
MIT Open Access Articles

Probabilistic Programming with
Programmable Variational Inference

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Becker, McCoy R., Lew, Alexander K., Wang, Xiaoyan, Ghavami, Matin, Huot, Mathieu et
al. 2024. "Probabilistic Programming with Programmable Variational Inference." Proceedings of
the ACM on Programming Languages, 8 (PLDI).

As Published: 10.1145/3656463

Publisher: Association for Computing Machinery

Persistent URL: https://hdl.handle.net/1721.1/155517

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/155517
https://creativecommons.org/licenses/by/4.0/

Probabilistic Programming with Programmable
Variational Inference

MCCOY R. BECKER∗,MIT, USA

ALEXANDER K. LEW∗,MIT, USA

XIAOYAN WANG,MIT, USA

MATIN GHAVAMI,MIT, USA

MATHIEU HUOT,MIT, USA

MARTIN C. RINARD,MIT, USA

VIKASH K. MANSINGHKA,MIT, USA

Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic program-
ming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to
a predefined selection of variational objectives and gradient estimators, which are implemented monolithically
(and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular
approach to supporting variational inference in PPLs, based on compositional program transformation. In
our approach, variational objectives are expressed as programs, that may employ first-class constructs for
computing densities of and expected values under user-defined models and variational families. We then
transform these programs systematically into unbiased gradient estimators for optimizing the objectives
they define. Our design enables modular reasoning about many interacting concerns, including automatic
differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies.
Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes:
(1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2)
it supports a combinatorial space of gradient estimation strategies, many not automated by today’s PPLs; and
(3) it supports a broader class of models and variational families, because it supports constructs for approximate
marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our
approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and
evaluate our automation on several deep generative modeling tasks, showing minimal performance overhead
vs. hand-coded implementations and performance competitive with well-established open-source PPLs.

CCSConcepts: • Software and its engineering→ Semantics; •Mathematics of computing→Variational

methods; Bayesian computation; Statistical software.

Additional Key Words and Phrases: probabilistic programming, automatic differentiation, variational inference

ACM Reference Format:

McCoy R. Becker, Alexander K. Lew, Xiaoyan Wang, Matin Ghavami, Mathieu Huot, Martin C. Rinard,
and Vikash K. Mansinghka. 2024. Probabilistic Programming with Programmable Variational Inference. Proc.
ACM Program. Lang. 8, PLDI, Article 233 (June 2024), 25 pages. https://doi.org/10.1145/3656463

∗Equal contribution.

Authors’ addresses: McCoy R. Becker, MIT, Cambridge, USA, mccoyb@mit.edu; Alexander K. Lew, MIT, Cambridge,
USA, alexlew@mit.edu; Xiaoyan Wang, MIT, Cambridge, USA, xyw@mit.edu; Matin Ghavami, MIT, Cambridge, USA,
mghavami@mit.edu; Mathieu Huot, MIT, Cambridge, USA, mhuot@mit.edu; Martin C. Rinard, MIT, Cambridge, USA,
rinard@mit.edu; Vikash K. Mansinghka, MIT, Cambridge, USA, vkm@mit.edu.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART233
https://doi.org/10.1145/3656463

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0000-1930-8150
HTTPS://ORCID.ORG/0000-0002-9262-4392
HTTPS://ORCID.ORG/0000-0001-7058-4679
HTTPS://ORCID.ORG/0000-0003-3052-7412
HTTPS://ORCID.ORG/0000-0002-5294-9088
HTTPS://ORCID.ORG/0000-0001-8095-8523
HTTPS://ORCID.ORG/0000-0003-2507-0833
https://gen.dev/genjax/vi
https://doi.org/10.1145/3656463
https://orcid.org/0009-0000-1930-8150
https://orcid.org/0000-0002-9262-4392
https://orcid.org/0000-0001-7058-4679
https://orcid.org/0000-0003-3052-7412
https://orcid.org/0000-0002-5294-9088
https://orcid.org/0000-0001-8095-8523
https://orcid.org/0000-0003-2507-0833
https://doi.org/10.1145/3656463

233:2 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

1 INTRODUCTION

Variational inference (VI) is a popular approach to two fundamental probabilistic modeling tasks:

• Fitting probabilistic models to data. Given a family of joint probability distributions P =

{%\ (G,~) | \ ∈ R=} defined over latent variables G and observed variables ~, find the one that best
explains an observed dataset y. For example, writing ?\ for the probability density function of
%\ , we may be interested in finding \ ∈ R= that maximizes the marginal likelihood

?\ (y) =
ˆ

-

?\ (G, y)3G. (1)

• Approximating intractable posterior distributions. For a particular probabilistic model
%\ (G,~), find the best approximation to the (usually intractable) posterior distribution %\ (G | y),
from a class Q = {&q (G) | q ∈ R<} of tractable approximations (the variational family). For
example, again using lower-case letters for probability density functions, we may be interested
in finding q that minimizes the reverse KL divergence

� ! (&q (G) | | %\ (G | y)) = −EG∼&q

[
log

?\ (G | y)
@q (G)

]
. (2)

Practitioners often aim to solve both these tasks at once, simultaneously fitting a probabilistic
model and approximating its posterior distribution. To do so, one defines a variational objective
F : P × Q → R, mapping particular distributions %\ and &q to a scalar loss (or reward). For
example, one common choice is the evidence lower bound, or ELBO:

ELBO(%,&) := EG∼& [log? (G, y) − log@(G)] = log? (y) − � ! (& (G) | |% (G | y)) (3)

As the decomposition on the right-hand side suggests, maximizing the ELBO simultaneously
maximizes the (log) marginal likelihood of the data y and minimizes the KL divergence of the
posterior approximation & to the posterior. Besides the ELBO, researchers have also proposed
many alternative objectives [1, 10, 11, 15, 24, 46, 59, 60, 65], which formalize the two goals of fitting
models and approximating posteriors differently (e.g., by using divergences other than the KL). Once
a variational objective has been defined, practitioners aim to find parameters (\, q) that maximize
(or minimize) F (%\ , &q). There are many possible approaches to performing this optimization. The
most popular methods rely on gradients ∇(\,q)F (%\ , &q) of the objective—or more often, unbiased
stochastic estimates of these gradients. Designing and implementing algorithms for estimating
these gradients, with sufficiently low variance and computational expense, is the key roadblock on
the path from defining a variational inference problem to solving it.

Indeed, although variational inference algorithms have found widespread adoption in Bayesian
statistics [7, 8, 19, 25, 32] and in probabilistic deep learning [27, 29, 46, 57, 70], implementing
variational inference algorithms by hand remains a tedious and error-prone endeavor. The key
mathematical ingredients specifying a variational inference problem—P, Q, and F—are typically
not represented directly in code; rather, the practitioner must:

(1) use algebra, probability theory, and calculus to derive a gradient estimator : a way to rewrite the
gradient ∇(\,q)F (%\ , &q) as an expectation E~∼"(\,q) [5(\,q) (~)], for some family of distributions
" and some family of functions 5 ; and then

(2) write code to sample~ ∼ "(\,q) and evaluate 5(\,q) (~)—an unbiased estimate of∇(\,q)F (%\ , &q).
It is often non-trivial to ensure that" and 5 are faithfully implemented, and that the math used
to derive them in the first place is error-free. Small changes to F , P, or Q, or to the gradient
estimation strategy employed in step (1), can require large, non-local changes to" and 5 , and in
implementing these changes, it is easy to introduce hard-to-detect bugs. When optimization fails,
it is often unclear whether the problem is with the math, the code, or just the hyperparameters.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

Probabilistic Programming with Programmable Variational Inference 233:3

Automation via Probabilistic Programming. Reflecting the importance of variational infer-
ence, many probabilistic programming languages (PPLs) (especially “deep” PPLs, such as Pyro [6],
Edward [68, 69], and ProbTorch [67]), feature varying degrees of automation for VI workflows.
In these languages, users can express both models P and variational families Q as probabilistic
programs; the system then automates the estimation of gradients for a pre-defined set of supported
variational objectives F . This design significantly lowers the cost of implementing and iterating on
variational inference algorithms, but several pain points remain:

• Incomplete coverage. Existing PPLs offer limited or no support for many variational objectives,
including forward KL objectives [52]; hierarchical, nested, or recursive variational objectives [37,
60, 74]; symmetric divergences [16]; trajectory-balance objectives [46]; SMC-based objectives [22,
42, 45, 51]; and others. Today’s PPLs also do not automate many powerful gradient estimation
strategies, for example those based on measure-valued differentiation [50].
• Duplicative engineering effort. For PPL maintainers, supporting new gradient estimation
strategies or language features requires separately introducing the same logic into the implemen-
tations of multiple variational objectives. Because this engineering effort is non-trivial, many capa-
bilities are not uniformly supported. For example, as of this writing, Pyro’s ReweightedWakeSleep
objective [33] does not support minibatching, even though other objectives do. As another exam-
ple, variance reduction strategies such as data-dependent baselines and enumeration of discrete
latents are implemented for the ELBO in Pyro, but not, e.g., for the importance-weighted ELBO.
• Difficulty of reasoning. The monolithic implementations of each variational objective’s gradi-
ent estimation logic intertwine various concerns, including log density accumulation, automatic
differentiation, gradient propagation through stochastic choices, and variance reduction logic.
This can make it difficult to reason about correctness. Indeed, while the community has made
tremendous progress in understanding the compositional correctness arguments of an increas-
ingly broad class of Monte Carlo inference methods for probabilistic programs [9, 39, 43, 75, 76],
pioneering work on correctness for variational inference [34, 35, 41] has generally focused on
specific properties (e.g., smoothness and absolute continuity) in somewhat restricted languages,
and not to end-to-end correctness of gradient estimation for variational inference.

This Work. In this paper, we present a highly modular, programmable approach to supporting
variational inference in PPLs. In our approach, all three ingredients of the variational inference
problem—P, Q, and F—are encoded as programs in expressive probabilistic languages, which
support compositional annotation for specifying the desired mix of gradient estimation strategies.
We then use a sequence of modular program transformations—each of which we independently
prove correct—to construct unbiased gradient estimators for the user’s variational objective.

Contributions. This paper contributes:

• Languages for models, variational families, and variational objectives: We present an
expressive language for models and variational families (§3.2), similar to Gen, ProbTorch, or Pyro,
along with an expressive differentiable language for variational objective functions (§3.3).
• Flexible, modular automation: We automate a broad class of unbiased gradient estimators for
variational objectives (§5). New primitive gradient estimation strategies can be added modularly
with just a few lines of code, without deeply understanding system internals (Appx. F).
• Formalization: We formalize our approach as a sequence of composable program transforma-
tions (§4-5) of simply-typed _-calculi for probabilistic programs (§3), and prove the unbiasedness
of gradient estimation (under mild technical conditions) by logical relations (§6). Ours is the
first formal account of variational inference for PPLs that accounts for the interactions between
tracing, density computation, gradient estimation strategies, and automatic differentiation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:4 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

Model 𝑃!

Probabilistic

Differentiable Language

Variational

Family 𝑄"

Generative

Language

Model Density 𝑝!

Variational Density 𝑞"

Variational Sampler 𝑄"

Variational Objective

ELBO P, Q = 𝔼!! log 𝑝" 𝐱, 𝐲𝑞# 𝐱

IWELBO P, Q = 𝔼
!!
" log 1𝑁5

𝑝" 𝐱$, 𝐲
𝑞# 𝐱$

%

$&'

…

Gradient

Estimator

𝐝𝐞𝐧𝐬𝐢𝐭𝐲{⋅}

𝐝𝐞𝐧𝐬𝐢𝐭
𝐲{⋅}

𝐬𝐢𝐦{⋅}

𝐚𝐝𝐞𝐯{⋅}

Fig. 1. We compose multiple program transformations to automate the construction of unbiased gradient

estimators for variational inference. The user begins by writing programs in the generative language (gray) to

encode a model and variational family. These programs are compiled into procedures for density evaluation

and simulation in the differentiable language (yellow). These automated procedures can be used to concisely

define a variational objective. We can then apply the ADEV differentiation algorithm to automatically

construct a gradient estimator, which unbiasedly estimates gradients of the variational objective. Solid outlines

indicate user-wri�en programs, whereas dashed outlines indicate automatically constructed programs.

• System: We contribute genjax.vi, a performant, GPU-accelerated implementation of our ap-
proach in JAX [20], which also extends our formal modeling language with constructs for
marginalization and normalization (§7) [39]. We also contribute concise, pedagogical Haskell and
Julia versions. Our implementations are the first to feature reverse-mode variants of the ADEV
algorithm for modularly differentiating higher-order probabilistic programs [40].1

• Empirical evaluation: We evaluate genjax.vi on several benchmark tasks, including the
challenging Attend-Infer-Repeat model [17]. We find that genjax.vimakes it possible to encode
new gradient estimators that converge faster and to better solutions than Pyro’s estimators. We
also show, for the first time, that a version of ADEV can be scalably and performantly implemented,
to deliver competitive performance on realistic probabilistic deep learning workloads.2

Programmability is sometimes seen as being at odds with automation. We emphasize that this
paper expands the automation provided by the system, relative to existing VI support in PPLs,
by automating a combinatorial space of gradient estimators for arbitrary objectives specified as
programs (rather than the handful of objectives and estimators supported by existing PPLs).

2 OVERVIEW

Fig. 1 illustrates the workflow of a typical user of our system for modular variational inference:

• Model and variational programs. The user begins by writing two probabilistic programs in
our generative language: a model program and a variational program. The generative language is
a trace-based PPL that resembles Pyro [6], ProbTorch [67], and Gen [14]. The model program
encodes a family of joint probability distributions %\ (G,~), and the variational program encodes
a family of distributions &q (G), possible approximations to the posterior %\ (G | y) for data y.
• Objective function. The user now seeks to find values of (\, q) that simultaneously (1) fit %\ to
the data y, and (2) make &q close to the posterior %\ (G | y). To make these informal desiderata
precise, the user defines an objective function, using our differentiable language. This language
features constructs for taking expectations with respect to, and evaluating densities of, generative
language programs, making it easy to concisely express objectives like the ELBO (Eqn. 3).
• Gradient estimator. The final step is to optimize the objective function via stochastic gradient
ascent. We construct unbiased gradient estimators for the user’s objective function with an

1System and code available at https://gen.dev/genjax/vi
2Lew et al. [40] present only a toy Haskell implementation of forward-mode ADEV, and report no experiments.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

https://gen.dev/genjax/vi

Probabilistic Programming with Programmable Variational Inference 233:5

model ∶ G	ℝ!

model = 𝐝𝐨

𝑥 ← 𝐬𝐚𝐦𝐩𝐥𝐞	normal"#$%"%& 0.0, 10.0 	"𝑥"

𝑦 ← 𝐬𝐚𝐦𝐩𝐥𝐞	normal"#$%"%& 0.0, 10.0 	"𝑦"

𝐥𝐞𝐭	(𝑟, 𝜎) = (𝑥! + 𝑦!, 0.1 + 0.01(𝑥! + 𝑦!))

𝐨𝐛𝐬𝐞𝐫𝐯𝐞	normal"#$%"%& 𝑟, 𝜎 	5.0

𝐫𝐞𝐭𝐮𝐫𝐧	(𝑥, 𝑦)

𝑞'%()# ∶ ℝ
* → G	ℝ!

𝑞'%()# = 𝜆𝜙. 𝐝𝐨

𝐥𝐞𝐭	(𝜇+, 𝜇!, log	𝜎+, log	𝜎!) = 𝜙

𝑥 ← 𝐬𝐚𝐦𝐩𝐥𝐞	normal"#$%"%& 𝜇+, 𝑒
,-. /! 	"𝑥"

𝑦 ← 𝐬𝐚𝐦𝐩𝐥𝐞	normal"#$%"%& 𝜇!, 𝑒
,-. /" 	"𝑦"

𝐫𝐞𝐭𝐮𝐫𝐧	(𝑥, 𝑦)

ELBO ∶ ℝ* → ℝU

ELBO = 𝜆𝜙. 𝔼 𝐝𝐨	

𝑢, 𝑞 ← 𝐬𝐢𝐦 𝑞'%()# 	𝜙;						

𝐥𝐞𝐭	𝑝 = 𝐝𝐞𝐧𝐬𝐢𝐭𝐲 model 	𝑢;	

𝐫𝐞𝐭𝐮𝐫𝐧 (log(𝑝 ÷ 𝑞))													

𝐝𝐞𝐧𝐬𝐢𝐭𝐲 model ∶ Trace → ℝ

𝐝𝐞𝐧𝐬𝐢𝐭𝐲 model 	= 𝜆𝑢.

𝐥𝐞𝐭	 𝑥, 𝑝0 = 𝑢["𝑥"],
+

+1 !2
𝑒
3
#["&"]"

"((𝐢𝐧

𝐥𝐞𝐭	 𝑦, 𝑝4 = ⋯ 	𝐢𝐧

𝐥𝐞𝐭	𝑝5 									= ⋯ 	𝐢𝐧

𝑝0 ⋅ 𝑝4 ⋅ 𝑝5

𝐬𝐢𝐦 𝑞'%()# ∶ ℝ* → P	(Trace	×	ℝ)

𝐬𝐢𝐦{𝑞'%()#} = 𝜆𝜙. 𝐝𝐨

𝐥𝐞𝐭	(𝜇+, 𝜇!, log	𝜎+, log	𝜎!) = 𝜙

𝑥 ← 𝐬𝐚𝐦𝐩𝐥𝐞	normal"#$%"%& 𝜇+, 𝑒
,-. /!

𝑦 ← 𝐬𝐚𝐦𝐩𝐥𝐞	normal"#$%"%& 𝜇!, 𝑒
,-. /"

𝐥𝐞𝐭	𝑞 = ⋯

𝐫𝐞𝐭𝐮𝐫𝐧	 "𝑥" ↦ 𝑥, "𝑦" ↦ 𝑦 , 𝑞

𝐝𝐞𝐧𝐬𝐢𝐭𝐲

𝐬𝐢𝐦

𝐚𝐝𝐞𝐯

𝐚𝐝𝐞𝐯 ELBO ∶ ℝ*×ℝ* → ℝU

𝐚𝐝𝐞𝐯 ELBO = 𝜆𝜙. 𝜆𝑣. 𝔼[𝐝𝐨	{

𝑙, 𝑑𝑙 ← 𝒟 𝐬𝐢𝐦 𝑞'%()# 	 𝐳𝐢𝐩	𝜙	𝑣 	(𝜆	 𝛿𝑢, 𝛿𝑞 .

𝐫𝐞𝐭𝐮𝐫𝐧	 log𝒟(𝒟 𝐝𝐞𝐧𝐬𝐢𝐭𝐲 model 	𝛿𝑢 ÷𝒟 𝛿𝑞))

𝐫𝐞𝐭𝐮𝐫𝐧	𝑑𝑙}]

GENERATIVE

GENERATIVE

DIFFERENTIABLE

DIFFERENTIABLE

DIFFERENTIABLE

DIFFERENTIABLE

User Code Automated

Model: (𝑥, 𝑦) latent,

𝑧 a noisy observation of

𝑟 = 𝑥! + 𝑦!.

Variational family:

mean-field Gaussian

variational family (zero

covariance) with learned

parameters 𝜙.

Variational objective:

𝔼𝑸𝝓 log
89 0

:* 0
=

−𝐾𝐿(𝑄;, 𝑃) + 𝑐𝑜𝑛𝑠𝑡

Optimization by Stochastic

Gradient Ascent

𝜙< ≔ 𝜙<3+ + 𝜂	∇ELBO| (𝜙<3+)

samples from

𝑞'%()#	𝜙=111
(two runs)

Final posterior approximation:

The ELBO is a mode-seeking
objective. Our variational family

learns to cover one mode of the

posterior, but not the whole

distribution.

Thm. 4.2

Thm. 4.4

Thm. 5.2

We observe 𝑧 = 5.

Fig. 2. An illustration of our modular approach to automating variational inference, on a toy example. (Top)

Users write generative code to define a model and a variational family. Automated program transformations,

formalized and proven correct in §4, compile differentiable code for evaluating densities and simulating traces.

(Middle) Users write a program in the differentiable language to define a variational objective, in this case the

evidence lower bound (ELBO). This code may invoke compiled simulators and density evaluators for generative

programs. The adev transformation automates an unbiased gradient estimator for the objective. (Bo�om)

The gradients are used for optimization, training the variational family to approximate the posterior.

extended version of the ADEV algorithm [40]. Users can rapidly explore a combinatorial space of
estimation strategies with compositional annotations on their generative programs, to navigate
tradeoffs between the variance and the computational cost of the automated gradient estimator.

Example. To make this concrete, consider the toy problem illustrated in Fig. 2, which we seek to
solve by training a variational approximation to the posterior. We go through the following steps:

• Define a model. Our model encodes a generative process for points (G,~, I) around a 3D cone.
We use sample to sample latents G and ~ with string-valued names, and observe to condition
on the observation that I = 5.0. Our goal is to infer (G,~) consistent with this observation.
• Define a variational family. In the second panel of Fig. 2, we construct a variational family,
a parametric family of possible approximations to the posterior distribution. Our variational
inference task will be to learn parameters that maximize the quality of the approximation. Our
qNAIVE is a mean-field variational approximation, i.e., it generates G and ~ independently. Note
that primitive distributions (here, normal) are annotated with gradient estimation strategies
(here, REPARAM) for propagating derivative information through the corresponding primitive.3

3For a primitive distribution `\ over values of type - , parameterized by arguments \ ∈ R= , a gradient estimation
strategy for `\ is an approach to unbiasedly estimating ∇\EG∼`\ [5 (\, G)] for functions 5 : R= × - → R. ADEV
composes these primitive estimation strategies into composite strategies for estimating gradients of variational objectives.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:6 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

𝑞!"# ∶ ℝ
$ → G	ℝ%

𝑞!"# = 𝜆𝜙. 𝐧𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞	model	

(𝐢𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐜𝐞	 𝑞&'"()	𝜙 	𝑁)

𝑞*+"&, ∶ ℝ
- → G	ℝ%

𝑞*+"&, = 𝜆𝜙. 𝐝𝐨

𝑣 ← 𝐬𝐚𝐦𝐩𝐥𝐞	uniform 0, 2𝜋 	"𝑣"

𝐥𝐞𝐭	(𝑟, log	𝜎., log	𝜎%) = 𝜙

𝑥 ← 𝐬𝐚𝐦𝐩𝐥𝐞	normal#)/'#'0 𝑟 ⋅ cos 𝑣 , 𝑒123 4! 	"𝑥"

𝑦 ← 𝐬𝐚𝐦𝐩𝐥𝐞	normal#)/'#'0 𝑟 ⋅ sin 𝑣 , 𝑒123 4" 	"𝑦"

𝐫𝐞𝐭𝐮𝐫𝐧	(𝑥, 𝑦)

𝑞0'#5 ∶ ℝ
- → G	ℝ%

𝑞0'#5 = 𝜆𝜙.𝐦𝐚𝐫𝐠𝐢𝐧𝐚𝐥	 "𝑥", "𝑦" 	(𝑞*+"&,	𝜙)

(𝜆	_. 	𝐢𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐜𝐞	 𝐬𝐚𝐦𝐩𝐥𝐞	uniform 0, 2𝜋 	"𝑣" 	𝑁)

GENERATIVE

IWELBO ∶ ℝ$ → ℝ̀

IWELBO = 𝜆𝜙. 𝔼[𝐝𝐨	{

𝑢𝑠 ← 𝐫𝐞𝐩𝐞𝐚𝐭	 𝐬𝐢𝐦 𝑞&'"() 	𝜙 	𝑁;

𝐥𝐞𝐭	𝑤𝑠 = 𝐦𝐚𝐩	 𝜆 𝑢, 𝑞 .
𝐝𝐞𝐧𝐬𝐢𝐭𝐲 =2>?1 	A

B
𝑢𝑠;

𝐫𝐞𝐭𝐮𝐫𝐧 log
.

C
sum 𝑤𝑠 }]

DIFFERENTIABLE

Hierarchical Variational Inference

IWELBO ∶ ℝ$ → ℝ̀

IWELBO = 𝜆𝜙. 𝔼[𝐝𝐨	{

𝑢, 𝑞 ← 𝐬𝐢𝐦 𝑞!"# 	𝜙;

𝑝 ← 𝐝𝐞𝐧𝐬𝐢𝐭𝐲 model 	𝑢;

𝐫𝐞𝐭𝐮𝐫𝐧	log	𝑝 − log 𝑞}]

DIFF.

IWHVI ∶ ℝ- → ℝ̀

IWHVI = 𝜆𝜙. 𝔼[𝐝𝐨	{

𝑢, 𝑞 ← 𝐬𝐢𝐦 𝑞0'#5 	𝜙;

𝑝 ← 𝐝𝐞𝐧𝐬𝐢𝐭𝐲 model 	𝑢;

𝐫𝐞𝐭𝐮𝐫𝐧	log	𝑝 − log 𝑞}]

DIFFERENTIABLE

Optimization by Stochastic Gradient Ascent

𝜙D ≔ 𝜙DE. + 𝜂	∇IWELBOs (𝜙DE.)

samples from

𝑞!"#	𝜙$%%%
(N=30)

samples from

𝑞&'"()	𝜙FGGG
(N=30)

samples from

𝑞0'#5	𝜙FGGG (N=5)

Hierarchical variational

family with auxiliary

variable v, hand-

designed to fit circle-

shaped posteriors.

Marginalize auxiliary

variable v with IS.

samples
before
training

GENERATIVE

Importance Weighted Variational Inference

Optimization by Stochastic Gradient Ascent

𝜙D ≔ 𝜙DE. + 𝜂	∇IWHVIs (𝜙DE.)

The importance-

weighted ELBO

(IWELBO) objective as

a 𝜆!"#$ differentiable

program.

Optimizing the

IWELBO leads to a

more diffuse posterior

approximation. On its

own, the naïve

variational family still

approximates the

posterior poorly.

Approximating the

posterior via N-particle

IS. We use the learned

𝒒𝐍𝐀𝐈𝐕𝐄	as an

importance proposal.

The IWELBO tunes

𝒒𝐍𝐀𝐈𝐕𝐄 so that 𝒒𝐒𝐈𝐑 is

close to the posterior.

In fact, IWELBO can

also be written in

𝜆!"#$ as just the

ELBO, applied to 𝒒𝐒𝐈𝐑.

Hierarchical variational

family after training.

The new variational

family closely

approximates the

posterior.

The importance-

weighted hierarchical

variational inference

(IWHVI) objective as a

differentiable program.

Fig. 3. With programmable VI, users can define their own variational objectives, and use new modeling

language features to program more expressive models and variational families. Here, we apply importance-

weighted VI [11] and hierarchical VI [60, 65] to the toy problem from Fig. 2.

• Define a variational objective. We now use the differentiable language to define the objective
function we wish to optimize. Three constructs are especially useful: (1) density, which computes
or estimates densities of probabilistic programs; (2) sim, which generates a pair (G,F) of a sample
and its density from a probabilistic program; and (3) E, which takes the expected value of a
stochastic procedure. We use them together to implement the ELBO objective from Eqn. 3.
• Perform stochastic optimization. Our objective is compiled into an unbiased estimator of
its gradient with respect to the input parameters q . We can then apply stochastic optimization
algorithms, such as stochastic gradient ascent and ADAM. The bottom of Fig. 2 illustrates
samples from qNAIVE after training. Because the ELBO minimizes the reverse (or mode-seeking) KL
divergence, our variational approximation learns to hug one edge of the circle-shaped posterior.

Better Inference with Programmable Objectives. To better fit the whole posterior, we will
need either a new objective function or a more expressive variational family. Our system’s pro-
grammability allows users to quickly iterate within a broad space of VI algorithms. In Fig. 3, we
illustrate two possible strategies for improving the posterior approximation:

• Importance-weighted variational inference. On the left side of Fig. 3, we define the IWELBO
variational objective [11], as the expected value of the process that generates # particles from
the variational family qNAIVE, and computes a log mean importance weight. This objective does
not directly encourage qNAIVE to approximate the posterior well; rather, it encourages qNAIVE to
be a good proposal distribution for # -particle importance sampling, targeting the posterior. To
illustrate this, we define a new probabilistic program qSIR, which uses normalize to construct a
sampling importance resampling (SIR) approximation to the posterior: it generates # samples

Supported strategies vary by primitive; for the Normal distribution, for instance, they include REPARAM, MEASURE-VALUED,
and REINFORCE, corresponding to different approaches to gradient estimation from the literature. See §5.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

Probabilistic Programming with Programmable Variational Inference 233:7

from qNAIVE, computes importance weights for each sample, and randomly selects a sample to
return according to the weights. Drawing samples from qSIR, with # = 30 and q set to the
parameters that optimized the IWELBO objective, yields a close approximation to a larger portion
of the posterior. (In fact, the IWELBO objective can be equivalently expressed in our framework
as the ordinary ELBO, but applied directly to qSIR rather than to qNAIVE.)
• Hierarchical variational families. On the right side of Fig. 3, we define a better variational
family: qMARG. First, we define a hand-designed posterior approximation qJOINT, which extends
qNAIVE with an auxiliary variable E , to allow it to better fit circle-shaped posteriors. We cannot
directly use qJOINT with the ELBO objective, however, because it is defined over the space of triples
(E, G,~), not the space of pairs (G,~) as in our model. Themarginal construct shrinks the sample
space back down to just (G,~), approximating the marginal density qMARG (G,~) using importance
sampling. The resulting algorithm is an instance of importance weighted HVI (IWHVI) [65].

3 SYNTAX AND SEMANTICS

We now formalize the core of our approach. Although our formal model lacks several features
of our full language (see §7 and Appx. A), it is still expressive, featuring higher-order functions,
continuous and discrete sampling, stochastic control flow, and discontinuous branches. Ultimately,
our formalization aims to give an account of how user programs representing models, variational
families, and variational objectives are transformed into compiled programs representing unbi-
ased gradient estimators. We begin in this section by introducing two calculi for generative and
differentiable probabilistic programming (Fig. 4).

3.1 Shared Core

3.1.1 Syntax. The top of Fig. 4 presents the shared core, the _-calculus on which both our languages
build. It is largely standard, with functions, tuples, if statements, and ground types for Booleans,
strings, and numbers, but two aspects merit further discussion:

• Smooth and non-smooth reals. First, following Lew et al. [40], we have two types for real numbers,
R and R∗. Intuitively, the type R is the type of “real numbers that must be used differentiably,”
whereas the type R∗ is the type of “real numbers that may be manipulated in any (measurable)
way.” These constraints are enforced by the types of primitive functions: non-smooth primitives
like < : R∗×R∗ → B only accept R∗ inputs. Smooth primitives, by contrast, come in two varieties,
smooth versions (e.g. + : R × R→ R) and non-smooth versions (e.g. +∗ : R∗ × R∗ → R∗).4 We
allow implicit promotion of terms of type R∗ into terms of type R.
• Primitive distributions. The shared core includes a type � f of primitive probability distributions
over ground types f . Again following Lew et al. [40], we expose multiple versions of each
primitive, e.g. normalREPARAM and normalREINFORCE. All versions denote the same distribution,
and so our correctness results (which are phrased in terms of our denotational semantics) ensure
that gradients will target the same objective no matter which version a program uses (Thm. 5.2).
But different versions of the same primitive employ different estimation strategies for propagating
derivatives, striking different trade-offs between variance and cost. Furthermore, because different
estimation strategies may place different requirements on the user’s program, the typing rules
for different versions of the same primitive may differ. For example, normalREINFORCE constructs
a distribution of type � R∗, meaning that probabilistic programs that draw samples from it can

4The reader may wonder if we also need primitives that accept some smooth and some non-smooth inputs, but this turns
out to be unnecessary, because non-smooth inputs can always be safely promoted to smooth inputs. The output will then
also be smooth, but this is by design: if any input to a primitive has smooth type, then the primitive’s output must also have
smooth type, to ensure that future computation does not introduce non-differentiability.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:8 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

Shared Core

Ground types f ::= 1 | B | I | R>0 | R≥0 | R | R∗ | Str | f1 × f2 Types g ::= f | � f | g1 → g2 | g1 × g2
Terms C ::= () | A | 2 | G | _G.C | C1 C2 | (C1, C2) | c1 C | c2 C | T | F | if C then C1 else C2

Primitives 2 ::=+ | +∗ |< | normalREPARAM | normalREINFORCE | flipREINFORCE | flipENUM | flipMVD | . . .

C : R∗

C : R + : R × R→ R +∗ : R∗ × R∗ → R∗ < : R∗ × R∗ → B

normalREPARAM : R × R>0 → � R normalREINFORCE : R × R>0 → � R∗ flipMVD : I→ � B

⟦1⟧ = { () } ⟦I⟧ = [0, 1] ⟦R⟧ = ⟦R∗⟧ = R ⟦� f⟧ = Prob≪Bf ⟦f⟧
⟦normalREPARAM⟧ = ⟦normalREINFORCE⟧ = _ (`, f) .N(`, f)

Generative Probabilistic Programming (_Gen)

Types g ::=� g (generative programs)

Terms C ::= return C | sample C1 C2 |
observe C1 C2 | do{<}

< ::= C | G ← C ;<

C : g

return C : � g

C1 : � f C2 : Str
sample C1 C2 : � f

C1 : � f C2 : f

observe C1 C2 : � 1

C : � g

do{C } : � g
C : � g1 G : g1 ⊢ do {<} : � g2

do{G ← C ;<} : � g2

⟦� g⟧ = Meas�(
≪BT

T × (T⇒ ⟦g⟧)

⟦return C⟧1 (W,*) = X{} (*)
⟦return C⟧2 (W,D) = ⟦C⟧(W)

⟦sample C1 C2⟧1 (W,*) =
ˆ

⟦C1⟧(W,3E)X{⟦C2⟧(W) ↦→E} (*)

⟦sample C1 C2⟧2 (W,D) = D [⟦C2⟧(W)]

⟦observe C1 C2⟧1 (W,*) =
3 (⟦C1⟧(W))

3Bf
(⟦C2⟧(W))X{} (*)

⟦observe C1 C2⟧2 (W,D) = ()

⟦do{G ← C ;<}⟧1 (W,*) =
ˆ

⟦C⟧1 (W,3D1)
ˆ

⟦do{<}⟧1 (W ′, 3D2)

XD1++D2 (*) · disj(D1,D2)
where W ′ = W [G ↦→ ⟦C⟧2 (W,D1)]

⟦do{G ← C ;<}⟧2 (W,D) = ⟦do{<}⟧2 (W ′,D′)
where W ′ = W [G ↦→ ⟦C⟧2 (W,D)]
and D′ = c2 (split⟦C⟧1 (W) (D))

Differentiable Probabilistic Programming (_ADEV)

Types g ::=% g | R̃ | Trace
Terms C ::=E C | return C | sample C | do{<} |

score C | { } | {C1 ↦→ C2} | C1 ++ C2 | C1 [C2]
< ::= C | G ← C ;<

C : g

return C : % g

C : � f

sample C : % f

C : R≥0
score C : % 1

C : % g

do{C } : % g
C : % R

E C : R̃

C : % g1 G : g1 ⊢ do {<} : % g2
do{G ← C ;<} : % g2

⟦% g⟧ = Meas ⟦g⟧ | ⟦R̃⟧ = Meas R | ⟦Trace⟧ = T
⟦return C⟧(W,*) = X⟦C⟧(W) (*)
⟦sample C⟧(W,*) = ⟦C⟧(W,*)
⟦score C⟧(W,*) = ⟦C⟧(W) · X () (*)

⟦do{G ← C ;<}⟧(W,*) =
ˆ

⟦C⟧(W,3D1)

⟦do{<}⟧(W [G ↦→ D1],*)
⟦E C⟧(W,*) = ⟦C⟧(W,*)
⟦{}⟧(W) = {}

⟦{C1 ↦→ C2 }⟧(W) = {⟦C1⟧(W) ↦→ ⟦C2⟧(W) }

⟦C1 ++ C2⟧(W) =
{
D1 ++D2 if disj(D1,D2)
{ } otherwise

where D8 = ⟦C8⟧(W)

⟦C1 [C2]⟧(W) =
{
D [E] if E ∈ D
defaultf otherwise

where (D, E) = (⟦C1⟧(W), ⟦C2⟧(W))

Fig. 4. Grammars, selected typing rules, and selected denotations for our core languages _Gen and _���+ .

freely manipulate those samples. By contrast, normalREPARAM constructs a distribution of type
� R, so samples from normalREPARAM must be used smoothly.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

Probabilistic Programming with Programmable Variational Inference 233:9

3.1.2 Denotational Semantics. We assign to each type g a mathematical space ⟦g⟧, and interpret
an open term Γ ⊢ C : g as a map from ⟦Γ⟧ ≔ ∏

G∈Γ⟦Γ(G)⟧, the space of environments for context Γ,
to ⟦g⟧, the space of results to which C can evaluate. Formally, we work in the category of quasi-
Borel spaces [23], but to ease exposition, we present our semantics in terms of standard measure
theory when possible. So, for example, we write that ⟦R⟧ is the measurable space (R,B(R)),
that ⟦f1 × f2⟧ is the product of the measurable spaces ⟦f1⟧ and ⟦f2⟧, and so on, but with the
implicit understanding that these can equivalently be viewed as quasi-Borel spaces. For semantics
of higher-order types, we use quasi-Borel spaces explicitly (e.g., we set ⟦g1 → g2⟧ to ⟦g1⟧ ⇒ ⟦g2⟧,
the quasi-Borel space of quasi-Borel maps from ⟦g1⟧ to ⟦g2⟧).
To give a semantics to our primitive distributions, we need to first assign to each ground

type f a base measure Bf over ⟦f⟧: for discrete types f ∈ {1,B, Str}, we set Bf (*) = |* |, the
counting measure, and for continuous types f ∈ {R,R∗}, we set Bf (*) =

´

R
1* (D)3D, the Lebesgue

measure. Given two ground types f1 and f2, the base measure of the product, Bf1×f2 , is Bf1 ⊗ Bf2 ,
the product of the base measures for each type. With base measures in hand, we can define
⟦� f⟧ ≔ Prob≪Bf⟦f⟧, the space of probability measures on ⟦f⟧ that are absolutely continuous

with respect to Bf . Absolute continuity ensures that these distributions have density functions.

3.2 Generative Probabilistic Programming with _Gen

Users write probabilistic models and variational families in _Gen, which extends the shared core
with a monadic type � g of generative programs (Fig. 4, left). Examples of programs in _Gen include
the model and variational programs (model and qNAIVE) in Fig. 2.

3.2.1 Syntax. Syntactically, programs of type � g interleave standard functional programming
logic (from the shared core) with two new kinds of statements: sample and observe. The sample

statement takes as input a probability distribution to sample (of type � f) and a unique name for
the random variable being sampled (of type Str). The observe statement takes as input a probability
distribution representing a likelihood (of type � f), and a value representing an observation (of
type f). A generative program can include many calls to sample and observe, ultimately inducing
an unnormalized joint distribution over traces: finite dictionaries mapping the names of random
variables to sampled values. Intuitively, ignoring the observe statements in a program, we can
read off a sampling distribution over traces—the prior. The observe statements then reweight
each possible execution’s trace by the likelihoods accumulated during that execution, yielding an
unnormalized posterior over traces.

3.2.2 Denotational Semantics. Formally, we write T for the space of possible traces. It arises as a
countable disjoint union, indexed by possible trace shapes (finite partial maps from string-valued
names : to corresponding ground types f:), of product spaces

∏
:⟦f:⟧. We can also define a base

measure BT over T, by summing product measures for each possible trace shape:

BT (*) ≔
∑

B⊆Str×Σ

©
«

⊗
(:,f:) ∈B

Bf:
ª®
¬
({values(D) | D ∈ * ∧ shape(D) = B}) .

Generative programs (of type � g) induce measures ` on T that satisfy two properties: they are
absolutely continuous with respect to BT (and therefore have a well-defined notion of trace density
3`

3BT), and they are discrete-structured: for (` ⊗ `)-almost-all pairs of traces (D1, D2), either D1 = D2,
or there exists a string B present in both D1 and D2 such that D1 [B] ≠ D2 [B]. In words, if two distinct
traces are both in the support of a generative program, then in the two executions that those traces
represent, there must have been some sample statement at which different choices were made
for the same random variable. We write Meas�(≪BT T for the space of measures on T satisfying

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:10 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

these two properties. The semantics then assigns ⟦� g⟧ ≔ Meas�(≪BT T × (T⇒ ⟦g⟧): a generative
program denotes both a (well-behaved) measure on traces, and a return-value function that given a
trace, computes the program’s ⟦g⟧-valued result when its random choices are as in the trace.

The semantics for terms of type� g (Fig. 4, bottom left) give a formal account of how a generative
program’s source code yields a particular measure on traces and return-value function. We write
⟦·⟧8 for c8 ◦ ⟦·⟧, so that ⟦·⟧1 computes the measure on traces and ⟦·⟧2 computes the return-value
function. In Appx. E, we show that our term semantics really does map every program of type� g a
well-behaved measure over traces, i.e., the absolute continuity and discrete-structure requirements
are satisfied by our definitions. The semantics of each probabilistic programming construct can be
understood in terms of its trace distribution and return value function:

• return C : The simplest generative programs deterministically compute a return value C . These
programs denote deterministic (Dirac delta) distributions on the empty trace {}, because they
make no random choices. The return value function ⟦return C⟧2 (W) then maps any trace D to
the program’s return value, ⟦C⟧(W).
• sample C1 C2: Slightly more complicated, the sample C1 C2 command denotes a measure over
singleton traces {name ↦→ value}, namely the pushforward of the measure ⟦C1⟧(W) by the function
_E .{⟦C2⟧(W) ↦→ E}. The return value function for sample C1 C2 statements accepts a trace D and
looks up the value associated with the name ⟦C2⟧(W), if it exists. We define D [name] to return the
value associated with name in D, if name is a key in D, and otherwise to return a default value of
the appropriate type.5

• observe C1 C2: Like return, the statement observe C1 C2 makes no random choices, and thus has
an empty trace. But it denotes a scaled Dirac delta measure: the measure it assigns to the empty
trace is equal to the density of the value ⟦C2⟧(W) under the measure ⟦C1⟧(W).
• do{G ← C ;<}: Sequencing two generative programs concatenates their traces (which we write
using the ++ concatenation operator). The helper disj : T × T → {0, 1} checks whether the
names used by each of two traces are distinct, returning 1 if so and 0 otherwise. We use it in
our definition of ⟦do{G ← C ;<}⟧ to model that when a program uses the same name twice in a
single execution, a runtime error is raised: the semantics assigns measure 0 to those executions,
leaving measure < 1 for the remaining, valid executions.6

3.3 Differentiable Probabilistic Programming with _ADEV

3.3.1 Syntax. The right panel of Fig. 4 presents a separate extension of the shared core, _ADEV,
a lower-level language for differentiable probabilistic programming [40]. Like _Gen, _ADEV adds
a monadic type for probabilistic computations, % g , which supports the sampling of primitive
distributions (with sample), deterministic computation (with return), scoring by multiplicative
density factors (score), and sequencing (with do). But _ADEV probabilistic programs do not denote
distributions on traces, and the sample statements do not specify names for random variables.
Rather, programs directly denote (quasi-Borel) measures on output types g .

5All ground types f are inhabited, and we can choose the default values arbitrarily.
6The semantics of a runtime error are equivalent to the semantics of observe-ing an impossible outcome. Because of this, if
the user’s model contains such errors, variational inference can be seen as training a guide program to approximate the
model posterior given that no errors are encountered. If the variational program itself contains either observe statements or

runtime errors, it can also denote an unnormalized measure, in which case an objective like the ELBO (
´

& (3G) log /? (G)
@ (G))

can no longer be interpreted as a lower bound on the model’s log normalizing constant log/ . Our system will still produce
unbiased gradient estimates for the objective, but it is likely not an objective that the user intended to optimize. This suggests
that better static checks for whether a program is normalized could be useful, helping users to avoid silent optimization
failures if they accidentally encode an unnormalized variational family.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

Probabilistic Programming with Programmable Variational Inference 233:11

Even so, we do include syntax for constructing and manipulating traces as data. This is because,
in §4, we will develop program transformations that turn _Gen programs into _ADEV programs that
(differentiably) simulate and evaluate densities of reified trace data structures.

The language also features an expected value operator E, of type % R → R̃. Terms of type R̃
intuitively represent “losses (i.e., objectives) that can be unbiasedly estimated.” The ultimate goal of
a user in _ADEV is to write an objective function of type R= → R̃ (where R= = R × · · · × R), and
then use automatic differentiation of expected values (§5) to obtain a gradient estimator for the loss
function it denotes. These loss functions can be constructed by taking expectations of probabilistic
programs (using E) or by composing existing losses using new primitives (e.g., +

R̃
, ×
R̃
, and exp

R̃
).

Example _ADEV programs include the objectives defined in §2 (ELBO, IWELBO, and IWHVI), as
well as the automatically compiled programs on the right-hand side of Fig. 2.

3.3.2 Denotational Semantics. Semantically, % g is the space of quasi-Borel measures on ⟦g⟧. The
type R̃ has the same denotation as % R, but cannot be used monadically (i.e., it composes in a more
restricted way than % R). This is because it is intended to represent an unbiased estimator of a
particular real number. For example, suppose ? : % R denotes a probability measure over the reals
with expected value 0. Then E ? : R̃ denotes the same probability measure, with expected value 0.
But ? can be used within larger probabilistic programs; for example, we can write ?∗ = do{G ←
?; return exp(?)}, which draws a sample from ? and exponentiates it. By Jensen’s inequality, the
expected value of ⟦?∗⟧ will generally be greater than 40 = 1. By contrast, the term E ? cannot be
freely sampled within probabilistic programs, but can be composed with certain special arithmetic
operators, so we can write (for example) ?∗ = exp

R̃
(E ?). The primitive exp

R̃
uses special logic to

construct an unbiased estimator of 4G given an unbiased estimator of G , so the program ?∗ denotes
a probability distribution that does have expectation 40 = 1.

4 COMPILING DIFFERENTIABLE SIMULATORS AND DENSITY EVALUATORS

We now show how to take _Gen programs and automatically compile them into _ADEV programs
that simulate traces or compute density functions. We introduce two program transformations,
sim and density, which take _Gen terms to _ADEV terms that implement the desired functionality.
The intuition for these transformations is as follows:

• (sim{·}) At a high level, to simulate traces, we just run the generative program and record the
value of every sample we take into a growing trace data structure.7

• (density{·}) To compute the density of a trace, we execute the program, but fix the value of
every primitive sample to equal the recorded value from the given trace, and multiply a running
joint density by the density for the primitive. For observe, we multiply the running joint density
by the density of the primitive evaluated at the value provided to the observe statement.

For example, simulating from the unnormalized model in Fig. 2 and then evaluating the density of
the sampled trace — using sim and density as introduced in Fig. 5 — might produce:

sim{model}⇝ ({“G” : 0.75, “~” : −2.2}, 1.3 × 10−4), density{model}({“G” : 0.75, “~” : −2.2}) = 1.3 × 10−4

Note that although they are not usually formalized as program transformations or rigorously proven
correct, the techniques we describe here are well-known and widely used in the implementations
of PPLs, e.g. in Gen, ProbTorch, and Pyro.

7In the full specification for sim, along with the simulated trace, the transformed term also returns (with probability 1) the
density of the term evaluated at the simulated trace.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:12 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

Spec Syntax ⊢ C : f → � g =⇒ ⊢ density{C } : f → Trace→ R Semantics ⟦density{C }⟧(\) = 3⟦C⟧1 (\)
3BT

Wrapper density{C } ≔ _\ ._D.let (G, F,D′) = b {C } (\) (D) in if isempty(D′) then F else 0

Helper b Syntax Γ ⊢ C : g =⇒ b {Γ} ⊢ b {C } : b {g } Semantics ∀(W,W ′) ∈ 'b
Γ
, (⟦C⟧(W), ⟦b {C }⟧(W ′)) ∈ 'bg

on types b {f } ≔ f '
b
f ≔ { (G, G) | G ∈ ⟦f⟧}

b {� f } ≔ f → R '
b

� f
≔ { (`, d) | d =

3`
3Bf }

b {g1 × g2 } ≔ b {g1 } × b {g2 } '
b
g1×g2 ≔ { ((G, ~), (G

′, ~′)) | (G, G ′) ∈ 'bg1 ∧ (~, ~
′) ∈ 'bg2 }

b {g1 → g2 }≔ b {g1 } → b {g2 } '
b
g1→g2

≔ { (5 , 6) | ∀ (G, ~) ∈ 'bg1 , (5 (G), 6 (~)) ∈ '
b
g2
}

b {� g } ≔ Trace→ b {g } × R × Trace '
b

� g
≔ { ((`, 5), 6) | ∃ℎ.∀D ∈ T.(5 (D), ℎ (D)) ∈ 'bg ∧

6 = _D.let (D1,D2) = split` (D) in(ℎ (D),
3`
3�T
(D1),D2) }

on terms b { () } ≔ () b {G } ≔ G
b {_G.C } ≔ _G.b {C } b {C1 C2 } ≔ b {C1 } b {C2 }
b { (C1, C2) } ≔ (b {C1 }, b {C2 }) b {c8 C } ≔ c8 b {C }
b {1} (1 ∈ {T, F})≔ 1 b {if C then C1 else C2 }≔ if b {C } then b {C1 } else b {C2 }

b {normalstrat } ≔ _`._f._G . 1
f
√
2c
4
− 1
2

(
G−`
f

)2
b {flipstrat } ≔ _?._1.if 1 then ? else 1 − ?

b {return C } ≔ _D.(b {C }, 1,D) b {observe C1 C2 } ≔ _D.((), b {C1 } (b {C2 }),D)
b {sample C1 C2 } ≔ _D.let (E, F,D′) = pop D b {C2 }

in (E, F · b {C1 } (E),D′)
b {do {G ← C ;<}} ≔ _D.let (G, F,D′) = b {C } (D) in

let (~, E,D′′) = b {do{<}} (D′) in
(~, F · E,D′′)

Spec Syntax ⊢ C : f → � g =⇒ ⊢ sim{C } : f → % (Trace × R) Semantics ⟦sim{C }⟧(\) = (id ⊗ 3⟦C⟧1 (\)
3BT

)∗⟦C⟧1 (\)

Wrapper sim{C } ≔ _\ .do{ (G, F,D) ← j {C } (\) ; return (D, F) }

Helper j Syntax Γ ⊢ C : g =⇒ j {Γ} ⊢ j {C } : j {g } Semantics ∀(W,W ′) ∈ 'j

Γ
, (⟦C⟧(W), ⟦j {C }⟧(W ′)) ∈ 'j

g

on types j {f } ≔ f '
j
f ≔ { (G, G) | G ∈ ⟦f⟧}

j {� f } ≔ % (f × R) × (f → R) '
j

� f
≔ { (`, (a, d)) | a (*) =

´

` (3D)X (
D,

3`
3Bf (D)

) (*) ∧ d =
3`
3Bf }

j {g1 × g2 } ≔ j {g1 } × j {g2 } '
j
g1×g2 ≔ { ((G, ~), (G ′, ~′)) | (G, G ′) ∈ 'j

g1
∧ (~, ~′) ∈ 'j

g2
}

j {g1 → g2 } ≔ j {g1 } → j {g2 } '
j
g1→g2

≔ { (5 , 6) | ∀ (G, ~) ∈ 'j
g1
, (5 (G), 6 (~)) ∈ 'j

g2
}

j {� g } ≔ % (j {g } × R × Trace) '
j

� g
≔ { ((`, 5), a) | ∃6.∀D.(5 (D), 6 (D)) ∈ 'bg∧

a = _* .
´

` (3D)1* (6 (D), 3`
3BT
(D),D) }

on terms j { () } ≔ () j {G } ≔ G
j {_G.C } ≔ _G.j {C } j {C1 C2 } ≔ j {C1 } j {C2 }
j { (C1, C2) } ≔ (j {C1 }, j {C2 }) j {c8 C } ≔ c8 j {C }
j {1} (1 ∈ {T, F})≔ 1 j {if C then C1 else C2 }≔ if j {C } then j {C1 } else j {C2 }
j {normalstrat } ≔ _ (`, f) .(do{

G ← sample normalstrat (`, f) ;

let d =
1

f
√
2c
4
− 1
2

(
G−`
f

)2
;

return(G, d)

}, _G . 1
f
√
2c
4
− 1
2

(
G−`
f

)2
)

j {flipstrat } ≔ _?.(do{
1 ← sample flipstrat (?) ;
let d = if 1 then ? else 1 − ? ;
return(1, d)
}, _1.if 1 then ? else 1 − ?)

j {return C } ≔ return(j {C }, 1, {}) j {observe C1 C2 } ≔ do{
letF = c2 (j {C1 }) (j {C2 }) ;
score F; return ((), F, {})
}

j {sample C1 C2 } ≔ do{
(G, F) ← c1 (j {C1 }) ;
return(G, F, {j {C2 } ↦→ G })
}

j {do {G ← C ;<}} ≔ do{
(G, F,D1) ← j {C };
(~, E,D2) ← j {do{<}};
ifdisj(D1,D2) then
return (~, F · E,D1 ++D2)

else do{score 0; return (~, 0, {})) }
}

Fig. 5. Traced simulation and density evaluation as program transformations from _Gen to _ADEV.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

Probabilistic Programming with Programmable Variational Inference 233:13

Differentiability Properties of Densities. In the context of variational inference, density
functions must satisfy certain differentiability properties—with respect to the parameters being
learned, and possibly with respect to the location at which the density is being queried, depending
on the gradient estimators one wishes to apply. Previous work has developed specialized static
analyses to determine smoothness properties of different parts of programs, in order to reason
about gradient estimation for variational inference [34]. A benefit of our approach is that it greatly
simplifies this reasoning: the overall differentiability requirements for gradient estimation are
enforced by the type system of the target-language (_ADEV), as in [40]. We translate well-typed
source-language programs into well-typed target-language density evaluators and trace simulators,
which can be composed into well-typed variational objectives. This implies a non-trivial result:
the restrictions that _Gen enforces on models and variational families are sufficient to ensure the
necessary differentiability properties for unbiased estimation of variational objective gradients.
Furthermore, these guarantees can be modularly extended to new variational objectives, gradient
estimation strategies, and modeling language features. We discuss this further at the end of §5.

4.1 Compiling Differentiable Density Evaluators

The density program transformation density is given in Fig. 5 (top). As input, it processes a _Gen
term C of type f → � g : a generative program that has some (ground type) parameter or input. The
result of the transformation is a _ADEV term of type f → Trace→ R, which, given a parameter \
and a trace D, computes the density of ⟦C⟧1 (\) at D.

The transformation is only defined for source programs of type f → � g , but it is implemented
using a helper transformation b that is defined at all source-language types. The intended behavior
of b applied to a source-language term depends on the type of the term; we encode this type-

dependent specification into a family of relations 'bg indexed by types g (see Fig. 5). Each '
b
g is

a subset of ⟦g⟧ × ⟦b{g}⟧; if (G,~) ∈ '
b
g , it means that it is permissible for b to translate a term

denoting G into a term denoting ~. For example, 'b
� f

relates measures on ⟦f⟧ to their density
functions with respect to Bf , to encode that b should transform primitive distribution terms into
terms that compute primitive distribution densities. More interesting is the specification for b on
full probabilistic programs, of type � g . Because the term under consideration may be only part of
a larger program, b must compute not just a density, but also a return value (for use later in the
program) and a remainder of its input trace, containing choices not consumed while processing the

current term. The relation '
b

� g
encodes this intuition using the function split` , which splits a trace

D into two parts: the largest subtrace of D in the support of ` and the remaining subtrace, or, if no
such subtrace exists, all of D and the empty trace (see Appx. E for a formal definition).
To prove that density works correctly, we first prove that b satisfies its intended specifications:

Lemma 4.1. Let Γ ⊢ C : g be an open term of _Gen. Then b{Γ} ⊢ b{C} : b{g} is a well-typed open

term of _ADEV, and ∀(W,W ′) ∈ 'bΓ, (⟦g⟧(W), ⟦b{g}⟧(W ′)) ∈ '
b
g .

The proof (in Appx. E) is by induction, but because the inductive hypothesis is different at each

type g (depending on our definition of 'bg), it is an example of what is often called a logical relations
proof. Once it is proven, we are ready to prove the main correctness theorem for densities:

Theorem 4.2. Let ⊢ C : f → � g be a closed _Gen term for some ground type f . Then ⊢ density{C} :
f → Trace→ R is a well-typed _ADEV term and for all \ ∈ ⟦f⟧, ⟦density{C}⟧(\) is a density function
for c1 (⟦C⟧)(\) with respect to BT.

Proof. Fix \ ∈ ⟦f⟧ and let (`, 5) = ⟦C⟧(\). By Lemma 4.1, we have that (⟦C⟧(\), ⟦b{C}⟧(\)) ∈
'
b

� g
. Now consider a traceD ∈ T. The densitymacro invokes b{C} \ onD to obtain a triple (G,F,D′).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:14 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

By the definition of 'b
� g

, we have thatF =
3`

3BT (D1) and D
′
= D2, for (D1, D2) = split` (D). Recall that

if D is in the support of `, or if no subtrace of D is in the support of `, then split` returns (D, {}),
causing density to enter its then branch and returnF =

3`

3BT (D1) =
3`

3BT (D) as desired. If D is not in
the support of ` but has a subtrace that is, then split` returns that subtrace, along with a non-empty
D2. In this case the else branch of density correctly returns 0 (because D is not in the support). □

4.2 Compiling Differentiable Trace Simulators

The simulation program transformation sim is given in Fig. 5 (bottom). Like density, it processes
as input a _Gen term C of type f → � g , but it generates a term of type % (Trace×R), satisfying the
specification that the pushforward by c1 is the original program’s measure over traces, ⟦C⟧1 (\), and
that with probability 1, the second component is the density of ⟦C⟧1 evaluated at the sampled trace.
Like density, sim is implemented using a helper macro j defined at all types. Fig. 5 presents the
logical relations 'jg specifying the helper’s intended behavior on terms of type g . These relations
are simpler than those for b ; for example, on terms of type� g , j has almost the same specification
as sim itself, except that it must also compute a return value.

One feature of j that is worth noting is its translations of primitives. If a primitive used within a
traced probabilistic program is annotated with a gradient estimation strategy, then the translated
program uses the same annotated primitive, and then computes a density. This is only well-typed
because the density functions of primitives that return R values (i.e., not R∗ values) are smooth.
This is not a requirement of ADEV in general, but we require it in order to automate differentiable
traced simulation.
To prove correctness, we again begin by showing the helper is sound:

Lemma 4.3. Let Γ ⊢ C : g be an open term of _Gen. Then j{Γ} ⊢ j{C} : j{g} is a well-typed open
term of _ADEV, and ∀(W,W ′) ∈ 'jΓ , (⟦g⟧(W), ⟦j{g}⟧(W ′) ∈ '

j
g .

The proof is again by logical relations, and can be found in Appx. E. We can then prove the
correctness of sim itself:

Theorem 4.4. Let ⊢ C : � g be a closed _Gen term. Then ⊢ sim{C} : % (Trace × R) is a well-typed
_ADEV term and ⟦sim{C}⟧ is the pushforward of c1 (⟦C⟧) by the function _D.

(
D,

3⟦C⟧1
3BT (D)

)
.

Proof. Fix \ ∈ ⟦f⟧ and let (`, 5) = ⟦C⟧(\). By Lemma 4.3, we have that (⟦C⟧(\), ⟦j{C}⟧(\)) ∈
'
j

� g
. The simmacro invokes j{C}\ to obtain a triple (G,F,D), but only returns (D,F). Observe that

the requirements placed by 'j
� g

onF and D are precisely the conditions we aim to prove here. □

5 VARIATIONAL INFERENCE VIA DIFFERENTIABLE PROBABILISTIC PROGRAMMING

As we saw in §2, the density and trace simulation programs automated in the previous section can
be used to construct larger _ADEV programs implementing variational objectives. Once we have a
_ADEV program representing our objective function, we need to differentiate it. Conventional AD
systems do not correctly handle randomness in objective functions, or the expectation operator E,
and will produce biased gradient estimators when applied naively [40]. For example, standard AD
has no way of propagating derivative information through a primitive like flip : [0, 1] → % B (to
do so, one would need to define the notion of derivative of a Boolean with respect to the probability

that it was heads). The ADEV algorithm [40] is designed to handle these features, and can be used
to derive unbiased gradient estimators automatically.

Extending ADEV with Traces and Unnormalized Measures. Fig. 6 gives the ADEV program
transformation, extended to handle new datatypes (traces) and unnormalized measures (due to

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

Probabilistic Programming with Programmable Variational Inference 233:15

Syntax ⊢ C : R= → R̃ =⇒ ⊢ adev{C } : R= → R= → R̃
⊢ C : R= → R̃ =⇒ ⊢ dom{C } (\,8) : R × R∗ → R

Semantics (∀\ ∈ R=, 8 ∈ =.⟦dom{C } (\,8)⟧ locally dom’d) =⇒
EG∼⟦adev{C }⟧(\,v) [G] =

(
∇\
´

R
G ⟦C⟧(\,3G)

))
v

adev{C } ≔ _\ ._v.E(do{ (~, ~′) ← D{C } ((\1, v1), . . . , (\=, vn)) ; return ~′ })
dom{C } (\,8) ≔ _ (q, G) .c2 (c2 (D{C } ((\1, 0), . . . , (\8−1, 0), (q, 1), (\8+1, 0), . . . , (\=, 0)) G

Syntax Γ ⊢ADEV C : g =⇒ D{Γ} ⊢ADEV D{C } : D{g } Semantics ∀(W,W ′) ∈ 'D
Γ
, (⟦C⟧ ◦ W, ⟦D{C }⟧ ◦ W ′) ∈ 'Dg

Type Translation and Logical Relations

D{R} ≔ R × R 'D
R

≔ { (5 , 6) | 6 = _A .(5 (A), 5 ′ (A)) }
D{f } ≔ f (f ∈ {R∗,B, Str}) 'Df ≔ { (5 , 5) | 5 constant}
D{g1 × g2 } ≔ D{g1 } × D{g2 } 'Dg1×g2 ≔ { (5 , 6) | ∀8 ∈ {1, 2} .(c8 ◦ 5 , c8 ◦ 6) ∈ '

D
g8
}

D{g1 → g2 }≔ D{g1 } → D{g2 } 'Dg1→g2
≔ { (5 , 6) | ∀ (G, ~) ∈ 'Dg1 , (_A .5 (A) (G (A)), 6 (A) (~ (A))) ∈ '

D
g2
}

D{Trace} ≔ Trace 'DTrace ≔ { (5 , 6) | ∀: ∈ ⟦Str⟧.(_A .5 (A) [:], _A .6 (A) [:]) ∈ 'Df }
D{� f } ≔ D{% f } 'D

� f
≔ 'D

% f

D{R̃} ≔ % (R × R) × (R∗ → R × R) 'D
R̃

≔ { (`, a) | ∀\ .
´

R
ℎ1 (\) (B)3B =

´

R
G` (\,3G) = EG∼c1∗ (c1◦a) (\) [G]∧

∀\ .
´

R
ℎ2 (\) (B)3B = EG∼c2∗ (c1∗a) (\) [G]∧

(_\ ._B.ℎ1 (\) (B), _\ ._B.(ℎ1 (\) (B), ℎ2 (\) (B)) ∈ 'R∗→R
where ℎ8 ≔ _\ ._B.c8 ((c2 ◦ a) (\) (B))

D{% g } ≔ (D{g } → D{R̃}) → D{R̃} 'D
% g

≔ { (`, a) | (_A ._:._* .EG∼` (A) [: (G,*)], a) ∈ 'D(g→R̃)→R̃ }

Term Translation

D{() } ≔ () D{{}} ≔ {}
D{2 } ≔ 2D D{G } ≔ G
D{_G.C } ≔ _G.D{C } D{C1 C2 } ≔ D{C1 } D{C2 }
D{ (C1, C2) } ≔ (D{C1 },D{C2 }) D{c8 C } ≔ c8 D{C }
D{1} (1 ∈ {T, F}) ≔ 1 D{if C then C1 else C2 }≔ if D{C } then D{C1 } else D{C2 }
D{{C1 ↦→ C2 }} ≔ {D{C1 } ↦→ D{C2 }} D{C1 ++ C2 } ≔ D{C1 } ++ D{C2 }
D{C1 [C2] } ≔ D{C1 } [D{C2 }] D{sample C } ≔ D{C }
D{A } ≔ (A, 0) D{score C } ≔ _^.(do{~ ← c1 (^ (())) ;

return(D{C } ×D ~) },
_B.(c2 (^ (())) B) ×D D{C })

D{return C } ≔ _^.^ (D{C }) D{do {G ← C ;<}} ≔ _^.D{C } (_G.D{do{<}} (^))
D{E C } ≔ D{C } (_G.(return G, _B.G))

D{normalREPARAM }≔ _ ((`, `′), (f, f ′)) ._^.(do{
n ← sample (normalREPARAM (0, 1)) ;
c1 (^ ((fn + `, f ′n + `′)))
}, _B. . . .)

D{normalREINFORCE } ≔ _ ((`, `′), (f, f ′)) ._^.(do{
G ← sample (normalREINFORCE (`, f)) ;
(~, ~′) ← c1 (^ ((G, 0))) ;
let ; ′ = f ′ (1f +

(~−`)2
f3) + `′ ~−`

f2 ;

return (~, ~′ + ~; ′)
}, _B. . . .)

D{flipENUM } ≔ _ (?, ?′) ._^.(do{
(~) , ~′)) ← c1 (^ (T)) ;
(~� , ~′�) ← c1 (^ (F)) ;
let ~ = ?~) + (1 − ?)~� ;
let ~′1 = ?

′~) + ?~′) ;
let ~′2 = (1 − ?)~′� − ?′~� ;
return (~, ~′1 + ~′2)
}, _B. . . .)

D{flipREINFORCE } ≔ _ (?, ?′) ._^.(do{
1 ← sample (flipREINFORCE (?)) ;
(~, ~′) ← c1 (^ (1)) ;
let ; ′ = if 1 then

?′
? else

?′
?−1 ;

return(~, ~′ + ~; ′)
}, _B. . . .)

Fig. 6. Monte Carlo gradient estimation as a program transformation from _ADEV to _ADEV.

score). Fig. 6 shows two top-level transformations, adev and dom. The dom transformation exists
solely for analytical purposes, to produce a term that must satisfy a local domination condition in
order for gradient estimates to be unbiased:8

Definition 5.1 (locally dominated). A function 5 : R × R→ R is locally dominated if, for every
\ ∈ R, there is a neighborhood* (\) ⊆ R of \ and an integrable function<* (\) : R→ [0,∞) such
that ∀\ ′ ∈ * (\),∀G ∈ R, |5 (\ ′, G) | ≤ <* (\) (G).
8We have omitted several terms from Fig. 6, denoted with “. . . ”. These terms are as in [40, Fig. 26], and do not affect the
behavior of the adev transformation, only dom.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:16 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

Under this mild assumption, ADEV produces correct unbiased gradient estimators:

Theorem 5.2. Let ⊢ C : R= → R̃ be a closed _ADEV term, satisfying the following preconditions:

(1)
´

R
G ⟦C⟧(\, 3G) is finite for every \ ∈ R= .

(2) ⟦dom{C} (\,8)⟧ is locally dominated for every \ ∈ R= and 8 ∈ =.
Then ⊢ adev{C} : R= → R= → R̃ is a well-typed _ADEV term, satisfying the following properties:

• ⟦adev{C}⟧(\, v) is a probability measure with finite expectation for all \, v ∈ R= .
• ⟦C⟧ is differentiable and EG∼⟦adev{C }⟧(\,v) [G] =

(
∇\
´

R
G ⟦C⟧(\, 3G)

))
v.

The proof, as in the previous section, is a logical relations proof, and Fig. 6 gives the logical relations.
It extends the proof of [40] with new cases, for score, as well as for trace operations.

Static Checks and Unbiasedness. Probabilistic programming languages like Pyro and Gen
use specialized logic — also going beyond ordinary AD — to unbiasedly estimate derivatives of
particular variational objectives like the ELBO, for user-defined models and variational families.
But in these systems, biased gradient estimates can still arise if the user’s model or variational
family violates assumptions made by the PPL backend. For example:

• The user’s program may sample G from a normal distribution, then branch on whether G < : for
some constant threshold : , in order to decide on the distribution of another random variable
~. Pyro’s default gradient estimation strategy assumes that the joint density of the model is
differentiable with respect to the values of Gaussian random variables like G , but this assumption
is violated by the user’s program, because the joint density ? (G,~) is of the form ? (G) · ([G >

:] · ?1 (~ | G) + [G ≤ :] · ?2 (~ | G)), which may be discontinuous at G = : .
• Gen’s default gradient estimation strategy does not place differentiability assumptions on the
user’s program, but does assume that the support of each primitive distribution does not depend
on learned parameters. If the user’s program samples from a uniform distribution with learned
endpoints 0 and 1, this assumption will be violated, and Gen’s gradient estimates will be biased.

In our design, by contrast, there is no default gradient estimation strategy. Rather, the user chooses
a different gradient estimation strategy for each primitive, and the overall gradient estimator is
automated compositionally. Crucially, different versions of primitives (employing different gradient
estimation strategies) have static types that enforce the key assumptions necessary for their
unbiasedness. For example:

• The normalREPARAM primitive has type R × R>0 → � R, so if G is drawn from normalREPARAM,
then the type of the variable G is R. The type of < is R∗ × R∗ → B, and so the expression G < :

is ill-typed. Thus, the types enforce that the smoothness assumptions of the reparameterization
estimator hold for the user’s program, if the user chooses to apply this estimator.
• In our system, the uniform distribution with custom endpoints is uniform : R∗ × R∗ → � R∗,
which behaves like a safe version of Gen’s uniform distribution—its output can be used non-
smoothly, but its bounds must not depend directly on learned parameters. (The bounds may still
depend on, e.g., Gaussian random choices with learned means.)

Our smoothness-typing discipline in _Gen is similar to, but slightly different from, that in Lew et al.
[40]. As an example, their version of ADEV can support a primitive uniformMVD : R × R→ % R,
but we cannot introduce such a primitive that returns � R∗ or � R. This is because the program
transformation b would need to translate such primitives into code for computing the uniform
distribution’s density as a smooth function of its endpoints—which is not possible, since the density
of the uniform distribution is discontinuous at the endpoints.
These static checks are necessary for proving unbiasedness, as without them, we could easily

produce estimators that do not respect the restrictions of the estimation strategies they employ.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

Probabilistic Programming with Programmable Variational Inference 233:17

6 CORRECTNESS OF GRADIENT ESTIMATION FOR VARIATIONAL INFERENCE

We can put together the results of the previous two sections to prove a general correctness theorem
for our approach to variational inference. Suppose the user has written the following three programs:

• Amodel program: a closed _Gen program % : R= → � g1.
• A variational program: a closed _Gen program & : R< → � g2.
• An objective program: a closed _ADEV program ! : R=+< → R̃, of the form

! = _(\, q).let (?, P, @,Q) = (density{%} \, sim{%} \, density{&} q, sim{&} q) in �,

where \ and q do not occur free in � . This program encodes the variational objective
F (`% , `&) =

´

G · ⟦�⟧(W (`% , `&), 3G), where W (`% , `&) is an environment mapping ? and
@ to densities of `% and `& (with respect to BT) and P and Q to simulators for `% and `& .

The user wants to find \ and q that optimize F (⟦%⟧1 (\), ⟦&⟧1 (q)). Our result is that our system
estimates derivatives of this objective unbiasedly, under mild technical conditions:

Theorem 6.1. Let L(\, q) = F (⟦%⟧1 (\), ⟦&⟧1 (q)). If for all \ ∈ R= and q ∈ R< , L(\, q)
is finite and ⟦dom{!} ((\,q),8)⟧ is locally dominated for each 8 ∈ = +<, then for all v ∈ R=+< ,
⟦adev{!}⟧((\, q), v) is a probability measure with finite expectation and

EG∼⟦adev{!}⟧((\,q),v) [G] = (∇(\,q)L(\, q))) v.

To understand the guarantee the theorem gives more concretely, consider the following objective
program defining the ELBO (Eqn. 3):

ELBO ≔ _(\, q) .E(do {(I,F@) ← (sim{&} q); letF? = (density{%} \) I; return logF? − logF@})

We can write it in the form required by the theorem as follows:

! = _(\, q).let (?, P, @,Q) = (density{%} \, sim{%} \, density{&} q, sim{&} q) in
E(do{(I,F@) ← Q; return (log? (I) − logF@)})

The theorem then establishes that, under mild technical conditions, applying adev to ! yields an
unbiased estimator of ∇(\,q)F (⟦%⟧1 (\), ⟦&⟧1 (q)).

7 FULL SYSTEM

In the previous sections, we presented a formal model of the key features of our approach. Our full
language and system (detailed in Appx. A) extends our formal model in three key ways:

• New language features for probabilistic models and variational families (Appx. A.1). Our
full language includes constructs for marginalizing (marginal) and normalizing (normalize)
_Gen programs, making it possible to express a broader class of models and variational families
than in current systems. Our versions of these constructs are designed following Lew et al. [39].
• Differentiable stochastic estimators of densities and density reciprocals (Appx. A.2).

When exact densities of _Gen programs cannot be efficiently computed, our full system can
compile _ADEV terms implementing differentiable unbiased estimators of the required density
functions and their reciprocals. These estimators can even have learnable parameters controlling
their variance, which can be optimized jointly as part of the overall variational objective.
• Reverse-mode automatic differentiation of expected values (Appx. A.4). Our full lan-
guage’s AD algorithm computes vector-Jacobian products for expected values of probabilistic
objectives, whereas our formal development shows only Jacobian-vector products. Algorithms for
vector-Jacobian products, also known as reverse-mode AD algorithms, are much more efficient
when optimizing scalar losses with large numbers of parameters, common in deep learning.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:18 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

𝑖𝑚𝑔

𝑥!""
#

ℎ

		𝑧$%&'&
#

𝑧('&)
#

𝑧$%!"
#

𝑦

𝑦!""
#

𝑦#

ModelGuide

…

…

Untrained

Recurrent

Iterative

𝑖𝑚𝑔

𝑥!""
#

ℎ

		𝑧$%&'&
#

𝑧('&)
#

𝑧$%!"
#

𝑦

𝑦!""
#

𝑦#

ModelGuide

…

…

Trained

Recurrent

Iterative

Variational

optimization

Fig. 7. AIR is a generative model for multi-object images, trained with variational inference. The model

randomly selects a number of patches to render onto a canvas, and a location, scale, and latent code for each.

The variational family predicts these latent variables from an image. The model is trained on a dataset of

images constructed by randomly translating and scaling MNIST digits onto a canvas.

8 EVALUATION

We evaluate our approach using genjax.vi, a prototype of our proposed architecture implemented
as an extension to a JAX-hosted version of Gen [14]. All experiments were run on a single device
with an AMD Ryzen 7 7800X3D @ 5.050 GHz CPU and an Nvidia RTX 4090 GPU. We consider
several case studies designed to answer the following questions:

• Overhead. How much overhead is incurred by using our automated gradient estimators, over

hand-coded versions? We compare the same gradient estimator for a variational autoencoder [29]
constructed (a) via a hand-coded implementation and (b) via our automation.
• Overall performance. How well can we solve a challenging inference problem using our system

compared to other PPLs that support variational inference? We consider the Attend-Infer-Repeat
(AIR) model [17] and compare the capabilities of our system to Pyro [6].
• Expressivity and compositional correctness. For the objectives and estimator strategies express-

ible in our system, is it possible to combine all objectives and estimator strategies while maintaining

correctness? We evaluate the expressiveness of our system vs. Pyro on the AIR model, and on a
hierarchical variational inference problem [1].

Overhead. Table 1 presents a runtime comparison between genjax.vi and a hand-coded imple-
mentation of the gradient estimator in JAX (Appx. C). Wemeasure the wall time required to compute
a gradient estimate for different batch sizes =. We find that our automation introduces a small
amount of runtime overhead (around 3-10%) compared to our hand coded implementation (Fig. 10).

Table 1. Timing (ms) our estimators ver-

sus hand coded estimators for the VAE.

Batch size Ours Hand coded
64 0.11 ± 0.02 0.09 ± 0.04
128 0.22 ± 0.2 0.16 ± 0.08
256 0.31 ± 0.18 0.29 ± 0.17
512 0.56 ± 0.35 0.54 ± 0.34
1024 1.58 ± 1.13 1.07 ± 0.70

Overall Performance. We consider the Attend, Infer, Re-
peat [17] (AIR) model (Fig. 7). We plot accuracy and loss
curves over time in Fig. 8, for several estimators expressed
in our system and in Pyro. We also compare timing results,
shown in Table 2. Our implementation’s performance is
competitive, and we support a broader class of estimators
and objectives than Pyro. We find that some estimators
we support (in particular those based on measure-valued
derivatives) lead to faster convergence than the estimators automated by Pyro.

Table 2. Time (in seconds) to train the AIR model [17] for one epoch (batch size 64) with different objectives

and estimators. All discrete variables use the same estimation strategy. IWELBO runs have = = 2 particles.

System Compiler REINFORCE ENUM MVD IWELBO + REINFORCE IWELBO + MVD
genjax.vi JAX (XLA) 1.52 ± 0.05 6.22 ± 0.29 1.74 ± 0.04 2.28 ± 0.12 3.74 ± 0.05

pyro Torch 12.28 ± 0.55 122.93 ± 1.74 X 22.17 ± 1.2 X

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

Probabilistic Programming with Programmable Variational Inference 233:19

Expressivity and Compositional Correctness. In Table 3, we enumerate several possible
combinations of gradient estimation strategies and objectives for the AIR model. In Table 4, we
consider the model shown in Fig. 2, and implement the model and naive variational guide in
genjax.vi, Pyro and NumPyro, as well as the auxiliary variable variational guide in genjax.vi.
We show statistics on final mean objective values for different variational objectives. While ELBO
and IWELBO are standard, our system allows using more expressive approximations and tighter
lower bound objectives compositionally (such as DIWHVI [65], which uses SIR to estimate densities
of marginals, in the IWELBO objective) to achieve tighter variational bounds.

Table 3. Combinatorial space of gradient estimators

and objective functions for the AIR model, which our

programmable approach helps to explore.

RE = REINFORCE estimator, EN = enumeration estimator, BL = REINFORCE
with learned baselines, MV = measure-valued derivative estimator

Grad. Estimation Strategies
Objective Batch

System
RE. EN. BL. MV. Pyro Ours

✓
ELBO ≥ 1 ✓ ✓

IWAE ≥ 1 ✓ ✓

✓
ELBO ≥ 1 ✓ ✓

IWAE ≥ 1 × ✓

✓
ELBO ≥ 1 ✓ ✓

IWAE ≥ 1 × ✓

✓
ELBO ≥ 1 × ✓

IWAE ≥ 1 × ✓

✓ ✓
ELBO ≥ 1 ✓ ✓

IWAE ≥ 1 × ✓

✓ ✓
ELBO ≥ 1 ✓ ✓

IWAE ≥ 1 × ✓

✓ ✓
ELBO ≥ 1 × ✓

IWAE ≥ 1 × ✓

✓ ✓
ELBO ≥ 1 × ✓

IWAE ≥ 1 × ✓

✓ ✓
ELBO ≥ 1 × ✓

IWAE ≥ 1 × ✓

✓ ✓
ELBO ≥ 1 × ✓

IWAE ≥ 1 × ✓

✓ ✓ ✓
ELBO ≥ 1 × ✓

IWAE ≥ 1 × ✓

✓ ✓ ✓
ELBO ≥ 1 × ✓

IWAE ≥ 1 × ✓

✓ ✓ ✓
ELBO ≥ 1 × ✓

IWAE ≥ 1 × ✓

✓ ✓ ✓
ELBO ≥ 1 × ✓

IWAE ≥ 1 × ✓

Not Exploited RWS
1 ✓ ✓

> 1 × ✓

100 101 102 103

400

600

O
b

je
ct

iv
e

100 101 102 103

0.5

1.0

A
cc

u
ra

cy

100 101 103102

Time (s)

0.6

0.8

1.0

A
cc

u
ra

cy

t ~ 16 mins

Ours (REINFORCE)

Ours (IWAE + REINFORCE)

Ours (Enum)

Ours (MVD)

Ours (Hybrid: MVD x2, ENUM)

Ours (Hybrid: (IWAE) MVD x2, ENUM)

Ours (IWAE + MVD)

Pyro (REINFORCE)

Pyro (REINFORCE + baselines)

Ours (batch size = 1, RWS(K = 10))

Ours (batch size = 64, RWS(K = 10))

Pyro (batch size = 1, RWS(K = 10))

Comparing algorithms for AIR

Fig. 8. We evaluate a variety of custom estimators

and objectives (ELBO, IWAE, RWS) using our system.

Our on average best estimator (IWAE + MVD, not

expressible in Pyro) converges an order of magnitude

faster than Pyro’s recommended estimator.

Table 4. Mean objective value (in nats) on repeated runs for several variational objectives, including ones

which utilizemarginal. = and< denote particle sizes for SIR algorithms.

System ELBO IWELBO (= = 5) HVI IWHVI (< = 5) DIWHVI (= = 5,< = 5)
genjax.vi -8.08 -7.79 -9.75 -8.18 -7.33
numpyro -8.08 -7.77 ✓/ X X X

pyro -8.08 -7.75 ✓/ X X X

9 RELATED WORK

Variational Inference in PPLs. Many PPLs support some form of variational inference [6, 12,
14, 21, 67], and it is the primary focus of Pyro [6] and ProbTorch [67]. Both Pyro and ProbTorch
have endeavored to make inference more programmable. For example, ProbTorch has introduced
inference combinators that make it easy to express certain nested variational inference algorithms [67,
74]. Pyro has perhaps the most mature support for variational inference, with many gradient
estimators and objectives supported. Pyro also implements some variance reduction strategies not

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:20 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

yet supported by our system, e.g. exploiting conditional independence using their plate operator.
However, extending Pyro with new variational objectives or gradient estimation strategies requires
a deep understanding of its internals. Furthermore, Pyro’s modeling language does not have our
constructs for marginalization and normalization (although Pyro can marginalize discrete, finite-
support auxiliary variables from models). Concurrently with this work, Wagner [71] presented
a PPL with correct-by-construction variational inference, where their notion of “correctness” is
stronger in some ways and weaker in others than that of this work. In particular, Wagner [71] works
with smoothed approximations of the user’s probabilistic programs, and so the gradient estimates it
computes are biased for the original objective. However, the degree of error in this smoothing is
gradually annealed over the course of optimization, leading to convergence to a stationary point of
the original objective.

Static Analyses for Differentiability Criteria. Within the PL community, researchers have
made some progress toward formalizing and developing static analyses for ensuring soundness
properties of variational inference [34, 35, 72], as well as program transformations for automatically
constructing variational families informed by the model’s structure [41]. By contrast, we formalize
the process by which user model, inference, and objective code is transformed into a gradient
estimator, tracking the interactions between density computation, simulation, and automatic
differentiation. One interesting directionwould be to extend Lee et al. [34]’s analysis to automatically
annotate _Gen programs with gradient estimators. Note that our current type-based analysis does
not verify the local domination condition of Thm. 5.2, which Wagner [71] does manage to check
statically, by imposing restrictions on the PPL and considering only the ELBO objective.

Automated Gradient Estimation. Due to its centrality to many applications in computer
science and beyond, there has been intense interest in automating unbiased gradient estimation
for objective functions expressed as expectations, yielding several frameworks for unbiasedly
differentiating first-order stochastic computation graphs [31, 63, 73], imperative programs with
discrete randomness [3], and higher-order probabilistic programs [40]. Some works have also
investigated automated computation of biased gradient estimates via smoothing [30]. However,
these frameworks cannot be directly applied to variational inference problems, which require
differentiating not just user code, but also traced simulators and log density evaluators of the
probabilistic programs that users write. We address these challenges, by compiling density functions
of user-defined probabilistic programs into a target language compatible with ADEV [40]. We also
extend ADEV in several other ways: our version adds score to differentiate not just expected values
but general integrals against (potentially unnormalized) measures; is implemented performantly
on GPU; and has been extended with a reverse-mode.

Programmable Inference. We build on a long line of work that aims to make inference more
programmable in PPLs [14, 39, 47, 48, 54]. In much the same way that this prior work has aimed to
expose compositional structure in Monte Carlo algorithms and help users explore a broad class of
algorithm settings, our work aims to do the same for variational inference, exposing compositional
structure in gradient estimators and variational objectives.

Formal Reasoning about Inference and Program Transformations. Our semantics builds
on recent work in the denotational semantics and validation of Bayesian inference [23, 75, 76], as
well as semantic foundations for differentiable programming [26, 64]. Our soundness proofs are
based on logical relations [2, 26]. We also draw on a tradition of deriving probabilistic inference
algorithms via program transformations [54].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

Probabilistic Programming with Programmable Variational Inference 233:21

10 DISCUSSION

This work gives a formal account of the automation that PPLs provide for variational inference — a
powerful and widely used suite of features that has not previously been completely understood
in formal programming language terms. This work’s account provides a careful separation of the
interactions between tracing, density computation, gradient estimation strategies, and automatic
differentiation. Simultaneously, this work shows how to implement these features modularly and
extensibly, addressing a number of pain points in existing implementations, and expanding the
class of variational inference algorithms that users can easily express.

Limitations. That said, the modular approach we have presented has several key limitations:

• Static checks may be unnecessarily restrictive. For example, although the rectified linear unit
(ReLU) is not differentiable at 0, in many (but not all) contexts it is safe to use it as though it were
differentiable, without compromising unbiasedness. The type system of _ADEV is not sophisticated
enough to distinguish when ReLU is safe or not, and so we must give it the restrictive type
R∗ → R∗. Of course, at their own risk, users of the system are free to ignore these static checks.
• No parametric discontinuities. A key limitation of our language, shared by Pyro, ProbTorch, and
Gen, is that parametric discontinuities (expressions that compute discontinuous functions of the
input parameters) are not permitted. Variational inference is possible in these settings, and Lee
et al. [36] proposed a gradient estimator that can be automated for a restricted PPL with affine
discontinuities. More recently, Bangaru et al. [4] and Michel et al. [49] have presented techniques
for differentiating integral expressions with parametric discontinuities. It is not yet clear to what
extent the design we present could be cleanly extended to exploit these techniques.
• User-specified variational objectives may be ill-defined. Our correctness theorem assumes as a
precondition that the objective the user has specified is well-defined (i.e., if it is defined as
an expected value, that it is finite for all input parameters). Previous work has identified the
verification of this condition as an important challenge for safe variational inference [35], but
our system includes no static checks to do so.
• Continuation-passing style (CPS) is unnatural in many host languages. adev{·} transforms a
program to CPS in order to automate unbiased gradient estimation. This is easy in our Haskell
implementation, but in Python and Julia, it introduces some amount of friction. For example, in
Julia, certain host-language features (like mutation, and therefore most imperative loops) are
incompatible with our CPS implementation. By contrast, Pyro and Gen place few restrictions on
the host-language features that can be used to define models and variational families.

In addition, our implementation does not yet incorporate several important insights and capabil-
ities from existing deep PPLs, including Pyro’s use of tensor contractions to marginalize discrete
variables [55, 56], or the use of fine-grained control flow information to reduce the variance of
gradient estimates [63].

Future Work. We comment on several intriguing avenues for future work:

• The search for low variance estimators. Our approach automates the derivation of unbiased
gradient estimators, but it says little about what estimators one should choose to achieve low
variance on particular problems. Our approach should make it easier to address this challenge,
by allowing rapid exploration of a large space of estimation strategies, some of which have not
been previously automated. We hope that our work and implementations might be used to carry
out a study of the behavior of different gradient estimators, on a broader variety of problems
than those enabled by current automation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

233:22 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

• Interaction with ADEV. Our system is the first to use ADEV [40] for scalable learning of large
parameter spaces (§A.4). ADEV provides a fundamentally new perspective on automatic dif-
ferentiation, and extends the technique to expected value loss functions. Our integration with
ADEV has several implications: by virtue of the fact that the target language of our language’s
transformations is ADEV’s source language, our system may be used with ADEV loss functions
beyond the variational loss functions which we’ve discussed in this work. Extensions to ADEV
which improve variance properties of gradient estimators symbiotically improve the performance
of gradient estimators in our language. Indeed, we expect new investigations into low variance
gradient estimators for discrete random choices [3] to open up novel variational guide families,
hitherto unexplored due to poor variance or computational intractability of discrete enumeration.

DATA-AVAILABILITY STATEMENT

An artifact providing a version of genjax.vi, and reproducing our experiments, is available [5].

ACKNOWLEDGMENTS

The authors are grateful to Tuan Anh Le, Tan Zhi-Xuan, Cameron Freer, Andrew Bolton, George
Matheos, Nishad Gothoskar, Martin Jankowiak, and Sam Witty for useful conversations and
feedback, and to our anonymous referees for helpful feedback on earlier drafts of the paper. We
are grateful for support from DARPA, under the DARPA Machine Common Sense (Award ID:
030523-00001) and JUMP (CoCoSys, Prime Contract No. 2023-JU-3131) programs, and DSTA, under
Master Agreement No. 801899998, as well as gifts from Google, and philanthropic gifts from an
anonymous donor and the Siegel Family Foundation.

REFERENCES

[1] Felix V. Agakov and David Barber. 2004. An Auxiliary Variational Method. In Neural Information Processing (Lecture

Notes in Computer Science). Springer, Berlin, Heidelberg, 561–566. https://doi.org/10.1007/978-3-540-30499-9_86
[2] Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Programming

Languages and Systems (Lecture Notes in Computer Science). Springer, Berlin, Heidelberg, 69–83. https://doi.org/10.
1007/11693024_6

[3] Gaurav Arya, Moritz Schauer, Frank Schäfer, and Christopher Rackauckas. 2022. Automatic Differentiation of Programs
with Discrete Randomness. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural

Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/
2022/hash/43d8e5fc816c692f342493331d5e98fc-Abstract-Conference.html

[4] Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley. 2021.
Systematically differentiating parametric discontinuities. ACM Trans. Graph. 40, 4 (2021), 107:1–107:18. https:
//doi.org/10.1145/3450626.3459775

[5] McCoy R. Becker, Alexander K. Lew, and Xiaoyan Wang. 2024. probcomp/programmable-vi-pldi-2024: v0.1.2. Zenodo.
https://doi.org/10.5281/zenodo.10935596

[6] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. ,
28:1–28:6 pages. http://jmlr.org/papers/v20/18-403.html

[7] David M Blei and Michael I Jordan. 2006. Variational inference for Dirichlet process mixtures. (2006).
[8] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. 2016. Variational Inference: A Review for Statisticians. CoRR

abs/1601.00670 (2016). arXiv:1601.00670 http://arxiv.org/abs/1601.00670
[9] Johannes Borgström, Ugo Dal Lago, Andrew D Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation

for universal probabilistic programming. ACM SIGPLAN Notices 51, 9 (2016), 33–46.
[10] Jörg Bornschein and Yoshua Bengio. 2015. Reweighted Wake-Sleep. https://doi.org/10.48550/arXiv.1406.2751

arXiv:1406.2751 [cs].
[11] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. 2016. Importance Weighted Autoencoders. https://doi.org/10.

48550/arXiv.1509.00519 arXiv:1509.00519 [cs, stat].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

https://gen.dev/genjax/vi
https://doi.org/10.1007/978-3-540-30499-9_86
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024_6
http://papers.nips.cc/paper_files/paper/2022/hash/43d8e5fc816c692f342493331d5e98fc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/43d8e5fc816c692f342493331d5e98fc-Abstract-Conference.html
https://doi.org/10.1145/3450626.3459775
https://doi.org/10.1145/3450626.3459775
https://doi.org/10.5281/zenodo.10935596
http://jmlr.org/papers/v20/18-403.html
https://arxiv.org/abs/1601.00670
http://arxiv.org/abs/1601.00670
https://doi.org/10.48550/arXiv.1406.2751
https://doi.org/10.48550/arXiv.1509.00519
https://doi.org/10.48550/arXiv.1509.00519

Probabilistic Programming with Programmable Variational Inference 233:23

[12] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus A
Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. Journal of
Statistical Software 76 (2017).

[13] Marco Cusumano-Towner and Vikash K Mansinghka. 2017. AIDE: An algorithm for measuring the accuracy of
probabilistic inference algorithms. In Advances in Neural Information Processing Systems, Vol. 30. Curran Associates,
Inc. https://proceedings.neurips.cc/paper/2017/hash/acab0116c354964a558e65bdd07ff047-Abstract.html

[14] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: a general-purpose
probabilistic programming system with programmable inference. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI 2019). Association for Computing Machinery, New York,
NY, USA, 221–236. https://doi.org/10.1145/3314221.3314642

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society. Series B (Methodological) 39, 1 (1977), 1–38. https://www.jstor.org/stable/2984875
Publisher: [Royal Statistical Society, Wiley].

[16] Justin Domke. 2021. An Easy to Interpret Diagnostic for Approximate Inference: Symmetric Divergence Over
Simulations. https://doi.org/10.48550/arXiv.2103.01030 arXiv:2103.01030 [cs, stat].

[17] S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray Kavukcuoglu, and Geoffrey E.
Hinton. 2016. Attend, Infer, Repeat: Fast Scene Understanding with Generative Models. https://doi.org/10.48550/
arXiv.1603.08575 arXiv:1603.08575 [cs].

[18] Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing, and Shimon Whiteson. 2018.
Dice: The infinitely differentiable Monte Carlo estimator. In International Conference on Machine Learning. PMLR,
1529–1538.

[19] Charles W Fox and Stephen J Roberts. 2012. A tutorial on variational Bayesian inference. Artificial intelligence review
38 (2012), 85–95.

[20] Roy Frostig, Matthew James Johnson, and Chris Leary. 2018. Compiling machine learning programs via high-level
tracing. Systems for Machine Learning 4, 9 (2018).

[21] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for flexible probabilistic inference. In International

conference on artificial intelligence and statistics. PMLR, 1682–1690.
[22] Shixiang (Shane) Gu, Zoubin Ghahramani, and Richard E Turner. 2015. Neural Adaptive Sequential Monte Carlo. In

Advances in Neural Information Processing Systems, Vol. 28. Curran Associates, Inc. https://papers.nips.cc/paper_files/
paper/2015/hash/99adff456950dd9629a5260c4de21858-Abstract.html

[23] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order
probability theory. In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’17).
IEEE Press, Reykjavík, Iceland, 1–12.

[24] Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. 1995. The "Wake-Sleep" Algorithm for
Unsupervised Neural Networks. Science 268, 5214 (May 1995), 1158–1161. https://doi.org/10.1126/science.7761831

[25] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. 2013. Stochastic variational inference. Journal of
Machine Learning Research (2013).

[26] Mathieu Huot, Sam Staton, and Matthijs Vákár. 2020. Correctness of Automatic Differentiation via Diffeologies and
Categorical Gluing. In Foundations of Software Science and Computation Structures (Lecture Notes in Computer Science).
Springer International Publishing, Cham, 319–338. https://doi.org/10.1007/978-3-030-45231-5_17

[27] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. 2021. Variational diffusion models. Advances in Neural

Information Processing Systems 34 (2021), 21696–21707.
[28] Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling. 2014. Semi-supervised learning with

deep generative models. In Proceedings of the 27th International Conference on Neural Information Processing Systems -

Volume 2 (NIPS’14). MIT Press, Cambridge, MA, USA, 3581–3589.
[29] Diederik P. Kingma and MaxWelling. 2022. Auto-Encoding Variational Bayes. https://doi.org/10.48550/arXiv.1312.6114

arXiv:1312.6114 [cs, stat].
[30] Justin N Kreikemeyer and Philipp Andelfinger. 2023. Smoothing Methods for Automatic Differentiation Across

Conditional Branches. IEEE Access (2023).
[31] Emile Krieken, Jakub Tomczak, and Annette Ten Teije. 2021. Storchastic: A framework for general stochastic automatic

differentiation. Advances in Neural Information Processing Systems 34 (2021), 7574–7587.
[32] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. 2017. Automatic differentiation

variational inference. Journal of machine learning research (2017).
[33] Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, YeeWhye Teh, and FrankWood. 2019. Revisiting ReweightedWake-Sleep

for Models with Stochastic Control Flow. , 1039–1049 pages. http://proceedings.mlr.press/v115/le20a.html

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

https://proceedings.neurips.cc/paper/2017/hash/acab0116c354964a558e65bdd07ff047-Abstract.html
https://doi.org/10.1145/3314221.3314642
https://www.jstor.org/stable/2984875
https://doi.org/10.48550/arXiv.2103.01030
https://doi.org/10.48550/arXiv.1603.08575
https://doi.org/10.48550/arXiv.1603.08575
https://papers.nips.cc/paper_files/paper/2015/hash/99adff456950dd9629a5260c4de21858-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/99adff456950dd9629a5260c4de21858-Abstract.html
https://doi.org/10.1126/science.7761831
https://doi.org/10.1007/978-3-030-45231-5_17
https://doi.org/10.48550/arXiv.1312.6114
http://proceedings.mlr.press/v115/le20a.html

233:24 M. R. Becker, A. K. Lew, X. Wang, M. Ghavami, M. Huot, M. C. Rinard, V. K. Mansingkha

[34] Wonyeol Lee, Xavier Rival, and Hongseok Yang. 2023. Smoothness Analysis for Probabilistic Programs with Application
to Optimised Variational Inference. Proceedings of the ACM on Programming Languages 7, POPL (Jan. 2023), 12:335–
12:366. https://doi.org/10.1145/3571205

[35] Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2019. Towards verified stochastic variational inference
for probabilistic programs. Proceedings of the ACM on Programming Languages 4, POPL (Dec. 2019), 16:1–16:33.
https://doi.org/10.1145/3371084

[36] Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. 2018. Reparameterization gradient for non-differentiable models.
Advances in Neural Information Processing Systems 31 (2018).

[37] Alexander K. Lew, Marco F. Cusumano-Towner, and Vikash K. Mansinghka. 2022. Recursive Monte Carlo and
variational inference with auxiliary variables. In Uncertainty in Artificial Intelligence, Proceedings of the Thirty-Eighth

Conference on Uncertainty in Artificial Intelligence, UAI 2022, 1-5 August 2022, Eindhoven, The Netherlands (Proceedings

of Machine Learning Research, Vol. 180). PMLR, 1096–1106. https://proceedings.mlr.press/v180/lew22a.html
[38] Alexander K Lew, Marco F Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K Mansinghka. 2019.

Trace types and denotational semantics for sound programmable inference in probabilistic languages. Proceedings of
the ACM on Programming Languages 4, POPL (2019), 1–32.

[39] Alexander K. Lew, Matin Ghavamizadeh, Martin C. Rinard, and Vikash K. Mansinghka. 2023. Probabilistic Programming
with Stochastic Probabilities. Proceedings of the ACM on Programming Languages 7, PLDI (June 2023), 176:1708–176:1732.
https://doi.org/10.1145/3591290

[40] Alexander K. Lew,Mathieu Huot, Sam Staton, and Vikash K. Mansinghka. 2023. ADEV: Sound Automatic Differentiation
of Expected Values of Probabilistic Programs. Proceedings of the ACM on Programming Languages 7, POPL (Jan. 2023),
121–153. https://doi.org/10.1145/3571198 arXiv:2212.06386 [cs, stat].

[41] Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang. 2023. Type-preserving, dependence-aware guide generation for
sound, effective amortized probabilistic inference. Proceedings of the ACM on Programming Languages 7, POPL (2023),
1454–1482.

[42] Michael Y. Li, Dieterich Lawson, and Scott Linderman. 2023. Neural Adaptive Smoothing via Twisting. https:
//openreview.net/forum?id=rC6-kGN-0v

[43] Daniel Lundén, Johannes Borgström, and David Broman. 2021. Correctness of Sequential Monte Carlo Inference for
Probabilistic Programming Languages.. In ESOP. 404–431.

[44] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. 2016. Auxiliary Deep Generative Models.
In Proceedings of The 33rd International Conference on Machine Learning. PMLR, 1445–1453. https://proceedings.mlr.
press/v48/maaloe16.html ISSN: 1938-7228.

[45] Chris J. Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, AndriyMnih, Arnaud Doucet,
and Yee Whye Teh. 2017. Filtering Variational Objectives. https://doi.org/10.48550/arXiv.1705.09279 arXiv:1705.09279
[cs, stat].

[46] Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang, and Yoshua Bengio.
2022. GFlowNets and variational inference. arXiv preprint arXiv:2210.00580 (2022).

[47] Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a higher-order probabilistic programming platform
with programmable inference. arXiv preprint arXiv:1404.0099 (2014).

[48] Vikash K Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018.
Probabilistic programming with programmable inference. In Proceedings of the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation. 603–616.
[49] Jesse Michel, Kevin Mu, Xuanda Yang, Sai Praveen Bangaru, Elias Rojas Collins, Gilbert Bernstein, Jonathan Ragan-

Kelley, Michael Carbin, and Tzu-Mao Li. 2024. Distributions for Compositionally Differentiating Parametric Disconti-
nuities. Proceedings of the ACM on Programming Languages 8, OOPSLA1 (2024), 893–922.

[50] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. 2020. Monte Carlo gradient estimation in
machine learning. Journal of Machine Learning Research 21, 132 (2020), 1–62.

[51] Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. 2018. Variational sequential Monte Carlo. In
International conference on artificial intelligence and statistics. PMLR, 968–977.

[52] Christian A. Naesseth, Fredrik Lindsten, and David Blei. 2020. Markovian score climbing: variational inference with
KL(p||q). In Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20). Curran
Associates Inc., Red Hook, NY, USA, 15499–15510.

[53] Christian A Naesseth, Fredrik Lindsten, Thomas B Schön, et al. 2019. Elements of sequential Monte Carlo. Foundations
and Trends® in Machine Learning 12, 3 (2019), 307–392.

[54] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic
inference by program transformation in Hakaru (system description). In Functional and Logic Programming: 13th

International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings 13. Springer, 62–79.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

https://doi.org/10.1145/3571205
https://doi.org/10.1145/3371084
https://proceedings.mlr.press/v180/lew22a.html
https://doi.org/10.1145/3591290
https://doi.org/10.1145/3571198
https://openreview.net/forum?id=rC6-kGN-0v
https://openreview.net/forum?id=rC6-kGN-0v
https://proceedings.mlr.press/v48/maaloe16.html
https://proceedings.mlr.press/v48/maaloe16.html
https://doi.org/10.48550/arXiv.1705.09279

Probabilistic Programming with Programmable Variational Inference 233:25

[55] Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Du Phan, and Jonathan P Chen. 2019. Functional tensors for
probabilistic programming. arXiv preprint arXiv:1910.10775 (2019).

[56] Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Neeraj Pradhan, Justin Chiu, Alexander Rush, and Noah Goodman.
2019. Tensor variable elimination for plated factor graphs. In International Conference on Machine Learning. PMLR,
4871–4880.

[57] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens, and Lawrence Carin. 2016. Variational
autoencoder for deep learning of images, labels and captions. Advances in Neural Information Processing Systems 29
(2016).

[58] Alexey Radul, Adam Paszke, Roy Frostig, Matthew Johnson, and Dougal Maclaurin. 2022. You only linearize once:
Tangents transpose to gradients. arXiv preprint arXiv:2204.10923 (2022).

[59] Tom Rainforth, Adam R. Kosiorek, Tuan Anh Le, Chris J. Maddison, Maximilian Igl, Frank Wood, and Yee Whye Teh.
2018. Tighter Variational Bounds are Not Necessarily Better. https://arxiv.org/abs/1802.04537v3

[60] Rajesh Ranganath, Dustin Tran, and David Blei. 2016. Hierarchical Variational Models. In Proceedings of The 33rd

International Conference on Machine Learning. PMLR, 324–333. https://proceedings.mlr.press/v48/ranganath16.html
ISSN: 1938-7228.

[61] D.B. Rubin. 1988. Using the SIR algorithm to simulate posterior distributions. https://api.semanticscholar.org/CorpusID:
115305396

[62] Tim Salimans, Diederik Kingma, and MaxWelling. 2015. Markov chain Monte Carlo and variational inference: Bridging
the gap. In International Conference on Machine Learning. PMLR, 1218–1226.

[63] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. 2015. Gradient estimation using stochastic
computation graphs. Advances in Neural Information Processing Systems 28 (2015).

[64] Benjamin Sherman, Jesse Michel, and Michael Carbin. 2021. _S: computable semantics for differentiable programming
with higher-order functions and datatypes. Proceedings of the ACM on Programming Languages 5, POPL (Jan. 2021),
3:1–3:31. https://doi.org/10.1145/3434284

[65] Artem Sobolev and Dmitry Vetrov. 2019. Importance Weighted Hierarchical Variational Inference. https://doi.org/10.
48550/arXiv.1905.03290 arXiv:1905.03290 [cs, stat].

[66] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning Structured Output Representation using Deep Conditional
Generative Models. In Advances in Neural Information Processing Systems, Vol. 28. Curran Associates, Inc. https:
//proceedings.neurips.cc/paper_files/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html

[67] Sam Stites, Heiko Zimmermann, Hao Wu, Eli Sennesh, and Jan-Willem van de Meent. 2021. Learning proposals for
probabilistic programs with inference combinators. In Proceedings of the Thirty-Seventh Conference on Uncertainty in

Artificial Intelligence. PMLR, 1056–1066. https://proceedings.mlr.press/v161/stites21a.html ISSN: 2640-3498.
[68] Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, and Alexey Radul. 2018.

Simple, Distributed, and Accelerated Probabilistic Programming. In Advances in Neural Information Processing Systems

31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,

Canada, Samy Bengio, Hanna M.Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
(Eds.). 7609–7620. https://proceedings.neurips.cc/paper/2018/hash/201e5bacd665709851b77148e225b332-Abstract.html

[69] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. 2017. Deep
Probabilistic Programming. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=Hy6b4Pqee
[70] Arash Vahdat and Jan Kautz. 2020. NVAE: A deep hierarchical variational autoencoder. Advances in Neural Information

Processing Systems 33 (2020), 19667–19679.
[71] Dominik Wagner. 2023. Fast and correct variational inference for probabilistic programming: Differentiability, reparame-

terisation and smoothing. Ph. D. Dissertation. University of Oxford.
[72] Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Sound probabilistic inference via guide types. In Proceedings of the

42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 788–803.
[73] Théophane Weber, Nicolas Heess, Lars Buesing, and David Silver. 2019. Credit assignment techniques in stochastic

computation graphs. In The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2650–2660.
[74] Heiko Zimmermann, Hao Wu, Babak Esmaeili, and Jan-Willem van de Meent. 2021. Nested Variational Inference.

https://openreview.net/forum?id=kBrHzFtwdp
[75] Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. 2018. Functional programming for modular Bayesian inference.

Proceedings of the ACM on Programming Languages 2, ICFP (July 2018), 83:1–83:29. https://doi.org/10.1145/3236778
[76] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss,

Chris Heunen, and Zoubin Ghahramani. 2017. Denotational validation of higher-order Bayesian inference. Proceedings
of the ACM on Programming Languages 2, POPL (Dec. 2017), 60:1–60:29. https://doi.org/10.1145/3158148

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 233. Publication date: June 2024.

https://arxiv.org/abs/1802.04537v3
https://proceedings.mlr.press/v48/ranganath16.html
https://api.semanticscholar.org/CorpusID:115305396
https://api.semanticscholar.org/CorpusID:115305396
https://doi.org/10.1145/3434284
https://doi.org/10.48550/arXiv.1905.03290
https://doi.org/10.48550/arXiv.1905.03290
https://proceedings.neurips.cc/paper_files/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html
https://proceedings.mlr.press/v161/stites21a.html
https://proceedings.neurips.cc/paper/2018/hash/201e5bacd665709851b77148e225b332-Abstract.html
https://openreview.net/forum?id=Hy6b4Pqee
https://openreview.net/forum?id=kBrHzFtwdp
https://doi.org/10.1145/3236778
https://doi.org/10.1145/3158148

	Abstract
	1 Introduction
	2 Overview
	3 Syntax and Semantics
	3.1 Shared Core
	3.2 Generative Probabilistic Programming with Lambda Gen
	3.3 Differentiable Probabilistic Programming with Lambda ADEV

	4 Compiling Differentiable Simulators and Density Evaluators
	4.1 Compiling Differentiable Density Evaluators
	4.2 Compiling Differentiable Trace Simulators

	5 Variational Inference via Differentiable Probabilistic Programming
	6 Correctness of Gradient Estimation for Variational Inference
	7 Full System
	8 Evaluation
	9 Related work
	10 Discussion
	Acknowledgments
	References

