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ABSTRACT

Optimization and machine learning are two predominant fields for decision-making today.
The increasing availability of data over the past years has facilitated advancements in the
intersection of these two domains, which in turn has led to better decision support tools.
Optimization has significantly enhanced traditional machine learning models by refining
their training methods, and machine learning has improved many optimization algorithms by
enabling better decision-making through accurate predictions.

However, integrating optimization theory with modern machine learning methods, like
neural networks and kernel functions, faces two primary challenges. Firstly, these models
don’t meet the fundamental convexity assumptions of optimization theory. Secondly, these
models are primarily used in tasks with numerous parameters and high-dimensional data,
requiring highly efficient and scalable algorithms. This focus on efficiency limits consideration
for discrete variables and general constraints that are typical in optimization. This thesis
introduces novel algorithms to address these challenges.

The work is divided into four chapters, encompassing rigorous theory, computational
tools, and diverse applications. In Chapter 1, we extend state-of-the-art tools from robust
optimization to non-convex and non-concave settings, allowing us to generate neural networks
that are robust against input perturbations. In Chapter 2, we develop a holistic deep learning
framework that jointly optimizes for neural network robustness, stability and sparsity by
appropriately modifying the loss function. In Chapter 3 we introduce TabText, a flexible
methodology that leverages the power of Large Language Models for patient flow predictions
from tabular data. Lastly, in Chapter 4 we present a data-driven approach for solving
multistage stochastic optimization problems via sparsified kernel methods.

Thesis supervisor: Dimitris Bertsimas
Title: Boeing Leaders for Global Operations Professor of Management
Associate Dean for Business Analytics
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Chapter 1

Introduction

Optimization and machine learning stand as two highly successful disciplines in decision-

making, with important applications across various sectors such as healthcare, energy, finance,

and more. Historically, the two were studied independently – optimization as a fundamental

pillar of Operations Research and machine learning burgeoning in Computer Science. The

escalating availability of data in recent years has naturally promoted the joint study of machine

learning with other scientific domains, with optimization being no exception. Optimization

has contributed significantly to the improvement of traditional machine learning models by

enhancing their training methodologies. Conversely, machine learning has helped improving

optimization algorithms, as access to accurate predictions of future outcomes allows to make

better decisions.

Integrating optimization theory with modern machine learning methods, such as neural

networks and kernel functions, presents unique challenges compared to more conventional

models like logistic regression, trees, and support vector machines. Firstly, neural networks

do not satisfy the fundamental convexity assumptions that underlie optimization theory.

Secondly, these models are mostly applied in tasks involving a large number of parameters

and high dimensional observations, requiring the algorithms employed to be highly efficient

and scalable. Maintaining those properties leaves little or no room for discrete variables and
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general constraints, which are typical in optimization.

This thesis presents novel algorithms that alleviate the challenges described above and

successfully integrate optimization with modern machine learning models. We focus on two

key problems:

• Machine Learning Classification: Deep learning is one of the most important scientific

developments of our time; however, deep learning models face notable challenges when

applied in practical domains. They struggle with small datasets, tabular data formats,

and they lack robustness and stability. Additionally, their computational demands

make them intractable in settings constrained by memory or time. We propose the use

of tools from robust optimization, non-convex optimization, and large language models

to address these limitations.

• Multistage Stochastic Optimization: This active research area has applications to various

problems like patient flow optimization and inventory control. Recent efforts have

utilized predictive analytics to inform decision-making using available side information

and historical data. However, dynamic methods like these are hindered by the curse of

dimensionality and struggle to scale in settings with large datasets or high-dimensional

decisions. We propose leveraging machine learning with kernel methods and functional

optimization to develop a scalable data-driven algorithm for this problem.

This thesis is divided into four chapters, encompassing rigorous theory, computational

tools, and diverse applications. In Chapter 1, we extend state-of-the-art tools from robust

optimization to non-convex and non-concave settings, allowing us to generate neural networks

that are robust against input perturbations. In Chapter 2, we develop a holistic deep learning

framework that jointly optimizes for neural network robustness, stability and sparsity by

appropriately modifying the objective function. In Chapter 3 we introduce TabText, a

flexible methodology that leverages the power of Large Language Models for patient flow

predictions from tabular data. Lastly, in Chapter 4 we present a data-driven approach for

20



solving multistage stochastic optimization problems via sparsified kernel methods.

The following sections offer a summary of the work as well as the contributions within

each chapter of the thesis.

1.1 Robust, Stable and Sparse Optimization for Neural

Networks

Deep learning has emerged as the predominant technology of our times, with important

applications in areas like computer vision, natural language processing, and structural biology.

However, in recent years it has been exposed that standard neural networks lack robustness –

they are susceptible to being misled by both natural and artificial noise in the input data. This

problem becomes particularly relevant when considering applications related to self-driving

cars or medicine, in which these perturbed inputs represent an important security threat.

In Chapter 1, we develop a novel algorithm to train robust neural networks by extending

state-of-the-art tools from robust optimization to non-convex and non-concave settings. In

particular, we find a closed-form expression that provides an upper bound on the worst-case

training loss with respect to bounded input perturbations. By minimizing this upper bound,

our method, Robust Upper Bounds (RUB), not only achieves state-of-the-art performance

empirically, but also provides performance guarantees against the perturbations considered.

We also propose a simple method (Approximated Robust Upper Bound or aRUB) which

uses the first order approximation of the network as well as basic tools from linear robust

optimization to obtain an empirical upper bound of the adversarial loss that can be easily

implemented. Across a variety of tabular and vision data sets we demonstrate the effectiveness

of our approach —RUB is substantially more robust than state-of-the-art methods for larger

perturbations, while aRUB matches the performance of state-of-the-art methods for small

perturbations (Bertsimas et al. 2021a).

Robustness is; however, not the only challenge that neural networks face. These models
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frequently exhibit instability during the training process, where different train-validation

splits can result in models with significantly varied performance. Additionally, these networks

contain millions of non-zero parameters that need to be stored and accessed for evaluation.

Previous works on robustness, stability and sparsity of neural networks have only addressed

these challenges in isolation, and often at the expense of a substantial increase in computational

time. In Chapter 2, we focus on developing practical algorithms to optimize for these properties

jointly and analyze their trade-offs.

In order to enhance stability with respect to train-validation splits, we modify the loss

function to optimize for the empirical value-at-risk of the error (instead of the average error)

using a mixed-integer programming formulation. In addition, we incorporate a continuous

approximation of the L0 pseudo-norm as a penalty in the objective to enforce sparsity. We

combine these algorithms with the robustness methods from Chapter 1 to develop a holistic

deep learning framework (HDL) that jointly optimizes for the metrics of interest. HDL

demonstrates that it is often possible to simultaneously improve robustness, stability, and

sparsity without sacrificing performance on accuracy. In fact, we show that adding robustness

and stability can significantly improve the accuracy of the network, especially for tabular

data sets. Since our approach (and our code) supports a variety of loss functions, we also

provide guidance to practitioners to help them align the training objective with their specific

use case (Bertsimas et al. 2024).

Contributions

• We develop two new methods for training deep learning models that are robust against

input perturbations. The first method (Approximated Robust Upper Bound or aRUB),

minimizes an empirical upper bound of the adversarial loss for Lp norm bounded

uncertainty sets, for general p. It is simple to implement and performs similar to

state-of-the-art defenses on small uncertainty sets. The second method (Robust Upper

Bound or RUB), minimizes a provable upper bound of the adversarial loss specifically
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for L1 norm bounded uncertainty sets. This method shows the best performance for

larger uncertainty sets, and more importantly, it provides security guarantees against

L1 norm bounded adversarial attacks.

• We design HDL, a novel framework that jointly optimizes for neural network robust-

ness, stability, and sparsity metrics by appropriately modifying the objective function.

Through extensive ablation experiments across tabular and image sets, we analyze the

individual performance of each metric as well as the interactions and trade-offs between

them.

• We propose a prescriptive approach to provide recommendations on selecting the

appropriate loss function for a classification task depending on the practitioner’s metric

of interest.

1.2 Large Language Models for Tabular Data Represen-

tations

Accurate predictions of patient outcomes can facilitate resource allocation and enhance

personalized care. In collaboration with a large hospital network, we developed machine

learning models that predict short-term and long-term outcomes for all inpatients across their

seven hospitals using electronic medical records. We implemented an automated pipeline

displaying our daily predictions with user-friendly software. Over 200 medical staff currently

use our tool, resulting in a significant reduction in length of stay and projected annual benefits

of millions of dollars for the healthcare system (Na et al. 2023).

Given this successful implementation, the question arises: how could we extend these tools

for the benefit of hospitals with limited resources, small patient populations, and/or non-

standardized healthcare records? Even though electronic medical records are widely available

for most digitized healthcare systems, tabular data in healthcare is generally disorganized, not
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standardized across institutions and scarce in small healthcare systems. We then identified

two significant limitations in the existing approaches to handling tabular data: they require

labor-intensive data processing, and they ignore contextual information such as column

headers and meta content descriptions which could be used for data augmentation.

To address these limitations, in Chapter 3 we present TabText, a systematic framework that

leverages Large Language Models to extract contextual information from tabular structures,

resulting in more complete and flexible data representations. These new representations

can then be used to train any standard machine learning model for downstream prediction

tasks. Although deep learning models often perform poorly on classification tasks with

structured data, off-the-shelf and pre-trained neural networks can be remarkably helpful

for enhancing pre-processing pipelines. We demonstrated the flexibility of our approach

compared to traditional labor-consuming processing techniques, and we showed that TabText

can significantly improve performance across all patient outcome classification tasks considered,

especially those with small data sizes and high variability (Carballo et al. 2022).

Contributions

• We develop and implement machine learning models that predict several inpatient

outcomes at a healthcare system. We show that after utilizing our user-friendly software

the hospitals observe significant reduction in length of stay.

• We develop TabText, a systematic framework that leverages language to extract contex-

tual information from tabular structures. Our experiments demonstrate that augmenting

electronic medical records with our TabText representations can significantly improve

the AUC score, especially when trained with small-size datasets. We also show that Tab-

Text enables the generation of high-performing predictive models for patient outcomes

with minimal data processing.

24



1.3 Sparse Reproducing Kernels for Stochastic Multistage

Optimization with Covariates

Multistage stochastic optimization arises in numerous applications and remains an important

research area in the optimization community. Recent work has focused on using predictive

analytics to leverage available side information and historical data to make better decisions.

However, these dynamic methods are affected by the curse of dimensionality; they require

scenario tree enumeration and can require many hours for solving problems with only a

few stages. More recently, kernel methods have been used for data-driven, single-period

optimization problems with auxiliary information. This approach overcomes the curse of

dimensionality; however, the number of parameters per decision grows linearly with the

number of observations, resulting in function representations that are as complex as the size

of the data and that become potentially intractable especially in multistage settings.

In Chapter 4 we develop a non-parametric, data-driven, tractable approach for solving

multistage stochastic optimization problems in which decisions do not affect the uncertainty.

The proposed framework represents the decision variables as elements of a reproducing

kernel Hilbert space and performs functional stochastic gradient descent to minimize the

empirical regularized loss. By incorporating sparsification techniques based on function

subspace projections we are able to overcome the computational complexity that standard

kernel methods introduce as the data size increases. We prove that the proposed approach is

asymptotically optimal for multistage stochastic optimization with side information. Across

various computational experiments on stochastic inventory management problems, our method

performs well in multidimensional settings and remains tractable when the data size is large.

Lastly, by computing lower bounds for the optimal loss of the inventory control problem, we

show that the proposed method produces decision rules with near-optimal average performance

(Bertsimas and Carballo 2023).
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Contributions

• We propose a novel data-driven approach for multistage stochastic optimization problems

with side information based on reproducing kernel Hilbert spaces and sparse projections.

To the best of our knowledge, this is the first tractable application of reproducing kernel

Hilbert spaces to multistage optimization problems with large data sizes.

• We prove that under standard convexity and smoothness conditions on the loss function,

the expected loss achieved with our algorithm achieves asymptotic optimality.

• We demonstrate across several instances of inventory management problems that the

proposed method finds near-optimal solutions using only a few parameters and with

very low computational times even for large instances of the problem.
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Chapter 2

Robust Deep Learning

2.1 Introduction

Robustness of neural networks for classification problems has received increasing attention in

the past few years, since it was exposed that these models could be easily fooled by introducing

some small perturbation in the input data. These perturbed inputs, which are commonly

referred to as adversarial examples, are visually indistinguishable from the natural input,

and neural networks simply trained to maximize accuracy often assign them to an incorrect

class (Szegedy et al. 2013). This problem becomes particularly relevant when considering

applications related to self-driving cars or medicine, in which adversarial examples represent

an important security threat (Kurakin et al. 2016).

The machine learning community has recently developed multiple heuristics to make

neural networks robust. The most popular ones are perhaps those based on training with

adversarial examples, a method first proposed by Goodfellow et al. (2015) and which consists

in training the neural network using adversarial inputs instead of or in addition to the

standard data. The defense by Madry et al. (2019), which finds the adversarial examples

with bounded norm using iterative projected gradient descent (PGD) with random starting

points, has proved to be one of the most effective methods (Tjeng et al. 2019), although
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it comes with a high computational cost. Another more efficient defense was proposed by

Wong et al. (2020), which uses instead fast gradient sign methods (FGSM) to find the attacks.

Other heuristic defenses rely on preprocessing or projecting the input space (Lamb et al.

2018, Kabilan et al. 2018, Ilyas et al. 2017), on randomizing the neurons (Prakash et al.

2018, Xie et al. 2017) or on adding a regularization term to the objective function (Ross

and Doshi-Velez 2017, Hein and Andriushchenko 2017, Yan et al. 2018). There is a plethora

of heuristics for adversarial robustness by now. Yet, these defenses are only effective to

adversarial attacks of small magnitude and are vulnerable to attacks of larger magnitude or

to new attacks (Athalye et al. 2018).

Given the lack of an exact and tractable reformulation of the adversarial loss with norm-

bounded perturbations, a recent strand of research has been to leverage upper bounds to

improve adversarial robustness. These upper bounds provide security guarantees against

adversarial attacks, even new ones, by finding a mathematical proof that a network is not

susceptible to any attack, e.g. (Dathathri et al. 2020, Raghunathan et al. 2018b, Katz et al.

2017, Tjeng et al. 2019, Bunel et al. 2017, Anderson et al. 2020, Singh et al. 2018, Zhang

et al. 2018, Weng et al. 2018, Gehr et al. 2018, Dvijotham et al. 2018b, Lecuyer et al. 2019,

Cohen et al. 2019). Replacing the standard loss with these upper bounds during training is a

common technique for obtaining adversarial defenses. Wong and Kolter (2018) for instance,

find an upper bound for the adversarial loss by applying linear relaxations in the network

and computing a convex polytope that contains all possible values for the last layer given

adversarial examples with bounded norm. An upper bound on the adversarial loss is also

computed in Raghunathan et al. (2018a) by solving instead a semidefinite program. Other

more scalable and effective methods based on minimizing an upper bound of the adversarial

loss have been introduced (Gowal et al. 2019, Balunovic and Vechev 2019, Mirman et al.

2018, Dvijotham et al. 2018a, Wong et al. 2018, Zhang et al. 2019).

While these methods can provide security guarantees against adversarial examples, most

of them rely on convex relaxations to recursively compute upper and lower bounds for each
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layer, which introduces gaps that propagate and can affect the final bound for the last layer.

For instance, the approach proposed in Gowal et al. (2019) computes bounds for each layer by

assuming that the worst-case bounds for all previous layers can be achieved simultaneously.

This often yields a loose upper bound of the adversarial loss whose minimization can be

sensitive to hyperparameters (Zhang et al. 2019). Another example is the aforementioned

defense from Wong and Kolter (2018), where bounds at each layer are computed by solving a

linear program that uses the bounds from previous layers for the linear ReLU relaxations.

Unlike these approaches, the method proposed in Raghunathan et al. (2018a) does not require

computation of intermediate bounds, however, their proposed upper bound only works for

neural networks with two layers.

Upper bounds for the adversarial loss have also been explored in the context of Dis-

tributionally Robust Optimization, in which the data distribution is perturbed within a

Wasserstein ball (Sinha et al. 2017, Shafieezadeh-Abadeh et al. 2019). These works find upper

bounds for the worst-case expected loss and provide generalization guarantees under certain

assumptions. However, it is not evident how to apply these methods for norm-bounded input

perturbations given the different nature of the uncertainty.

A promising yet under-explored approach is the application of state-of-the-art Robust

Optimization (RO) tools (Bertsimas and den Hertog 2022). RO has proven to be effective

in handling uncertainty in parameters that may result from rounding or implementation

errors. Recently, it has also been applied to provide robustness against input perturbations in

some machine learning models, such as Support Vector Machines and Optimal Classification

Trees (Bertsimas et al. 2019), and it could be similarly leveraged for deep learning. While

previous works on robustness of neural networks generally formulate the problem in the

context of RO, they do not utilize the more advanced tools available in this field. Instead,

they mostly depend on linear or convex relaxations and heuristic methods to simplify the

original non-convex problem. In this paper, we use state-of-the-art RO tools to derive a

new closed-form solution of an upper bound of the adversarial loss. Our approach is based
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on a holistic expansion of the network; it does not rely on convex relaxations or separate

computation of bounds for each layer of the network, and it can still be effectively trained

with backpropagation.

We develop two new methods for training deep learning models that are robust against

input perturbations. The first method (Approximated Robust Upper Bound or aRUB),

minimizes an empirical upper bound of the adversarial loss for Lp norm bounded uncertainty

sets, for general p. It is simple to implement and performs similar to state-of-the-art defenses

on small uncertainty sets. The second method (Robust Upper Bound or RUB), minimizes a

provable upper bound of the adversarial loss specifically for L1 norm bounded uncertainty sets.

This method shows the best performance for larger uncertainty sets, and more importantly, it

provides security guarantees against L1 norm bounded adversarial attacks. More concretely,

we introduce the following robustness methods:

• Approximated Robust Upper Bound or aRUB: We develop a simple method to ap-

proximate an upper bound of the adversarial loss by adding a regularization term for

each target class separately. As an alternative to standard adversarial training (which

relies on linear approximations to find good adversarial attacks), we use the first order

approximation of the network to estimate the worst case scenario for each individual

class. We then apply standard results from Linear Robust Optimization to obtain a

new objective that behaves like an upper bound of the adversarial loss and which can

be tractably minimized for robust training. This method can be easily implemented

and performs very well when the uncertainty set radius ρ is small.

• Robust Upper Bound or RUB: We extended state-of-the-art tools from RO to functions

that like neural networks are neither convex nor concave. By splitting each layer of

the network as the sum of a convex function and a concave function, we are able to

obtain an upper bound of the adversarial loss for the case in which the uncertainty

set is the L1 sphere. Since the dual function of the L1 norm is the L∞ norm, we

convert the maximum over the uncertainty set into a maximum over a finite set. In
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the end, instead of minimizing the worst case loss over an infinite uncertainty set, the

new objective minimizes the worst case loss over a discrete set whose cardinality is

twice the dimension of the input data. While this represents a significant increase in

memory for high dimensional inputs, we show that this approach remains tractable for

multiple applications. The main advantage of this method is that it provides security

guarantees against adversarial examples bounded in the L1 norm. Additionally, we

also show experimentally that this method generally achieves the highest adversarial

accuracies for larger uncertainty sets.

Also, we show that these methods consistently achieve higher standard accuracy (i.e.,

non adversarial accuracy), than the nominal neural networks trained without robustness.

While this result is not true for a general choice of uncertainty set (see for example Ilyas et al.

(2019)), we observe that when the uncertainty set has the appropriate size it can significantly

improve the classification performance of the network, which is consistent with the results

obtained for other classification models like Support Vector Machines, Logistic Regression

and Classification Trees (Bertsimas et al. 2019).

The paper is organized as follows: Section 2.2 revisits previous works on RO, Section

2.3 defines the robust problem, Section 2.4 presents the first method (Approximate Robust

Upper Bound), and Section 2.5 contains the second method (Robust Upper Bound). Lastly,

Section 5.7 contains the results for the computational experiments.

2.2 Previous Works on Robust Optimization

Over the last two decades, RO has become a successful approach to solve optimization

problems under uncertainty. For an overview of the primary research in this field we refer

the reader to Bertsimas et al. (2011). Areas like mathematical programming and engineering

have long applied these tools to develop models that are robust against uncertainty in the

parameters, which may arise from rounding or implementation errors. For many applications,
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the robust problem can be reformulated as a tractable optimization problem, which is referred

to as the robust counterpart. For instance, for several types of uncertainty sets, the robust

counterpart of a linear programming problem can be written as a linear or conic programming

problem (Ben-Tal et al. 2009), which can be solved with many of the current optimization

software. While there is not a systematic way to find robust counterparts for a general

nonlinear uncertain problem, multiple techniques have been developed to obtain tractable

formulations in some specific nonlinear cases.

As shown in Ben-Tal et al. (2009), the exact robust counterpart is known for Conic

Quadratic problems and Semidefinite problems in which the uncertainty is finite, an interval

or an unstructured norm-bounded set. More generally, it is shown in Ben-Tal et al. (2015)

that for problems in which the objective function or the constraints are concave in the

uncertainty parameters, Fenchel duality can be used to exactly derive the corresponding

robust counterpart. While the result does not necessarily have a closed-form, the authors show

that it yields a tractable formulation for the most common uncertainty sets (e.g. polyhedral

and ellipsoidal uncertainty sets).

The problem becomes significantly more complex when the functions in the objective

or in the constraints are instead convex in the uncertainty (Chassein and Goerigk 2019).

Since obtaining provable robust counterparts in these cases is generally infeasible, safe

approximations are considered instead (Bertsimas et al. 2023). For instance, Zhen et al.

(2017) develop safe approximations for the specific cases of second order cone and semidefinite

programming constraints with polyhedral uncertainty. These techniques are generalized

in Roos et al. (2020), where the authors convert the robust counterpart to an adjustable

RO problem that produces a safe approximation for any problem that is convex in the

optimization variables as well as in the the uncertain parameters.

Even though the approaches mentioned above consider uncertainty in the parameters of

the model as opposed to uncertainty in the input data, the same techniques can be utilized

for obtaining robust counterparts in the latter case. In fact, the robust optimization RO
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methodologies have recently been applied to develop machine learning models that are robust

against perturbations in the input data. In Bertsimas et al. (2019), for example, the authors

consider uncertainty in the data features as well as in the data labels to obtain tractable

robust counterparts for some of the major classification methods: support vector machines,

logistic regression, and decision trees. However, due to the high complexity of neural networks

as well as the large dimensions of the problems in which they are often utilized, robust

counterparts or safe approximations for this type of models have not yet been developed.

There are two major challenges with applying RO tools for training robust neural networks:

(i) Neural networks are neither convex nor concave functions: As mentioned earlier, robust

counterparts are difficult to find for a general problem. Although plenty of work has

been done to find tractable reformulations as well as safe approximations, all of them

rely on the underlying function being a convex or a concave function of the uncertainty

parameters. Unfortunately, neural networks don’t satisfy either condition, which makes

it really difficult to apply any of the approaches discussed above.

(ii) The robust counterpart needs to preserve the scalability of the model: Neural networks

are most successful in problems involving vision data sets, which often imply large

input dimensions and enormous amount of data. For the most part, they can still

be successfully trained thanks to the fact that back propagation algorithms can be

applied to solve the corresponding unconstrained optimization problem. However, the

RO techniques for both convex and concave cases often require the addition of new

constraints and variables for each data sample, increasing significantly the number of

parameters of the network and making it very difficult to use standard machine learning

software for training.

A straightforward way to overcome both of these difficulties would be to replace the

loss function of the network with its first order approximation. However, this loss function

is usually highly nonlinear and therefore the linear approximation is very inaccurate. Our
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method aRUB explores a slight modification of this approach that significantly improves

adversarial accuracy by considering only the linear approximation of the network’s output

layer.

Alternatively, a more rigorous approach to overcome problem (i) would be to piece-wise

analyze the convexity of the network and apply the RO techniques in each piece separately,

but this approach would introduce additional variables that are in conflict with requirement

(ii). For the proposed RUB method we then develop a general framework to split the network

by convexity type, and we show that in the specific case in which the uncertainty set is the

L1 norm bounded sphere, we can solve for the extra variables and obtain an unconstrained

problem that can be tractably solved using standard gradient descent techniques.

2.3 The Robust Optimization problem

We consider a classification problem over data points x ∈ RM labeled with one of K different

classes in [K], where we use the notation [n] to denote the set {1, . . . , n}. Given weight

matrices W ℓ ∈ Rrℓ−1×rℓ and bias vectors bℓ ∈ Rrℓ for ℓ ∈ [L], such that r0 =M, rL = K, the

corresponding feed forward neural network with L layers and ReLU activation function is

defined by the equations

z1(W ,x) = W 1x+ b1, (2.1)

zℓ(W ,x) = W ℓ[zℓ−1(W ,x)]+ + bℓ, ∀ 2 ≤ ℓ ≤ L, (2.2)

where W denotes the set of parameters (W ℓ, bℓ) for all ℓ ∈ [L] and [x]+ is the result of

applying the ReLU function ([x]+ = max{x, 0}) to each coordinate of x. For fixed parameters

W , the network assigns a sample x to the class ŷ = argmaxk zLk (W ,x). And given a data

set {(xn, yn)}Nn=1, where yn∈ [K] is the target class of xn, the optimal parameters W are
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usually found by minimizing the empirical loss

min
W

1

N

N∑
n=1

L(yn, zL(W ,xn)), (2.3)

with respect to a specific loss function L : [K]× RK → R≥0.

In the RO framework, however, we want to find the parameters W by minimizing the

worst case loss achieved over an uncertainty set of the input. More specifically, instead of

optimizing the nominal loss in Eq. (2.3), we want to optimize the adversarial loss:

min
W

1

N

N∑
n=1

max
δ∈U

L
(
yn, z

L(W , xn + δ)
)
, (2.4)

for some uncertainty set U ⊂ RM .

Unfortunately, a closed-form expression for the inner maximization problem above is

unknown and solving the min-max problem is notoriously difficult. RO provides multiple

tools for solving such problems when the loss function is either convex or concave in the input

variables. For example, in the case of concave loss functions, a common approach would be

to take the dual of the maximization problem so that the problem can be formulated as a

single minimization problem (Bertsimas and den Hertog 2022). If the loss function is instead

convex, Fenchel’s duality as well as conjugate functions can be used to find upper bounds

and lower bounds of the maximization problem. However, there is no general framework

developed for loss functions that do not fall into those categories, like in the case of neural

networks.

In this paper, we will focus on the specific case in which the uncertainty set is the ball of

radius ρ in the Lp space; i.e. U = {δ : ∥δ∥p ≤ ρ}, and we make the following assumptions

about the loss function:
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Assumption 2.3.1. The loss function L is translationally invariant; i.e. for all y ∈ [K], z ∈

RK, it satisfies

L(y, z) = L(y, z − ce) ∀ c ∈ R, (2.5)

where e ∈ RK denotes the vector with value 1 in all the coordinates.

Assumption 2.3.2. The loss function L is monotonic; i.e. for all y ∈ [K], z, z′ ∈ RK it

satisfies

(
∀k ∈ [K], zk − zy ≤ z′

k − z′
y

)
=⇒

(
L(y, z) ≤ L(y, z′)

)
. (2.6)

Although some loss functions utilized in deep learning like the squared error or the absolute

error do not satisfy these assumptions, the most popular losses for classification problems

(softmax with cross-entropy loss, multiclass hinge loss, and hardmax with zero-one loss) do

satisfy both of them. Intuitively, Assumption 2.3.1 implies that the loss function L takes

into account the differences between the coordinates of z but not the exact value at each

coordinate; while Assumption 2.3.2 means that a larger difference between the coordinates of

the incorrect classes and the correct class results in a larger loss. These assumptions allow us

to obtain the following result:

Lemma 2.3.3. If the loss function L satisfies Assumptions 2.3.1 and 2.3.2, then for all

x ∈ RM , y ∈ [K] the adversarial loss can be upper bounded as

min
W

max
δ∈U

L(y, zL(W ,x+ δ)) (2.7)

≤min
W

L
(
y,

(
max
δ∈U

zL1 (W ,x+ δ)−zLy (W ,x+ δ), . . . ,max
δ∈U

zLK(W ,x+ δ)−zLy (W ,x+ δ)

))
.

(2.8)

Proof. See Appendix A.1.1.
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The robustness methods we propose in the next sections generate upper bounds for the

adversarial differences maxδ∈U zLk (W ,x+ δ)− zLy (W ,x+ δ) for all k ∈ [K], and then apply

the previous lemma to upper bound the adversarial loss.

2.4 Approximate Robust Upper Bound for small ρ

Perhaps the most intuitive approach to tackle problem (2.4) is to consider the first order

approximation of the loss function

L
(
y, zL(W ,x+ δ)

)
≈ L

(
y,zL(W , x)

)
+ δ⊤∇xL

(
y, zL(W , x)

)
,

since the right hand side is a linear function of δ and the maximization problem can be

more easily solved for linear functions of the uncertainty. For example, it is not hard to

see that the first order approximation reaches its maximum value in U = {δ : ∥δ∥∞ ≤ ρ}

exactly at δ⋆ = ρ sign
(
∇xL

(
y, zL(W x)

))
. This approach is referred to as fast gradient

sign method and it was first explored in Goodfellow et al. (2015), where the networks are

trained with adversarial examples generated as x+ δ⋆. A similar approach was proposed in

Huang et al. (2016), where the authors considered the cross entropy loss and use the linear

approximation of the softmax layer instead of the approximation of the entire loss function.

In these methods, linear approximations are used to find near optimal perturbations that can

produce strong adversarial examples for training, but not to approximate the adversarial loss.

An alternative to these methods would then be to train the network with the natural data

and replace the loss function with its linear approximation, transforming the problem into

min
W

1

N

N∑
n=1

max
δ∈U

L
(
yn, z

L(W ,xn)
)
+ δ⊤∇xL

(
yn, z

L(W ,xn)
)

=min
W

1

N

N∑
n=1

L
(
yn, z

L(W ,xn)
)
+ ρ∥∇xL

(
yn, z

L(W ,xn)
)
∥q, (2.9)
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where ∥ ∥q is the dual norm of ∥ ∥p, satisfying 1
p
+ 1

q
= 1. However, since the loss function is

highly nonlinear, this approach (which we call Baseline-Lp) generally performs worse than

training with adversarial examples (see the Baseline method in Section 5.7).

A more promising approach can be derived by noting that each component of the network

zL(W ,x) is in fact a continuous piecewise linear function (see the network definitions in

Section 2.3), which suggests that the first order approximation of zL is more precise than

that of L(y,zL) for small neighborhoods. In fact, we expect the outputs zL(W ,x) and

zL(W ,x+ δ) to be in the same linear piece when x+ δ is close to x. In other words, the

linear approximation

zL(W ,x+ δ) ≈ zL(W ,x) +∇xz
L(W ,x)⊤δ (2.10)

is exact for small enough δ. We can then approximately solve the adversarial problem for

each class k as

max
δ∈U

zLk (W ,x+ δ)−zLy (W ,x+ δ) ≈ max
δ∈U

(ek − ey)
⊤zL(W ,x)+(ek − ey)

⊤∇xz
L(W ,x)⊤δ

= (ek − ey)
⊤zL(W ,x)+ρ∥(ek − ey)

⊤∇xz
L(W ,x)∥q,

(2.11)

where k, y ∈ [K] and ek (respectively ey) is the one-hot vector with a 1 in the kth (respectively

in the yth) coordinate and 0, everywhere else. Applying the result from Lemma 2.3.3 and

defining ∆eyk := ek − ey we obtain the approximate robust upper bound:

min
W

max
δ∈U

L(y, zL(W ,x+ δ))

⪅min
W

L
(
y,
(
∆ey1

⊤zL(W ,x) + ρ∥∆ey1
⊤∇xz

L(W ,x)∥q, (2.12)

. . . ,∆eyK
⊤zL(W ,x) + ρ∥∆eyK

⊤∇xz
L(W ,x)∥q

))
. (2.13)
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Table 2.1: Percentage of times when the aRUB approach yields an upper bound of the
adversarial loss with respect to PGD attacks, i.e., percentage of times when Eq. (2.14) is
larger than Eq. (2.4) evaluated using PGD-Lp attacks. For each row, aRUB-Lp and the
PGD-Lp attacks use the Lp norm indicated on the first column. The loss function utilized
is the cross entropy with softmax. Percentages are computed across all networks trained
(ie., for all tested hyperparameters) in the 46 UCI data sets, every 500 training steps (see
subsections 2.6.1 and 2.6.2 for more details about the networks and data sets). In this way,
the approximate bound is evaluated in a large number of different conditions, including data
sets, training steps and hyperparameters.

ρ = 0.0 0.0008 0.001 0.0015 0.002 0.003 0.01 0.1 0.3 0.5 1.0

L∞ 94% 99% 99% 99% 99% 99% 99% 95% 86% 81% 79%
L1 93.3% 99% 99% 99% 99% 99% 99% 99% 99% 99% 98%

Therefore, we propose to train the network by minimizing Eq. (2.13) instead of the standard

average loss, and we refer to this defense as aRUB-Lp. For the particular case of the cross

entropy loss with softmax activation function in the output layer, the exact optimization

problem to be solved would be the following:

min
W

1

N

N∑
n=1

log

(∑
k

e(∆eynk )⊤zL(W,x)+ρ∥(∆eynk )⊤∇xzL(W,x)∥q

)
, (2.14)

This expression may not always be an upper bound of the adversarial loss (Eq. (2.4));

however, we observe across a variety of experiments that usually it is indeed an upper bound

(see Table 2.1). This suggests that the upper bound provided by Lemma 1 compensates for

the errors introduced by the first order approximation of zL. Additionally, in Figure 2.1 we

empirically show that Eq. (2.13) is much closer than Eq. (2.9) to the adversarial loss in Eq.

(2.4) for small values of ρ.
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(c) aRUB-L∞, ρ = 0.05
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(d) Baseline-L∞, ρ = 0.05
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(e) aRUB-L∞, ρ = 0.1
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Figure 2.1: Adversarial loss (cross entropy loss evaluated at adversarial images bounded in
L∞ norm) vs the loss function being minimized across training iterations (aRUB-L∞ on the
left and Baseline-L∞ on the right); the value of ρ increases for lower rows. Experiments are in
the MNIST data set with the infinity norm (p = ∞). We use a feed forward neural network
with three hidden layers with the softmax-cross-entropy loss (see subsection 2.6.1 for details).
We used a learning rate of 10−3 and a batch size of 32, which we found to work best across
the experiments in this figure.
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2.5 Robust Upper bound for the L1 norm and general ρ.

In this section we derive a provable upper bound for the robust counterpart of the inner

maximization problem in Eq. (2.4) for the specific case in which the uncertainty set is the

ball of radius ρ in the L1 space; i.e. U = {δ : ∥δ∥1 ≤ ρ}.

In the RO framework, finding a provable upper bound for a problem that is convex

(or concave) in the uncertainty parameters relies on using convex (or concave) conjugate

functions to make the problem linear in the uncertainty (Bertsimas and den Hertog 2022).

The following lemmas are a generalization of this approach for the case in which the objective

involves the composition of two functions, with the goal of making the problem linear not in

the uncertainty but in the inner most function. Lemma 2.5.1 makes this generalization when

the outer function is convex while Lemma 2.5.2 focuses on the concave case. The proofs

of these lemmas rely on the definition of conjugate functions as well as the Fenchel duality

theorem (Rockafellar 1970), and can be found in Appendix A.1. Together, these lemmas are

the core of the methodology presented in this section.

Lemma 2.5.1. If f : A→ B is a convex and closed function then for any function z : U → A,

and any function g : A→ B we have

sup
δ∈U

f(z(δ)) + g(z(δ)) = sup
u∈dom(f⋆)

sup
δ∈U

z(δ)Tu− f ⋆(u) + g(z(δ)),

where the convex conjugate function f ⋆ is defined by f ⋆(z) = supx∈dom(f) z
Tx− f(x).

Proof. See Appendix A.1.2.

Lemma 2.5.2. Let g : A → B be a concave and closed function. If a function z : U → A

satisfies g(z(δ)) <∞ for all δ ∈ U , then

sup
δ∈U

g(z(δ)) = inf
v∈dom(g⋆)

sup
δ∈U

z(δ)Tv − g⋆(v),
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where the concave conjugate function is defined by g⋆(z) = infx∈dom(g) z
Tx− g(x).

Proof. See Appendix A.1.3.

From the lemmas above we can observe that to apply them we will need to compute

convex and concave conjugate functions. The next lemma facilitates these computations for

neural networks with ReLU activation functions.

Lemma 2.5.3. If u,p, q ≥ 0, then the functions f(x) = p⊤[x]+ and g(x) = xTu− q⊤[x]+

satisfy

a) f ⋆(z) =


0 if 0 ≤ z ≤ p,

∞ otherwise,
and b) g⋆(z) =


0 if u− q ≤ z ≤ u,

−∞ otherwise.

Proof. See Appendix A.1.4.

As observed in Lemma 2.3.3, we can obtain an upper bound of the min-max problem in

Eq. (2.4) by finding instead upper bounds for maxδ∈U zLk (W ,x + δ) − zLy (W ,x + δ) for

each class k. We will find these upper bounds in the following three steps:

• Step #1 - Linearize the uncertainty: We first make the maximization problem over the

uncertainty set U linear in the first layer of the network (and therefore also linear in the

uncertainty δ). Starting from the last layer we recursively split the objective function

as the sum of a convex function and a concave function, and we then apply Lemmas

2.5.1 and 2.5.2 to make the maximization problem over U linear in the previous layer.

• Step #2 - Optimize over the uncertainty set: Then, we solve the maximization problem

over U . This problem can be exactly solved because the first layer of the network is

linear in the uncertainty and the dual function of the L1 norm is the L∞ norm (a

maximum over a finite set).

• Step #3 - Backtrack: Finally, we backtrack to solve for the variables u,v that Lemmas

2.5.1 and 2.5.2 introduce.
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For simplicity, we develop and prove the upper bound for the robust counterpart assuming

that the neural network has only two layers; however, the results can be extended to the

general case as shown in Appendix A.2. In addition, all the theorems can be generalized for

residual and convolutional neural networks, since convolutions are a special case of matrix

multiplication.

Step #1 - Linearize the uncertainty

The following theorem shows how the maximization problem over U can be transformed from

a linear problem in the second layer to a linear problem in the first layer of the network. The

proof relies on Lemma 2.5.1 and Lemma 2.5.2.

Theorem 2.5.4. The maximum difference between the output of the correct class and the

output of any other class k can be written as

sup
δ∈U

z2
k(W ,x+ δ)− z2

y(W ,x+ δ) = sup
δ∈U

(∆eyk)
⊤z2(W ,x+ δ) (2.15)

= sup
0≤s≤1

inf
0≤t≤1

sup
δ∈U

(p− q)⊤ z1(W ,x+ δ) + (∆eyk)
⊤b2

s.t. p = [(W 2)⊤(∆eyk)]
+ ⊙ s

q = [−(W 2)⊤(∆eyk)]
+ ⊙ t,

(2.16)

where ⊙ corresponds to entry-wise multiplication.

Proof. By definition of the two layer neural network z2, we have

(∆eyk)
⊤z2(W ,x+ δ) = (∆eyk)

⊤W 2[z1(W ,x+ δ)]+ + (∆eyk)
⊤b2

= f+(z
1(W ,x+ δ))− f−(z

1(W ,x+ δ)) + (∆eyk)
⊤b2,
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where f+, f− are the convex functions defined by

f+(x) = [(∆eyk)
⊤W 2]+[x]+, and f−(x) = [−(∆eyk)

⊤W 2]+[x]+.

Applying Lemma 2.5.1 to the function f+ we then have

sup
δ∈U

(∆eyk)
⊤z2(W ,x+ δ),

=sup
δ∈U

f+(z
1(W ,x+ δ))− f−(z

1(W ,x+ δ)) + (∆eyk)
⊤b2,

= sup
u∈dom(f⋆+)

sup
δ∈U

u⊤z1(W ,x+ δ)− f ⋆+(u)− f−(z
1(W ,x+ δ)) + (∆eyk)

⊤b2, (2.17)

(By Lemma 2.5.1)

= sup
u∈dom(f⋆+)

sup
δ∈U

u⊤z1(W ,x+ δ)− f−(z
1(W ,x+ δ)) + (∆eyk)

⊤b2. (2.18)

(By Lemma 2.5.3a)

Defining the concave function g(x) = u⊤x−f−(x), and applying Lemma 2.5.2 to the function

g we obtain

sup
δ∈U

(∆eyk)
⊤z2(W ,x+ δ)

= sup
u∈dom(f⋆+)

sup
δ∈U

g(z1(W ,x+ δ)) + (∆eyk)
⊤b2 (2.19)

= sup
u∈dom(f⋆+)

inf
v∈dom(g⋆)

sup
δ∈U

v⊤z1(W ,x+ δ)− g⋆(v) + (∆eyk)
⊤b2 (By Lemma 2.5.2),

(2.20)

= sup
u∈dom(f⋆+)

inf
v∈dom(g⋆)

sup
δ∈U

v⊤z1(W ,x+ δ) + (∆eyk)
⊤b2 (By Lemma 2.5.3b).

(2.21)

Lastly, by Lemma 2.5.3a and 2.5.3b, we know that the variables u and v can be parameterized
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as

u = [(W 2)⊤(∆eyk)]
+ ⊙ s,

v = [(W 2)⊤(∆eyk)]
+ ⊙ s− [−(W 2)⊤(∆eyk)]

+ ⊙ t

with 0 ≤ s, t ≤ 1. Substituting these values in Eq. (2.21) we obtain Eq. (2.16), as desired.

Step #2 - Optimize over the uncertainty set

Notice that the objective in Eq. (2.16) is linear in z1 and therefore it is also linear in δ,

which facilitates the computation of the exact value of the supremum over U , as shown in

the next corollary.

Corollary 2.5.5. If U = {δ : ∥δ∥p ≤ ρ}, then:

sup
δ∈U

(∆eyk)
⊤z2(W ,x+ δ) (2.22)

= sup
0≤s≤1

inf
0≤t≤1

ρ∥(p− q)⊤W 1∥q + (p− q)⊤(W 1x+ b1) + (∆eyk)
⊤b2

s.t. p = [(W 2)⊤(∆eyk)]
+ ⊙ s

q = [−(W 2)⊤(∆eyk)]
+ ⊙ t,

(2.23)

where ∥ · ∥q is the dual norm of ∥ · ∥p, with 1
p
+ 1

q
= 1.

Before proceeding to the proof of the corollary, notice that we can recover the approxima-

tion method developed in the previous section by setting

s = t = [sign(z1(W ,x))]+ (2.24)
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in the objective of problem (2.23) to obtain

ρ∥((W 2)⊤(∆eyk)⊙ [sign(z1(W ,x))]+)⊤W 1∥q + (∆eyk)
⊤W 2[z1(W ,x)]+ + (∆eyk)

⊤b2,

(2.25)

which is the same as the linear approximation of (∆eyk)
⊤z2(W + δ) obtained in Eq. (2.11).

Proof. The proof follows directly after applying Theorem 2.5.4 and using the fact that for all

vectors c we have
sup

δ:∥δ∥p≤ρ
c⊤δ = ρ∥c∥q. (2.26)

Step #3 - Backtrack

Since neural networks are trained by minimizing the empirical loss over the parameters W , we

want to avoid the computation of supremums in the objective. While the previous corollary

shows how to solve the supremum over the uncertainty set, a new supremum was introduced

in Theorem 2.5.4 over the variables s. The next theorem tells us how we can remove this

new supremums for the specific case p = 1.

Theorem 2.5.6. The maximum difference between the output of the correct class and the

output of any other class k can be upper bounded by

sup
δ:∥δ∥1≤ρ

(∆eyk)
⊤z2(W ,x+ δ)

≤ inf
0≤t≤1

max
m∈[M ]

max

{
g2k,m(W , t,x, ρ), g2k,m(W , t,x,−ρ)

}
, (2.27)
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where the new network g is defined by the equations

g1m(W , a) = aW 1em +W 1x+ b1,

g2k,m(W , t,x, a) = [(∆eyk)
⊤W 2]+[g1m(W , a)]+ − [−(∆eyk)

⊤W 2]+[g1m(W , a)]⊙ t+ (∆eyk)
⊤b2,

for a = ρ,−ρ.

Proof. Applying Corollary 2.5.5 with p = 1 and using the min-max inequality we obtain

sup
δ:∥δ∥1≤ρ

(∆eyk)
⊤z2(W ,x+ δ) (2.28)

≤ inf
0≤t≤1

sup
0≤s≤1

ρ∥(p− q)⊤W 1∥∞ + (p− q)⊤(W 1x+ b1) + (∆eyk)
⊤b2

s.t. p = [(W 2)⊤(∆eyk)]
+ ⊙ s

q = [−(W 2)⊤(∆eyk)]
+ ⊙ t.

(2.29)

Defining p(s) = [(W 2)⊤(∆eyk)]
+ ⊙ s and q(t) = [−(W 2)⊤(∆eyk)]

+ ⊙ t, we have that for fixed

t it holds

sup
0≤s≤1

ρ∥(p(s)− q(t))⊤W 1∥∞ + (p(s)− q(t))⊤(W 1x+ b1) + (∆eyk)
⊤b2

= max
m∈[M ]

max

{
sup

0≤s≤1
(p(s)− q(t))⊤(W 1(x+ ρem) + b1) + (∆eyk)

⊤b2,

sup
0≤s≤1

(p(s)− q(t))⊤(W 1(x− ρem) + b1) + (∆eyk)
⊤b2
}

= max
m∈[M ]

max

{
[(∆eyk)

⊤W 2]+[W 1(x+ ρem) + b1]+− q(t)⊤(W 1(x+ ρem)+ b1)+(∆eyk)
⊤b2,

[(∆eyk)
⊤W 2]+[W 1(x− ρem) + b1]+− q(t)⊤(W 1(x− ρem)+ b1)+(∆eyk)

⊤b2
}

= max
m∈[M ]

max{g2k,m(W , t,x, ρ), g2k,m(W , t,x,−ρ)}.
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The theorem then follows after applying the inf over 0 ≤ t ≤ 1.

Notice that in the previous proof it was important to use p = 1, since the dual of the

L1 norm is the L∞ norm, which can be written as a maximum over a finite set. With a

different p, the solution for the variables s would be more challenging to find. However, for

the chosen uncertainty set we obtain an upper bound of Eq. (2.4) by applying the result

from the previous Theorem to Lemma 2.3.3. While we could include the variables t in the

minimization problem over W , we instead use fixed values t = [sign(z1(W ,x))]+ based on

the linear approximation of (∆eyk)
⊤z2(W ,x + δ), as described in Eq. (2.24). Notice that

setting specific values for t does not affect the inequalities: since the upper bound includes

the infimum over t, any 0 ≤ t ≤ 1 yields an upper bound of the robust problem. For the

specific case of the cross entropy loss function, the proposed upper bound for the min-max

robust problem is

min
W

1

N

N∑
n=1

log

(∑
k

e

(
maxm∈[M ] max{g2k,m(W,[sign(z1(W,x))]+,x,ρ),g2k,m(W,[sign(z1(W,x))]+,x,−ρ)}

))
.

(2.30)

2.6 Experiments

In this section, we demonstrate the effectiveness of the proposed methods in practice. We first

introduce the experimental setup and then we compare the robustness of several defenses.

2.6.1 Experimental details

Data sets. We use 46 data sets from the UCI collection (Dua and Graff 2017), which

correspond to classification tasks with a diverse number of features that are not categorical.

For each data set we do a 80%/20% split for training/testing sets, and we further reserve 25%

of each training set for validation. In addition, we use three popular computer vision data sets,

namely the MNIST (Deng 2012a), Fashion MNIST (Xiao et al. 2017a) and CIFAR (Krizhevsky
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et al. 2009a) data sets.

Pre-processing. All input data has been previously scaled, which facilitates the comparison

of the adversarial attacks across data sets. For the UCI data sets, each feature is standarized

using the statistics of the training set, while for the vision data sets each image channel is

normalized to be between 0 and 1, or standarized, depending on what leads to best robustness.

Attacks. We use the implementation provided by the foolbox library (Rauber et al. 2017,

2020) using the default parameters. We evaluate attacks using projected gradient descent

and fast gradient methods. More specifically, we use the following adversarial attacks:

• PGD-Lp: Attack bounded in Lp norm and found using Projected Gradient Descent.

• FGM-Lp: Attack bounded in Lp norm and found using Fast Gradient Method for

p = 1, 2 and Fast Gradient Sign Method for p = ∞.

Defenses. Our comparisons include different defenses denoted as follows:

• aRUB-Lp: Approximate Robust Upper Bound method described in section 2.4 using

the L1 or L∞ sphere as the uncertainty set.

• RUB: Robust Upper Bound method described in section 2.5 using the L1 sphere as the

uncertainty set.

• PGD-L∞: Adversarial training method in which the network is trained using attacks

that are bounded in the L∞ norm and found using Projected Gradient Descent.

• Baseline-L∞: Simple approximation method resulting from minimizing Eq. (2.9) using

the Lp sphere as the uncertainty set.

• Nominal: Standard vanilla training with no robustness (ρ = 0).
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Architecture. We evaluate a neural network with three dense hidden layers with 200 neu-

rons in each hidden layer. For the vision data sets, we also provide results with Convolutional

Neural Networks (CNNs) in Appendix A.3. The architecture has two convolutional layers

alternated with pooling operations, and two dense layers, as in Madry et al. (2019). The

parameters of the networks were initialized with the Glorot initialization (Glorot and Bengio

2010a).

Hyperparameter Tuning. Each network and defense is trained for different learning

rates ({1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6}). For the UCI data set we use a batch size of 256

and for the vision data sets we try a batch size of 32 and 256. For the L∞ based training

methods we try all values of ρ from the set ({10−4, 10−5, 10−3, 10−2, 0.1, 0.3, 0.5, 1, 3, 5, 10}).

For the methods based on the L1 norm, we scale those values of ρ by a factor of
√
m, since

∥x∥∞ ≤ ∥x∥2 and ∥x∥1 ≤
√
m∥x∥2 for any x ∈ Rm. In this way we ensure that the L1

spheres and the L∞ spheres contain the same L2 spheres, allowing for a fair comparison of

all methods in terms of adversarial attacks that are bounded in the L2 norm. All networks

trained using the UCI data sets are trained for 5000 iterations, and all vision data sets are

trained for 10000 iterations. For each network, data set, batch size, and defense radius ρ, we

have verified that for at least one of the learning rates the validation accuracy converges with

the aforementioned number of training iterations. Finally, for each attack type with radius ρ,

we select on the validation set the best hyperparameters for each defense, i.e., given a data

set, an attack type and its radius ρ, the hyperparameters of a defense (network, learning

rate, batch size, normalization and defense radius ρ) are the ones that lead to the highest

adversarial robustness in the validation set. In total we trained more than 40, 000 networks

across all tested data sets and defenses.
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2.6.2 UCI data sets

We run experiments on the 46 UCI data sets using different methods for robust training and

compare the adversarial accuracies achieved with multiple types of adversarial attacks. For

each data set we rank every training method, where the method with rank 1 corresponds

to the one with highest adversarial accuracy. The average ranks and the corresponding

95% confidence intervals are shown in Figure 2.2, where we observe a similar pattern across

all types of attacks, namely, we see that the best ranks are achieved with aRUB-L∞ and

PGD-L∞ when ρ is smaller than 10−1; next there is a small range in which PGD-L∞ does

best and finally for larger values of ρ the best rank is that of RUB. In addition, for large

values of ρ we observe better results with Baseline-L∞ than with aRUB-L∞, suggesting that

the linear approximation of the network becomes inaccurate and leads to a large change in

the loss function. We also highlight that looking at ρ = 0, it is clear that robust training

methods achieve better natural accuracy than the Nominal training method.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Average rank and the corresponding 95% confidence interval for each method
across the 46 UCI data sets for adversarial attacks bounded in L2, L∞ and L1 norm, respec-
tively from top to bottom. The figures on the left use attacks based on Fast Gradient methods,
and the figures on the right use instead attacks based on Projected Gradient Descent.
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(a) ρ = 0.01
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(b) ρ = 1

25 0 25 50 75 100 125
Improvement (%)

0

2

4

6

8

10

12

Nu
m

be
r o

f U
CI

 d
at

as
et

s

(c) ρ = 10

Figure 2.3: Number of UCI data sets for which RUB-L1 improves adversarial accuracy over
PGD-L∞ by a specific percentage. Figures a), b) and c) show the corresponding plots for
PGD-L2 adversarial examples with different values of ρ.
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(a) ρ = 0.001
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(b) ρ = 0.1
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(c) ρ = 1

Figure 2.4: Number of UCI data sets for which aRUB-L∞ improves adversarial accuracy over
PGD-L∞ by a specific percentage. Figures a), b) and c) show the corresponding plots for
PGD-L∞ adversarial examples with different values of ρ.

To better compare the performances of RUB and aRUB against PGD-L∞, we also analyze

the percentage by which each method improves adversarial accuracy across data sets. In

Figure 2.3 we show the number of data sets for which RUB improves L2 adversarial accuracy

over PGD-L∞ by a specific percentage. We observe that the improvement becomes larger

as ρ increases, and in particular, for ρ = 10 we observe that RUB only lowers adversarial

accuracy for 3 data sets, while it shows more than 15% improvement over PGD-L∞ for 8 of

the data sets. Similarly, Figure 2.4 displays the number of data sets for which aRUB-L∞

improves adversarial accuracy over PGD-L∞ by some percentage; we observe that for small

perturbations (ρ = 0.001, ρ = 0.1) aRUB seems to slightly improve over PGD-L∞, while this

last defense has a clear advantage for larger perturbations (ρ = 1).
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Lastly, in Table 2.2 we display the average number of batches processed per second as well

as the corresponding standard deviation for each method across the 46 UCI data sets. As

expected, we see that Nominal is the method that processes the largest number of batches per

second, and all defense methods except Baseline-L∞ are much slower than Nominal. However,

RUB, RUB-L1 and aRUB-L∞ all process more batches per second compared to PGD-L∞.

Table 2.2: Average number of batches processed per second across the 46 UCI data sets, as
well as the corresponding standard deviations.

Avg no. batches per second Standard Deviation

RUB 65.1 12.6

aRUB -L1 17.5 0.5

aRUB -L∞ 18.8 0.4

Baseline-L∞ 465 56.4

PGD -L∞ 4.5 0.1

Nominal 712.6 87.8

2.6.3 Vision Data Sets

We next show experiment results for the three vision data sets. Specifically, we compare for

different training methods their performance against adversarial attacks as well as the security

guarantees obtained from applying the upper bound from Eq. (2.30). Since the proposed

RUB method significantly increases memory requirements for inputs with large dimensions,

we compare this method against other defenses using the feed forward architecture with

three hidden layers. We do include results using a CNN architecture for all other methods

in Appendix A.3, where we also explain how to extend the theory of the RUB method for

convolutional layers with ReLU and MaxPool activation functions.
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Performance Against Adversarial Attacks. We evaluate adversarial accuracy for all the

aforementioned methods (Nominal, RUB, aRUB-L1, aRUB-L∞, Baseline-L∞, PGD-L∞), and

we add two other state-of-the-art defenses to make our evaluation even more comprehensive.

These two methods were proposed in Wong and Kolter (2018) and Wong et al. (2020); which

we call COAP-L∞ (Convex Outer Adversarial Polytope with L∞ norm) and FGSM-L∞ (Fast

Gradient Sign Method) respectively, and are representative of state-of-the-art defenses in

terms of robustness and training computational cost, respectively. For each Lp norm we

report the minimum adversarial accuracy achieved using both Projected Gradient Descent

attacks and Fast Gradient Method attacks.

We observe that for the Fashion MNIST data set (Table 2.3), aRUB-L1 and RUB achieve

the best accuracies for small values of ρ; we then observe a small range in which PGD-L∞

does best and lastly for larger values of ρ we see that RUB takes the lead, which is similar to

the average results observed for the UCI data sets. For the MNIST data set, all defenses

achieve similar results when the input perturbations are small, with RUB showing again better

performance with larger radius ρ. In the CIFAR data set we observe a different behavior;

PGD-L∞, FGSM-L∞ and aRUB methods achieve better accuracies at various radius regimes,

although we observe that all methods perform very poorly overall as this is a notoriously

more difficult data set.

Lastly, we again observe that in all three data sets Baseline-L∞ outperforms aRUB-L∞

when ρ is large, and the robust training methods achieve a higher natural accuracy than the

accuracy resulting from standard nominal training.
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Table 2.3: Adversarial Accuracy (%) for Fashion MNIST. For each choice of Lp norm, defense
method and noise radius ρ, we report the minimum accuracy achieved with PGD and FGM
attacks. Colored cells correspond to accuracies that are within 0.5 percentage units of the
best result in each column, which has bold font.

L
2

A
tt

ac
ks

ρ = 0.00 0.01 0.06 0.28 2.80 8.40 14.00 28.00 56.00

RUB 89.88 89.22 88.95 86.80 60.51 55.47 55.47 55.27 49.41

aRUB-L1 90.31 90.04 89.45 85.98 63.98 29.10 18.24 15.04 9.96

aRUB-L∞ 89.18 89.06 88.75 85.98 65.43 24.18 18.24 16.02 9.96

Baseline-L∞ 89.38 89.02 88.32 85.04 48.20 29.88 28.71 26.52 18.55

PGD-L∞ 89.61 89.38 88.01 85.23 68.20 31.60 25.90 22.85 19.10

FGSM-L∞ 89.41 87.81 87.19 84.06 67.81 35.23 27.11 25.39 19.06

COAP-L∞ 89.14 88.48 87.11 82.58 30.51 20.94 19.69 19.69 19.69

Nominal 87.70 88.40 88.01 85.35 46.60 19.92 16.84 15.39 15.39

L
1

A
tt

ac
ks

ρ = 0.00 0.01 0.06 0.28 2.80 8.40 14.00 28.00 140.00

RUB 89.84 89.80 89.73 89.41 87.93 84.18 81.72 75.70 55.51

aRUB-L1 89.02 89.02 88.98 88.71 87.34 84.57 82.34 75.86 41.21

aRUB-L∞ 89.02 89.02 89.02 88.79 87.03 82.85 79.77 71.25 30.63

Baseline-L∞ 88.83 88.20 88.20 87.85 85.74 82.11 78.09 68.28 30.59

PGD-L∞ 89.02 89.02 88.95 88.95 87.11 84.57 81.37 73.16 39.69

FGSM-L∞ 89.80 89.77 89.73 89.26 85.00 82.19 78.44 73.36 35.62

COAP-L∞ 89.22 89.22 89.22 88.67 82.58 73.01 60.47 48.59 22.19

Nominal 86.99 86.95 86.91 86.91 85.00 82.54 78.83 68.98 21.88

L
∞

A
tt

ac
ks

ρ = 0.000 0.001 0.003 0.010 0.100 0.300 0.500 1.00 5.00

RUB 89.38 89.18 88.52 86.45 65.08 56.17 56.13 55.78 37.77

aRUB-L1 90.00 89.73 89.06 86.05 65.82 28.95 11.02 10.00 10.00

aRUB-L∞ 89.77 89.22 88.71 86.68 79.80 67.93 52.81 12.15 10.00

Baseline-L∞ 89.14 88.63 86.99 85.55 56.80 30.20 29.06 27.19 19.06

PGD-L∞ 89.02 89.02 88.24 87.77 80.43 73.09 65.74 31.21 18.52

FGSM-L∞ 89.61 89.10 87.97 86.91 80.55 62.93 53.16 25.74 18.12

COAP-L∞ 89.18 88.24 86.76 85.66 67.15 23.87 17.19 17.19 16.21

Nominal 88.12 87.93 87.03 85.27 58.32 21.80 18.79 16.37 10.94
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Table 2.4: Adversarial Accuracy (%) for MNIST. For each choice of Lp norm, defense method
and noise radius ρ, we report the minimum accuracy achieved with PGD and FGM attacks.
Colored cells correspond to accuracies that are within 0.5 percentage units of the best result
in each column, which has bold font.

L
2

A
tt

ac
ks

ρ = 0.00 0.01 0.06 0.28 2.80 8.40 14.00 28.00 56.00

RUB 97.93 97.85 97.07 97.07 79.30 66.48 62.89 55.00 38.20

aRUB-L1 98.63 98.52 97.73 97.46 80.82 57.58 55.04 46.60 29.96

aRUB-L∞ 97.97 97.97 97.81 97.81 91.17 51.80 49.53 43.40 31.13

Baseline-L∞ 97.58 97.50 97.50 97.11 72.85 64.18 61.29 52.81 34.80

PGD-L∞ 98.24 98.24 98.24 98.09 92.70 66.05 62.46 54.26 35.94

FGSM-L∞ 97.81 97.81 97.50 97.50 93.01 64.96 63.20 53.40 36.52

COAP-L∞ 98.01 97.97 97.54 94.88 54.73 31.29 31.29 28.98 28.48

Nominal 97.62 97.46 97.34 96.41 69.61 19.57 15.90 15.35 11.25

L
1

A
tt

ac
ks

ρ = 0.00 0.01 0.06 0.28 2.80 8.40 14.00 28.00 140.00

RUB 98.01 97.97 97.93 97.89 97.03 97.03 96.25 91.84 66.95

aRUB-L1 98.28 98.28 98.28 98.28 97.89 97.46 96.52 94.49 58.20

aRUB-L∞ 98.40 98.40 98.40 98.24 98.24 97.58 96.91 93.16 51.05

Baseline-L∞ 98.05 98.05 98.05 98.01 97.58 96.52 95.47 90.16 63.83

PGD-L∞ 98.20 98.20 98.20 98.20 98.20 97.50 96.68 93.87 66.84

FGSM-L∞ 98.44 98.44 98.44 98.44 97.19 97.19 95.00 94.53 64.02

COAP-L∞ 97.81 97.81 97.81 97.81 96.99 92.50 83.12 69.30 30.47

Nominal 97.58 97.58 97.58 97.54 97.30 95.94 94.49 89.96 19.38

L
∞

A
tt

ac
ks

ρ = 0.000 0.001 0.003 0.010 0.100 0.300 0.500 1.00 5.00

RUB 98.44 98.32 97.93 97.70 86.09 68.52 67.15 61.56 27.15

aRUB-L1 98.52 98.36 98.28 98.09 86.84 61.88 59.61 54.77 21.64

aRUB-L∞ 98.71 98.59 98.36 98.36 96.95 89.96 78.16 49.69 23.24

Baseline-L∞ 98.24 97.81 97.81 97.66 84.69 65.08 63.24 59.49 24.73

PGD-L∞ 98.20 98.20 98.20 98.20 96.99 93.16 86.80 64.57 25.35

FGSM-L∞ 98.59 98.59 98.59 98.59 97.50 91.17 74.10 63.12 26.36

COAP-L∞ 98.12 98.12 98.12 96.56 90.78 37.81 31.72 32.62 24.88

Nominal 97.62 97.62 97.46 96.80 81.91 23.28 16.48 14.61 9.69

57



Table 2.5: Adversarial Accuracy (%) for CIFAR. For each choice of Lp norm, defense method
and noise radius ρ, we report the minimum accuracy achieved with PGD and FGM attacks.
Colored cells correspond to accuracies that are within 0.5 percentage units of the best result
in each column, which has bold font.

L
2

A
tt

ac
ks

ρ = 0.00 0.01 0.03 0.06 0.08 0.11 0.17 0.55 5.54

RUB 49.69 48.67 46.33 48.59 48.36 48.12 47.58 44.14 17.73

aRUB-L1 52.42 51.41 51.37 51.13 51.02 50.74 50.20 46.56 21.88

aRUB-L∞ 53.83 52.89 51.84 47.77 47.11 46.48 44.45 41.37 20.66

Baseline-L∞ 53.12 52.07 50.66 45.82 42.50 42.97 42.42 35.86 9.30

PGD-L∞ 53.91 53.32 52.27 48.83 48.63 48.48 48.09 45.12 20.16

FGSM-L∞ 53.52 52.07 50.82 49.34 47.97 47.30 47.30 44.53 24.69

COAP-L∞ 51.45 50.86 49.45 48.59 47.07 45.35 41.76 35.86 11.76

Nominal 46.02 45.78 44.84 44.10 42.89 42.15 40.43 37.11 10.59

L
1

A
tt

ac
ks

ρ = 0.00 0.01 0.03 0.06 0.11 0.55 5.54 16.63 27.71

RUB 50.86 50.86 50.86 50.70 50.55 48.98 47.03 44.84 42.58

aRUB-L1 51.56 51.56 51.56 51.56 51.56 51.37 50.35 47.85 45.98

aRUB-L∞ 53.55 53.48 53.44 53.40 53.24 52.30 44.02 40.59 40.62

Baseline-L∞ 53.32 53.28 53.28 53.24 52.03 50.94 41.72 38.79 34.53

PGD-L∞ 52.97 52.97 52.97 52.97 52.93 52.30 47.89 45.62 43.52

FGSM-L∞ 53.71 53.71 53.67 53.59 53.55 53.20 47.62 45.39 43.36

COAP-L∞ 50.86 50.86 50.78 50.74 50.66 49.84 43.59 29.96 29.96

Nominal 46.02 46.02 46.02 45.98 45.98 45.66 43.87 39.69 36.25

L
∞

A
tt

ac
ks

ρ = 0.000 0.001 0.003 0.010 0.100 0.300 0.500 1.00 5.00

RUB 50.86 46.02 47.58 45.08 21.64 9.38 9.30 9.30 8.12

aRUB-L1 53.28 50.94 50.23 47.07 26.91 10.66 10.12 10.12 10.62

aRUB-L∞ 53.52 46.76 45.23 42.54 29.06 10.43 10.78 10.78 9.69

Baseline-L∞ 51.48 47.54 40.90 39.22 9.34 9.34 9.34 9.34 10.00

PGD-L∞ 54.10 49.34 48.05 46.33 25.31 15.90 12.93 12.89 13.16

FGSM-L∞ 54.06 50.39 43.12 40.31 30.63 13.55 10.94 10.94 11.88

COAP-L∞ 51.76 48.52 44.92 41.76 11.56 11.56 11.56 11.56 10.00

Nominal 46.72 45.31 43.44 39.18 9.92 9.92 9.92 9.92 10.00
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Table 2.6: Average number of batches processed per second across the 3 vision data sets, as
well as the corresponding standard deviations.

Avg no. batches per second Standard Deviation
RUB 4.8 0.2

aRUB -L1 53.1 2.4
aRUB -L∞ 56.4 0.2

Baseline -L∞ 343.5 33.4
PGD -L∞ 3.7 0.2
FGSM -L∞ 86 4.1
COAP -L∞ 12.2 0.3
Nominal 473 45.2

In Table 2.6 we present the average number of batches processed per second as well as the

corresponding standard deviation for each method across the 3 vision data sets. We observe

that FGSM-L∞ is the fastest defense after Baseline-L∞, followed by the aRUB methods. We

highlight that contrary to the results obtained with the UCI data sets, the RUB method is

slower than the aRUB defenses. This is attributed to the increased memory requirements for

RUB with high dimensional inputs, which prevented full parallelization during training.

Security Guarantees against L1 Norm Bounded Attacks. Finally, we use the upper

bound of the adversarial loss derived in section 2.5 to find lower bounds for the adversarial

accuracy with respect to attacks bounded in the L1 norm by ρ. Specifically, the RUB-L1

defense finds an upper bound for supδ:∥δ∥1≤ρ zLk (W ,x+ δ)− zLy (W ,x+ δ), and therefore

when this upper bound is nonpositive for all k ∈ [K] we know that the network zL(W , ·)

correctly classifies all adversarial attacks x + δ for which ∥δ∥1 ≤ ρ. In other words, the

nonpositivity of this upper bound gives the network a security guarantee against the attacks

considered. The percentage of images in the testing set for which this guarantee exists is

therefore a lower bound of the adversarial accuracy achieved by network. In Tables 2.7, 2.8

and 2.9 we report the lower bounds for each method by selecting the hyperparameters that

lead to the best lower bound in the validation set. In particular, notice that for a given

choice of radius ρ and defense method, the selected network might not be the same as the
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one selected in the previous results for adversarial accuracy.

We observe that, as expected, for all three data sets, CIFAR, Fashion MNIST and MNIST,

the best security guarantees are the ones for the RUB method. While these results are only

lower bounds for the adversarial accuracy and we cannot claim a better accuracy for RUB

than for the rest of the methods, the lower bound for the RUB method shows that this method

indeed performs very well against L1 attacks bounded by large values of ρ. For instance,

in Table 2.7 we can see that for the Fashion MNIST data set the RUB method guarantees

86.02% adversarial accuracy (less than 5% decrease from the best natural accuracy) against

attacks with L1 norm smaller or equal to ρ = 2.8. Similarly, in Table 2.8 we observe that

for this same attacks RUB has at least 97.11% adversarial accuracy (less than 1% decrease

over natural accuracy) for the MNIST data set. And finally, for the CIFAR data set, we can

see in Table 2.9 that RUB achieves 45.66% adversarial accuracy (less than 5% decrease over

natural accuracy) against attacks whose L1 norm is upper bounded by ρ = 5.54.
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Table 2.7: Fashion MNIST: Lower bound of adversarial accuracy with uncertainty bounded
in L1 norm by ρ.

ρ = 0.00 0.01 0.06 0.28 2.80 8.40 14.00 28.00

RUB 90.27 90.16 90.16 89.49 86.02 80.55 76.21 66.95

aRUB-L1 90.51 90.51 90.39 89.73 85.59 73.98 69.61 47.54

aRUB-L∞ 89.96 89.92 89.84 88.75 76.60 21.37 10.16 9.84

Baseline-L∞ 89.49 89.38 89.38 87.50 77.42 46.41 20.04 15.23

PGD-L∞ 89.92 89.92 89.92 87.85 78.75 40.35 19.22 15.55

Nominal 88.59 88.55 88.48 87.93 77.50 40.98 15.04 9.88

Table 2.8: MNIST: Lower bound of adversarial accuracy with uncertainty bounded in L1

norm by ρ.

ρ = 0.00 0.01 0.06 0.28 2.80 8.40 14.00 28.00

RUB 98.01 97.93 97.93 97.46 97.11 93.67 89.77 74.96

aRUB-L1 98.52 98.48 98.48 98.20 96.48 89.96 80.86 26.05

aRUB-L∞ 98.40 98.40 98.28 97.54 94.69 68.52 16.56 12.19

Baseline-L∞ 98.05 98.05 98.05 97.81 95.23 57.23 20.74 10.35

PGD-L∞ 98.48 98.48 98.44 98.36 95.55 63.59 15.43 11.60

Nominal 97.73 97.73 97.58 97.54 93.87 44.80 10.31 10.23
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Table 2.9: CIFAR: Lower bound of adversarial accuracy with uncertainty bounded in L1

norm by ρ.

ρ = 0.00 0.01 0.06 0.55 5.54 16.63 27.71 55.43

RUB 50.62 50.62 49.96 48.91 45.66 37.81 32.85 23.28

aRUB-L1 53.40 53.16 51.99 51.33 43.36 33.83 27.19 15.16

aRUB-L∞ 53.67 53.52 53.20 47.07 37.30 14.26 9.65 9.65

Baseline-L∞ 53.32 53.24 52.66 46.09 36.99 13.71 9.61 9.61

PGD-L∞ 54.88 54.80 53.98 49.26 37.42 27.30 14.02 12.46

Nominal 46.88 46.88 46.76 44.69 37.19 14.88 9.02 8.95

2.7 Conclusions

We developed two new methods for adversarial training of neural networks, both of which

provide an upper bound of the adversarial loss by considering the whole network at once

instead of applying convex relaxations and propagating bounds for each layer separately

as in previous works. First, we found an empirical upper bound by incorporating the first

order approximation of the network’s output layer. This method does not provide security

guarantees against adversarial attacks but it performs very well across a variety of data sets

when the uncertainty set is small and it stands out for its simplicity. Second, by extending

state-of-the-art tools from RO to non-convex and non-concave functions, we were able to

construct a provable upper bound of the adversarial loss. Experimental results show that this

method has a performance edge for larger uncertainty sets, and importantly, this method can

certify the non-existence of adversarial attacks bounded in L1 norm. The two proposed upper

bounds are in closed-form and can be effectively minimized with backpropagation. Lastly, we

provide evidence that adding robustness can improve the natural accuracy of neural networks

for classification problems with tabular or vision data.
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For future work we are interested in extending the RUB approach for other types of norms

as well as understanding how the tightness of the proposed upper bounds change across

layers in order to facilitate further improvements. Adversarial robustness is crucial in the

development of more secure machine learning systems, and we hope that our work will inspire

further research in this important area.
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Chapter 3

Holistic Deep Learning

3.1 Introduction

Neural networks have become increasingly popular due to their remarkable achievements

in computer vision and natural language processing. Their generalization power has been

demonstrated in wide-ranging applications, from classifying photos to recommending products.

However, neural networks face challenges in real-world applications for high-stakes decision-

making, including healthcare, policy-making, and autonomous driving.

First, many standard neural networks are not robust – they can be easily fooled by

natural or artificial noise in the input data (Szegedy et al. 2014), making them vulnerable to

perturbations that may arise in real-world applications. Moreover, neural networks, similar

to other machine learning models, often suffer from instability during the training process –

different train-validation splits could generate models with very different performance (May

et al. 2010, Xu and Goodacre 2018). This reduces the policymakers’ trust in these models

and hinders post-hoc interpretations. Another critical difficulty is that neural networks are

not sparse – the high number of parameters utilized for neural networks prevents efficient

computation and storage (Thompson et al. 2020). Most neural networks have millions of

non-zero parameters to be stored and accessed for evaluation. This is problematic in many
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decision-making settings with limitations or restrictions on hardware capabilities. Reducing

the number of parameters could make them more applicable in a broader range of scenarios

(Changpinyo et al. 2017, Narang et al. 2017).

The questions around improving robustness, stability, and sparsity metrics have all been

previously studied in the neural network literature. However, they have been almost exclusively

studied in isolation, with a limited understanding of the tradeoffs between these desired

qualities and their effect on natural accuracy (accuracy with respect to the unperturbed

data samples). This paper aims to simultaneously address all these objectives through a

novel comprehensive methodology named Holistic Deep Learning (HDL). In particular, HDL

carefully combines state-of-the-art techniques that address these individual challenges and

demonstrates their collective efficacy through extensive experiments on diverse data sets.

Our findings provide a promising pathway toward developing efficient and reliable machine

learning models across many dimensions for real-world applications.

Specifically, our contributions are as follows:

1. We design HDL, a novel framework that jointly optimizes for neural network robustness

(adversarial accuracy), stability (worst accuracy across train-val splits), and sparsity

(parameters with value zero) metrics by appropriately modifying the objective function.

2. Through extensive ablation experiments and SHAP value analysis (Lundberg and Lee

2017) across 45 UCI data sets (Dua and Graff 2017) and 3 image data sets (MNIST

(Deng 2012b), Fashion MNIST (Xiao et al. 2017b) and CIFAR10 (Krizhevsky et al.

2009b)), we analyze the individual performance of each metric as well as the interactions

and trade-offs between them. We corroborate that imposing robustness, stability, and

sparsity improves the corresponding metrics across all data sets. In addition, we show

that:

• imposing stability and sparsity further improves robustness,

• imposing stability and robustness further improves sparsity,
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• imposing robustness further improves stability,

• imposing stability and robustness further improves natural accuracy.

The effect of sparsity on natural accuracy is more complex and highly varies across data

sets. However, we show that it is often possible to simultaneously improve robustness,

stability, and sparsity without sacrificing performance on natural accuracy.

3. We propose a prescriptive approach to provide recommendations on selecting the

appropriate loss function depending on the practitioner’s objective. In particular,

simultaneously imposing robustness, stability and sparsity in the loss function leads to

the best results when jointly optimizing for all the metrics.

The paper is organized as follows: Section 3.2 outlines the current literature of robust,

sparse, and stable methods; Section 3.3 describes the Holistic Deep Learning framework, and

Section 3.4 shows the results of the computational experiments.

3.2 Related Work

3.2.1 Robust Neural Networks

Many state-of-the-art deep neural networks are highly vulnerable to small perturbations in the

input data (Szegedy et al. 2014). Adversarial robustness evaluates a neural network’s resistance

against these altered inputs intentionally designed to worsen the network’s performance

(Goodfellow et al. 2014, Carlini and Wagner 2017, Madry et al. 2017).

Multiple methods have been developed in recent years to enhance the adversarial robustness

of neural networks. One of the most popular heuristics is augmenting the data set during

training with adversarial examples (Madry et al. 2017, Goodfellow et al. 2014). Others include

neuron randomization (Prakash et al. 2018, Xie et al. 2017), input space projections (Lamb

et al. 2018, Kabilan et al. 2018, Ilyas et al. 2017) and regularization (Bertsimas et al. 2021a,
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Ross and Doshi-Velez 2017, Hein and Andriushchenko 2017, Yan et al. 2018). A less common

but more theoretically rigorous approach is to minimize a provable upper bound of the loss

achieved with adversarial examples (Raghunathan et al. 2018b, Singh et al. 2018, Zhang

et al. 2018, Weng et al. 2018, Dvijotham et al. 2018b, Lecuyer et al. 2019, Cohen et al. 2019,

Anderson et al. 2020, Bertsimas et al. 2021a).

While these methods successfully improve the network’s robustness, the extent to which

they do so often depends on the data set, the network size, and the magnitude of the input

perturbations. In particular, heuristic methods generally work well for small perturbations,

while the upper bound methods yield better results when the input noise is larger (Bertsimas

et al. 2021a, Athalye et al. 2018). However, there is a trade-off between effectiveness and

efficiency. The methods providing the strongest adversarial robustness are often computa-

tionally demanding, making it challenging to implement them for large data sets or complex

network architectures.

3.2.2 Sparse Neural Networks

In machine learning, sparse models make predictions based on a limited number of parameters.

Sparsity is often desirable, as it may save memory, enhance model interpretability, and reduce

overfitting (Bertsimas et al. 2020).

There are two typical approaches to sparsity in deep learning. The first one, train-then-

sparsify, consists of removing unnecessary neurons or connections after training the network,

sometimes followed by retraining (Janowsky 1989, LeCun et al. 1989). This approach has been

widely investigated, and several schemes exist to choose which connections to prune (Hoefler

et al. 2021). Han et al. (2015), for example, propose to prune the connections with the

smallest weights. Other methods include formulating a convex optimization problem (Aghasi

et al. 2020), removing filters for which the total absolute sum is low (Li et al. 2016), and

eliminating channels that have limited impact on the network’s discriminatory ability (Zhuang

et al. 2018). The second approach, sparsify-during-training, is achieved by learning a sparse
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architecture while training the network. Multiple methodologies exist (Bellec et al. 2017,

Mocanu et al. 2017, Mostafa and Wang 2019), including the method to approximate the ℓ0

norm with continuous functions and add a regularization term to the loss function (Louizos

et al. 2017, Savarese et al. 2020). We refer the reader to Gale et al. (2019) and Hoefler et al.

(2021) for more comprehensive surveys on sparsity.

3.2.3 Stable Neural Networks

The stochastic nature of data samples can lead to instability and high dependence of

machine learning models on the specific train-validation split. This can negatively impact the

interpretability of the resulting model and its ability to make reliable predictions (Bertsimas

and Paskov 2020), a key factor to establishing trust in any algorithm.

The sensitivity of machine learning models to the choice of training split has mostly been

studied through the lens of cross-validation and distributionally robust optimization. Cross-

validation can be used to measure the variability from the selection of training split but at a

significant increase in computational cost (Krogh and Vedelsby 1994, Hastie et al. 2001) that

is often intractable for deep learning settings. Distributionally robust optimization has been

used to quantify the worst-case generalization error in the presence of shifts in distribution

or regime (Staib and Jegelka 2019, Goldwasser et al. 2020, Sagawa et al. 2019), but it often

requires pre-defined groups over the training data and expensive group annotations for each

data sample to avoid overly pessimistic uncertain distributions (Sagawa et al. 2019, Liu et al.

2021). A different approach has been studied by Bertsimas and Paskov (2020) and Bertsimas

et al. (2022a), who instead optimize over the worst training set of fixed size without making

any probabilistic assumptions. Although their method was presented in the context of linear

and tree-based models, their framework also applies to neural networks.
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3.3 The Holistic Deep Learning Approach

3.3.1 The HDL Framework

We introduce the HDL framework for a classification problem with cross-entropy loss using

the same notation as in the previous chapter. We illustrate our approach over a fully-

connected neural network for simplicity of notation, but the framework remains the same for

convolutional neural networks.

The nominal DL approach is to minimize the loss of the network zL described in Eq.

(2.2), which can be written as:

min
W

1

N

N∑
n=1

log

(
K∑
k=1

e(∆eynk )⊤zL(W,x)

)
, (3.1)

In our HDL framework, we propose instead to minimize the following optimization problem:

min
s,θ,W

λ

|W|∑
j=1

σ (βsj)︸ ︷︷ ︸
Sparsity

+ θ︸︷︷︸
Stability

+

1

a

N∑
n=1

log K∑
k=1

e(∆eynk )⊤zL(W⊙σ(βs),x)+

Robustness︷ ︸︸ ︷
ρ∥∇x(∆eyn

k )⊤zL(W ⊙ σ(βs),x)∥1 − θ︸︷︷︸
Stability


+

,

(3.2)

where ⊙ corresponds to the element-wise product, σ is the standard sigmoid function, zL(·,x)

was defined in (2.2), λ (resp. ρ) is the regularization coefficient corresponding to the sparsity

(resp. robustness) loss component, and a is the size of the data subsets used for the stability

requirement (see Section 3.2.3). We observe that robustness adds a term to the output, while

stability and sparsity add new parameters (θ and s respectively) to be optimized. This loss

function allows us to simultaneously train robust, sparse, and stable feed-forward neural

networks at scale. In the next section, we provide more details about each metric.
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3.3.2 Robustness

This section describes our method to introduce the robust component into neural network

training. Since our ultimate goal is to incorporate the sparsity, robustness, and stability of

neural networks together in a tractable way, we avoid algorithms that improve robustness

at the expense of a significant increase in the training time or the algorithm’s complexity

(for instance, the algorithms that perform training with adversarial examples usually require

significantly longer times to optimally find such examples at each gradient descent iteration

(Madry et al. 2017, Bertsimas et al. 2021a)). We follow the approach from Section 2.4 of

using a linear approximation of the neural network to estimate the robust objective. This

approach is simple to implement, produces good adversarial accuracy, and does not require

the extensive training time of other algorithms.

We then minimize the loss function in Eq. (2.14). As shown in Section 5.7, for small

ρ this approach achieves competitive results with state-of-the-art methods while requiring

significantly less computational time across various tabular and image data sets. However,

we emphasize that the methodology developed in this paper could also be performed with

other methods for robust training, like adversarial training or upper bound minimization,

which might be more appropriate for large uncertainty sets.

3.3.3 Sparsity

In this work, we use the specific retraining procedure proposed by Savarese et al. (2020), which

deterministically approximates the ℓ0 regularization utilizing a sequence of sigmoid functions

and adding them as a penalty term in the loss function. Notably, the implementation is

easily compatible with our robustness and stability requirements, since this methodology

relies on a penalty term added in the loss function. Therefore, we can use gradient descent

to simultaneously optimize the objective function comprising the robustness, stability, and

sparsity penalties.
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Adding ℓ0 regularization explicitly penalizes the number of non-zero weights in the model

to induce sparsity. However, the ℓ0-norm induces a priori a non-convex and non-differentiable

loss function R(W), as follows:

R(W) =
1

N

(
N∑
n=1

L
(
yn, z

L(W ,xn)
))

+ λ∥W∥0, ∥W∥0 =
|W|∑
j=1

I [wj ̸= 0] , (3.3)

where |W | is the number of parameters, wj is the jth coordinate of W , λ is the regularization

weight and L a loss function (e.g., cross-entropy loss).

The goal is to relax the discrete nature of the ℓ0 penalty to preserve an efficient continuous

optimization while allowing for exact zeros in the neural network weights. To do this, Savarese

et al. (2020) propose to first parameterize the weights wj = H(sj) where H(·) is the Heaviside

step function, and then approximate the non-differentiable step function with the sigmoid

function: σ(βsj) → H(sj) when β → ∞. Therefore, β is the hardness parameter that controls

how close the approximation is to the ℓ0 regularization, and the final loss function can be

written as:

R(W) ≈ 1

N

(
N∑
n=1

L
(
yn, z

L(W ⊙ σ(βs),xn)
))

+ λ

|W|∑
j=1

σ(βsj). (3.4)

To achieve a sparse network, we use this loss function (3.4) over multiple training rounds

to gradually reach a sparse initialization before training the final sparse neural network. To

obtain each initialization before a new training round, we start with our initialized auxiliary

sparsity s0 and hardness β = 1 parameters. Over the T training iterations, we gradually

increase β until it reaches a maximum value β̄ when the training procedure is completed

with sparsity sT . Then, we take s′0 = min(β̄sT , s0) to generate the new initialization for

the next round of training. This minimization function essentially keeps the information

of the suppressed weights, i.e., σ(βsj) ≈ 0, while reverting those not suppressed to their

starting position. This process is completed over multiple rounds to find better and sparser
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initializations for the neural network.

We implement the methodology as suggested by Savarese et al. (2020). In the results

section, we measure sparsity in terms of the percentage of neuron connections (weights) set

to 0.

3.3.4 Stability

Using the measure of stability defined in Section 3.2.3, we apply the methodology developed in

Bertsimas et al. (2022a) for building stable neural networks. At a high level, this corresponds

to constructing a model that is robust to the specific subset of data used to train it. One

way to think about this is to view the training data set as a sample from the true data

distribution and then require the model to be robust to the specific sample. Considering the

partition of the data into training/validation sets as a sampling mechanism from this true

data distribution (each split choice gives a different training set), we desire to build models

that are robust to every partition.

To achieve this, we first associate each observation (xn, yn) with a binary variable zn,

n ∈ [N ] that indicates whether or not (xn, yn) is part of the training set. We then choose the

network’s parameters as to minimize the worst-case loss over all possible allocations of these

zn’s, resulting in a model that is explicitly built to do well not just over one training set, but

over all possible training sets. We start from the same minimization problem introduced in

Section 3.3.1, i.e.,

min
W

1

N

N∑
n=1

L(yn, zL(W ,xn)).

To obtain network stability we require the model to be robust to every training set of fixed
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size a, which results in the following optimization problem:

min
W

max
z∈Z

1

a

N∑
n=1

znL(yn, zL(W ,xn)),

where Z =

{
z :

N∑
n=1

zn = a, zn ∈ {0, 1}, n ∈ [N ]

}
.

(3.5)

The value of a indicates the desired proportion between the size of the training and validation

sets. For example, by setting a = 0.7N we recover the typical 70/30 training/validation

split. Since the inner maximization problem is linear in z, the problem is equivalent to

optimizing over the convex hull of Z. This implies that the binary constraints on zn can be

relaxed to 0 ≤ zn ≤ 1, and the inner maximization problem becomes linear in the variables

zn. Computing its dual problem we obtain that the value of the inner maximization problem

is equivalent to:

min
θ,un

θ +
1

a

N∑
n=1

un subject to θ + un ≥ L(yn, zL(W ,xn)), un ≥ 0, n ∈ [N ].

Therefore, the stability problem becomes

min
W,

θ,un∈R

θ +
1

a

N∑
n=1

un subject to θ + un ≥ L(yn, zL(W ,xn)), un ≥ 0, n ∈ [N ].

Note that the variables un can be solved in closed form as un = [L(yn, zL(W ,xn)) − θ]+.

The final minimization problem with stability then becomes:

min
W,θ

θ +
1

a

N∑
n=1

[
L(yn, zL(W ,xn))− θ

]+
,

which is now an unconstrained problem that can be solved with standard gradient descent

optimization algorithms.
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3.4 Experiments

This section presents extensive computational experiments comparing the nominal DL ap-

proach (abbreviated DL) with 7 other models resulting from our holistic methodology. We

showcase the merit of our HDL framework and investigate the influence of each studied com-

ponent – robustness, sparsity, and stability – on the overall performance across 4 evaluation

metrics:

• Natural accuracy : Average accuracy on the testing set across the 10 different train-

validation splits with respect to the original input data.

• Adversarial robustness: Average adversarial accuracy on the testing set across the

10 different train-validation splits with respect to adversarial attacks resulting from

perturbations of the original input data. We consider only attacks bounded in the L∞

norm by some radius ρ using Projected Gradient Descent as in Madry et al. (2017).

• Stability : Worst accuracy on the testing set across the 10 different train-validation

splits with respect to the original input data.

• Sparsity : Percentage of network parameters with value 0.

The exact optimization problem solved for each model results from combinations of the loss

functions described in the previous section, and the specific formulations can be found in

Table 3.1 above.

Data We computed experiments on classification tasks with 45 UCI data sets from the UCI

Machine Learning Repository (Dua and Graff 2017). These data sets give various problem

sizes and difficulties to form a representative sample of real-world tabular problems, with the

largest data set having 245,056 observations and the highest number of features being 856.

We also benchmarked our methodologies on three image data sets: MNIST, Fashion-MNIST,

and CIFAR10.
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Method Optimization Problem
DL minW

1
N

∑N
n=1 log

(∑
k e

(∆eynk )⊤zL(W,xn)
)

Robust minW
1
N

∑N
n=1 log

(∑
k e

(∆eynk )⊤zL(W,x)+ρ∥∇x(∆eynk )⊤zL(W,x)∥1
)

Stable minW,θ θ +
1
a

∑N
n=1[log

(∑
k e

(∆eynk )⊤zL(W,xn)
)
− θ]+

Sparse minW,s λ
∑|W|

j=1 σ(βsj) +
1
N

∑N
n=1 log

(∑
k e

(∆eynk )⊤zL(W⊙σ(βs),xn)
)

Robust

+
minW,s λ

∑|W|
j=1 σ(βsj) +

1
N
×∑N

n=1log
(∑

k e
(∆eynk )⊤zL(W⊙σ(βs),x)+ρ∥∇x(∆eynk )⊤zL(W,x)∥1

)
Sparse
Stable

+ minW,θ,s λ
∑|W|

j=1 σ(βsj) + θ+
1
a

∑N
n=1[log

(∑
k e

(∆eynk )⊤zL(W⊙σ(βs),xn)
)
− θ]+

Sparse
Stable

+ minW,θ θ +
1
a

∑N
n=1[log

(∑
k e

(∆eynk )⊤zL(W,x)+ρ∥∇x(∆eynk )⊤zL(W,x)∥1
)
− θ]+

Robust

HDL minW,θ,s λ
∑|W|

j=1 σ(βsj) + θ + 1
a
×∑N

n=1[log
∑

ke
(∆eynk )⊤zL(W⊙σ(βs),x)+ρ∥∇x(∆eynk )⊤zL(W,x)∥1− θ]+

Table 3.1: Loss functions used for DL and all methods in the HDL framework.

Implementation Our code is written in Python 3.8 (Van Rossum and Drake 2009a).

Neural networks are coded using Tensorflow v1 (Abadi et al. 2015). We trained each model

on a system equipped with an Intel Xeon Gold 6248 processor, which included 4 CPU cores

and one Nvidia Volta V100 GPU.

Training Methodology For each data set, we used 20% of the data to obtain a fixed

test set, and we randomly generated 10 different 80%-20% train-validation splits with the

remaining data points. The same 10 train-validation partitions were used across all methods

for a fair comparison. Given a choice of model and evaluation metric, we selected the

hyperparameters that led to the best average performance in the validation set for the metric

in question. We then reported the average performance of the chosen parameter configuration

on the test set with respect to the given metric. For all evaluation metrics, the average
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performance is computed over the 10 training-validation splits initially generated.

Neural network architectures For our experiments on UCI data sets, we used a feed-

forward neural network architecture with 2 hidden layers, each with 128 neurons and ReLU

activations. For our experiments on the image data sets, we used a convolutional neural

network with the AlexNet architecture (Krizhevsky et al. 2012). We used the Glorot uniform

initialization (Glorot and Bengio 2010b) for the network weights W and 0 as initialization

for the sparsity variable s0. The choice of architecture and initialization was made to re-

flect typical settings utilized in the machine learning community (e.g. Madry et al. (2017),

Savarese et al. (2020), Bertsimas et al. (2021a)) while maintaining moderate size networks

that facilitate exhaustive experimentation across dozens of data sets. Importantly, the same

architecture is used across all methods been evaluated.

Hyperparameter search For each model, we cross-validated the values of the following

hyperparameters:

• Adam learning rate: {1e−2, 1e−3} for UCI data sets, {1e−3, 1e−4} for image data sets.

• Number of epochs: 150 for UCI data sets, 50 for vision data sets.

• Batch Size: 32 for UCI data sets, 64 for image data sets.

• Robustness radius ρ : {1e−1, 1e−2, 1e−3, 1e−4, 1e−5}.

• Sparsity regularization parameter λ: {1e−6, 1e−8, 1e−10}.

• Sparsity temperature parameter β̄ : {200, 1000}.

• Stability parameter a: {0.7, 0.8, 0.9, 1}.
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3.4.1 UCI Data sets

We split the 45 UCI data sets into 6 roughly even-sized groups based on their difficulty level.

Specifically, we consider the ranges 0%-70%, 70%-80%, 80%-90%, 90%-95%, 95%-98% and

98%-100% of natural accuracy achieved by the nominal DL approach. We first investigate

the performance of the HDL framework with respect to a single evaluation metric. In Figure

3.1, we evaluate all methods in terms of natural accuracy, adversarial accuracy with ρ = 0.1,

stability, and sparsity.

Figures 3.1a and 3.1c show that those data sets for which the nominal approach achieves

accuracy in the 70%-90% range are the ones that benefit the most from the HDL framework

(especially the Robust, Stable, and Stable+Robust models) when the evaluation metric

corresponds to natural accuracy or stability. For the data sets with natural accuracy above

90%, none of the models significantly improve over the natural accuracy or stability achieved

by the nominal DL model. However, for data sets in the 98-100% range sparsity slightly

improves accuracy and robustness slightly helps for stability.

Figure 3.1b shows the adversarial robustness achieved with perturbation parameter ρ = 0.1.

We see a substantial adversarial robustness improvement in all methods that included the

robust component. Moreover, combining robustness with stability and/or sparsity leads to

higher adversarial accuracy than that achieved with robustness alone. In terms of parameter

sparsity, Figure 3.1d shows that all models with imposed sparsity (Sparse, Stable+Sparse,

Robust+Sparse, and HDL) have a much lower percentage of nonzero parameters compared to

the models without it. And importantly, both robustness and stability help achieve sparser

models when combined with sparsity.
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(a) Natural accuracy.
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(b) Adversarial accuracy with ρ = 0.1.
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(c) Stability.
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(d) Sparsity.

Figure 3.1: Evaluation of the different methods depending on the natural accuracy of the
nominal DL approach on the UCI data sets.

Since we are also interested in models that are simultaneously accurate, sparse, robust, and

stable, we consider a multi-objective metric using the rank of each method (ranks start at 1,

with lower ranks corresponding to better performance). For each method, we use the natural

accuracy, adversarial accuracy, stability, and sparsity achieved in the validation set respectively

to rank all its hyperparameter configurations 4 times. Then for each hyperparameter

configuration, we compute the average rank across the 4 metrics and select the configuration

that leads to the method’s highest average rank. Finally, we rank the 8 selected models (for

the 8 different methods) with respect to each evaluation metric on the testing set to obtain

their out-of-sample average rank.
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As shown in Figure 3.2, all 7 models from the HDL framework outperform the nominal

DL approach with respect to this holistic metric. Moreover, the HDL model typically achieves

the best results across data set complexities.
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Figure 3.2: Average multi-objective rank.

3.4.2 Image Data Sets

In this section, we evaluate all methods using the MNIST, Fashion-MNIST, and CIFAR10 data

sets. For each method, we select the parameters based on the multi-objective metric utilized

for the UCI data sets in the validation set and report the performance across metrics. In

Tables 3.2 and 3.3, we see that for MNIST and Fashion-MNIST, the HDL model outperforms

the DL model for all objectives. In particular, HDL achieves higher accuracy using only

around 70% of the parameters. The results for the CIFAR10 data set (Table 3.4) are a

bit different since adding sparsity slightly hurts natural accuracy. However, the accuracy

achieved by the HDL model is comparable to those achieved by the non-sparse models and

the number of parameters is reduced by 47%.
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Method DL Rob. Stab. Sparse Rob. + Stab. + Stab. + HDL

Sparse Sparse Rob.

Avg. Accuracy 91.8 92.0 91.9 91.4 92.1 91.4 92.0 92.1

Adv. Acc. ρ = 0.01 78.7 81.1 78.3 80.8 86.9 80.2 86.8 87.1

Stability 91.5 91.7 91.8 91.3 91.9 91.2 91.7 91.8

Sparsity 0 0 0 36.2 26.6 48.4 0 26.8

Table 3.2: Results for the Fashion-MNIST data set. For each method, the parameters with
the highest average rank in the validation set were chosen.

Method DL Rob. Stab. Sparse Rob. + Stab. + Stab. + HDL

Sparse Sparse Rob.

Avg. Accuracy 99.2 99.3 99.2 99.1 99.2 99.2 99.3 99.3

Adv. Acc. ρ = 0.1 49.6 78.4 51.5 42.6 74.7 27.7 79.5 76.0

Stability 99.1 99.2 99.2 99.1 99.1 99.0 99.3 99.2

Sparsity 0 0 0 16.1 27.9 31.7 0 28.0

Table 3.3: Results for the MNIST data set. For each method, the parameters with the highest
average rank in the validation set were chosen.

Method DL Rob. Stab. Sparse Rob. + Stab. + Stab. + HDL

Sparse Sparse Rob.

Avg. Accuracy 70.1 70.1 70.1 69.8 69.2 69.3 69.8 69.3

Adv. Acc. ρ = 0.01 26.7 27.1 26.6 27.3 27.4 27.7 29.1 30.6

Stability 69.7 69.7 69.8 69.3 68.9 68.5 69.4 68.8

Sparsity 0 0 0 28.7 47.2 47.8 0 47.8

Table 3.4: Results for the CIFAR10 data set. For each method, the parameters with the
highest average rank in the validation set were chosen.
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3.4.3 Computational Times

Since modifying the loss function often affects the training computational time, we quantify

the slowdown effect for all the methods in the HDL framework. Specifically, for each of the

45 UCI data sets as well as the 3 image data sets introduced in the previous section, we

calculate how many times slower each method is when compared to the nominal DL approach

in terms of batches per second as well as number of iterations needed. The average slowdown

factors are shown in Table 3.5.

We observe that robustness and sparsity both decrease the number of batches per second

by approximately a factor of 3, while stability preserves the same speed as the DL approach.

In addition, since we used 5 training rounds for the methods incorporating sparsity, they

require 5 times as many training iterations as the other methods. On average, the HDL

method is only 16 times slower, and methods that don’t optimize for sparsity only increase

the computational time by less than 3 times.

Method Batches/sec No. Iterations Total Slowdown

Slowdown Factor Increase Factor factor

Robust 2.7 1 2.7

Stable 1.0 1 1.0

Sparse 1.2 5 5.9

Robust+Sparse 3.2 5 16.1

Stable+Sparse 1.1 5 5.5

Stable+Robust 2.7 1 2.7

HDL 3.2 5 16.2

Table 3.5: Average slowdown factors of computational time with respect to the nominal DL
method.

3.4.4 SHAP Values

To gain a deeper understanding of the interplay between individual loss components (robust-

ness, stability, sparsity) and the metrics we measure, we employ the SHAP values method

(Lundberg and Lee 2017). We compute the SHAP values for each UCI data set and average the
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results over three data set categories: Low Accuracy (< 80%), Medium Accuracy (80%-95%),

and High Accuracy (> 95%), with 15 data sets each. The results are shown in Figure 3.3.

robust sparse stable

Low Acc.

Medium Acc.

High Acc.

0.4% -0.8% 1.1%

0.1% -0.4% 0.3%

-0.3% -0.7% 0.2%

SHAP Value for Accuracy

(a) Accuracy.

robust sparse stable

Low Acc.

Medium Acc.

High Acc.

22.3% 4.9% 2.2%

22.8% 3.2% 0.1%

25.1% 5.3% 0.3%

SHAP Value for Adversarial Accuracy

(b) Adversarial accuracy with ρ = 0.1.

robust sparse stable

Low Acc.

Medium Acc.

High Acc.

0.9% -1.1% 1.0%

-0.1% -0.4% 0.7%

-1.1% -2.1% 0.4%

SHAP Value for Worst Case Accuracy

(c) Stability.

robust sparse stable

Low Acc.

Medium Acc.

High Acc.

2.9% 46.7% 3.7%

1.7% 43.4% 3.5%

2.5% 42.6% 4.1%

SHAP Value for Reduction in % Nonzero Entries

(d) Sparsity.

Figure 3.3: SHAP values on various metrics across different UCI data set categories. Blue/red
indicates that the feature has a positive/negative SHAP value on a specific category of UCI
data set.

Our findings confirm that robustness, stability, and sparsity techniques improve the

corresponding metrics across all data set categories. More intriguingly, these techniques also

positively impact metrics beyond their intended purposes. For example, sparsity and stability

enhance adversarial accuracy, while robustness and stability yield sparser networks. This

indicates that combining techniques does not necessarily result in any adverse effects and

that it is feasible to attain networks with good performance across all metrics. Additionally,
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the benefits of these techniques are more pronounced in data sets with low initial accuracy,

particularly for the accuracy and stability metrics. Lastly, we observe that sparsity generally

hurts accuracy and stability, although this highly varies across data sets, as observed in

Section 3.4.1.

3.4.5 Prescriptive Approach

In this section, we develop a prescriptive approach that allows users to choose a training

loss function based on the specific objective they wish to maximize, which can be a single

evaluation metric or a weighted combination of several metrics. Depending on the data set

characteristics and the performance scores of the nominal DL model, we propose a tree-based

recommendation model to suggest the most suitable HDL loss function for optimal results

with respect to the desired objective.

We train our models using an Optimal Policy Tree (OPT) algorithm (Amram et al. 2022),

which uses observational data of the form (xi, yi, zi). While it is possible to include variability

and complexity indicators of the data set as part of xi (Lorena et al. 2019), given the extensive

and diverse range of data sets in consideration, we choose to capture complexity using the

performance metrics achieved by the nominal DL approach on the corresponding classification

tasks. In our case, each observation (i.e., data set) i encompasses:

• Data set features xi ∈ R8: number of features, number of target classes, nominal DL

accuracy, nominal DL adversarial accuracy with ρ = 0.001, nominal DL adversarial

accuracy with ρ = 0.01, nominal DL adversarial accuracy with ρ = 0.1, nominal DL

stability, nominal DL worst case accuracy.

• Prescriptions zi ∈ 1, . . . , 8: DL, Robust, Stable, Sparse, Robust+Sparse, Stable+Sparse,

Stable+Robust, HDL.

• Outcomes yi ∈ R8, which represent the performance improvement of each method

compared to the nominal DL model with respect to the metric set by the user.
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Figure 3.4: Optimal policy tree for max-
imizing natural accuracy.

Figure 3.5: Optimal policy tree for maximizing
robustness (ρ = 0.1).

Our prescriptive task is to find the optimal policy that, given the information x of a data set,

prescribes the method z leading to the best metric score y. We randomly split the 45 UCI

data sets into a training set (40 data sets) and a test set (5 data sets from different difficulty

levels). We cross-validated the optimal tree depth and complexity using the training set.

Figures 3.4 and 3.5 represent the OPTs obtained for maximizing two different objectives:

natural accuracy and adversarial accuracy. The tree in Figure 3.4 highlights that the Stable

and Stable+Robust methods are the best suited to obtain high natural accuracy, with the

former being preferred when the nominal DL approach has very low adversarial accuracy

(ρ = 0.1). To maximize robustness, the tree in Figure 3.5 prescribes HDL, Stable+Robust, or

Robust+Sparse depending on the adversarial accuracy achieved by the nominal DL method.

In addition, we obtained single-leaf trees when maximizing the stability and sparsity

objectives. The recommended methods are Stable+Robust for optimizing stability and

Stable+Sparse for maximizing sparsity. Lastly, HDL was always the prescribed method when

the desired objective was the equally weighted average of all 4 previous metrics.

Finally, Table 3.6 reports the out-of-sample performance of these prescription trees on the

5 UCI data sets from the test set (cnae-9, hill-valley, libras-movement, magic-gamma, and

thyroid-ann). We emphasize that the performance of the prescribed methods is higher than

that of the nominal DL approach across all objectives and data sets, and it often matches

the performance of the best method.
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Objective Method
Test Data Sets Objective Value

cnae-9 hill- libras- magic- thyroid-

valley move gamma ann

Nat. Acc.

DL 93.70 47.21 79.44 87.11 98.86

Prescribed 94.07 53.61 80.00 87.28 99.05

Optimal 94.07 53.61 82.50 87.28 99.05

Robustness (ρ = 0.1)

DL 0.00 7.54 0.00 15.07 48.42

Prescribed 3.80 36.39 2.50 64.59 91.79

Optimal 3.80 40.16 4.72 64.59 91.79

Stability

DL 91.20 43.44 75.00 86.65 98.28

Prescribed 93.06 45.08 81.94 87.01 98.54

Optimal 93.06 49.18 81.94 87.01 98.81

Sparsity

DL 0.00 0.00 0.00 0.00 0.00

Prescribed 73.43 34.89 71.00 57.52 53.22

Optimal 73.43 41.94 71.00 57.52 53.22

(Nat. Acc. +Robustness DL 46.25 24.55 38.61 47.21 61.39

+Stability Prescribed 57.75 39.35 52.76 58.06 73.03

+Sparsity)/4 Optimal 62.07 40.66 52.82 59.62 73.03

Table 3.6: Performance of prescription trees on the testing set.

3.4.6 Significance Analysis

To further validate the improvements achieved by the HDL framework, we analyze the

significance of our results with one-sided Welch’s t-tests with different variance groups.

Specifically, for each evaluation metric and each leaf of the corresponding optimal prescriptive

tree, we consider all the UCI and image data sets that fall within that leaf. For those data

sets, we test the null hypothesis that the average performance achieved by the prescribed
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method is equal to that one achieved by the nominal DL approach, with alternative hypothesis

corresponding to the average performance achieved by the prescribed method being higher.

As shown in Table 3.7, all p-values are below the 0.05 significance level, concluding that the

prescribed methods have statistically significant higher performance than the nominal DL

approach across all performance metrics.

Objective Leaf Prescription p-value

Nat. Acc.
Stable 0.025

Stable+Robust 0.0462

Robustness (ρ = 0.1)

HDL 1.508e−6

Stable+Robust 0.001

Robust+Sparse 1.727e−5

Stability Stable+Robust 0.0161

Sparsity Stable+Sparse 1.188e−38

Nat. Acc.+Robustness+Stability+Sparsity
4

HDL 4.472e−26

Table 3.7: Significance results for the null hypothesis that the average performance achieved
by the prescribed method is equal to that one achieved by the nominal DL approach, with
alternative hypothesis corresponding to the average performance achieved by the prescribed
method being higher.

3.5 Conclusions

This paper presents a unifying methodology to obtain deep learning models that are accurate,

robust, stable, and sparse by appropriately modifying the objective function to be minimized.

Across multiple computational experiments, we show how these 4 metrics interact and

demonstrate that we can often train models that simultaneously improve adversarial accuracy,

worst-case accuracy, and parameter sparsity without sacrificing natural accuracy. Finally, we

provide prescriptive trees that use general features of the data set (e.g. dimension, number

of target classes, nominal accuracy, etc.) to recommend which method is more appropriate
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depending on the desired objective to be maximized, and we show that the improvements

achieved by the prescribed methods are statistically significant.

For future research we aim to explore how HDL performs with respect to other data set

indicators like variability and complexity, as this could offer further guidance on which method

to select. We would also like to test our framework in real world applications; for instance in

the area of healthcare, where trustworthy models are crucial and memory constraints are

often required for practical use. Consequently, improving the interpretability of the HDL

framework would be essential to make it more suitable for such applications. We deem

adversarial robustness, stability and sparsity as critical qualities in the development of more

reliable machine learning algorithms, and we hope this work will motivate further research in

this important field.
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Chapter 4

Large Language Models for Patient Flow

Predictions

4.1 Introduction

Increasing data availability from Electronic Medical Records (EMR) combined with advances

in machine learning (ML) generates new opportunities for enhancing decision-making within

healthcare institutions. For instance, anticipating short-term discharges informs about

bed availability and can facilitate resource utilization and personalized delivery of care.

Furthermore, detecting patients with high mortality or ICU risk can alert the medical team

and call their attention to those who need it the most.

Despite a growing literature on data-driven approaches for healthcare, deploying these

models in practice remains a difficult task. Not only there is a need for close relationships

between academics and medical teams, but also there are several data challenges that can

make such collaborations difficult. For instance, unstructured healthcare data like images

and notes are often difficult to access for model development due to privacy concerns and

high computational costs. Structured healthcare data, or Electronic medical records (EMRs),

are often available for most digitalized healthcare systems, but the tables are generally
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disorganized, not standardized across institutions and very scarce for small healthcare

systems.

These challenges highlight two significant limitations in the existing approaches to handling

EMRs and tabular data in general: 1) they require labor-intensive data processing that is

unique to each institution, and 2) they ignore contextual information such as column headers

and meta content descriptions which could be used for data augmentation.

In contrast to the standard tabular approaches, language is a very flexible data modality

that can easily represent information about different data points without imposing any

structural similarity between them. Furthermore, recent developments on off-the-shelf large

language models (LLMs) based on the Transformer architecture (Vaswani et al. 2017) offer

state-of-the-art performances on a wide range of language tasks, including translation,

sentence completion, and question answering. These pre-trained models are often developed

with very large and diverse data sets, allowing them to exploit prior knowledge and make

accurate predictions with very few new training samples. Some LLMs are trained to target

specific domain knowledge and technical challenges, making them particularly useful in the

corresponding applications. For example, LLMs fine-tuned on clinical notes and biomedical

corpora such as ClinicalBERT (Alsentzer et al. 2019), BioBERT(Lee et al. 2019), and

BioGPT(Luo et al. 2022) offer substantial advantages for medical learning tasks, and LLMs

that specifically target long token sequences unveil opportunities for dealing with data that

contains long texts (Beltagy et al. 2020, Li et al. 2022).

These successful language models offer a natural solution to represent and process con-

textual information from tabular structures. Standard machine learning models only utilize

the explicit table contents, disregarding all accompanying context like column headers and

table descriptions. Incorporating these metadata into the model via language could give

meaning to the data values within the broader context. For example, a numerical value might

be very relevant for disease prediction if it represents a person’s age but not so much if it

corresponds to the ward census. Moreover, LLMs could save significant manual labor for
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selecting, encoding, and imputing data (Sweeney 2017, Geneviève et al. 2019, Nan et al. 2022).

Missing data, in particular, is a challenging and frequent problem that requires attentive

processing and expert knowledge. Current predictive models either exclude such attributes,

potentially ignoring rare-occurring but valuable data or impute missing values with very few

recorded instances. Additional processing challenges arise when units of measurement or data

types are inconsistent across tabular data systems. By leveraging language, these difficulties

could be addressed, for instance, by simply writing that particular values are missing and

converting inconsistent values into text.

Previous works using LLMs have shown the potential of using natural language processing

(NLP) models to systematically and efficiently process tabular data in the form of language

(Herzig et al. 2020, Yin et al. 2020, Padhi et al. 2021, Somepalli et al. 2021). However, they

have mainly relied on training fixed BERT-based models that are not flexible to changes in

tabular structures. These works have mostly assumed that encoding data using LLMs leads to

better performance than traditional data processing methods, but concrete evidence has not

been provided. Other works augment tabular data with external unstructured data (Harari

and Katz 2022) but do not leverage contextual data from the original tabular source. In

addition, language models are considered sensitive to their input representations (Miyajiwala

et al. 2022), and most previous works do not thoroughly investigate how the choice of language

affects their results. Hegselmann et al. (2023) do investigate different language variants, but

in the context of zero-shot and few-shot classification as opposed to feature representation.

Thus, guidance on the best way to construct the language data remains in need.

In this chapter we first present a successful real-world implementation of machine learning

models at a large healthcare system, and then we build and evaluate a new feature extraction

methodology that leverages LLMs to improve and generalize these models. The main

contributions of this work are as follows:

1. We develop and implement machine learning models that predict several inpatient

outcomes for a large hospital network. We show that after utilizing our user-friendly
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software the hospitals observe significant reduction in length of stay and millions of

dollars in financial benefits.

2. We create TabText, a systematic framework that leverages language to extract contextual

information from tabular structures. Our experiments demonstrate that augmenting

electronic medical records with our TabText representations can significantly improve

the AUC score of patient flow predictions, especially when trained with small-size

datasets.

3. We investigate the impact of several language syntactic parsing schemes on the perfor-

mance of TabText representations and demonstrate that TabText enables the generation

of high-performing predictive models for patient outcomes with minimal data processing.

4.2 Patient Flow Predictions

Access to accurate predictions of patients’ outcomes can enhance decision-making within

healthcare institutions. In collaboration with a large hospital network, we develop machine

learning models that predict short-term and long-term patient outcomes such us discharge,

intensive care unit transfers and end-of-stay mortality. We implement an automated pipeline

that extracts data and updates predictions every morning, as well as user-friendly software

and a color-coded alert system to communicate these patient-level predictions to clinical

teams. Since its deployment, over 200 doctors, nurses, and case managers across seven

hospitals have been using the tool in their daily patient review process.

Collaboration HHC is the largest healthcare network in Connecticut; it contains 7 hospitals

ranging from Hartford Hospital (HH), one of the largest teaching hospitals in New England

(867 beds), to small and medium sized (130–520 beds) community / teaching hospitals. We

have been collaborating with HHC since 2020, starting with daily data extraction from their

EMR system. In 2021, we constituted physician pilot users who iteratively collected feedback
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and helped improve the models and the software tool. We extended models for the other 6

hospitals at HHC and deployed them in production between May 2022 and January 2023.

4.2.1 Data and Feature Extraction

First, we build EMR data extracts containing medical records of all inpatients from HHC

over a four-year period. The data set includes tables for demographics, patient status (e.g.,

oxygen device), clinical measurements (e.g., blood pressure), laboratory results, diagnoses,

orders, procedures, notes, and others. We create a feature space where each row represents

each patient day (in total 1,375,215 patient days). Given these raw tabular data files, we

perform several data processing steps to obtain the final feature space, as described below.

String Parsing Some columns in string format require string parsing to extract numerical

features as continuous variables. For instance, the normal ranges of laboratory tests in forms

such as “50–70” are replaced with two columns: one with a value of 50 for the lower bound

and another with a value of 70 for the upper bound.

Categorical Encoding Categorical columns (e.g., department, mobility level, the reason

for visit) must be converted to ordered numerical levels (consecutive integers) using label-

encoding or binary categories using one-hot encoding. Due to the large number of categories,

we use label encoding for all categorical variables.

Feature Engineering To better capture the clinical information, we compute various

auxiliary variables:

1) Current conditions extracted from records (e.g., whether the patient is in ICU or IV)

2) Normal indicators (whether the clinical measurement is within the normal/critical

range) instead of the ranges themselves.

3) Counts (e.g., number of days in ICU, number of attending physicians).
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4) Pending procedures/results (time until surgery, whether MRI is pending, etc.).

5) Historical record linked to the patient (e.g., number of days since the previous admission

and length of the previous stay).

6) Non-patient-specific operational variables (e.g., day of the week, ward census and

utilization, hospital admission volume on the previous day).

Missing Data Imputation Since the raw data comes from a hospital system, it contains

many missing values. We impute most missing entries with 0, except for a few cases. From

communications with the hospital, we impute certain variables with prior knowledge of the

meaning of missingness (e.g., missing Do Not Resuscitate (DNR) means the patient did not

sign a DNR form). For some auxiliary variables, we apply some rules, such as imputing

counts with 0 if no record exists and imputing the number of days since previous admission

with a large number (e.g., 9999) if no previous admission exists.

4.2.2 Machine Learning Models

Prediction Tasks We consider several binary classification tasks related to the length of

stay, ICU, and mortality for each inpatient and on each day in the hospital. Two discharge-

related outcomes are whether patients are discharged or not within the next 24 hours (resp.

48 hours). Four ICU-related outcomes include whether the patient will enter (resp. leave) the

intensive care unit (ICU) for patients currently not in the ICU (resp. in the ICU) within the

next 24 hours (resp. 48 hours). Two short-term expiration outcomes concern whether each

patient will die in the next 24 hours (resp. 48 hours). One end-of-stay mortality outcome

indicates whether patients die or not at the end of their stay.

Models We evaluate a variety of machine learning models to make predictions, including

Optimal Classification Trees (Bertsimas and Dunn 2017), sparse classification (Bertsimas

et al. 2021c), XGBoost, LightGBM (Ke et al. 2017), and Tabnet (Arik and Pfister 2021).
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With the highest performance, XGBoost (multi-class and binary class) classification models

are trained for each prediction task for each hospital and tuned with hyper-parameters

using a validation set (chronologically splitter). Furthermore, we ensure that all our models

are well-calibrated, by using the isotonic regression method (Zadrozny and Elkan 2002) to

calibrate the models on the first half of the testing set and assessing the final calibration on

the second half.

Predictive Analytics for Decision-Making It can be difficult to grasp the implications

of raw probability scores and use them efficiently for decision-making. To turn these predictive

analytics into a decision support tool that is sustainably used by practitioners, we complement

the predictions with a color-coded alert system. We send green alerts for patients who are ready

for short-term discharge (probability of 24hr or 48hr discharge is above certain thresholds).

On the other hand, we send red alerts to warn about patients who have a high risk or are

exacerbating (mortality risk or the increase of mortality risk from the previous day reaches

certain thresholds).

Model Evaluation All models achieve high out-of-sample AUC (75.7%–92.5%) across all

prediction tasks and are well calibrated for all seven hospitals. After threshold tuning and

discussions with doctors, we select to send a green alert when the 24-hr discharge probability

exceeds 0.25 or the 48-hr probability exceeds 0.4, which gives 0.621 precision and 0.746 recall.

On the other hand, we raise a red alert when the mortality risk exceeds 0.2 or when its

absolute change compared with the previous day exceeds 0.1, which gives 0.477 precision and

0.705 recall.

4.2.3 Results

To evaluate the empirical impact of the tool, we consider a treatment group of 15 HHC units

that used our tool at varying degrees between 2022 and 2023, and a control group of 12 units

that had not yet fully incorporated the tool as of April 15, 2023. To estimate the effect of
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Figure 4.1: Empirical Analysis for Treatment Effect on Length of Stay. All the units in the
control and treatment groups are medicine or cardiology units offering general level of care.

our tool, we use a Difference-in-Differences (DiD) technique (Abadie 2005, Bertrand et al.

2004) and compare the average change in LOS among patients discharged in the treatment

group to that in the control group. We control for similar population fixed effects and time

non-stationarity effects, as we cover units of the same level of care and specialty, and the

same January 16 - April 15 period over the past three years. We assume that the difference

in LOS over time would have been the same between the two groups if the tool had not

been used (parallel trend assumption). We use this assumption to impute the counterfactual

average LOS for the treatment group, had there been no treatment (light green dashes in

Figure 4.1).

The LOS of the control group showed a steady increase after 2020, rising from 4.97 in

2021 to 5.38 in 2022 and eventually reaching 5.83 in 2023. Between 2021 and 2022, the

treatment group’s LOS increased from 4.76 to 5.07, which was in line with the parallel

trend but slightly lower, potentially due to the pilot’s partial treatment effect. After full

deployment, the treatment group’s LOS dropped to 4.99 in 2023, while the control group’s

LOS continued to rise from 4.96 to 5.85. The difference between the parallel counterfactual

and actual treatment group’s LOS resulted in an estimated benefit of reducing the average
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LOS by 0.63 days per patient.

By reducing the average LOS by 0.63 days among patients in the 15 treatment units

(49,424 patients annually), we can save 31,137.12 patient days. If all beds are backfilled,

this would make room for an additional 6,239.9 patients per year, leading to a projected

total annual contribution margin increase of $67,365,60.4. Alternatively, under a no backfill

scenario, at an average direct cost for a medical/surgical inpatient of $1,661 per patient

day, the LOS reduction would be translated into estimated annual savings of $51,718,76.

Therefore, in practice, HHC is projected to obtain annual financial benefits in the range of

$51–$67 million, with some beds backfilled and others not.

To support these observations, we conduct a DiD regression analysis with variations in

treatment times (Callaway and Sant’Anna 2021, Goodman-Bacon 2021) in Appendix Section

C.3, which confirms a significant reduction in average LOS (and its logarithm) of similar

magnitude (see Table C.4). In addition, we observe a significant reduction in the time between

the green alert and the discharge order placed by physicians, supporting the hypothesis that

the reduction in LOS in the treated units is partially due to physicians better anticipating

the administrative process associated with discharges.

The main strength of our empirical validation is its multi-center nature, unlike the simple

before-and-after evaluation of prior work from the literature (Bertsimas et al. 2021b). We also

control for time trends and seasonality (time fixed effects) and unit/hospital heterogeneity.

However, the main limitation comes from the staged roll-out design over which we had no

control and which can be lead to estimation biases (Baker et al. 2022). In addition, a small

number of physicians in the control units had access and used the tool. We considered these

units as control nonetheless, which could lead to a conservative estimation of the effect.
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4.3 TabText

As observed in the previous section, traditional machine learning approaches using tabular

data typically require thorough data cleaning before data is input into the models. Standard

model development requires a series of data pre-processing steps, including merging raw data

tables, parsing string columns, encoding categorical variables, constructing features, and

imputing missing data, as described in Section 4.2.1. In fact, in our collaboration with HHC

it took approximately one year of joint effort by machine learning researchers and hospital

specialists to obtain, clean, and process the data.

TabText is a new feature extraction methodology to represent contextual information from

tabular sources, which can replace data cleaning techniques or serve as a method for data

augmentation. We process tabular data by creating a text representation for each data sample.

This text contains the column attribute with its corresponding value and potentially other

available contextual information. We then use this text as input for a finetuned pre-trained

model that generates TabText embeddings of a fixed dimension. Finally, we augment the

tabular features with these TabText embeddings to train any standard machine learning

model for downstream prediction tasks.

The overall TabText framework can be visualized in Figure 4.2.

98



Tabular Format

Temperature Heart Rate … Blood 
Pressure

104
(very high)

105 
(high) … 130 

(high)

Patient status

Vitals

Service O2 Device … Level of 
Care

Cardiology Ventilator … ICU

Labs

Platelet Glucose … WBC

NA 65
(low) … NA

Age Height … BMI

65
(high)

5’8’’ 
(normal) … 21 

(normal)

Demographics

The following is the demographics data for 
this patient: age is high, height is normal, … , 
BMI is normal.

The following is the current status for this 
patient: service is cardiology, oxygen device 
is ventilator, ... , level of care is ICU.

The following is the labs for this patient: 
glucose is low, ... .

The following is the vitals for this patient: 
temperature is very high, ... ,heart rate is 
high, blood pressure is high.

Language Format

We want to predict health risks.
The following is the demographics data 
for this patient: age is high, height is 
normal, … , BMI is normal.
The following is the current status for 
this patient: service is cardiology, 
oxygen device is ventilator, ... , level of 
care is ICU.
The following is the labs for this patient: 
glucose is low, ... .
…
The following is the vitals for this 
patient: temperature is very high, ... , 
heart rate is high, blood pressure is 
high.

Large Language Model 
(e.g., Clinical-Longformer)

TabText
Embeddings

Tabular 
Demographics 

Data

… …

Tabular 
Patient Status 

Data

Tabular 
Labs 
Data

Tabular 
Vitals 
Data

…

Input

Clinical or Operational 
Task Modeling

(e.g., Classification or Regression)

Linear Models SVM, Clustering,… Tree-based models
(e.g., XGBoost)

Neural Networks

Figure 4.2: End-to-end TabText framework.

4.3.1 Methodology

As part of our methodology, we need to answer three main questions: 1) which LLM we

are using, 2) how we are constructing the language data, and 3) if we are fine-tuning the

pretrained model or not.

To address each one of those questions we use a data set from a large teaching hospital

over a three-month period, where each data point represents a patient day. There are 160

columns of different patient attributes on demographics, patient status, vital signs, laboratory

results, diagnoses, treatments, and other information. The summary of the tables utilized
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can be found in Table 4.1.

Table

#

Table Meta Information Example Columns

1 Lab values Platelet, Sodium

2 Chart measurements Respiratory rate, oxygen concentration

3 Counting statistics Number of medications, number of

orders

4 Current condition Oxygen device, is in ICU

5 Historical patient record Previous admission, previous length of

stay

6 Non-patient-specific data Day of the week, ward census

Table 4.1: Summary of tabular data, which contains different aspects of a patient’s admission
stay from patient’s high-level demographics to precise lab measurements.

LLM Selection We consider two different Transformer models, BioGPT and Clinical-

Longformer (Li et al. 2022), both of which were pre-trained with MIMIC-III clinical notes

(Johnson et al. 2016). Following the TabText framework, we convert the tables into simple

text: for each row, the cell from column “attribute” with value X is transformed into “attribute:

X” and the texts from all columns are concatenated into a single sentence with the comma

character. We next create TabText embeddings and finally train gradient-boosted tree models.

We use 60, 000 data samples for training and validation, and 10, 000 for testing. Figure 4.3a

shows the boxplots for the out-of-sample AUC over 10 random 75%-25% train-validation

splits for each task and each model. Both NLP models achieve similar performance across

tasks, and we therefore choose the Clinical-Longformer model, as it allows for input text of

larger size.
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Language Construction The versatility of language creates a challenge for consistency,

as multiple textual expressions can convey the same information. Moreover, tabular data in

healthcare is often split across multiple tabular sources (e.g., vitals table, medications table),

some of which include information only for a particular group of patients. This results in

even more possibilities for textual representation.

The TabText framework creates a single paragraph for each data sample (e.g., for each

patient day) as follows: we first create a sentence for each column in each table. Next, for

each table, we concatenate contextual information and the sentences of its columns using

the colon (“:”) and comma (“,”) characters, respectively. We then merge the text from all

tables into a single paragraph using the period (“.”) character. While the exact punctuation

doesn’t significantly impact BERT-based transformers (Ek et al. 2020), the exact text chosen

to build each sentence might have a larger impact on the final embedding. We therefore

investigate different ways to construct sentences for each column attribute.

Descriptiveness: We consider whether or not to use descriptive language to construct text

sentences. Specifically, consider a cell from column “attribute” that has value “X”. If the

column is non-binary, we consider the following options:

• Non-Descriptive Sentence: “attribute: X”;

• Descriptive Sentence: “attribute is X”.

For binary columns, we consider the verb associated with the specific attribute. For instance,

if the column attribute is associated with the verb “to have” we consider

• Non-Descriptive Sentence: “has X: yes” or “has X: no”;

• Descriptive Sentence: “has X” or “does not have X”.

Missing Values: When the value for a column “attribute” is missing, we consider two options,

to explicitly mention in the text that this information is not available (“attribute is missing”),
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or to simply skip this column when building the text representation.

Numerical Data: Transformer models often struggle to represent language with numerical

data (Gorishniy et al. 2022). Therefore, we also consider whether or not to replace numerical

values with text. For replacement, we compute the average (AVG) and standard deviation

(SD) of the corresponding column with respect to the training data. We then replace a given

cell value X as follows:

• “very low” if X < AVG − 2SD;

• “low” if AVG − 2SD ≤ X < AVG − SD;

• “normal” if AVG − SD ≤ X < AVG + SD;

• “high” if AVG + SD ≤ X < AVG + 2SD;

• “very high” if AVG + 2SD < X.

Including Metadata: We investigate the added value of including metadata as part of the text

representation. This corresponds to descriptions of table content (e.g., “This table contains

information about the medications administered to this patient”) or the prediction task of

interest (e.g., “We want to predict mortality risk”).

For each possible sentence configuration, we use default values of the Clinical-Longformer

model to obtain TabText embeddings that are given as input to a gradient-boosted tree model.

For this small experiment, we utilize 63 data features corresponding to laboratory results.

We use 60, 000 data samples for training and validation, and 10, 000 for testing. In Figure

4.3b, the Language Construction results show the boxplot for the rank achieved with each

configuration across tasks, where lower numbers correspond to better ranking. We choose

the sentence configuration with the lowest median ranking; specifically, we use descriptive
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language, omit missing values from the text, replace numerical values with text, and include

metadata.

Fine-Tuning Although Clinical-Longformer was pre-trained with large language data

sets, we can further improve its performance with a few more training iterations using

our training data. Specifically, we convert our training data into language following the

sentence configuration selected in Section 4.3.1, and we use it to fine-tune Clinical-Longformer

following the original BERT training methodology, which includes self-supervised masked

word prediction. We fine-tune for 3 epochs and with the default values for all hyperparameters.

We then generate embedings that are given as input to a gradient-boosted tree model, using

60, 000 data samples for training and validation, and 10, 000 for testing. We show in Figure

4.3 the boxplots for the out-of-sample AUC over 10 random 75%-25% train-validation splits

for each task. We see that fine-tuning the model with our local data slightly improves

performance for eight out of the nine classification tasks of interest.
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(a) LLM Selection. (b) Language Construction. (c) Fine-Tuning.

Figure 4.3: Overview of our overall methodology. We start with the selection of an LLM.
Figure (a) shows that BioGPT and Clinical Longformer achieve similar results, and we
therefore choose Clinical Longformer, as it allows for input texts of larger sizes. Notice that
the specific LLM can flexibly be replaced as novel models become available. Then, we look for
the best language representations of the original patient data. In Figure (b) we observe the
boxplots of the ranks for different sentence configurations, which were tested across different
prediction tasks (lower rank is better). We select the configuration with the lowest median
ranking; specifically, we use descriptive language, omit missing values, replace numerical
values with text, and include metadata. Lastly, we fine-tune the LLM using this sentence
configuration, as it leads to better performance as shown in Figure (c).
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4.4 TabText Results

This section presents extensive computational experiments evaluating the performance of our

TabText framework. First, we show how our pipeline can quickly generate machine-learning

models with competitive performance without any data cleaning by leveraging the flexibility

of language. We then demonstrate with pre-processed data that augmenting standard tabular

representations with our TabText embeddings can increase out-of-sample AUC by up to 6%,

with the largest improvements observed for the most challenging predictions.

Data: For the final experiments we consider a large data set from the same teaching hospital

used in the previous section, with inpatient data for the four years following the three-month

period used in Section 4.3.1. we summarize the number of data points for each prediction

task in Table 4.2.

Prediction Task Training Testing

Discharge 24 hr 572,964 265,917

Discharge 48 hr 572,964 265,917

Enter ICU 24 hr 385,132 180,075

Leave ICU 24 hr 73,013 34,669

Enter ICU 48 hr 292,659 138,947

Leave ICU 48 hr 68,472 33,011

Expire 24 hr 572,964 265,917

Expire 48 hr 572,964 265,917

Mortality 572,964 265,917

Table 4.2: Data sizes (number of patient days) for training and testing sets across the nine
healthcare classification tasks.

Text Encoder: We first convert the input training data from tabular to textual format as

105



described previously in Section 4.3.1. We use the sentence configuration that led to the highest

average AUCs (i.e., skipping sentences for missing values, replacing numbers with text, using

descriptive language, and adding metadata). Then, we use the fine-tuned Clinical-Longformer

model to extract language embeddings of size 768.

Training Methodology: For each prediction task, we compare two approaches: our TabText

framework (see Figure 4.2) and the standard Tabular approach in which only the tabular

data is given as input to the machine learning model. We use gradient-boosted tree models

in all experiments performed. For all reported results, the average performance is computed

over 10 random 75%-25% train-validation splits (identical 10 splits across all experiments)

for a fair comparison. The optimal model is selected using a hyperparameter grid search (see

details in the appendix) based on its performance on the validation set. The hyperparameters

that we grid-searched to obtain the optimal XGBoost model are:

• Number of estimators: {100, 200, 300},

• Maximum depth: {3, 5, 7},

• Learning rate: {0.05, 0.1, 0.3},

• L2 regularization parameter: {1e−2, 1e−3, 1e−4, 1e−5, 0}.

Implementation: All our code is written in Python 3.8.2. We trained all models using one

Intel Xeon Platinum 8260 or Intel Xeon Gold 6248 CPU and GPU. We conducted all of our

predictive experiments using the XGBoost (Chen and Guestrin 2016) library from Python.

The Clinical-Longformer model is directly accessed from HuggingFace.

4.4.1 High Performance with Minimal Pre-Processing

The TabText framework can be leveraged to replace heavy data cleaning by simply creating a

text representation for each data sample using the information as it appears in the raw data
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tables. In particular, columns that require data cleaning to be converted to appropriate data

types can be simply transformed into text. For example, the sentence corresponding to a

numerical column for a sedation score with the value “-4 → deep sedation” can be written as

“sedation score is -4 → deep sedation”, as opposed to parsing the original string into a numeric

value of -4 as part of the traditional pre-processing steps. Therefore, TabText representations

enable us to quickly build baseline machine learning models utilizing the tabular data in its

raw form.

We predict the same nine classification tasks described in Section 4.2.2 using the raw

tables without data cleaning. Only minimal data preprocessing was required, including

constructing the meta information of the tables and categorizing columns for different

language representations, which is estimated to have taken only a couple of hours of manual

work. We then followed our TabText pipeline to train a gradient-boosted tree model for

each classification task. As shown in Table 4.3, the baseline TabText models with minimally

processed data already achieve high out-of-sample AUC performance, where the average AUCs

across 10 random 75%-25% train-validation splits are close or above 0.8 for all prediction

tasks except for Enter ICU 48 hr, which is a notoriously difficult classification task (Na et al.

2023).

Prediction Task TabText Baseline AUC
Discharge 24 hr 0.803
Discharge 48 hr 0.790
Enter ICU 24 hr 0.801
Leave ICU 24 hr 0.839
Enter ICU 48 hr 0.757
Leave ICU 48 hr 0.835

Expire 24 hr 0.943
Expire 48 hr 0.933

Mortality 0.895

Table 4.3: Out-of-sample average AUCs achieved by baseline TabText models with minimally
processed data and across 10 random train-validation splits. All models are highly accurate,
reaching practically implementable benchmarks in hospital systems.
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4.4.2 Enhanced Performance with Contextual Representation

We next process the data following the same cleaning steps as in Section 4.2.1 and feed into

the TabText Framework from Figure 4.2. We perform experiments on the same data and

classification tasks as in Section 4.4.1 but using the cleaned data this time. The results

obtained using the standard Tabular approach and our TabText framework are shown in

Table 4.4. The average AUCs across 10 random 75%-25% train-validation splits for the Enter

ICU 48 hr and Discharge 48 hr prediction task are improved by an additive increment of

1.2%–1.4%. We also see a substantial but smaller benefit for Mortality risk prediction. For

the remaining tasks, Tabular and TabText achieve similar performance with differences in

average AUC smaller than 0.25%. We also notice in Figure 4.4 that the largest TabText

benefits occur for the classification tasks with the lowest Tabular performance (high variability

and low AUCs), while practically no effect was observed for the tasks with stable Tabular

results (low variability and high AUCs).

4.4.3 Larger Benefits for Harder Predictions

To better understand the regimes in which TabText provides the largest improvements in

AUC performance, we repeat this experiment using smaller and larger training data sets. For

each prediction task, we consider the original training data size as well as smaller data sizes

(ranging from 2000, 3000, 5000, 10000, 25000, and 50000 patient days). We plot in Figure 4.5a

(resp. Figure 4.5b) the average (resp. worst-case) TabText AUC improvement percentage

across 10 random 75%-25% train-validation splits, where the x-axis corresponds to the average

(resp. worst-case) AUC of the standard Tabular approach and the y-axis quantifies the relative

percentage improvement on average (resp. worst-case) AUC achieved with TabText. Each

scatter point represents the result of a prediction task (denoted by legends) on one of the

7 different data subsets. As in Section 4.4.2, we observe larger improvements on the more

difficult prediction tasks with Tabular AUCs below 85%. On easier prediction tasks, where
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Figure 4.4: Boxplots for the out-of-sample AUCs across 10 random train-validation splits
using Tabular vs. TabText models. We see that the largest TabText benefits occur for
the classification tasks with high variability and low AUCs, while practically no effect was
observed for the tasks with low variability and high AUCs.109



Tabular models already achieve AUCs over 90%, the benefit of TabText is near or below

zero. When the Tabular AUCs are less than 78%, Tabtext brings a positive improvement

on all results, including several instances of improvement over 5–6%. This suggests more

potential benefits of augmenting tabular models with TabText representations for tasks with

low Tabular performance.
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(b) Worst-case out-of-sample AUC im-
provement at varying data sizes.

Figure 4.5: TabText AUC improvement over the standard Tabular approach at varying data
sizes. We observe that the improvement of TabText is most prominent when standard Tabular
models do not perform well. For high-performing tasks, the advantage is less pronounced. An
important implication of this observation is that challenging medical prediction tasks with a
lack of difficult-to-observe risk factors or a small sample size can benefit from our framework.

4.5 Conclusion

We first developed a system of machine learning models predicting short-term discharge,

ICU risk, expiration, as well as end-of-stay mortality. All models achieve state-of-the-art

predictive accuracy. These models are deployed in 7 hospitals and used by over 200 medical

staff at HHC, who experienced first-hand benefits to shorten the length of stay, decrease the

cost of care, enhance patient safety, and improve the overall patient experience. Empirically,

we observe a reduction in average patient length of stay by 0.63 days and project an annual

contribution margin increase of $67 million dollars.

Next, we introduce TabText, a novel framework for processing tabular data by converting
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it into a text representation that captures important contextual information such as column

descriptions. Our experiments show that augmenting standard tabular data with our TabText

representations can improve the performance of standard machine learning models across

all healthcare predictions tasks considered, with larger improvements observed for the more

challenging tasks. In addition, we demonstrate the efficiency of TabText in simplifying

data pre-processing and cleaning, offering an alternative and flexible pipeline for generating

high-performing baseline models for hospitals that have small number of patients or non-

standardized, disorganized medical records.

Our experiments reveal the potential of TabText for improving the performance of

standard machine learning models, and there are several research directions for further

improving our framework. For instance, TabText relies on the use of NLP models that

could generate high-quality embeddings for the input text, which motivates the development

of more LLMs pre-trained with domain-specific data. Moreover, augmenting tabular data

with TabText embeddings adds a layer of complexity to the interpretability of the model

output, and developing tools for maintaining the interpretability of the tabular data would

be an interesting direction for future research. TabText is a general framework that can

be particularly useful for difficult classification tasks (for instance, those with limited data

availability), and we hope that this work motivates further research for leveraging language

in general machine learning applications.
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Chapter 5

Multistage Stochastic Optimization via

Kernels

5.1 Introduction

Multistage stochastic optimization arises in numerous applications (e.g., supply chain man-

agement, energy planning, inventory management among others) and remains an important

research area in the optimization community (Birge and Louveaux 2011, Shapiro et al. 2014,

Bertsimas et al. 2011). In these problems, the decision variables are split across multiple

periods and decisions are made sequentially as more information becomes available. The goal

is to make high quality decisions that minimize the expectation of a given cost function by

accurately modeling future uncertainty. In practice, decision makers can use historical data

to get a sense of the future uncertainty. For instance, consider a retailer selling products with

short life cycles who needs to make frequent orders to restock inventory without knowing the

future demands. To minimize costs the retailer must use the remaining inventory quantities

as well as historical data to gain insight into future demands. Another example is energy

planning, in which operators decide daily production levels without knowing how weather

conditions will affect the output of the wind turbines. In this case historical wind patterns
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are valuable for better planning.

Besides historical data, auxiliary covariates are often available and can help predict

uncertainty. For example, in the fashion industry, color and brand are useful factors to

predict demand of a new item. Accordingly, recent work has focused on using predictive

analytics to leverage available side information and historical data to make better decisions.

Ban et al. (2019) for instance, fit covariate and historical data to a regression model and

prove theoretical guarantees for the dynamic procurement problem. Another approach is

that of Bertsimas et al. (2022c), which considers an uncertainty set around each data sample

and applies robust optimization tools to find linear decision rules that are asymptotically

optimal under mild conditions. This framework was generalized in Bertsimas and McCord

(2019), where machine learning methods are incorporated to find weights that produce more

accurate approximations of the objective. However, these dynamic methods are affected by

the curse of dimensionality; they require scenario tree enumeration and can require many

hours for solving problems with only a few stages.

In this paper, we propose a non-parametric, data-driven and tractable approach to solving

multistage stochastic optimization problems. By restricting the decision variables to be in a

reproducing kernel Hilbert space (RKHS) generated by a universal kernel, we can approximate

a large class of functions using non-parametric functional representations. We incorporate

sparsification techniques based on function subspace projections that allow our proposed

algorithm to overcome the complexity growth that kernel methods introduce when directly

applying the Representer Theorem to large data sets. The input to our algorithm is historical

data and we make no assumptions on the correlation structure of the uncertainties across

stages. We perform computational experiments on real-world multistage stochastic problems,

and show how our method not only produces near optimal solutions but also remains tractable

in higher dimensions and with large data sizes.
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5.1.1 Related Literature

Kernel methods have been used in recent work to solve stochastic multistage optimization

problems with side information. Hanasusanto and Kuhn (2013), for example, approximate

the objective using kernel regression, and Pflug and Pichler (2016) apply a kernel density

estimator to the historical data to develop a non-parametric predict-then-optimize approach

that comes with asymptotic optimality guarantees under strong conditions. However, these

are local methods in which the predictions are made based only on those data points that are

similar to the current observation. As noted in Bertsimas and Koduri (2022), such approaches

require more data and perform worse on high dimensions compared to global methods, which

instead optimize over functional variables that make the predictions.

The Machine Learning community has long applied kernel methods to solve online learning

problems (Wheeden 2015, Norkin and Keyzer 2009), but they have focused purely on predictive

and not on prescriptive tasks. More recently, Bertsimas and Koduri (2022) has aimed to

extend kernel methods to data-driven, single-period optimization problems with auxiliary

information by using the Representer Theorem to transform the optimization over functions

into an optimization over parameters. They show that this approach overcomes the curse of

dimensionality; however, its main disadvantage is that the number of parameters per decision

grows linearly with the number of observations, resulting in function representations that

are as complex as the size of the data and that become potentially intractable especially in

multistage settings.

Works on stochastic optimization in a RKHS have developed multiple heuristics to reduce

the number of parameters in the function representation. For instance, Zhang et al. (2013)

uses random dropping, Kivinen et al. (2004) introduces forgetting factors, and Honeine

(2011) as well as Engel et al. (2004) apply compressive sensing techniques. These approaches

sucessfully achieve sparser functional representations, but they usually produce suboptimal

approximations (Honeine 2011, Engel et al. 2004).
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We instead follow the approach from Koppel et al. (2016) of applying Functional Stochastic

Gradient Descent (FSGD) and projecting the iterates onto sparse subspaces that are found

by removing parameters associated with data points that do not contribute much to the value

of the decisions (Pati et al. 1993). This approach maintains optimality while addressing the

complexity growth that kernel methods exhibit as the data size increases. Intuitively, since

stochastic gradient descent iterates are a noisy signal for the optimal solution, by projecting

the iterates to have small model order we can ignore some of the noise while preserving the

goal signal. The sparse subspaces of the RKHS onto which projections are made can be

effectively found using kernel orthogonal matching pursuit (Vincent and Bengio 2002), an

algorithm which given a function f and an error bound ϵ, generates a sparse approximation

of f that is in a neighborhood of f of radius ϵ in Hilbert norm. Koppel et al. (2016) show

that for a specific choice of ϵ and of step-size for the FSGD algorithm, the projected FSGD

iterates produce decisions that converge in mean to the optimal solution.

5.1.2 Contributions

In this paper, we propose a novel data-driven approach for solving multistage stochastic

optimization problems with side information using kernels. Specifically, we represent the

controls as elements of a reproducing kernel Hilbert space and use loss-minimizing machine

learning methods to predict them. In addition, we incorporate sparsification techniques

to reduce the total number of parameters per control. We prove that this approach is

asymptotically optimal, guaranteeing near optimal approximations for problems with large

amounts of data. We also show that our approach remains computationally tractable in high

dimensions and with large data sizes. In detail, our contributions are as follows.

1. We propose a novel data-driven approach for multistage stochastic optimization prob-

lems with side information based on reproducing kernel Hilbert spaces. The approach

takes as input historical data and minimizes the regularized empirical loss by applying

functional stochastic gradient descent to optimize the decision rules, i.e., the functions
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which specify what decision to make in each stage. To the best of our knowledge,

this is the first tractable application of reproducing kernel Hilbert spaces to multi-

stage optimization problems with large data sizes. While a kernel based formulation

of the multistage stochastic optimization problem is briefly suggested (without any

computational experiments) in Bertsimas and Koduri (2022), their non-stochastic and

non-sparse approach is not tractable for large data sizes since both time and memory

requirements increase cubically with the amount of data.

2. We extend sparsification techniques used by Koppel et al. (2016) to multistage opti-

mization settings in order to reduce both, space and time complexities of our algorithm.

Specifically, we use Functional Stochastic Gradient Descent (FSGD) to minimize the

objective and project each iterate onto a sparse subspace that is found by removing

parameters corresponding to data points with small contributions. We show that

applying FSGD without any sparsification results in methods that do not scale to

larger number of periods or data sizes. If sparsity is not added, the computational

cost and the storage requirement increase quadratically with the data size. With the

proposed method, however, both space and time complexities present linear growth

with a constant factor that depends on the step size of the FSGD algorithm.

3. We prove that if the loss function is convex, Lipschitz and differentiable almost every-

where, then the expected loss achieved with our algorithm converges in probability to

the expected loss of the optimal decision rules in the space of continuous functions.

4. We demonstrate across several instances of inventory management problems that the

proposed method finds near-optimal solutions using only a few parameters and with

very low computational times. We show that increasing the number of periods, the
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dimension of the data, the dimension of the controls or the data size does not affect the

tractability of our approach.

The paper is organized as follows: Section 5.2 introduces the exact framework for the problem

being solved, Section 5.3 contains the data-driven formulation of the multistage stochastic

optimization problem with side information, Section 5.4 presents the proposed algorithm,

Section 5.5 states the convergence theorems, Section 5.6 analyses the complexity of the

proposed method, and Section 5.7 shows the results for several computational experiments.

5.2 Problem Setting

We consider a discrete-time, convex, multistage stochastic problem over a finite horizon T .

Initially, we observe some auxiliary covariates x ∈ X ⊆ Rq0 . Then, random disturbances wt

that belong to a known set Wt ⊆ Rqt are sequentially observed over time. At every stage

t, after observing the covariates x and the previous disturbances (w1, . . . ,wt−1), a decision

ut ∈ Rrt is made. The total cost for the observed sequence of covariates, disturbances and

decisions is c(u1, . . . ,uT ,x,w1, . . . ,wT ).

A standard decision rule ū(·) = (ū1(·), . . . , ūT (·)) consists of functions ūt : W1 ×

. . . × Wt−1 → Rrt that at each stage t take as input the disturbances up to that point

and output a decision for the given stage. Specifically, denoting w := (w1, . . . ,wT ) and

w1:t := (w1, . . . ,wt), we have that the standard decision rule ū(·) applied to w outputs

ū(w) =
(
ū1, ū2(w1:1), . . . , ūT (w1:T−1)

)
. The multistage optimization problem over the space

of continuous decision rules F̂ conditioned on some observed covariates x0 can then be written

as

min
ū∈F̂

Ew|x [c(ū(w),x,w) | x = x0] , (5.1)

where c(·) is a convex loss function. As noted in Bertsimas and Koduri (2022), the conditional

problem in Eq. (5.1) can be formulated as an unconditional optimization problem by

augmenting the domain of the decision rules to also take the covariates as input, and then
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evaluating the observed covariates in the decision rules found. In this paper, we adopt the

same approach and therefore we consider augmented decision rules u(·) =
(
u1(·), . . . ,uT (·)

)
with augmented domains ut : X ×W1 × . . . ×Wt−1 → Rrt . The augmented decision rule

applied to the data point w with covariates x outputs

u(x,w) =
(
u1(x),u2(x,w1:1), . . . ,uT (x,w1:T−1)

)
.

From now on we will join the covariates and the disturbances into a single random variable

z := (x,w) to simplify notation, and we index z starting at time 0 instead of time 1, so

that z0:t := (x,w1, . . . ,wt). Defining F as the space of continuous augmented decision rules,

and Z := X ×W1 × . . .×WT , we obtain that solving Eq. (5.1) is equivalent to solving the

problem

min
u∈F

Ez

[
c
(
u(z), z

)]
(5.2)

and evaluating the optimal solution u∗(·) at x = x0 to obtain the standard decision rule

ū∗(w) = u∗(x0,w).

5.3 Reproducing Kernel Hilbert space formulation for

Multistage Optimization

We now propose a data-driven approach for multistage stochastic optimization problems

with side information based on a Reproducing Kernel Hilbert space (RKHS). We include

an overview of these spaces in Appendix D.1. We will assume that we have historical

observations S = {zn}Nn=1 = {(xn,wn
1 , . . . ,w

n
T )}Nn=1 that are independently and identically

distributed according to some unknown distribution. Let Kt : X ×W1 × . . .×Wt−1 → R

be a positive universal kernel and Ht the reproducing Kernel Hilbert space generated by Kt.

We consider the Cartesian product Hilbert space, H := Hr1
1 × . . .×Hrt

T with inner product
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defined by

〈(
(u1,1, ... , u1,r1), ... , (uT,1, ... , uT,rT )

)
,
(
(v1,1, ... , v1,r1), ... , (vT,1, ... , vT,rT )

)〉
H

:=
T∑
t=1

rt∑
i=1

⟨ut,i, vt,i⟩Ht ,

where ⟨u, v⟩Ht corresponds to the inner-product between u and v with respect to the Hilbert

space Ht. We can approximate the solution of problem (5.2) by applying its empirical

regularized version and restricting the decision rules to be in H:

min
u∈H

1

N

N∑
n=1

c(u(zn), zn) +
λ

2
∥u∥2H. (5.3)

Even though problem (5.3) is not equivalent to problem (5.2), if λ vanishes with the data

size then the regularized empirical average becomes a closer estimate of the expectation as

N increases. We will then focus on solving problem (5.3), and later in Corollary 5.5.5 we

show that as the data size goes to infinity, the expected loss converges in probability to the

optimal solution of problem (5.2).

One way to solve the regularized empirical problem (5.3) is to use the multidimensional

version of the Representer Theorem (Wahba 1990, Soentpiet et al. 1999, Schölkopf et al. 2002,

Shawe-Taylor et al. 2004), which says that for each t = 1, . . . , T there exists a scalar matrix

At such that the optimal solution to (5.3) satisfies

ut(·) = AtKt(Zt, ·),

where Kt(Z, ·) := [Kt(z
1, ·), . . . , Kt(z

N , ·)]T , and the time subscript for a data matrix

D = [d1, . . . ,dN ] refers to Dt = [d1
0:t−1, . . . ,d

N
0:t−1]. However, with this approach each

decision ut,i has as many scalar parameters as data points, which generates both memory

and performance problems as the number of data points becomes large. We instead want an

algorithm for which more data yields better results overall, without increasing its complexity
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or worsening performance. General sparisification techniques like those found in Kivinen

et al. (2004), Zhang et al. (2013) or Engel et al. (2004), successfully reduce the number of

parameters; however they do so at the cost of compromising optimality. We therefore take

the pruning approach developed in Koppel et al. (2016) to solve problem (5.3); we apply

functional gradient descent to minimize the objective and at each iteration we drop those

parameters that add near zero contribution to the value of the decisions, ensuring convergence

to an optimal solution.

5.4 Sparse Multistage Optimization with Kernels

In this section, we extend sparsification techniques used by Koppel et al. (2016) to the

multistage optimization setting described in the previous section in order to reduce both,

space and time complexities of our algorithm. Specifically, we describe an iterative algorithm

for solving (5.3) using Functional Stochastic Gradient Descent and sparse projections. In

order to ease notation, we first make the following definitions for an augmented decision rule

u:

E(u) := Ez [c(u(z), z)] , (5.4)

Eλ(u) := E(u) +
λ

2
∥u∥2H, (5.5)

Eλ
S(u) :=

1

N

N∑
n=1

c
(
u(zn), zn

)
+
λ

2
∥u∥2H, (5.6)

Eλ
n(u) := c

(
u(zn), zn

)
+
λ

2
∥u∥2H. (5.7)

The algorithm relies on the fact that the expectation of Eλ
n(u) over data yields Eλ(u) to

make stochastic gradient updates that converge to the optimal solution, while at the same

time removing unnecessary parameters along the descent trajectory.
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5.4.1 Functional Stochastic Gradient Descent (FSGD)

Thanks to the fact that a RKHS preserves distance and to the continuity properties of real

spaces, a derivative with respect to an element f of a RKHS (a function) can be well defined

and it satisfies the standard properties of derivatives of real functions. Following Kivinen et al.

(2004), we can then derive a generalization of the Stochastic Gradient Descent algorithm for

elements of H. This method is referenced as functional stochastic gradient descent.

We compute the gradient of Eλ
n(u) with respect to the functions u using the identity

ut,i(z0:t−1) = ⟨K(z0:t−1, ·), ut,i⟩H, which is known as the reproducing property of kernels.

Differentiating on both sides of this equation we obtain

∂ut,i(z0:t−1)

∂ut,i
=
∂
〈
ut,i, Kt(z0:t−1, ·)

〉
∂ut,i

= Kt(z0:t−1, ·), ∀ i ∈ [rt], t ∈ [T ], (5.8)

where [K] = {1, . . . , K}. The stochastic functional gradient can then be computed using the

chain rule:

∇utc
(
u(zn), zn

)
= ∇

ut(z0:t−1)
c(u(zn), zn)Kt(z

n
0:t−1, ·), (5.9)

=⇒ ∇utE
λ
n(u) = ∇

ut(z0:t−1)
c(u(zn), zn)Kt(z

n
0:t−1, ·) + λut, (5.10)

where ∇
ut(z0:t−1)

c
(
u(zn), zn

)
corresponds to the derivative of c

(
u(z), z

)
with respect to its

scalar arguments u1t (z0:t−1), . . . , u
rt
t (z0:t−1) evaluated at zn:

∇
ut(z0:t−1)

c(u(zn), zn) =

[
∂c(u(zn), zn)

∂u1t (z0:t−1)
, . . . ,

∂c(u(zn), zn)

∂urtt (z0:t−1)

]
.

Thus, the update rule for the standard functional stochastic gradient descent (FSGD)
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algorithm becomes

un+1
t =unt − ηn∇utE

λ
n(u

n)

= (1−ηnλ)unt − ηn∇ut(z0:t−1)
c(u(zn), zn)Kt(z

n
0:t−1, ·), (5.11)

where ηn is the step-size of the algorithm and the sequence of controllers is initialized at some

fixed function u0 ∈ H.

Using the update rule in Eq. (5.11), we can easily show by induction on n that if the

initial decision is of the form u0
t (·) = A0

tKt(D
0
t , ·) for some initial data matrix D0 and

initial parameters A0
t , then the solutions un produced at every iteration also have this form.

Specifically, for each n > 0 and for all t ∈ [T ], there exist a scalar matrix An
t and a data

matrix Dn such that unt (·) = An
t · Kt(D

n
t , ·). In fact, this parametrization allows us to

rewrite the functional update rule in Eq. (5.11) as a nonfunctional (scalar) update on the

data matrix Dn and the parameters An
1 , . . . ,A

n
T as follows:

Dn+1 = [Dn, zn], An+1 =
[
(1− ηnλ)A

n, ηn∇u(z)c
(
un(zn), zn

)]
,

where

An :=


An

1

...

An
T

 , and ∇u(z)c
(
u(z), z

)
:=


∇u1(z0)c

(
u(z), z

)
...

∇uT (z0:T−1)c
(
u(z), z

)
 .

Notice that this update forces the data matrix to have one more column after every iteration,

which brings us back to the same problem we had when applying the Representer Theorem.

However, because this is an iterative algorithm, we will reduce the dimension of the data

matrix Dn after every iteration by measuring the contribution of each individual observation

zn and removing those observations that added almost no value to the decision.
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5.4.2 Proximal Projection

We now describe how to reduce the number of observations in the data matrix Dn with the

goal of reducing the dimension of the parameters An. We observed that the Representer

Theorem as well as the FSGD algorithm generate decisions ut,i that belong to the subspace

of Ht spanned by the functions Kt(z
1
0:t−1, ·), . . . , Kt(z

N
0:t−1, ·). What we want is to produce

decisions that belong to a smaller subspace, one generated using fewer observations.

Suppose that D̃n+1, and Ãn+1 are the values resulting from the FSGD iterative rule in

Eq. (5.11), i.e,

D̃n+1 = [Dn, zn] and Ãn+1 =
[
(1− ηnλ)A

n, ηn∇u(z)c(u
n(zn), zn)

]
,

which represent the decisions ũn+1
t (·) = Ãn+1

t Kt(D̃
n+1
t , ·), and assume that we want to

generate a decision that only uses observations from a smaller data matrix Dn+1. We

can approximate ũn+1 with a decision un+1 that only depends on observations in Dn+1

by projecting each decision ũn+1
t,i onto the subspace of Ht that is spanned by the functions

Kt(D
n+1
t , ·). If we denote this projection by ΠDn+1(·) then we can define

un+1 := ΠDn+1(ũn+1) = ΠDn+1

(
(1− ηnλ)u

n − ηn∇uc(u
n(zn), zn)

)
. (5.12)

The projection operator can be computed by solving the least squares problem

An+1 = argmin
Ân+1

T∑
t=1

∥∥∥Ãn+1
t Kt(D̃

n+1
t , ·)− Ân+1

t Kt(D
n+1
t , ·)

∥∥∥2
Hrt

t

, (5.13)

which has a closed form solution given by

An+1
t =

(
Kt[D

n+1
t ,Dn+1

t ]
)−1

Kt[D
n+1
t , D̃n+1

t ]Ãn+1
t , for all t ∈ [T ]. (5.14)

We then have a simple way to project the FSGD solution onto the Hilbert subspace generated
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by a smaller data matrix Dn+1, but we are still left the question: how do we find the right

data matrix Dn+1? As in Koppel et al. (2016), we use a method called destructive kernel

orthogonal matching pursuit (KOMP) with pre-fitting, which was developed in Vincent and

Bengio (2002). The KOMP algorithm takes as input a function ũ ∈ H (represented by its

data matrix D̃ as well as the corresponding parameters Ã), and a maximum error bound ϵ.

For each element d in the data matrix D̃, the algorithm computes the approximation function

u = ΠD̃\{d}(ũ) obtained by removing observation d from D̃. Next, the algorithm removes the

observation that produced the lowest error, updates the current function accordingly and then

repeats this procedure to remove the next element. The algorithm stops removing elements

when the difference between the current function and the best approximation function is

larger than ϵ. The exact algorithm can be found in Algorithm 1.

Algorithm 1: Kernel Orthogonal Matching Pursuit (KOMP)
Input: Function ũ represented by data matrix D̃ with M̃ columns, parameters Ã,

and ϵ > 0.
Initialize D = D̃, M = M̃ , A = Ã, and u = ũ ;
while D is non-empty do

for j = 1, . . . , M̃ do
Find minimal approximation error with data matrix element dj removed:

γ2j =
∥∥u− ΠD\{dj}(u)

∥∥2
H

= min
Â

T∑
t=1

∥∥At ·Kt(Dt, ·)− Ât ·Kt(Dt\{djt}, ·)
∥∥2
Ht
.

end
Find the index with minimum approximation error: j∗ = argmin γj
if γj∗ > ϵ then

stop;
else

Prune data matrix: D = D\{dj∗};
Update M =M − 1;
Update the parameters:
A = argminÂ

∑T
t=1

∥∥At ·Kt(Dt, ·)− Ât ·Kt(Dt\{djt}, ·)
∥∥2
Ht

.
end

end
Output: D, A, u.
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5.4.3 The Algorithm

By combining Functional Stochastic Gradient Descent with the Kernel Orthogonal Matching

Pursuit we are able to develop an algorithm that approximates the minimizer of Eλ(u) with

decision rules that are represented using only a few parameters. The algorithm is initialized

with a decision rule u0
t = A0Kt(D

0, ·), which in practice is usually set to 0. Then, in each

iteration, it performs one FSGD step and then applies the KOMP algorithm in order to obtain

an approximated decision with fewer observations. Notice that if we define the projected

gradient ∇̃ by

∇̃uE
λ
n(u

n) :=
un − ΠDn+1 [un − ηn∇uE

λ
n(u

n)]

ηn
, (5.15)

then we can write the iterative updates of this procedure in the same form as the standard

iterative updates of FSGD:

un+1 = un − ηn∇̃uE
λ
n(u

n). (5.16)

Since stochasticity does not guarantee a strict objective descent, the algorithm keeps track of

the best decision rules observed and at the end it outputs the decision u∗
S with the lowest

empirical error Eλ
S with respect to the data set S. The exact formulation can be found in

Algorithm 2.

5.5 Convergence Analysis

In this section, we show that for a specific choice of step-size the objective value of the

decision output by the algorithm converges to the objective value of the true minimizer. We

first present the three main assumptions that we make on the problem settings in order to
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Algorithm 2: Sparse Multistage Optimization via Kernels [SMOK]
Input: Data points S = {zn}n=1,...,N , error bounds ϵn, learning rate ηn, and initial

decision u0 represented with data matrix D0 and parameters A0.
for n = 1, . . . , N do

Take FSGD step using the nth sample zn to obtain

D̃n+1 = [Dn, zn] and Ãn+1=
[
(1− ηnλ)A

n, ηn∇u(z)c(u
n(zn), zn)

]
.

Reduce the data matrix and number of parameters using

Dn+1,An+1,un+1 = KOMP(D̃n+1, Ãn+1, ϵn)

end
Output: u∗

S = argminu∈{u1,...,uN} E
λ
S(u).

guarantee convergence of the algorithm:

Assumption 5.5.1. The data space Z is compact, the kernels Kt are universal, and there

exists a constant κ such that

Kt(z1:t−1, z1:t−1) ≤ κ, ∀ z ∈ Z, ∀ t ∈ [T ].

Assumption 5.5.2. There exists a constant C such that for all z ∈ Z the loss function

satisfies ∣∣c(u, z)− c(u′, z)
∣∣ ≤ C∥u− u′∥2, ∀ u,u′ ∈ Rr1+...+rT .

Assumption 5.5.3. The loss function c(u(z), z) is convex and differentiable with respect to

the scalar arguments u(z) for all z ∈ Z.

Assumption 5.5.1 naturally holds for most data domains, and this is a necessary assumption

to ensure that the Hilbert norm of the optimizer of Eλ is bounded. Assumption 5.5.2 holds

whenever the cost function c as well as the constraint functions gq are Lipschitz. This

assumption implies that the gradient of c with respect to the scalars u(z) is bounded as

∥∇u(z)c(u(z), z)∥2 ≤ C, (5.17)
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which in turn allows us to upper bound the expected norm of the gradient E
[
∥∇uE

λ
n(u)∥2Ht

]
.

Assumption 5.5.3 is a standard condition for convergence of descent methods, and it can be

relaxed to the case in which the loss function is almost everywhere differentiable by applying

subgradients instead of gradients.

Theorem 5.5.4. Let u∗
S := argminu∈{u1,...,uN}E

λ
S(u) be the decisions generated by Algorithm

2 when given the set S = {zn}Nn=1 as input, and let uλ be the true minimizer of Eλ(u) over

H. If we use constant step-size η and constant error bounds ϵ = P2η
2 for some constant

P2 > 0, then under Assumptions 1-3, we have that

E
[
Eλ(u∗

S)− Eλ(uλ)
]
≤ O

(η
λ

)
.

Proof. See Appendix D.3.

Corollary 5.5.5. Let u∗ be the true minimizer of E(·) over F . If we use constant step-size

with η = P1√
N
< 1

λ
, and P1 > 0, constant error bounds ϵ = P2η

2 for some constant P2 > 0, and

regularization parameter λ such that λ −−−→
N→∞

0 and λ
√
N −−−→

N→∞
∞, then under Assumptions

1-3 we have that

lim
N→∞

E[|E(u∗
S)− E(u∗)|] = 0. (5.18)

Proof. See Appendix D.3.

Since L1 convergence implies convergence in probability, the corollary also implies that

the expected loss achieved with Algorithm 2 converges in probability to the optimal solution.

In addition, from Theorem 5.5.4 we observe that setting η = P1√
N

makes the objective

value of the solution found by Algorithm 2 converge to the optimal solution of problem (5.3)

with a rate of convergence of O
(

1
λ
√
N

)
. Convergence can also be achieved under diminishing

step size, although with a slower rate of O
(

1
λ logN

)
. In practice, a diminishing step size or a

very small constant step size might make our data matrix Dn grow arbitrarily large, since
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little or no pruning would be done at each iteration. A constant step size is then what allows

us to control the trade-off between accuracy and memory required; we want to use a step size

η that is small enough to make the error in Theorem 5.5.4 small, but large enough for the

pruning to be done.

5.6 Complexity Analysis

Let Mn be the size of the data matrix Dn during the nth iteration of Algorithm 2. We analyze

both space and time complexities per iteration in terms of Mn.

Space: At each iteration we need to store the kernel matrix Kt[D
n
t ,D

n
t ] ∈ RMn×Mn and its

inverse as well as the parameters An
t ∈ Rrt×Mn for each t. This results in O(TM2

n+Mn

∑T
t=1 rt)

memory requirement.

Time: For the FSGD step, computing the gradient takes O(Mn

∑T
t=1 rt) time. Computing

from scratch the kernel matrices Kt[D
n
t ,D

n
t ] ∈ RMn×Mn and its inverses (needed for the

pruning step) takes O(M2
n

∑T
t=0 qt) and O(TM3

n) time respectively. However, by using a

recursive rule to compute these matrices in terms of the corresponding values in the previous

iteration, the times become O(Mn

∑T
t=0 qt) and O(M2

n) respectively. In addition, the matrix

multiplication in Eq. (5.14) takes O(M2
n) time for each t. Since at most Mn elements can be

removed from the dictionary at the nth iteration, we obtain that in the worst case scenario

the time per iteration becomes O(TM3
n +M2

n

∑T
t=0 qt).

Let us now discuss the size of Mn. In the worst-case, we know that for all iterations the

size of the data matrix is upper bounded by the covering number M of the data domain (Zhou

2002). More specifically, for fixed step size η and fixed error bound ϵ = P2η
2, we have that if

the data space Z is compact (Assumption 5.5.1), then Mn is upper bounded by the minimum

number of balls of radius P2η
C

needed to cover the compact set K1(Z0, ·)× . . .×KT (Z0:T−1, ·)
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of kernel transformations (see for example the proof of Theorem 3 in Koppel et al. (2016)).

While an exact expression for this cover number M is unknown, the number is finite (Anthony

and Bartlett 2009) and it decreases as η or P2 increases. In particular, the maximum number

of samples in the data matrix depends on the step size η and the constant P2, but not on the

data size N .

Denoting the cover number described above by M and considering fixed values of T and

of the dimensions r1, . . . , rT and q0, . . . , qT , we obtain that the worst case total time across

the N iterations of Algorithm 2 can be upper bounded by O(NM3) and worst case total

space required is O(NM2). While the worst case scenario cannot happen for all iterations

(for example, if M elements are pruned in one iteration, the next iteration is very fast), this

bound is enough to conclude that total time and total space are in the worst case linear in the

number of iterations. Notice that if we removed the pruning step, the entire algorithm would

require Ω(N2) space to store the kernel matrix and Ω(N2) time for computations, showing

that Algorithm 2 indeed reduces the overall complexity as the number of iterations becomes

much larger than M .

5.7 Computational Experiments

We perform computational experiments for the inventory control and the shipment planning

problems to analyze the average out-of-sample performance as well as the tractability of the

proposed algorithms. For both applications we compare the SMOK algorithm proposed in

Algorithm 2, to the MOK algorithm (Multistage Optimization with Kernels), which is the

result of applying the FSGD algorithm without the pruning step. Moreover, we compare the

SMOK and MOK algorithms against three other benchmarks:

1. SRO: Sample robust optimization approach from Bertsimas et al. (2022c), in which all

samples are assigned equal weight 1
N

. We use uncertainty sets bounded by ϵ in the ℓ1

norm as well as multi-policy approximation with linear decision rules.
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2. SRO-knn: Sample robust optimization with covariates approach developed in Bertsimas

and McCord (2019), using uncertainty sets bounded by ϵ in the ℓ1 norm as well as

multi-policy approximation with linear decision rules. The weights were obtained using

the kN -nearest neighbors approach.

3. SAA-knn: Sample average approximation method, which is equivalent to the SRO-knn

approach with (ϵ = 0).

We analyze the computational results for several instances of the inventory control problem.

First, we consider a high dimensional instance of the problem to show the tractability of the

SMOK algorithm as well as to compare its performance against other methods. Next, we

analyze how the performance of the proposed algorithms varies with the dimensions of the

problem (number of periods, data size, dimension of the data as well as dimension of the

controllers). For instances in which the number of periods is less than 5 we are also able to

compute lower bounds for the loss achieved by the optimal decision rules, which enables us

to quantify the optimality gap of the proposed methods.

For the shipment planning application we reproduce the results from Bertsimas and

McCord (2019) to compare the SMOK and MOK algorithms against sample robust opti-

mization (with and without covariates) and sample average approximation. For training all

these benchmarks we use the same parameter values reported in Bertsimas and McCord (2019).

Handling Constraints: Often the sequence of decisions u(z) must satisfy certain convex

constraints for all possible disturbances, transforming the problem of interest into

min
u∈F

Ez

[
c
(
u(z), z

)]
s.t. gq

(
u(z)

)
≤ 0, ∀ z ∈ Z, ∀ q ∈ [Q].

(5.19)

We address this problem by relaxing the constraints into the objective with a penalty function.

More specifically, in Algorithm 2 we replace the cost c(u(z), z) with a new loss function cψ
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defined as

cψ
(
u(z), z

)
:= c

(
u(z), z

)
+ ψ

Q∑
q=1

max
(
0, gq

(
u(z)

))2
, (5.20)

where ψ is the penalty parameter. Although feasibility is not guaranteed, the constraint

violation is expected to vanish for large enough ψ (see Lemma D.2.7). Convergence analy-

sis for the SMOK algorithm applied to this constrained problem can be found in Appendix D.3.

Parameter Settings: We train the SMOK and MOK algorithms using Gaussian kernels

and constant step size. The values for λ, ψ and θ were found using validation, and the

decisions were projected onto the space of feasible decisions before making any evaluations,

both at training and testing stages (this means that the decisions evaluated had 0 constraint

violation). For each instance of the problem the constant step size η was initially set to 10−5

and it was repeatedly increased by factors of 5 so long as the average training loss did not

worsen and the iterations were reaching convergence. The parameter P2 for the error bound

ϵ was initially set to 0.1 and was repeatedly increased by factors of 2; we stopped increasing

it when the average training loss significantly worsened.

Software Utilized: Experiments were implemented in Python 3 (Van Rossum and Drake

2009b) using the NumPy library (Harris et al. 2020). We clarify that Eq. (5.14) can often be

difficult to compute due to numerical instability in the calculations for the inverse matrix. To

address this issue we add a small value λ = 1e−7 to the diagonal of a matrix before computing

its inverse. In terms of hardware, all experiments where run on an Intel(R) Core(TM)

i7-8557U CPU @ 1.70GHz processor with 4 physical cores (hyper-threading enabled). The

machine has a 32KB L1 cache and 256KB L2 cache per core, and an 8MB L3 cache. There is

a total of 16GB DRAM.
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5.7.1 Inventory Control Problem

We consider a multistage inventory control problem with linear constraints. At each stage t

with initial inventory st, a retailer places procurement orders ut ∈ Rr at various suppliers,

and later observes the demands wt ∈ Rq. At the end of each stage, the firm incurs a per-unit

holding cost of ht and a back-order cost of bt. The inventory is not backlogged, and therefore

the initial inventory for the next period is given by the linear equation st = st−1+1⊤ut−1⊤wt,

with zero initial inventory for the first period. In addition, the procurement orders are upper

bounded by a constant L and the sum of procurement orders for two consecutive stages

cannot exceed a constant ℓ. As in Ban et al. (2018), we consider the scenario in which

retailers can observe auxiliary covariates x that relate to the future demands (e.g. in the

fashion industry color and brand are useful factors for predicting demand of the products).

For a problem with T periods, we can formulate this optimization problem as

min
u1:T

Ew|x

[
T∑
t=1

ht [st]
+ + bt [−st]+

∣∣∣∣ x = x0

]

s.t. st = st−1 + 1⊤ut − 1⊤wt, ∀t ∈ [T ],

ut ≥ 0, ∀t ∈ [T ],

ut ≤ L1, ∀t ∈ [T ],

ut + ut+1 ≤ ℓ1, ∀t ∈ [T − 1].

The parameters ht, bt were chosen to be 2 and 1, respectively. The data sets used in these

experiments were generated by sampling x from a Truncated Gaussian Distribution with

mean 2 and standard deviation 0.5, and with truncating bounds 0 and 6. The demands wt

were then obtained as a linear function of the covariates with some added noise; specifically,

wt = αtx+ ϵt, where ϵt was sampled from a standard distribution and the constants αt were

selected to be close to 50.

We first consider a large instance of the problem with T = q = r = 10, and we set the

133



control bounds as L = 150 and ℓ = 200. We use a training set with 2000 sample paths

and we approximate the expected loss achieved by each method by averaging the losses

across a common testing set with 104 sample paths. Since the SRO and SRO-knn methods

become intractable for problems of this magnitude, in this experiment we only compare the

SMOK and MOK methods to SAA-knn. We use validation to choose the best parameters

for all methods and we evaluate the results on the testing set. In table 5.1 we observe that

both SMOK and MOK outperform SAA-knn in terms of average out-of-sample loss and

computational time. Moreover, the number of parameters needed for the SMOK algorithm is

smaller by two orders of magnitude compared to the other methods. Even though we observe

an increase in computation time for SMOK with respect to MOK (due to the overhead

computation time for the pruning step), we also see that adding sparsity helped SMOK

achieve a better average loss.

Avg OOS Loss Total Time (hours) No. of Params

SMOK 491.30 0.3 1.5× 103

MOK 493.74 0.1 2× 105

SAA-knn 496.04 14.36 2.2× 105

Table 5.1: Average out-of-sample (OOS) loss and total computation time for inventory
problem with T = q = r = 10.

We next consider other instances of the inventory problem to analyze how the dimensions

of the problem affect the overall performance of the SMOK and MOK algorithms. We

compared these two methods to a third algorithm ADR (Affine Decision Rules), which refers

to the common approximation technique of restricting the space of decision rules to be affine

functions. We train all methods using the same training sets and the same validation sets

(with size equal to 30% of the training size), and we approximate the expected loss achieved

by averaging across a common testing set of 105 sample paths. In addition, we compute lower

bounds for the optimal expected loss when T ≤ 5 (see Appendix D.4), which allows us to
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analyze the optimality gap for the different methods.

Multiple data sets were generated to analyze the performance of the algorithms as we

increase the number of periods, the training size, the dimension of the data and the dimension

of the controls. In each case we analyze the average out-of-sample loss and the size M

of the data matrix, which refers to number of parameters per control. We also analyze

the computational time for each iteration of Stochastic Gradient Descent (projected or not

projected), and the evaluation time (time it takes to evaluate the empirical loss function

Eλ
S(u) given the parameters for the functional representation of u). Notice that since the

stochastic gradient descent algorithm does not strictly descend, the empirical loss of the

validation set needs to be evaluated every certain number of iterations, which makes the

evaluation time part of the total training time.

Varying the Number of Periods: (L = 150, ℓ = 200, q = r = 1, N = 2000, T =

2, 3, 4, 5)

In Figure 5.1a, we observe that the convergence trajectory is not significantly affected by the

pruning step, and the number of iterations needed until convergence does not change much

for T ≥ 3. In addition, we see in Figure 5.1b that ADR results in very poor performance,

while both the SMOK and MOK algorithms are quite close to the lower bounds found for

the optimal expected loss. In Figure 5.1c we observe that the time per iteration of stochastic

gradient descent grows linearly for both SMOK and MOK, but MOK takes longer times due

to the overhead introduced by the pruning step. The evaluation time (Figure 5.1d) also grows

linearly for both algorithms, although unlike the time per iteration, the slope is larger for

MOK than for SMOK because the number of parameters is significantly smaller for this last

method (SMOK algorithm reduced the size M of the data matrix from 2000 to values below

15).
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(a) (b)

(c) (d)

Figure 5.1: Expected loss and computational time for varying number of periods.

Varying the Data Size: (L = 150, ℓ = 200, q = r = 1, T = 3,

N = 10, 100, 1000, 4000, 7000, 10000)

Figure 5.2b shows that, as anticipated, the expected loss achieved by both MOK and SMOK

algorithms decreases as the size of the training set becomes larger. The number of iterations

required to reach convergence (Figure 5.2a) does not change much with the data size and

the expected loss achieved remains relatively constant after a large enough training size,

which occurs around N = 1000. In Figures 5.2c,5.2d we can observe a significant memory

improvement of SMOK over MOK when N becomes very large. For N = 104, for example,

SMOK outputs decision rules with only 11 parameters, while SMOK requires 104 parameters

per control. The evaluation time in Figure 5.2d grows quadratically with the number of

parameters in each control (the quadratic factor comes from computing the kernel matrix

Kt[Dt,Dt]), which in the case of MOK corresponds to the size of the training set. Since the

SMOK algorithm has much fewer parameters, it takes under half a second to evaluate the

average loss of 1000 samples regardless of the training data size. Notice that the time per
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iteration (Figure 5.2c) is higher for SMOK than for MOK when N is small due to the pruning

step. However, we observe that the time per iteration increases linearly for MOK while it

stabilizes for SMOK, implying that for bigger values of N the SMOK method actually takes

less time per iteration and per evaluation.

(a) (b)

(c) (d)

Figure 5.2: Expected loss and computational time for varying data sizes.

Varying Data Dimension: (L = 150, ℓ = 200, r = 1, T = 3, N = 2000, q =

1, 10, 20, 30, 40, 50)

When generating data sets for this part we enforce that the value
∑

q (wt)q remains constant

for all t ∈ [T ], which guarantees that the optimal expected loss is the same across instances. In

Figure 5.3a, we observe that the trajectories of the expected loss across the FSGD iterations

are quite similar for all the different dimensions of the data. More importantly, the error

gap does not worsen as the dimension of the data increases (Figure 5.3b), showing that

the accuracy of our algorithms does not worsen for data sets in large dimensional spaces.

Additionally, in Figure 5.3d we observe that there is a slight linear increase in the evaluation

time for both SMOK and MOK algorithms, which is expected since the dimension of the
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demand vector affects the computation of the exponent in the Gaussian kernel. In terms of

the iteration time (Figure 5.3c), we can see that SMOK remains quite stable around 4 seconds

per 1000 iterations, while MOK shows linear increase. As in the previous examples, the

number of parameters of the SMOK algorithm is quite similar across the different experiments

and remains under 15.

(a) (b)

(c) (d)

Figure 5.3: Expected loss and computational time for varying data dimensions.

Varying Control Dimension: (L = 150, ℓ = 200
r
, q = 1, T = 3, N = 2000, r =

1, 3, 5, 10)

In order to make a fair comparison, we set L = 150
r

and ℓ = 200
r

, which guarantees that the

optimal expected loss is the same across instances. We observe in Figure 5.4b that the SMOK

and MOK algorithms achieve very similar average out-of-sample loss across the different

dimensions, and there are a couple of scenarios in which the pruning step helped to improve

the expected loss. In addition, the number of iterations required for convergence (Figure

5.4a) does not seem to depend on the dimension of the control. Lastly, in Figure 5.4c we

observe a slight linear increase in iteration time for both SMOK and MOK algorithms, with
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MOK having an advantage of around 4 seconds per 1000 iterations. In terms of evaluation

time (Figure 5.4d) both algorithms grow linearly. As in the previous examples, the number

of parameters for the SMOK algorithm is very low and varies between 13 and 14 across the

different experiments.

(a) (b)

(c) (d)

Figure 5.4: Expected loss and computational time for varying control dimensions.

5.7.2 Shipment Planning

We next analyze a two-stage shipment planning problem, following the same problem setting

as in Bertsimas et al. (2022b) and Bertsimas and Kallus (2020). In this example, a decision

maker has access to side information x (market trends, advertisements, etc.) and the goal

is to ship items from the production facilities to multiple locations as to satisfy demand at

minimum cost. First, the decision maker chooses an initial inventory quantity u1f ≥ 0 to

be produced in each of the production facilities f ∈ [F ] at a per unit cost of p1. Next, the

demands wℓ ≥ 0 are observed in each location ℓ ∈ [L]. If needed, the decision maker can

produce additional units in each facility to satisfy demand, but at a higher per unit cost

p2 > p1. Finally, demand is fulfilled by shipping u2fℓ units from facility f to location ℓ at
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per-unit cost cfℓ, and each unit of satisfied demand generates revenue a > 0. The multistage

optimization problem can then be written as

min
u1,u2

Ew|x

p1 F∑
f=1

u1f− a
∑
ℓ∈[L]

wℓ + p2

F∑
f=1

[
L∑
ℓ=1

u2fℓ − u1f

]+
+

F∑
f=1

L∑
ℓ=1

cfℓ u2fℓ

∣∣∣∣x = x0


s.t.

F∑
f=1

u2fℓ ≥ wℓ, ∀ℓ ∈ [L],∀w ∈ W ,

where W is the set of all possible demand realizations. We reproduced the computational

experiments performed in Bertsimas et al. (2022b) using the same parameters, the same

data generation procedure as well as the same data set sizes. More specifically, we use

F = 4, L = 12, p1 = 5, p2 = 100 and a = 90. The costs c and covariates x are also generated

in an identical manner as in Bertsimas et al. (2022b).

We compare the SMOK and MOK algorithms against SRO, SRO-knn and SAA-knn.

We train all methods over 100 independent training sets and evaluate them on a test set of

size 100. The average out-of-sample profits achieved across the different methods are shown

in Table 5.2. We observe that both MOK and SMOK outperform the other methods, with

MOK achieving the highest revenues. However, as observed in Table 5.3, only the SAA and

SMOK methods have tractable growth as the data size increases. In particular, the SMOK

algorithm achieves high accuracies using only around 60 parameters per decision even when

the data size increases to large numbers.

N SRO SRO SRO-knn SRO-knn SAA-knn MOK SMOK

(ϵ = 100) (ϵ = 500) (ϵ = 100) (ϵ = 500)

100 160007.0 159866.7 157522.9 158671.5 156639.6 161536.9 160737.0

200 160221.1 160075.0 157863.5 159136.9 156911.9 164050.1 163039.2

300 160431.0 160145.6 158697.6 159656.2 157669.6 164860.6 163703.8

Table 5.2: Out-of-sample profit for the shipment planning problem.
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N SRO SRO SRO-knn SRO-knn SAA-knn MOK SMOK

(ϵ = 100) (ϵ = 500) (ϵ = 100) (ϵ = 500)

100 8 6 30 35 4 38 150

200 11 12 78 75 4 42 260

300 19 21 125 132 4 46 240

500 38 39 276 280 5 50 245

1000 74 76 772 790 10 65 255

5000 559 581 54000 54100 54 288 252

Table 5.3: Total computation time (seconds) for solving one instance of the shipment planning
problem.

5.8 Conclusion

In this work, we developed a tractable data-driven approach for solving multistage stochastic

optimization problems in which the uncertainties are independent of previous decisions.

We represented the decision rules as elements of a reproducing kernel Hilbert space and

performed functional stochastic gradient descent to minimize the empirical regularized loss.

We next incorporated sparsification techniques based on function subspace projections, which

decreased the number of parameters per controller. We prove that the proposed approach is

asymptotically optimal for multistage stochastic programming with side information.

The practical value of the proposed data-driven approach was shown across various

computational experiments on stochastic inventory management problems, demonstrating

that it produces high-quality decisions, does not worsen in multidimensional settings and

remains tractable even with large data sizes. This approach does not rely on the traditional

use of approximation with scenario trees, and provides a novel method for leveraging advances

in machine learning to solve multistage stochastic optimization problems.
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Appendix A

Chapter 2 Appendix

A.1 Proofs of Lemmas

In this Appendix, we prove Lemmas 2.3.3, 2.5.1, 2.5.2 and 2.5.3.

A.1.1 Proof of Lemma 2.3.3

Proof: By Assumption 2.3.1 with c = zLy (θ,x+ δ) we know

min
θ

max
δ∈U

L(y, zL(θ,x+ δ)) = min
θ

max
δ∈U

L
(
y,zL(θ,x+ δ)− zLy (θ,x+ δ)e

)
.

Define z̄(δ) := zL(θ,x + δ) − zLy (θ,x + δ)e and z̄′ = (maxδ∈U z̄1(δ), . . . ,maxδ∈U z̄K(δ)).

Notice that the yth coordinates of z̄(δ) and z̄′ are both zero, and therefore for all k ∈ [K] we

have

z̄k(δ)− z̄y(δ) = z̄k(δ) ≤ max
δ∈U

z̄k(δ) = z̄′
k = z̄′

k − z̄′
y.

143



Therefore, we can apply Assumption 2.3.2 with z = z̄(δ) and z′ = z̄′ to obtain

min
θ

max
δ∈U

L
(
y, zL(θ,x+ δ)− zLy (θ,x+ δ)e

)
≤min

θ
L
(
y,

(
max
δ∈U

zL1 (θ,x+ δ)− zLy (θ,x+ δ), . . . ,max
δ∈U

zLK(θ,x+ δ)− zLy (θ,x+ δ)

))
.

We then conclude

min
θ

max
δ∈U

L(y,zL(θ,x+ δ))

≤min
θ

L
(
y,

(
max
δ∈U

zL1 (θ,x+ δ)− zLy (θ,x+ δ), . . . ,max
δ∈U

zLK(θ,x+ δ)− zLy (θ,x+ δ)

))
.

A.1.2 Proof of Lemma 2.5.1

Proof. Since f is convex and closed, we have f = (f ∗)∗ (Rockafellar 1970), and applying the

definition of the convex conjugate function we obtain

f(z(δ)) = (f ⋆)⋆(z(δ)) = sup
u∈dom(f∗)

z(δ)⊤u− f ⋆(u),

which implies

sup
δ∈U

f(z(δ)) + g(z(δ)) = sup
δ∈U

sup
u∈dom(f⋆)

z(δ)Tu− f ⋆(u) + g(z(δ))

= sup
u∈dom(f⋆)

sup
δ∈U

z(δ)Tu− f ⋆(u) + g(z(δ)),

as desired.
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A.1.3 Proof of Lemma 2.5.2

Let Z = {z(δ) : δ ∈ U}. Defining the indicator function

γ(z|Z) =


0 if z ∈ Z,

∞ otherwise,

and applying the Fenchel duality theorem (Rockafellar 1970), we obtain:

sup
δ∈U

g(z(δ)) = sup
z∈Z

g(z) = sup
z∈dom(g)∩dom(γ)

g(z)− γ(z|Z) = inf
v∈dom(g⋆)

γ⋆(v|Z)− g⋆(v). (A.1)

Finally, since γ⋆(v|Z) = supz∈Z z⊤v, we conclude

sup
δ∈U

g(z(δ)) = inf
v∈dom(g⋆)

sup
z∈Z

z⊤v − g⋆(v) = inf
v∈dom(g⋆)

sup
δ∈U

z(δ)⊤v − g⋆(v).

A.1.4 Proof of Lemma 2.5.3

We first prove part a). By definition, we have

f ⋆(z) = sup
x

z⊤x− p⊤[x]+.

Notice that if the ith component of z is negative for any i, then f ⋆(z) = ∞ because x can be

the vector with an arbitrarily large negative value in the ith coordinate and 0 everywhere

else. Similarly, if the ith component of z is larger than the ith coordinate of p for any i, then

again f ⋆(z) = ∞ because x can be the vector with an arbitrarily large positive value in the

ith coordinate and 0 everywhere else. Moreover, if 0 ≤ z ≤ p, then

sup
x

z⊤x− p⊤[x]+ ≤ sup
x

z⊤x− z⊤[x]+ = sup
x

z⊤(x− [x]+) ≤ 0.
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Since x = 0 achieves an objective value of 0, we conclude that 0 ≤ z ≤ p implies f ⋆(z) = 0

as desired.

Next, we proceed to prove part b). By definition of the concave conjugate we have

g⋆(z) = inf
x
z⊤x− (x⊤u− q⊤[x]+) = inf

x
(z − u)⊤x+ q⊤[x]+.

If the ith component of z is larger than the ith component of u for any i, then g⋆(z) = ∞

because x can be the vector with an arbitrarily large negative value in the ith coordinate and

0 everywhere else. Similarly, if the ith component of z is smaller than the ith coordinate of

(u− q) for any i, then again g⋆(z) = ∞ because x can be the vector with an arbitrarily large

positive value in the ith coordinate and 0 everywhere else. In addition, if u− q ≤ z ≤ u,

then

inf
x
(z − u)⊤x+ q⊤[x]+ ≥ inf

x
(z − u)⊤x+ (u− z)⊤[x]+ = inf

x
(u− z)⊤([x]+ − x) ≥ 0.

Since x = 0 achieves an objective value of 0, we conclude that u − q ≤ z ≤ u implies

g⋆(z) = 0 as desired.
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A.2 Generalized Results

We now state and proof the generalization of Theorem 2.5.4, Corollary 2.5.5 and Theorem

2.5.6 for the case in which the neural network has more than 2 layers.

Theorem A.2.1 (Generalization of Theorem 2.5.4). For all 2 ≤ l ≤ L, it holds

sup
δ∈U

(∆eyk)
⊤zℓ(θ,x+ δ) = (A.2)

sup
sL

inf
tL
. . . sup

sl

inf
tl

sup
δ∈U

(pl − ql)
⊤zl−1(θ,x+ δ) +

L−1∑
ℓ=l

(pℓ+1 − qℓ+1)
⊤bℓ + (∆eyk)

⊤bL

s.t. pL = [(W L)⊤(∆eyk)]
+ ⊙ sL

qL = [−(W L)⊤(∆eyk)]
+ ⊙ tL

pℓ = (([W ℓ]+)⊤pℓ+1 + ([−W ℓ]+)⊤qℓ+1)⊙ sℓ ∀ ℓ = l, . . . , L− 1

qℓ = (([−W ℓ]+)⊤pℓ+1 + ([W ℓ]+)⊤qℓ+1)⊙ tℓ ∀ ℓ = l, . . . , L− 1

0 ≤ sℓ, tℓ ≤ 1 ∀ ℓ = l, . . . , L.

(A.3)

Proof. We will proceed by backward induction on the layer number l.

Case l = L:

The proof is equivalent to the case L = 2 already proved in Section 2.5.

Case l − 1:

Suppose the theorem holds for some fixed l with l > 2. We have

(pl − ql)
⊤zl−1(θ,x+ δ)

=(pl − ql)
⊤(W l−1[zl−2(θ,x+ δ)]+ + bl−1)

=f+(z
l−2(θ,x+ δ))− f−(z

l−2(θ,x+ δ)) + (pl − ql)
⊤bl−1,
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where

f+(x) = (p⊤
l [W

l−1]+ + q⊤
l [−W l−1]+)[x]+, and

f−(x) = (p⊤
l [−W l−1]+ + q⊤

l [W
l−1]+)[x]+.

By Lemma 2.5.1 we then obtain

sup
δ∈U

(pl − ql)
⊤zl−1(θ,x+ δ)

= sup
δ∈U

f+(z
l−2(θ,x+ δ))− f−(z

l−2(θ,x+ δ)) + (pl − ql)
⊤bl−1

= sup
ul−1∈dom(f⋆+)

sup
δ∈U

u⊤
l−1z

l−2(θ,x+ δ)− f−(z
l−2(θ,x+ δ)) + (pl − ql)

⊤bl−1.

Defining the concave function g(x) = u⊤
l−1x− f−(x), and applying Lemma 2.5.2 we obtain

sup
δ∈U

(pl − ql)
⊤zl−1(θ,x+ δ) (A.4)

= sup
ul−1∈dom(f⋆+)

inf
vl−1∈dom(g⋆)

sup
δ∈U

v⊤
l−1z

l−2(θ,x+ δ) + (pl − ql)
⊤bl−1. (A.5)

Lastly, by Lemma 2.5.3 we can substitute

ul−1 = ([(W l−1]+)⊤pl + ([−W l−1]+)⊤ql)⊙ sl−1

= pl−1, and

vl−1 = (([W l−1]+)⊤pl + ([−W l−1]+)⊤ql)⊙ sl−1 − (pl[−W l−1]+ + ql[W
l−1]+)⊙ tl−1

= pl−1 − ql−1,

which together with the induction hypothesis imply that Eq. (A.3) is equivalent to
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sup
δ∈U

(∆eyk)
⊤zℓ−1(θ,x+ δ) =

sup
sL

inf
tL
. . . sup

sl−1

inf
tl−1

sup
δ∈U

(pl−1 − ql−1)
⊤zl−2(θ,x+ δ) +

L−1∑
ℓ=l−1

(pℓ+1 − qℓ+1)
⊤bℓ + (∆eyk)

⊤bL

s.t. pL = [(W L)⊤(∆eyk)]
+ ⊙ sL

qL = [−(W L)⊤(∆eyk)]
+ ⊙ tL

pℓ = (([W ℓ]+)⊤pℓ+1 + ([−W ℓ]+)⊤qℓ+1)⊙ sℓ ∀ l − 1 ≤ ℓ ≤ L− 1

qℓ = (([−W ℓ]+)⊤pℓ+1 + ([W ℓ]+)⊤qℓ+1)⊙ tℓ ∀ l − 1 ≤ ℓ ≤ L− 1

0 ≤ sℓ, tℓ ≤ 1 ∀ ℓ = l − 1, . . . , L,

and therefore the theorem holds for l − 1 as desired.

Corollary A.2.2 (Generalization of Corollary 2.5.5).

If U = {δ : ∥δ∥p ≤ ρ}, then:

sup
δ∈U

(∆eyk)
⊤zL(θ,x+ δ) (A.6)

=sup
sL

inf
tL
. . . sup

s2

inf
t2
ρ∥(p2 − q2)

⊤W 1∥q + (p2 − q2)
⊤W 1x+

L−1∑
ℓ=1

(pℓ+1 − qℓ+1)
⊤bℓ+(∆eyk)

⊤bL

s.t. pL = [(W L)⊤(∆eyk)]
+ ⊙ sL

qL = [−(W L)⊤(∆eyk)]
+ ⊙ tL

pℓ = (([W ℓ]+)⊤pℓ+1 + ([−W ℓ]+)⊤qℓ+1)⊙ sℓ ∀ ℓ = 2, . . . , L− 1

qℓ = (([−W ℓ]+)⊤pℓ+1 + ([W ℓ]+)⊤qℓ+1)⊙ tℓ ∀ ℓ = 2, . . . , L− 1

0 ≤ sℓ, tℓ ≤ 1 ∀ ℓ = 2, . . . , L,

(A.7)

where ∥ · ∥q is the conjugate norm of ∥ · ∥p.

Proof. The proof follows directly after applying Theorem A.2.1 with l = 2 and using again
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Eq. (2.26).

Definition A.2.2.1. We introduce the following definitions to simplify notation:

s := (s2, . . . , sL)

t := (t2, . . . , tL)

pL(s, t) := [(W 2)⊤(∆eyk)]
+ ⊙ sL

qL(s, t) := [−(W 2)⊤(∆eyk)]
+ ⊙ tL

pℓ(s, t) :=
(
([W ℓ]+)⊤pℓ+1(s, t) + ([−W ℓ]+)⊤qℓ+1(s, t)

)
⊙ sℓ ∀ 1 ≤ ℓ < L

qℓ(s, t) :=
(
([−W ℓ]+)⊤pℓ+1(s, t) + ([W ℓ]+)⊤qℓ+1(s, t)

)
⊙ tℓ ∀ 1 ≤ ℓ < L

Rℓ(s, t) :=
L−1∑
ℓ′=ℓ

(pℓ′+1(s, t)− qℓ′+1(s, t))
⊤ bℓ

′
.

Theorem A.2.3 (Generalization of Theorem 2.5.6).

sup
δ:∥δ∥1≤ρ

(∆eyk)
⊤zL(θ,x+ δ)

≤ inf
0≤t≤1

max
m∈[M ]

max

{
gLk,m(θ,x, t, ρ), g

L
k,m(θ,x, t,−ρ)

}
, (A.8)

where the new network g is defined by the equations

g1m(W ,x, t, a, r) = r(aW 1
m +W 1x+ b1)

gℓm(θ,x, t, a, r) = [rW ℓ]+[gℓ−1
m (W ,x, t, a, 1)]++ [−rW ℓ]+[gℓ−1

m (W ,x, t, a,−1)]⊙ tℓ + rbℓ

gLk,m(θ,x, t, a) = [(∆eyk)
⊤W L]+[gL−1

m (θ,x, t, a, 1)]++

[−(∆eyk)
⊤W L]+[gL−1

m (θ,x, t, a,−1)]⊙ tL + (∆eyk)
⊤bL,
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for all 1 < ℓ < L, 1 ≤ k ≤ K, a ∈ {ρ,−ρ}, and r ∈ {−1, 1}.

The proof of this theorem relies on the following lemma.

Lemma A.2.4. For all 2 ≤ ℓ ≤ L− 1 it holds

sup
0≤sℓ≤1

pℓ(s, t)
⊤gℓ−1

m (θ,x, t, a, 1) + qℓ(s, t)
⊤gℓ−1

m (θ,x, t, a,−1) (A.9)

=pℓ+1(s, t)
⊤gℓm(θ,x, t, a, 1) + qℓ+1(s, t)

⊤gℓm(θ,x, t, a,−1)− (pℓ+1(s, t)− qℓ+1(s, t))
⊤bℓ.

(A.10)

Proof. Let 2 ≤ ℓ ≤ L− 1, we have

sup
0≤sℓ≤1

pℓ(s, t)
⊤gℓ−1

m (θ,x, t, a, 1) + qℓ(s, t)
⊤gℓ−1

m (θ,x, t, a,−1)

= sup
0≤sℓ≤1

(
(([W ℓ]+)⊤pℓ+1(s, t) + ([−W ℓ]+)⊤qℓ+1(s, t))⊙ sℓ

)⊤
gℓ−1
m (θ,x, t, a, 1)+

(
(([−W ℓ]+)⊤pℓ+1(s, t) + ([W ℓ]+)⊤qℓ+1(s, t))⊙ tℓ

)⊤
gℓ−1
m (θ,x, t, a,−1)

= sup
0≤sℓ≤1

(
([W ℓ]+)⊤pℓ+1(s, t) + ([−W ℓ]+)⊤qℓ+1(s, t)

)⊤ (
gℓ−1
m (θ,x, t, a, 1)⊙ sℓ

)
+

(
([−W ℓ]+)⊤pℓ+1(s, t) + ([W ℓ]+)⊤qℓ+1(s, t)

)⊤ (
gℓ−1
m (θ,x, t, a,−1)⊙ tℓ

)

=
(
([W ℓ]+)⊤pℓ+1(s, t) + ([−W ℓ]+)⊤qℓ+1(s, t)

)⊤
[gℓ−1
m (θ,x, t, a, 1)]++(

([−W ℓ]+)⊤pℓ+1(s, t) + ([W ℓ]+)⊤qℓ+1(s, t)
)⊤ (

gℓ−1
m (θ,x, t, a,−1)⊙ tℓ

)

=pℓ+1(s, t)
⊤gℓm(θ,x, t, a, 1) + qℓ+1(s, t)

⊤gℓm(θ,x, t, a,−1)− (pℓ+1(s, t)− qℓ+1(s, t))
⊤bℓ,

as desired.

Proof of theorem A.2.3.
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By Corollary A.2.2 with p = 1 we know

sup
δ:∥δ∥1≤ρ

(∆eyk)
⊤(zL(θ,x+ δ)− bL) (A.11)

≤ sup
sL

inf
tL
, . . . sup

s2

inf
t2

ρ∥(p2(s, t)− q2(s, t))
⊤W 1∥∞ + (p2(s, t)− q2(s, t))

⊤W 1x+R1(s, t)

(A.12)

≤ inf
tL...t2

sup
sL...s2

ρ∥(p2(s, t)− q2(s, t))
⊤W 1∥∞ + (p2(s, t)− q2(s, t))

⊤W 1x+R1(s, t), (A.13)

where the last inequality follows from the min-max inequality. Observe that pℓ′(s, t) and

qℓ′(s, t) are independent on sℓ for all ℓ′ > ℓ, which in turn implies that Rℓ′(s, t) does not

depend on sℓ for all ℓ′ > ℓ. We can then solve the optimization problem in Eq. (A.7) for

fixed t as follows:

sup
0≤sL,...,s2≤1

ρ∥(p2(s, t)− q2(s, t))
⊤W 1∥∞ + (p2(s, t)− q2(s, t))

⊤W 1x+R1(s, t)

= max
m∈[M ]

max

{
sup

0≤sL,...,s2≤1
(p2(s, t)− q2(s, t))

⊤(W 1(x+ ρem) + b1) +R2(s, t),

sup
0≤sL,...,s2≤1

(p2(s, t)− q2(s, t))
⊤(W 1(x− ρem) + b1) +R2(s, t)

}

= max
m∈[M ]

max

{
sup

0≤sL,...,s2≤1
p2(s, t)

⊤g1m(θ,x, t, ρ, 1) + q2(s, t)
⊤g1m(θ,x, t, ρ,−1) +R2(s, t),

sup
0≤sL,...,s2≤1

p2(s, t)
⊤g1m(θ,x, t,−ρ, 1)+q2(s, t)

⊤g1m(θ,x, t,−ρ,−1)+R2(s, t)

}
.

By repeatedly applying Lemma A.2.4 for each ℓ = 2, . . . , L− 1 we obtain
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sup
0≤sL,...,s2≤1

ρ∥(p2(s, t)− q2(s, t))
⊤W 1∥∞ + (p2(s, t)− q2(s, t))

⊤W 1x+R1(s, t)

= max
m∈[M ]

max

{
sup

0≤sL≤1
pL(s, t)

⊤gL−1
m (θ,x, t, ρ, 1) + qL(s, t)

⊤gL−1
m (θ,x, t, ρ,−1),

sup
0≤sL≤1

pL(s, t)
⊤gL−1

m (θ,x, t,−ρ, 1) + qL(s, t)
⊤gL−1

m (θ,x, t,−ρ,−1)

}

= max
m∈[M ]

max

{
sup

0≤sL≤1
[(∆eyk)

⊤W L]+
(
gL−1
m (θ,x, t, ρ, 1)⊙sL

)
+[−(∆eyk)

⊤W L]+(gL−1
m (θ,x, t, ρ,−1)⊙ tL),

sup
0≤sL≤1

[(∆eyk)
⊤W L]+

(
gL−1
m (θ,x, t,−ρ, 1)⊙ sL

)
+[−(∆eyk)

⊤W L]+(gL−1
m (θ,x, t,−ρ,−1)⊙ tL)

}

= max
m∈[M ]

max

{
gLk,m(θ,x, t, ρ), g

L
k,m(θ,x, t,−ρ)

}
− (∆eyk)

⊤bL,

as desired.
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A.3 Convolutional Neural Networks

While in this paper we only consider feed forward neural networks, it is possible to extend

the RUB method to convolutional neural networks that use ReLU and MaxPool activation

functions. In fact, Lemma 2.5.3 can be modified as follows:

Lemma A.3.1. Let x ∈ RA×B. Define MP (x) ∈ RC×D as the MaxPool function whose

(c, d) coordinate corresponds to maxi∈Icd{xi} for fixed sets of indices Icd, and denote by ⊛ the

convolution operation. If u ∈ RA×B, p, q ∈ RC×D have all nonnegative coordinates, then the

functions f(x) = p⊛MP [x]+ and g(x) = x⊛ u− q ⊛MP [x]+ satisfy

a) f ⋆(z) =


0 if 0 ≤

∑
i∈Icd zi ≤ pcd,∀ c ∈ [C], d ∈ [D],

∞ otherwise,
and

b) g⋆(z) =


0 if ucd − qcd ≤

∑
i∈Icd zi ≤ ucd, ∀ c ∈ [C], d ∈ [D],

−∞ otherwise.

The lemma above allows to obtain an upper bound for the adversarial loss of convolutional

networks with a very similar proof to that of Theorem A.2.3. However, convolutional networks

are notoriously more memory consuming and therefore computation of the robust upper

bound requires more resources. We have then left this computation for future work, but we

here report results for the other robust training methods using these more complex neural

networks.

We evaluate a convolutional neural network (denoted as CNN ) that has been commonly

used in previous works of adversarial robustness Madry et al. (2019). It has two convolutional

layers alternated with pooling operations, and two dense layers. We compare adversarial

accuracy across four different methods: aRUB-L∞, aRUB-L1, PGD-L∞ and Nominal training.

Results for the CIFAR data set are shown in Table A.1. We observe that the proposed

methods aRUB-L1 and aRUB-L∞ yield the highest adversarial accuracies with respect to
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PGD-L2 attacks. For the MNIST data set and the FASHION MNIST data set (Table A.2

and Table A.3, respectively), we see that aRUB-L∞ has the highest adversarial accuracies

with respect to PGD-L2 attacks when ρ ≤ 0.1, whereas PGD-L∞ does best for larger values

of ρ.

Table A.1: Adversarial Accuracy for CIFAR with CNN architecture and PGD-L2 attacks.

ρ = 0.000 0.010 0.020 0.030 0.100 1.000 3.000 5.000 10.000

aRUB-L1 71.17 70.98 70.70 70.51 69.88 60.31 44.69 35.35 17.89

aRUB-L∞ 72.03 71.76 71.45 71.25 69.84 56.13 43.98 34.26 16.25

PGD-L∞ 70.78 70.55 70.43 70.39 69.65 59.96 43.59 29.10 16.21

Nominal 71.29 71.13 71.05 70.66 69.38 48.16 16.05 10.04 10.04

Table A.2: Adversarial Accuracy for Fashion MNIST with CNN architecture and PGD-L2

attacks.

ρ = 0.000 0.010 0.020 0.030 0.100 1.000 3.000 5.000 10.000

aRUB-L1 91.25 91.09 90.78 90.55 89.02 82.46 68.95 54.80 33.20

aRUB-L∞ 91.37 91.13 91.05 90.86 90.59 82.81 71.45 60.23 30.86

PGD-L∞ 90.59 90.55 90.43 90.23 89.30 84.45 73.20 67.54 57.77

Nominal 91.02 90.90 90.62 90.43 89.02 77.85 56.72 40.51 10.16
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Table A.3: Adversarial Accuracy for MNIST with CNN architecture and PGD-L2 attacks.

ρ = 0.000 0.010 0.020 0.030 0.100 1.000 3.000 5.000 10.000

aRUB-L1 99.38 99.38 99.38 99.34 99.30 98.32 91.68 70.51 33.83

aRUB-L∞ 99.38 99.38 99.38 99.38 99.30 98.79 95.70 87.46 47.93

PGD-L∞ 99.22 99.22 99.14 99.14 99.02 98.55 96.37 91.29 55.39

Nominal 99.30 99.26 99.26 99.26 99.18 97.93 89.69 60.00 9.34
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Appendix B

Chapter 3 Appendix

B.1 Results Tables

We present the evaluation results for natural accuracy, adversarial accuracy, stability, and

sparsity on the test sets across all data sets and methods discussed in the paper. The natural

accuracy results can be found in Table B.1, adversarial accuracy results in Table B.2, stability

results in Table B.3, and sparsity results in Table B.4.
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Name n p k DL Rob. St. Sp. Rob. St. St. HDL
+Sp. +Sp. +Rob.

echocardiogram 131 7 3 40.00 42.22 42.96 40.00 42.22 42.22 37.78 36.30
hill-valley 605 100 2 47.21 47.54 53.61 47.70 47.87 52.30 51.48 51.64
planning-relax 181 12 2 53.51 52.97 54.05 54.05 54.05 54.05 54.59 54.05
poker-hand 25009 10 10 54.87 55.24 55.09 54.89 54.61 54.41 55.19 54.17
hill-valley-noise 605 100 2 56.23 53.44 59.67 57.87 51.31 53.11 53.61 50.82
yeast 1483 8 10 58.45 59.06 59.12 59.80 60.88 59.80 59.46 60.54
haberman-survival 305 3 2 62.58 61.94 61.61 63.23 61.61 61.94 60.97 62.90
glass-identification 213 9 6 64.65 59.53 65.58 61.40 61.40 63.72 61.40 61.40
brst-cancer-ws-prog 197 32 2 71.00 70.50 72.50 71.50 73.00 69.50 71.50 66.50
hayes-roth 131 4 3 74.81 79.26 77.78 73.33 82.22 77.78 74.81 79.26
spectf-heart 79 44 2 76.25 86.25 73.75 73.75 80.00 75.00 83.75 87.50
hepatitis 154 19 2 78.71 80.00 77.42 78.71 79.35 79.35 77.42 79.35
connectionist-bench 989 10 11 79.19 80.30 83.54 78.08 72.32 74.44 83.23 76.67
libras-movement 359 90 15 79.44 82.50 80.00 75.83 80.56 77.22 79.44 80.00
bld-transf-serv-ctr 747 4 2 79.47 79.07 79.07 79.33 77.20 78.93 79.20 79.60
connect-bench-sonar 207 60 2 83.33 86.67 89.52 86.19 85.71 88.10 83.81 86.67
image-segmentation 209 19 7 83.81 87.14 84.29 83.33 89.52 84.76 87.14 83.81
ecoli 335 7 8 84.71 84.41 85.29 85.59 85.59 85.29 84.71 85.00
qsar-biodegradation 1054 41 2 85.12 85.69 85.21 84.55 84.74 85.21 84.93 84.36
parkinsons 194 21 2 86.67 85.64 87.18 88.72 86.15 86.15 86.67 85.13
magic-gamma-tel 19019 10 2 87.11 87.20 86.98 87.17 86.66 86.50 87.28 86.80
letter-recognition 19999 16 26 90.26 89.57 91.15 82.63 87.60 86.31 90.84 88.79
statlog-proj-landsat 4434 36 6 90.39 90.67 90.64 90.44 89.97 90.53 90.46 90.03
wall-robot-nav-24 5455 24 4 92.36 92.23 92.11 92.49 92.89 92.88 92.47 93.08
spambase 4600 57 2 92.73 93.36 93.42 92.94 92.81 93.03 93.12 92.83
seeds 209 7 3 92.86 92.38 91.43 93.33 93.33 92.86 92.38 93.33
ozone-level-eight 2533 72 2 93.69 93.06 93.89 93.37 93.73 93.49 93.69 93.96
cnae-9 1079 856 9 93.70 93.98 94.07 92.87 93.24 92.59 93.89 92.87
balance-scale 624 4 3 94.24 92.96 93.60 91.68 88.64 93.12 94.24 94.56
ionosphere 350 34 2 94.93 94.93 94.37 95.21 91.83 93.24 95.77 94.08
brst-cancer-ws-orig 698 9 2 96.00 96.29 95.86 96.14 96.86 96.00 96.43 96.29
brst-cancer-ws-diag 568 30 2 97.37 96.49 97.37 96.49 96.49 96.14 97.19 96.67
ozone-level-one 2535 72 2 97.40 97.13 97.20 97.01 97.44 97.44 97.28 97.28
wall-robot-nav-4 5455 4 4 97.77 97.82 97.69 98.04 98.44 98.13 97.80 98.33
climate-simu-crash 539 18 2 97.78 97.59 97.78 96.67 96.85 96.67 97.59 97.04
optical-recog-digits 3822 64 10 97.83 98.01 97.73 97.59 98.09 98.07 98.14 97.93
wall-robot-nav-2 5455 2 4 97.88 98.13 98.02 98.30 98.13 98.30 98.33 98.39
dermatology 365 34 6 98.38 98.38 98.38 98.65 98.38 98.38 98.38 98.92
thyroid-disease-new 214 5 3 98.60 99.07 98.14 98.60 99.07 96.74 99.07 97.67
thyroid-disease-ann 3771 21 3 98.86 98.91 98.78 98.70 98.89 98.86 99.05 98.91
wine 177 13 3 98.89 98.33 98.89 100.00 97.78 97.22 97.78 98.33
pen-recog-digits 7493 16 10 99.23 99.05 99.16 99.11 99.41 99.31 99.19 99.41
skin-segmentation 2450563 2 99.91 99.90 99.90 99.90 99.88 99.89 99.91 99.89
banknote-authent 1371 4 2 99.93 100.00 100.00 99.85 97.16 89.75 100.00 95.71
iris 149 4 3 100.00 99.33 98.00 100.00 92.67 98.67 99.33 99.33
MNIST 70000 784 10 99.19 99.29 99.21 99.13 99.22 99.16 99.31 99.30
Fashion-MNIST 70000 784 10 91.77 91.88 91.93 91.54 92.12 91.43 92.00 92.15
CIFAR10 60000 102410 68.42 69.15 68.25 66.60 57.74 69.82 68.78 69.03

Table B.1: Natural accuracy results for all UCI and vision data sets, where n denotes the
data size, p denotes the data dimension, and k denotes the number of classes. Darker blue
corresponds to higher nominal DL natural accuracy for the UCI data sets.
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Name n p k DL Rob. St. Sp. Rob. St. St. HDL
+Sp. +Sp. +Rob.

echocardiogram 131 7 3 4.44 44.44 7.41 17.78 44.44 17.78 41.48 44.44
hill-valley 605 100 2 7.54 40.16 28.52 20.00 39.02 20.16 38.52 36.39
planning-relax 181 12 2 21.62 54.05 44.86 49.19 54.05 54.05 54.05 54.05
poker-hand 25009 10 10 50.70 50.70 50.70 50.70 50.70 50.70 50.70 51.95
hill-valley-noise 605 100 2 11.31 21.48 22.30 12.79 30.00 20.98 24.10 34.43
yeast 1483 8 10 0.47 32.26 0.27 0.20 32.26 0.00 32.26 32.26
haberman-survival 305 3 2 17.74 59.68 20.97 47.74 59.68 34.19 59.68 59.68
glass-identification 213 9 6 4.65 20.93 5.58 5.12 20.93 9.30 25.58 25.58
brst-cancer-ws-prog 197 32 2 18.00 72.50 21.00 43.50 72.50 39.50 72.50 72.50
hayes-roth 131 4 3 9.63 32.59 8.89 5.19 36.30 13.33 40.74 40.74
spectf-heart 79 44 2 27.50 25.00 32.50 40.00 25.00 13.75 21.25 25.00
hepatitis 154 19 2 5.81 70.97 9.03 21.94 70.97 29.68 70.97 70.97
connectionist-bench 989 10 11 4.04 1.52 4.34 1.41 6.46 3.84 8.79 8.99
libras-movement 359 90 15 0.00 0.83 0.28 0.00 2.50 0.00 4.72 2.50
bld-transf-serv-ctr 747 4 2 0.00 72.67 0.13 17.60 72.67 43.60 72.67 72.67
connect-bench-sonar 207 60 2 5.71 20.00 18.10 32.38 43.81 33.81 22.86 40.00
image-segmentation 209 19 7 4.29 0.95 2.86 2.38 9.52 3.33 9.52 8.10
ecoli 335 7 8 0.59 41.18 1.76 2.06 51.47 0.88 41.18 51.47
qsar-biodegradation 1054 41 2 36.21 72.04 24.08 31.75 72.04 29.67 72.04 72.04
parkinsons 194 21 2 58.97 74.36 63.08 63.08 74.36 68.72 74.36 74.36
magic-gamma-tel 19019 10 2 15.07 64.59 15.28 18.62 64.59 10.36 64.59 64.59
letter-recognition 19999 16 26 0.76 3.73 1.11 0.52 3.68 0.34 3.57 3.74
statlog-proj-landsat 4434 36 6 8.66 25.48 10.35 7.51 25.48 5.77 20.79 25.39
wall-robot-nav-24 5455 24 4 3.04 39.69 3.28 1.63 39.69 3.06 39.69 39.65
spambase 4600 57 2 40.67 58.41 48.08 45.06 58.41 49.25 58.41 58.41
seeds 209 7 3 23.81 24.29 31.90 27.14 32.38 15.24 31.43 30.95
ozone-level-eight 2533 72 2 49.59 94.48 48.88 94.48 94.48 56.69 94.48 94.48
cnae-9 1079 856 9 0.00 1.02 0.09 0.83 1.94 2.50 3.80 3.80
balance-scale 624 4 3 17.44 40.80 13.28 8.16 43.84 14.72 49.92 49.92
ionosphere 350 34 2 19.44 57.75 25.35 34.65 57.75 10.99 57.75 57.75
brst-cancer-ws-orig 698 9 2 17.71 60.71 23.71 31.29 60.71 15.14 60.71 60.71
brst-cancer-ws-diag 568 30 2 25.44 47.02 25.61 47.02 58.77 13.33 47.02 58.77
ozone-level-one 2535 72 2 73.78 97.44 81.22 97.44 97.44 89.17 97.44 97.44
wall-robot-nav-4 5455 4 4 3.42 39.69 4.85 7.69 39.69 10.49 39.69 39.69
climate-simu-crash 539 18 2 0.00 94.44 2.41 75.56 94.44 83.33 94.44 94.44
optical-recog-digits 3822 64 10 1.36 7.48 1.39 0.76 7.16 0.60 8.94 10.27
wall-robot-nav-2 5455 2 4 5.26 39.69 5.48 17.75 39.69 21.03 39.69 39.69
dermatology 365 34 6 4.59 20.27 2.97 5.68 20.27 10.81 20.27 20.27
thyroid-disease-new 214 5 3 9.77 65.12 10.23 13.02 65.12 13.02 65.12 65.12
thyroid-disease-ann 3771 21 3 48.42 91.79 54.97 54.12 91.79 55.23 91.79 91.79
wine 177 13 3 1.67 44.44 1.11 3.89 37.78 5.56 43.33 31.67
pen-recog-digits 7493 16 10 2.76 10.13 2.63 2.05 10.13 1.80 8.71 10.27
skin-segmentation 2450563 2 79.30 79.30 79.30 79.30 79.30 79.28 79.30 79.30
banknote-authent 1371 4 2 39.20 54.25 42.25 54.25 54.25 43.13 54.25 54.25
iris 149 4 3 12.00 16.00 12.00 10.00 24.67 10.00 32.67 32.67
MNIST 70000 784 10 49.60 78.37 51.52 43.80 74.67 39.94 79.50 75.97
Fashion-MNIST 70000 784 10 78.70 87.74 78.30 80.76 87.07 80.24 87.80 86.91
CIFAR10 60000 102410 28.81 48.61 28.75 34.87 43.98 33.73 47.32 43.96

Table B.2: Adversarial accuracy results for all UCI and vision data sets, where n denotes the
data size, p denotes the data dimension, and k denotes the number of classes. We use ρ = 0.1
for all data sets except CIFAR10 and Fashion-MNIST, for which we set ρ = 0.01. Darker
blue corresponds to higher nominal (DL) natural accuracy.
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Name n p k DL Rob. St. Sp. Rob. St. St. HDL
+Sp. +Sp. +Rob.

echocardiogram 131 7 3 40.74 37.04 37.04 40.74 33.33 33.33 40.74 33.33
hill-valley 605 100 2 43.44 43.44 49.18 43.44 46.72 50.82 45.08 49.18
planning-relax 181 12 2 51.35 48.65 54.05 54.05 54.05 51.35 54.05 54.05
poker-hand 25009 10 10 54.60 54.32 54.56 54.48 53.20 53.52 54.70 52.32
hill-valley-noise 605 100 2 54.92 47.54 52.46 54.92 47.54 47.54 48.36 50.00
yeast 1483 8 10 57.58 56.90 56.57 57.24 59.60 58.92 56.90 58.92
haberman-survival 305 3 2 59.68 59.68 59.68 59.68 59.68 59.68 59.68 59.68
glass-identification 213 9 6 55.81 58.14 53.49 58.14 55.81 58.14 58.14 58.14
brst-cancer-ws-prog 197 32 2 67.50 67.50 67.50 67.50 62.50 60.00 72.50 67.50
hayes-roth 131 4 3 70.37 74.07 70.37 70.37 70.37 74.07 70.37 74.07
spectf-heart 79 44 2 68.75 68.75 75.00 68.75 68.75 62.50 75.00 75.00
hepatitis 154 19 2 70.97 70.97 70.97 70.97 74.19 70.97 70.97 77.42
connectionist-bench 989 10 11 75.25 77.78 80.81 71.72 63.13 60.61 76.26 70.71
libras-movement 359 90 15 75.00 75.00 79.17 68.06 75.00 70.83 81.94 75.00
bld-transf-serv-ctr 747 4 2 79.33 77.33 78.00 78.67 74.67 74.00 78.00 79.33
connect-bench-sonar 207 60 2 78.57 80.95 83.33 80.95 83.33 83.33 80.95 83.33
image-segmentation 209 19 7 78.57 78.57 80.95 76.19 73.81 83.33 78.57 78.57
ecoli 335 7 8 80.88 77.94 83.82 82.35 83.82 83.82 83.82 82.35
qsar-biodegradation 1054 41 2 84.83 84.83 83.89 81.99 83.41 83.89 84.36 83.89
parkinsons 194 21 2 84.62 82.05 82.05 84.62 79.49 76.92 84.62 79.49
magic-gamma-tel 19019 10 2 86.65 86.93 86.44 86.75 85.73 86.01 87.01 86.25
letter-recognition 19999 16 26 86.98 86.75 89.60 82.27 84.47 83.85 90.20 86.55
statlog-proj-landsat 4434 36 6 88.84 88.05 90.08 90.19 88.61 89.40 89.29 88.39
wall-robot-nav-24 5455 24 4 92.03 91.12 91.58 92.31 92.03 92.22 90.75 92.40
spambase 4600 57 2 92.18 92.73 92.62 92.29 92.40 92.51 92.40 92.62
seeds 209 7 3 90.48 90.48 92.86 92.86 92.86 90.48 90.48 92.86
ozone-level-eight 2533 72 2 93.10 94.08 93.10 93.29 94.48 92.31 93.10 93.49
cnae-9 1079 856 9 91.20 93.06 92.59 92.13 92.59 92.13 93.06 91.20
balance-scale 624 4 3 91.20 91.20 92.00 90.40 72.80 91.20 91.20 92.80
ionosphere 350 34 2 92.96 90.14 92.96 91.55 94.37 91.55 90.14 91.55
brst-cancer-ws-orig 698 9 2 93.57 93.57 95.71 95.71 95.71 95.00 95.71 95.71
brst-cancer-ws-diag 568 30 2 95.61 94.74 95.61 94.74 95.61 93.86 94.74 95.61
ozone-level-one 2535 72 2 97.24 96.46 96.85 96.85 97.44 97.44 96.85 97.05
wall-robot-nav-4 5455 4 4 97.44 97.16 97.34 97.25 97.71 97.62 97.62 97.80
climate-simu-crash 539 18 2 96.30 96.30 95.37 94.44 96.30 93.52 96.30 96.30
optical-recog-digits 3822 64 10 97.39 97.39 96.99 97.12 97.91 97.91 97.78 97.65
wall-robot-nav-2 5455 2 4 96.98 97.53 97.34 97.25 97.53 98.17 97.89 97.44
dermatology 365 34 6 97.30 97.30 97.30 98.65 95.95 97.30 97.30 94.59
thyroid-disease-new 214 5 3 97.67 97.67 95.35 93.02 95.35 93.02 97.67 93.02
thyroid-disease-ann 3771 21 3 98.28 98.81 98.01 98.54 98.68 98.41 98.54 98.28
wine 177 13 3 94.44 97.22 94.44 94.44 97.22 88.89 97.22 97.22
pen-recog-digits 7493 16 10 98.93 98.67 99.00 99.07 99.13 99.33 99.07 99.07
skin-segmentation 2450563 2 99.90 99.89 99.89 99.89 99.86 99.87 99.90 99.87
banknote-authent 1371 4 2 99.64 100.00 100.00 99.64 87.27 70.18 100.00 87.27
iris 149 4 3 100.00 100.00 93.33 100.00 70.00 96.67 96.67 96.67
MNIST 70000 784 10 99.14 99.24 99.15 99.06 99.07 98.86 99.25 99.19
Fashion-MNIST 70000 784 10 91.53 91.36 91.75 91.29 91.65 91.15 91.38 90.19
CIFAR10 60000 102410 68.28 65.44 68.13 63.14 56.04 61.76 63.76 56.48

Table B.3: Stability (worst case accuracy) results for all UCI and vision data sets, where n
denotes the data size, p denotes the data dimension, and k denotes the number of classes.
Darker blue corresponds to higher nominal (DL) natural accuracy.
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Name n p k DL Rob. St. Sp. Rob. St. St. HDL
+Sp. +Sp. +Rob.

echocardiogram 131 7 3 0.0 0.0 0.0 52.17 62.57 65.69 0.0 65.49
hill-valley 605 100 2 0.0 0.0 0.0 49.00 41.94 34.89 0.0 28.80
planning-relax 181 12 2 0.0 0.0 0.0 54.47 63.00 69.13 0.0 70.56
poker-hand 25009 10 10 0.0 0.0 0.0 29.56 49.23 51.31 0.0 49.83
hill-valley-noise 605 100 2 0.0 0.0 0.0 50.67 39.73 45.04 0.0 29.28
yeast 1483 8 10 0.0 0.0 0.0 53.08 53.41 54.71 0.0 54.36
haberman-survival 305 3 2 0.0 0.0 0.0 47.21 49.40 53.34 0.0 53.10
glass-identification 213 9 6 0.0 0.0 0.0 56.14 63.65 64.86 0.0 64.85
brst-cancer-ws-prog 197 32 2 0.0 0.0 0.0 61.87 67.34 69.49 0.0 67.78
hayes-roth 131 4 3 0.0 0.0 0.0 61.56 67.49 66.39 0.0 67.38
spectf-heart 79 44 2 0.0 0.0 0.0 81.02 85.84 86.10 0.0 85.58
hepatitis 154 19 2 0.0 0.0 0.0 64.56 68.71 74.01 0.0 72.74
connectionist-bench 989 10 11 0.0 0.0 0.0 57.95 63.20 63.34 0.0 63.45
libras-movement 359 90 15 0.0 0.0 0.0 66.76 70.90 71.00 0.0 70.73
bld-transf-serv-ctr 747 4 2 0.0 0.0 0.0 46.21 48.90 52.65 0.0 50.52
connect-bench-sonar 207 60 2 0.0 0.0 0.0 76.09 80.04 81.10 0.0 80.07
image-segmentation 209 19 7 0.0 0.0 0.0 60.95 66.47 69.23 0.0 67.24
ecoli 335 7 8 0.0 0.0 0.0 54.91 62.25 63.26 0.0 62.31
qsar-biodegradation 1054 41 2 0.0 0.0 0.0 44.89 44.32 51.82 0.0 47.65
parkinsons 194 21 2 0.0 0.0 0.0 59.42 60.95 67.40 0.0 63.23
magic-gamma-tel 19019 10 2 0.0 0.0 0.0 50.80 51.43 57.52 0.0 52.84
letter-recognition 19999 16 26 0.0 0.0 0.0 58.77 63.84 65.32 0.0 64.86
statlog-proj-landsat 4434 36 6 0.0 0.0 0.0 45.65 50.60 52.06 0.0 51.53
wall-robot-nav-24 5455 24 4 0.0 0.0 0.0 51.85 55.96 56.59 0.0 55.53
spambase 4600 57 2 0.0 0.0 0.0 56.81 56.56 59.90 0.0 55.84
seeds 209 7 3 0.0 0.0 0.0 65.56 71.45 72.73 0.0 72.33
ozone-level-eight 2533 72 2 0.0 0.0 0.0 66.09 68.13 67.86 0.0 67.38
cnae-9 1079 856 9 0.0 0.0 0.0 61.94 62.06 73.43 0.0 61.91
balance-scale 624 4 3 0.0 0.0 0.0 57.25 63.41 63.35 0.0 63.14
ionosphere 350 34 2 0.0 0.0 0.0 63.16 66.76 68.17 0.0 66.74
brst-cancer-ws-orig 698 9 2 0.0 0.0 0.0 48.29 53.44 55.78 0.0 55.97
brst-cancer-ws-diag 568 30 2 0.0 0.0 0.0 68.91 71.38 71.46 0.0 70.69
ozone-level-one 2535 72 2 0.0 0.0 0.0 66.22 68.25 67.97 0.0 68.58
wall-robot-nav-4 5455 4 4 0.0 0.0 0.0 52.89 61.43 60.75 0.0 60.50
climate-simu-crash 539 18 2 0.0 0.0 0.0 59.75 64.56 65.88 0.0 66.29
optical-recog-digits 3822 64 10 0.0 0.0 0.0 65.42 68.85 71.25 0.0 69.22
wall-robot-nav-2 5455 2 4 0.0 0.0 0.0 63.85 72.12 72.68 0.0 71.74
dermatology 365 34 6 0.0 0.0 0.0 67.03 73.49 74.61 0.0 74.21
thyroid-disease-new 214 5 3 0.0 0.0 0.0 67.25 74.48 74.62 0.0 74.12
thyroid-disease-ann 3771 21 3 0.0 0.0 0.0 48.81 50.15 53.22 0.0 50.36
wine 177 13 3 0.0 0.0 0.0 74.62 81.05 80.60 0.0 80.59
pen-recog-digits 7493 16 10 0.0 0.0 0.0 59.13 62.58 63.33 0.0 63.23
skin-segmentation 2450563 2 0.0 0.0 0.0 63.77 71.27 72.15 0.0 72.56
banknote-authent 1371 4 2 0.0 0.0 0.0 76.88 84.17 84.97 0.0 84.98
iris 149 4 3 0.0 0.0 0.0 69.89 78.03 77.56 0.0 77.79
MNIST 70000 784 10 0.0 0.0 0.0 39.20 75.06 44.77 0.0 76.05
Fashion-MNIST 70000 784 10 0.0 0.0 0.0 45.41 68.94 48.40 0.0 69.18
CIFAR10 60000 102410 0.0 0.0 0.0 50.51 82.34 55.58 0.0 81.41

Table B.4: Sparsity results for all UCI and vision data sets, where n denotes the data size, p
denotes the data dimension, and k denotes the number of classes. Darker blue corresponds
to higher nominal (DL) natural accuracy.
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Appendix C

Chapter 4 Appendix

C.1 HHC Data Summary Statistics

We report the summary statistics of the data after the process of inclusion, exclusion, and

splits from the Machine Learning Modeling section. For each hospital HA-HG, the number

of patients, admissions, and patient days in the union of training, validation, and testing sets

are summarized in Table C.1.

Table C.1: Summary of Data Size.

Hospital HA HB HC HD HE HF HG

# Patients 105,184 15,493 7,956 20,011 15,576 11,624 4,838
# Admissions 171,072 23,354 12,822 29,490 21,612 15,319 6,924
# patient days 879,357 106,662 52,931 139,542 90,924 79,615 26,184

C.2 Accuracy for each Hospital at HHC

We report the accuracy, precision, and recall for green and red alerts at all seven hospitals in

Table C.2. Among the hospitals, green alerts have 0.687-0.768 accuracy, 0.588-0.629 precision,

and 0.701-0.8 recall; red alerts have 0.885-0.925 accuracy, 0.477-0.55 precision, and 0.471-0.715

recall.
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Table C.2: Precision and Recall under Selected Thresholds for Alerts.

Alert Hospital HA HB HC HD HE HF HG

New green
Accuracy 0.767 0.734 0.714 0.751 0.739 0.768 0.687
Precision 0.621 0.604 0.588 0.611 0.623 0.617 0.629
Recall 0.746 0.786 0.8 0.764 0.796 0.701 0.78

Red
Accuracy 0.899 0.901 0.895 0.881 0.896 0.886 0.925
Precision 0.477 0.55 0.574 0.492 0.528 0.505 0.53
Recall 0.705 0.668 0.553 0.691 0.715 0.663 0.471

C.3 Empirical Treatment Effect for HHC

Table C.3 presents information and deployment progress of all units with general level of care

and offering cardiology, medicine or surgical services. By January 16, 2023, 15 treatment

units had fully integrated the predictions in their review process, where unit leads review the

predictions with the provider team daily and adjust decisions accordingly. As of April 15,

2023, 12 control units (with an NA Start Date) had not officially integrated the daily process.

We consider a linear regression approach to estimate the impact of the adoption of the

tool on four different outcomes (time is measured in days): average LOS in the unit (Avg.

LOS), its logarithm (log(Avg. LOS)), the average of the log-LOS in the unit (Avg. log(LOS)),

and the average time difference between the discharge order and the first occurrence of the

green alert (we refer to this outcome as ∆order - alert).

We use discharge data from all half-month periods in January 16, 2020 - April 15, 2023,

and for the same treatment and control units as in Section 4.2.3. We consider the unit to

be not treated (resp. treated) on all time periods before (resp. after) the utilization start

date from Table C.3. Periods containing the utilization start date are excluded. We include

two categories of control variables: calendar variables (year-month-half indicators) and unit

controls (hospital name, unit name, and the number of beds). We then construct a linear

regression model to predict each outcome as a function of a binary variable indicating whether

the tool is deployed in that unit at that time period, and the control variables. Formally, for
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Table C.3: Unit Deployment Progress Information.

Hospital Unit Start Date Specialty Capacity

HA HA CONKLIN 2 NA Medicine/Oncology 27
HA HA CONKLIN 4 9/13/22 Medicine 25
HA HA CONKLIN 5 7/11/22 Medicine 47
HA HA BLISS 7 EAST 8/23/22 Medicine 17
HA HA BLISS 10 EAST NA Cardiology 14
HA HA CENTER 10 NA Cardiology 26
HA HA CENTER 12 7/11/22 Medicine 26
HA HA NORTH 10 NA Cardiology 27
HA HA NORTH 12 7/11/22 Medicine 20

HB HB A3 MEDSURG 8/23/22 Medicine/Surgical 30
HB HB E4 Cardiology 8/23/22 Cardiology 28
HC HC FOURTH FLOOR 8/23/22 Medicine/Surgical 28
HC HC FIFTH FLOOR 8/23/22 Medicine/Surgical 29
HD HD EAST 2 NA Medicine/Observation 12
HD HD WEST 2 NA Medicine 15
HD HD NORTH 3 1/15/23 Medicine 24
HD HD NORTH 4 10/22/22 Medicine/Cardiology 28
HD HD NORTH 5 8/23/22 Medicine/Stroke 30

HE HE PAVILION D NA Medicine 28
HE HE PAVILION E 1/15/23 Medicine 28
HF HF 6 NORTH NA Cardiology 20
HF HF 6 SOUTH NA Cardiology 20
HF HF 9 NORTH NA Medicine 22
HF HF 10 NORTH NA Medicine 29
HG HG 4 SHEA EAST 1/15/23 Medicine/Surgical 30
HG HG 4 SHEA NORTH 1/15/23 Medicine/Surgical 12
HG HG GREER NA Medicine/Surgical 23

every unit i and time period t, we consider a regression model of the form

Yi,t = αi + λt + µWi,t + βXi + εi,t,

where Yi,t is the outcome of interest, αi (resp. λt) is the unit (resp. time) fixed effect, Wi,t is

the binary treatment indicator variable for unit i at time t, and Xi is the set of additional

controls for unit i (in our case, hospital and number of beds). The coefficient µ corresponds

to the treatment effect, assumed homogeneous across units and time.

We select this approach given our staggered roll-out setup (different units started using

the tool at different times). This estimation strategy is referred to in the literature as

Difference-in-Difference with variations in treatment times (Callaway and Sant’Anna 2021,

165



Table C.4: Regression Results of our Difference-in-Difference Model for Estimating the Impact
of our Tool after Deployment.

Outcome
Length of Stay

Avg. ∆order - alertAvg. LOS log(Avg. LOS) Avg. log(LOS)

Coefficient -0.457 -0.082 -0.055 -0.194
Standard Error 0.167 0.028 0.023 0.09

p-value 6.4× 10−3 3.9× 10−3 1.7× 10−2 3.3× 10−2

Obs. 1846 1846 1846 1827
R-square 0.394 0.454 0.508 0.424

Adjusted R-square 0.357 0.421 0.479 0.389

Controls: hospital, unit, number of beds, month-year-half.
Standard Errors: cluster-robust at the unit level.

Goodman-Bacon 2021), and it accounts for variations in LOS due to time non-stationarity

(calendar variables) and differences in patient populations and hospital types (hospital and

unit fixed effects). Given the correlation in our setting between the units and the treatment

assignment, the default standard errors could overestimate the precision of the estimator

(Cameron and Miller 2015), so we compute cluster-robust standard errors (Liang and Zeger

1986) at a unit-level instead.

The results of the linear regression model are shown in Table C.4. The treatment variable

has a negative and statistically significant coefficient across all outcomes. In particular, for

the Avg. LOS, the coefficient value of -0.457 (p-value of 0.006) indicates that, everything

else (i.e., all the control variables) being equal, using the tool reduces the average LOS by

0.457 days. Similarly, regressing the average of the log(LOS) or the logarithm of the average

LOS indicates a statistically significant negative treatment effect, yet in multiplicative rather

than additive terms (around 8–5% reduction in LOS). Lastly, the coefficient of the treatment

variable for the Avg. (∆order - alert) outcome has a value of -0.194 (p-value of 0.033), suggesting

that the reduction in LOS can be partially attributed to discharge orders being placed earlier

(0.194 days sooner), potentially thanks to observing the green alert.

There are limitations to our approach, including some discussed in Section 4.2.3. Our

analysis assumes that the treatment effect on the outcomes of interest can be decomposed

into two-way fixed effects and follows a linear relationship with the control and treatment
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variables. However, there may be other confounding factors at the unit and patient levels

that can influence LOS, such as patient demographics and other initiatives aimed at reducing

LOS in these hospitals. Most importantly, the design of the staggered roll-out was not done

with empirical validation in mind. The units treated and the time where deployment started

in these units at random and may be correlated with LOS and the potential impact of the

tool (e.g., prioritizing units that would benefit the most or would be ‘easy adopters’). This

deficiency can lead to bias in our DiD estimates, in addition to issues of treatment effect

heterogeneity across units and over time (Bertrand et al. 2004). Lastly, discussions with the

hospital network reveal challenges in accurately measuring and quantifying the exact extent

of tool usage. For instance, treatment units exhibit varying degrees of tool utilization across

different medical teams.
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Appendix D

Chapter 5 Appendix

D.1 Reproducing Kernel Hilbert Spaces Overview

A reproducing kernel Hilbert space (RKHS) is a Hilbert space in which the elements are

functions that preserve pointwise distance. Specifically, if two functions are close with respect

to the Hilbert space norm, then their pointwise evaluations are close with respect to the norm

of the functions’ output space. Each RKHS is generated by a positive definite kernel K(·, ·);

a function K : Z × Z → R satisfying

m∑
i=1

m∑
j=1

aiajK(zi, zj) ≥ 0, ∀m ∈ N, z1, . . . ,zm ∈ Z, a1, . . . , am ∈ R .

Definition D.1.0.1. A reproducing kernel Hilbert space H generated by a positive definite

kernel K : Z × Z → R is the closure of the set of functions

{
f : Z → R

∣∣∣∣∣ f(z) =
L∑
c=1

acK(zc, z), for z1, . . . ,zL ∈ Z and L ∈ N

}
,
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with inner product of f1(z) =
∑L1

c=1 a
c
1K(zc1, z) and f2(z) =

∑L2

c=1 a
c
2K(zc2, z) defined as

⟨f1, f2⟩H =

L1∑
c1=1

L2∑
c2=1

ac11 a
c2
2 K(zc11 , z

c2
2 ).

The complexity of a reproducing kernel Hilbert space depends on the kernel generating

it. A linear kernel, for example, generates the Hilbert space of linear functions. A Gaussian

kernel generates much more complex spaces; it has the property that for compact spaces Z it

generates spaces that are dense in C(Z) (the space of continuous bounded funcions on Z) in

the maximum norm. Kernels with this property are called universal kernels (Micchelli et al.

2006) and they are very useful for solving functional optimization problems over continuous

functions, since the problem can be solved over the RKHS instead.

One of the main reasons why RKHSs are so useful when working with data is the fact

that they transform pointwise evaluation into an inner product of elements in the Hilbert

space, and vice-versa. Specifically, if f belongs to the reproducing kernel Hilbert space H

generated by kernel K, we have

f(x) = ⟨K(x, ·), f⟩H, (D.1)

for all x in the domain of f . This equivalence is known as the reproducing property. The next

result, known as the Representer Theorem, illustrates how in many cases solving functional

optimization problems over a RKHS is equivalent to solving an optimization problem over a

real space, and the proof relies mostly on the reproducing property.

Theorem D.1.1 (Representer Theorem). Suppose we have a data matrix Z = [z1, . . . ,zN ]

for some fixed data points z1, . . . ,zN ∈ Z. Let H be the reproducing kernel Hilbert space

generated by a kernel K : Z ×Z → R. Then, for any arbitrary loss function c : R×Z → R
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and any regularization parameter λ ≥ 0, there exists a solution to

inf
h∈H

1

N

N∑
n=1

c(h(zn), zn) +
λ

2
∥h∥2H (D.2)

that takes the form

h∗(·) =
N∑
n=1

anK(zn, ·) , (D.3)

for some scalars a1, . . . , aN ∈ RN .

The Representer Theorem implies that the solution to the functional optimization problem

(D.2) can be found by solving instead the following finite dimensional optimization problem

min
a∈RN

1

N

N∑
n=1

c
(
(K[Z,Z]a)n, z

n
)
+
λ

2
aTK[Z,Z]a , (D.4)

where K[Z, Z̃] is the kernel matrix (between equal size matrices Z, Z̃) whose (n,m) compo-

nent is K(zn, z̃m).

The proof of this theorem follows from the fact that any function in H can be decomposed

as the sum of a function of the form (D.3) and a function orthogonal to every function of

this form. The theorem then follows after showing that, thanks to the reproducing property,

the sum in the objective of (D.2) is independent of the orthogonal part, and the second

term in the objective is increasing in the orthogonal part. This theorem can be extended

to a multidimensional version in which the optimization problem is over multiple functions

h1, . . . , hr ∈ H. In this case, the Representer Theorem tells us that there exists a solution

h∗ ∈ Hr that takes the form

h∗(·) = AK(Z, ·) , (D.5)

where K(Z, ·) := [K(z1, ·), . . . , K(zN , ·)]T and A ∈ Rr×N . For more details about the

representer theorem’s proof and applications we refer the reader to Wahba (1990), Soentpiet

et al. (1999), Schölkopf et al. (2002), Shawe-Taylor et al. (2004).
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D.2 Lemmas

In this appendix we will state and proof several lemmas needed for the proof of Theorems

5.5.4 and Corollary 5.5.5. For generality, we consider the constrained problem in Eq. 5.19,

and define:

cψ
(
u(z), z

)
:= c

(
u(z), z

)
+ ψ

Q∑
q=1

max
(
0, gq

(
u(z)

))2
, (D.6)

E(u) := Ez [c(u(z), z)] , (D.7)

Eψ(u) := Ez

[
cψ
(
u(z), z

)]
, (D.8)

Eλ,ψ(u) := Eψ(u) +
λ

2
∥u∥2H, (D.9)

Eλ,ψ
S (u) :=

1

N

N∑
n=1

cψ
(
u(zn), zn

)
+
λ

2
∥u∥2H, (D.10)

Eλ,ψ
n (u) := cψ

(
u(zn), zn

)
+
λ

2
∥u∥2H. (D.11)

Lemma D.2.1. Under assumption 1, we have

∥u(z)∥2 ≤ κ∥u∥H ∀ z ∈ Z, u ∈ H.

Proof. Let u ∈ H and z ∈ Z. We have

∥u(z)∥22 =
T∑
t=1

rt∑
i=1

ut,i(z1:t−1)
2 =

T∑
t=1

rt∑
i=1

⟨ut,i, Kt(z1:t−1, ·)⟩2Ht
(by Eq. (D.1)),

≤
T∑
t=1

rt∑
i=1

∥Kt(z1:t−1, ·)∥2Ht,i
∥ut,i∥2Ht

(Cauchy-Schwarts Ineq.),

≤ κ2∥u∥2H (Assumption 5.5.1),

and the lemma follows.

Lemma D.2.2. Under Assumptions 1 and 2, we have
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a) The true minimizer uλ,ψ of Eλ,ψ defined in D.9, satisfies

∥uλ,ψ∥H ≤ κC

λ
.

b) If Algorithm 2 is initialized such that ∥u0∥H ≤ κC
λ

, then

∥un∥H ≤ κC

λ
∀ n ∈ [N ].

Proof. a) We proceed as in Kivinen et al. (2004). We define uλ,ψS as the minimizer of Eλ,ψ
S ,

and û = (1− ϵ)uλ,ψS for ϵ > 0. We have

0 ≤ Eλ,ψ
S (û)− Eλ,ψ

S (uλ,ψS ) (by Optimality of uλ,ψS ),

=
1

N

N∑
n=1

(
cψ(û(zn), zn)− cψ(uλ,ψS (zn), zn)

)
+
λ

2

(
∥û∥2H− ∥uλ,ψS ∥2H

)
≤ C

N

N∑
n=1

∥û(zn)− uλ,ψS (zn)∥2 +
λ

2

(
(1− ϵ)2 − 1

)
∥uλ,ψS ∥2H (by Assumption 5.5.2),

≤ κC

N

N∑
n=1

∥û− uλ,ψS ∥H − λϵ∥uλ,ψS ∥2H +
λ

2
ϵ2∥uλ,ψS ∥2H (by Lemma D.2.1),

= κCϵ∥uλ,ψS ∥H − λϵ∥uλ,ψS ∥2H +
λ

2
ϵ2∥uλ,ψS ∥2H.

Dividing by ϵ∥uλ,ψS ∥H on both sides and taking the limit as ϵ→ 0 we obtain ∥uλ,ψS ∥H ≤ κC
λ

and the desired result then follows by taking the limit as N → ∞.

b) To prove the upper bound for the decisions output by the algorithm in each iteration

we proceed by induction on the iteration number n. We have ∥u0∥H ≤ κC
λ

by assumption.
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Suppose the bound holds for n. Then, we have

∥un+1∥H =
∥∥ΠDn+1 [(1− ηnλ)u

n − ηn∇uc
ψ(un(zn), zn)]

∥∥
H (by definition 5.12),

≤ ∥(1− ηnλ)u
n − ηn∇uc

ψ(un(zn), zn)∥H (by definition of ΠDn+1)

≤ (1− ηnλ)∥un∥H + ηn∥∇uc
ψ(un(zn), zn)∥H (by triangle inequality),

≤ (1− ηnλ)∥un∥H + ηnκ∥∇u(z)c
ψ(un(zn), zn)∥2 (by Eq. (5.9)),

≤ (1− ηnλ)
κC

λ
+ ηnκ∥∇u(z)c

ψ(un(zn), zn)∥2 (by assumption for n),

≤ (1− ηnλ)
κC

λ
+ ηnκC =

κC

λ
(by Eq. 5.17),

and therefore the result holds for all n ∈ N as desired.

Lemma D.2.3. Under Assumptions 1-3, for any u ∈ H satisfying ∥u∥H ≤ κC
λ

, we have

E
[
∥∇uE

λ,ψ
n (u)∥2Ht

]
≤ 4κ2C2.

Proof. Fix some t ∈ {1, . . . , T}. Using the fact that ∥a + b∥2H ≤ 2(∥a∥2H + ∥b∥2H) for any

a, b ∈ H, as well as Assumption 5.5.3, we obtain that for any u ∈ H, it holds

E
[
∥∇uE

λ,ψ
n (u)∥2H

]
≤ 2E

[
∥∇uc

ψ(u(zn), zn)∥2H
]
+ 2λ2∥u∥2H,

≤ 2κ2E
[
∥∇u(z)c

ψ(u(zn), zn)∥2H
]
+ 2λ2∥u∥2H (By Eq. (5.9)),

≤ 2κ2E
[
∥∇u(z)c

ψ(u(zn), zn)∥2H
]
+ 2λ2

(
κC

λ

)2

(By Lemma D.2.2),

≤ 2κ2C2 + 2λ2
(
κC

λ

)2

(by Eq. (5.17)),

= 4κ2C2.

Lemma D.2.4. Under Assumption 3, given independently and identically distributed realiza-
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tions {zn} of z, we have

∥∇uE
λ,ψ
n (un)− ∇̃uE

λ,ψ
n (un)∥H ≤ ϵn

ηn
,

where ∇̃uE
λ,ψ
n (un) was defined in Eq. (5.15).

Proof. By definition of ∇̃uE
λ,ψ
n (un) we have that

∥∇uE
λ,ψ
n (un)− ∇̃uE

λ,ψ
n (un)∥2H

=

∥∥∥∥∇uE
λ,ψ
n (un)− un − ΠDn+1 [un − ηn∇uE

λ,ψ
n (un)]

ηn

∥∥∥∥2
H
,

=
∥∥∥ 1

ηn
ΠDn+1 [un − ηn∇uE

λ,ψ
n (un)]− 1

ηn
(un − ηn∇uE

λ,ψ
n (un))

∥∥∥2
H
,

=
1

η2n

∥∥un+1 − ũn+1
∥∥2
H,

where ũn+1 := un − ηn∇uE
λ,ψ
n (un) is the result of applying one FSGD iteration to un. By

the stopping criterion of the KOMP algorithm we know that
∥∥un+1 − ũn+1

∥∥
H ≤ ϵn, and

therefore the lemma follows after taking the square root on both sides.

Lemma D.2.5. Under Assumption 3, for any u ∈ H with ∥u∥H ≤ κC
λ

, we have

Eλ,ψ
n (un)− Eλ,ψ

n (u) (D.12)

≤ 1

2ηn

(
∥un − u∥2H − ∥un+1 − u∥2H

)
+ ηn∥∇uE

λ,ψ
n (un)∥2H +

ϵn
ηn

∥un − u∥H +
ϵ2n
ηn
. (D.13)

Proof. Firstly, notice that

∥un+1 − u∥2H = ∥un − ηn∇̃uE
λ,ψ
n (un)− u∥2H

= ⟨un − ηn∇̃uE
λ,ψ
n (un)− u,un − ηn∇̃uE

λ,ψ
n (un)− u⟩

= ∥un − u∥2H − 2ηn⟨un − u,∇uE
λ,ψ
n (un)⟩ − 2ηn⟨un − u, ∇̃uE

λ,ψ
n (un)

−∇uE
λ
n(u

n)⟩+ η2n∥∇̃uE
λ,ψ
n (un)∥2H

(D.14)
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By the Cauchy Schwartz inequality and Lemma D.2.4, we have

|⟨un − u, ∇̃uE
λ,ψ
n (un)−∇uE

λ
n(u

n)⟩| ≤ ∥un − u∥H∥∇̃uE
λ,ψ
n (un)−∇uE

λ,ψ
n (un)∥H (D.15)

≤ ϵn
ηn

∥un − u∥H. (D.16)

Substituting Eq. (D.16) in Equation (D.14) and rearranging terms we obtain

⟨un−u,∇uE
λ,ψ
n (un)⟩≤ ∥un−u∥2H − ∥un+1−u∥2H

2ηn
+
ϵn
ηn

∥un−u∥H+
ηn
2
∥∇̃uE

λ,ψ
n (un)∥2H.

(D.17)

Then, we have

Eλ,ψ
n (un)− Eλ,ψ

n (u) ≤ ⟨un − u,∇uE
λ,ψ
n (un)⟩ (By convexity of Eλ,ψ

n (un)),

≤∥un−u∥2H−∥un+1−u∥2H
2ηn

+
ϵn
ηn

∥un − u∥H +
ηn
2
∥∇̃uE

λ,ψ
n (un)∥2H

(D.18)

Furthermore,

∥∇̃uE
λ,ψ
n (un)∥2H ≤ 2∥∇̃uE

λ,ψ
n (un)−∇uE

λ,ψ
n (un)∥2H + 2∥∇uE

λ,ψ
n (un)∥2H

≤ 2ϵ2n
η2n

+ 2∥∇uE
λ,ψ
n (un)∥2H (By Lemma D.2.4).

(D.19)

The Lemma follows from applying Eq (D.19) to Eq (D.18).

Lemma D.2.6. Under Assumptions 1-3, for ϵn = P2η
2
n we have

E
[
Eλ,ψ(uN

∗
)− Eλ,ψ(uλ,ψ)

]
≤ ∥uλ,ψ−u0∥H

2
∑N

n=1 ηn
+

∑N
n=1 η

2
n∑N

n=1 ηn

(
2P2κC

λ
+ 4κ2C2

)
+

∑N
n=1 ϵ

2
n∑N

n=1 ηn
.
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Proof. Taking expectation over data and sampling on both sides of Equation (D.12) we have

ηnE
[
Eλ,ψ(un)− Eλ,ψ(u)

]
≤E [∥un−u∥2H−∥un+1− u∥2H+ 2ϵn∥un−u∥H]

2
+E[η2n∥∇uE

λ,ψ
n (un)∥2H] + ϵ2n,

≤E [∥un− u∥2H− ∥un+1− u∥2H+ 2ϵn∥un− u∥H]
2

+ 4η2nκ
2C2 + ϵ2n,

where the inequality follows form Lemma D.2.3. Summing over n and evaluating at u = uλ,ψ

we obtain

N∑
n=0

ηnE
[
Eλ,ψ(un)− Eλ,ψ(uλ,ψ)

]
≤1

2
∥uλ,ψ − u0∥H +

N∑
n=0

ϵn∥un − uλ,ψ∥H + 4κ2C2

N∑
n=0

η2n +
N∑
n=0

ϵ2n,

≤1

2
∥uλ,ψ − u0∥H +

N∑
n=0

2ϵn
κC

λ
+ 4κ2C2

N∑
n=0

η2n +
N∑
n=0

ϵ2n (Lemma D.2.2),

=
1

2
∥uλ,ψ − u0∥H +

(
2P1κC

λ
+ 4κ2C2

) N∑
n=0

η2n +
N∑
n=0

ϵ2n.

(D.20)

By definition of u∗
S we then have

(
N∑
n=1

ηn

)
E
[
Eλ,ψ(u∗

S)− Eλ,ψ(uλ,ψ)
]
≤

N∑
n=1

ηnE
[
Eλ,ψ(un)− Eλ,ψ(uλ,ψ)

]
. (D.21)

Dividing by
∑N

n=1 ηn on both sides of Eq. (D.21) and applying the inequality (D.20) we

obtain

E
[
Eλ,ψ(uN

∗
)− Eλ,ψ(uλ,ψ)

]
≤ ∥uλ,ψ−u0∥H

2
∑N

n=1 ηn
+

∑N
n=1 η

2
n∑N

n=1 ηn

(
2P2κC

λ
+ 4κ2C2

)
+

∑N
n=1 ϵ

2
n∑N

n=1 ηn
.

as desired.

Lemma D.2.7. Suppose that there exists a feasible decision û and a finite constant C0 such
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that c(û(z), z) ≤ C0 for all z ∈ Z. Then,

lim
ψ→∞

E

[
Q∑
q=1

max
(
0, gq

(
uλ,ψ(z)

))2]
= 0.

Proof. By definition of uλ,ψ, we know

ψE

[
Q∑
q=1

max
(
0, gq

(
uλ,ψ(z)

))2]
≤ Ez [c(û(z), z)] +

λ

2
∥û∥2H ≤ C0 +

λ

2
∥û∥2H.

Therefore, for any violation tolerance δ > 0 we can choose ψ ≥ 2C0+λ∥û∥2H
2δ

to ensure

E
[∑Q

q=1 max
(
0, gq

(
uλ,ψ(z)

))2]
≤ δ and the lemma follows.

D.3 Main Theorems

In this section we state and proof a more general version of Theorem 5.5.4 and Corollary

5.5.5, which correspond to the case ψ = 0.

Theorem D.3.1 (Generalization of Theorem 1). Let u∗
S := argminu∈{u1,...,uN}E

λ,ψ
S (u) be

the decisions generated by Algorithm 2 when given the set S = {zn}Nn=1 as input, and let uλ,ψ

be the true minimizer of Eλ,ψ(u) over H. If we use constant step-size η and constant error

bounds ϵ = P2η
2 for some constant P2 > 0, then under Assumptions 1-3, we have that

E
[
Eλ,ψ(u∗

S)− Eλ,ψ(uλ,ψ)
]
≤ O

(η
λ

)
.

Proof. Applying Lemma D.2.6 with ηn = η yields

E
[
Eλ,ψ(u∗

S)− Eλ(uλ,ψ)
]
≤ O

( ∑N
n=1 η

2
n

λ
∑N

n=1 ηn

)
= O

(η
λ

)
,
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as desired.

Corollary D.3.2 (Generalization of Corollary 1). Suppose that there exists a feasible decision

û and finite constants c0, C0 such that c(û(z), z) ≤ C0 and c0 ≤ c(u, z) for all z ∈ Z and

for all scalar arguments u. Let u∗ be the true minimizer of E(·) over F and let uψ be the

true minimizer of Eψ(·) over F . If we use constant step-size with η = P1√
N
< 1

λ
, and P1 > 0,

constant error bounds ϵ = P2η
2 for some constant P2 > 0, and regularization parameter λ

such that λ −−−→
N→∞

0 and λ
√
N −−−→

N→∞
∞, then under Assumptions 1-4 we have that

a) limψ→∞ limN→∞ E
[∑Q

q=1max
(
0, gq

(
u∗

S(z)
))2]

= 0.

b) limN→∞ E
[∣∣Eψ(u∗

S)− Eψ(uψ)
∣∣] = 0 for all ψ > 0.

c) limψ→∞ limN→∞ E [E(u∗
S)] ≤ E(u∗).

Proof. Part a) We have

lim
N→∞

ψE

[
Q∑
q=1

max
(
0, gq

(
u∗

S(z)
))2]

≤ lim
N→∞

E
[
Eλ,ψ(u∗

S)
]

− c0,

≤ Eλ,ψ(uλ,ψ)− c0 (by Theorem 5.5.4),

≤ Eλ,ψ(û)− c0 (by optimality of uλ,ψ),

= Eλ(û)− c0 (by feasibility of û),

and therefore

0 ≤ lim
ψ→∞

lim
N→∞

E

[
Q∑
q=1

max
(
0, gq

(
u∗

S(z)
))2]

≤ lim
ψ→∞

Eλ(û)− c0
ψ

= 0,

179



Part b) Let uψH be the true minimizer of Eψ over H. Adding and subtracting terms we obtain

Eψ(u∗
S)− Eψ(uψ) =

(
Eψ(u∗

S)− Eλ,ψ(u∗
S)
)
+
(
Eλ,ψ(u∗

S)− Eλ,ψ(uλ,ψ)
)

+
(
Eλ,ψ(uλ,ψ)− Eψ(uψH)

)
+
(
Eψ(uψH)− Eψ(uψ)

)
.

The first term on the right hand side is negative, the second term vanishes because of Theorem

5.5.4, the third term vanishes with λ, and the fourth term is zero because we use universal

kernels (Assumption 5.5.1). Since Eψ(u∗
S)− Eψ(uψ) is non-negative, we obtain

lim
N→∞

E
[∣∣Eψ(u∗

S)− Eψ(uψ)
∣∣] = 0 ∀ψ ≥ 0.

Part c) We have

lim
N→∞

E
[
Eψ(u∗

S)
]
= lim

N→∞
E
[
Eψ(u∗

S)− Eψ(uψ)
]
+ Eψ(uψ)

=⇒ lim
ψ→∞

lim
N→∞

E
[
Eψ(u∗

S)
]
= lim

ψ→∞
lim
N→∞

E
[
Eψ(u∗

S)− Eψ(uψ)
]
+ lim

ψ→∞
Eψ(uψ)

=⇒ lim
ψ→∞

lim
N→∞

E [E(u∗
S)] = lim

ψ→∞
lim
N→∞

E
[
Eψ(u∗

S)−Eψ(uψ)
]
+lim
ψ→∞

Eψ(uψ) (By part a))

=⇒ lim
ψ→∞

lim
N→∞

E [E(u∗
S)] ≤ lim

ψ→∞
Eψ(uψ) (By part b))

=⇒ lim
ψ→∞

lim
N→∞

E [E(u∗
S)] ≤ E(u∗), (By optimality of uψ)

as desired.

D.4 Finding Lower Bounds

We emphasize that we only need to find lower bounds for the case in which the dimension

of the data and the dimension of the controls is equal to 1; since the experiments run for

multidimensional cases were designed to have the same objective value as the one dimensional
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case. The exact problem we want to lower bound is then

min
u1:T

Ew|x

[
T∑
t=1

2 [st]
+ + [−st]+

∣∣∣∣ x = x0

]
(D.22)

s.t. st = st−1 + ut − wt (D.23)

ut ≥ 0 ∀t ∈ [T ], (D.24)

ut ≤ 150 ∀t ∈ [T ], (D.25)

ut + ut+1 ≤ 200 ∀t ∈ [T − 1]. (D.26)

The demands wt were generated as a linear function of the covariates with some added

noise; specifically, wt = αtx + ϵt, where ϵt was sampled from a standard distribution and

the constants αt were selected to be close to 50 in order for the triangular constraints to

be relevant. In fact, for the specified parameters, we found that the constraints (D.25) and

(D.24) are quite lose and we can find a good lower bound for the the optimal objective value

by removing these constraints. The problem to solve can then be simplified as

min
u1:T

Eϵ

[
T∑
t=1

2

[
t∑
i=1

ui(x0, ϵ1:i−1)− αix0 − ϵi

]+
+

[
−

t∑
i=1

ui(x0, ϵ1:i−1)− αix0 − ϵi

]+]

s.t. ut(x0, ϵ1:t−1) + ut+1(x0, ϵ1:t) ≤ 200 ∀t ∈ [T − 1]. (D.27)

To solve the problem above, we use the fact that if ϵ has a normal distribution then the

function f(a) = Eϵ [2[a− ϵ]+ + [ϵ− a]+] is strictly convex and

a0 := argmin
a

Eϵ
[
2[a− ϵ]+ + [ϵ− a]+

]
(D.28)

=min
a

∫ a

−∞
2(a− x)

e−x
2/2

√
2π

dx+

∫ ∞

a

(x− a)
e−x

2/2

√
2π

dx

=min
a

3e−a
2/2

√
2π

+
3

2
a

(
1 + erf

(
a√
2

))
− a

=−
√
2erf−1

(
1

3

)
. (D.29)
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We will show how to exactly solve problem (D.27) in the case T = 2 (the analysis is similar

for cases T = 3, 4, 5). Suppose then that T = 2. For a fix value of u1(x0), the optimization

problem (D.27) over u2(x0, ϵ1) becomes

min
u2

Eϵ2

2[ 2∑
i=1

ui(x0, ϵ1:i−1)− αix0 − ϵi

]+
+

[
−

2∑
i=1

ui(x0, ϵ1:i−1)− αix0 − ϵi

]+
s.t. u2(x0, ϵ1) ≤ 200− u1(x0).

Applying the result from Eq. (D.29) we obtain

u∗2(x0, ϵ1) = min{(α1 + α2)x0 + ϵ1 − u1(x0) + a0, 200− u1(x0)},

which implies that the term
∑2

i=1 ui(x0, ϵ1:i−1)− αix0 − ϵi evaluated at u∗2(x0, ϵ1) is equal to

min{a0 − ϵ2, 200− (α1 + α2)x0 − ϵ1 − ϵ2), which is independent of u1(x0). We can then find

the optimal u1 by solving

min
u1

Eϵ1
[
2 [u1(x0)− α1x0 − ϵ1]

+ + [α1x0 + ϵ1 − u1(x0)]
+]

s.t. u1(x0, ) ≤ 200,

which again, using Eq. (D.29) yields u∗1(x0) = min{α1x0 + a0, 200}.
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