future work can build interfaces and procedures to handle the case when
R = 2. In our user studies, we only allowed participants to discuss how they used the AI after the
study was completed, we did not collect enough data about user behavior and user learning, future
work could explore more qualitative insights about onboarding.

164

Finally, in Part III, we studied more interactive forms of human-AI collaboration, notably in
writing code with large language models. In Chapter 6, we developed and proposed a taxonomy of
common programmer activities (CUPS) and combined it with real-time telemetry data to profile the
interaction. At present, CUPS contains 12 mutually unique activities that programmers perform
between consecutive Copilot actions (e.g., such as accepting, rejecting, and viewing suggestions).
We gathered real-world instance data of CUPS by conducting a user study with 21 programmers
within our organization, where they solved coding tasks with Copilot and retrospectively labeled
CUPS for their coding session. We collected over 3137 instances of CUPS and analyzed them to
generate CUPS timelines that show individual behavior and CUPS diagrams that show aggregate
insights into the behavior of our participants. We also studied the time spent in these states, patterns
in user behavior, and better estimates of the cost (in terms of time) of interacting with Copilot. Our
studies with CUPS labels revealed that when solving a coding task with Copilot, programmers
may spend a large fraction of total session time (34.3%) on just double-checking and editing
Copilot suggestions, and spend more than half of the task time on Copilot related activities, together
indicating that introducing Copilot into an IDE can significantly change user behavior.

We only investigated a limited number of programmer behaviors using the CUPS timelines
and diagrams. There are many other aspects future work could investigate. To enable our insights
derived in Section 6.6, we need to be able to identify the current programmer’s CUPS state. An
avenue towards that is building predictive models using labeled telemetry data that is collected
from our user study. Ideally, we can leverage this labeled data to further label telemetry data from
other coding sessions or other participants so that we can perform such analyses more broadly.
Specifically, the input to such a model would be the current session context, for example, whether
the programmer accepted the last suggestion, the current suggestion being surfaced, and the current
prompt. We can leverage supervised learning methods to build such a model from collected data.
Such models would need to run in real-time during programming and predict at each instance of
time the current user CUPS state. This would enable the design suggestions proposed to serve
to compute various metrics proposed. For example, if the model predicts that the programmer
is deferring thought about a suggestion, we can group suggestions together to display them to
the programmer. In the Appendix, we built small predictive models of programmers CUPS state
using labeled study data. However, the current amount of labeled data is not sufficient to build
highly accurate models. There are multiple avenues to improve the performance of these models:
1) simply collecting a larger amount of labeled data which would be expensive, 2) using methods
from semi-supervised learning that leverage unlabeled telemetry to increase sample efficiency
[223], and 3) collecting data beyond what is captured from telemetry such as video footage of the
programmer screen (e.g. cursor movement) to be able to better predict with the same amount of data.
Another opportunity is to apply the CUPS diagram to compare different user groups and compare

165

how individuals differ from an average user. Does the nature of inefficiencies differ between user
groups? Can we personalize interventions? Finally, we could also compare how the CUPS diagram
evolves over time for the same set of users. We only studied the behavior of programmers with the
current version of Copilot. Future work could study how behavior differs with different versions of
Copilot– especially when versions use different models. In the extreme, we could study behavior
when Copilot is turned off. The latter could help assess the counterfactual cost of completing
the task without AI assistance and help establish whether and where Copilot suggestions add net
value for programmers. For example, maybe the system did not add enough value because the
programmer kept getting into prompt crafting rabbit holes instead of moving on and completing
the functions manually or with the assistance of web search. Likewise, if developers create a faster
version of Copilot with less latency, the CUPS diagram could be used to establish whether it leads
to reductions in time spent in the "Waiting for Suggestion" state. Since programmers’ value may be
multi-dimensional, how can we go beyond code correctness and measure added value for users?
If Copilot improves productivity, which aspects were improved? Conversely, if it didn’t, where
are the efficiencies? One option is to conduct a new study where we compare the CUPS diagram
with Copilot assistance with a counterfactual condition where the programmers don’t have access to
Copilot. And use the two diagrams to determine where the system adds value or could have added
value. For example, the analysis might reveal that some code snippets are too hard for programmers
to complete by themselves but much faster with Copilot because the cost of double-checking and
editing the suggestion is much less than the cost of spending effort on it by themselves. Conversely,
the analysis might reveal that a new intervention for helping engineer prompts greatly reduced
people’s times in “Prompt Crafting”. Another option is to design offline metrics based on these
insights that developers can use during the model selection and training phase. For example, given
that programmers spent a large fraction of the time verifying suggestions, offline metrics that can
estimate this (e.g., based on code length and complexity) may be useful indicators of which models
developers should select for deployment. Future work will aim to test the effectiveness of these
design suggestions as well. We also hope our methodology is applied to study other forms of
AI assistants that are rapidly being deployed. For example, one can make an analogous CUPS
taxonomy for writing assistants for creative writers or lawyers.

In Chapter 7, we proposed a strategy to decide when to display code suggestions in AI-assisted
programming to improve time efficiency inspired by the insights in Chapter 6. This strategy was
based on a utility theory formulation and employs a two-stage procedure using a predictive model
of suggestion acceptance. A retrospective evaluation showed that we can reduce the number of
suggestions and thus programmers’ time without sacrificing the utility of CodeRec. However, a
prospective study that evaluates the impact of CodeRec with and without CDHF could help with
conclusive evaluation and is the basis of future work. Moreover, future work will attempt to directly

166

estimate Proposition 1 leveraging improved methods. We don’t believe that CDHF can introduce
negative consequences beyond what CodeRec introduces to the programmer as it functions as a
filtering mechanism for unhelpful suggestions. Moreover, we believe that the CDHF methodology
can be employed in a wide range of streaming human-AI collaboration tasks such as assisted
writing. Future work will incorporate the latent state of the programmer into the predictive models,
investigate how to rank suggestions using the models from CDHF, and validate the efficacy of
CDHF in user studies.

167

168

Appendix A

Additional Information for Chapter 2

Notations

We employ the notations LµX

def , L
µXµY |X
def , LµXY M

def to indicate L0−1
def and stress on marginal, condi-

tional, and joint probability measures on X, Y, and M . We further use L
µXµY |X
0−1 to indicate zero-one

loss L0−1 and to represent the underlying probability measures on X and Y . The cardinality of a
set A is indicated by |A|. The notation for the set of numbers from 1 to K is: [K] = {1, · · · , K}.

A.1 Proof of Theorem 1

We first introduce some useful lemmas as below. In Lemma 1, we show that there exists a pair
of hypothesis classes (H,R) such that for all non-atomic measures on X the deferral loss takes a
fixed value. In Lemma 2, we use the aforementioned lemma to show that the difference of deferral
losses for all two pairs of classifier/rejector (h1, r1) and (h2, r2) is bounded by the difference of two
deferral losses with atomic measures on X . In Lemma 3, we upper-bound the difference of two
deferral losses for pairs of classifier/rejector that are obtained by staged and joint learning and on
hypothesis classes that are defined in Lemma 1. Such upper-bound is in terms of expected loss of
an optimal classifier on a certain hypothesis class. In Lemma 4, we further calculate the optimal
expected loss on such classes. In Lemma 5, we show that on a set of events with size n, we could
find a subset with size a and probability at most a

n
. Next, we uses these lemmas in the main proof of

theorem.

Lemma 1. For a probability measure µX with no atomic component on X , hypothesis classH such

that for every h ∈ H, we have |{x : h(x) = 1}| ≤ d(H), and hypothesis class R such that for

169

every r ∈ R, we have |{x : r(x) = 1}| ≤ d(R), for every choice of (h, r) ∈ H ×R, the loss

L0−1
def (h, r) = EX,Y,M [Ih(X)̸=Y Ir(X)=0 + IM ̸=Y Ir(X)=1],

takes a constant value.

Proof. Firstly, we know that

L0−1
def (h, r) = EX,Y,M [Ih(X) ̸=Y Ir(X)=0] + EX,Y,M [IM ̸=Y Ir(X)=1]. (A.1)

Since probability measure of the set {x : r(x) = 1} is zero in the absence of atomic components
in µX , one can show that P(r(X) = 1) = 0 (, and equivalently P(r(X) = 0) = 1). This fact
together with (A.1) concludes that

L0−1
def (h, r) = EX,Y [Ih(X)̸=Y]. (A.2)

Further, we have

EX,Y [Ih(X)̸=Y] = EX,Y [Ih(X)̸=Y |h(X) = 0]P(h(X) = 0) + EX,Y [Ih(X)̸=Y |h(X) = 1]P(h(X) = 1)

(A.3)
(a)
= EX,Y [IY=1], (A.4)

where (a) holds because probability measure of {x : h(x) = 1} is zero in the absence of atomic
components in the measure, that concludes P(h(X) = 0) = 1− P(h(X) = 1) = 1. The proof is
complete by (A.2) and (A.4).

Lemma 2. Let µX be a probability measure on X , and let H and R be hypothesis classes as in

Lemma 1. Further, let h1, h2 ∈ H and r1, r2 ∈ R. Then, we have

∣∣LµX

def (h1, r1)− LµX

def (h2, r2)
∣∣ ≤ ∣∣Lµd

def(h1, r1)− Lµd

def(h2, r2)
∣∣, (A.5)

where µd is pure atomic (discrete) probability measure on X .

Proof. We know that for probability measure µX , there exists p ∈ [0, 1] and probability measures
µd and µcs, such that

µX = pµd + (1− p)µcs, (A.6)

where µd is pure atomic and µcs has no atomic components. As a result, for every function

170

f(·) : X → R, we have

EX∼µX

[
f(X)

]
= pEx∼µd

[
f(X)

]
+ (1− p)Ex∼µd

[
f(X)

]
. (A.7)

With the same reasoning, we have

LµX

def (h, r) = pLµd

def(h, r) + (1− p)Lµcs

def (h, r). (A.8)

Next, we have

LµX

def (h1, r1)− LµX

def (h2, r2) = p
[
Lµd

def(h1, r1)− Lµd

def(h2, r2)
]
+ (1− p)

[
Lµcs

def (h1, r1)− Lµcs

def (h2, r2)
]

(A.9)
(a)
= p

[
Lµd

def(h1, r1)− Lµd

def(h2, r2)
]
, (A.10)

where (a) holds because of Lemma 1 that proves Lµcs

def (h, r) is constant for every (h, r) ∈ R×H.
Finally, using (A.10), and since p ∈ [0, 1], the proof is complete.

Lemma 3. Let supp(h) = maxS:∀x∈S,h(x)=1 |S| and Hd = {h : X → {0, 1} | supp(h) ≤ d}.
Further, let µX be an atomic measure on X , and define

ĥ := argmin
h∈Hd(H)

L
µXµY |X
0−1 (h), (A.11)

where

L
µXµY |X
0−1 (h) = EµXµY |X

[
Ih(X)̸=Y

]
, (A.12)

and

r̂ := argmin
r∈Hd(R)

LµX

def (ĥ, r). (A.13)

Further, define the pair (h∗, r∗) be the optimal classifier

(h∗, r∗) = argmin
(h,r)∈Hd(H)×Hd(R)

L
µXµY |X
def (h, r). (A.14)

Then, if d(H) ≥ d(R), we have

L
µXµY |X
def (ĥ, r̂)− LµXµY |X

def (h∗, r∗) ≤ min
h∈Hd(H)−d(R)

L
µ′
XµY |X

0−1 (h)− min
h∈Hd(H)

L
µ′
XµY |X

0−1 (h), (A.15)

171

where µ′
X is a purely atomic measure on X .

Proof. Firstly, using (A.13), we know that

L
µXµY |X
def (ĥ, r̂) ≤ L

µXµY |X
def (ĥ, r∗). (A.16)

Hence, we have

L
µXµY |X
def (ĥ, r̂)− LµXµY |X

def (h∗, r∗)︸ ︷︷ ︸
D

≤ L
µXµY |X
def (ĥ, r∗)− LµXµY |X

def (h∗, r∗) (A.17)

= E
[
Ir∗(X)=0Iĥ(X) ̸=Y

]
− E

[
Ir∗(X)=0Ih∗(X) ̸=Y

]
. (A.18)

Next, we form the conditional probability measure µ′
X = µX|r∗(X)=0. Therefore, using (A.18) we

have

D = P
(
r∗(X) = 0

)[
L
µ′
XµY |X

0−1 (ĥ)− Lµ′
XµY |X

0−1 (h∗)
]
. (A.19)

Next, since h∗ ∈ Hd(H), we know that

L
µ′
XµY |X

0−1 (h∗) ≥ min
h∈Hd(H)

L
µ′
XµY |X

0−1 (h). (A.20)

Moreover, we prove that

L
µ′
XµY |X

0−1 (ĥ) ≤ min
h∈Hd(H)−d(R)

L
µ′
XµY |X

0−1 (h). (A.21)

We prove this inequality by contradiction. If (A.21) is not correct, then there exists h′ ∈ Hd(H)−d(R),
such that

L
µ′
XµY |X

0−1 (h′) < L
µ′
XµY |X

0−1 (ĥ). (A.22)

Then, we define a function h′′ : X → {0, 1} as below

h′′(x) =

{
h′(x) r∗(x) = 0

ĥ(x) r∗(x) = 1
. (A.23)

Using the definition ofHd and since supp(r∗) ≤ d(R), one could show that h′′ ∈ Hd(H). Further-

172

more, we have

L
µXµY |X
0−1 (h′′) = P

(
r∗(X) = 0

)
L
µ′
XµY |X

0−1 (h′) + P
(
r∗(X) = 1

)
L
µX|r∗(X)=1µY |X
0−1 (ĥ) (A.24)

(a)
< P

(
r∗(X) = 0

)
L
µ′
XµY |X

0−1 (ĥ) + P
(
r∗(X) = 1

)
L
µX|r∗(X)=1µY |X
0−1 (ĥ) (A.25)

= L
µXµY |X
0−1 (ĥ), (A.26)

where (a) holds using (A.22), and (A.26) and ĥ ∈ Hd(H) is a contradiction of (A.11).
Using (A.19), (A.20), (A.21), and since P(r∗(X) = 0) ≤ 1, the proof is complete.

Lemma 4. Let µX be a purely atomic measure on X . Further, let {xi,1}i be the points in X for

which we have

P(Y = 1|X = xi,1) ≤ P(Y = 0|X = xi,1), (A.27)

and without loss of generality, assume that {xi,2} are the points for which we have

P(Y = 1|X = xi,2) > P(Y = 0|X = xi,2), (A.28)

and if i < j, then we have

P(X = xi,2)
[
P(Y = 1|X = xi,2)− P(Y = 0|X = xi,2)

]
≥ P(X = xj,2)

[
P(Y = 1|X = xj,2)− P(Y = 0|X = xj,2)

]
. (A.29)

Then, we have

min
h∈Hd

L
µXµY |X
0−1 (h) =

∑
i

P(xi,1)P(Y = 1|X = xi,1) +
d∑

i=1

P(xi,2)P(Y = 0|X = xi,2)

+
∞∑

i=d+1

P(xi,2)P(Y = 1|X = xi,2), (A.30)

whereHd is defined as in Lemma 3.

Proof. Let h∗ be the optimal classifier

h∗ = argmin
h∈Hd

L
µXµY |X
0−1 (h). (A.31)

Then, firstly, either h(xi,1) = 0, or P(Y = 1|X = xi,1) = P(Y = 0|X = xi,1) for all is. We
prove this claim by contradiction. If for some i, we have h(xi,1) = 1, and P(Y = 1|X = xi,1) ̸=

173

P(Y = 0|X = xi,1), then we could define h′ as

h′(x) =

{
h∗(x) x ̸= xi,1

0 x = xi,1

. (A.32)

One could see that h′ ∈ Hd, and that

L
µXµY |X
0−1 (h′)− LµXµY |X

0−1 (h∗) = P(xi,1)
[
P(Y = 1|X = xi,1)− P(Y = 0|X = xi,1)

] (a)
< 0, (A.33)

where (a) holds by (A.27) and since
[
P(Y = 1|X = xi,1) ̸= P(Y = 0|X = xi,1)

]
. The inequality

(A.33) has contradiction with (A.31).
As a result, by forming a set S of indices i for which h∗(xi,1) = 1, we have

min
h∈Hd

L
µXµY |X
0−1 (h) =

∑
i/∈S

P(xi,1)P(Y = 1|X = xi,1) +
∑
i∈S

P(xi,1)P(Y = 0|X = xi,1)

+
∑
i

P(xi,2)P(Y = 1|X = xi,2)

+ min
|S|

min
h∈Hd−|S|

∑
i

Ih(xi,2)=1P(xi,2)
[
P(Y = 0|X = xi,2)− P(Y = 1|X = xi,2)

]
(A.34)

(a)
=
∑
i

P(xi,1)P(Y = 1|X = xi,1) +
∑
i

P(xi,2)P(Y = 1|X = xi,2)

+ min
h∈Hd

∑
i

Ih(xi,2)=1P(xi,2)
[
P(Y = 0|X = xi,2)− P(Y = 1|X = xi,2)

]
(A.35)

(b)
=
∑
i

P(xi,1)P(Y = 1|X = xi,1) +
∑
i

P(xi,2)P(Y = 1|X = xi,2)

− max
P:|P|≤d

∑
i∈P

P(xi,2)
[
P(Y = 0|X = xi,2)− P(Y = 1|X = xi,2)

]
(A.36)

(c)
=
∑
i

P(xi,1)P(Y = 1|X = xi,1) +
∑
i

P(xi,2)P(Y = 1|X = xi,2)

+
d∑

i=1

P(xi,2)
[
P(Y = 0|X = xi,2)− P(Y = 1|X = xi,2)

]
, (A.37)

where (a) holds using that for i ∈ S we have
[
P(Y = 1|X = xi,1) = P(Y = 0|X = xi,1)

]
, and

sinceHd−|S| ⊆ Hd. Further, (b) holds by the definition ofHd in which supp(h) is assumed to be
bounded by d, and, (c) holds using the assumption (A.29). Finally, one could see that (A.37) is
equal to (A.30).

174

Lemma 5. For an ordered probability mass function

p1 ≤ p2 ≤ . . . ≤ pn, (A.38)

on a finite set, and for a ∈ {1, . . . , n}, we have

a∑
i=1

pi ≤
a

n
. (A.39)

Proof. We prove this lemma by contradiction. Assume that

a∑
i=1

pi > a. (A.40)

Since pis are ordered, one could see that for all sets St ⊆ {1, . . . , n} with |St| = a, we have∑
i∈St

pi >
a

n
. (A.41)

We know that
(
n
a

)
number of such distinct sets exist. Hence, we have

(an)∑
t=1

∑
i∈St

pi >
a

n

(
n

a

)
. (A.42)

Moreover, one could see that for each i, pi is repeated in LHS of (A.42) for
(
n−1
a−1

)
times. Conse-

quently, we see that

(
n− 1

a− 1

)
=

(n−1
a−1)∑
j=1

n∑
i=1

pi >
a

n

(
n

a

)
=

(
n− 1

a− 1

)
, (A.43)

that is a contradiction.

Proof of Theorem 1. We derive the lower- and upper-bound in two steps as follows.
• Lower-bound: To prove the lower-bound, for every hypothesis class H and R, we design a
distribution of (x, y,m) such that

L0−1
def (h

∗, r∗) = 0, (A.44)

175

while

L0−1
def (h̃, r̃) =

1

d(H) + 1
. (A.45)

For every d(H) + 1 samples X = (x1, . . . ,xd(H)+1), using the definition of VC dimension, we
can find labels y = (y1, . . . , yd(H)+1) such that no classifier h ∈ H can obtain them (i.e., there is no
h such that h(xi) = yi, for i ∈ [1 : d(H) + 1]). We set

p(xi) =

1+ϵ

d(H)+1
i = 1

1
d(H)+1

i ∈ [2 : d(H)]
1−ϵ

d(H)+1
i = d(H) + 1

, (A.46)

p(y|xi) =

{
1 y = yi,

0 o.w.
, (A.47)

and

p(m|xi, y) =

1 m = yi, i = 1,

1 m = 1− yi, i = d(H) + 1,

0 o.w.

. (A.48)

If we train ĥ and r̂ separately, it means

ĥ = argmin
h∈H

E(x,y,m)∼p[Ih(x)̸=y] (A.49)

= argmin
h∈H

1 + ϵ

d(H) + 1
Ih(x1)̸=y1 +

d(H)∑
i=2

1

d(H) + 1
Ih(xi)̸=yi +

1− ϵ
d(H) + 1

Ih(xd(H)+1)̸=yd(H)+1
. (A.50)

By the definition of y, we know that at least one of the terms in the RHS of (A.50) is non-zero.
In such case, for every subset T of [1 : d(H) + 1] of size d(H), one can find h ∈ H, such that
h(xi) = yi for i ∈ T . Hence, to minimize RHS of (A.50), we should have ĥ(xi) ̸= yi only for
i = d(H) + 1.

Further, r̂ is obtained as

r̂ = argmin
r∈R

E(x,y,m)∼p[Iĥ(x)̸=yIr(x)=0 + Im ̸=yIr(x)=1]. (A.51)

176

By the definition of p(m|y,x) and ĥ, we can rewrite (A.51) as

r̂ = argmin
r∈R

1− ϵ
d(H) + 1

Ir(xd+1)=1 +
1− ϵ

d(H) + 1
Ir(xd+1)=0. (A.52)

One can see that by any choice of r̂(·), we have

L0−1
def (ĥ, r̂) =

1− ϵ
d(H) + 1

. (A.53)

Finally, by the arbitrariness of ϵ, we have

L0−1
def (ĥ, r̂) =

1

d(H) + 1
. (A.54)

Further, we prove that L0−1
def (h

∗, r∗) = 0 by constructing h∗ and r∗. Since d(R) ≥ 2, we
can shatter {x1,xd(H)+1} by R, which means that there exists r∗ ∈ R such that r(x1) = 1, and
r(xd(H)+1) = 0. As a result, we have

L0−1
def (h

∗, r∗) =

d(H)∑
i=2

1

d(H) + 1
Ir∗(xi)=0Ih∗(xi)̸=yi +

1− ϵ
d(H) + 1

Ih∗(xd(H)+1) ̸=yi . (A.55)

Since VC dimension ofH is d(H), we can find h∗ such that all terms in the RHS of (A.55) is zero.
Hence, we have L0−1

def (h
∗, r∗) = 0, that completes the proof.

• Upper-bound: For d(H) ≤ d(R) the upper-bound is trivial. Then, we asssume d(H) > d(R).
Let DµXY M

be

DH,R
µXY M

= L
µXµY |X
def (ĥ, r̂)− LµXµY |X

def (h∗, r∗). (A.56)

To upper-bound infH,R supµXY M
DH,R

µXY M
, we find a pair of hypothesis classesH andR, such that

for all joint probability measures µXYM , we have DH,R
µXY M

≤ d(R)
d(H)

.
We choose H = Hd(H), and R = Hd(R), where Hd is defined in Lemma 3. One could check

that V C(H) = d(H), and V C(R) = d(R). Further, using Lemma 2, we know that DH,R
µXY M

is
bounded by DH,R

µ′
XY M

, in which µ′
X is purely atomic. For such measures, Lemma 3 proves that

DH,R
µXY M

≤ min
h∈Hd(H)−d(R)

L
µ′
XµY |X

0−1 (h)− min
h∈Hd(H)

L
µ′
XµY |X

0−1 (h). (A.57)

177

As a result, we have

sup
µXY M

DH,R
µXY M

≤ sup
µXY M :µX atomic

DH,R
µXY M

(A.58)

≤ sup
µXY :µX atomic

min
h∈Hd(H)−d(R)

L
µXµY |X
0−1 (h)− min

h∈Hd(H)

L
µXµY |X
0−1 (h). (A.59)

Next, by applying Lemma 4, we have

sup
µXY M

DH,R
µXY M

≤ sup
µXY :µX atomic

d(H)∑
i=d(H)−d(R)+2

P(xi,2)
[
P(Y = 1|X = xi,2)− P(Y = 0|X = xi,2)

]
,

(A.60)

where {xi,2}i are defined in Lemma 4.
Since P(Y = 1|X = xi,2) > P(Y = 0|X = xi,2) we could define

qi =
P(xi,2)

[
P(Y = 1|X = xi,2)− P(Y = 0|X = xi,2)

]∑d(H)
j=1 P(xj,2)

[
P(Y = 1|X = xj,2)− P(Y = 0|X = xj,2)

] . (A.61)

Then, by the definition of xi,2 we know that

q1 ≥ q2 ≥ . . . ≥ qd(H), (A.62)

and
∑d(H)

i=1 qi = 1. Hence, using Lemma 5 we have

∑d(H)
j=d(H)−d(R)+1 P(xj,2)

[
P(Y = 1|X = xj,2)− P(Y = 0|X = xj,2)

]∑d(H)
j=1 P(xj,2)

[
P(Y = 1|X = xj,2)− P(Y = 0|X = xj,2)

] =

d(H)∑
j=d(H)−d(R)+1

qi ≤
d(R)
d(H) ,

(A.63)

which concludes that

d(H)∑
j=d(H)−d(R)+1

P(xj,2)
[
P(Y = 1|X = xj,2)− P(Y = 0|X = xj,2)

]
≤ d(R)
d(H)

d(H)∑
j=1

P(xj,2)
[
P(Y = 1|X = xj,2)− P(Y = 0|X = xj,2)

]
≤ d(R)
d(H) . (A.64)

This, together with (A.60) completes the proof.

178

A.2 Proof of Proposition 1

We will prove the following proposition from which Proposition 1 can be obtained from by
re-arranging the terms.

Let Sl = {(xi, yi,mi)}nl
i=1 and Su = {(xi+nl

, yi+nl
)}nu

i=1 be two iid sample sets that are drawn
from the joint distribution PX,Y,M and are labeled and not labeled by human, respectively. Assume
that the optimal classifier h̄ = argmin

h
EX,Y∼µXY

[Ih(X) ̸=Y] is a member of H (i.e., realizability).

Then, with probability at least 1− δ we have

L0−1
def (r̂, ĥ) ≤ L0−1(h

∗, r∗) +Rnu(H)+ 2Rnl
(R)

+ 2min
{
P(M ̸= Y),RnlP(M ̸=Y)/2(R)

}
+ C

√
log 1/δ

nl

+ e−nlP(M ̸=Y)2/2

+C′

√
log 1/δ

nu

(A.65)

where h∗, r∗ = argmin(h,r)∈H×R L0−1(h, r).
Compare this to using only Sl to learn jointly h̃, r̃ we get [26]1:

L0−1
def (r̃, h̃) ≤ L0−1(h

∗, r∗) +Rnl
(H)+ 2Rnl

(R)

+ 2RnlP(M ̸=Y)/2(R) + C ′

√
log 1/δ

nl

+ P(M ̸=Y)
2

e−nP(M ̸=Y)/2 (A.66)

We start by introducing some useful lemmas, and then we continue with the proof of proposition.

Lemma 6. Let h∗(x) = argmin
h∈F

L0−1(h), where F is the class of all functions h(·) : X → Y . Then,

for every function r(·) : X → {0, 1}, we have

EX,Y

[
Ir(X)=0Ih∗(x)̸=y

]
≤ EX,Y

[
Ir(X)=0Ih(x) ̸=y

]
, (A.67)

for all function h(·) ∈ F .

Proof. Since h∗(·) could be any function, it is easy to show that for x ∈ D, where D = {x :

1Note that in [26], they set the notation in a manner that r ∈ {−1, 1}. Hence, Rn(R) under such notation is twice
as much as the case in this chapter (i.e., r ∈ {0, 1}). Here, we express their results with our choice of notation.

179

fX(x) ̸= 0}, we have

h∗(x) = argmin
v

EY |X=x[Iv ̸=Y], (A.68)

which concludes that

EY |X=x[Ih∗(x)̸=Y] ≤ EY |X=x[Ih(x)̸=Y], (A.69)

for all h(·) ∈ F . Hence, we have

EX,Y [Ir(X)=0Ih∗(X) ̸=Y] = EX

[
Ir(X)=0EY |X=x[Ih∗(x)̸=Y]

]
(A.70)

≤ EX

[
Ir(X)=0EY |X=x[Ih(x)̸=Y] (A.71)

= EX,Y [Ir(X)=0Ih(X) ̸=Y], (A.72)

which completes the proof.

Lemma 7. Let h∗(x) = argmin
h∈F

L0−1(h), where F is the class of all functions h(·) : X → Y . If we

have h∗(·) ∈ H, then there exists r ∈ R such that the pair (h∗, r) is a minimizer of the optimization

problem

argmin
(h,r)∈H×R

EX,Y,M

[
Ir(X)=0Ih(X)̸=Y + Ir(X)=1IM ̸=Y

]
. (A.73)

Proof. We prove this lemma by showing

min
(h,r)∈H×R

EX,Y,M

[
Ir(X)=0Ih(X)̸=Y + Ir(X)=1IM ̸=Y

]
= min

r∈R
EX,Y

[
Ir(X)=0Ih∗(X) ̸=Y + Ir(X)=1IM ̸=Y

]
. (A.74)

To show (A.74), using Lemma 6, we know that

min
(h,r)∈H×R

EX,Y,M

[
Ir(X)=0Ih(X) ̸=Y + Ir(X)=1IM ̸=Y

]
≥ min

(h,r)∈H×R
EX,Y,M [Ir(X)=0Ih∗(X)̸=Y] + EX,Y,M

[
Ir(X)=1IM ̸=Y

]
(A.75)

= min
r∈R

EX,Y,M [Ir(X)=0Ih∗(X) ̸=Y] + EX,Y,M

[
Ir(X)=1IM ̸=Y

]
. (A.76)

180

On the other hand, using the minimum property, one could show that

min
h∈H

min
r∈R

E
[
Ir(X)=0Ih(X)̸=Y + Ir(X)=1IM ̸=Y

]
≤ min

r∈R
EX,Y,M [Ir(X)=0Ih∗(X) ̸=Y] + EX,Y,M

[
Ir(X)=1IM ̸=Y

]
. (A.77)

Hence, using the lower- and upper-bound in (A.76) and (A.77), one could show (A.74) and complete
the proof.

Proof of Proposition 1. We prove (A.65) in three steps: (i) we bound the expected 0 − 1 loss of
the classifier ĥ when deferral does not happen by a function of the optimal expected 0 − 1 loss
in such cases, (ii) we bound the joint loss Ldef by a function of the optimal joint loss and the
Rademacher complexity of a hypothesis class, and (iii) we bound the Rademacher complexity of
the aforementioned class by the Rademacher complexity of the deferral hypothesis classR.
• Step (i): Using Rademacher inequality (Theorem 3.3 of [224]), with probability 1− δ/4, we have

L0−1(ĥ) ≤ L̂0−1(ĥ) + 2Rnu(G) +
√

log 4/δ

2nu

, (A.78)

where G = {x, y → Ih(x)̸=y : h ∈ H}.
Furthermore, using (A.78), since ĥ is an optimizer of the empirical loss inH and since h∗ ∈ H,

with probability 1− δ/2 we have

L0−1(ĥ) ≤ L̂0−1(h
∗) + 2Rnu(G) +

√
log 4/δ

2nu

(A.79)

(a)

≤ L0−1(h
∗) + 2Rnu(G) +

3
√
2

2

√
log 4/δ

nu

, (A.80)

where (a) holds using McDiarmid’s inequality, union bound, and by that the empirical loss is
2
n

-bounded difference.
Next, using Lemma 3.4 of [224] we know that Rn(G) = 1

2
Rn(H). By means of such identity

and (A.80), with probability 1− δ/2 we have

L0−1(ĥ) ≤ L0−1(h
∗) +Rn(H) +

3
√
2

2

√
log 4/δ

nu

. (A.81)

It remains to show that for each function r(·) : X → {0, 1}, we could bound EX,Y [Ir(X)=0Iĥ(X)̸=Y]

by sum of EX,Y [Ir(X)=0Ih∗(X)̸=Y] and a term that is corresponded to the concentration of measure

181

for large sample size. For proving such inequality, first we know that

L0−1(h
∗) = EX,Y

[
Ir(X)=0Ih∗(X)̸=Y

]
+ EX

[
Ir(X)=1EY |X=x[Ih∗(X)̸=Y]

]
(A.82)

(a)

≤ E
[
Ir(X)=0Ih∗(X)̸=Y

]
+ EX

[
Ir(X)=1EY |X=x[Ih(X)̸=Y]

]
, (A.83)

for all h ∈ F , where (a) is followed by Lemma 6.
Using (A.81) and (A.83), we have

EX,Y

[
Ir(X)=0Iĥ(X)̸=Y

]
+ EX

[
Ir(X)=1EY |X=x[Iĥ(X)̸=Y]

]
≤E
[
Ir(X)=0Ih∗(X)̸=Y

]
+ EX

[
Ir(X)=1EY |X=x[Iĥ(X)̸=Y]

]
+Rnu(H) +

3
√
2

2

√
log 4/δ

nu

, (A.84)

which concludes

EX,Y

[
Ir(X)=0Iĥ(X)̸=Y

]
≤E
[
Ir(X)=0Ih∗(X)̸=Y

]
+Rnu(H) +

3
√
2

2

√
log 4/δ

nu

. (A.85)

• Step (ii): We know that r̂(·) is obtained as

r̂(x) = argmin
r∈R

1

nl

nl∑
i=1

[
Ir(xi)=0Ih(xi)̸=yi + Ir(xi)=1Imi ̸=yi

]
, (A.86)

or equivalently,

r̂(x) = argmin
r∈R

1

nl

nl∑
i=1

[
Ir(xi)=0[Ih(xi)̸=yi − Imi ̸=yi]

]
. (A.87)

Hence, using Rademacher inequality (Theorem 3.3 of [224]), with probability 1− δ/4, we have

EX,Y,M

[
Ir̂(X)=0[Iĥ(X)̸=Y − IM ̸=Y]

]
≤ 1

nl

nl∑
i=1

Ir̂(xi)=0[Iĥ(xi)̸=yi
− Imi ̸=yi] + 2Rnl

(J) +
√

log 4/δ

nl

,

(A.88)

where

J =
{
x, y,m→ Ir(x)=0[Iĥ(x) ̸=y − Im ̸=y] : r ∈ R

}
. (A.89)

Using Lemma 7, we know that there exists r∗ ∈ R such that (r∗, h∗) are the minimizers of the
joint loss L0−1

def (h, r) inH×R. Next, since r̂ is the minimizer of the empirical joint loss given the

182

classifier be ĥ, and using (A.88), we have

EX,Y,M

[
Ir̂(X)=0[Iĥ(X)̸=Y − IM ̸=Y]

]
≤ 1

nl

nl∑
i=1

Ir∗(xi)=0[Iĥ(xi)̸=yi
− Imi ̸=yi] + 2Rnl

(J) +
√

log 4/δ

nl

,

(A.90)

for r∗(·) defined as above.
Next, using McDiarmid’s inequality, union bound, and since the empirical loss in RHS of (A.90)

is 2
n

-bounded difference, then with probability at least 1− δ/2 we have

EX,Y,M

[
Ir̂(X)=0[Iĥ(X) ̸=Y − IM ̸=Y]

]
≤EX,Y,M

[
Ir∗(X)[Iĥ(X) ̸=Y − IM ̸=Y]

]
+ 2Rn(J)

+ (
√
2 + 1)

√
log 4/δ

nl

. (A.91)

Therefore, using step (i), and by means of union bound, one could prove that with probability at
least 1− δ we have

EX,Y,M

[
Ir̂(X)[Iĥ(X) ̸=Y − IM ̸=Y]

]
≤EX,Y,M

[
Ir∗(X)[Ih∗(X) ̸=Y − IM ̸=Y]

]
+Rnu(H) + 2Rnl

(J)

+
3
√
2

2

√
log 4/δ

nu

+ (
√
2 + 1)

√
log 4/δ

nl

, (A.92)

or equivalently

L0−1
def (r̂, ĥ) ≤L0−1

def (h
∗, r∗) +Rnu(H) + 2Rnl

(J) + 3
√
2

2

√
log 4/δ

nu

+ (
√
2 + 1)

√
log 4/δ

nl

,

(A.93)

• Step (iii): In this step, we bound Rn(G) to complete the proof. By recalling the definition of J in

183

(A.89), we bound Rn(J) as

Rn(J) = E{(xi,yi,mi)}ni=1
Eσ
[1
n
sup
g∈J

n∑
i=1

σig(xi, yi,mi)
]

(A.94)

= E{(xi,yi,mi)}ni=1
Eσ
[1
n
sup
r∈R

n∑
i=1

σi
[
Ir(xi)=0(Iĥ(xi)̸=yi

− Imi ̸=yi)
]]

(A.95)

(a)

≤ E{(xi,yi,mi)}ni=1
Eσ
[1
n
sup
r∈R

n∑
i=1

σi
[
r(xi)Iĥ(xi)̸=yi

]]
+ E{(xi,yi,mi)}ni=1

Eσ
[1
n
sup
r∈R

n∑
i=1

σi
[
r(X)Imi ̸=yi

]]
(A.96)

(b)

≤ Rn(R) + E{(xi,yi,mi)}ni=1
Eσ
[1
n

n∑
i=1

σiIĥ(xi)̸=yi

]
+ E{(xi,yi,mi)}ni=1

Eσ
[∑n

i=1 Imi ̸=yi

n
R̂S(R)

]
︸ ︷︷ ︸

A

(A.97)
(c)
= Rn(R) + A, (A.98)

where S = {(xi, yi,mi) : mi ̸= yi} and (a) holds because of sub-linearity of supremum, (b) holds
by sub-linearity of supremum, since for two events E1 and E2 we have IE1 · IE2 ≤ IE1 + IE2 , and
using Lemma 3.4 of [224], and (c) is followed by σi being zero-mean.

Now, we should bound A. Since u =
∑n

i=1 Imi ̸=yi is a random variable with distribution
Binomial(n,P(M ̸= Y)) and using Hoeffding’s inequality, we have

P
(
u
n
< P(M ̸= Y)− t

)
≤ e−2nt2 . (A.99)

Next, by decomposing A, we have

A = P
(
u
n
< P(M ̸= Y)− t

)
E{(xi,yi,mi)}ni=1

[
u
n
R̂S(R)| un < P(M ̸= Y)− t

]
+ P

(
u
n
≥ P(M ̸= Y)− t

)
E{(xi,yi,mi)}ni=1

[
u
n
R̂S(R)| un ≥ P(M ̸= Y)− t

]
(A.100)

≤ |P(M ̸= Y)− t|e−2nt2 +min{P(M ̸= Y),Rn(P(M ̸=Y)−t)(R)}, (A.101)

where the inequality holds since Rademacher complexity is bounded by 1 and is non-increasing in
terms of sample-space size, followed by u

n
≤ 1, and by means of Lemma 3.4 of [224]. As a result,

by setting t = P(M ̸=Y)
2

, we have

A ≤ P(M ̸= Y)

2
e−

nP2(M ̸=Y)
2 +min{P(M ̸= Y),RnP(M ̸=Y)/2(R)}. (A.102)

184

Finally using (A.93), (A.98), and (A.102) we complete the proof.

A.3 Proof of Proposition 2

To prove the consistency of the deferral surrogate, we know that since ℓϕ is consistent, for every
{p1, . . . , pk+1}, such that

∑k+1
i=1 pi = 1, we have

argmax
i∈[k+1]

argmin
h∈D

k+1∑
i=1

piℓ̃ϕ(i, h) = argmax
i∈[k+1]

pi. (A.103)

(One could prove this by setting P(X = x) = δ[x], and P(Y = y|X = x) = py.)
Next, we find the minimizer of the loss ℓ̃ϕ as

argmin
h∈F

EX,Y,M

[
ℓ̃ϕ(c, h)

]
= argmin

h(x)

EY,M |X=x

[
ℓ̃ϕ(c, h(x))

]
(A.104)

= argmin
h(x)

k+1∑
i=1

E[max
j∈[k+1]

c(j)− c(i)|X = x]ℓ̃ϕ(i, h(x)). (A.105)

Next, we form the probability mass function {q1, . . . , qk+1} as

qi =
E
[
maxj∈[k+1] c(j)− c(i)

]∑k+1
t=1 E

[
maxj∈[k+1] c(j)− c(t)

] . (A.106)

One could see that the optimizer in (A.105) is equivalent to

argmin
h(x)

k+1∑
i=1

qiℓϕ
(
i, h(x)

)
. (A.107)

Now, using (A.103) and (A.107), we can show that

argmax
i∈[k+1]

argmin
h∈F

EX,Y,M

[
ℓ̃ϕ(c, h)

]
= argmax

i∈[k+1]

qi = argmin
i∈[k+1]

E[c(i)|X = x]. (A.108)

The above identity means that hk+1(x) ≥ maxi∈[k] hi(x) (i.e., r(x) = 1) iff. we have E[c(k+1)|X =

x] ≤ mini∈[k] E[c(i)|X = x]. Further, we have

h(x) = argmax
i∈[k]

hi(x) = argmin
i∈[k]

E[c(i)|X = x]. (A.109)

Recalling Proposition 1 in [26], one sees that r(x) and h(x) are that of Bayesian optimal
classifier, which proves that ℓ̃ϕ is Fisher consistent.

185

A.4 Proof of Theorem 2

To show the result for the calibration function, by setting P(X = x) = δ[x′], and P(Y = y|X =

x′) = py for y ∈ [k + 1], we see that

L0−1(h)−min
h∈F

L0−1(h) =
∑

i ̸=h(x′)

pi −
∑

i ̸=argmax pi

pi (A.110)

= max
i∈[k+1]

pi − ph(x′). (A.111)

Furthermore, we have

L̃ϕ(h)−min
h∈F

L̃ϕ(h) =
k+1∑
i=1

pi
[
ℓ̃ϕ(i, h(x

′))− ℓ̃ϕ(i, h∗)
]
. (A.112)

Hence, ψ being a calibration function proves that

ψ(max pi − ph(x′)) ≤
k+1∑
i=1

pi
[
ℓ̃ϕ(i, h(x

′))− ℓ̃ϕ(i, h∗)
]
, (A.113)

for every choice of h(x′).
On the other hand, one could calculate the conditional cost-sensitive loss as

Lc,x(h) = EY |X=x

[
c(h(X))

]
=
∑

i ̸=h(x)

EY |X=x

[
c(i)|X = x

]
. (A.114)

Hence, we have

Lc,x(h)− Lc,x(h
∗) = E

[
c(h(X))|X = x

]
− min

i∈[k+1]
E[c(i)|X = x

]
, (A.115)

where h∗ = argmin
h∈F

Lc(h).

By defining qis as (A.106), one can prove that

Lc,x(h)− Lc,x(h
∗) =

k+1∑
i=1

[
max
j∈[k+1]

c(j)− c(i)|X = x
](

max qi − qh(x)
)
. (A.116)

186

For the new surrogate, we further know that

L̃c,x(h) = EY |X=x

[
ℓ̃(c, h(x))

]
(A.117)

=
k+1∑
i=1

E
[
max
j∈[k+1]

c(j)− c(i)|X = x
] k+1∑

i=1

qiℓ̃ϕ(i, h(x)). (A.118)

Furthermore, one could show that

h̃k+1
1 = argmin

h∈F
L̃c,x(h) (A.119)

= argmin
h∈F

k+1∑
i=1

qiℓ̃ϕ(i, h), (A.120)

and consequently,

L̃c,x(h)− L̃c,x(h̃
k+1
1) =

k+1∑
i=1

E
[
max
j∈[k+1]

c(j)− c(i)|X = x
]
·
k+1∑
i=1

qi(ℓ̃ϕ(i, h)− ℓ̃ϕ(i, h̃k+1
1).

(A.121)

Hence, using (A.113) and (A.120), we have

E
[
max
j∈[k+1]

c(j)− c(i)|X = x
]
ψ(max

i∈[k+1]
qi − qh(x)) ≤ L̃c,x(h)− L̃c,x(h̃

k+1
1). (A.122)

Hence, since ψ(x) = C|x|ϵ, we have

ψ(Lc,x(h)− Lc,x(h
∗)) = ψ(E

[
max
j∈[k+1]

c(j)− c(i)|X = x
]
(max
i∈[k+1]

qi − qh(x)) (A.123)

≤ Eϵ−1
[
max
j∈[k+1]

c(j)− c(i)|X = x
]
(L̃c,x(h)− L̃c,x(h̃

k+1
1)) (A.124)

(a)

≤ M ϵ−1(L̃c,x(h)− L̃c,x(h̃
k+1
1)), (A.125)

where (a) holds using the assumption of the theorem.
Finally, using convexity of ψ and by Jensen’s inequality, we have

ψ(Lc(h)− Lc(h
∗)) = ψ(EX [Lc,x(h)− Lc,x(h

∗)] (A.126)

≤ EXψ(Lc,x(h)− Lc,x(h
∗)) (A.127)

(a)

≤ M ϵ−1EX

[
L̃c,x(h)− L̃c,x(h̃

k+1
1)

]
(A.128)

=M ϵ−1(L̃c,x(h)− L̃c,x(h̃
k+1
1), (A.129)

187

in which (a) is followed by (A.125). This completes the proof of the first part of theorem.
To obtain the calibration function of the cross-entropy error, we first introduce the following

lemma.

Lemma 8. For every two distributions P and G, we have

∣∣max
i
Pi −max

i
Gi

∣∣ ≤√2DKL(P∥G). (A.130)

Proof. We define argmax
i

Gi = i∗G, and argmax
i

Pi = i∗P . If we have maxiGi = Gi∗G
≥ Gi∗P

=

maxi Pi, then

0 ≤ Gi∗G
− Pi∗P

(a)

≤ Gi∗G
− Pi∗G

(b)

≤
√
2DKL(P∥G), (A.131)

where (a) is correct due to the fact that maxi Pi ≥ Pi∗G
, and (b) holds due to Pinsker’s inequality.

Further, if we have maxiGi = Pi∗G
≤ Pi∗P

= maxi Pi, using a similar argument, we have

0 ≤ Pi∗P
−Gi∗G

≤ Pi∗P
−Gi∗P

≤
√

2DKL(P∥G). (A.132)

Next, we note that the conditional surrogate risk can be rewritten as

L̃CE,x(g1, . . . , gK+1) = −
K+1∑
i=1

E
[

max
j∈[K+1]

c(j)− c(i)|X = x
]
log

exp(gi(x))∑
k exp(gk(x))

(A.133)

= NxHPx(Gx), (A.134)

where Nx =
∑K+1

i=1 E
[
maxj∈[K+1] c(j) − c(i)|X = x

]
, HPx(Gx) refers to the relative entropy of

the distribution Gx w.r.t Px which are defined as

Px,i =
E
[
maxj∈[K+1] c(j)− c(i)|X = x

]
Nx

, (A.135)

and

Gx,i =
exp(gi(x))∑
k exp(gk(x))

. (A.136)

Secondly, one note that since in the minimizer of surrogate risk

argmin
g∈F

L̃CE(g),

188

F contains every function, hence there is no dependency between different point xs, and as a result,
the minimization is equivalent to finding minimize every conditional surrogate risk. More formally,
if g∗1, . . . , g

∗
K+1 are such pair of minimizers, we have

(
g∗1(x), . . . , g

∗
K+1(x)

)
= argmin

g1(x),...,gK+1(x)

L̃CE,x

(
g1(x), . . . , gK+1(x)

)
(A.137)

(a)
= argmin

g1(x),...,gK+1(x)

NxHPx(Gx) (A.138)

= argmin
g1(x),...,gK+1(x)

HPx(Gx) (A.139)

(b)
=
(
Px,1, . . . ,Px,K+1

)
, (A.140)

where (a) holds because of (A.134), and (b) is a property of relative entropy.
As a result, the conditional excess surrogate risk can be rewritten as

L̃CE,x(g1, . . . , gK+1)− L̃∗
CE,x = NxHPx(Gx)−NxHPx(Px) = NxDKL(Px,Gx). (A.141)

Further, we can write the conditional excess risk as

L0−1
x (g1, . . . , gK+1)−L0−1

x (g∗1, . . . , g
∗
K+1)

= E
[
c(argmax

i(x)

gi(x)(x)|X = x]−min
i(x)

E
[
c
(
i(x)

)
|X = x

]
, (A.142)

where L0−1
x is defined as

L0−1
x (g1, . . . , gK+1) = E

[
IY ̸= argmax

i∈[K+1]gi(X)

|X = x
]

(A.143)

Next, we can rewrite this conditional excess risk in terms of Px,is as

L0−1
x (g1, . . . , gK+1)− L0−1

x (g∗1, . . . , g
∗
K+1) = Nx

(
max
i(x)
Px,i(x) − Px,argmax

i(x)
gi(x)(x)

)
(A.144)

= Nx

(
max
i(x)
Px,i(x) − Px,argmax

i(x)
Gx,i(x)

)
. (A.145)

To bound such a value, we use Pinsker’s inequality which states that for every two distributions
P and G supported on N, we have

TV (P,Q) =
1

2

∑
i

|Pi −Qi| ≤
√
DKL(P∥Q)

2
. (A.146)

189

To make use of that inequality, by defining iPx := argmax
i(x)

Px,i(x) and iGx ; = argmax
i(x)

Gx,i(x) and

using triangle inequality, we know that

Nx

∣∣max
i(x)
Px,i(x) − Px,argmax

i(x)
Gx,i(x)

∣∣ ≤ Nx

∣∣Px,iPx
− Gx,iGx

∣∣+Nx

∣∣Gx,iGx − Px,iGx

∣∣. (A.147)

Next, we bound each of these terms separately. Firstly, we know that

Nx

∣∣Gx,iGx − Px,iGx

∣∣ ≤ Nx

∑
i

|Px,i − Gx,i| = NxTV (Px∥Gx) (A.148)

≤ Nx

√
2DKL(Px∥Gx). (A.149)

Further, using Lemma 8, one can show that

Nx

∣∣Px,iPx
− Gx,iGx

∣∣ ≤ Nx

√
2DKL(Px∥Gx). (A.150)

As a result, we have

L0−1
x (g1, . . . , gK+1)− L0−1

x (g∗1, . . . , g
∗
K+1) ≤ Nx

√
8DKL(Px∥Gx) (A.151)

=
√
8Nx

√
L̃CE,x(g1, . . . , gK+1)− L̃∗

CE,x, (A.152)

where the last equality is followed by (A.141). Next, using the upper-bound on c(i)s, we have
Nx ≤ 2KM . As a result, we have(

L0−1
x (g1, . . . , gK+1)− L0−1

x (g∗1, . . . , g
∗
K+1)

)2
16MK

≤ L̃CE,x(g1, . . . , gK+1)− L̃∗
CE,x. (A.153)

Finally, using Jensen’s inequality, we have(
L0−1(g1, . . . , gK+1)− L0−1(g∗1, . . . , g

∗
K+1)

)2
16MK

≤ L̃CE(g1, . . . , gK+1)− L̃∗
CE, (A.154)

which yields the statement of theorem.

A.5 Proof of Theorem 3

We first introduce some useful lemmas, then we get back to the proof of theorem.

Lemma 9. LetF1, . . . ,Fk be hypothesis classes with Rademacher complexity R̂S(F1), . . . , R̂S(Fk)

on set S. The Rademacher complexity of the hypothesis class G = {log∑k
i=1 e

fi(x) : fi(·) ∈ Fi}

190

on set S is bounded as

R̂S(G) ≤
k∑

i=1

R̂S(Fi). (A.155)

Proof. We prove this lemma for k = 2. By following similar steps, one could generalize this proof
for every k ∈ N.

We write the Rademacher complexity of G as

R̂S(G) =
1

m
Eσ
[

sup
f1∈F1,f2∈F2

m∑
i=1

σi log(e
f1(x) + ef2(x))

]
(A.156)

=
1

m
Eσ
[

sup
f1∈F1,f2∈F2

m∑
i=1

σi
2
f1 +

m∑
i=1

σi
2
f2 +

m∑
i=1

σi log(e
f1(x)/2−f2(x)/2 + ef2(x)/2−f1(x)/2)

]
(A.157)

(a)

≤ 1

2m
Eσ
[
sup
f1∈F1

m∑
i=1

σif1
]
+

1

2m
Eσ
[
sup
f2∈F2

m∑
i=1

σif2
]

+
1

m
Eσ
[m∑

i=1

σi log(e
f1(x)/2−f2(x)/2 + ef2(x)/2−f1(x)/2)] (A.158)

=
1

2
R̂S(F1) +

1

2
R̂S(F2) + R̂S

(
Φo(F1 −F2)

)
, (A.159)

where (a) is followed by the sublinearity of supremum, and Φ(·) is defined as Φ(x) = log(ex/2 +

e−x/2).
One could see that ∂Φ(x)

∂x
= 1

2
ex/2−e−x/2

ex/2+e−x/2 ≤ 1
2
, that leads to 1

2
-Lipschitzness of Φ(·). Using this,

and by Ledoux-Talagrand theorem [225], we have

R̂S
(
Φo(F1 −F2)

)
≤ 1

2
R̂S(F1 −F2) (A.160)

=
1

2m
Eσ
[

sup
f1∈F ,f2∈F2

m∑
i=1

σi
(
f1(x)− f2(x)

)]
(A.161)

a

≤ 1

2m
Eσ
[
sup
f1∈F1

m∑
i=1

σif1(x)
]
+

1

2m
Eσ
[
sup
f2∈F2

m∑
i=1

σif2(x)
]

(A.162)

=
1

2

(
R̂S(F1) + R̂S(F2)

)
, (A.163)

where (a) is again followed by sublinearity of supremum.
Finally, using (A.159) and (A.163), we complete the proof.

Lemma 10. Let F be a hypothesis class of functions f(x, y) : X × [k + 1] → R, and Π1(F) =

191

{x→ f(x, y) : f(·, ·) ∈ F , y ∈ [k + 1]}. Then,

• for G = {x, y → f(x, y) − log
∑k+1

j=1 f(x, y) : f(·, ·) ∈ F} and given the assumption that

for every label inside sets of pairs (xi, yi) ∈ S is within the range {1, . . . , k}, we have

R̂S(G) ≤ (2k + 1)R̂Sx

(
Π1(F)

)
, (A.164)

• and forHi = {x→ f(x, i)− log
∑k+1

y=1 f(x, y) : f(·, ·) ∈ F}, we have

R̂S(Hi) ≤ (k + 2)R̂Sx

(
Π1(F)

)
. (A.165)

Proof. 1. We write Rademacher complexity of G as

R̂S(G) =
1

m
Eσ
[
sup
f∈F

m∑
i=1

σif(xi, yi)− σi log
k+1∑
y=1

ef(xi,y)
]

(A.166)

(a)

≤ 1

m
Eσ
[
sup
f∈F

σif(xi, yi)
]

︸ ︷︷ ︸
A

+
1

m
Eσ
[
sup
f∈F

m∑
i=1

σi log
k+1∑
y=1

ef(xi,y)
]

︸ ︷︷ ︸
B

, (A.167)

where (a) holds because of sublinearity of supremum. Next, we bound A and B as follows.

First, we know that

A =
1

m
Eσ
[
sup
f∈F

k∑
y=1

m∑
i=1

σif(xi, y)Iyi=y

]
(A.168)

≤
k∑

y=1

1

m
Eσ
[
sup
f∈F

m∑
i=1

σif(xi, y)(ϵi/2 + 1/2)
]
, (A.169)

where ϵi = 2Iyi=y − 1. Hence, again, applying sublinearity of supremum, we have

A ≤
k∑

y=1

1

m
Eσ
[
sup
f∈F

m∑
i=1

σiϵi
2
f(xi, y)

]
+

1

m
Eσ
[
sup
f∈F

m∑
i=1

σi
2
f(xi, y)

]
. (A.170)

Since ϵ ∈ {−1, 1}, then σiϵi take Rademacher distribution as well. Hence, using (A.170), we

192

have

A ≤
k∑

y=1

1

2
R̂Sx

(
Π1(F)

)
+

1

2
R̂Sx

(
Π1(F)

)
(A.171)

= kR̂Sx

(
Π1(F)

)
. (A.172)

Next, to bound B, using Lemma 9, we have

B ≤
k+1∑
y=1

1

m
Eσ
[
sup
f∈F

m∑
i=1

σif(xi, y)
]
≤ R̂Sx

(
Π1(F)

)
. (A.173)

Finally, using (A.167), (A.172), and (A.173), we complete the proof.

2. We bound Rademacher complexity ofHi as

R̂Sx(Hi) =
1

m
Eσ
[
sup
f∈F

m∑
j=1

σjf(xj, i)− σj log
k+1∑
y=1

ef(xj ,i)
]

(A.174)

(a)

≤ 1

m
E
[
sup
f∈F

m∑
j=1

σjf(xj, i)
]
+

1

m
Eσ
[
sup
f∈F

m∑
j=1

σj log
k+1∑
y=1

ef(xj ,y)
]

(A.175)

(b)

≤ R̂Sx

(
Π1(F)

)
+

k+1∑
y=1

1

m
Eσ
[
sup
f∈F

m∑
j=1

f(xj, y)
]

(A.176)

≤ (k + 2)R̂Sx

(
Π1(F)

)
, (A.177)

where (a) is followed by sublinearity of supermum, and (b) because of Lemma 9 and using
definition of Π1(F).

Lemma 11. For i ∈ {1, . . . , k + 1} let Hi be hypothesis class of functions hi(x) : X → R with

bounded norm ∥hi∥∞ < C. Further, let Π1(H) = {x → hi(x) : hi ∈ Hi, i ∈ [k + 1]}. The

Rademacher complexity of the class L of loss functions

ℓ(x, y,m) = − log
e−hy(x)∑k+1
i=1 e

−hi(x)
− Im ̸=y log

e−hk+1(x)∑k+1
i=1 e

−hi(x)
, (A.178)

193

for m, y ∈ [k] is bounded as

Rn(L) ≤ (k + 1)Rn

(
Π1(H)

)
+ (k + 2)min{P(M ̸= Y),RnP(M ̸=Y)/2

(
Π1(H)

)
}

+
C

2
P(M ̸= Y)(k + 2)e−nP2(M ̸=Y)/2. (A.179)

Proof. We write empirical Rademacher complexity of L as

R̂S(L) =
1

n
Eσ
[
sup
ℓ∈L

n∑
i=1

σiℓ(xi, yi,mi)
]

(A.180)

=
1

n
Eσ
[
sup
hj∈Hj

n∑
i=1

σi(− log
e−hy(xi)∑k+1
j=1 e

−hj(xi)
− Im ̸=y log

e−hk+1(xi)∑k+1
j=1 e

−hj(xi)
)
]

(A.181)

≤ 1

n
Eσ
[
sup
hj∈Hj

n∑
i=1

σi log
e−hy(xi)∑k+1
j=1 e

−hj(xi)

]
+

1

n
Eσ
[
sup
hj∈Hj

n∑
i=1,yi ̸=mi

σi log
e−hk+1(xi)∑k+1
j=1 e

−hj(xi)

]
(A.182)

(a)

≤ (k + 1)R̂Sx

(
Π1(H)

)
+ (k + 2)

∑n
i=1 Imi ̸=yi

n
R̂Sx|mi ̸=yi

(
Π(H)

)
, (A.183)

where (a) holds by applying Lemma 10.
Using A.183, and by calculating the expectation over {(xi, yi,mi)}ni=1, we have

Rn(L) ≤ (k + 1)Rn

(
Π1(H)

)
+ (k + 2)E{(xi,yi,mi)}ni=1

[∑n
i=1 Imi ̸=yi

n
R̂Sx|mi ̸=yi

(
Π1(H)

)]
︸ ︷︷ ︸

A

.

(A.184)

It is remained to bound A. For this task, we first notice that u =
∑n

i=1 Imi ̸=yi is a random
variable with distribution Binomial

(
n,P(M ̸= Y)

)
. Further, by Hoeffding’s inequality we know

that for t > 0, we have

P(
u

n
< P(M ̸= y)− t) ≤ e−2nt2 . (A.185)

Hence, by decomposing A, we have

A = P(
u

n
< P(M ̸= Y)− t)E

[u
n
R̂Sx|yi ̸=mi

|u
n
< P(M ̸= Y)− t

]
+ P(

u

n
≥ P(M ̸= Y)− t)E

[u
n
R̂Sx|yi ̸=mi

|u
n
≥ P(M ̸= Y)− t

]
(A.186)

≤ C|P(M ̸= Y)− t|e−2nt2 +min{P(M ̸= Y),Rn(P(M ̸=Y)−t)

(
Π1(H)

)
}, (A.187)

194

where the last inequality holds because (1) every function in Π1(H) is bound by C, and so is the
Rademacher complexity of Π1(H), and (2) the Rademacher complexity is non-increasing with the
sample space size.

Hence, using A.184, A.187, and by setting t = P(M ̸=Y)
2

the proof is complete.

Proof of Theorem 3. Using Rademacher inequality on generalization error (e.g., Theorem 3.3 of
[224]), we know that with probability at least 1− δ/2, we have

L̃CE(f
k+1
1) ≤ L̂CE(f

k+1
1) + 2Rn(L) +

√
D log 2/δ

2n
, (A.188)

where D is an a upper-bound on ∥ℓ∥∞ for ℓ ∈ L, and where L̂CE is the empirical loss corresponding
to ℓCE , and fi ∈ Fi.

We follow the proof in three steps, (i) we find D, (ii) we find a lower-bound on L̃CE(f
k+1
1) in

terms ofL0−1
def (f

k+1
1), and (iii) we complete the proof by bounding the difference |minf∈Fk+1

1
L̂CE(f

k+1
1)−

minfk+1
1 ∈F L̃CE(f

k+1
1)|.

• Step (i): For calculating a bound on ∥ℓ∥∞ for ℓ ∈ L, we use boundedness of ∥fi∥∞ for i ∈ [k+1]

and fk+1
1 ∈ Fk+1

1 . Indeed, we know the function

bD(x) = − log
e−x

e−x +D
, (A.189)

for D > 0 is a monotonically non-increasing function of x. Hence, over a closed interval, it takes
the minimum and maximum on the limit points. As a result, for |x| ≤ C, we have

0 ≤ bD(x) ≤ − log
e−C

e−C +D
. (A.190)

Hence, for the loss function ℓ(x, y,m), in which ∥fk+1
1 ∥ ≤ C, we have

0 < ℓ(x, y,m) = b∑k+1
i=1,i ̸=y e−fi(x)

(
fy(x)

)
+ Im ̸=yb∑k

i=1 e
−fi(x)

(
fk+1(x)

)
(A.191)

≤ − log
e−C

e−C +
∑k+1

i=1,i ̸=y e
−fi(x)

− Im̸=y log
e−C

e−C +
∑k

i=1 e
−fi(x)

(A.192)

− 2 log
e−C

e−C + keC
≤ −2 log e

−2C

k + 1
= 4C − 2 log(k + 1). (A.193)

• Step (ii): Using excessive surrogate risk bound, we see that

ψ
(
L0−1
def (f

k+1
1)−min

hk+1
1

L0−1
def (h

k+1
1)

)
+min

hk+1
1

L̃CE(h
k+1
1) ≤ L̃CE(f

k+1
1). (A.194)

195

• Step (iii): In this step, we find a bound on L̂CE(f
k+1
1)−minh L̃CE(h

k+1
1). Indeed, we know that

L̂CE(f
k+1
1)−min

hk+1
1

L̃CE(h
k+1
1) = L̂CE(f

k+1
1)− min

hk+1
1 ∈Fk+1

1

L̂CE(h
k+1
1)︸ ︷︷ ︸

emin

+ min
hk+1
1 ∈Fk+1

1

L̂CE(h
k+1
1) − min

hk+1
1 ∈Fk+1

1

L̃CE(h
k+1
1)

+ min
hk+1
1 ∈Fk+1

1

L̃CE(h
k+1
1)−min

hk+1
1

L̃CE(h
k+1
1)︸ ︷︷ ︸

eϕ−appr

(A.195)

≤ L̂CE(h̃
k+1
1)− L̃CE(h̃

k+1
1) + emin + eϕ−appr, (A.196)

where h̃k+1
1 = argmin

hk+1
1 ∈Fk+1

1

L̃CE(h
k+1
1). Hence, using Hoeffding’s inequality, with probability at least

1− δ/2, we have

L̂CE(f
k+1
1)−min

hk+1
1

L̃CE(h
k+1
1) ≤

√
D

2n
log 2/δ + emin + eϕ−appr. (A.197)

Finally, using Lemma 11, A.188, A.193, A.194, A.197, and by union bound, we complete the
proof.

A.6 Proof of Proposition 3

We prove this proposition in four steps: (i) we first prove that in each iteration, the deferral loss
L0−1
def (h, r) is bounded, (ii) using Step (i), we show that P(X ∈ DIS(Vi)) halves in each iteration

with high probability, (iii) using Step (ii) we conclude that P(X ∈ DIS(V
⌈log 1

ϵ
⌉
)) ≤ ϵ with high

probability, and finally (iv) we provide a bound on L0−1
def (h, r) using the result in Step (iii).

• Step (i): We use Theorem 2 of [26] that making use of realizability of (h, r) on empirical
distribution shows that with probability at least 1− δ′ we have

E
[
Ir(X)=0Ih(X)̸=Y + Ir(X)=1IM ̸=Y |X ∈ DIS(Vi)

]
≤
√

2 log 2/δ′

mi
+

√
2d(H) log

emi

d(H)
mi

+

√
32d(R) log

emi

d(R)
mi

,

(A.198)

where mi is the size of the set on which human provides the prediction in each iteration. Note that
we draw only samples from DIS(Vi), and that is the reason that we condition the loss on X being
in DIS(Vi) .

To analyze the sample complexity that corresponds to (A.198), we let δ′ = δ

(2+⌈log 1
ϵ
⌉−i)2

and we

196

assume that

mi ≥ max{108Θ2 log
(2 + ⌈log 1

ϵ
⌉ − i)2

δ
, 360Θ2d(H) logΘ, 2, 276Θ2d(H) logΘ}. (A.199)

Using the first term in RHS of (A.199), we bound the first term in the upper-bound (A.198) as√
2 log 2

δ′

mi

≤

√√√√ 2 log
2(2+⌈log 1

ϵ
⌉−i)2

δ

108Θ2 log
(2+⌈log 1

ϵ
⌉−i)2

δ

=
1

6Θ

√
2

3
+

2

3 log
(2+⌈log 1

ϵ
⌉−i)2

δ

. (A.200)

Then, for i ≤ ⌈log 1
ϵ
⌉ and since δ ≤ 1, we know that log 4

δ
≥ 2, which concludes that√

2 log 2
δ′

mi

≤ 1

6Θ
. (A.201)

Further, using the second and third term in RHS of (A.199) and since
√

2d(H) log emi

mi
is monotonically

decreasing for mi ≥ 2 (note that ∂
∂x

(
log x
x

)
= 1

x2 − log x
x2 ≤ 0 for x ≥ 2) we have

√
2d(H) log emi

mi

≤

√√√√2d(H) log eΘ2d(H) logΘ
d(H)

360Θ2d(H) logΘ =

√
2 log

(
eΘ2 · log Θ

)
360Θ2 log Θ

(A.202)

=
1

Θ

√
log e+ 2 logΘ + log logΘ

180 logΘ
. (A.203)

If we set Θ ≥ e, we have log Θ ≥ log e, and since log logΘ ≤ log Θ for Θ ≥ 1, we have√
2d(H) log emi

d(H)

mi

≤ 1

Θ

√
5 logΘ

180 logΘ
=

1

6Θ
. (A.204)

Similarly, we could show that √
32d(R) log emi

d(R)

mi

≤ 1

6Θ
, (A.205)

which together with (A.198), (A.201), and (A.204) proves that for mi = O
(
Θ2(d(H) logΘ +

d(R) logΘ + log
(2+⌈log 1

ϵ
⌉−i)2

δ
)
)

we have

E
[
Ir(X)=0Ih(X)̸=Y + Ir(X)=1IM ̸=Y |X ∈ DIS(Vi)

]
≤ 1

2Θ
, (A.206)

197

with probability at least 1− δ

(2+⌈log 1
ϵ
⌉−i)2

.

Since X ∈ DIS(Vi) is a necessary condition for Ir(X)=0Ih(X)̸=Y + Ir(X)=1IM ̸=Y = 1, we
conclude that

L0−1
def (h, r) = ∆(Vi)E

[
Ir(X)=0Ih(X) ̸=Y + Ir(X)=1IM ̸=Y |X ∈ DIS(Vi)

]
≤ ∆(Vi)

2Θ
, (A.207)

with probability at least 1− δ

(2+⌈log 1
ϵ
⌉−i)2

, where ∆(Vi) is defined as

∆(Vi) := P
(
X ∈ DIS(Vi)

)
(A.208)

• Step (ii): Since L0−1
def (h, r) = P

(
r(X)M+(1−r(X))h(X) ̸= Y

)
, and because L0−1

def (h
∗, r∗) = 0,

and using Step (i), we have

P
(
r(X)M + (1− r(X))h(X) ̸= r∗(X)M + (1− r∗(X))h∗(X)

)
≤ ∆(Vi)

2Θ
, (A.209)

with probability at least 1 − δ

(2+⌈log 1
ϵ
⌉−i)2

. As a result, for all (h, r) ∈ Vi+1, we have (h, r) ∈

B
(
(h∗, r∗), ∆(Vi)

2Θ

)
with such probability.

Hence, we have

∆(Vi+1) ≤ ∆
(
B
(
(h∗, r∗), ∆(Vi)

2Θ

))
≤ Θ · ∆(Vi)

2Θ
=

∆(Vi)

2
, (A.210)

where the last inequality is followed by the definition of Θ.
• Step (iii): Using union bound, and since

⌈log 1
ϵ
⌉∑

i=1

δ

(2 + ⌈log 1
ϵ
⌉ − i)2 =

⌈log 1
ϵ
⌉+1∑

i=2

δ

i2
≤

∞∑
i=2

δ

i2
=
π2 − 6

6
· δ ≤ δ, (A.211)

and using Step (iii), we have that

∆(V
⌈log 1

ϵ
⌉
) ≤ 1

2⌈log
1
ϵ
⌉
∆(V0) ≤ ϵ, (A.212)

with probability at least 1− δ.
• Step (iv): Since we know that L0−1

def (h
∗, r∗) = 0, we conclude that

P
(
M ̸= Y, r∗(X) = 1

)
= 0. (A.213)

198

Next, since for all h ∈ V
⌈log 1

ϵ
⌉

we have P
(
h(X) ̸= Y, r(X) = 0

)
= 0, we can show that

L0−1
def (h, r) = P

(
h(X) ̸= Y, r(X) = 0

)
+ P

(
M ̸= Y, r(X) = 1

)
(A.214)

= P
(
M ̸= Y, r(X) = 1

)
(A.215)

= P(M ̸= Y, r(X) = 1, r∗(X) = 0) + P(M ̸= Y, r(X) = 1, r∗(X) = 1) (A.216)
(a)
= P(M ̸= Y, r(X) = 1, r∗(X) = 0) (A.217)

= P(M ̸= Y, r(X) ̸= r∗(X), r∗(X) = 0) ≤ P
(
r(X) ̸= r∗(X)

)
, (A.218)

where (a) is followed by (A.213).
Next, since (h∗, r∗) is not removed in any iteration because of its consistency, we have (h∗, r∗) ∈

V
⌈log 1

ϵ
⌉
. Hence using Step (iii), for all (h, r) ∈ V

⌈log 1
ϵ
⌉

we have

P
(
r(X) ̸= r∗(X)

)
≤ P

(
X ∈ DIS(V

⌈log 1
ϵ
⌉
)
)
≤ ϵ, (A.219)

with probability at least 1− δ.
Using (A.218) and (A.219) the proof is complete.

A.7 An example on which CAL algorithm fails

Here, we provide the reader with an example on which vanilla CAL algorithm in Section 2.6.1
does not converge. Let X = {0, 1} and let X ∼ Uniform{X} and µXYM = µXIY=XIM=0, which
means for all instances on X , Y = X and M = 0. Further, let H = {h1, h2}, and R = {r1, r2},
where

h1(x) = r1(x) = x, h2(x) = r2(x) = 0. (A.220)

One could see that in this case three pairs (h1, r1), (h1, r2), (h2, r1) as deferral systems provide zero
loss.

To run CAL, we draw a sample from µX . Assume that we observe x = 1. We see that since
x ∈ DIS(V0) = {1}, then we need to query human’s prediction and true label on such instance.
Hence, we collect the corresponding values y = m = 1 for that instance. Next, we update the
version space

V1 = {(h1, r1), (h1, r2), (h2, r1)}, (A.221)

to induce consistency. However, we note that DIS(V1) does not change comparing to DIS(V0).

199

Hence, P(X ∈ DIS(V0)) = P(X ∈ DIS(V1)) = . . . = 1
2
. As a result, CAL algorithm does not

converge, and in each iteration queries human prediction for x = 1.

A.8 Proof of Theorem 4

Using Theorem 5.1 of [58], we know that if nl = CΘd(D) log
(
4Θ
δ
log 4

ϵ

)
log 4

ϵ
, then with

probability at least 1− δ
4

we have

P
[
f(X) ̸= IM ̸=Y

]
≤ ϵ

4
. (A.222)

Next, we bound the empirical joint loss on unlabeled samples. We know that

L̂0−1
def (h, r) =

1

nu

∑
i

Ih(xi)̸=yiIr(xi)=0 + Imi ̸=yiIr(xi)=1 (A.223)

=
1

nu

∑
i

[
Ih(xi) ̸=yiIr(xi)=0 + f(xi)Ir(xi)=1

]
+

1

nu

∑
i

(
Imi ̸=yi − f(xi)

)
Ir(xi)=1

(A.224)
(a)
=

1

nu

∑
i

(
Imi ̸=yi − f(xi)

)
Ir(xi)=1 (A.225)

≤ 1

nu

∑
i

|Imi ̸=yi − f(xi)| (A.226)

=
1

nu

∑
i

If(xi)̸=Imi ̸=yi
(A.227)

where (a) holds because of Line 5 in Algorithm 1.
As a result, we use Hoeffding’s inequality coupled with (A.222) to show that

L̂0−1
def (h, r) ≤

ϵ

4
+

√
log 2/δ

2nu

, (A.228)

with probability at least 1 − 3δ
4

. Further, by generalization bound in Theorem 2 of [26], with
probability at least 1− δ

4
we have

L0−1
def (h, r) ≤ L̂0−1

def (h, r) +

√
2 log 8/δ

nu

+Rnu(H) + 4Rnu(R) + P(M ̸= Y)e
−nuP(M ̸=Y)

8 ,

(A.229)

200

where following (A.228) we conclude that with probability at least 1− δ we have

L0−1
def (h, r) ≤

ϵ

4
+

√
log 2/δ

2nu

+

√
2 log 8/δ

nu

+Rnu(H) + 8Rnu(R) + P(M ̸= Y)e
−nP(M ̸=Y)

8 .

(A.230)

One can further calculate an upper-bound on Rnu(H) and Rnu(R) using Corollary 3.8 and 3.18 of
[224] as

Rnu(H) ≤

√
2d(H) log enu

d(H)

nu

, (A.231)

and

Rnu(R) ≤

√
2d(R) log enu

d(R)

nu

, (A.232)

which by substituting in (A.230) we conclude that

L0−1
def (h, r) ≤

ϵ

4
+

√
log 2

δ

2nu

+

√
2 log 8

δ

nu

+

√
2d(H) log enu

d(H)

nu

+

√
32d(R) log enu

d(R)

nu

+ P(M ̸= Y)e
−nP(M ̸=Y)

8 . (A.233)

Finally, using (A.233) and by letting nu ≥ max{8 log
2
δ

ϵ2
, 288 log 8/δ

ϵ2
,
C′ max{d(H),d(R)} log 1

ϵ

ϵ2
} in which

C ′ = 210 and for ϵ ≤ 1
218e4

, we have

L0−1
def (h, r) ≤ ϵ, (A.234)

with probability at least 1− δ, which completes the proof.

A.9 Experimental Details

Data. We use the CIFAR validation set of 10k images as the test set and split the CIFAR training
set 90/10 for training and validation.

Optimization. We use the AdamW optimizer [226] with learning rate 0.001 and default parameters
on PyTorch. We also use a cosine annealing learning rate scheduler and train for 100 epochs and
saving the best performing model on the validation set. For the surrogate Lα

CE [26], we perform a

201

search for α over a grid [0, 0.1, 0.5, 1].

Model Complexity. For the model complexity gap figure, we use a convolutional neural network
consisting of two convolutional layers with a max pooling layer in between followed by three fully
connected layers with ReLU activations. We modify respectively: the number of channels produced
by the convolution of the first layer and of the second layer, and the number of units in the first and
second fully connected layers. We use this set of parameters to produce the plot for the classifier
model:

[[1, 1, 50, 25], [3, 3, 50, 25], [4, 4, 80, 40], [6, 6, 100, 50], [12, 12, 100, 50],

[20, 20, 100, 50], [100, 100, 500, 250], [100, 100, 1000, 500]]

For the rejector model, and for the expert confidence model used for Staged we use the parameters
[100, 100, 1000, 500]. The error bars in the plot are produced by repeating the training process 10
times and obtaining standard deviations to average over the randomness in training. We used a
rather simple network architecture so that we can more easily illustrate the model complexity gap,
as more complex architectures can easily obtain ∼ 100% accuracy on CIFAR and would not allow
us to have a more fine-grained analysis of the gap.

Data Trade-Offs. We use the model parameters [100, 100, 1000, 500] for all networks in this plot.
For each fraction of data labeled, we sample randomly from the training set the corresponding
number of points. The error bars are obtained by repeating the training process 10 times for different
random samplings of the training set.

202

Appendix B

Additional Information for Chapter 3

B.1 Practitioner’s guide to our approach

B.1.1 MILP

We implement the MILP (3.9)-(3.14) in the binary setting using the Gurobi Optimizer [65] in
Python.

class MILPDefer:

def __init__(self , n_classes , time_limit=-1, add_regularization=False ,

lambda_reg=1, verbose=False):

self.n_classes = n_classes

self.time_limit = time_limit

self.verbose = verbose

self.add_regularization = add_regularization

self.lambda_reg = lambda_reg

def fit(self , dataloader_train , dataloader_val , dataloader_test):

self.fit_binary(dataloader_train , dataloader_val , dataloader_test)

def fit_binary(self , dataloader_train , dataloader_val , dataloader_test):

data_x = dataloader_train.dataset.tensors[0]

data_y = dataloader_train.dataset.tensors[1]

human_predictions = dataloader_train.dataset.tensors[2]

C = 1

gamma = 0.00001

Mi = C + gamma

Ki = C + gamma

max_data = len(data_x)

203

hum_preds = 2*np.array(human_predictions) - 1

add extra dimension to x

data_x_original = torch.clone(data_x)

norm_scale = max(torch.norm(data_x_original , p=1, dim=1))

last_time = time.time()

normalize data_x and then add dimension

data_x = torch.cat((torch.ones((len(data_x)), 1),

data_x/norm_scale), dim=1).numpy()

data_y = 2*data_y - 1 # covert to 1, -1

max_data = max_data # len(data_x)

dimension = data_x.shape[1]

model = gp.Model("milp_deferral")

model.Params.IntFeasTol = 1e-9

model.Params.MIPFocus = 0

if self.time_limit != -1:

model.Params.TimeLimit = self.time_limit

H = model.addVars(dimension , lb=[-C] *

dimension , ub=[C]*dimension , name="H")

Hnorm = model.addVars(

dimension , lb=[0]*dimension , ub=[C]*dimension , name="Hnorm")

Rnorm = model.addVars(

dimension , lb=[0]*dimension , ub=[C]*dimension , name="Rnorm")

R = model.addVars(dimension , lb=[-C] *

dimension , ub=[C]*dimension , name="R")

phii = model.addVars(max_data , vtype=gp.GRB.CONTINUOUS , lb=0)

psii = model.addVars(max_data , vtype=gp.GRB.BINARY)

ri = model.addVars(max_data , vtype=gp.GRB.BINARY)

equal = np.array(data_y) == hum_preds * 1.0

human_err = 1-equal

if self.add_regularization:

model.setObjective(gp.quicksum([phii[i] + ri[i]*human_err[i]

for i in range(max_data)])/max_data + self.lambda_reg * gp.

quicksum(

[Hnorm[j] for j in range(dimension)])

+ self.lambda_reg * gp.quicksum([Rnorm[j] for j in range(

dimension)]))

else:

model.setObjective(gp.quicksum(

[phii[i] + ri[i]*human_err[i] for i in range(max_data)])/

204

max_data)

for i in range(max_data):

model.addConstr(phii[i] >= psii[i] - ri[i], name="phii" + str(i))

model.addConstr(Mi*psii[i] >= gamma - data_y[i]*gp.quicksum(

H[j] * data_x[i][j] for j in range(dimension)), name="psii" +

str(i))

model.addConstr(gp.quicksum([R[j]*data_x[i][j] for j in range(

dimension)]) >=

Ki*(ri[i]-1) + gamma*ri[i], name="Riub" + str(i))

model.addConstr(gp.quicksum([R[j]*data_x[i][j] for j in range(

dimension)]) <= Ki*ri[i] + gamma*(ri[i]-1), name="Rilb" + str

(i))

model.update ()

if self.add_regularization:

for j in range(dimension):

model.addConstr(Hnorm[j] >= H[j], name="Hnorm1" + str(j))

model.addConstr(Hnorm[j] >= -H[j], name="Hnorm2" + str(j))

model.addConstr(Rnorm[j] >= R[j], name="Rnorm1" + str(j))

model.addConstr(Rnorm[j] >= -R[j], name="Rnorm2" + str(j))

model.ModelSense = 1 # minimize

model._time = time.time()

model._time0 = time.time()

model._cur_obj = float(’inf’)

model.write(’model.lp ’)

if self.verbose:

model.optimize ()

else:

model.optimize ()

check if halspace solution has 0 error

error_v = 0

rejs = 0

for i in range(max_data):

rej_raw = np.sum([R[j].X * data_x[i][j] for j in range(dimension)]

)

pred_raw = np.sum([H[j].X * data_x[i][j]

for j in range(dimension)])

if rej_raw > 0:

rejs += 1

error_v += (data_y[i] * hum_preds[i] != 1)

else:

pred = (pred_raw > 0)

error_v += (data_y[i] != (2*pred-1))

205

self.H = [H[j].X for j in range(dimension)]

self.R = [R[j].X for j in range(dimension)]

self.run_time = model.Runtime

self.norm_scale = norm_scale

self.train_error = error_v/max_data

B.1.2 Realizable Surrogate

We implement the RealizableSurrogate in PyTorch. We showcase the loss function LRS

below:

def realizable_surrogate_loss(outputs , human_is_correct , labels , lambdaa):

’’’

outputs (tensor): outputs of model with K+1 output heads (without softmax)

human_is_correct (tensor): binary tensor indicating if human is

correct on each point I_{h=y}

labels (tensor): list of targets y_i

lambdaa (float in [0,1]): trade -off parameter in loss

return: loss (single tensor)

’’’

batch_size = outputs.size()[0]

outputs_exp = torch.exp(outputs)

rs_loss = -torch.log2((m * outputs_exp[range(batch_size), -1]

+ outputs_exp[range(batch_size),labels]) /(torch.sum(outputs_exp , dim =

1) +eps_cst))

ce_loss = -torch.log2((outputs_exp[range(batch_size),labels])

/(torch.sum(outputs_exp[range(batch_size),:-1], dim = 1) +eps_cst

))

loss = lambdaa*rs_loss + (1-lambdaa)*ce_loss

return torch.sum(loss)/batch_size

206

B.2 MILP

B.2.1 Verification

The MILP in the binary setting is formulated as:

M∗, R∗, . = arg min
M,R,{ri},{ti},{ϕi}

∑
i

ϕi + riIhi ̸=yi (B.1)

ϕi ≥ ti − ri, ϕi ≥ 0 ∀i ∈ [n] (B.2)

Kmti ≥ γh − yiM⊤xi ∀i ∈ [n] (B.3)

R⊤xi ≤ Krri + γr(ri − 1), R⊤xi ≥ Kr(ri − 1) + γrri ∀i ∈ [n] (B.4)

− C ≤ Ri ≤ C, −C ≤Mi ≤ C ∀i ∈ [d] (B.5)

ri ∈ {0, 1}, ti ∈ {0, 1}, ϕi ∈ R+ ∀i ∈ [n], R,M ∈ Rd (B.6)

Extension to Multiclass. The above MILP only applies to binary labels but we can generalize
it to the multiclass setting where Y = {1, · · · , C}. In this case, we have a coefficient vector
Mj for each class j ∈ Y , and m(x) = argmaxj∈Y M

⊤
j x. Given a labeled point (x, y), we let

cj = sign(M⊤
y x −M⊤

j x) for j ̸= y, and let ti = I∑
j ̸=y cj<C−1. Then if m(x) = y, we must have

cj = 1 for all j ̸= y and thus ti = 0 which means that the classifier is correct. Similarly, if there
exists a j ̸= y for which cj = −1, it means the classifier is incorrect and accordingly ti = 1. We can
reformulate these indicator constraints using a similar big-M approach as above. The formulation is
below:

M∗, R∗, . = arg min
M,R,{ri},{ti},{cij},{ϕi}

∑
i

ϕi + riIhi ̸=yi (B.7)

ϕi ≥ ti − ri, ϕi ≥ 0 ∀i ∈ [n] (B.8)

(Myi −Mj)
⊤xi ≤ 2Khcij + γh(cij − 1),

(Myi −Mj)
⊤xi ≥ 2Kh(cij − 1) + γhcij ∀i ∈ [n] ∀j ∈ [C] ̸= yi (B.9)

ti ≥ (C − 1−
∑

j∈[L],j!=yi

cij)/(C − 1) (B.10)

R⊤xi ≤ Krri + γr(ri − 1), R⊤xi ≥ Kr(ri − 1) + γrri ∀i ∈ [n] (B.11)

− C ≤ Ri ≤ C, −C ≤M [i, l] ≤ C ∀i ∈ [d] ∀l ∈ [C] (B.12)

ri ∈ {0, 1}, ti ∈ {0, 1}, cij ∈ {0, 1}, ϕi ∈ R+ ∀i ∈ [n], R,M ∈ Rd (B.13)

Let us verify the formulations above.

207

The variable ϕi ≥ max(ti − ri, 0), the RHS takes values either 0 or 1, since ϕi in the objective
then the optimal value is either 0 or 1 as well so that ϕi = max(ti − ri, 0) = (1− ri)ti.

For ti in the binary case: when yiM
⊤xi is positive, then γh − yiM

⊤xi is negative since
|M⊤xi| ≥ γh by Assumption 2, so that to satisfy constraint (B.3) either value of 0 or 1 are valid for
ti, however since ti shows up in the objective then the optimal value is 0. On the other hand, when
yiM

⊤xi is negative, then γh − yiM⊤xi is positive, so that the only valid option for ti is 1 and since
M⊤xi ≤ Km then the constraint can be satisfied. So that we proved that ti = sign(yiM

⊤xi).
We previously verified constraint for ri and R in the body. When ri = 0 then we have the

constraints R⊤xi ≤ −γr and R⊤xi ≥ −Kr: this forces the rejector to be negative which is
consistent. When ri = 1, we have R⊤xi ≥ γr and R⊤xi ≤ Kr: which means the rejector is positive.
Thus we proved ri = I(R⊤xi ≥ 0).

For ti in the multiclass settings: by analogy to the constraints for R and ri it is easy to see
that the variable cij = sign(H⊤

yi
xi − H⊤

j xi). For a given xi, yi, the classification is only correct
if cij = 1 for all j ∈ [C] ̸= yi so that argmaxj H

⊤
i xi = yi. We can then see that we set

ti = I(
∑

j ̸=yi
cij/(C − 1) ̸= 1) so that ti denotes the error of our classifier on example i.

B.3 Experimental Details and Results

B.3.1 Baseline Implementation

OvASurrogate [62]: We rely on the loss implementation available online at 1.
DifferentiableTriage [27]: We rely on the implementation in 2. Note that the differentiable

triage method implementation in [27] relies on having loss estimates of the human, particularly
cross entropy loss estimates, which requires the conditional probabilities P(H = i|X = x) for each
i ∈ Y . However, in our setting, we only have samples of the human decisions mi, not probabilistic
estimates. The method can be summarized as a two-stage method: 1) classifier training: at each
epoch, only train on points where classifier loss is lower than human loss, 2) rejector training: fit
the rejector to predict who between the classifier and the human has lower loss. Since we only have
samples of human behavior, we use the 0− 1 loss of the classifier and the human on an example
basis for comparison.

CrossEntropySurrogate [26]: We rely on the implementation in 3. We tune the parameter α over
the grid [0, 0.1, 0.5, 1] on the validation set.

CompareConfidence [25]: we train the classifier using the cross entropy loss on all the data, we
then train a model to predict if the human is correct or not on each example in the training set. For

1https://github.com/rajevv/OvA-L2D
2https://github.com/Networks-Learning/differentiable-learning-under-triage
3https://github.com/clinicalml/learn-to-defer

208

https://github.com/rajevv/OvA-L2D
https://github.com/Networks-Learning/differentiable-learning-under-triage
https://github.com/clinicalml/learn-to-defer

each test point, we compare the confidence of the classifier versus the human correctness model and
defer accordingly.

SelectivePrediction: we train the classifier using the cross entropy loss on all the data, for the
rejector, we learn a single threshold on the validation set for the classifier confidence (probability of
the predicted class) in order to maximize system accuracy.

B.3.2 Training Details

Table B.1: Training details for each dataset, we use the Adam optimizer [227] and AdamW [226]

Dataset Optimizer Number of Epochs Learning Rate

SyntheticData (ours) Adam 300 0.1
CIFAR-K Adam 100 0.001

CIFAR-10H [75] AdamW 20 0.001
Imagenet-16H [43] Adam 20 0.001
HateSpeech [54] Adam 50 0.001
COMPASS [79] Adam 300 0.1
NIH Chest X-ray [80], [81] AdamW 3 0.001

B.3.3 Synthetic Data

We show in Figure B.1 the performance of the different methods with the same setup with the
uniform data distribution.

209

2000 4000 6000 8000 10000

Training data size

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y
RealizableSurrogate(ours)
CrossEntropySurrogate
OvASurrogate
SelectivePrediction
CompareConfidence
DifferentiableTriage

Figure B.1: (Test performance of the different methods on realizable synthetic data as we increase
the training data size and repeat the randomization over 10 trials to get standard errors on uniform
data.

We also experiment with making the data unrealizable by setting (d = 10, pm = 0.1, ph0 =

0.4, ph1 = 0.1, Gaussian distribution with 20 clusters) in Figure B.2.

1000 2000 3000 4000 5000 6000 7000

Training data size

0.70

0.75

0.80

0.85

0.90

T
es

t
A

cc
u

ra
cy

MILP (ours)

RealizableSurrogate(ours)

CrossEntropySurrogate

OvASurrogate

SelectivePrediction

CompareConfidence

DifferentiableTriage

MixOfExps

Figure B.2: (Test performance of the different methods on unrealizable (d = 10, pm = 0.1, ph0 =
0.4, ph1 = 0.1, Gaussian distribution with 20 clusters) synthetic data as we increase the training
data size.

We also show average run-times for the MILP on the synthetic data as we increase the dimension
in Figure B.3a and as we increase the training data size in Figure B.3b. The distribution was uniform
and realizable with pm = 0.0, ph0 = 0.3, ph1 = 0.0. We observe that the run time increases with
training set size which is the biggest bottleneck. The runtime also increases with dimension up until

210

0 100 200 300 400 500

Dimension (d)

0

500

1000

1500

2000

2500

3000

R
u

nt
im

e
(s

)
MILP (ours)

(a) Runtime with increasing dimension, n = 1000

0 1000 2000 3000 4000 5000

Training data size (n)

0

1000

2000

3000

4000

5000

6000

R
u

nt
im

e
(s

)

MILP (ours)

(b) Runtime with increasing training data size, d =
30

Figure B.3: Runtime of the MILP on the realizable synthetic data with uniform data distribution.
Note that the test accuracy of the MILP is demonstrated in Figure 3.4a and the MILP always reaches
0 training error across the different data dimensions and training set sizes.

the dimension is of the same order as the number of training points, afterwards it is faster for the
MILP to find a 0 error solution.

B.3.4 NIH Chest X-ray

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

 A
cc

ur
ac

y

(a) Fracture

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94

Te
st

 A
cc

ur
ac

y

(b) Nodule or Mass

Figure B.4: NIH Chest X-ray results on the two remaining tasks with the baselines and our method
and red with circle markers. We see that all methods aren’t able to obtain a performance of a
human-AI team with better performance than the human, our method on both tasks defers to the
human.

211

B.3.5 CIFAR-10H

0.0 0.2 0.4 0.6 0.8

Coverage

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy
of

H
u

m
an

(w
h

en
d

ef
er

ri
n

g)

RealizableSurrogate (ours)

CrossEntropySurrogate

OvASurrogate

SelectivePrediction

CompareConfidence

DifferentiableTriage

MixOfExps

(a) Accuracy on the examples deferred to human

0.0 0.2 0.4 0.6 0.8 1.0

Coverage

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy
of

C
la

ss
ifi

er
(n

ot
-d

ef
er

ri
n

g)

RealizableSurrogate (ours)

CrossEntropySurrogate

OvASurrogate

SelectivePrediction

CompareConfidence

DifferentiableTriage

MixOfExps

(b) Accuracy on the examples not deferred, classifier
predicts

Figure B.5: On CIFAR-10H, classifier accuracy on non-deferred set and human accuracy when
deferred vs coverage (fraction of points where classifier predicts).

B.4 Deferred Proofs and Derivations

B.4.1 Related Work

We mentioned that the surrogate in [62] belongs to the family derived in [23].
This is established by setting lϕ(i, f(x)) as follows 4:

lϕ(i, f(x)) =

ϕ(gy) +
∑

y′ ̸=y ϕ(−gy′), if y ∈ Y
ϕ(gy)− ϕ(−gy′),

(B.14)

B.4.2 Section 3.4 (Hardness)

Background and Definitions

Realizable Intersection of Halfspaces. For our purposes, an instance I of learning an intersection
of halfspaces in the realizable setting is given by a finite dataset {(xi, yi)}ni=1, with xi ∈ Rd and
yi ∈ {0, 1}, such that there exist halfspaces g∗1 : Rd → {0, 1} and g∗2 : Rd → {0, 1} with zero error

4This was established by Yuzhou Cao.

212

on the dataset:
errI(g

∗
1, g

∗
2) :=

1

n

∑
i

Ig∗1(xi)∧g∗2(xi)̸=yi = 0.

We consider two related problems: finding halfspaces (g1, g2) with exact and weak agreement.

Exact agreement. Given an instance I of realizable intersection of halfspaces, the exact agreement
problem is to find a pair of halfspaces (g1, g2) such that g1(xi) ∧ g2(xi) = yi for all i ∈ {1, . . . , n}.

Weak agreement. Given an instance I of realizable intersection of halfspaces, the weak agreement
problem is to find a pair of halfspaces (g1, g2) with error at most 1/2− γ for some γ > 0:

errI(g1, g2) :=
1

n

∑
i

Ig1(xi)∧g2(xi) ̸=yi ≤
1

2
− γ.

Note that there exists a pair (g∗1, g
∗
2) with error 0 but the goal is just to obtain error 1/2− γ.

Quite a bit is known about the hardness of the exact and weak agreement problems.

Theorem ([228] Theorem 1, rephrased). The exact agreement problem is NP-hard.

Theorem ([70] Theorem 2, rephrased). There is no polynomial-time algorithm for the weak

agreement problem unless NP = RP .

We also consider finite-data versions of LWD-H:

Finite-data realizable LWD-H. An instance J of learning with deferral in the realizable setting
is given by a finite dataset {(xi, yi, hi)}ni=1, with xi ∈ Rd and yi, hi ∈ {0, 1}, such that there exist
halfspaces m∗ : Rd → {0, 1} and r∗ : Rd → {0, 1} with zero error on the dataset:

errJ (m
∗, r∗) :=

1

n

∑
i

Ir∗(xi)=1Ihi ̸=yi + Ir∗(xi)=0Im∗(xi)̸=yi = 0.

As with intersection-of-halfspaces, we can consider finding halfspace classifier/rejector pairs (m, r)
with exact and weak agreement.

Exact agreement. Given an instance J of realizable LWD-H, the exact agreement problem is
to find a pair of halfspaces (m, r) such that for all i, if r(xi) = 0, m(xi) = yi, and if r(xi) = 1,
hi = yi. That is, the error of the classifier/human system on the finite dataset is 0.

213

Weak agreement. Given an instance J of realizable LWD-H, the weak agreement problem is to
find a pair of halfspaces (m, r) with error at most 1/2− γ for some γ > 0:

errJ (m, r) :=
1

n

∑
i

Ir(xi)=1Ihi ̸=yi + Ir(xi)=0Im(xi)̸=yi ≤
1

2
− γ.

Mapping between learning intersections and LWD-H

We show how to turn an instance I of realizable intersection of halfspaces into an instance
of J of (finite-data) realizable LWD-H. Given an arbitrary instance I on dataset D, Lemma 12
shows how to construct an instance J of LWD-H and a bijection (g1, g2)←→ (m, r) such that for
arbitrary halfspaces (g1, g2), the error errI(g1, g2) = errJ (m, r). In particular, since we assumed
I is realizable and hence ∃g∗1, g∗2 with errI(g∗1, g

∗
2) = 0, Lemma 12 shows how to construct an

instance J of LWD-H with errJ (m∗, r∗) = 0. This will allow us to reduce an arbitrary instance I
of realizable intersection of halfspaces to an instance J of realizable LWD-H. Additionally, given
an arbitrary classifier/rejector pair (m, r) on this J with error ϵ, Lemma 12 shows how to map
(m, r)→ (g1, g2) with error ϵ on instance I.

Lemma 12. Consider an arbitrary instance I of learning an intersection of halfspaces on a dataset

D = {(xi, yi)}ni=1. Define D̃ = {(xi, yi, 0)}ni=1. This corresponds to an instance J of LWD-H

where the “human expert” always outputs label 0.

Then:

1. Consider two arbitrary halfspaces g1, g2 and set m(x) = g1(x), r(x) = 1− g2(x). Note that

m and r are also halfspaces. Then errI(g1, g2) = errJ (m, r). That is,

1

n

∑
(xi,yi)∈D

I[g1(xi) ∧ g2(xi) ̸= yi] =
1

n

∑
(xi,yi,hi)∈D̃

(
Ir(xi)=1Ihi ̸=yi + Ir(xi)=0Im(xi) ̸=yi

)
.

2. Suppose I is an instance of realizable intersection of halfspaces. Then the instance J of

LWD-H defined by the dataset D̃ is an instance of realizable LWD-H. That is, there exists

(m∗, r∗) with errJ (m∗, r∗) = 0.

Proof. For part 1, recall that by definition:

errJ (m, r) =
1

n

∑
(xi,hi,yi)∈D̃

(
Ir(xi)=1Ihi ̸=yi + Ir(xi)=0Im(xi)̸=yi

)
.

214

Since hi = 0 for all i, this is equal to

1

n

∑
i

(
Ir(xi)=1Iyi=1 + Ir(xi)=0Im(xi)̸=yi

)
.

Using r(x) = 1− g2(x) and m(x) = g1(x), this simplifies further to:

1

n

∑
i

(
Ig2(xi)=0Iyi=1 + Ig2(xi)=1Ig1(xi)̸=yi

)
. (B.15)

Consider the error of errI(g1, g2). The model makes a mistake if g2(x) = 0 and y(x) = 1,
g2(x) = g1(x) = 1 and y = 0, or g2(x) = 1, g1(x) = 0, and y = 1. The first case is Ig2(x)=0Iy=1

and the latter two cases can be expressed as Ig2(x)=1Ig1(x) ̸=y. Hence

errI(g1, g2) =
1

n

∑
(xi,yi)∈D̃

I[g1(xi) ∧ g2(xi) ̸= yi] =
1

n

∑
i

(
Ig2(xi)=0Iyi=1 + Ig2(xi)=1Ig1(xi) ̸=yi

)
,

which is equal to (B.15), so errI(g1, g2) = errJ (m, r).
For part 2, we assumed that I was realizable, so there exists g∗1 , g∗2 with errI(g∗1, g

∗
2) = 0.

Applying part 1 yields m∗, r∗ such that errJ (m∗, r∗) = 0. Hence J is an instance of realizable
LWD-H.

Lemma 12 takes an instance I of learning an intersection of halfspaces and constructs an
instance J of LWD-H such that there is an error-preserving bijection between solutions of I and
solutions of J . This allows us to easily apply the existing hardness results for learning a realizable
intersection of halfspaces, since if I is realizable then so is J .

Hardness results for LWD-H

Theorem 9. There is no polynomial-time algorithm for solving the exact agreement problem for

LWD-H unless P=NP.

Proof. Suppose there exists a polytime algorithm A for solving exact agreement on realizable
LWD-H. Consider an arbitrary instance I of learning a realizable intersection of halfspaces. Lemma
12 shows how to construct an instance J of realizable LWD-H. Run Algorithm A on J to obtain
halfspaces (m, r) with errJ (m, r) = 0. Set g1 = m, g2 = 1 − r. Lemma 12 guarantees that
errI(g1, g2) = 0. Hence, A is a polynomial-time algorithm for exact agreement for realizable
intersection of halfspaces. [228] shows that there is no polynomial-time algorithm for exact
agreement for realizable intersection of halfspaces unless P = NP .

Corollary 10. There is no efficient, proper PAC learner for realizable LWD-H unless NP = RP .

215

Proof sketch. Suppose A is an efficient proper PAC learner for realizable LWD-H, so for any
distribution D, any ϵ > 0, δ > 0, given poly(1/δ, 1/ϵ) samples from D, A outputs a pair of
halfspaces (m, r) with (population) system error at most ϵ in time poly(1/ϵ, 1/δ).

Now letD be the uniform distribution over a dataset of n points {(xi, yi, hi)}ni=1. Set ϵ = 1/(2n)

and δ = 1/100 and run A. With probability at least 1 − δ A outputs (m, r) with error at most
1/(2n). Of course, if (m, r) has error at most 1/(2n) it must have error 0. This gives a randomized
algorithm for solving the exact agreement problem for realizable finite-data LWD-H.

These results show that exact agreement, and thus exact proper PAC learning, are hard. Next we
consider the hardness of weak agreement.

Theorem 5 Let ϵ > 0 be an arbitrarily small constant and suppose we have an instance J
of realizable LWD-H. So we have data D = {(xi, yi, hi)}ni=1, where xi ∈ Rd, yi, hi ∈ {0, 1}, and

there exist halfspaces m∗, r∗ with zero loss on D:

errJ (m
∗, r∗) :=

1

n

∑
i

(
Ir∗(xi)=1Ihi ̸=yi + Ir∗(xi)=0Im∗(xi) ̸=yi

)
= 0

Then there is no polynomial-time algorithm to find a classifier-rejector pair (m̂, r̂) with error 1/2−ϵ,
i.e.:

1

n

∑
i

(
Ir̂(xi)=1Ihi ̸=yi + Ir̂(xi)=0Im̂(xi) ̸=yi

)
≤ 1

2
− ϵ

unless NP = RP .

Proof. Suppose there exists a polynomial-time algorithmA and a γ > 0 such that given an instance
J of realizable LWD-H, A returns a pair (m̂, r̂) with error errJ (m̂, r̂) at most 1/2− γ. Consider
an arbitrary instance I of realizable intersection of halfspaces. Lemma 12 shows how to reduce I
to an instance J of realizable LWD-H. Run Algorithm A on J to obtain a pair of halfspace (m̂, r̂)

with error at most errJ (m̂, r̂) ≤ 1/2− γ. Lemma 12 guarantees that g1 = m̂, g2 = 1− r̂ satisfy
errI(g1, g2) ≤ 1/2− γ. Hence A gives a deterministic algorithm for solving the weak agreement
problem for realizable intersection of halfspaces. [70, Theorem 4] construct an algorithm/reduction
showing that if we can efficiently solve weak agreement for realizable intersection of halfspaces,
then Smooth Label Cover is in RP , but Smooth Label Cover is an NP-hard problem [70, Theorem
3]. Hence there is no polynomial-time algorithm to find a classifier-rejector pair (m̂, r̂) with error
1/2− ϵ unless NP = RP .

Corollary 11. There is no efficient, proper, weak PAC-learner for realizable LWD-H unless NP =

BPP .

216

Proof. Given a distribution D over points (x, y, h), x ∈ Rd, y, h ∈ {0, 1} and halfspaces (m, r), let

errD(m, r) := P(x,y,h)∼D[r(x) = 1 ∧ h ̸= y ∨ r(x) = 0 ∧m(x) ̸= y].

This is identical to the system loss (3.1) on distribution D. Suppose there exists an efficient, proper,
weak PAC-learner for realizable LWD-H. I.e., there exists some γ such that for any distribution D,
under the guarantee that ∃(m∗, r∗) with errD(m∗, r∗) = 0, given access to poly(1/δ) samples from
D, with probability at least 1 − δ, A returns a pair (m, r) with errD(m, r) ≤ 1

2
− γ in poly(1/δ)

time.
By combining Lemma 12 with the randomized reduction of [70], we can use A to construct an

algorithm that implies Smooth Label Cover is in BPP . The definition of Smooth Label Cover is
not important for our purposes beyond the following two results:

Theorem 12. [70, Theorem 3] For any constant t and arbitrarily small constants µ, ϑ, η > 0, there

exist constants k and m such that given an instance L of Smooth-Label-Cover(t, µ, ϑ, k,m) it is

NP-hard to distinguish between the following two cases:

• YES Case/Completeness: There is a labeling to the vertices of L which satisfies all the edges.

• NO Case/Soundness: No labeling to the vertices of L satisfies more than η fraction of the

edges.

Theorem 13. [70, Theorem 4] For any constant γ > 0 and integer l > 0, there is a randomized

polynomial time reduction from an instanceL of Smooth-Label-Cover(t, µ, ϑ, k,m) to an instance I
of Realizble Intersection of Halfspaces for appropriately chosen parameters (t, µ, ϑ) and soundness

η, such that

• YES Case/Completeness: If L is a YES instance, then there is an intersection of two halfspaces

which correctly classifies all the points in instance I.

• NO Case/Soundness: If L is a NO instance, then with probability at least 9/10, there is no

function of up to l halfspaces that correctly classifies more than 1/2 + γ fraction of points in

instance I.

For our case, we can use Lemma 12 to further reduce the instance I constructed by Theorem
13 to an instance J of LWD-H, then run the weak PAC-learner A on J . If A outputs a pair of
halfspaces (m, r) with error at most 1/2− γ, we output YES. Otherwise we output NO.

If I is a realizable instance, A returns a pair of halfspaces with error at most 1/2 − γ with
probability at least 1− δ. On the other hand, if I is not weakly realizable (w.r.) (i.e., there is no

217

function of up to l halfspaces that correctly classifies more than a 1/2 + γ fraction of points in I),
then clearly A never returns a good pair of halfspaces, since no such pair exists. Therefore:

P(YES|L YES) = P(YES|I realizable)P(I realizable|L YES)

= (1− δ) · 1

P(NO|L NO) = P(NO|I w.r.)P(I w.r.|L NO) + P(NO|I not w.r.)P(I not w.r.|L NO)

≥ P(NO|I not w.r.)P(I not w.r.|L NO)

≥ P(NO|I not w.r.)
9

10

=
9

10
.

Hence we can useA to construct an algorithm for a Smooth-Label-Cover instance L that outputs
YES when L is a YES with probability at least (1 − δ), and outputs NO when L is a NO with
probability at least 9/10. Since we assumed A runs in poly(1/δ), this implies Smooth Label Cover
is in BPP . Together with Theorem 12, this shows that there is no efficient, proper, weak PAC
learner for realizable LWD-H unless NP = BPP .

Finally, we show that when realizability is violated, there is no efficient algorithm for weak
agreement.

Corollary 1 (formal). Let δ, ϵ > 0 be arbitrarily small constants. Then, given a set of points

{(xi, yi, hi)} with xi ∈ Rd, yi, hi ∈ {0, 1} with a guarantee that there is a classifier/rejector pair

(m∗, r∗) that classifies a 1− δ fraction of points correctly, there is no polynomial time algorithm to

find a classifier-rejector pair that classifies 1
2
+ ϵ fraction of points correctly unless P = NP.

Proof. This is a simple reduction from learning a single halfspace in the presence of noise, which is
hard by the following result:

Theorem. ([229], see also [70, Theorem 1]) Let δ, ϵ > 0 be arbitrarily small constants. Then, given

a set of labeled points {(xi, yi)} in Rd with a guarantee that there is a halfspace that classifies 1− δ
fraction of points correctly, there is no polynomial time algorithm to find a halfspace that classifies

1/2 + ϵ fraction of points correctly, unless P = NP.

Suppose we have an algorithm A for solving LWD-H in the presence of noise. In particular,
there exists some ϵ > 0, δ > 0 such that under the guarantee that there exists an (m∗, r∗) pair with
error at most δ, A returns an (m, r) pair with error at most 1

2
− ϵ.

Consider an instance I of learning a single halfspace in the presence of noise defined by a
dataset D = {(xi, yi)}ni=1, such that there exists a halfspace c with error at most δ on D. From D,

218

construct the dataset D̃ = {(xi, yi, 1− yi)}ni=1. This is an instance J of LWD-H where the “human
expert” is always wrong. Note that (c, 0) is a classifier/rejector pair with error at most δ on D̃, so J
is an instance of LWD-H with noise level δ. Run algorithm A on J with parameter ϵ to obtain an
(m, r) pair with errJ (m, r) = 1/2− ϵ. Then:

1/2− ϵ ≥ errJ (m, r) =
1

n

∑
i

Ir(xi)=1Ihi ̸=yi + Ir(xi)=0Im(xi)̸=yi

=
1

n

 ∑
i:r(xi)=1

Ihi ̸=yi +
∑

i:r(xi)=0

Im(xi)̸=yi

≥ 1

n

 ∑
i:r(xi)=1

Im(xi) ̸=yi +
∑

i:r(xi)=0

Im(xi)̸=yi

=

1

n

∑
i

Im(xi) ̸=yi

= errI(m),

where the inequality is because we constructed D̃ such that Ihi ̸=yi = 1 for all i. Therefore, there
exists a δ and ϵ for which, given a dataset and the guarantee that there exists a halfspace with error
at most δ, we can output a halfspace with error at most 1/2− ϵ. Combining this with the Theorem
above shows that if A runs in polynomial time, P = NP .

B.4.3 Section 3.5 (MILP)

Proposition 1. For any expertH and data distribution P over X ×Y that satisfies Assumption 2,

let 0 < δ < 1
2
, then with probability at least 1− δ, the following holds for the empirical minimizers

(m̂∗, r̂∗) obtained by the MILP:

L0−1
def (m̂

∗, r̂∗) ≤ L̂0−1
def (m̂

∗, r̂∗)
(Km +Kr)d

√
2 log d+ 10

√
log(2/δ)√

nP(H(Z) ̸= Y)

Proof. We first start by recalling Theorem 2 in [26]:

L0−1
def (m̂

∗, r̂∗) ≤ L̂0−1
def (m̂

∗, r̂∗) +Rn(M) +Rn(R) +RnP(H(Z)̸=Y)/2(R)

+ 2

√
log (2

δ
)

2n
+

P(H(Z) ̸= Y)

2
exp

(
−nP(H(Z) ̸= Y)

8

)
(B.16)

Note that here we avoid going through the optimal solution and just relate distribution perfor-

219

mance to the training performance.
In the bound (B.16), Rn(M) and Rn(R) denote the Rademacher complexity of a halfspace in

d dimensions where the infinity norm of each element in the halfspace is constrained by Km and
Kr respectively. Let us now compute this Rademacher complexity, inspired by [230]:

Rn(M) =
1

n
E

[
sup

M :||M ||∞≤Km

n∑
i=1

ϵiM
⊤xi

]

≤ 1

n
E

[
sup

M :||M ||1≤dKm

M⊤
n∑

i=1

ϵixi

]
(since ||M ||1 ≤ d||M ||∞)

=
dKm

n
E

[
n∑

i=1

||ϵixi||∞
]

=
dKm

n
E

[
sup
j

n∑
i=1

ϵi[xi]j

]

≤ dKm

√
2 log d

n
sup
j

√√√√ n∑
i=1

[xi]2j (Massart’s finite lemma on xij)

≤ dKm

√
2 log d√
n

(assume ||xi||1 ≤ 1 for all i)

Let us use the Rademacher complexity calculation in the bound to get:

L0−1
def (m̂

∗, r̂∗) ≤ L̂0−1
def (m̂

∗, r̂∗) +
dKm

√
2 log d√
n

+
dKr

√
2 log d√
n

+
dKm

√
2 log d√

nP(H(Z) ̸= Y)

+ 2

√
log (2

δ
)

2n
+

P(H(Z) ̸= Y)

2
exp

(
−nP(H(Z) ̸= Y)

8

)

note that P(H(Z) ̸=Y)
2

exp
(
−nP(H(Z)̸=Y)

8

)
is a term that does not depend on the optimization and

shrinks much faster than 8√
nP(H(Z)̸=Y)

, so that we can summarize things as:

L0−1
def (m̂

∗, r̂∗) ≤ L̂0−1
def (m̂

∗, r̂∗) +
(Km +Kr)d

√
2 log d+ 10

√
log(2/δ)√

nP(H(Z) ̸= Y)
(B.17)

220

B.4.4 Section 3.6 (RealizableSurrogate)

Theorem 2. The RealizableSurrogate LRS is a realizable (M,R)-consistent surrogate for

L0−1
def for model classes closed under scaling, and satisfies L0−1

def (m, r) ≤ LRS(m, r) for all (m, r).

Proof. Let us recall the RealizableSurrogate loss pointwise:

LRS(g, x, y, h) = −2 log
(
exp(gy(x)) + Ih=y exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(B.18)

where g = {gi}i∈Y∪⊥. Recall that the classifier and rejector are defined as: m(x) = argmaxy∈Y gy(x)

and r(x) = Imaxy∈Y gy(x)≤g⊥(x).
We first prove that for every point, the RealizableSurrogate loss upper bounds the system

0-1 error: L0−1
def (m, r, x, y, h) ≤ LRS(g, x, y, h):

1. Case 1: consider r(x) = 0 (classifier predicts):

(a) Case 1a: if the classifier is incorrect, Im(x)̸=y = 1:

i. Case 1ai: If the human is incorrect, Ih=y = 0:
then the loss is:−2 log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′ (x))

)
, we know since the classifier is incor-

rect, then it must be that exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

≤ 0.5 (since gy is not the max), thus the
loss is greater than 2 (log is base 2), and the 0-1 loss is 1 in this case.

ii. Case 1aii: if the human is correct then Ih=y = 1:
then the loss is:−2 log

(
exp(gy(x))+exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′ (x))

)
, we know since the classifier is incor-

rect, then it must be that exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

+ exp(g⊥(x))∑
y′∈Y∪⊥ exp(gy′ (x))

< 2/3 since gy is
not the max neither is g⊥, otherwise if the sum of these two fractions is greater than
2/3, then maxi

exp(gi(x))∑
y′∈Y∪⊥ exp(gy′ (x))

< 1/3 then the maximum must be one of y or ⊥
which is a contradiction. Finally, the loss is greater then −2 log(2/3) = 1.17 which
is greater than 1.

(b) Case 1b: if the classifier is correct Im(x)=y = 1, then the 0-1 error is 0, since the
RealizableSurrogate loss is ≥ 0 then it is an upper bound.

2. Case 2: consider r(x) = 1 (human predicts):

(a) Case 2a: if the human is correct then Ih=y = 1:

then the 0-1 error is 0, since the RealizableSurrogate loss is ≥ 0 then it is an upper
bound.

221

(b) if the human is incorrect then Ih=y = 0:

the loss is −2 log
(

exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

)
, we know since we defer, then it must be that

exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

≤ 0.5 (since gy is not the max), thus the loss is greater than 2 (log is
base 2), and the 0-1 loss is 1 in this case.

this concludes the proof of the upper bound.
We now prove that LRS is a realizable-consistent loss function.
Consider a data distribution and a human under which there exists m∗, r∗ ∈M×R that have

zero error L0−1
def (m

∗, r∗) = 0. Associated with m∗, r∗, is a set of functions g∗ ∈ G that give rise to
m∗, r∗. Let ĝ be the minimizer of the surrogate loss LRS and the associated classifier and rejector
be m̂, r̂.

We now upper bound the 0-1 loss of the pair m̂, r̂. Let u ∈ R be any real number:

L0−1
def (m̂, r̂)

≤ LRS(m̂, r̂) (loss is upper bound)

≤ LRS(um
∗, ur∗) (since m̂, r̂ is optimal for LRS andM×R is closed under scaling)

= E[LRS(um
∗, ur∗, x, y, h)|r∗ = 1]P(r∗ = 1) + E[LRS(um

∗, ur∗, x, y, h)|r∗ = 0]P(r∗ = 0)

(B.19)

Let us investigate the two terms in equation (B.19).
The first term is when r∗ = 1, then we must have g∗⊥ > maxy g

∗
y and Ih=y = 1 since the data is

realizable and when we defer the human must be correct. Examining the first term and taking the
limit:

lim
u→∞

E[LRS(um
∗, ur∗, x, y, h)|r∗ = 1]P(r∗ = 1)

= lim
u→∞

E[−2 log
(
exp(ug∗y(x)) + Ih=y exp(ug

∗
⊥(x))∑

y′∈Y∪⊥ exp(ug∗y′(x))

)
|r∗ = 1]P(r∗ = 1)

= lim
u→∞

E[−2 log
(
exp(ug∗y(x)) + exp(ug∗⊥(x))∑

y′∈Y∪⊥ exp(ug∗y′(x))

)
|r∗ = 1]P(r∗ = 1)

= E[−2 log (1) |r∗ = 1]P(r∗ = 1) = 0 (applying monotone convergence theorem)

The second term is when r∗ = 0, then we must have g∗y > maxy′∈(Y\y)∪⊥ g
∗
y′ since the data is

realizable. Examining the second term and taking the limit:

222

lim
u→∞

E[LRS(um
∗, ur∗, x, y, h)|r∗ = 0]P(r∗ = 0)

= lim
u→∞

E[−2 log
(
exp(ug∗y(x)) + Ih=y exp(ug

∗
⊥(x))∑

y′∈Y∪⊥ exp(ug∗y′(x))

)
|r∗ = 0]P(r∗ = 0)

= E[−2 log (1) |r∗ = 0]P(r∗ = 0) = 0 (applying monotone convergence theorem)

Thus combining the above two derivations, we obtain:

L0−1
def (m̂, r̂) ≤ 0.

We just proved that the optimal solution from minimizing RealizableSurrogate leads to a zero
error solution in terms of system error which proves that the loss is realizable (M,R)-consistent.

Theorem 14. The CrossEntropySurrogate LCE [26] is not a realizable (M,R)-consistent surrogate

for L0−1
def .

Proof. To prove that the surrogate LCE is not realizable-consistent, we will construct an example
with a data distribution and a model class closed under scaling such that: 1) there exists a zero error
solution in the model class and 2) the minimizer of LCE has non-zero error.

Consider the data distribution illustrated and described in Figure B.6 consisting of four regions
R0,R1,R2 and R3. Each region respectively has mass 1/4 + α, 1/4, 1/4 − α, 1/4 . Each region
respectively has label Y = 0, Y = 1, Y = 0, Y = 2. The Human is perfectly accurate on Region 0
and inaccurate on every other region.

223

¼+α

Y=0
Y=0

Y=2

Y=1
¼-α

¼

¼

R3

R1
R2 R0

H=Y

Figure B.6: Data Distribution for our example: the data consists of four regions R0,R1,R2 and R3.
Each region respectively has mass 1/4 + α, 1/4, 1/4− α, 1/4 . Each region respectively has label
Y = 0, Y = 1, Y = 0, Y = 2. The Human is only accurate on Region 0.

We consider a hypothesis class F parameterized by a scalar c ∈ R and four indices each in
i0, i1, i2, i⊥ ∈ {0, 1, 2, 3}. Let fi(x) = cI{x ∈ Ri}, a function f ∈ F defines a rejector and
classifier as: m(x) = argmax{c · fi0(x), c · fi1(x), c · fi2(x)} (ties are decided uniformly randomly)
and r(x) = I{c · f⊥(x) > max{c · fi0(x), c · fi1(x), c · fi2(x)}. This hypothesis class is closed
under scaling.

The error minimizing function f ∗ in this hypothesis class is obtained by setting c > 0, i0 =

2, i1 = 1, i2 = 3, i⊥ = 0 which obtains zero 0-1 error. No solution with c < 0 is optimal, since the
maximum will always coincide with at least two labels and we break ties in a consistent fashion.
This data distribution and hypothesis class is realizable.

Surrogate solution. We will argue that one can obtain a lower LCE loss by deviating from the
optimal solution f ∗. The intuition for why this is the case is that the LCE penalizes misclassifying
points even when they are deferred. Hence, when α is sufficiently large, LCE will try to classify the
more probable region R0 as label 0 instead of simply deferring on this region and classifying region
R2 as label 0.

Consider the function f̂ defined with arbitrary c > 0 and i0 = 0, i1 = 1, i2 = 3, i⊥ = 0—note
that this function disagrees with the optimal solution on i0 only. Fixing c, we will compute the
difference of LCE loss between f̂ and f ∗ with the same c, this defines only a deviation in terms of
i0. We will compute the difference in each region separately.

Region 1 and Region 3: On both region 1 and region 3, the difference will be shown to be zero.
In both regions, the human is incorrect and note that i1 and i2 are identical in both solutions. The

224

loss of f̂ in region 1 is:

−1

4
log

(
ec

3 + ec

)
this is the same as the loss of f ∗, by symmetry the loss is the same in region 3.

We will now compute the sum of the difference in region 2 and region 0:
Region 2: In this region the human is also incorrect, the difference in the loss of f̂ and f ∗ is:

Ex∈R2[LCE(f
∗)− LCE(f̂)] = (

1

4
− α) ·

(
log

(
1

4

)
− log

(
ec

3 + ec

))
∈ [−(1

4
− α) log(4), 0]

Region 0: In this region the human is correct, the difference is :

Ex∈R0[LCE(f
∗)− LCE(f̂)]

= (
1

4
+ α) ·

(
− log

(
1

3 + ec

)
− log

(
ec

3 + ec

)
+ log

(
ec

2 + 2ec

)
+ log

(
ec

2 + 2ec

))
To compute the difference in the loss between f̂ and f ∗, we sum the difference in Region 2 and

Region 0:

LCE(f
∗)− LCE(f̂)

=
1

4

(
log

(
1

4

)
− log

(
ec

3 + ec

)
− log

(
1

3 + ec

)
− log

(
ec

3 + ec

)
+ 2 log

(
ec

2 + 2ec

))
+ α

(
− log

(
1

3 + ec

)
+ 2 log

(
ec

2 + 2ec

)
− log

(
1

4

))
= −(1

4
+ α)

(
log

(
1

3 + ec

)
− 2 log

(
ec

2 + 2ec

))
− 1

2
log

(
ec

3 + ec

)
+ (

1

4
− α) log

(
1

4

)
We can simplify this difference to further become:

1

4
(8αc− 2 log(4)− 2(1 + 4α) log(1 + ec) + (3 + 4α) log(3 + ec))

Note that when c = 0, the above difference is 0. Let us set α = 0.125 for concreteness (other
values of α also work, in particular larger values, but not all smaller values). We compute the
derivative of the difference with respect to c, obtaining:

225

d

dc
(LCE(f

∗)− LCE(f̂)) =
1

4

(
3.5ec

ec + 3
− 3ec

ec + 1
+ 1

)
=

0.375(2− ec + e2c))

(1 + ec)(3 + ec)
> 0

We just showed that the difference has derivative strictly larger than 0 with respect to c, moreover
the difference is 0 when c = 0, thus when c > 0 the difference is strictly bigger than 0.

We just proved that with respect to the surrogate loss LCE , the optimal solution with respect to
L0−1
def is not optimal, thus the surrogate is not a realizable (M,R)-consistent surrogate for L0−1

def

226

Appendix C

Additional Information for Chapter 4

C.1 Extended Related Work

Human-AI interaction. A significant amount of research has tried to understand the role of
explanations on Human-AI team performance. [88] investigates the role of increasing levels of
AI explanation on performance and find that beyond showing predicted labels accuracy does not
increase. [89] identify different regularizers that optimize for factors that help humans better
simulate and verify AI predictions on recommendation tasks. [90] investigates how the ability
of humans to provide feedback to the model reduced user frustration on a text classification task.
[91] evaluated different explanation methods on the adult income dataset and on a movie reviews
dataset found that only LIME helped for simulating the model and that subjective user ratings of
explanation quality were not predictive of effectiveness. More research on the adult income dataset
found that showing AI confidence improved trust but failed to improve AI-assisted accuracy [92].
[93] studies how different types of errors an AI may have will lead to different perceptions of the AI
by the user, and how setting expectations of the AI capabilities (e.g. its accuracy) improves the user
experience. [130] show on a beer/book reviews sentiment classification task and on LSAT multiple
choice questions that AI explanations beyond confidence scores don’t improve performance but
rather increase blind trust in the AI system. [231] on the task of annotating clinical texts show that
clinicians generally build a mental model of when to rely on automation, however, when the AI
presents a complete suggestion versus an incomplete one, this causes experts to show less agency
and makes them more likely accept wrong answers. In similar lines, [94] studied how do humans
incorporate AI recommendations as a function of their correctness and their prior knowledge of
machine learning, and showed that people follow incorrect AI recommendations for tasks they
predominantly complete correctly and that incorrect-abnormal recommendations were followed
significantly less than incorrect normal recommendations. [232] on the task of age prediction from
images showed that the addition of explanations in the form of saliency maps did not improve

227

accuracy nor did the quality of the saliency maps have much impact. [95] propose to visualize a
given input’s nearest neighbors to help better reason about the model’s uncertainty and show an
editor that allows users to edit aspects of the input and see how model predictions change, they found
that this interface allowed some clinicians to build better intuition about the AI capabilities and
limitations. Finally, a line of work has focused on human-AI interaction in healthcare applications:
on chest X-rays [2], [233], diabetic retinopathy [1], skin cancer [234] and breast cancer [235]. [104]
study the effect of initial debriefing of stated AI accuracy compared to observed AI accuracy in
deployment and find a significant effect of stated accuracy on trust, but that diminishes quickly after
observing the model in practice; this reinforces our approach of building trust through examples
that simulate deployment.

Explainability. Methods for explaining the decisions of ML models range from feature attribution
(e.g. LIME [38]), saliency methods for computer vision tasks (Grad-CAM [236]), Example-
based explanations [237] and others. One of the basic forms of model explanations is calibrated
confidence scores [238]–[240] These methods for explainability start from a set of desiderata
(natural assumptions of what an explainability method should provide) and then formulate a given
method that can be implemented without further data requirements. The common pitfall of these
methods is that they are agnostic to the downstream expert, the desiderata is formulated from a
perspective of a rational expert and are sometimes justified from user studies.

Machine Teaching. Machine teaching (MT) refers to the problem of choosing a minimally sized
dataset that enables a student learner to learn a specific target function [42]. Given a hypothesis
class, its teaching dimension is the smallest sized set that enables an ERM learner to pick out the
optimal classifier [107], [241]. To mimic human learners, [106] proposes a Bayesian learner based
on a prior over a discrete hypothesis class, the learner maintains a distribution over each hypothesis
that updates with each teaching example. They evaluate their approach on an image classification
task where crowdworkers learn to distinguish different animals. This setting was extended to include
explanations in the form of attention [41], [242] and errors in learning priors and teacher knowledge
[243]. [109] aims to teach a consistent black-box learner, while this formulation is attractive in
regards to a human learner, the algorithm they provide requires an excessive amount of queries to
the human that go beyond the teaching examples presented. [108] teaches a forgetful human learner
multiple concepts where each concept maps to a single example, but the human may forget the
concept later on. Our work separates itself by the use of a novel radius nearest neighbor model to
approximate the human learning process.

228

Human Learning. [85] make the claim that humans makes decision by sampling similar ex-
periences from memory instead of computing reward estimates for each possible action. Their
experimental study involves users performing a two-armed bandit task with each example having
a unique identifier. [115] make two claims about how humans make decisions: the first is that
people often retrieve a limited set of items from memory when making decisions and the second is
that training humans on idealized instances is more advantageous than training them on noisy or
hard instances. They base their claims on two experiments: one where humans classify horizontal
lines of different lengths and the other where they judge outcomes of baseball games. [116] review
the literature on visual category learning, how we distinguish between different visual objects.
They make a distinction between two different models of human decision making. The first is
example-based that models assume that a category is represented in terms of the particular exemplars
that have been experienced during learning. The other is rule based, people try to explicitly learn
categories by forming simple rules. The conjecture is that for hard tasks, the example-based model
is more accurate while for simpler ones, the rule-based approach is the driver.

Nearest Neighbor Compression. Our human student model is a more general case of a weighted
nearest neighbor learner, this makes the teaching problem equivalent to that of compressing the
number of samples nearest neighbors requires. Seminal work on compressing nearest neighbors
introduced the condensed nearest neighbor rule [244] and follow-up work introduced more robust
versions but that still require the existence of a consistent subset [245]. More recent work has
focused on the generation of compressed subsets [246]–[248].

229

C.2 Theoretical Results and Proofs

C.2.1 Further Derivations

We expand on section "Teaching a Student Learner" (4.5) and decompose the loss of the human
learner.

Since πY (x) and h(Z,A) are known and fixed, we can assign to each deferral decision at each
point i a cost ci(r) ∈ R+ and abstract away the inner classification decisions:

L(D) :=
∑
i∈S

lc(r(zi, ai;D); ci) (C.1)

An example of lc is lbc := r(xi;D)ci(1) + (1− r(xi;D))ci(0) which can be made equivalent to the
0-1 classification loss. It may be the case that neither of ci(0) or ci(1) are zero since there may be
multiple correct decisions or that both be may be non-zero and equal. Now we further decompose
the loss L into errors made by the prior and errors due to the learned rejector:

L(D) =
∑

i∈S |B(zi)̸=∅

lc

(∑
j∈B(zi)

I{rj = 1}K(zi, zj)∑
j∈B(zi)

K(zi, zj)
; ci

)
(errors by learned rejector) (C.2)

+
∑

i∈S | B(zi)=∅

lc (g0(zi, ai); ci) (errors by prior) (C.3)

In the paper, we proved a guarantee in Theorem 1 on the performance of the GREEDY-SELECT

algorithm when the hyperparameter α is set to 1 when optimizing the loss L(.) (4). The loss L
involves the human learnerM(.), however, one component of the human learner was left unspecified
which is how they set the radius γ following every teaching example z. In what follows, we assume
the human is perfectly learning the radius that the teaching process displays to them. Equivalently,
when the human is shown the tuple {z, γ, r} where z is the teaching example, γ is a radius and r is
the deferral action, they now follow the deferral action r in the neighborhood of size γ around z.

When we set α = 1, this defines a unique radius γi to each point zi ∈ S∗ (the teaching set),
this radius defines the largest neighborhood around zi such that the optimal deferral action in that
neighborhood is ri. Thus our teaching set becomes S∗ = {xi, zi, γi, ri} and we can now simplify
our optimization problem by only searching for the teaching point z at each step (instead of jointly
searching for the radius as well) as the radius is uniquely specified no matter what the current
teaching set Dt is.

230

C.2.2 Proofs

The following proposition is part of the proof of Theorem 1.
Proposition 2. Let F (X) = L(∅)− L(X), F (.) is submodular, monotone and positive.

Proof. Monotonicity. We prove that L(.) is monotone decreasing which implies that F (.) is
monotone increasing. For notation simplicity we omit the AI message A from the prior rejector and
make it only a function of Z, the proof remains valid even if we add A.

Initially D0 = ∅ and L(∅) is the error rate of the human’s prior rejector g0 on the set S.
Induction argument: In the first step D1 = {zi1} where zi1 is the training example that

leads to the biggest error decrease of L(.) (we don’t use this fact so that this holds for any training
example added, also note that since there is a unique correspondence from zi1 to ri1 and γi1 we
simplify the notation and only write zi1), now note that:

L(D1)− L(D0) =
∑

i∈S s.t. zi1∈B(zi)

lc (ri1; ci)− lc(g0(zi); ci) (C.4)

Note that other terms in the difference of equation (C.4) cancel out, what is left are points in S that
the human starts to use their learned rejector on, i.e. those that are sufficiently close to zi1 call these
set of points I . For each i ∈ I , if it was the case that g0(zi) ∈ argmind lc(d; ci), then we know that
ri1 and g0(zi) have the same cost since ri1 is the optimal decision by definition. Now suppose that
g0(zi) /∈ argmind lc(d; ci), then it must be the case that ri1 = 1− g0(zi) and this achieves a lower
loss than g0(z1). Therefore we have that:

L(D1)− L(D0) ≤ 0

Now suppose we are at step t + 1 of the algorithm and we add example zi(t+1) to obtain
Dt+1 = {zi1, · · · , zi(t+1)}. Let us compute the difference:

L(Dt+1)− L(Dt) =
∑

i∈S s.t. B(xi)={zi(t+1)}

lc
(
ri(t+1); ci

)
− lc(g0(zi); ci) (C.5)

Note that if there was point i ∈ S where there exists j ∈ Dt such that zj ∈ B(xi), then the addition
of zi(t+1) cannot change the final cost assigned to example i as if zi(t+1) ∈ B(zi, then we must
have ri(t+1) = rj by assumption 5. Thus the only element remaining in the difference is points that
now have a neighbor in Dt+1 but not in Dt, meaning those that only have zi(t+1) in their ball. The
argument is now exactly as in the base case so that:

L(Dt+1)− L(Dt) ≤ 0

231

which gives us the set of inequalities:

L(Dm) ≤ · · · ≤ L(D0)

and note that L(.) achieves it’s minimum value at L(S) = L(D|S|) ≤ L(Dm).
Positivity. Note that F (.) is positive as we assume lc is positive and we obtain the result from

monotonicity.
Submodularity. To make the proof easier, define the teaching ball B̃(D) to be the set of

points in the training set S that have any teaching point Z ∈ D in their ball B(.). This implies if
B(zi) = {zj} then zi ∈ ({zj}); remember thatB(zi) is the set of teaching points that are sufficiently
close to zi. Let A ⊂ B ⊂ S, let l ∈ S \B, let us compute:

F (A ∪ {l})− F (A)− F (B ∪ {l}) + F (B) = L(A)− L(A ∪ {l}) + L(B ∪ {l})− L(B)

(C.6)

=
∑

i∈S s.t. zi∈B̃(zl)\B̃(A)

lc(g0(zi); ci)− lc (rl; ci)

+
∑

i∈S s.t. zi∈B̃(zl)\B̃(B)

lc (rl; ci)− lc(g0(zi); ci) (C.7)

=
∑

i∈S s.t. zi∈(B̃(zl)∩B̃(B))\B̃(A)

lc(g0(zi); ci)− lc (rl; ci) ≥ 0 (C.8)

The last term is positive as the optimal decisions ri always improve on the prior.

Theorem 1. Let F (X) = L(∅)−L(X), F (.) is submodular, monotone and positive. Moreover,

the GREEDY-SELECT algorithm described above achieves the following performance compared to

the optimal teaching set D∗:

L(Dm)︸ ︷︷ ︸
loss of chosen set

≤ (1− 1

e
) L(D∗)︸ ︷︷ ︸

loss of optimal set

+
1

e
L(∅)︸︷︷︸

loss of prior rejector

(C.9)

Proof. The first statement of the theorem is proved in Proposition 2.
For the second statement of the theorem, the proof is simply restating the proof of Theorem 1.5

in [249] in the context of our problem which we do here for clarity. Let Di = (z1, · · · , zi) the set
that our algorithm produced at round i and D∗ = (z∗1 , · · · , z∗K) the optimal set.

232

For all i ≤ m:

F (D∗) ≤ F (D∗ ∪Di) (monotonicity) (C.10)

= F (Di) +
m∑
j=1

F (Di ∪D∗
j−1 ∪ z∗j)− F (Di ∪D∗

j−1) (telescoping) (C.11)

≤ F (Di) +
∑
z∈D∗

F (Di ∪ z)− F (Di) (submodular F) (C.12)

≤ F (Di) +m(F (Di ∪ zi+1)− F (Di)) (optimality of zi+1) (C.13)

(C.14)

re-arranging this final inequality with δi+1 = F (D∗)− F (Di) we get:

δi+1 ≤ δi(1−
1

m
)

iterating this last inequality till m, using the fact that 1− x ≤ e−x and restating things in terms of
L(.) gets the final result in the theorem.

C.2.3 Hardness result

Theorem 1 gives a guarantee on the subset chosen by the greedy algorithm with an 1 − 1
e

approximation factor, one can ask if we can do better. We prove that a generalization of our problem
under Assumption 5 is in fact NP-hard.

Proposition 1. Problem (4.12) is NP-hard.

Proof. For simplicity we assume that the AI and human domains are identical and don’t consider
the AI message in the human rejector or predictor. The proof can be straightforwardly extended to
the case when the domains differ and including the AI message.

Suppose we are given a collection of finite sets A1, · · · , An jointly covering a set W . We reduce
the problem of finding a smallest subcollection covering W to the teaching problem (4.12).

Let SV = W , for eachAj , we associate it with a new teaching example xj ∈ ST (unique from all
elements of SV and other elements of ST) such that its neighbors are exactly the elements of Aj i.e.
K(xj, x) =∞ iff x ∈ Aj and K(xj, x) = 0 iff x /∈ Aj (we construct the function K specifically
to satisfy these requirements). Now we set the label yi = 1 for each example i ∈ SV ∪ ST and let
h(x) = 1 (human predictor) and πY (x) = 0 (AI predictor) for all x and we set g0(x) = 1 (human
prior rejector) so that the prior is wrong on all example: we should never defer while the prior
always defers so the correct deferral decision is di = 0 (derived deferral decision) for all examples.
We set the loss lc to simply be the 0− 1 deferral loss (cost of 1 incurred if final prediction disagrees

233

with label, otherwise a cost of 0), with this in mind note that LV (∅) = |SV | as with D = ∅ we use
the prior rejector on all examples which always errs.

Once we pick a new example xj (correspondence to the setAj) to our setD that we are choosing,
the only terms that are affected are those that are close to xj which are exactly the elements of
Aj , so that LV ({xj}) = |SV | − |Aj|. Iteratively, when we add another example xk to D the only
terms affected are those in the neighborhood of xk which are Ak, but now it may be the case that
Aj ∩ Ak ̸= ∅, however since the deferral label associated to all examples is the same, which is to
not defer, the loss of the elements in the intersection are not affected (in essence there is no double
counting of the elements) so that now: LV ({xj, sk}) = |SV | − |Aj ∪ Ak|. It is now clear to see
that solving problem (4.12) with δ = 0 finds a set cover of W with elements A1, · · · , An as LV (D)

simply counts how many elements of SV (correspondence to W) we don’t apply the prior rejector
to (i.e. elements we cover).

C.2.4 Efficient Implementation of Greedy Selection

When α = 1, we provide an efficient implementation of the greedy selection algorithm
GREEDY-SELECT.

At each round, we have a teaching set Dt from which we can construct a rejector function
gt(., .), at D0 we have g0 is the prior rejector. Now at round t, we calculate for each example on the
training set S the following quantity

Et
i =

∑
j∈S | K(zj ,zi)≥γi

Igt(zj ,aj)̸=rj (C.15)

Ei counts the number of points that are in the neighborhood of zi that the current human rejector gt
misclassifies, in other words it measures for each point i how many points in the training set it will
cause their deferral label to flip. Note that we are guaranteed that once a point is close enough to
the teaching point zi, it’s deferral decision becomes optimal by Assumption 5. At at each round t
we pick the point i∗ = argmaxiE

t
i .

This algorithm has run-time O(n2m) where n = |S|, while the naive implementation of the
algorithm has run-time O(n2m2), the extra m factor comes from having to simulate the human
rejector to calculate the resulting loss.

When we are optimizing over the choice of radius jointly with the choice of training point, we
have no other choice but to fully simulate the human rejector. But note that the optimization over
the radius can be reduced to only looking at radius choices that are equal to kernel similarities on
the training set.

234

C.3 SAE Model Error Analysis

Predictions. The below analysis is performed from allowing the model SAE-large model [121]
whose code is available at 1 to predict on the HotpotQA DEV set [86] with no distractor paragraphs.
The model is ranked 20’th on the public leaderboard, and is the highest ranking model with publicly
available code.

C.3.1 Factors of difference

Presence of distractors. There are two types of question answer types in HotpotQA: yes/no
answers and answers that are substrings from the passage. We eliminate yes/no questions and only
focus on questions that admit an answer inside the passage which makes the validation set of size
6947 out of an original 7405. We note that the absence of distractor paragraphs does not boost

Table C.1: Performance on the dev set without yes/no questions.

FACTOR EXACT MATCH (EM) F1

8 DISTRACTORS 66.92 79.62
NO DISTRACTORS 68.79 82.75

performance by a significant amount. In fact the model SAE first consists of a relevant paragraph
extractor that feeds into the RoBERTa reader and that extractor works quite well as evidenced.

Bridge vs comparison questions. The questions in HotpotQA can be categorized into two types:
bridge e.g. "“when was the singer and songwriter of Radiohead born?”, to answer this question one
first has to figure out who is the singer of Radiohead and then look up his date of birth, the other
type are comparison questions such as that “Who has played for more NBA teams, Michael Jordan
or Kobe Bryant?". This categorization is provided already in the dataset.

Table C.2: Performance based on question types.

FACTOR EXACT MATCH (EM) F1

BRIDGE 68.31 83.25

COMPARISON 71.52 79.86

1https://github.com/JD-AI-Research-Silicon-Valley/SAE

235

https://github.com/JD-AI-Research-Silicon-Valley/SAE

We can see that there is a difference in how question types affect performance, however it is not
consistent across the two metrics to make a definite conclusion.

Passage Lengths. Given the length of the two golden paragraphs, is there a difference in the
performance over different sizes? As we can see below we observe no significant difference, in the
last bucket of long passages we see a notable increase in F1 but that is due to limited sample size in
extremely long passages.

[0
,

67
]

[6
7,

13
3]

[1
33

,
20

0]

[2
00

,
26

7]

[2
67

,
33

3]

[3
33

,
40

0]

Passage lenghts (words)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
1

Figure C.1: Performance across lengths of passages in terms of words. First bin contains very little
samples to be significant.

Supporting fact lengths. We plot the performance versus the number of supporting facts: the
number of sentences one must read to answer the question, this is provided in the dataset explicitly.
Note there are at least two sentences that one must read since all questions are multi-hop. We can
see that there is no real difference across all lengths.

236

2
4
58

6

3
1
74

0

4
52

4

5
7
4

6
1
3

7
9

8
1

Lenght of supporting facts

0.70

0.75

0.80

0.85

0.90

0.95

F
1

Figure C.2: Performance across number of supporting sentences. Black bars indicate 95% confi-
dence interval around the mean, the x axis is: (number of sentences, number of examples with that
many sentences)

Passage and Question topics. We try to see if there is a difference in performance when looking
into the topics that the examples belong to. We first run an LDA with 15 topics on the passage
concatenated with the question (we use the gensim package [250]). We then categorize each
example according to the topic with the largest coefficient in the LDA decomposition.

0,
(7

4
)

1,
(6

2
)

2
,

(1
4
26

)

3,
(5

57
)

4,
(1

48
)

5,
(5

3
)

6,
(5

09
)

7,
(6

87
)

8,
(9

03
)

9,
(6

92
)

10
,

(9
1)

1
1,

(5
39

)

1
2,

(4
83

)

1
3,

(6
90

)

14
,

(3
3)

Topic

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

F
1

Figure C.3: Performance across LDA topics

Plotted in Figure C.3 are mean F1 across topic and 90% confidence intervals and we observe no
particular topic that has significant difference from others.

Question words. We investigate difference in performance depending on the question word
present in the question.

237

w
h

a
t

33
87

w
h

en
26

1

w
h

er
e

3
43

w
h

ic
h

22
45

w
h

o
14

48

w
h

om
6
7

w
h

os
e

1
35

w
h
y

14

h
ow

30
4

ot
h

er

Question word

0.5

0.6

0.7

0.8

0.9

F
1

Figure C.4: Performance (left EM, right F1) across question words

We can see that there is significant difference with "why" questions (however they are rare) and
"how" questions to a lesser degree.

C.3.2 Embedding clustering

Model embeddings. The SAE model last layer consists of a 512x1024 tensor: a 1024 representa-
tion of 512 tokens. This representation is then used to predict for each token the probability that it
is the start or end of the answer with a linear layer. To get a vector representation of each example,
we average out across tokens to obtain a single 1024 vector for each example. We take these vectors
and cluster them using K-means (we do the analysis for multiple k’s). We then plot the performance
across each cluster below.

0,
(3

60
)

1,
(4

77
)

2,
(8

3)

3,
(3

33
)

4,
(6

29
)

5,
(3

74
)

6,
(5

51
)

7,
(5

23
)

8,
(3

72
)

9,
(4

5)

10
,

(1
44

)

11
,

(5
08

)

12
,

(4
98

)

13
,

(1
86

)

14
,

(3
72

)

15
,

(1
48

)

16
,

(4
77

)

17
,

(1
68

)

18
,

(5
64

)

19
,

(1
35

)

Cluster index

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F
1

Figure C.5: Performance (left EM, right F1) across model embeddings clusters.

238

We observe that cluster 10 has lower performance than average by a significant amount. Looking
at examples from that cluster, no apparent theme emerges.

Passage embeddings. We use the BERT sentence encoder 2 to get embeddings for the passage
and cluster them using k-means. We repeat the exact process for the questions and answers.

0,
(3

04
)

1,
(3

15
)

2,
(4

27
)

3,
(1

93
)

4,
(3

71
)

5,
(3

63
)

6,
(4

54
)

7,
(2

52
)

8,
(2

79
)

9,
(5

86
)

10
,

(4
85

)

11
,

(1
75

)

12
,

(3
02

)

13
,

(5
74

)

14
,

(1
70

)

15
,

(2
80

)

16
,

(4
58

)

17
,

(4
78

)

18
,

(3
33

)

19
,

(1
48

)

Cluster index

0.0

0.2

0.4

0.6

0.8
F

1

Figure C.6: Performance across passage embeddings clusters. No differences emerge significantly.

Question embeddings. We can see that cluster 13 undeperforms, examining that cluster we can
see a pattern of questions like "What city does Paul Clyne and David Soares have in common?", the
theme is the "in common" at the end of the question.

0,
(3

68
)

1,
(3

75
)

2,
(3

42
)

3,
(4

17
)

4,
(3

40
)

5,
(3

52
)

6,
(2

62
)

7,
(4

72
)

8,
(4

28
)

9,
(2

70
)

1
0,

(1
58

)

1
1,

(2
12

)

1
2,

(3
77

)

1
3,

(3
34

)

1
4,

(3
43

)

1
5,

(4
88

)

1
6,

(3
98

)

1
7,

(3
43

)

1
8,

(3
09

)

1
9,

(3
59

)

Cluster index

0.0

0.2

0.4

0.6

0.8

F
1

Figure C.7: Performance across question embeddings clusters.

Answer embeddings. We observe no observable theme or significant differences.

2https://github.com/UKPLab/sentence-transformers

239

https://github.com/UKPLab/sentence-transformers

0,
(3

93
)

1,
(4

58
)

2,
(2

84
)

3,
(1

86
)

4,
(4

12
)

5,
(2

42
)

6,
(4

86
)

7,
(5

10
)

8,
(8

08
)

9,
(2

12
)

1
0,

(3
40

)

1
1,

(2
99

)

1
2,

(5
94

)

1
3,

(2
65

)

1
4,

(1
69

)

1
5,

(2
19

)

1
6,

(2
15

)

1
7,

(3
88

)

1
8,

(2
39

)

1
9,

(2
28

)

Cluster index

0.0

0.2

0.4

0.6

0.8

F
1

Figure C.8: Performance across answer embeddings clusters.

240

C.4 Synthetic Experiments Details and Results

All experiments were run on a Linux system with a NVIDIA Tesla K80 GPU, 25 GB of RAM on
Python 3.7. We use the scikit-learn package to run the clustering algorithms [251], LIME package
for the selection baseline [38] 3, ELI5 package to obtain the text LIME highlights 4 and the Sentence
Transformers package for the embedding models [78] 5

C.4.1 Misspecification results

To evaluate how much information about h we need to properly teach the human, we learn a
teaching set assuming the human’s error probability is err′p + δ where δ has each component drawn
from {−δ, δ} uniformly where δ > 0. Figure C.9 shows the difference to ORACLE accuracy as we
increase the misspecification of the human predictor. In this experiment, we assume knowledge
of the prior rejector g0 and that the human is perfectly learning the radius given by the teaching
algorithm. What this experiment impacts is the computation of the optimal deferral decision ri
computed by our algorithm to obtain S∗. At the limit when δ = 0.5, we assume that the human
expert error rate is uniformly 0.5 across the domain, which is the same as having the human
predictions h ∼ Bin(1/2) on the teaching set.

In Table 1 in the paper, we evaluate what happens when the human is not learning the radius
perfectly, this simulates noise in the learning process. The radius γi that the human learns is a noisy
version of γ̂i, specifically we add a uniformly distributed noise δ ∼ U(−(1− γ̂i)/2, (1− γ̂i)/2).

0.0 0.1 0.2 0.3 0.4 0.5

Misspecification of Classifier δ

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

D
iff

er
en

ce
to

O
ra

cl
e

A
cc

u
ra

cy

DOUBLE-GREEDY

Prior

No Info

Figure C.9: Difference in Oracle accuracy at teaching size @T=30 for the DOUBLE-GREEDY method
assuming an error in h by δ in setting B.

3https://github.com/marcotcr/lime
4https://eli5.readthedocs.io/en/latest/index.html
5https://github.com/UKPLab/sentence-transformers

241

https://github.com/marcotcr/lime
https://eli5.readthedocs.io/en/latest/index.html
https://github.com/UKPLab/sentence-transformers

C.5 Additional Synthetic Experiments

C.5.1 CIFAR-10

Figure C.10: Comparing a 1-nearest neighbor rejector model to the radius nearest neighbor model
introduced in Assumption 4 for expert k = 6. The "1-NN" line is obtained by first obtaining T
points using K-medoids and then running a 1-NN rejector on these points with the label assigned to
each point being the optimal deferral decision ri. We can see that 1-NN struggles with less than
6 examples, but then reaches a steady state that has the same error as the radius nearest neighbor
model. The effectiveness of the radius nearest neighbor model when the teaching set is very small
is due to the local nature of each update with the addition of a teaching example.

Figure C.11: Performance of the AI-Behavior baseline as we vary the parameterK: the AI-Behavior
baseline uses a K-nearest neighbor rejector and at each teaching step selects the point that best
reduces the error of the rejector at detecting the AI’s errors. We show results for the human expert
k = 6 with the consistent radius strategy α = 1. We can see that the parameter K has little effect
and thus we use a natural choice of K = 6.

242

1 2 3 4 5 6 7 8 9
Expert (k)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Di
ffe

re
nc

e
to

 O
ra

cle
 A

cc
ur

ac
y

@
T=

8

GREEDY-SELECT (Ours)
K-Medoids
Random
AI-Behavior
LIME
Surrogate-Loss

(a) Teaching size of 8 points

1 2 3 4 5 6 7 8 9
Expert (k)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Di
ffe

re
nc

e
to

 O
ra

cle
 A

cc
ur

ac
y

@
T=

20

GREEDY-SELECT (Ours)
K-Medoids
Random
AI-Behavior
LIME
Surrogate-Loss

(b) Teaching size of 20 points

1 2 3 4 5 6 7 8 9
Expert (k)

0.00

0.01

0.02

0.03

0.04

0.05

Di
ffe

re
nc

e
to

 O
ra

cle
 A

cc
ur

ac
y

@
T=

40

GREEDY-SELECT (Ours)
K-Medoids
Random
AI-Behavior
LIME
Surrogate-Loss

(c) Teaching size of 40 points

Figure C.12: Extended legend: Varying the human parameter k (number of classes human can
classify) and plotting the difference to oracle accuracy for all the baselines when using the consistent
radius strategy including the surrogate-loss learning to defer method of [26] at 3 different teaching
set sizes.

243

1 2 3 4 5 6 7 8 9
Expert (k)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Di
ffe

re
nc

e
to

 O
ra

cle
 A

cc
ur

ac
y

@
T=

4

DOUBLE-GREEDY (Ours)
K-Medoids
Random
AI-Behavior
LIME
Surrogate-Loss

(a) Teaching size of 4 points

1 2 3 4 5 6 7 8 9
Expert (k)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Di
ffe

re
nc

e
to

 O
ra

cle
 A

cc
ur

ac
y

@
T=

12

DOUBLE-GREEDY (Ours)
K-Medoids
Random
AI-Behavior
LIME
Surrogate-Loss

(b) Teaching size of 12 points

1 2 3 4 5 6 7 8 9
Expert (k)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Di
ffe

re
nc

e
to

 O
ra

cle
 A

cc
ur

ac
y

@
T=

20

DOUBLE-GREEDY (Ours)
K-Medoids
Random
AI-Behavior
LIME
Surrogate-Loss

(c) Teaching size of 20 points

Figure C.13: Extended legend: Varying the human parameter k (number of classes human can clas-
sify) and plotting the difference to oracle accuracy for all the baselines when using DOUBLE-GREEDY
including the surrogate-loss learning to defer method of [26] at 3 different teaching set sizes.

244

C.5.2 Guassian Data Illustration

Figure 1 illustrates the rejector for a linear classification setting, here we formalize this as a
mixtures of Gaussian setup and show the performance of our selection algorithm both quantitatively
and qualitatively.

Setup. As an illustrative setting where we can visually inspect the teaching set, we perform
experiments on two dimensional Gaussian mixture data. The covariate space is X = R2 and
target Y = {0, 1}, we assume that there exists two sub-populations in the data denoted A = 1 and
A = 0. Furthermore, X|(Y = y, A = a) is normally distributed according to N (µy,a, I). The
group proportion is P(A = 1) = 0.5 and the means are sampled from a uniform distribution. The
AI follows the Bayes solution for group A = 1 which here corresponds to a hyperplane and the
human classifier follows the Bayes solution for group A = 0, which is another hyperplane. We
assume the human’s prior rejector is to reject based on a tresholding of the predictor confidence
i.e. g0(x) = I{||h(x)|| ≤ ϵ} . We assume that the similarity kernel is the RBF kernel K(x, x′) =

e−||x−x′||2 .

Results. For 100 trials, we generate data with random means and measure the difference in system
accuracy between our approach and the baselines as we vary the size of the teaching set. Results are
shown in Figure C.14. Figure C.15 shows the points chosen on a given configuration.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Teaching set size

0

2

4

6

8

D
iff

er
en

ce
in

T
es

t
A

cc
u

ra
cy

Ours - K-medoids

Ours - Random

Ours - AI-Behavior

Figure C.14: Teaching complexity plot for synthetic Gaussian data setup. The x-axis shows the
difference in test human accuracy between our method and the baselines. Plotted are the averages
over the 100 trials along with 95% confidence interval error bars for the average.

245

2 0 2 4 6 8 10 12
2

0

2

4

6

8

10

12 human
machine
points chosen

(a) Prior rejector with points chosen at step 20.

2 0 2 4 6 8 10 12
2

0

2

4

6

8

10

12 human
machine
points chosen

(b) Step 1 .

2 0 2 4 6 8 10 12
2

0

2

4

6

8

10

12 human
machine
points chosen

(c) Step 2 .

2 0 2 4 6 8 10 12
2

0

2

4

6

8

10

12 human
machine
points chosen

(d) Step 5 .

2 0 2 4 6 8 10 12
2

0

2

4

6

8

10

12 human
machine
points chosen

(e) Step 20 .

Figure C.15: Extended legend: blue dots indicate a correct decision while red dots indicate mistakes.
Points with an "x" are labels 1 while points with an "o" are labels 0 (in the Y space). The lines
labeled human and machine are the respective classifiers.

246

C.6 Crowdsourced Experiments Details and Results

C.6.1 Experiment Details

Participants. We recruited 50 US based participants from Amazon Mechanical Turk per each
condition (100 total), workers were required to have a HIT approval rate higher than 95% and over
100 HITs approved. Initial pilot studies were also conducted with graduate students in computer
science at a US university. Participants in the baseline were paid $3 for 10 minutes of work and
those in the teaching condition received $6 for 20 minutes of work. Any demographic information
we gathered in our study is kept confidential and workers were asked to consent to their use of their
responses in research studies. We submitted an IRB application and the IRB declared it exempt
as is. We followed standard protocol and additionally provided the IRB exemption and details to
our user study participants. We filter participants who don’t answer the tutorial questions correctly
and we also filter for all baselines that workers at least answer one question correctly on their own
beyond the first question.

AI and Test Set details. The simulated AI used in the study was obtained by first performing
K-means with K = 25 on the dev set of HotpotQA, and then manually filtering the data to obtain 11
clusters that are more distinct. The test set used in the testing phase was obtained first by filtering
the data using K-medoids with K = 200 as a way to get diverse questions. We then created 20 test
sets by sampling 7 random questions from the filtered set on which the AI was correct and 8 on
which the AI is incorrect. The order of the examples in the test set was shuffled for each participant.

Cluster Topics. The AI used in the study had 11 different clusters on which it’s errors were
defined. Table C.3 shows the main theme and most common Wikipedia categories for each cluster.

User Lessons. In Table C.4 we show examples of the lessons that the crowdworkers wrote during
the teaching phase for the proposed teaching method. We show examples of the lessons on the first
3 examples in the teaching phase and separate the participant lessons into 4 categories: participants
who wrote accurate lessons, participants who wrote irrelevant lessons (not relevant to the question
or required no effort to write), participants who wrote complex lessons that don’t pertain to the
example topic and finally participants who wrote narrow lessons that are on topic but only apply to
the example and not the neighborhood of the example. In Table 4.3 we separated user metrics into
two groups accurate lessons and inaccurate lessons, this corresponds to grouping accurate lessons
versus the rest in the lesson categorization of Table C.4. Furthermore, in the body of section 4.6.4
we distinguish between accurate lessons, narrow and complex lessons (combined into one group)

247

Table C.3: Cluster main theme (manually obtained) and top 3 Wikipedia categories of examples in
clusters for the AI used in the MTurk study.

Cluster ID Main Theme Wikipedia Categories

1 Plants Poaceae genera, Flora of Mexico, Dioecious plants
2 Singers, Musicians 21st-century American singers, Grammy Award winners,

American male guitarists
3 Movies, Actors American films, British films, American male film actors
4 Sites, Hotels Casino hotels, Casinos in the Las Vegas Valley, Resorts in the

Las Vegas Valley
5 Writers, Magazines 20’th-century American novelists, American male non-fiction

writers, American women novelists
6 Composers, Plays 19th-century classical composers, Operas, Male classical pi-

anists
7 Games Windows games, PlayStation 4 games, Xbox One games
8 Universities Universities and colleges, Colonial colleges, Private universi-

ties in New York
9 Soccer Premier League players, English Football League players,

Association football midfielders
10 Sports (non soccer) American men’s basketball players, NFL player, NBA All-

Stars
11 Politics 21st-century American politicians, Presidential Medal of Free-

dom recipients, Republican Party members

and finally irrelevant lessons.

C.7 Extended Discussion

One limitation of our human experiments is that we used a simulated AI that has an easier to
understand error boundary. This enabled us to have a more in-depth study of the crowdworker
responses than otherwise would have been possible.

Having a simulated AI to which we perfectly understand where it’s error regions are (but note
this is highly non trivial for someone who doesn’t know how it was trained), enables to define what
the "lessons" should be and thus evaluate if users are learning correctly. This ability to evaluate if
users are actually learning through their written lessons enables to test two things:

1. Do people learn the correct lessons using our teaching method?

2. Do those who learn the correct lessons apply them perfectly?

And our answers in our paper to these questions are: 1) yes but only half the people are able
to, 2) not quite, since even those with perfect lessons don’t show perfect accuracy (in Defer F1).

248

What is interesting about this last observation tell us that even if people know the rules, and have
them written and shown on the screen, they might still apply it incorrectly. With a non simulated
AI, it would have been difficult for us to figure out the answers to the questions as the underlying
lessons are not pre-determined. For an initial experimental study on teaching, we need to understand
better how do humans make decisions and how we can try to use their lessons to possibly provide
feedback and better guide them.

Another limitation is that our test-time interface did not include model explanations or predic-
tions. This was done for multiple reasons:

• The AI predictions and explanations reveal information about it’s underlying performance
at test time. If two different crowdworkers received different test sets, then their knowledge
about the AI may be different. Therefore if the participants belonged to two different
experimentation conditions, then the test set becomes a confounding factor we need to control
for.

• When model explanations are not available or are not effective, the effect of teaching becomes
more important as it is the only way the human’s mental model is formed. Thus the choice of
the teaching method becomes more important.

• If the AI prediction is available at test time and workers press on the "Use AI answer" button,
there is an unobservability issue that arises: are workers pressing the button because they trust
the AI, or are workers pressing the button because they came up with the same answer on
their own? Removing their ability to see the AI prediction alleviates the problem.

249

Table C.4: Example of lessons that users in the Ours-Teaching condition wrote during the teaching
phase. We show examples of the lessons on the first 3 examples in the teaching phase and separate
the participant lessons into 4 categories: participants who wrote accurate lessons, participants who
wrote irrelevant lessons (not relevant to the question or required no effort to write), participants who
wrote complex lessons that don’t pertain to the example topic and finally participants who wrote
narrow lessons that are on topic but only apply to the example and not the neighborhood of the
example.

Lesson Type Example ID Actual Lesson

Accurate Lessons 1 The AI is not good at answering questions about plants.
Accurate Lessons 2 The AI is better at Politics and geography than at sports.
Accurate Lessons 3 The AI is bad at answering questions about movies

Irrelevant Lessons 1 I understood AI is good at answering
Irrelevant Lessons 2 AI focus on the institution
Irrelevant Lessons 3 AI omitted important terms

Complex Lessons 1 It seems to be better at answering questions where the abso-
lute same phrases are used in the question as the passage and
where both answers are in the question, maybe?

Complex Lessons 2 The ai is good at answering questions that has to do with
cities and numbers though not good with words that has to
do with repeated words.

Complex Lessons 3 The AI can’t decipher clues, example, the other movie was
based on a book that came out after the other movie but the
AI couldn’t figure out that that must mean the movie based
on that book must then also have come out after the other
movie.

Narrow Lessons 1 The AI isn’t good at multi-faceted questions about continental
species.

Narrow Lessons 2 The topic was politics and the AI is good at answering ques-
tions about specific areas when the question can be answered
by looking for specific information about one section but not
when it involves integrating multiple pieces of information
from the paragraph.

Narrow Lessons 3 The AI isn’t good at comparing media release dates..

250

C.8 User Interface Screenshots

Figure C.16: Consent form to be confirmed before entering experiment

251

Figure C.17: Information collected about workers prior to experiment. MTurk worker ID was only
saved for cross-checking and then deleted.

252

Figure C.18: First step of the tutorial introducing the task

253

Figure C.19: Second step of the tutorial solving without AI help

254

Figure C.20: Third step of the tutorial solving with AI help

255

Figure C.21: Teaching instructions

256

Figure C.22: Teaching initial example to be solved by the human.

257

Figure C.23: Feedback shown after human solves the example along with supporting examples.

258

Figure C.24: Top words for the teaching example along with instructions for lesson writing

Figure C.25: The LIME-Teaching user teaching introduction

259

Figure C.26: The LIME-Teaching feedback after answering teaching question.

Figure C.27: The LIME-Teaching teaching introduction to second part of the teaching phase

260

Figure C.28: The LIME-Teaching user interface of the second part of the teaching phase where
users observe examples and the AI answers.

261

Figure C.29: Interface during testing.

262

Figure C.30: Questions collected after workers complete experiment for the Teaching condition.

263

264

Appendix D

Additional Information for Chapter 5

D.1 Extended Related Work

Reference [132] proposes a method for human-AI collaboration via conditional delegation rules
that the human can write down. Our framework enables the automated learning of such conditional
delegation rules for more general forms of data that can also depend on the AI output. [15] proposes
to modify the confidence displayed by the AI model to appropriately encourage and discourage
reliance on the AI model. However, this technique deliberately misleads the human on the AI model
ability, our methodology incorporates similar ideas by learning the human prior function of reliance
on the AI and then improving on it with the learned integration recommendations, however, we
display these recommendations in a separate dashboard without modifying the AI model output.
A related approach to our methodology by [133] is to adaptively display or hide the AI model
prediction and display the estimated confidence level of the human and the AI on a task of predicting
whether a person’s income exceeds a certain level. They show that displaying the confidence of the
human and the AI to the human improves performance. Our method is able to learn the confidence
level of the human and the AI, but also incorporates how the human utilizes the AI and describes the
regions where AI vs human performance is different. [134] presents a similar approach to our AI
recommendations, however, they use simulated and faked AI models and descriptions of behavior
while we are able to obtain automated generation of these descriptions of AI behavior.

Existing research has examined various methods to establish human trust in and replicate the
predictions of machine learning models. One such method is LIME, a black-box feature importance
technique, which was employed to select examples for evaluation by crowdworkers to determine the
superior model among two options [38], [39]. However, their selection strategy disregards the human
predictor, and their approach merely presents the examples without further action. In the context of
visual question answering, Chandrasekaran et al. [101] manually selected seven examples to educate
crowdworkers about the AI’s capabilities, leading to an enhanced ability to identify instances where

265

the AI failed. Feng et al. [102], in the domain of Quizbowl question answering, emphasize the
significance of incorporating the human expert’s skill level when designing explanations. This
further justifies our decision to involve the human predictor in the selection of teaching examples.
Cai et al. [103] conducted a study involving 21 pathologists to gather guidelines on what clinicians
desired to know about an AI system prior to interacting with it. Yin et al. [104] investigated the
impact of initial debriefing on stated AI accuracy versus observed AI accuracy during deployment,
finding a substantial influence of stated accuracy on trust that diminishes quickly once the model
is observed in practical use. This reinforces our approach of building trust through examples that
simulate real-world deployment. Bansal et al. [16] examined the role of the human’s mental model
of the AI in task accuracy; however, the mental model was developed through interaction during
testing rather than during an initial onboarding stage. The most similar work to ours is that of
[82] which presents an onboarding scheme based on selecting a set of examples and allows the
human to describe the regions where the AI performance is good or bad. Through a user study on
passage-based question answering, they show that their onboarding scheme improves performance
by 5%, however, they evaluate without the presence of AI evaluations, with a synthetic AI model
and their scheme involves more involvement from the human as they have to describe the regions
themselves. Another approach to teaching involves providing humans with guidelines on when to
rely on AI systems [100]. Model cards [154] and industry practices such as the IBM AI fact sheet
[252] demonstrate direct methods of presenting these guidelines to users, we present humans with a
similar form of card but that includes aspects of human performance "human-AI card".

There is a growing and large area of literature on discovering (and auditing) regions of AI error,
the following is not meant as an extensive list of related work but captures some of the essence of
the literature:

• Adatest allows a user to iteratively discover regions of AI error using LLMs for NLP tasks
and then re-train the model on the regions of error [138], it was then extended to vision tasks
[253] with a similar procedure in [141].

• Erudite allows users to discover regions of error of NLP models through user interfaces [139],
there is a wider literature on dashboards for discovering regions of error [254]

• [144] learns an SVM model from image embeddings to predict model error and then uncover
regions of error based on the directions of the SVM model.

• Works have done extensive manual annotation of ImageNet model mistakes[255], [256].

• DOMINO discovers regions of model error using a slice discovery model based on a special-
ized gaussian mixture model [136], extensions include DRML [140].

266

• The Spotlight method learns individual regions based on a neighborhood of a learned point
[142], our region finding algorithms generalize their procedure by learning weighted distance
distance measures and with a different aim of improving gain of the prior.

• SEAL: Interactive Tool for Systematic Error Analysis and Labeling, uses k-means to uncover
regions of error and then uses an LLM to describe each region [143].

Recent work has emerged on describing sets of images [257], [258] but they don’t incorporate a
contrastive method as we propose. Helpful tools for describing differences between text and images
can be useful for describing regions which future work can incorporate [259]–[261].

One of the objectives of explainable machine learning is to enhance humans’ ability to assess
the accuracy of AI predictions by offering supporting evidence [88]–[97]. Nevertheless, these
explanations fail to provide guidance to decision makers on how to balance their own predictions
against those of the AI or how to integrate the AI’s evidence into their final decision [98]. [17]
shows that AI explanations can reduce overreliance and improve human-AI team performance,
however, their experiments are with simulated AI models and explanations. The central question of
our work is not to study the utility of AI explanations, in fact, all our user studies incorporate AI
explanations and we aim to improve human-AI performance in their presence.

D.2 Region Finding Algorithm - Details

Regions Requirements. Each region in our algorithm should aim to satisfy the following con-
straints:

1. Region Size: We want the size of the region to be at least of size βl and at most of size βu.

2. Consistency of takeaway: The examples in each region must agree on what the takeaway is
in terms of the integration decision. Specifically, at least α% of all points in the region must
either be: ignore AI, use AI as is or integrate AI advice.

3. Concise and Distinguishable Theme: Each region must be concisely described in natural
language in such a way to differentiate from the overall domain. If a region cannot be described
in natural language, the human may not be able to derive a generalizable recommendation
from it. This is a constraint that we implicitly try to satisfy by learning neighborhoods in a
natural language embedding space.

4. Minimum Gain: Each region must have a minimum information gain (defined below) of δ.
This is to ensure that all regions contain sufficient novel information to the human.

267

The optimization to find each region can be formulated in its non-relaxed form as:

max
c,γ,w,r

n∑
i=1

I||w((ei,ai)−c)||<γ · gi,r

s.t.
n∑

i=1

I||w((ei,ai)−c)||<γ · Iri=r ≥ αn

s.t. nβl ≤
n∑

i=1

I||w((ei,ai)−c)||<γ ≤ nβu

And the relaxation we propose is (refer back to Section 5.4.1):

maxc,γ,w,r

∑n
i=1 σ(C1(−||w ◦ ((ei, ai)− c)||+ γ)) · gi,r − λmax(

∑n
i=1 σ(C1(−||w ◦ ((ei, ai)− c)||+ γ))

· (Ir∗i =r − αn), 0)− λmax

(
n∑

i=1

σ(C1(−||w ◦ ((ei, ai)− c)||+ γ))− βun, 0
)

λmax

(
−

n∑
i=1

σ(C1(−||w ◦ ((ei, ai)− c)||+ γ)) + βln, 0

)

We run the optimization for r = 0 and r = 1 and choose the r with the better objective value.
With r fixed, we optimize with respect to the remaining continuous parameters using AdamW and
reduce the learning rate when loss has stopped improving. We initialize with γ = 0 and w = 1. For
the centroid c, we first run k-medoids clustering on the input data with k = min(max(100, T), n)

and randomly select 20 of the resulting centroids. Then with c initialized as each one of the 20
centroids in turn, we run the optimization for 200 epochs and record the loss, and finally optimize
for 2000 epochs with the best initialization for c. We do these repeated initializations to avoid local
minima which are a common failure mode of this type of optimization problem. Note this process
is to find one region, to find all regions we repeat this process identically to find regions one by one.

Selection Based Approach. We described in the body of the paper a generative algorithm to find
the regions. We now describe a selection based algorithm that finds centroids from points in the
dataset D̃ = {ei, ri}. We will also restrict the radius to be the distance between the centroid to
another data point in D̃. We proceed with a sequential search, at round i we perform the following

268

search:

ci, γi =arg max
i∈D̃,γ

G(Ni,γ, R̂
∗, RN1:i−1

), (D.1)

s.t. ∃k ∈ [n] s.t. γ = d(ei, ek), (D.2)

and

∑
j∈[n],d(ei,ej)<γ Irj=ri

|{j ∈ [n], d(ei, ej) < γ}| ≥ α (D.3)

and βl ≤ |{j ∈ [n], d(ei, ej) < γ}| ≤ βu (D.4)

and G(Ni,γ, R̂
∗, RN1:i−1

) > δ (D.5)

Note that with the selection-based procedure, we have to define a fixed distance measure d, and
we cannot optimize over the deferral decision r of the region as we inherit from the point i found.
The naive algorithm to solve the above search is as follows. We first compute the distance matrix
between all data points in D̃, call this matrix K. We then at each round do the following for each
point i in DD̃: sort the points by their distance to i, iteratively grow the region around the point
i to satisfy the constraints, and then keep track of the maximum gain radius. Each time we grow
the region by one point, we check if the constraints are satisfied. The search is parallelized across
multiple instances to make it faster. Finally, we compare the gain of all feasible points and pick the
highest one. This algorithm extends the approach of [82] to incorporate additional constraints and
has significant speed ups over their approach.

Aggregating Regions Across Different Embedding Spaces . We can run our region finding
algorithm above and find different regions across multiple embedding spaces. The question is how
do we aggregate these regions. Say we found a set of T regions N1, · · · , NT . We then run the
following meta-algorithm: do a greedy sequential search to add regions one at a time while making
sure the minimum gain requirement is satisfied, stop when it is not.

D.3 Region Description Algorithm - Details

The LLM call inside Algorithm 1 is accomplished by building the prompt with S+ being the
inside set (positives) and S− being the outside set (negatives) as follows:

def get_prompt(positives , negatives):

prompt = pre_instruction + "\n"

prompt += "inside the region: \n "

counter = 1

for p in positives:

prompt += p[0] + ", \n "

269

counter += 1

if len(negatives) > 0 :

prompt += ". \n not in the region: \n"

counter = 1

for p in negatives:

prompt += p[0] + ",\n"

counter += 1

prompt += post_instruction

return prompt

For the experiments in Section 5.6 we use the following pre instruction:

I will provide you with a set of descriptions of points that belong to a region and a set
of descriptions of point that do not belong to the region. Your task is to summarize the
points inside the region in a concise and precise short sentence while making sure the
summary contrasts to points outside the region. Your one sentence summary should
be able to allow a person to distinguish between points inside and outside the region
while describing the region well. The summary should not be a single word, it should
be accurate, concise, distinguishing, and precise.

Example:

Inside the region:

- two cows and two sheep grazing in a pasture.

- the sheep is standing near a tree.

Not in the region:

- the cows are lying on the grass beside the water.

summary: sheep.

End of Example

While the post-instruction is simply "summary:".
For the ablation without contrasting, the pre instruction we use is:

I will provide you with a set of descriptions of points that belong to a region.Your task
is to summarize the points inside the region in a concise and precise short sentence
.Your one sentence summary should be able to allow a person to distinguish points
inside the region while describing the region well.The summary should be a single
word, it should be accurate, concise, distinguishing and precise.

Example:

270

inside the region: - two cows and two sheep grazing in a pasture.

-the sheep is standing near a tree.

summary: sheep.

End of Example

For the user studies, we had used an earlier instruction that works slightly worse and post-
processed the descriptions by only modifying the first few words to be consistent (see the real
examples in later sections):

"summarize the points inside the region in a concise and precise short sentence while
making sure the summary contrasts to points outside the region"

We recommend the use of the following pre instruction:

I will provide you with a set of descriptions of points that belong to a region and a set
of descriptions of points that do not belong to the region. Your task is to summarize the
points inside the region in a concise and precise short sentence while making sure the
summary contrasts to points outside the region. Your one sentence summary should be
able to allow a person to distinguish between points inside and outside the region while
describing the region well. The summary should be no more than 20 words, it should
be accurate, concise, distinguishing and precise.

Example:

inside the region:

- two cows and two sheep grazing in a pasture.

- the sheep is standing near a tree.

outside the region:

- the cows are lying on the grass beside the water.

summary: The region consists of descriptions that have sheep in them outside in nature,
it could have cows but must have sheep.

End of Example

D.4 Onboarding and Recommendations to Promote Rules - De-
tails

Introductory Phase. To facilitate a smooth onboarding process for individuals working with an
AI assistant, we introduce the Human-AI Card. This card provides detailed insights into the AI’s

271

capabilities, training, and performance.
Additionally, we provide a breakdown of AI and Human performance on different subgroups of

data. We take an example of the Berkeley Deep Driving dataset, where a subgroup might comprise
images taken during the night, in rainy weather, or on a highway. We compute the model’s error for
each possible subgroup and then perform a paired t-test comparing the subgroup model error to the
average model error over the entire data. For the purpose of our user studies, we highlight subgroups
defined by a single metadata category that show statistically significant differences (p ≤ 0.05). It’s
important to note that, for rigorous analysis, one should apply corrections for multiple hypothesis
testing. However, considering the vast number of metadata categories, many results might become
insignificant. Therefore, for simplicity, we adopt this heuristic approach.

D.5 Method Evaluation - Details

In Table D.1 we report the details on the datasets we use in our method evaluation. We normalize
all datasets using l∞ normalization and run our algorithms for 2000 epochs with a learning rate of
0.001 using AdamW and a scheduler to update. We use a constant C1 = 20.

272

Table D.1: Datasets for "Learning Accurate Integrators (Aim 1)". We note the total number of
samples n, the target set size |Y|, the human expert finally the model of the AI. When we note human
"XX% accurate", this indicates a synthetic human model that is accurate uniformly at random with
probability XX%. For DynaSent, the AI model is a a pre-trained sentiment analysis roBERTa-base
model [160] on Twitter data and achieves 75% accuracy. For both BDD and MS-COCO we blur the
images using a Guassian Blur with scale 21 and variance 5.

Dataset n |Y| Human AI

Berkeley Deep
Drive (BDD) [128],
[262]

10k 2 80% accurate faster rcnn r50 fpn
1x 1 - Gaussian blur
with scale 21 and
variance 5

MS-COCO [156] 5k 2 (pres-
ence of
person in
image)

70% accurate faster rcnn R 50
FPN

Massive Multi-task
Language Under-
standing (MMLU)
[129]

14k 4 (MCQ) 50% accurate flan-t5xl [159]

Dynamic Sentiment
Analysis Dataset
(DynaSent) [157]

6.5k 3 leave-one-out annotator a pre-trained sen-
timent analysis
roBERTa-base
model [160]

273

6 8 10 12 14 16 18 20

Number of Regions

0.22

0.24

0.26

0.28

0.30

Te
st

 L
os

s

IntegrAI (ours)
DOMINO
K-MEANS
DoubleGreedy
Human
AI

Figure D.1: Test Error (↓) of the human-AI system when following the decisions of the different
integrators baselines as we vary the number of regions maximally allowed for each integrator on the
MS-COCO dataset.

6 8 10 12 14 16 18 20

Number of Regions

0.45

0.46

0.47

0.48

0.49

0.50

0.51

Te
st

 L
os

s IntegrAI (ours)
DOMINO
K-MEANS
DoubleGreedy
Human
AI

Figure D.2: Test Error (↓) of the human-AI system when following the decisions of the different
integrators baselines as we vary the number of regions maximally allowed for each integrator on the
MMLU dataset.

274

6 8 10 12 14 16 18 20

Number of Regions

0.196

0.198

0.200

0.202

0.204

Te
st

 L
os

s

IntegrAI (ours)
DOMINO
K-MEANS
DoubleGreedy
Human

Figure D.3: Test Error (↓) of the human-AI system when following the decisions of the different
integrators baselines as we vary the number of regions maximally allowed for each integrator on the
Dyanasent dataset.

For Aim 2, we create synthetic AI and human models as follows:

• BDD: AI and Human model each have four regions defined as a condition of a randomly
selected metadata feature, each region is either a good region where the AI/Human have 95%
accuracy or bad region with 60% accuracy (equal number of good and bad regions). If an
example does not belong to any region the AI/Human have 75% accuracy. Each region is of
size at least 0.01 and at most 0.2 in terms of fraction of data points in the dataset. An example
region is "AI is good at: weather: clear" or "Human is bad at: timeofday: night ".

• MMLU: same setup as BDD, region defined as the subject of example. An example region is
"AI is good at: subject: professional psychology".

• MS-COCO: same setup as BDD, region defined as presence of object in image. An example
region is "’Human is bad at: cow: present".

For Aim 3, an obstacle to quantitative results for region descriptions is that they are often
complex even when regions are synthetically defined in terms of metadata and captioning metrics
are not informative. For a region defined on BDD as images of "scenes of highways during the night
with no cars", our algorithm finds the description "highway during the night with various weather
conditions and not congested with many cars" while the SEAL [143] describes it as "Highway
Nighttime Weather Conditions". The SEAL description surprisingly has higher captioning metric
scores (BLEU, METEOR) [263] while being less informative.

275

For the MS-COCO evaluation, we only select objects that have at least 50 examples present
in the evaluation set which leads to only 73 objects over which we evaluate the different region
description algorithms.

D.6 User Studies - Details

D.6.1 BDD Study

Task. The images from BDD are blurred using a Gaussian Blur with a scale of 21 and a variance
of 5. The AI model is a trained faster rcnn model that achieves 84% accuracy without blurring
which decreases to 78% accuracy on the test set. We use the bounding boxes from the model and
output them on the image (allowing the user to either hide or show them). To get a confidence score,
we take the maximum score for the prediction of a traffic light in the image.

Initial Data Collection. The BDD dataset was split 70-30 where the 70% split was used to get
the initial human predictions and find the regions and the 30% split was used only to get testing
examples for the final user study. As mentioned, we obtained data on 400 examples with both human
predictions and prior AI-integration decisions. We use these examples to build Random Forrest
models that predict both the human predictions and AI-integration decisions from the embeddings,
labels, and AI predictions (AI predictions only for predicting AI integration decisions). We use
these predictions from the RF models to label the entire dataset. We ensure that the predictions of
the RF models are calibrated (if the human is 80% accurate, the model is also 80% accurate) with
the human predictions and integration decisions by modifying the threshold on model probability
used to make predictions (e.g. from the usual 0.5 threshold to the value that makes the models
calibrated). Each participant is evaluated on a randomized set of examples, we create 40 different
sets of 20 images that get assigned randomly to each participant.

Attention Checks. In each condition, we insert 3 attention checks for every 20 examples where
the images are unblurred and we keep the AI prediction. We only retain responses where participants
don’t get all attention checks wrong. The class balance of the dataset is close to 51%-49%. The
attention checks are used as part of the study results as they only modify the blur of the images.

Regions Found. The regions found by our procedure are shown in Table D.2.

276

Table D.2: Region descriptions found by IntegrAI for the BDD user study.

Region ID Description
1 depict various city streets and highways during the daytime with different

weather conditions, containing pedestrians, cars, trucks, traffic lights, and signs.,
2 depict various types of roads and streets during the daytime with different

weather conditions, containing cars, pedestrians, traffic lights and signs, while
the outside examples include scenes with fewer objects or in less common
locations such as a parking lot.,

3 depict various scenarios of streets and highways with moderate to heavy traffic
flow during the day or night, with different weather conditions, along with traffic
signs and lights, cars, trucks, buses, and pedestrians.

4 depict various outdoor scenes during the daytime or nighttime, containing
multiple cars, traffic lights, and traffic signs

5 depict various city and residential scenes during the daytime with different
weather conditions and contain a variety of vehicles, pedestrians, traffic lights,
and signs, while the outside examples depict specific limited scenarios with
fewer elements.,

6 depict various traffic scenes, mostly highways at night and during clear weather,
with a mix of cars, trucks, buses, traffic lights, and traffic signs

7 depict various city streets and highways with clear weather and a moderate
amount of traffic, including cars, signs, and occasionally pedestrians, bicycles,
and trucks

8 depict various urban and residential scenes during different times of day and
weather conditions, with a diverse range of vehicles, pedestrians, traffic signs,
and traffic lights present

9 depict various scenes of city streets and highways with typical traffic conditions
and without severe weather conditions

10 depict various scenes of city streets and highways with varying weather condi-
tions, traffic, and signage.

D.6.2 MMLU Study

Task. We rely on the MMLU dataset [129] where participants are shown a question, four possible
answers and have to pick the best answer (see screenshots in Figure below for examples). We use

277

ChatGPT, also known as GPT 3.5 turbo as our AI model [6]. We obtain the predictions of ChatGPT
on the MMLU dataset following the approach in the official repo of MMLU 2. We also ask ChatGPT
to explain it’s answer by using the prompt "Please explain your answer in one sentence". Both the
AI answer and the explanation are shown.

ChatGPT obtains an accuracy of 69% during our evaluation and we restrict our attention to
specific subjects within the MMLU dataset. Specifically, we sample 5 subjects (out of the 57 in
MMLU) where ChatGPT has significantly better perform performance than average, 5 where it’s
significantly worse, and 4 subjects where performance is similar to average performance. These
subjects are listed here:

high school government and politics, marketing, high school psychology, logical fal-
lacies, sociology, public relations, high school computer science, anatomy, business
ethics, elementary mathematics, high school statistics, machine learning, moral scenar-
ios, global facts

We sample 150 questions from each subject and additionally sample 150 questions from Open-
BookQA dataset [163] to use as attention checks as human performance on OpenBookQA is
91%.

We run IntegrAI on both the dataset embeddings, metadata (subject name), and an embedding
of ChatGPT explanations separately. We find 10 regions based on the metadata and 2 regions
based on the ChatGPT explanations. The regions and their descriptions found by our algorithm are
reported in Table D.3.

2https://github.com/hendrycks/test

278

https://github.com/hendrycks/test

Table D.3: Region descriptions found by IntegrAI for the MMLU user study.

Region ID Description

1 Related to marketing, including pricing strategies, branding, communication,
product classification, market segmentation, advertising, and supply chain man-
agement.

2 Questions related to psychology and neuroscience.
3 Questions related to global statistics and trends, ranging from military spending

to mental health disorders.
4 Questions inside the region cover a variety of topics in the field of public

relations, including ethical frameworks, evaluation models, common tactics,
and regulations.

5 Mathematical and quantitative questions, involving calculations and problem-
solving.

6 Questions related to sociology, including topics such as social class, symbolic
interactionism, bureaucracy, and globalization.

7 Questions and descriptions of logical fallacies and syllogisms.
8 Questions focus on US politics, government, and history.
9 Contains questions related to anatomy and physiology.

10 Various topics including ethics, regulation, consumer rights, and corporate
transparency.

11 Various questions on different topics such as algebra, biology, public relations,
and statistics with multiple options to choose from.

D.6.3 Screenshots of User Study Interface for BDD

279

Figure D.4: Consent Form

Figure D.5: User Information Collection

280

Figure D.6: Practice Task instructions

Figure D.7: Prediction without AI interface

281

Figure D.8: Instructions for the onboarding phase

Figure D.9: Model card information shown during onboarding.

Figure D.10: Prediction with AI interface (AI predicts no traffic light)

282

Figure D.11: Feedback shown during onboarding phase after human predicts.

Figure D.12: Feedback shown during onboarding phase after human predicts (sets of examples
from region)

Figure D.13: Prediction with AI interface (AI predicts there is a traffic light)

283

Figure D.14: Feedback shown during onboarding phase after human predicts (correct feedback)

Figure D.15: Testing phase instructions

Figure D.16: Testing phase instructions that include AI-integration recommendation

284

Figure D.17: Prediction interface with AI and with AI-integration recommendations.

285

D.6.4 Screenshots of User Study Interface for MMLU

Figure D.18: Model Card for MMLU study

Figure D.19: Prediction Interface for MMLU study

286

Figure D.20: Feedback shown to user during teaching phase

Figure D.21: Prediction Interface for MMLU study with AI-integration recommendations.

287

288

Appendix E

Additional Information for Chapter 6

E.1 Programmer Behavior by Task

The previous statistics in Figure 6.5 were aggregated across all participants (and hence tasks).
We now investigate differences across the tasks the participants solved. Table E.1 shows the
acceptance rate of suggestion by task as well as the top 3 CUPS state by time spent. We first notice
that there is variability in the acceptance rate; for example, the difference between the acceptance
rate for the ‘Data Manipulation’ and ‘Classes and Boilerplate Code’ tasks is 17.1%. When we look
at the most frequented CUPS states for participants in these two tasks, we notice stark differences:
those in the data manipulation task spent 20.63% of their time thinking about new code to write and
16.48% looking up documentation online, while those in the boilerplate code task spent most of
their time verifying suggestions and prompt crafting (=56.36%). This could be due to the fact the
boilerplate code is very suitable for an AI assistant like Copilot while the data manipulation requires
careful transformation of a dataset. However, we find that ’Verifying Suggestion’ is in the top 3
states in terms of time spent in the coding session for all but two tasks, indicating similar behavior
across tasks.

E.2 Predicting CUPS from Telemetry

Objective. To scale some of our insights, we need to be able to identify and predict programmers’
CUPS state. We discuss how we can use telemetry data to predict using machine learning classifiers
the CUPS state of the programer. This would enable us to accomplish two goals: 1) use the
predictive models on the fly to perform interventions in the user interface and 2) use the predictive
models to label previously collected telemetry with CUPS states to perform retrospective analysis
such as in section 6.6.

289

Setup. The telemetry dataset represented as D = {Di} collected in our study contains, for each
user i a list of events occurring in the corresponding as Di. An event is defined as a segment of the
telemetry that culminates in a shown, accept, or reject programmer action (refer to Figure 7.2). For
the purpose of this analysis, we only retain the shown events (labeled as “User Typing or Paused” in
Figure 6.3) 1. The list of events for programmer i is Di = {xij, yij} where xij is the features for the
event j and yij is the CUPS state for the event j. Our machine learning models will aim to predict
the label yij . We extract features xij for each event as follows: the length of the document, previous
actions, suggestion features (e.g., suggestion length), the confidence reported by Copilot, presence
of Python keywords (e.g., import, def try, etc.), and the output of the Tree-sitter Parser 2. Finally,
we extract features of the prompt including its textual features and parser outputs. It is crucial to
note that the model features do not leak any information about the future and can be computed as
soon as a suggestion is generated by Copilot.

Experimental Results. Using a leave-one-out programmer evaluation strategy where we train on
data of 20 programmers and leave out one programmer for testing, we train an eXtreme Gradient
Boosting (XGB) [220] model for this task for each trial (21 total) and evaluate the accuracy on
the test set. The XGB model achieves an average accuracy of 30.8 % ± 1.9. In comparison, a
baseline that always predicts the majority state achieves 24.9% ± 3.0 accuracy, indicating that the
XGB model has non-trivial performance – through there is considerable room for improvement.
Nevertheless, while the accuracy reported is low, if we restrict the task to just predicting the most
common state of Thinking/Verifying Suggestion (the rest is background) we obtain an area under
the receiver operating characteristic curve (AUC) of 0.69 ± 0.02 which shows good predictive
power. This shows that there are signals in the telemetry to be able to predict CUPS states. However,
this XGB model accuracy is not sufficient to power our proposed interventions but perhaps a larger
amount of labeled data can help build more reliable models to execute our proposed interventions.
We discuss in the future section other avenues to improve the prediction of CUPS states from
telemetry.

1Note that consecutive shown followed by either accept/reject events share the same suggestion and prompts and so
are very difficult to distinguish from only telemetry.

2https://tree-sitter.github.io/tree-sitter/

290

https://tree-sitter.github.io/tree-sitter/

E.3 Details User Study

E.3.1 Interfaces

Figure E.1: Screenshot of Labeling Tool represented in Figure 6.4

291

Figure E.2: Screenshot of Virtual Machine interface with VS Code

E.3.2 Task Instructions

The tasks are shown to participants as image files to deter copying of the instructions as a
prompt.

Figure E.3: Data Manipulation Task.

292

Figure E.4: Algorithmic Problem Task.

Figure E.5: Data Analysis Task.

293

Figure E.6: Classes and Boilerplate Code Task.

Figure E.7: Logistic Regression Task

294

Figure E.8: Editing Code Task

Figure E.9: Machine Learning Task

295

Figure E.10: Writing Tests Task

296

E.3.3 Survey Questions Results

0 1 2 3 4 5 6 7
Number of Participants

6 to 10 years professional programming experience

0 to 2 years professional programming experience

3 to 5 years professional programming experience

More than 16 years professional programming experience

11 to 15 years professional programming experience

Which best describes your programming experience?

0 2 4 6 8 10
Number of Participants

Intermediate – I can design and implement whole programs

Advanced – I can design and implement a complex system architecture

Beginner – I can write a correct implementation for a simple function

How proficient are you with Python?

0 2 4 6 8 10
Number of Participants

Agree

Strongly Agree

Neither Agree or Disagree

I learned from the suggestions CodeRec showed me today.

0 1 2 3 4 5 6 7 8
Number of Participants

Disagree

Neither Agree or Disagree

Strongly Disagree

Agree

Strongly Agree

I spent a lot of effort to understand the suggestions CodeRec showed me today.

0 2 4 6 8 10
Number of Participants

Neither Agree or Disagree

Agree

Strongly Agree

Disagree

The code I wrote today is better than the code I would have written without CodeRec.

Figure E.11: User Study Survey results (1)

297

0 2 4 6 8
Number of Participants

Disagree

Agree

Neither Agree or Disagree

Strongly Disagree

Strongly Agree

I was concerned about the quality of my code when using CodeRec.

0 2 4 6 8 10
Number of Participants

Agree

Strongly Agree

Neither Agree or Disagree

Strongly Disagree

By using CodeRec in this coding session, I felt less frustrated.

0 2 4 6 8 10
Number of Participants

Strongly Agree

Agree

Neither Agree or Disagree

Disagree

By using CodeRec in this coding session, I completed the task faster.

0 2 4 6 8 10
Number of Participants

Strongly Agree

Agree

Neither Agree or Disagree

Disagree

By using CodeRec in this coding session, I was more productive.

0 2 4 6 8 10 12
Number of Participants

Strongly Agree

Agree

Disagree

Neither Agree or Disagree

By using CodeRec in this coding session, I spent less time searching for information or examples.

Figure E.12: User Study Survey results (2)

298

0 1 2 3 4 5 6 7 8
Number of Participants

Agree

Strongly Agree

Neither Agree or Disagree

Disagree

Strongly Disagree

Using CodeRec in this coding session helped me stay in the flow.

0 2 4 6 8 10
Number of Participants

Never

Every day

A few times a week

Less than once a month

How often do you use CodeRec outside of today’s session?

0 1 2 3 4 5 6 7
Number of Participants

Yes

No

Thinking of your experience using CodeRec outside of today’s session, do you think that
your session today reflects your typical usage of CodeRec?

0 1 2 3 4 5
Number of Participants

Agree

I feel more fulfilled with my job when using CodeRec.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Participants

Agree

Neither Agree or Disagree

I can focus on more satisfying work when using CodeRec.

Figure E.13: User Study Survey results (3)

299

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Participants

Agree

Strongly Agree

While working with an unfamiliar language, I make progress faster when using CodeRec.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Participants

Agree

Disagree

Strongly Disagree

While working with a familiar language, I make progress more slowly when using CodeRec.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Participants

Agree

Strongly Agree

I complete repetitive programming tasks faster when using CodeRec.

0 2 4 6 8 10
Number of Participants

Disagree

Strongly Disagree

Neither Agree or Disagree

Agree

Using CodeRec was distracting in this coding session.

Figure E.14: User Study Survey results (4)

300

E.3.4 Full User Timelines
3

14
8

15
8

19
6

21
9

23
6

25
9

27
1

36
4

37
6

40
0

40
5

43
7

45
0

48
4

48
8

2 47 81 95 14
8

18
0

19
6

21
3

23
2

27
4

28
3

28
9

29
9

45
3

46
3

47
4

51
2

53
6

59
3

3 35 47 54 64 73 80 16
7

18
0

18
6

24
0

24
4

27
2

30
8

32
7

33
6

40 92 11
3

15
8

21
8

22
7

27
6

33
4

34
1

35
2

36
4

36
9

39
0

41
0

41
4

42
2

1 21 30 41 68 77 86 12
1

17
0

18
6

20
3

21
3

25
0

25
6

26
1

28
5

31
1

33
7

34
4

35
1

36
1

37
1

39
7

41
0

49
8

50
5

51
5

52
6

54
0

57
3

9 59 64 77 10
7

11
1

13
3

14
1

17
0

18
8

28
8

34
2

34
6

36
1

36
6

38
4

41
9

42
3

47
0

48
2

49
6

51
7

1 32 93 11
9

14
3

17
2

18
9

20
0

22
7

27
3

32
2

32
6

36
5

43
6

44
4

45
0

45
7

48
7

49
6

55
1

58
2

59
3

59
7

1 8 21 25 44 58 11
4

12
1

14
5

15
8

16
4

19
0

22
6

28
9

30
0

30
5

32
2

32
9

36
3

46
8

47
3

49
3

50
1

50
5

51
9

53
2

54
5

1 56 65 72 79 88 10
3

10
7

11
7

12
4

13
1

13
7

14
2

17
5

18
0

18
6

19
3

20
1

21
0

21
9

22
6

26
0

28
4

28
9

29
6

30
2

30
7

33
6

34
6

35
1

35
6

36
6

39
0

41
6

44
3

44
7

47
2

48
2

52
1

55
1

55
5

56
7

57
7

4 27 46 59 14
6

15
9

17
6

20
2

28
0

31
1

36
6

37
7

39
5

43
2

54
7

56
0

Time (s)
Debugging/Testing Code (H)
Deferring Thought For Later (D)
Edditing Last Suggestion (X)
Editing Written Code(C)
IDK (I)

Looking up Documentation (N)
Prompt Crafting (V)
Thinking About New Code To Write (F)
Thinking/Verifying Suggestion (A)
Waiting For Suggestion (G)

Writing Documentation (B)
Writing New Functionality (Z)
Suggestion Rejected
Suggestion Accepted

Figure E.15: Participants timelines for the first 10 minutes of their sessions (P1 to P10)

301

4 60 69 78 92 17
0

18
0

18
8

27
6

28
1

29
9

32
3

36
4

37
1

38
1

38
7

39
4

40
3

42
4

46
0

47
1

2 55 61 14
6

16
9

17
7

18
9

25
3

26
3

27
8

41
6

59
0

59
8

5 20 37 11
9

12
6

31
9

33
8

36
7

39
7

49
6

50
5

51
4

53
8

54
3

56
5

57
2

57
9

85 14
3

15
3

15
7

21
5

22
6

23
6

24
9

26
7

31
1

31
5

37
5

38
3

47
8

48
6

49
7

51
2

53
9

55
1

57
2

58
1

58
8

59
7

1 6 20 45 65 75 80 10
3

12
4

13
1

13
6

14
4

15
0

15
4

40
0

42
1

43
4

46
3

48
6

50
3

53
8

54
4

58
2

58
7

59
2

4 38 58 64 12
3

15
5

16
1

16
9

18
0

18
8

20
2

21
1

22
0

23
1

24
7

25
8

29
5

30
4

31
5

33
1

47
0

47
5

48
0

50
4

52
1

56
1

57
8

58
6

59
0

14 30 35 46 54 61 73 79 84 90 99 11
2

16
7

21
5

23
0

26
1

26
9

27
9

31
6

33
3

34
2

35
6

36
8

40
0

40
9

43
7

47
9

48
9

0 86 12
5

13
2

17
7

19
6

20
2

20
6

21
2

23
6

25
5

28
1

33
4

38
1

38
6

48
0

49
7

50
2

50
7

51
2

51
6

52
6

53
6

55
5

3 7 42 47 63 67 75 79 99 10
7

11
7

13
8

15
5

17
0

24
7

26
9

28
4

29
0

29
5

41
2

42
9

4 79 91 11
7

15
7

17
8

24
9

28
2

32
5

33
1

34
2

34
7

51
9

52
5

53
1

54
0

58
0

58
7

59
9

42 51 56 24
8

25
4

26
6

27
9

40
8

41
8

57
0

57
6

58
0

Time (s)

Debugging/Testing Code (H)
Deferring Thought For Later (D)
Edditing Last Suggestion (X)
Editing Written Code(C)
IDK (I)

Looking up Documentation (N)
Prompt Crafting (V)
Thinking About New Code To Write (F)
Thinking/Verifying Suggestion (A)
Waiting For Suggestion (G)

Writing Documentation (B)
Writing New Functionality (Z)
Suggestion Rejected
Suggestion Accepted

Figure E.16: Participants timelines for the first 10 minutes of their sessions (P11 to P21)

302

E.3.5 Full CUPS Graph

Debugging/Testing
Code

Deferring Thought
For Later

Editing Last
Suggestion

Editing Written
Code

Looking up
Documentation

Not Thinking

Prompt Crafting

Thinking About
New Code To Write

Thinking/Verifying
Suggestion

Waiting For
Suggestion

Writing
Documentation

Writing New
Functionality

Figure E.17: CUPS diagram with all transitions shown that occur with probability higher than 0.05

303

Table E.1: Acceptance rate and the top three CUPS states in terms of time spent as a fraction of
session time for each of the tasks. We include standard errors of the acceptance rate aggregated
across participants.

Task Name # Suggestions Acceptance Rate % Top 3 States (time %)

Algorithmic Problem 124 30.6 ± 26.6 Verifying Suggestion (25.58)
Writing New Functionality
(22.31),
Thinking About New Code To
Write (19.23)

Data Manipulation 238 24.8 ± 22.6 Thinking About New Code To
Write (20.63)
Looking up Documentation
(16.48),
Prompt Crafting (16.38)

Data Analysis 114 29.8 ± 32.3 Debugging/Testing Code (21.23)
Editing Last Suggestion (16.62)
Prompt Crafting (16.00)

Machine Learning 162 33.9 ± 23.7 Looking up Documentation
(19.98)
Verifying Suggestion (19.01)
Debugging/Testing Code (12.52)

Classes and Boilerplate Code 112 41.9 ± 34.9 Verifying Suggestion (30.34)
Prompt Crafting (26.02)
Writing New Functionality
(13.56)

Writing Tests 83 55.4 ± 49.7 Verifying Suggestion (20.79)
Debugging/Testing Code (19.68)
Writing New Functionality
(16.91)

Editing Code 117 23.9 ± 24.6 Verifying Suggestion (30.18)
Editing Last Suggestion (14.65)
Writing New Functionality
(14.24)

Logistic Regression 74 55.4 ± 35.1 Verifying Suggestion (30.28)
Editing Last Suggestion (25.60)
Writing New Functionality
(15.69)

304

Appendix F

Additional Information for Chapter 7

F.1 Extended Related Work

AI-Assisted Programming. Large language models (LLMs) such as GPT-3 [127], have been
widely used in natural language processing. One example of this is Codex [169], a GPT model
trained on 54 million GitHub repositories, which demonstrates the effectiveness of LLMs in solving
various programming tasks. For instance, Codex was tested on the HumanEval dataset of 164
programming problems, where it was asked to write the function body from a docstring and achieved
37.7% accuracy with a single generation [169]. Different metrics and datasets have been proposed
to evaluate the performance of code recommendation models, but these typically assess how well
the model can complete code in an offline setting without developer input, rather than evaluating
how well it assists programmers in-situ [5], [168], [176], [177]. Researchers have found that
developers do not need a perfect recommendation model for it to be useful. Weisz et al. conducted
interviews with developers and found that they did not require a perfect recommendation model
for the model to be useful [180], while Ziegler et al. surveyed over 2,000 Copilot users and found
that they felt more productive using Copilot [170]. A study by Google found that an internal
CodeRec model had a 6% reduction in ’coding iteration time’ [184]. On the other hand, a study
of 24 participants by Vaithilingam et al. showed no significant improvement in task completion
time, yet participants stated a clear preference for Copilot [171]. [194] showed that interaction
with Copilot falls into two broad categories: the programmer is either in ’acceleration mode’ or in
’exploration mode’. A similar strategy to selectively hide code suggestions was proposed in [206]
(Quality Estimation Before Completion, QEBC). However, QEBC [206] is not based on human
feedback of accepting suggestions, but rather is based on constructing a learned estimator of the
quality of code completions from datasets of paired code segments and model completions. In
contrast, our CDHF estimator uses real programmer behavior data and is based on data from a
code-recommendation system in current use (Copilot) as opposed to custom-trained ones in [206].

305

Human Feedback. Integrating human preference when training machine learning based models
have long been studied in the literature [207], [208]. In particular, Reinforcement Learning from
Human Feedback is an approach where the designer first gathers explicit human preference over
actions which is used to improve the model using RL [264]. More recently, this approach has been
used to improve LLMs for different tasks [209], [210] notably including ChatGPT [211] and consists
of three steps: gather human preference over options, train a reward model of human preference, use
the reward model to update the LLM using RL. In contrast, our approach CDHF uses implicit human
feedback through telemetry more readily collected which is not fully reflective of true preference
and avoids updating the LLM. Collaborative filtering employs human preference data to re-rank
content [265], though avoids the complexities of both generating and ranking content which is
required here. Our theoretical formulations in Section 7.4 build on the work of interactive user
interfaces [212], [266] and generalize them to our setting. Work on algorithmic deferral [26]–[28]
investigates a similar question on whether the human or the AI should accomplish the task and is
based on error estimation (instead of time cost estimation here) of the human versus the AI, as well
as work on personalized decision support policies [147] investigates whether support should be
shown but not when.

F.2 Derivation of P∗

Proposition 1. Under assumptions of the programmers model, notably that the programmer

spends more time writing code when they reject a suggestion compared to when they accept a

suggestion and edit it. Given specific code, suggestion and latent state (X,S, ϕ), if the programmer’s

probability of accepting P(A = accept|X,S, ϕ) a suggestion is below P∗ defined as:

P∗ =
E[verification] + E[τ |X,ϕ]

E[writing|A = reject]− E[editing|A = accept]

then the suggestion should not be shown. Note that P∗ is defined as a function P∗(X,S, ϕ) evaluated

pointwise.

Proof. Starting from the equation δ = 0, assume that the programmer has only two actions of
accept or reject. This is backed by our analysis of our telemetry sample where we noticed that less
than 1% of suggestions are browsed. We first have:

− (E[verification|X,S, ϕ] + P(A = accept|X,S, ϕ) · E[editing|X,S, ϕ,A = accept]

+ P(A = reject|X,S, ϕ) · E[writing|X,S, ϕ,A = reject]) + E[writing|X,ϕ]− E[τ |X,ϕ] = 0

We now replace P(A = accept|X,S, ϕ) by P∗(X,S, ϕ) and move around terms:

306

P∗(X,S, ϕ) · (−E[editing|X,S, ϕ,A = accept] + E[writing|X,S, ϕ,A = reject])

= E[verification|X,S, ϕ] + E[writing|X,S, ϕ,A = reject]− E[writing|X,ϕ] + E[τ |X,ϕ]

Assuming that E[writing|X,S, ϕ,A = reject]− E[editing|X,S, ϕ,A = accept] is > 0, mean-
ing when suggestions are accepted, the editing time for them is less than the time to write the
suggestions. We can then separate P∗(X,S, ϕ) to the LHS with full equivalence (equality still holds
without this assumption):

P∗(X,S, ϕ) =
E[verification|X,S, ϕ] + E[writing|X,S, ϕ,A = reject]− E[writing|X,ϕ] + E[τ |X,ϕ]

E[writing|X,S, ϕ,A = reject]− E[editing|X,S, ϕ,A = accept]

Note that P∗(X,S, ϕ) is not necessarily a valid probability in [0, 1]. If we assume that if the
programmer rejected a suggestion, they did not benefit at all from it when writing the code afterwards
meaning E[writing|X,S, ϕ,A = reject] = E[writing|X,ϕ], we arrive at:

P∗(X,S, ϕ) =
E[verification|X,S, ϕ] + E[τ |X,ϕ]

E[writing|X,S, ϕ,A = reject]− E[editing|X,S, ϕ,A = accept]

Assuming latency is zero meaning τ = 0, then it is clear that P∗(X,S, ϕ) = 0 if and only if
verification time is negligible: E[verification|X,S, ϕ] = 0, and by assumption it is P∗(X,S, ϕ) ≥ 0

since the denominator is positive. The implication is that if P(A = accept|X,S, ϕ) ≤ P∗(X,S, ϕ),
we should not show the suggestion which follows directly from the equation of δ ≤ 0, and similarly
if P(A = accept|X,S, ϕ) ≥ P∗(X,S, ϕ) we show the suggestion.

To restate, this derivation made the following assumptions:

• The programmer has only two actions of accept or reject.

• E[writing|X,S, ϕ,A = reject]− E[editing|X,S, ϕ,A = accept] is > 0, meaning when sug-
gestions are accepted, the editing time for them is less than the time to write the suggestions.

• If we assume that if the programmer rejected a suggestion, they did not benefit at all from it
when writing the code afterwards meaning E[writing|X,S, ϕ,A = reject] = E[writing|X,ϕ].

F.3 Model Evaluation and Analysis

All experiments were run with Python 3.8 on a machine with a single A100 GPU.

307

Confidence intervals in the body are obtained by bootstrapping with 1000 bootstrap samples for
accuracy and AUC.

In table F.1 we evaluate the performance of different models for predicting acceptance of
suggestions. We use Scikit-learn [251] to train the Random Forrest and logistic regression models,
XGBoost library to train our XGB models [267] and PyTorch to train the fully connected neural
network [268]. The FCNN is a 3 layer network with 50 hidden units trained using Adam with a
learning rate of 1e− 2. We used the validation set to select the number of hidden units as well as
the picking the best model after training for 100 epochs. We did not employ any hyperparameter
tuning for the XGBoost models and used the standard parameters.

Table F.1: Comparison of different classifiers on the test set based on AU-ROC, accuracy, and
macro f1 for the full model to predict programmer suggestion acceptance. FCNN refers to a fully
connected neural network.

Method AU-ROC Accuracy (%) Macro F1 (%)

XGBoost 0.780 81.1 64
Logistic Regression 0.726 79.5 58
Random Forrest 0.756 80.9 61
FCNN 0.741 80.2 59
Baseline 0.5 78.9 44

In figure F.1 we showcase that the stage 2 model m2 is well calibrated.

0.0 0.2 0.4 0.6 0.8 1.0

Average Predicted Probability in each bin

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

p
os

it
iv

es

XGBoost, ECE=0.10

Ideally Calibrated

Figure F.1: Calibration curve for the XGBoost stage 2 model.

Sample Complexity. To understand how many samples we might need to train individualized
CDHF models, we perform a sample complexity analysis on the acceptance prediction stage 2
model where we train with a random fraction of the training dataset in Figure F.2. With 1% of the
training dataset which equates to 1688 training samples, performance reaches 0.69 AU-ROC. With
25% of training data, the model can achieve 0.75 AU-ROC.

308

0.0 0.2 0.4 0.6 0.8 1.0

Training Data Size Fraction

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

A
U

C

Figure F.2: Sample complexity analysis of the XGBoost stage 2 model when trained on a fraction
of the training data and plotting the AU-ROC on the full test set.

Factors Influencing Programming Actions. An analysis of the XGBoost stage 2 model, reveals
factors that correlate with programmers’ decisions. We examine feature importance weights (Figure
F.3). Specifically, we report feature F-score counts, which capture how often each feature was split
in any of the trees in the XGBoost model. The two most important features are the confidence of
the suggestion from CodeRec’s core suggestion model, and the length of the suggestion. Together,
these two features yield a model that achieves an AUROC of 0.71. Other important features include
the context of the current event in the coding session such as if the last suggestion was accepted or
not. We also see that textual elements of the suggestion are important. For example, the feature
indicating if the current suggestion includes the character ’#’ (which is used to indicate a comment
in Python) was split a total of 8 times. These features should not be interpreted in a causal fashion
but rather as being correlated with the behavior of programmers.

0 10 20 30 40 50 60 70

Suggestion includes '#'

Last Event is Accept

Number of Shown Events in last
10

Prompt Length

Current Index

Suggestion Length

CodeRec Confidence

Feature Importance (F score)

comment

0.913

1.
2.
3. (current)

1.
2. Accepted
3. (current)

Figure F.3: Feature importance for the seven highest-rated unique features of the model for predicting
the likelihood of accepting a suggestion. The feature importance is in terms of the F score which
counts how often a feature was split on in the tree ensemble.

Analysis of Suggestions. The model learned on the large sample of telemetry can also be

309

applied to the telemetry collected in the 21-participant user study of [166]. When we evaluate
the model on the user study’s 1029 accepted and rejected events we obtain an AU-ROC of 0.73.
Inspecting these results further, we find that there are at least two defined clusters for suggestions
predicted most likely be rejected: (1) single character non-alphabetic suggestions such as (,),
[,:, ;, and (2) mid-word completions such as ‘agonal()’ (completion of ‘diagonal()’), ‘lass
LogisticRegression:’ (completion of ‘class Logistic Regression:’. We hypothesize that
for cluster (1) the suggestions were too small to be noticed. For cluster (2), we hypothesize that
the programmer was already in the act of typing, so the suggestions may have been a distraction
(i.e., the interruption cost more than was saved by eliminating the physical act of typing a few
already-determined keystrokes).

F.4 Which Suggestion to Show: Plots

Following the last section of the paper, we show two plots for each k ∈ {0, 1, 2, 3}: 1) histogram
showing in which length percentile in terms the ground truth solution dos the suggestion with highest
acceptance probability (according to the model) lies and 2) normalized probability of acceptance by
the length of the suggestion (for each example, we normalize the raw probability of acceptance by
the maximum acceptance probability across all length for the given example - we observe the same
trend without normalizing).

0.0 0.2 0.4 0.6 0.8 1.0
Max Index Percentage

0

2

4

6

8

10

12

C
ou

nt

(a) Histogram of position of max suggestion

0 20 40 60 80
Percentiles of Length

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

N
or

m
al

iz
ed

 M
ea

n
Sc

or
e

 Quadratic Trend Line

(b) Probability of acceptance by length

Figure F.4: Plots for the experiment on ranking suggestions by the probability of acceptance.
Histogram (a) shows in which length percentile bin the maximizing suggestion lies and Graph (b)
shows the acceptance score by increasing the length of the suggestion. These plots are for k = 0
(docstring only)

310

0.0 0.2 0.4 0.6 0.8 1.0
Max Index Percentage

0

5

10

15

20

25

30

35

40

C
ou

nt

(a) Histogram of position of max suggestion

0 20 40 60 80
Percentiles of Length

0.54

0.56

0.58

0.60

0.62

0.64

0.66

N
or

m
al

iz
ed

 M
ea

n
Sc

or
e

 Quadratic Trend Line

(b) Probability of acceptance by length

Figure F.5: Plots for the experiment on ranking suggestions by the probability of acceptance.
Histogram (a) shows in which length percentile bin the maximizing suggestion lies and Graph (b)
shows the acceptance score by increasing the length of the suggestion. These plots are for k = 1
(docstring + first line of solution)

0.0 0.2 0.4 0.6 0.8 1.0
Max Index Percentage

0

10

20

30

40

50

C
ou

nt

(a) Histogram of position of max suggestion

0 20 40 60 80
Percentiles of Length

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

N
or

m
al

iz
ed

 M
ea

n
Sc

or
e

 Quadratic Trend Line

(b) Probability of acceptance by length

Figure F.6: Plots for the experiment on ranking suggestions by the probability of acceptance.
Histogram (a) shows in which length percentile bin the maximizing suggestion lies and Graph (b)
shows the acceptance score by increasing the length of the suggestion. These plots are for k = 2
(docstring + first two lines of solution)

311

0.0 0.2 0.4 0.6 0.8 1.0
Max Index Percentage

0

10

20

30

40

50

60

C
ou

nt

(a) Histogram of position of max suggestion

0 20 40 60 80
Percentiles of Length

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

N
or

m
al

iz
ed

 M
ea

n
Sc

or
e

 Quadratic Trend Line

(b) Probability of acceptance by length

Figure F.7: Plots for the experiment on ranking suggestions by the probability of acceptance.
Histogram (a) shows in which length percentile bin the maximizing suggestion lies and Graph (b)
shows the acceptance score by increasing the length of the suggestion. These plots are for k = 3
(docstring + first three lines of solution)

312

References

[1] E. Beede, E. Baylor, F. Hersch, A. Iurchenko, L. Wilcox, P. Ruamviboonsuk, and L. M.
Vardoulakis, “A human-centered evaluation of a deep learning system deployed in clinics
for the detection of diabetic retinopathy,” in Proceedings of the 2020 CHI Conference on

Human Factors in Computing Systems, 2020, pp. 1–12.

[2] S. Gaube, H. Suresh, M. Raue, A. Merritt, S. J. Berkowitz, E. Lermer, J. F. Coughlin, J. V.
Guttag, E. Colak, and M. Ghassemi, “Do as ai say: Susceptibility in deployment of clinical
decision-aids,” NPJ digital medicine, vol. 4, no. 1, pp. 1–8, 2021.

[3] T. Gillespie, “Content moderation, ai, and the question of scale,” Big Data & Society, vol. 7,
no. 2, p. 2 053 951 720 943 234, 2020.

[4] A. Coenen, L. Davis, D. Ippolito, E. Reif, and A. Yuan, “Wordcraft: A human-ai collabora-
tive editor for story writing,” arXiv preprint arXiv:2107.07430, 2021.

[5] A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. C. Desmarais, Z. Ming, et al.,
“Github copilot ai pair programmer: Asset or liability?” arXiv preprint arXiv:2206.15331,
2022.

[6] OpenAI, Chatgpt: Introducing chatgpt, https://openai.com/blog/chatgpt, 2022.

[7] Github, Github copilot - your ai pair programmer, 2022. URL: https://github.com/features/
copilot.

[8] E. Kamar, S. Hacker, and E. Horvitz, “Combining human and machine intelligence in
large-scale crowdsourcing.,” in AAMAS, vol. 12, 2012, pp. 467–474.

[9] S. Tan, J. Adebayo, K. Inkpen, and E. Kamar, “Investigating human+ machine complemen-
tarity for recidivism predictions,” arXiv preprint arXiv:1808.09123, 2018.

[10] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo,
R. Ball, K. Shpanskaya, et al., “Chexpert: A large chest radiograph dataset with uncer-
tainty labels and expert comparison,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, 2019, pp. 590–597.

313

https://openai.com/blog/chatgpt
https://github.com/features/copilot
https://github.com/features/copilot

[11] C. Ni, N. Charoenphakdee, J. Honda, and M. Sugiyama, “On possibility and impossibility
of multiclass classification with rejection,” arXiv preprint arXiv:1901.10655, 2019.

[12] M. Jacobs, M. F. Pradier, T. H. McCoy, R. H. Perlis, F. Doshi-Velez, and K. Z. Gajos, “How
machine-learning recommendations influence clinician treatment selections: The example
of antidepressant selection,” Translational psychiatry, vol. 11, no. 1, pp. 1–9, 2021.

[13] H. Liu, V. Lai, and C. Tan, “Understanding the effect of out-of-distribution examples
and interactive explanations on human-ai decision making,” Proceedings of the ACM on

Human-Computer Interaction, vol. 5, no. CSCW2, pp. 1–45, 2021.

[14] A. Kawakami, V. Sivaraman, H.-F. Cheng, L. Stapleton, Y. Cheng, D. Qing, A. Perer,
Z. S. Wu, H. Zhu, and K. Holstein, “Improving human-ai partnerships in child welfare:
Understanding worker practices, challenges, and desires for algorithmic decision support,”
in CHI Conference on Human Factors in Computing Systems, 2022, pp. 1–18.

[15] K. Vodrahalli, T. Gerstenberg, and J. Zou, “Uncalibrated models can improve human-ai
collaboration,” arXiv preprint arXiv:2202.05983, 2022.

[16] G. Bansal, B. Nushi, E. Kamar, W. S. Lasecki, D. S. Weld, and E. Horvitz, “Beyond
accuracy: The role of mental models in human-ai team performance,” in Proceedings of the

AAAI Conference on Human Computation and Crowdsourcing, vol. 7, 2019, pp. 2–11.

[17] H. Vasconcelos, M. Jörke, M. Grunde-McLaughlin, T. Gerstenberg, M. S. Bernstein, and
R. Krishna, “Explanations can reduce overreliance on ai systems during decision-making,”
Proceedings of the ACM on Human-Computer Interaction, vol. 7, no. CSCW1, pp. 1–38,
2023.

[18] K. C. Nanji, S. P. Slight, D. L. Seger, I. Cho, J. M. Fiskio, L. M. Redden, L. A. Volk, and
D. W. Bates, “Overrides of medication-related clinical decision support alerts in outpatients,”
Journal of the American Medical Informatics Association, vol. 21, no. 3, pp. 487–491, 2014.

[19] R. Fok and D. S. Weld, “In search of verifiability: Explanations rarely enable complementary
performance in ai-advised decision making,” arXiv preprint arXiv:2305.07722, 2023.

[20] G. Bansal, B. Nushi, E. Kamar, D. S. Weld, W. S. Lasecki, and E. Horvitz, “Updates in
human-ai teams: Understanding and addressing the performance/compatibility tradeoff,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 2429–2437.

[21] R. K. Atkinson, S. J. Derry, A. Renkl, and D. Wortham, “Learning from examples: In-
structional principles from the worked examples research,” Review of educational research,
vol. 70, no. 2, pp. 181–214, 2000.

[22] J. Hattie and H. Timperley, “The power of feedback,” Review of educational research,
vol. 77, no. 1, pp. 81–112, 2007.

314

[23] M.-A. Charusaie, H. Mozannar, D. Sontag, and S. Samadi, “Sample efficient learning of
predictors that complement humans,” in International Conference on Machine Learning,
PMLR, 2022, pp. 2972–3005.

[24] J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan, “Human decisions
and machine predictions,” The quarterly journal of economics, vol. 133, no. 1, pp. 237–293,
2018.

[25] M. Raghu, K. Blumer, G. Corrado, J. Kleinberg, Z. Obermeyer, and S. Mullainathan, “The
algorithmic automation problem: Prediction, triage, and human effort,” arXiv preprint

arXiv:1903.12220, 2019.

[26] H. Mozannar and D. Sontag, “Consistent estimators for learning to defer to an expert,” in
International Conference on Machine Learning, PMLR, 2020, pp. 7076–7087.

[27] N. Okati, A. De, and M. Gomez-Rodriguez, “Differentiable learning under triage,” arXiv

preprint arXiv:2103.08902, 2021.

[28] D. Madras, T. Pitassi, and R. Zemel, “Predict responsibly: Improving fairness and accu-
racy by learning to defer,” in Advances in Neural Information Processing Systems, 2018,
pp. 6150–6160.

[29] B. Wilder, E. Horvitz, and E. Kamar, “Learning to complement humans,” arXiv preprint

arXiv:2005.00582, 2020.

[30] M. F. Pradier, J. Zazo, S. Parbhoo, R. H. Perlis, M. Zazzi, and F. Doshi-Velez, “Preferential
mixture-of-experts: Interpretable models that rely on human expertise as much as possible,”
arXiv preprint arXiv:2101.05360, 2021.

[31] N. Raman and M. Yee, “Improving learning-to-defer algorithms through fine-tuning,” arXiv

preprint arXiv:2112.10768, 2021.

[32] J. Liu, B. Gallego, and S. Barbieri, “Incorporating uncertainty in learning to defer algorithms
for safe computer-aided diagnosis,” arXiv preprint arXiv:2108.07392, 2021.

[33] V. Keswani, M. Lease, and K. Kenthapadi, “Towards unbiased and accurate deferral to
multiple experts,” arXiv preprint arXiv:2102.13004, 2021.

[34] S. Joshi, S. Parbhoo, and F. Doshi-Velez, “Pre-emptive learning-to-defer for sequential
medical decision-making under uncertainty,” arXiv preprint arXiv:2109.06312, 2021.

[35] R. Gao, M. Saar-Tsechansky, M. De-Arteaga, L. Han, M. K. Lee, and M. Lease, “Human-ai
collaboration with bandit feedback,” arXiv preprint arXiv:2105.10614, 2021.

315

[36] J. Zhao, M. Agrawal, P. Razavi, and D. Sontag, “Directing human attention in event
localization for clinical timeline creation,” in Machine Learning for Healthcare Conference,
PMLR, 2021, pp. 80–102.

[37] E. Straitouri, A. Singla, V. B. Meresht, and M. Gomez-Rodriguez, “Reinforcement learning
under algorithmic triage,” arXiv preprint arXiv:2109.11328, 2021.

[38] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?" explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[39] V. Lai, H. Liu, and C. Tan, “" why is’ chicago’deceptive?" towards building model-driven
tutorials for humans,” in Proceedings of the 2020 CHI Conference on Human Factors in

Computing Systems, 2020, pp. 1–13.

[40] H. Mozannar, A. Satyanarayan, and D. Sontag, “Teaching humans when to defer to a
classifier via exemplars,” in Proceedings of the Thirty-Sixth AAAI Conference on Artificial

Intelligence (AAAI), 2022.

[41] S. Su, Y. Chen, O. Mac Aodha, P. Perona, and Y. Yue, “Interpretable machine teaching via
feature feedback,” 2017.

[42] X. Zhu, A. Singla, S. Zilles, and A. N. Rafferty, “An overview of machine teaching,” arXiv

preprint arXiv:1801.05927, 2018.

[43] G. Kerrigan, P. Smyth, and M. Steyvers, “Combining human predictions with model proba-
bilities via confusion matrices and calibration,” Advances in Neural Information Processing

Systems, vol. 34, 2021.

[44] C. Cortes, G. DeSalvo, and M. Mohri, “Learning with rejection,” in International Conference

on Algorithmic Learning Theory, Springer, 2016, pp. 67–82.

[45] C. Chow, “On optimum recognition error and reject tradeoff,” IEEE Transactions on

information theory, vol. 16, no. 1, pp. 41–46, 1970.

[46] P. L. Bartlett and M. H. Wegkamp, “Classification with a reject option using a hinge loss,”
Journal of Machine Learning Research, vol. 9, no. Aug, pp. 1823–1840, 2008.

[47] N. Charoenphakdee, Z. Cui, Y. Zhang, and M. Sugiyama, “Classification with rejection
based on cost-sensitive classification,” in International Conference on Machine Learning,
PMLR, 2021, pp. 1507–1517.

[48] R. El-Yaniv and Y. Wiener, “On the foundations of noise-free selective classification,”
Journal of Machine Learning Research, vol. 11, no. May, pp. 1605–1641, 2010.

316

[49] Y. Geifman and R. El-Yaniv, “Selective classification for deep neural networks,” in Advances

in neural information processing systems, 2017, pp. 4878–4887.

[50] A. Gangrade, A. Kag, and V. Saligrama, “Selective classification via one-sided prediction,”
in International Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp. 2179–
2187.

[51] D. A. E. Acar, A. Gangrade, and V. Saligrama, “Budget learning via bracketing,” in In-

ternational Conference on Artificial Intelligence and Statistics, PMLR, 2020, pp. 4109–
4119.

[52] K. Shah and N. Manwani, “Online active learning of reject option classifiers,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 5652–5659.

[53] C. Zhang and K. Chaudhuri, “Active learning from weak and strong labelers,” in Advances

in Neural Information Processing Systems, 2015, pp. 703–711.

[54] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated hate speech detection and
the problem of offensive language,” in Eleventh international aaai conference on web and

social media, 2017.

[55] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, “Convexity, classification, and risk bounds,”
Journal of the American Statistical Association, vol. 101, no. 473, pp. 138–156, 2006.

[56] T. Zhang, “Statistical analysis of some multi-category large margin classification methods,”
Journal of Machine Learning Research, vol. 5, no. Oct, pp. 1225–1251, 2004.

[57] A. Nowak-Vila, F. Bach, and A. Rudi, “A general theory for structured prediction with
smooth convex surrogates,” arXiv preprint arXiv:1902.01958, 2019.

[58] S. Hanneke, “Theory of active learning,” Foundations and Trends in Machine Learning,
vol. 7, no. 2-3, 2014.

[59] A. Krishnamurthy, A. Agarwal, T.-K. Huang, H. Daumé III, and J. Langford, “Active
learning for cost-sensitive classification,” in International Conference on Machine Learning,
PMLR, 2017, pp. 1915–1924.

[60] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”
Citeseer, 2009.

[61] H. Mozannar, H. Lang, D. Wei, P. Sattigeri, S. Das, and D. Sontag, “Who should predict?
exact algorithms for learning to defer to humans,” in International Conference on Artificial

Intelligence and Statistics, PMLR, 2023, pp. 10 520–10 545.

[62] R. Verma and E. Nalisnick, “Calibrated learning to defer with one-vs-all classifiers,” arXiv

preprint arXiv:2202.03673, 2022.

317

[63] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[64] A. Kumar, A. Raghunathan, R. M. Jones, T. Ma, and P. Liang, “Fine-tuning can distort
pretrained features and underperform out-of-distribution,” in International Conference on

Learning Representations, 2022.

[65] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2022. URL: https://www.
gurobi.com.

[66] P. Long and R. Servedio, “Consistency versus realizable h-consistency for multiclass
classification,” in International Conference on Machine Learning, PMLR, 2013, pp. 801–
809.

[67] A. De, P. Koley, N. Ganguly, and M. Gomez-Rodriguez, “Regression under human assis-
tance,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020,
pp. 2611–2620.

[68] B. Ustun and C. Rudin, “Supersparse linear integer models for optimized medical scoring
systems,” Machine Learning, vol. 102, no. 3, pp. 349–391, 2016.

[69] T. Nguyen and S. Sanner, “Algorithms for direct 0–1 loss optimization in binary classifica-
tion,” in International Conference on Machine Learning, PMLR, 2013, pp. 1085–1093.

[70] S. Khot and R. Saket, “On the hardness of learning intersections of two halfspaces,” Journal

of Computer and System Sciences, vol. 77, no. 1, pp. 129–141, 2011.

[71] N. Razavian, S. Blecker, A. M. Schmidt, A. Smith-McLallen, S. Nigam, and D. Sontag,
“Population-level prediction of type 2 diabetes from claims data and analysis of risk factors,”
Big Data, vol. 3, no. 4, pp. 277–287, 2015.

[72] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new
perspectives,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 8, pp. 1798–1828, 2013.

[73] Y. Lin, “Support vector machines and the bayes rule in classification,” Data Mining and

Knowledge Discovery, vol. 6, no. 3, pp. 259–275, 2002.

[74] M. Zhang and S. Agarwal, “Bayes consistency vs. h-consistency: The interplay between
surrogate loss functions and the scoring function class,” Advances in neural information

processing systems, vol. 33, pp. 16 927–16 936, 2020.

[75] R. M. Battleday, J. C. Peterson, and T. L. Griffiths, “Capturing human categorization of
natural images by combining deep networks and cognitive models,” Nature communications,
vol. 11, no. 1, pp. 1–14, 2020.

318

https://www.gurobi.com
https://www.gurobi.com

[76] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146,
2016.

[77] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolu-
tional networks,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2017, pp. 4700–4708.

[78] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-
networks,” arXiv preprint arXiv:1908.10084, 2019.

[79] J. Dressel and H. Farid, “The accuracy, fairness, and limits of predicting recidivism,” Science

advances, vol. 4, no. 1, eaao5580, 2018.

[80] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. Summers, “Hospital-scale chest x-ray
database and benchmarks on weakly-supervised classification and localization of common
thorax diseases,” in IEEE CVPR, vol. 7, 2017.

[81] A. Majkowska, S. Mittal, D. F. Steiner, J. J. Reicher, S. M. McKinney, G. E. Duggan,
K. Eswaran, P.-H. Cameron Chen, Y. Liu, S. R. Kalidindi, et al., “Chest radiograph inter-
pretation with deep learning models: Assessment with radiologist-adjudicated reference
standards and population-adjusted evaluation,” Radiology, vol. 294, no. 2, pp. 421–431,
2020.

[82] H. Mozannar, A. Satyanarayan, and D. Sontag, “Teaching humans when to defer to a
classifier via exemplars,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, 2022, pp. 5323–5331.

[83] D. Link, B. Hellingrath, and J. Ling, “A human-is-the-loop approach for semi-automated
content moderation.,” in ISCRAM, 2016.

[84] S. J. Shaikh and I. Cruz, “’alexa, do you know anything?’the impact of an intelligent
assistant on team interactions and creative performance under time scarcity,” arXiv preprint

arXiv:1912.12914, 2019.

[85] A. M. Bornstein, M. W. Khaw, D. Shohamy, and N. D. Daw, “Reminders of past choices
bias decisions for reward in humans,” Nature Communications, vol. 8, no. 1, pp. 1–9, 2017.

[86] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and C. D. Manning,
“Hotpotqa: A dataset for diverse, explainable multi-hop question answering,” in Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018,
pp. 2369–2380.

[87] M. Raghu, K. Blumer, R. Sayres, Z. Obermeyer, B. Kleinberg, S. Mullainathan, and J.
Kleinberg, “Direct uncertainty prediction for medical second opinions,” in International

Conference on Machine Learning, 2019, pp. 5281–5290.

319

[88] V. Lai and C. Tan, “On human predictions with explanations and predictions of machine
learning models: A case study on deception detection,” in Proceedings of the Conference on

Fairness, Accountability, and Transparency, 2019, pp. 29–38.

[89] I. Lage, E. Chen, J. He, M. Narayanan, B. Kim, S. Gershman, and F. Doshi-Velez, “An
evaluation of the human-interpretability of explanation,” arXiv preprint arXiv:1902.00006,
2019.

[90] A. Smith-Renner, R. Fan, M. Birchfield, T. Wu, J. Boyd-Graber, D. S. Weld, and L. Findlater,
“No explainability without accountability: An empirical study of explanations and feedback
in interactive ml,” in Proceedings of the 2020 CHI Conference on Human Factors in

Computing Systems, 2020, pp. 1–13.

[91] P. Hase and M. Bansal, “Evaluating explainable ai: Which algorithmic explanations help
users predict model behavior?” arXiv preprint arXiv:2005.01831, 2020.

[92] Y. Zhang, Q. V. Liao, and R. K. Bellamy, “Effect of confidence and explanation on accuracy
and trust calibration in ai-assisted decision making,” in Proceedings of the 2020 Conference

on Fairness, Accountability, and Transparency, 2020, pp. 295–305.

[93] R. Kocielnik, S. Amershi, and P. N. Bennett, “Will you accept an imperfect ai? exploring
designs for adjusting end-user expectations of ai systems,” in Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems, 2019, pp. 1–14.

[94] H. Suresh, N. Lao, and I. Liccardi, “Misplaced trust: Measuring the interference of machine
learning in human decision-making,” arXiv preprint arXiv:2005.10960, 2020.

[95] H. Suresh, K. M. Lewis, J. V. Guttag, and A. Satyanarayan, “Intuitively assessing ml model
reliability through example-based explanations and editing model inputs,” arXiv preprint

arXiv:2102.08540, 2021.

[96] J. Wortman Vaughan and H. Wallach, “A human-centered agenda for intelligible machine
learning,” This is a draft version of a chapter in a book to be published in the 2020 - 21
timeframe., May 2021. URL: https://www.microsoft.com/en-us/research/publication/a-
human-centered-agenda-for-intelligible-machine-learning/.

[97] A. V. Gonzalez, G. Bansal, A. Fan, R. Jia, Y. Mehdad, and S. Iyer, “Human evaluation
of spoken vs. visual explanations for open-domain qa,” arXiv preprint arXiv:2012.15075,
2020.

[98] H. Kaur, H. Nori, S. Jenkins, R. Caruana, H. Wallach, and J. Wortman Vaughan, “Interpreting
interpretability: Understanding data scientists’ use of interpretability tools for machine
learning,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing

Systems, 2020, pp. 1–14.

320

https://www.microsoft.com/en-us/research/publication/a-human-centered-agenda-for-intelligible-machine-learning/
https://www.microsoft.com/en-us/research/publication/a-human-centered-agenda-for-intelligible-machine-learning/

[99] T. DeVries and G. W. Taylor, “Learning confidence for out-of-distribution detection in
neural networks,” arXiv preprint arXiv:1802.04865, 2018.

[100] S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, J. Suh, S. Iqbal,
P. N. Bennett, K. Inkpen, et al., “Guidelines for human-ai interaction,” in Proceedings of

the 2019 chi conference on human factors in computing systems, 2019, pp. 1–13.

[101] A. Chandrasekaran, V. Prabhu, D. Yadav, P. Chattopadhyay, and D. Parikh, “Do explanations
make vqa models more predictable to a human?” arXiv preprint arXiv:1810.12366, 2018.

[102] S. Feng and J. Boyd-Graber, “What can ai do for me? evaluating machine learning inter-
pretations in cooperative play,” in Proceedings of the 24th International Conference on

Intelligent User Interfaces, 2019, pp. 229–239.

[103] C. J. Cai, S. Winter, D. Steiner, L. Wilcox, and M. Terry, “" hello ai": Uncovering the
onboarding needs of medical practitioners for human-ai collaborative decision-making,”
Proceedings of the ACM on Human-computer Interaction, vol. 3, no. CSCW, pp. 1–24,
2019.

[104] M. Yin, J. Wortman Vaughan, and H. Wallach, “Understanding the effect of accuracy on
trust in machine learning models,” in Proceedings of the 2019 chi conference on human

factors in computing systems, 2019, pp. 1–12.

[105] G. Bansal, B. Nushi, E. Kamar, E. Horvitz, and D. S. Weld, “Is the most accurate ai the
best teammate? optimizing ai for teamwork,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 35, 2021, pp. 11 405–11 414.

[106] A. Singla, I. Bogunovic, G. Bartok, A. Karbasi, and A. Krause, “Near-optimally teaching the
crowd to classify,” in International Conference on Machine Learning, 2014, pp. 154–162.

[107] A. Kumar, H. Zhang, A. Singla, and Y. Chen, “The teaching dimension of kernel perceptron,”
in International Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp. 2071–
2079.

[108] A. Hunziker, Y. Chen, O. Mac Aodha, M. G. Rodriguez, A. Krause, P. Perona, Y. Yue, and A.
Singla, “Teaching multiple concepts to a forgetful learner,” arXiv preprint arXiv:1805.08322,
2018.

[109] S. Dasgupta, D. Hsu, S. Poulis, and X. Zhu, “Teaching a black-box learner,” in International

Conference on Machine Learning, 2019, pp. 1547–1555.

[110] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings

of the 26th annual international conference on machine learning, 2009, pp. 41–48.

321

[111] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu, “Automated
curriculum learning for neural networks,” in international conference on machine learning,
PMLR, 2017, pp. 1311–1320.

[112] S. Ruan, J. He, R. Ying, J. Burkle, D. Hakim, A. Wang, Y. Yin, L. Zhou, Q. Xu, A.
AbuHashem, et al., “Supporting children’s math learning with feedback-augmented narrative
technology,” in Proceedings of the Interaction Design and Children Conference, 2020,
pp. 567–580.

[113] S. Doroudi, E. Kamar, and E. Brunskill, “Not everyone writes good examples but good
examples can come from anywhere,” in Proceedings of the AAAI Conference on Human

Computation and Crowdsourcing, vol. 7, 2019, pp. 12–21.

[114] M. H. Lee, J. Runde, W. Jibril, Z. Wang, and E. Brunskill, “Learning the features used to
decide how to teach,” in Proceedings of the Second (2015) ACM Conference on Learning@

Scale, 2015, pp. 421–424.

[115] G. Giguère and B. C. Love, “Limits in decision making arise from limits in memory retrieval,”
Proceedings of the National Academy of Sciences, vol. 110, no. 19, pp. 7613–7618, 2013.

[116] J. J. Richler and T. J. Palmeri, “Visual category learning,” Wiley Interdisciplinary Reviews:

Cognitive Science, vol. 5, no. 1, pp. 75–94, 2014.

[117] Y.-S. Kim, L. A. Walls, P. Krafft, and J. Hullman, “A bayesian cognition approach to
improve data visualization,” in Proceedings of the 2019 CHI conference on human factors

in computing systems, 2019, pp. 1–14.

[118] D. D. Bourgin, J. C. Peterson, D. Reichman, S. J. Russell, and T. L. Griffiths, “Cognitive
model priors for predicting human decisions,” in International conference on machine

learning, PMLR, 2019, pp. 5133–5141.

[119] C. Ilvento, “Metric learning for individual fairness,” arXiv preprint arXiv:1906.00250, 2019.

[120] G.-J. Qi, J. Tang, Z.-J. Zha, T.-S. Chua, and H.-J. Zhang, “An efficient sparse metric learning
in high-dimensional space via l 1-penalized log-determinant regularization,” in Proceedings

of the 26th Annual International Conference on Machine Learning, 2009, pp. 841–848.

[121] M. Tu, K. Huang, G. Wang, J. Huang, X. He, and B. Zhou, “Select, answer and explain:
Interpretable multi-hop reading comprehension over multiple documents,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 9073–9080.

[122] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for machine
comprehension of text,” arXiv preprint arXiv:1606.05250, 2016.

322

[123] Z. Bucinca, P. Lin, K. Z. Gajos, and E. L. Glassman, “Proxy tasks and subjective mea-
sures can be misleading in evaluating explainable ai systems,” in Proceedings of the 25th

International Conference on Intelligent User Interfaces, 2020, pp. 454–464.

[124] H. Mozannar, J. J. Lee, D. Wei, P. Sattigeri, S. Das, and D. Sontag, “Effective human-ai
teams via learned natural language rules and onboarding,” in Advances in Neural Information

Processing Systems, 2023.

[125] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural language
supervision,” in International conference on machine learning, PMLR, 2021, pp. 8748–
8763.

[126] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-
networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing, Association for Computational Linguistics, Nov. 2019. URL: https :
//arxiv.org/abs/1908.10084.

[127] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,” Advances

in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[128] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving models from large-
scale video datasets,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2017, pp. 2174–2182.

[129] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt,
“Measuring massive multitask language understanding,” arXiv preprint arXiv:2009.03300,
2020.

[130] G. Bansal, T. Wu, J. Zhu, R. Fok, B. Nushi, E. Kamar, M. T. Ribeiro, and D. S. Weld,
“Does the whole exceed its parts? the effect of ai explanations on complementary team
performance,” arXiv preprint arXiv:2006.14779, 2020.

[131] F. Sperrle, M. El-Assady, G. Guo, R. Borgo, D. H. Chau, A. Endert, and D. Keim, “A
survey of human-centered evaluations in human-centered machine learning,” in Computer

Graphics Forum, Wiley Online Library, vol. 40, 2021, pp. 543–568.

[132] V. Lai, S. Carton, R. Bhatnagar, Q. V. Liao, Y. Zhang, and C. Tan, “Human-ai collaboration
via conditional delegation: A case study of content moderation,” in CHI Conference on

Human Factors in Computing Systems, 2022, pp. 1–18.

323

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

[133] S. Ma, Y. Lei, X. Wang, C. Zheng, C. Shi, M. Yin, and X. Ma, “Who should i trust: Ai
or myself? leveraging human and ai correctness likelihood to promote appropriate trust in
ai-assisted decision-making,” arXiv preprint arXiv:2301.05809, 2023.

[134] Á. A. Cabrera, A. Perer, and J. I. Hong, “Improving human-ai collaboration with descriptions
of ai behavior,” arXiv preprint arXiv:2301.06937, 2023.

[135] A. Kawakami, L. Guerdan, Y. Cheng, K. Glazko, M. Lee, S. Carter, N. Arechiga, H. Zhu,
and K. Holstein, “Training towards critical use: Learning to situate ai predictions relative to
human knowledge,” in Proceedings of The ACM Collective Intelligence Conference, 2023,
pp. 63–78.

[136] S. Eyuboglu, M. Varma, K. K. Saab, J.-B. Delbrouck, C. Lee-Messer, J. Dunnmon, J. Zou,
and C. Re, “Domino: Discovering systematic errors with cross-modal embeddings,” in
International Conference on Learning Representations, 2021.

[137] H. Bharadhwaj, D.-A. Huang, C. Xiao, A. Anandkumar, and A. Garg, “Auditing ai models
for verified deployment under semantic specifications,” arXiv preprint arXiv:2109.12456,
2021.

[138] M. T. Ribeiro and S. Lundberg, “Adaptive testing and debugging of nlp models,” in Proceed-

ings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), 2022, pp. 3253–3267.

[139] T. Wu, M. T. Ribeiro, J. Heer, and D. S. Weld, “Errudite: Scalable, reproducible, and
testable error analysis,” in Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, 2019, pp. 747–763.

[140] Y. Zhang, J. Z. HaoChen, S.-C. Huang, K.-C. Wang, J. Zou, and S. Yeung, “Drml: Di-
agnosing and rectifying vision models using language,” in NeurIPS 2022 Workshop on

Distribution Shifts: Connecting Methods and Applications.

[141] O. Wiles, I. Albuquerque, and S. Gowal, “Discovering bugs in vision models using off-the-
shelf image generation and captioning,” arXiv preprint arXiv:2208.08831, 2022.

[142] G. d’Eon, J. d’Eon, J. R. Wright, and K. Leyton-Brown, “The spotlight: A general method
for discovering systematic errors in deep learning models,” in 2022 ACM Conference on

Fairness, Accountability, and Transparency, 2022, pp. 1962–1981.

[143] N. Rajani, W. Liang, L. Chen, M. Mitchell, and J. Zou, “Seal: Interactive tool for systematic
error analysis and labeling,” arXiv preprint arXiv:2210.05839, 2022.

[144] S. Jain, H. Lawrence, A. Moitra, and A. Madry, “Distilling model failures as directions in
latent space,” arXiv preprint arXiv:2206.14754, 2022.

324

[145] J. K. Lee, Y. Bu, D. Rajan, P. Sattigeri, R. Panda, S. Das, and G. W. Wornell, “Fair selective
classification via sufficiency,” in International conference on machine learning, 2021,
pp. 6076–6086.

[146] A. Shah, Y. Bu, J. K. Lee, S. Das, R. Panda, P. Sattigeri, and G. W. Wornell, “Selective
regression under fairness criteria,” in International Conference on Machine Learning, 2022,
pp. 19 598–19 615.

[147] U. Bhatt, V. Chen, K. M. Collins, P. Kamalaruban, E. Kallina, A. Weller, and A. Talwalkar,
“Learning personalized decision support policies,” arXiv preprint arXiv:2304.06701, 2023.

[148] S. R. Bowman, J. Hyun, E. Perez, E. Chen, C. Pettit, S. Heiner, K. Lukosuite, A. Askell,
A. Jones, A. Chen, et al., “Measuring progress on scalable oversight for large language
models,” arXiv preprint arXiv:2211.03540, 2022.

[149] P. Zhang, “Taking advice from chatgpt,” arXiv preprint arXiv:2305.11888, 2023.

[150] S. Tong, E. Jones, and J. Steinhardt, “Mass-producing failures of multimodal systems with
language models,” arXiv preprint arXiv:2306.12105, 2023.

[151] B. Joshi, Z. Liu, S. Ramnath, A. Chan, Z. Tong, S. Nie, Q. Wang, Y. Choi, and X. Ren,
“Are machine rationales (not) useful to humans? measuring and improving human utility of
free-text rationales,” arXiv preprint arXiv:2305.07095, 2023.

[152] V. Lai, C. Chen, Q. V. Liao, A. Smith-Renner, and C. Tan, “Towards a science of human-ai
decision making: A survey of empirical studies,” arXiv preprint arXiv:2112.11471, 2021.

[153] J. Kasai, K. Sakaguchi, L. Dunagan, J. Morrison, R. L. Bras, Y. Choi, and N. A. Smith,
“Transparent human evaluation for image captioning,” arXiv preprint arXiv:2111.08940,
2021.

[154] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D.
Raji, and T. Gebru, “Model cards for model reporting,” in Proceedings of the conference on

fairness, accountability, and transparency, 2019, pp. 220–229.

[155] L. Portnoff, E. Gustafson, J. Rollinson, and K. Bicknell, “Methods for language learning
assessment at scale: Duolingo case study.,” International Educational Data Mining Society,
2021.

[156] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014:

13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part

V 13, Springer, 2014, pp. 740–755.

325

[157] C. Potts, Z. Wu, A. Geiger, and D. Kiela, “Dynasent: A dynamic benchmark for sentiment
analysis,” arXiv preprint arXiv:2012.15349, 2020.

[158] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” Advances in neural information processing systems, vol. 28,
2015.

[159] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang, M. De-
hghani, S. Brahma, et al., “Scaling instruction-finetuned language models,” arXiv preprint

arXiv:2210.11416, 2022.

[160] F. Barbieri, J. Camacho-Collados, L. Neves, and L. Espinosa-Anke, “Tweeteval: Unified
benchmark and comparative evaluation for tweet classification,” arXiv preprint arXiv:2010.12421,
2020.

[161] J. M. Santos and M. Embrechts, “On the use of the adjusted rand index as a metric for
evaluating supervised classification,” in Artificial Neural Networks–ICANN 2009: 19th

International Conference, Limassol, Cyprus, September 14-17, 2009, Proceedings, Part II

19, Springer, 2009, pp. 175–184.

[162] E. B. Fowlkes and C. L. Mallows, “A method for comparing two hierarchical clusterings,”
Journal of the American statistical association, vol. 78, no. 383, pp. 553–569, 1983.

[163] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal, “Can a suit of armor conduct electricity?
a new dataset for open book question answering,” arXiv preprint arXiv:1809.02789, 2018.

[164] Prolific, https://www.prolific.co/, Accessed on May 17, 2023.

[165] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practical and
powerful approach to multiple testing,” Journal of the Royal statistical society: series B

(Methodological), vol. 57, no. 1, pp. 289–300, 1995.

[166] H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “Reading between the lines: Modeling
user behavior and costs in ai-assisted programming,” arXiv preprint arXiv:2210.14306,
2022.

[167] Amazon, Ml-powered coding companion – amazon codewhisperer, 2022. URL: https :
//aws.amazon.com/codewhisperer/.

[168] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling,
F. Gimeno, A. D. Lago, et al., “Competition-level code generation with alphacode,” arXiv

preprint arXiv:2203.07814, 2022.

326

https://www.prolific.co/
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/

[169] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al., “Evaluating large language models trained on code,” arXiv

preprint arXiv:2107.03374, 2021.

[170] A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister, G. Sittampalam, and
E. Aftandilian, “Productivity assessment of neural code completion,” in Proceedings of the

6th ACM SIGPLAN International Symposium on Machine Programming, 2022, pp. 21–29.

[171] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experience: Evaluating the
usability of code generation tools powered by large language models,” in CHI Conference

on Human Factors in Computing Systems Extended Abstracts, 2022, pp. 1–7.

[172] S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The impact of ai on developer
productivity: Evidence from github copilot,” arXiv preprint arXiv:2302.06590, 2023.

[173] E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry,
“Discovering the syntax and strategies of natural language programming with generative
language models,” in CHI Conference on Human Factors in Computing Systems, 2022,
pp. 1–19.

[174] E. Kalliamvakou, Research: Quantifying github copilot’s impact on developer productivity

and happiness, Sep. 2022. URL: https://github.blog/2022-09-07-research-quantifying-
github-copilots-impact-on-developer-productivity-and-happiness/.

[175] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.
Polosukhin, “Attention is all you need,” Advances in neural information processing systems,
vol. 30, 2017.

[176] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik,
H. He, D. Song, et al., “Measuring coding challenge competence with apps,” arXiv preprint

arXiv:2105.09938, 2021.

[177] M. Evtikhiev, E. Bogomolov, Y. Sokolov, and T. Bryksin, “Out of the bleu: How should we
assess quality of the code generation models?” arXiv preprint arXiv:2208.03133, 2022.

[178] V. J. Hellendoorn, S. Proksch, H. C. Gall, and A. Bacchelli, “When code completion fails:
A case study on real-world completions,” in 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE), IEEE, 2019, pp. 960–970.

[179] A. Sarkar, A. D. Gordon, C. Negreanu, C. Poelitz, S. S. Ragavan, and B. Zorn, “What is it
like to program with artificial intelligence?” arXiv preprint arXiv:2208.06213, 2022.

[180] J. D. Weisz, M. Muller, S. Houde, J. Richards, S. I. Ross, F. Martinez, M. Agarwal, and
K. Talamadupula, “Perfection not required? human-ai partnerships in code translation,” in
26th International Conference on Intelligent User Interfaces, 2021, pp. 402–412.

327

https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

[181] N. Forsgren, M.-A. Storey, C. Maddila, T. Zimmermann, B. Houck, and J. Butler, “The
space of developer productivity: There’s more to it than you think.,” Queue, vol. 19, no. 1,
pp. 20–48, 2021.

[182] J. T. Liang, C. Yang, and B. A. Myers, “Understanding the usability of ai programming
assistants,” arXiv preprint arXiv:2303.17125, vol. 1, no. 1, pp. 1–2, 2023.

[183] J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen, A. Luxton-Reilly, G. Powell,
J. Finnie-Ansley, and E. A. Santos, “" it’s weird that it knows what i want": Usability and
interactions with copilot for novice programmers,” arXiv preprint arXiv:2304.02491, vol. 1,
no. 1, pp. 1–2, 2023.

[184] M. T. Tabachnyk and S. Nikolov, Ml-enhanced code completion improves developer produc-

tivity, Jul. 2022. URL: https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-
improves.

[185] T. Wu, K. Koedinger, et al., “Is ai the better programming partner? human-human pair
programming vs. human-ai pair programming,” arXiv preprint arXiv:2306.05153, vol. 1,
no. 1, pp. 1–2, 2023.

[186] R. E. Brooks, “Studying programmer behavior experimentally: The problems of proper
methodology,” Communications of the ACM, vol. 23, no. 4, pp. 207–213, 1980.

[187] R. Brooks, “Towards a theory of the cognitive processes in computer programming,” Inter-

national Journal of Man-Machine Studies, vol. 9, no. 6, pp. 737–751, 1977.

[188] B. A. Sheil, “The psychological study of programming,” ACM Computing Surveys (CSUR),
vol. 13, no. 1, pp. 101–120, 1981.

[189] H. Lieberman and C. Fry, “Bridging the gulf between code and behavior in programming,”
in Proceedings of the SIGCHI conference on Human factors in computing systems, .: ., 1995,
pp. 480–486.

[190] Z. Velart and P. Šaloun, “User behavior patterns in the course of programming in c++,”
in Proceedings of the joint international workshop on Adaptivity, personalization & the

semantic web, .: ., 2006, pp. 41–44.

[191] A. Ju and A. Fox, “Teamscope: Measuring software engineering processes with team-
work telemetry,” in Proceedings of the 23rd Annual ACM Conference on Innovation and

Technology in Computer Science Education, .: ., 2018, pp. 123–128.

[192] N. Peitek, J. Siegmund, and S. Apel, “What drives the reading order of programmers?
an eye tracking study,” in Proceedings of the 28th International Conference on Program

Comprehension, .: ., 2020, pp. 342–353.

328

https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves

[193] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A survey on the usage of eye-tracking in
computer programming,” ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–58, 2018.

[194] S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot: How programmers interact
with code-generating models,” arXiv preprint arXiv:2206.15000, 2022.

[195] Z. Sun, X. Du, F. Song, S. Wang, M. Ni, and L. Li, “Don’t complete it! preventing un-
helpful code completion for productive and sustainable neural code completion systems,”
in 2023 IEEE/ACM 45th International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion), IEEE, .: ., 2023, pp. 324–325.

[196] N. Forsgren, M.-A. Storey, C. Maddila, T. Zimmermann, B. Houck, and J. Butler, “The
space of developer productivity,” Communications of the ACM, vol. 64, no. 6, pp. 46–53,
2021.

[197] S. K. Card, T. P. Moran, and A. Newell, “The keystroke-level model for user performance
time with interactive systems,” Communications of the ACM, vol. 23, no. 7, pp. 396–410,
1980.

[198] B. E. John and D. E. Kieras, “The goms family of user interface analysis techniques:
Comparison and contrast,” ACM Transactions on Computer-Human Interaction (TOCHI),
vol. 3, no. 4, pp. 320–351, 1996.

[199] L. Ekroot and T. M. Cover, “The entropy of markov trajectories,” IEEE Transactions on

Information Theory, vol. 39, no. 4, pp. 1418–1421, 1993.

[200] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep at the keyboard?
assessing the security of github copilot’s code contributions,” in 2022 IEEE Symposium on

Security and Privacy (SP), IEEE, 2022, pp. 754–768.

[201] O. Asare, M. Nagappan, and N. Asokan, “Is github’s copilot as bad as humans at introducing
vulnerabilities in code?” arXiv preprint arXiv:2204.04741, 2022.

[202] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Can openai codex and other
large language models help us fix security bugs?” arXiv preprint arXiv:2112.02125, 2021.

[203] H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “When to show a suggestion? inte-
grating human feedback in ai-assisted programming,” arXiv preprint arXiv:2306.04930,
2023.

[204] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language models
are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

329

[205] S. Zhao, GitHub Copilot now has a better AI model and new capabilities, https://github.
blog/2023-02-14-github-copilot-now-has-a-better-ai-model-and-new-capabilities/, Feb.
2023.

[206] Z. Sun, X. Du, F. Song, S. Wang, M. Ni, and L. Li, “Learning to prevent profitless neural
code completion,” arXiv preprint arXiv:2209.05948, 2022.

[207] W. B. Knox and P. Stone, “Tamer: Training an agent manually via evaluative reinforcement,”
in 2008 7th IEEE international conference on development and learning, IEEE, 2008,
pp. 292–297.

[208] J. MacGlashan, M. K. Ho, R. Loftin, B. Peng, G. Wang, D. L. Roberts, M. E. Taylor,
and M. L. Littman, “Interactive learning from policy-dependent human feedback,” in
International Conference on Machine Learning, PMLR, 2017, pp. 2285–2294.

[209] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano,
and G. Irving, “Fine-tuning language models from human preferences,” arXiv preprint

arXiv:1909.08593, 2019.

[210] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D.
Ganguli, T. Henighan, et al., “Training a helpful and harmless assistant with reinforcement
learning from human feedback,” arXiv preprint arXiv:2204.05862, 2022.

[211] OpenAI, Chatgpt: Optimizing language models for dialogue, 2022. URL: https://openai.
com/blog/chatgpt/.

[212] E. Horvitz, “Principles of mixed-initiative user interfaces,” in Proceedings of the SIGCHI

conference on Human Factors in Computing Systems, 1999, pp. 159–166.

[213] M. Csikszentmihalyi and R. Larson, Flow and the foundations of positive psychology.
Springer, 2014, vol. 10.

[214] B. P. Bailey, J. A. Konstan, and J. V. Carlis, “The effects of interruptions on task performance,
annoyance, and anxiety in the user interface.,” in Interact, vol. 1, 2001, pp. 593–601.

[215] E. Cutrell, M. Czerwinski, and E. Horvitz, “Notification, disruption, and memory: Effects
of messaging interruptions on memory and performance,” in IFIP TC13 International

Conference on Human-Computer Interaction, 2001.

[216] E. Horvitz and J. Apacible, “Learning and reasoning about interruption,” in Proceedings

of the 5th International Conference on Multimodal Interfaces, ser. ICMI ’03, Vancouver,
British Columbia, Canada, 2003, pp. 20–27.

[217] E. Horvitz, A. Jacobs, and D. Hovel, “Attention-sensitive alerting,” in Proceedings of UAI,
Stockholm, Sweden, 1999, pp. 305–313.

330

https://github.blog/2023-02-14-github-copilot-now-has-a-better-ai-model-and-new-capabilities/
https://github.blog/2023-02-14-github-copilot-now-has-a-better-ai-model-and-new-capabilities/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

[218] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, et

al., “Codebert: A pre-trained model for programming and natural languages,” in Findings of

the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[219] E. Kalliamvakou, Tree-sitter parser generator tool, Jan. 2023. URL: https://tree-sitter.github.
io/tree-sitter/.

[220] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano,
T. Zhou, et al., “Xgboost: Extreme gradient boosting,” R package version 0.4-2, vol. 1, no. 4,
pp. 1–4, 2015.

[221] M. P. Naeini, G. Cooper, and M. Hauskrecht, “Obtaining well calibrated probabilities using
bayesian binning,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[222] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn, “Direct
preference optimization: Your language model is secretly a reward model,” arXiv preprint

arXiv:2305.18290, 2023.

[223] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised learning,” Machine

learning, vol. 109, no. 2, pp. 373–440, 2020.

[224] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT
press, 2018.

[225] M. Ledoux and M. Talagrand, Probability in Banach Spaces: isoperimetry and processes.
Springer Science & Business Media, 1991, vol. 23.

[226] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint

arXiv:1711.05101, 2017.

[227] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[228] A. Blum and R. Rivest, “Training a 3-node neural network is np-complete,” Advances in

neural information processing systems, vol. 1, 1988.

[229] V. Guruswami and P. Raghavendra, “Hardness of learning halfspaces with noise,” SIAM

Journal on Computing, vol. 39, no. 2, pp. 742–765, 2009.

[230] S. Kakade and A. Tewari, Rademacher composition and linear prediction, https://home.ttic.
edu/~tewari/lectures/lecture17.pdf, Feb. 2008.

[231] A. Levy, M. Agrawal, A. Satyanarayan, and D. Sontag, “Assessing the impact of auto-
mated suggestions on decision making: Domain experts mediate model errors but take less
initiative,” in CHI Conference on Human Factors in Computing Systems, 2021.

331

https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://home.ttic.edu/~tewari/lectures/lecture17.pdf
https://home.ttic.edu/~tewari/lectures/lecture17.pdf

[232] E. Chu, D. Roy, and J. Andreas, “Are visual explanations useful? a case study in model-in-
the-loop prediction,” arXiv preprint arXiv:2007.12248, 2020.

[233] Y. Xie, M. Chen, D. Kao, G. Gao, and X. Chen, “Chexplain: Enabling physicians to explore
and understand data-driven, ai-enabled medical imaging analysis,” in Proceedings of the

2020 CHI Conference on Human Factors in Computing Systems, 2020, pp. 1–13.

[234] P. Tschandl, C. Rinner, Z. Apalla, G. Argenziano, N. Codella, A. Halpern, M. Janda, A.
Lallas, C. Longo, J. Malvehy, et al., “Human–computer collaboration for skin cancer
recognition,” Nature Medicine, vol. 26, no. 8, pp. 1229–1234, 2020.

[235] B. E. Bejnordi, M. Veta, P. J. Van Diest, B. Van Ginneken, N. Karssemeijer, G. Litjens, J. A.
Van Der Laak, M. Hermsen, Q. F. Manson, M. Balkenhol, et al., “Diagnostic assessment
of deep learning algorithms for detection of lymph node metastases in women with breast
cancer,” Jama, vol. 318, no. 22, pp. 2199–2210, 2017.

[236] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam:
Visual explanations from deep networks via gradient-based localization,” in Proceedings of

the IEEE international conference on computer vision, 2017, pp. 618–626.

[237] B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough, learn to criticize!
criticism for interpretability,” in Advances in neural information processing systems, 2016,
pp. 2280–2288.

[238] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,”
in Proceedings of the 34th International Conference on Machine Learning-Volume 70,
JMLR. org, 2017, pp. 1321–1330.

[239] T. Tohme, K. Vanslette, and K. Youcef-Toumi, “Improving regression uncertainty estimation
under statistical change,” arXiv preprint arXiv:2109.08213, 2021.

[240] K. Vanslette, T. Tohme, and K. Youcef-Toumi, “A general model validation and testing tool,”
Reliability Engineering & System Safety, vol. 195, p. 106 684, 2020.

[241] S. A. Goldman and M. J. Kearns, “On the complexity of teaching,” Journal of Computer

and System Sciences, vol. 50, no. 1, pp. 20–31, 1995.

[242] Y. Chen, O. Mac Aodha, S. Su, P. Perona, and Y. Yue, “Near-optimal machine teaching
via explanatory teaching sets,” in International Conference on Artificial Intelligence and

Statistics, 2018, pp. 1970–1978.

[243] R. Devidze, F. Mansouri, L. Haug, Y. Chen, and A. Singla, “Understanding the power and
limitations of teaching with imperfect knowledge,” arXiv preprint arXiv:2003.09712, 2020.

332

[244] G. Gates, “The reduced nearest neighbor rule (corresp.),” IEEE transactions on information

theory, vol. 18, no. 3, pp. 431–433, 1972.

[245] F. Angiulli, “Fast condensed nearest neighbor rule,” in Proceedings of the 22nd international

conference on Machine learning, 2005, pp. 25–32.

[246] M. Kusner, S. Tyree, K. Weinberger, and K. Agrawal, “Stochastic neighbor compression,”
in International Conference on Machine Learning, PMLR, 2014, pp. 622–630.

[247] K. Zhong, R. Guo, S. Kumar, B. Yan, D. Simcha, and I. Dhillon, “Fast classification with
binary prototypes,” in Artificial Intelligence and Statistics, PMLR, 2017, pp. 1255–1263.

[248] C. Gupta, A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape, A. Kumar, S. Goyal, R.
Udupa, M. Varma, and P. Jain, “Protonn: Compressed and accurate knn for resource-scarce
devices,” in International Conference on Machine Learning, PMLR, 2017, pp. 1331–1340.

[249] A. Krause and D. Golovin, “Submodular function maximization.,” Tractability, vol. 3,
pp. 71–104, 2014.

[250] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling with Large Cor-
pora,” English, in Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks, Valletta, Malta: ELRA, May 2010, pp. 45–50.

[251] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[252] M. Arnold, R. K. Bellamy, M. Hind, S. Houde, S. Mehta, A. Mojsilović, R. Nair, K. N.
Ramamurthy, A. Olteanu, D. Piorkowski, et al., “Factsheets: Increasing trust in ai services
through supplier’s declarations of conformity,” IBM Journal of Research and Development,
vol. 63, no. 4/5, pp. 6–1, 2019.

[253] I. Gao, G. Ilharco, S. Lundberg, and M. T. Ribeiro, “Adaptive testing of computer vision
models,” arXiv preprint arXiv:2212.02774, 2022.

[254] Y. Ahn, Y.-R. Lin, P. Xu, and Z. Dai, “Escape: Countering systematic errors from machine’s
blind spots via interactive visual analysis,” in Proceedings of the 2023 CHI Conference on

Human Factors in Computing Systems, 2023, pp. 1–16.

[255] B. Y. Idrissi, D. Bouchacourt, R. Balestriero, I. Evtimov, C. Hazirbas, N. Ballas, P. Vincent,
M. Drozdzal, D. Lopez-Paz, and M. Ibrahim, “Imagenet-x: Understanding model mistakes
with factor of variation annotations,” arXiv preprint arXiv:2211.01866, 2022.

[256] V. Vasudevan, B. Caine, R. Gontijo-Lopes, S. Fridovich-Keil, and R. Roelofs, “When does
dough become a bagel? analyzing the remaining mistakes on imagenet,” arXiv preprint

arXiv:2205.04596, 2022.

333

[257] O. Hupert, I. Schwartz, and L. Wolf, “Describing sets of images with textual-pca,” arXiv

preprint arXiv:2210.12112, 2022.

[258] Z. M. Malakan, G. M. Hassan, and A. Mian, “Vision transformer based model for de-
scribing a set of images as a story,” in AI 2022: Advances in Artificial Intelligence: 35th

Australasian Joint Conference, AI 2022, Perth, WA, Australia, December 5–8, 2022, Pro-

ceedings, Springer, 2022, pp. 15–28.

[259] R. Zhong, C. Snell, D. Klein, and J. Steinhardt, “Describing differences between text
distributions with natural language,” in International Conference on Machine Learning,
PMLR, 2022, pp. 27 099–27 116.

[260] Q. Wang, J. Wang, A. B. Chan, S. Huang, H. Xiong, X. Li, and D. Dou, “Neighbours matter:
Image captioning with similar images,” in BMVC, 2020.

[261] J. Wang, W. Xu, Q. Wang, and A. B. Chan, “On distinctive image captioning via comparing
and reweighting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[262] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, “Bdd100k:
A diverse driving dataset for heterogeneous multitask learning,” in IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Jun. 2020.

[263] G. Luo, L. Cheng, C. Jing, C. Zhao, and G. Song, “A thorough review of models, evaluation
metrics, and datasets on image captioning,” IET Image Processing, vol. 16, no. 2, pp. 311–
332, 2022.

[264] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei, “Deep reinforce-
ment learning from human preferences,” Advances in neural information processing systems,
vol. 30, 2017.

[265] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,” Advances

in artificial intelligence, vol. 2009, 2009.

[266] J. J. Dudley and P. O. Kristensson, “A review of user interface design for interactive machine
learning,” ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 8, no. 2, pp. 1–37,
2018.

[267] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, ser. KDD ’16, San Francisco, California, USA: ACM, 2016, pp. 785–794, ISBN:
978-1-4503-4232-2. DOI: 10.1145/2939672.2939785. URL: http://doi.acm.org/10.1145/
2939672.2939785.

334

https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785

[268] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems 32, Curran
Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

335

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Deferral Systems
	1.3 AI-Assisted Decision Making
	1.4 Interactive Human-AI Collaboration

	I Conditional Delegation with AI: Learning to Defer
	2 Sample Efficient Learning to Defer
	2.1 Introduction
	2.2 Related Work
	2.3 Problem Setting
	2.4 Staged Learning of Classifier and Rejector
	2.4.1 Model Complexity Gap
	2.4.2 Data Trade-offs

	2.5 Surrogate Losses For Joint Learning
	2.5.1 Family of Surrogates
	2.5.2 Theoretical Properties of Surrogate

	2.6 Active Learning for Expert Predictions
	2.6.1 Theoretical Understanding
	2.6.2 Disagreement on Disagreements

	2.7 Experimental Illustration

	3 Exact Algorithms for Learning to Defer
	3.1 Introduction
	3.2 Related Work
	3.3 Learning with Deferral: Problem Setup
	3.4 Computational Complexity of Learning with Deferral
	3.5 Mixed Integer Linear Program Formulation
	3.6 Realizable Consistent Surrogate
	3.6.1 Consistency vs Realizable Consistency
	3.6.2 Derivation of Surrogate
	3.6.3 Theoretical Guarantees
	3.6.4 Underfitting The Target

	3.7 Experiments
	3.7.1 Human-AI Deferral Benchmark
	3.7.2 Synthetic and Semi-Synthetic Data
	3.7.3 Realistic Data

	II AI-Assisted Decision Making: Onboarding
	4 Teaching Humans When To Defer to a Classifier via Exemplars
	4.1 Introduction
	4.2 Related Work
	4.2.1 Relation to Learning to Defer
	4.2.2 Further Related Work

	4.3 Problem Setup
	4.4 Human Mental Model
	4.5 Teaching a Student Learner
	4.6 Experimental User Study
	4.6.1 Experimental Preliminaries
	4.6.2 Simulated Users
	4.6.3 Crowdsourced Experiments Details
	4.6.4 User Study Observations and Results

	4.7 Additional Synthetic Experiments
	4.8 Discussion

	5 Effective Human-AI Teams via Learned Natural Language Rules and Onboarding
	5.1 Introduction
	5.2 Related Work
	5.3 AI Assisted Decision Making
	5.4 Learning Rules for Human-AI Cooperation: IntegrAI
	5.4.1 Region Discovery Algorithm
	5.4.2 Region Description Algorithm

	5.5 Onboarding and Recommendations to Promote Rules
	5.6 Method Evaluation
	5.7 User Studies to Evaluate Onboarding Effect

	III Interactive Human-AI Collaboration: Case Study in LLM-Assisted Programming
	6 Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming
	6.1 Introduction
	6.2 Background and Related Work
	6.3 Copilot System Description
	6.3.1 Influences of CodeRec on Programmer's Activities
	6.3.2 Programmer Activities in Telemetry Segments

	6.4 A Taxonomy for Understanding Programmer-CodeRec Interaction: CUPS
	6.4.1 Creating the Taxonomy
	6.4.2 Taxonomy of Telemetry Segments

	6.5 CUPS Data Collection Study
	6.5.1 Procedure
	6.5.2 Participants

	6.6 Understanding Programmer Behavior with CUPS: Main Results
	6.6.1 Aggregated Time Spent in Various CUPSs
	6.6.2 Patterns in Behavior as Transitions Between CUPS States
	6.6.3 Programmers Often Defer Thought About Suggestions
	6.6.4 CUPS Attributes Significantly More Time Verifying Suggestions than Simpler Metrics
	6.6.5 Insights About Prompt Crafting
	6.6.6 Post-Study Survey Answers

	6.7 Limitations

	7 When to Show a Suggestion? Integrating Human Feedback in AI-Assisted Programming
	7.1 Introduction
	7.2 Related Work
	7.3 Problem Setting
	7.4 Theoretical Formulation of Suggestion Utility
	7.5 Conditional Suggestion Display From Human Feedback
	7.6 Experiments
	7.6.1 Dataset and Feature Engineering.
	7.6.2 Model Evaluation
	7.6.3 Retrospective Evaluation of CDHF

	7.7 Which Suggestion to Show?

	8 Conclusion
	A Additional Information for Chapter 2
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 1
	A.3 Proof of Proposition 2
	A.4 Proof of Theorem 2
	A.5 Proof of Theorem 3
	A.6 Proof of Proposition 3
	A.7 An example on which CAL algorithm fails
	A.8 Proof of Theorem 4
	A.9 Experimental Details

	B Additional Information for Chapter 3
	B.1 Practitioner's guide to our approach
	B.1.1 MILP
	B.1.2 Realizable Surrogate

	B.2 MILP
	B.2.1 Verification

	B.3 Experimental Details and Results
	B.3.1 Baseline Implementation
	B.3.2 Training Details
	B.3.3 Synthetic Data
	B.3.4 NIH Chest X-ray
	B.3.5 CIFAR-10H

	B.4 Deferred Proofs and Derivations
	B.4.1 Related Work
	B.4.2 Section 3.4 (Hardness)
	B.4.3 Section 3.5 (MILP)
	B.4.4 Section 3.6 (RealizableSurrogate)

	C Additional Information for Chapter 4
	C.1 Extended Related Work
	C.2 Theoretical Results and Proofs
	C.2.1 Further Derivations
	C.2.2 Proofs
	C.2.3 Hardness result
	C.2.4 Efficient Implementation of Greedy Selection

	C.3 SAE Model Error Analysis
	C.3.1 Factors of difference
	C.3.2 Embedding clustering

	C.4 Synthetic Experiments Details and Results
	C.4.1 Misspecification results

	C.5 Additional Synthetic Experiments
	C.5.1 CIFAR-10
	C.5.2 Guassian Data Illustration

	C.6 Crowdsourced Experiments Details and Results
	C.6.1 Experiment Details

	C.7 Extended Discussion
	C.8 User Interface Screenshots

	D Additional Information for Chapter 5
	D.1 Extended Related Work
	D.2 Region Finding Algorithm - Details
	D.3 Region Description Algorithm - Details
	D.4 Onboarding and Recommendations to Promote Rules - Details
	D.5 Method Evaluation - Details
	D.6 User Studies - Details
	D.6.1 BDD Study
	D.6.2 MMLU Study
	D.6.3 Screenshots of User Study Interface for BDD
	D.6.4 Screenshots of User Study Interface for MMLU

	E Additional Information for Chapter 6
	E.1 Programmer Behavior by Task
	E.2 Predicting CUPS from Telemetry
	E.3 Details User Study
	E.3.1 Interfaces
	E.3.2 Task Instructions
	E.3.3 Survey Questions Results
	E.3.4 Full User Timelines
	E.3.5 Full CUPS Graph

	F Additional Information for Chapter 7
	F.1 Extended Related Work
	F.2 Derivation of P*
	F.3 Model Evaluation and Analysis
	F.4 Which Suggestion to Show: Plots

	References

