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ABSTRACT
We present a low-energy deterministic distributed algorithm that

computes exact Single-Source Shortest Paths (SSSP) in near-optimal

time: it runs in �̃� (𝑛) rounds and each node is awake during only

poly(log𝑛) rounds. When a node is not awake, it performs no

computations or communications and spends no energy.

The general approach we take along the way to this result can

be viewed as a novel adaptation of Dijkstra’s classic approach to

SSSP, which makes it suitable for the distributed setting. Notice that

Dijkstra’s algorithm itself is not efficient in the distributed setting

due to its need for repeatedly computing the minimum-distance

unvisited node in the entire network. Our adapted approach has

other implications, as we outline next.

As a step toward the above end-result, we obtain a simple de-

terministic algorithm for exact SSSP with near-optimal time and

message complexities of �̃� (𝑛) and �̃� (𝑚), in which each edge com-

municates only poly(log𝑛) messages. Therefore, one can simulta-

neously run 𝑛 instances of it for 𝑛 sources, using a simple random

delay scheduling. That computes All Pairs Shortest Paths (APSP) in

the near-optimal time complexity of �̃� (𝑛). This algorithm matches

the complexity of the recent APSP algorithm of Bernstein and

Nanongkai [STOC 2019] using a completely different method (and

one that is more modular, in the sense that the SSSPs are solved

independently). It also takes a step toward resolving the open prob-

lem on a deterministic �̃� (𝑛)-time APSP, as the only randomness

used now is in the scheduling.
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1 INTRODUCTION AND RELATEDWORK
This paper is centered on distributed algorithms for the Single-

Source Shortest Paths (SSSP) problem, i.e., computing the exact

distances and shortest paths in a computer network from a desig-

nated source node. This is one of the basic andwidely used problems

in graph algorithms and especially computer networks. Our initial

focus is on a relatively new facet: energy-efficient distributed al-

gorithms. We believe this is practically relevant and theoretically

interesting. But, as we outline soon, the approach we develop ends

up having ramifications for more classic facets of the problem,

namely the congestion of the SSSP algorithm and the extension to

All-Pairs Shortest Paths (APSP).

Concretely, our primary objective is distributed SSSP algorithms

with low energy. Informally, we want algorithms where each node

is awake and active (computing or communicating) during only

a “small” amount of time and therefore it consumes only a small

amount of energy. We present the actual definitions of the energy

complexity and more discussions on it later. As is standard, the

interpretation of small here is bounds that are at most poly(log𝑛),
where 𝑛 denotes the number of nodes. As our main end result, we

present a poly(log𝑛)-energy deterministic distributed algorithm

for exact SSSP with a near-optimal time complexity of �̃� (𝑛). The
energy bound means each node is awake for at most poly(log𝑛)
time. This makes the algorithm scalable in terms of each node’s

energy consumption and thus suitable for energy-constrained net-

works, e.g., sensor networks. Moreover, the energy bound directly

implies a congestion bound: since each node communicates in only

poly(log𝑛) rounds, the algorithm sends at most poly(log𝑛) mes-

sages through each edge. This makes the algorithm suitable for

networking settings that run many algorithms concurrently, as is

usually the case in most computer networks. This is because low

congestion algorithms allow the network to run many of them

simultaneously, without significant slow down [21].

This �̃� (𝑛) time complexity is trivially near-optimal in worst-case

graphs, with diameter Θ̃(𝑛). It is also near-optimal in a stronger

sense: an Ω̃(𝑛) lower bound holds in graphs with diameter 𝐷 =

poly(log𝑛), oncewe insist on congestion poly(log𝑛). This is known
and can be seen by simple adaptations of the well-known lower

bound of Das Sarma et al. [15]. See also [22, Section 10.6] for more

on this, including pointing out the same (though for the lower

bound applied to the MST problem), and for general discussions

about low congestion algorithms and their benefits.

Our algorithm might be of interest not only for its end results

but also more broadly for its novel approaches. The algorithm has

two key ingredients:
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(I) a new approach to the distributed computation of exact SSSP,

which can be viewed as a distributed analog of Dijkstra’s

SSSP algorithm, and

(II) an energy-efficient deterministic distributed algorithm for

unweighted SSSP (i.e., BFS).

Ingredient (I) has ramifications beyond energy considerations:

It gives a poly(log𝑛)-congestion �̃� (𝑛) deterministic algorithm for

SSSP. That directly yields an �̃� (𝑛)-time APSP algorithm via ran-

dom scheduling [21, 30], hence matching the near-optimal time-

complexity that was achieved by Bernstein and Nanongkai [7], after

a line of work [17, 27]. Our approach is completely different and

has some additional benefits.

Ingredient (II) is based on a local awake/sleep coordination mech-

anism via deterministically constructed neighborhood covers, with

a low-energy construction. It provides a deterministic counter-

part to the randomized low-energy BFS algorithm of Dani and

Hayes [14]. We think that these deterministic BFS and neighbor-

hood cover constructions might find applications in deterministic

energy-efficient distributed algorithms for other graph problems.

Next, we review the models and state our concrete contributions.

To make the first ingredient more widely accessible, in Section 1.1,

we initially ignore energy considerations and discuss the new dis-

tributed approach to SSSP and its ramifications. Then, in Section 1.2,

we zoom in on energy complexity and discuss our energy-efficient

and deterministic BFS and SSSP algorithms.

1.1 Without Energy Considerations
We first recall the message-passing model of distributed computa-

tion. Then we outline our new approach to SSSP in the context of

the classic approaches and the recent related work.

Synchronous Distributed Message-Passing Model. The network
is abstracted as an undirected weighted graph 𝐺 = (𝑉 , 𝐸), and we

use the notations 𝑛 := |𝑉 | and𝑚 := |𝐸 |. It is usually assumed that

the weight 𝑤 (𝑒) of each edge 𝑒 ∈ 𝐸 is in the range [1, poly(𝑛)].
Each node represents one computer/processor, equipped with a

unique identifier, typically assumed to have 𝑏 = 𝑂 (log𝑛) bits. In
this synchronous model, computation and communications occur

in lock-step rounds 1, 2, 3, . . . . Per round, each node performs some

computations on the data that it holds. Then, it can send one 𝐵-bit

message to each of its neighbors. All the messages sent in a round

arrive by the end of the round. Then, the algorithm proceeds to the

next round. Typically, we assume 𝐵 = 𝑂 (log𝑛). This model with

this message size is sometimes called CONGEST [35]. The time
complexity is the number of rounds until all nodes compute their

outputs. The message complexity is the total number of messages

sent during the algorithm throughout the network.

SSSP in the Distributed Setting: To get an understanding of the

problem, let us revisit some of the classic approaches and their

shortcomings. For SSSP, there is a simple algorithm of Bellman

and Ford [6, 18] that runs in the optimal 𝑂 (𝑛) time: Start with

¯𝑑 (𝑠, 𝑠) = 0 and
¯𝑑 (𝑠,𝑢) = ∞,∀𝑢 ≠ 𝑠 . Then, per round, each node 𝑢

updates its distance estimate
¯𝑑 (𝑠,𝑢) = min𝑣∈𝑁 (𝑢 )

(
¯𝑑 (𝑠, 𝑣) +𝑤 (𝑣𝑢)

)
.

Here,𝑤 (𝑣𝑢) denotes the weight of the edge connecting neighbor 𝑣

to node 𝑢. In essence,
¯𝑑 (𝑠,𝑢) is an estimate on the distance, and it

is always maintained to satisfy
¯𝑑 (𝑠,𝑢) ≥ 𝑑𝑖𝑠𝑡 (𝑠,𝑢). Node 𝑢 updates

its estimate
¯𝑑 (𝑠,𝑢) by checking each neighbor 𝑣 and seeing if con-

necting through 𝑣 , with its current distance estimate
¯𝑑 (𝑠, 𝑣), gives

𝑢 a shorter path from the source 𝑠 . This operation is called relaxing
edge 𝑣𝑢. A major drawback is that this algorithm relaxes each edge

in each round, and thus has message complexity Θ(𝑚𝑛), and Ω(𝑛)
congestion–this becomes problematic when trying to run several

SSSPs concurrently. See, e.g., [34, Sections 2.1 & 3.1].

The above Θ(𝑚𝑛) number of relaxations is also too expensive

for sequential SSSP computations. In the sequential setting, for

undirected graphs, the classic algorithm of Dijkstra remedies this

and achieves an �̃� (𝑚) complexity. The key is to choose the re-

laxations carefully such that each edge is relaxed only once. Di-

jkstra’s algorithm maintains a monotonically growing set 𝑇 of

“visited" nodes, where each node 𝑢 ∈ 𝑇 already knows its distance

¯𝑑 (𝑠,𝑢) = 𝑑𝑖𝑠𝑡 (𝑠,𝑢). Each unvisited node 𝑣 ∈ 𝑉 \𝑇 remains with a

distance estimate
¯𝑑 (𝑠, 𝑣) that is not necessarily finalized. Dijkstra

then finds the unvisited node in 𝑉 \𝑇 that has the smallest
¯𝑑 (𝑠, 𝑣),

and adds 𝑣 to𝑇 , thus visiting it. It then relaxes all edges connecting

𝑣 to unvisited nodes. This way, each edge is relaxed only once. This

approach is not suitable for distributed computing, because find-

ing in each iteration the global minimizer of
¯𝑑 (𝑠, 𝑣) requires extra

time and messages. A direct distributed implementation of Dijkstra

would have time complexity 𝑂 (𝑛𝐷), where 𝐷 is the hop diameter

and can be as large as Θ(𝑛), and message complexity 𝑂 (𝑛2 +𝑚).
These are far away from the desired bounds.

Over the past decade, there has been much progress on dis-

tributed SSSP and its approximate variant [13, 17, 19, 23, 26, 31, 34,

37, 38]. The focus was on sublinear time complexities in graphs

with sublinear hop diameter. In our case, we want congestion (and

energy) bounds of poly(log𝑛), and thus we cannot hope to achieve
a time complexity faster than Ω̃(𝑛) even in low-diameter graphs

(see [22, Section 10.6]). Among these prior works, of particular

relevance to our paper is an algorithm of Nanongkai [34], which

computes a (1 + 𝜀) approximations of SSSP in the synchronous

model of distributed computing, for any constant 𝜀 > 0, with �̃� (𝑛)
time complexity and �̃� (𝑚) message complexity. In a sense, this

algorithm is a simple and elegant rounding scheme that reduces the
(1 + 𝜀) approximations of SSSP to 𝑂 (log𝑛) instances of BFS (i.e.,

unweighted SSSP) in an undirected graph with 𝑂 (𝑛) nodes. 1

Our result for low-congestion SSSP.. Our approach gives a de-

terministic distributed algorithm that computes SSSP with near-

optimal time and message complexities: �̃� (𝑛) time and �̃� (𝑚) mes-

sages
2
More crucially, the algorithm has only poly(log𝑛) conges-

tion, that is, each edge sends at most poly(log𝑛) messages through-

out the execution of the algorithm.

Implications for APSP.. Considering the poly(log𝑛) congestion
of our algorithm per edge, we can run 𝑛 copies of it for different

sources concurrently in �̃� (𝑛) time, using the simple random delays

idea of scheduling [30], e.g., with the black-box theorems in [21].

1
We comment that several of the other works on exact algorithms use approximate

versions as subroutines, via the scaling framework, see e.g., [13, 19, 23, 38]. However,

the transformations in this framework turn the graph into directed graphs (more

accurately, graphs with asymmetric weights along the two directions of the edge), and

this seems to cause a major obstacle in using any of those ideas with a low energy.

2
This time complexity optimality is in the more classic worst-case graph sense

considered in the distributed algorithms literature, where the diameter can be large [3].

It would be interesting to improve the complexity in low-diameter graphs.
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Prior to our work, there was a progression of improvements on

APSP, with complexities �̃� (𝑛5/3) by Elkin [17], �̃� (𝑛5/4) by Huang

et al.[27], and then essentially resolved to �̃� (𝑛) by Bernstein and

Nanongkai [7]. Our algorithm achieves the same near-optimal time

complexity as Bernstein and Nanongkai. But we think the new tech-

nique might be of interest. Our method is completely different and

it solves APSP as 𝑛 independent SSSP computations. Furthermore,

it can be seen as a step toward a deterministic APSP algorithm

with time complexity �̃� (𝑛), which remains open. The reason is as

follows: the algorithm of Bernstein and Nanonkai uses randomness

in three parts, (1) for sampling some center nodes along long paths,

(2) for random filtering of broadcasts, ensuring that only small

congestion passes through each edge, and (3) for random-delays

scheduling. Our APSP algorithm uses randomness only for schedul-

ing. Deterministic scheduling remains an important open problem

in distributed graph algorithms. Any deterministic scheduling with

bounds with poly(log𝑛) factor of the random delays method would

make our APSP algorithm deterministic and near-optimal.

Our approach to distributed SSSP.. As mentioned above, the ef-

ficiency of Dijkstra’s (sequential) algorithm is rooted, in part, in

that it relaxes each edge only a single time. However, for that, the

algorithm needs to repeatedly identify the minimum distance un-

visited node in the entire network. The latter makes the algorithm

inefficient in the distributed setting. Our approach tries to achieve

a similar effect of each edge getting relaxed only a small number of

times—and concretely each edge communicating only poly(log𝑛)
messages—without so much global coordination.

Our basic idea, being overly optimistic, is to set up a recursive

algorithm: Let𝑊 be the maximum edge weight and notice that

𝑑𝑖𝑠𝑡 (𝑠, 𝑣) ≤ 𝑛𝑊 for all nodes 𝑣 ∈ 𝑉 . Let 𝑑 = 𝑛𝑊 . Suppose that we

had an exact cutter algorithm that could distinguish the set 𝑉1 of

nodes 𝑣 such that 𝑑𝑖𝑠𝑡 (𝑠, 𝑣) ≤ 𝑑/2 from the rest of nodes𝑉2 = 𝑉 \𝑉1.

Then, we would first remove 𝑉2 from the graph and solve SSSP

recursively only among the vertices of𝑉1 with a maximum distance

upper bound of𝑑/2. Once that finishes, we would solve SSSP among

only the vertices of 𝑉2 (by removing 𝑉1 nodes but making each

𝑢 ∈ 𝑉2 node connected to 𝑣 ∈ 𝑉1 simulate a source connected

only to 𝑢 and at distance 𝑑𝑖𝑠𝑡 (𝑠, 𝑣) +𝑤 (𝑢𝑣) from 𝑢). There is some

subtlety in this, in how we would inform 𝑉2 nodes to start, but let

us ignore that for now. If we manage to make this scheme work,

each node would be active in only one side of the two-way split

recursion. Thus, each edge would be involved in 𝑂 (log𝑛) cutter
algorithms. Given a poly(log𝑛)-congestion exact cutter, the overall

algorithm would have a poly(log𝑛)-congestion. But where do we

get such an exact cutter?

We use instead an approximate cutter. Nanongkai’s SSSP approx-

imation algorithm [34] can give us a cutter with a small additive

error. Concretely, it can identify a set𝑉1 of vertices with the follow-

ing guarantees: (2) For all nodes 𝑣 such that 𝑑𝑖𝑠𝑡 (𝑠, 𝑣) ≤ 𝑑 , we have

𝑠 ∈ 𝑉1, and (2) for all nodes 𝑣 ∈ 𝑉1, we have 𝑑𝑖𝑠𝑡 (𝑠, 𝑣) ≤ 𝑑/2 + 𝜀𝑑/2

for desirably small constant 𝜀 ∈ (0, 0.1). The algorithm has �̃� (𝑛)
rounds and poly(log𝑛) congestion. Indeed, it consists of running
one BFS in a graph with suitably rounded weights. We plug in this

approximate cutter instead of our ideal exact cutter. We comment

that, perhaps surprisingly, any poly(log𝑛) factor approximation

would also be equally useful here.

Then, we move into the first half of recursion only with nodes

of 𝑉1, i.e., in a graph where nodes of 𝑉 \ 𝑉1 are removed. The

recursion guarantees is that, by the end, all nodes 𝑣 that have

𝑑𝑖𝑠𝑡 (𝑠, 𝑣) ≤ 𝑑/2 will learn their exact distance 𝑑𝑖𝑠𝑡 (𝑠, 𝑣). Then,
for the second half of recursion, we effectively remove all these

nodes and continue with only the nodes for which 𝑑𝑖𝑠𝑡 (𝑠, 𝑣) > 𝑑/2.

Notice that we lose the nice property that each node goes only in

one of the two splits of the recursion. However, one can see that,

in the recursion tree, each node is active in 𝑂 (log𝑛) subproblems.

Furthermore, throughout, we are working with only undirected

graphs and computing undirected BFSs; this property is crucial in

allowing us to extend the result to have a low energy complexity.

One extra challenge, which should be at least mentioned is as

follows (we admit that the solution is hard to summarize cleanly

and probably more understandable in the actual algorithm): How do

nodes of the second half know when to start their recursion? Their

synchrony is crucial for BFS computations. Using a global broad-

cast to announce/coordinate that start would necessitateΘ(𝐷) time,

where 𝐷 denotes the network diameter. Considering that the recur-

sion tree has at least Ω(𝑛) subproblems, this would make the time

complexity as slow as Ω(𝑛𝐷). We use instead a maximal forest of

the set of nodes relevant to the subproblem at hand and coordinate

through that. Because of this, different subproblems at the same

part of the recursion might proceed at different speeds, and we

need some care to show that this does not cause a problem.

Finally, because of the recursion, we will end up having to

solve the more general closest-source shortest path problem (CSSP),

where for given set 𝑆 of sources, we want each node 𝑣 to know

𝑑𝑖𝑠𝑡 (𝑆, 𝑣) =𝑚𝑖𝑛𝑠∈𝑆𝑑𝑖𝑠𝑡 (𝑠, 𝑣). This requires coordination among the

processes starting from different sources, and creates algorithmic

complications. We do not discuss those issue here.

1.2 With Energy Considerations
We next review the definition of energy complexity. We note that

this measure was studied long ago primarily in the context of wire-

less networks—with an initial motivation coming from battery-

powered devices, see e.g. [28, 29]. However, over the past few

years, there has been growing interest in understanding the en-

ergy complexity of various network computations in the basic

message-passing model of distributed computing. See e.g., [1, 5, 9–

12, 16, 24, 25].
3

Model and Energy Complexity. We continue with the standard

synchronous message-passing model of distributed computing, but

with the additional property that each node can choose to sleep

for some rounds. In a round that a node is sleeping, it performs no

computations and cannot send or receive any messages. In particu-

lar, any messages sent to it in this round are lost. This variant has

sometimes been called the sleeping model[1, 16]. The underlying

modeling assumption is that, a node consumed negligible energy

during a sleeping round. Hence, the number of rounds that the

node is awake gives an (asymptotic) measure of the energy that

it spends. The energy complexity of an algorithm is the maximum

3
To the best of our knowledge, our paper is the first to show that, dis-

tributed algorithms with low energy can be useful also for more classic problems

in CONGEST/LOCAL models (which do not directly focus on energy), because the

low energy bound implies low congestion and allows us to run several algorithms

essentially simultaneously.
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energy spent by a node, i.e., the maximum over all nodes of the

number of rounds in which this node is awake.

It is worth noting that energy complexity directly implies a

bound on congestion: if each node is awake only 𝑇 rounds, each

edge can have at most𝑇 messages sent through it in each direction.

As such, studying energy-efficient algorithms also leads to low-

congestion algorithms. Generally, low-congestion algorithms allow

more concurrent schedulings, and this can be a strong positive,

either when for an algorithmic problem we need to run several

instances of this algorithm simultaneously (e.g., in the APSP case

discussed before), or when the computer network naturally runs

several distributed algorithms/communication concurrently. Of

course, a small congestion does not necessarily imply that a node

is involved in a small amount of communication.

Computing SSSP/BFS with Low-Energy. With the poly(log𝑛) en-
ergy complexity constraint, SSSP, and even BFS, become challeng-

ing. The difficulty, even in BFS, is that a node does not know its

distance from the source. Thus, it does not know when it should be

awake, listening to receive the message of the arriving BFS. Recall

that when a node is sleeping, messages sent to it are lost.

In a recent work, Chang, Dani, Hayes, and Pettie [10] gave

the first BFS algorithm with somewhat small energy and near-

optimal time: their algorithm is randomized and computes BFS in

𝐷 · 2
𝑂 (

√
log𝑛 log log𝑛)

time and using 2
𝑂 (

√
log𝑛 log log𝑛)

energy. A

reparametrized version would have poly(log𝑛) energy and 𝐷 · 𝑛𝜀
time complexity for an arbitrarily small constant 𝜀 > 0. This work

was presented in the radio network model, which has an additional

constraint on simultaneous messages, but for the BFS problem that

was not a major obstacle because of the known decay protocol that

manages such simultaneous transmissions and delivers at least one

message to the node. This solution was the state of the art even with

the basic message-passing model. In a follow-up work, Dani and

Hayes [14] essentially resolved the randomized version of the BFS

problem by giving a randomized distributed algorithm with energy

complexity poly(log𝑛) and time complexity �̃� (𝐷). Their solution
depended on some nice properties of randomized low-diameter

graph decomposition [33], which are not known for deterministic

decompositions. It remained open whether one can obtain similar

bounds using a deterministic algorithm. Furthermore, this was just

the unweighted version of the SSSP problem. It remained completely

open whether one can obtain an algorithm with near-optimal time

and energy complexity for the general case of SSSP.

Our results on Energy-Efficient SSSP.. Wegive a deterministic algo-

rithm that computes the exact SSSPs with �̃� (𝑛) time complexity and

poly(log𝑛) energy complexity. As is standard, in the presentation

we assume that each edge 𝑒 has a weight𝑤 (𝑒) ∈ {1, 2, . . . , poly(𝑛)}.
More generally, if all weights are in {1, . . . ,𝑊 }, the result general-
izes with log(𝑛𝑊 ) factors in the bound. As a simpler special case

of our SSSP, and in fact as a subroutine for the general case, we

also provide an SSSP algorithm for BFS (i.e., SSSP in unweighted

graphs) with �̃� (𝐷) time complexity and poly(log𝑛) energy com-

plexity. Here, 𝐷 denotes the hop diameter of the network.

Theorem 1.1. There is a deterministic distributed algorithm that
computes exact SSSPs with �̃� (𝑛) time complexity and poly(log𝑛)
energy complexity. Its special case for unweighted graphs computes

an exact BFS with �̃� (𝐷) time complexity and poly(log𝑛) energy
complexity.

A few words about the method. Our solution for SSSP relies di-

rectly on the first ingredient that we outlined in the previous subsec-

tion, the distributified variant of Dijkstra’s algorithm. But that itself

needs a solution for the BFS problem, and to have a deterministic

algorithm, we need an energy-efficient deterministic algorithm for

BFS. This is the second technical novelty in our paper.

Our solution uses an idea similar to the approach of Dani and

Hayes [14]: we also use sparse neighborhood covers to coordinate

the waking and sleeping of the nodes during the growth of BFS.

Their algorithm relies on certain nice properties of the celebrated

Miller, Peng, Xu [33] randomized constructions of sparse neighbor-

hood cover, and we are not aware of a deterministic construction

with similar properties. We give a different scheme based on the

deterministic sparse neighborhood cover construction of Rozhon

and Ghaffari [36], which basically needs only an energy-efficient

subroutine for computing a BFS up to a certain distance. We break

this seemingly vicious circle of dependencies between sparse neigh-

borhood cover and BFS by setting up an appropriate recursion

based on the distance traveled by BFS, and use some other ideas to

stitch the solutions together. We hope our deterministic low-energy

constructions of neighborhood covers might find applications in

deterministic energy-efficient algorithms for a wider range of prob-

lems.

Finally, we emphasize that in our SSSP approach, it is critical

that the BFSs that need to be computed are in undirected graphs.
4

This is because our energy-efficient BFS solution relies crucially

on sparse neighborhood covers in undirected graphs, and it is not

clear how to obtain similar results in directed graphs (indeed, it is

not even clear what is the neighborhood cover concept for directed

graphs, which would have the right properties).

2 CLOSEST-SOURCE SHORTEST PATHS IN
�̃� (𝑛) TIME AND �̃� (1) CONGESTION

In this section, we discuss an algorithm that, given a set 𝑆 of sources,

computes the distance 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) =𝑚𝑖𝑛𝑠∈𝑆𝑑𝑖𝑠𝑡 (𝑠, 𝑣) for each node

𝑣 , in �̃� (𝑛) time and using �̃� (1) congestion per edge.

2.1 Premilinaries
We first review two subroutines from prior work: (1) a rounding

approach that provides (1 + 𝜀) approximation of shortest paths,

which we review in Section 2.1.1, and (2) a distributed algorithm

for computing a maximal spanning forest, which we review in

Section 2.1.2.

2.1.1 CSSP Approximation. Let us denote the set of sources by 𝑆 .
Also, for now, we assume that the weights of all edges are positive

integers in [1, poly(𝑛)]. We will come back to the case of edges

with weight 0 later in Theorem 2.7.

4
Some exact SSSP approaches use scaling to work internally with approximations

and boost them to exact distances—see, e.g., [13, 19, 23, 38]. Unfortunately, all of

these end up having to compute distances in certain directed graphs (more precisely,

graphs with asymmetric weights along the two edge directions). This creates a major

obstacle for extensions to energy-efficient computations, which rely on properties of

neighborhood covers in undirected graphs.
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If the maximum weighted distance from the sources is 𝑂 (𝑛), we
can run BFS from 𝑆 , waiting for 𝑡 rounds for the edge with weight

𝑡 . We cannot afford to do this if the weighted diameter is large. But

we can use a rounding trick, first used in the distributed setting by

Nanongkai [34], to approximate the distances from all nodes to 𝑆 .

The following statement abstracts the resulting algorithm. A proof

is provided in the full version of this paper, for self-containedness.

Lemma 2.1. Consider a graph 𝐺 = (𝑉 , 𝐸) and a set of sources 𝑆 .
There is an algorithm that, given 𝜖 ∈ (0, 1) and an integer𝑊 > 0,
runs in time 𝑂 ( 𝑛𝜖 ) and congestion 𝑂 (1), and for each node 𝑣 outputs
𝑑𝑖𝑠𝑡 ′ (𝑆, 𝑣) with the following guarantees:

• If 𝑑𝑖𝑠𝑡 ′ (𝑆, 𝑣) ≠ ∞, then 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) ≤ 𝑑𝑖𝑠𝑡 ′ (𝑆, 𝑣) < 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) +
𝜖𝑊

• If 𝑑𝑖𝑠𝑡 ′ (𝑆, 𝑣) = ∞, then 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) > 2𝑊

2.1.2 Maximal Spanning Forest. In our algorithm, we make use

of a classic and well-known distributed algorithm for computing

a maximal spanning forest [8, 20], which runs in near-linear time

and with polylogarithmic congestion. The following statement

summarizes this result:

Theorem 2.2. [Boruvka’s Algorithm[8, 20]] There is a determinis-
tic distributed algorithm that, on any undirected graph with 𝑛 nodes,
runs in time 𝑂 (𝑛 log𝑛) and congestion poly(log𝑛) and computes a
maximal spanning forest of the graph.

2.2 An Algorithm Idea for CSSP, Assuming an
Exact Cutter

Once again, we are given a weighted graph 𝐺 and a set of sources

𝑆 . Imagine we had a way to solve the following problem: given D,

determine all nodes 𝑣 ∈ 𝑉 with 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) ≤ D. By this, we mean

that after running this algorithm, every node should know whether

it is at a distance at most D from the sources or not. Let us refer to

such an algorithm as to exact cutter.
If we had an exact cutter, we could approach CSSP as follows:

Let D = 𝑛 · max𝑤𝑒 ≤ poly(𝑛). This is an upper bound on the

maximum distance from 𝑆 to other nodes. We could solve the CSSP

problem recursively, as follows. Let D1 = D
2
.

(1) Use the exact cutter to determine all nodes at the distance at

most D1 from 𝑆 . Let us denote this set of nodes as 𝑉1.

(2) Solve the CSSP problem for 𝑉1, recursively, by removing all

nodes in 𝑉 \𝑉1.

(3) For every edge (𝑣,𝑢) with 𝑣 ∈ 𝑉1, 𝑢 ∈ 𝑉 \ 𝑉1, create an

imaginary node 𝑥𝑣𝑢 somewhere on the edge (𝑢, 𝑣), splitting
it into two edges (𝑣, 𝑥𝑣𝑢 ) and (𝑥𝑣𝑢 , 𝑢), so that𝑤 ((𝑣, 𝑥𝑣𝑢 )) =
D1 − 𝑑𝑖𝑠𝑡 (𝑆, 𝑣). Let us denote this set of imaginary nodes as

𝑋 . These nodes from 𝑋 form a “cut” at distance D1 from 𝑆 .

(4) Finally, solve the problem recursively for the set 𝑋 ∪ (𝑉 \
𝑉1), with nodes 𝑋 as the new sources (and where we have

removed nodes of 𝑉1 from the problem). Notice that we do

not really need the imaginary nodes to be physically present:

For every imaginary node 𝑥𝑣𝑢 , node𝑢 ∈ (𝑉 \𝑉1) can simulate

the messages of 𝑥𝑣𝑢 (this node can send messages only to 𝑢).

The positive of this approach is that we trivially break the problem

into two similar problems, solved sequentially, each with a 2-factor

smaller maximum distance, and each edge is active in only one

of the two branches of the recursion. The only real cost of the

recursion is the invocation of the cutter. One can see that each edge

would be involved in 𝑂 (log𝑛) instances of the exact cutter.
Of course, unfortunately, we do not have an exact cutter. But, this

idea helps us to develop the actual algorithm. In the next subsection,

we discuss our approach of using an approximate cutter, and how

to manage the complexities arising from the inexactness of this

cutter.

2.3 The Algorithm for CSSP, using an
Approximate Cutter

We do not have an exact cutter and we do not know how to de-

termine exactly the set 𝑉1 of nodes of distance at most D from

𝑆 . But, we can use the algorithm from Lemma 2.1 to approximate

the distances, and that gives us an overestimate of 𝑉1 by including

all nodes whose distance can be at most D given the approximate

distance that we have. Notice that this set might be much larger

than𝑉1. Furthermore, if we use this approximation, we lose the nice

property that each node is involved in only one half of the recursion,

because some nodes included in this overestimated𝑉1 will turn out

to have a distance greater than D and thus will have to participate

in the second half of the distance computation recursions as well.

But we argue next that we can remedy these issues.

Definition 2.3. For any nonnegative integer 𝜏 , we define the 𝝉-
thresholded CSSP problem as follows: Let 𝑆 be the set of source nodes.
For each node 𝑣 , if 𝑑𝑖𝑠𝑡 (𝑣, 𝑆) ≤ 𝜏 , then 𝑣 should output 𝑑𝑖𝑠𝑡 (𝑣, 𝑆). If
𝑑𝑖𝑠𝑡 (𝑣, 𝑆) > 𝜏 , then 𝑣 should output a special symbol ∞.

To compute CSSP we simply run a D-thresholded CSSP for

D = 𝑂 (𝑛 · 𝑚𝑎𝑥𝑊 ). Next, we describe how we perform the D-

thesholded CSSP Algorithm recursively, using a structure similar

to the one described in Section 2.2, but via an approximate cutter.

The D-thesholded CSSP Algorithm. The algorithm is recursive:

(1) If D = 1, we are in the base case. In this case, the only nodes

with 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) ≤ D are the sources themselves and nodes

that are connected to some source by an edge of weight 1.

All nodes can detect this in one round. If D > 1, proceed to

the next steps.

(2) Compute all connected components of 𝐺 , and a spanning

tree for each of them, with an algorithm from Theorem 2.2.

We solve this problem for each component independently.

(3) Choose 𝜖 = 0.5, and compute an approximation 𝑑𝑖𝑠𝑡 ′ (𝑆, 𝑣)
of distances from 𝑆 to each node 𝑣 , using the algorithm from

Lemma 2.1. Let𝑉1 denote the set of nodes 𝑣 with𝑑𝑖𝑠𝑡
′ (𝑆, 𝑣) <

D + 𝜖D. For any 𝑣 ∈ 𝑉1, we have 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) < D + 𝜖D.

Furthermore, for any 𝑣 ∈ 𝑉 with 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) ≤ D, we have

𝑑𝑖𝑠𝑡 ′ (𝑆, 𝑣) < D + 𝜖D, so 𝑣 ∈ 𝑉1.

(4) Let D1 = D
2
. Perform a D1-thresholded CSSP for nodes 𝑉1,

with set 𝑆 of sources. Nodes from𝑉 \𝑉1 do not participate in

this recursion call. In every connected component 𝐶 , collect

with convergecast via the spanning tree of 𝐶 , whether all

nodes of𝐶 which are in𝑉1 are donewith thisD1-thresholded

CSSP (in particular, if𝑉1 is empty, no recursion is called, and

already all nodes of𝐶∩𝑉1 are done with theD1-thresholded

CSSP). Here by convergecast we mean that every node will
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tell its parent when it and its entire subtree is done with D1-

thresholded CSSP. When the root of the spanning tree of 𝐶

detects that all nodes of𝐶 are done with thisD1-thresholded

CSSP step, it chooses a start time for the final step of the

algorithm. It sets it to be inΘ( |𝐶 |) rounds into the future and
then spreads this starting round number via the spanning

tree of 𝐶 .

(5) Let𝑉2 denote the set of all nodes 𝑣 with 𝑑 (𝑆, 𝑣) ≤ D1. Notice

that after previous steps, all nodes know whether they are

in 𝑉2 or not. For every edge (𝑣,𝑢) with 𝑣 ∈ 𝑉2, 𝑢 ∈ 𝑉1 \
𝑉2, create an imaginary node 𝑥𝑣𝑢 somewhere on the edge

(𝑢, 𝑣), splitting it into two edges (𝑣, 𝑥𝑣𝑢 ) and (𝑥𝑣𝑢 , 𝑢), so
that𝑤 ((𝑣, 𝑥𝑣𝑢 )) = D1 − 𝑑𝑖𝑠𝑡 (𝑆, 𝑣). Let us denote this set of
imaginary nodes as 𝑋 . These nodes from 𝑋 form a “cut” at

distance D1 from 𝑆 .

(6) Finally, perform D1-thresholded CSSP for nodes from 𝑋 ∪
(𝑉1 \𝑉2) with set 𝑋 of sources. Nodes from 𝑉2 do not par-

ticipate in this recursion call. For every imaginary node 𝑥𝑣𝑢 ,

node 𝑢 ∈ 𝑉1 \𝑉2 can simulate the messages of 𝑥𝑣𝑢 (it only

ever sends messages to 𝑢).

For any node 𝑣 ∈ 𝑉 \𝑉2, we know that𝑑𝑖𝑠𝑡 (𝑆, 𝑣) = 𝑑𝑖𝑠𝑡 (𝑋, 𝑣)+
𝐷1. Since D = 2D1, if 𝑑𝑖𝑠𝑡 (𝑋, 𝑣) ≤ D1, we have 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) =
D1 + 𝑑𝑖𝑠𝑡 (𝑋, 𝑣) ≤ D, and if 𝑑𝑖𝑠𝑡 (𝑋, 𝑣) > D1, we have

𝑑𝑖𝑠𝑡 (𝑆, 𝑣) = D1 + 𝑑𝑖𝑠𝑡 (𝑋, 𝑣) > D. Hence, the algorithm

computes the correct output.

2.4 Analysis of the Algorithm
Let us denote the running time of D-thresholded BFS for a set of

nodes 𝑉 and a set of sources 𝑆 by 𝑇 (𝑉 , 𝑆,D). Then, the recurrence
from Section 2.3, keeping all the notations from that section, would

have the following form:

𝑇 (𝑉 , 𝑆,D) = 𝑂 ( |𝑉 | log |𝑉 |)︸           ︷︷           ︸
Connected components

+ 𝑂 ( |𝑉 |)︸ ︷︷ ︸
Approximation

+𝑇 (𝑉1, 𝑆,D1)︸         ︷︷         ︸
Call on𝑉1

+ 𝑂 ( |𝑉 |)︸ ︷︷ ︸
Convergecast

+𝑇 (𝑋 ∪ (𝑉1 \𝑉2), 𝑋,D1)︸                         ︷︷                         ︸
Call on𝑉1 \𝑉2

Remember that all nodes in 𝑋 are simulated by the nodes in

𝑉1 \𝑉2, so let us replace 𝑋 ∪ (𝑉1 \𝑉2) with 𝑉1 \𝑉2 in the last term,

and simplify:

𝑇 (𝑉 , 𝑆,D) = 𝑂 ( |𝑉 | log |𝑉 |) +𝑇 (𝑉1, 𝑆,D1) +𝑇 (𝑉1 \𝑉2, 𝑋,D1)

Lemma 2.4. Every 𝑣 ∈ 𝑉 appears in𝑉 ′ for only𝑂 (logD) subprob-
lems 𝑇 (𝑉 ′, 𝑆′,D′).

Proof. Let us look more carefully at our recursion. Subproblem

𝑇 (𝑉 ′, 𝑆′,D′) actually denotes doing BFS from some distance 𝑘D′

from the original sources 𝑆 up to distance D′
, which recurses to

doing BFS from distance 𝑘D′
up to distance

D′
2
, and then from

distance 𝑘D′ + D′
2

up to distance
D′
2

again. Also, note that at

every level except the very highest, all nodes in 𝑉 ′
have a distance

from 𝑆 in range [𝑘D′, 𝑘D′ + 2D′ + 𝜖 · 2D′) = [𝑘D′, 𝑘D′ + 3D′):

when we recurse to 𝑇 (𝑉1, 𝑆,D1), we only have nodes at distance

≤ D + 𝜖D = 2D′ + 𝜖 · 2D′
from the sources.

It follows that every node can appear in at most 3 = 𝑂 (1) re-
cursive subproblems per every level D′

. So, every node appears in

𝑂 (logD) subproblems in total. □

Corollary 2.5. The total sum of |𝑉 ′ | over all recursive subproblems
𝑇 (𝑉 ′, 𝑆′,D′) is 𝑂 ( |𝑉 | logD).

Proof. Since by Lemma 2.4 each node appears in 𝑂 (log𝐷) sub-
problems, the total sum of |𝑉 ′ | over all subproblems is𝑂 ( |𝑉 | log𝐷).

□

Theorem 2.6. Consider a graph 𝐺 = (𝑉 , 𝐸) and a set of sources
𝑆 . If the weights of all edges in 𝐺 are positive integers bounded by
𝑂 (poly(𝑛)), there exists an algorithm that computes all distances
𝑑𝑖𝑠𝑡 (𝑆, 𝑣), in time 𝑂 (𝑛 log

2 𝑛) and congestion 𝑂 (log
2 𝑛).

Proof. We run𝑇 (𝑉 , 𝑆,D) with D = 2
𝐿
, where 𝐿 is the smallest

integer such that 2
𝐿 ≥ 𝑛 ·𝑚𝑎𝑥𝑊 is an upper bound on the dis-

tances from 𝑆 to other nodes. Since all weights are 𝑂 (poly(𝑛)),
we have 𝑂 (logD) = 𝑂 (log𝑛). Next we analyze the recursion:

by Corollary 2.5, the sum of sizes of |𝑉 ′ | over all subproblems is

𝑂 ( |𝑉 | logD). So, the sum of𝑂 ( |𝑉 ′ | log |𝑉 ′ |) is𝑂 ( |𝑉 | logD log |𝑉 |).
Therefore, 𝑇 (𝑉 , 𝑆,D) = 𝑂 ( |𝑉 | logD log |𝑉 |). Now we analyze the

congestion. Each edge is involved in𝑂 (logD) subproblems, and in

𝑂 (logD) computations of connected components and their trees.

From Lemma 2.1 and Theorem 2.2, it follows that the congestion is

𝑂 (log𝑛 logD) = 𝑂 (log
2 𝑛). □

Extension to the case of edges with zero weight. The following
statement extends the results to the case with 0 weight edges. Since

this is a standard idea, we defer the proof to the full version.

Theorem 2.7. Consider a graph 𝐺 = (𝑉 , 𝐸) and a set of sources
𝑆 . If the weights of all edges in 𝐺 are nonnegative integers bounded
by 𝑂 (poly(𝑛)), and can be zero, there exists an algorithm that
computes all distances 𝑑𝑖𝑠𝑡 (𝑆, 𝑣), in time 𝑂 (𝑛 log

2 𝑛) and congestion
𝑂 (log

2 𝑛).

3 CLOSEST-SOURCE SHORTEST PATHS IN
�̃� (𝑛) TIME AND �̃� (1) ENERGY

In this section, we discuss an algorithm for the closest-source short-

est paths problem. Given a set 𝑆 of multiple sources, the algorithm

computes the distance 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) =𝑚𝑖𝑛𝑠∈𝑆𝑑𝑖𝑠𝑡 (𝑠, 𝑣) for each node

𝑣 . It uses �̃� (𝑛) time, and �̃� (1) energy per node. In the first six

subsections of this section, we consider only unweighted graphs

(so that all edges have weight 1). In Section 3.3, we develop a way

to perform a D-thresholded BFS, given a layered sparse D-cover

(defined in Section 3.2.2). In Section 3.5, we explain how to perform

a multi-source BFS even without being given the sparse covers.

Finally, in Section 3.7 we extend this algorithm to CSSP in weighted

graphs.

3.1 Preliminaries
3.1.1 Collecting Information in a Tree in the ENERGYModel. As-
sume that there is a rooted tree of depth 𝑑 , where all nodes know

their children, parents, and depth. Let us denote the depth of a node

𝑢 by 𝑑𝑒𝑝𝑡ℎ(𝑢). Let us say that these nodes want to collect some
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information via convergecast, and then broadcast it down to all the

nodes. How would they do this with a small energy cost?

We will utilize the assumption that all nodes know their depth in

the tree. Let us define a period 𝑝 of the tree, and two procedures:

Convergecast.We can propagate any information up as follows:

node 𝑣 will wake up at rounds 𝑝 − 𝑑𝑒𝑝𝑡ℎ(𝑣) − 1, 𝑝 − 𝑑𝑒𝑝𝑡ℎ(𝑣), 2𝑝 −
𝑑𝑒𝑝𝑡ℎ(𝑣) − 1, 2𝑝 − 𝑑𝑒𝑝𝑡ℎ(𝑣), . . ., and, if it has any information to

propagate, it will send it to the parent.

Broadcast. We can propagate any information down as fol-

lows: node 𝑣 will wake up at rounds 𝑑𝑒𝑝𝑡ℎ(𝑣), 𝑑𝑒𝑝𝑡ℎ(𝑣) + 1, 𝑝 +
𝑑𝑒𝑝𝑡ℎ(𝑣), 𝑝 +𝑑𝑒𝑝𝑡ℎ(𝑣) + 1, 2𝑝 +𝑑𝑒𝑝𝑡ℎ(𝑣), 2𝑝 +𝑑𝑒𝑝𝑡ℎ(𝑣), . . ., and, if
it has any information to propagate, it will send it to all its children.

Let us call a node active for a cluster 𝐶 , if it is involved in both

convergecast and broadcast for this cluster. Then, by the time 𝑡 any

node 𝑣 received any signal, and all the nodes of 𝐶 are active, then

all nodes of 𝐶 will receive this signal by the round 𝑡 + 𝑂 (𝑑 + 𝑝).
Additionally, every node wakes up only in Θ( 1

𝑝 ) fraction of rounds.

3.1.2 Rooted Spanning Tree with Low Energy. An adaptation of

the classic Boruvka approach to the minimum spanning tree [8,

20] gives an �̃� (𝑛)-time and low-energy distributed algorithm for

computing a maximal forest [2].

Theorem 3.1. [Boruvka[8], adapted by Augustine et al. [2]] There
is a deterministic distributed algorithm that, given any 𝑛-node graph,
computes a maximal forest of it using �̃� (𝑛) time and poly(log𝑛)
energy. In particular, 𝑂 (𝑛 log

2 𝑛) time and 𝑂 (log
2 𝑛) energy is suffi-

cient.

3.1.3 Running Several Subroutines Simultaneously. In our algo-

rithms, we often have several algorithmic subroutines. A ques-

tion arises when these subroutines want to use the same edge. We

use the following approach: if an edge is going to be used by at

most 𝑘 subroutines at every single round, we divide all rounds into

megarounds, each consisting of 𝑘 rounds. Then, if a node has to be

awake in any of these rounds, it will be awake in all of them. Then,

in this single megaround, we will be able to deliver all messages

that subroutines wanted to deliver in the corresponding round.

3.2 Sparse Covers
3.2.1 Definition.

Definition 3.2. For any positive integer 𝑑 , we define a sparse 𝒅-
cover with stretch 𝑠 of an 𝑛-node graph to be a set of clusters, such
that the following conditions hold:

• The diameter of each cluster is at most 𝑑 · 𝑠 .
• Each node is in 𝑂 (log𝑛) clusters.
• For each node 𝑣 , there is a cluster that contains all nodes 𝑢 for
which 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≤ 𝑑 .

We assume that each node knows which clusters it is in and for each
cluster, we have a tree of depth 𝑑 · 𝑠 that spans all cluster nodes, where
each node knows its parent, children, and depth in the tree.

There exist sparse covers with stretch 𝑠 = 𝑂 (log𝑛) [4, 32] but
the constructions are not deterministic or efficient. We work with

deterministic distributed constructions of sparse cover that are time

efficient and have slightly higher parameters [36], as abstracted

below:

• The cluster stretch is𝑂 (log
3 𝑛). More concretely, each cluster

has a 𝑂 (𝑑 log
3 𝑛)-depth cluster tree, which spans all cluster

nodes.

• Each edge is used in only 𝑂 (log
4 𝑛) cluster trees.

3.2.2 Forest of Sparse Covers. Observe the following:

Observation 3.3. Let C1 be a sparse 𝑑-cover, and C2 be a sparse 2𝑑𝑠-
cover, where 𝑠 is larger than the stretch of C1 (so that 𝑠 = Θ(log

3 𝑛)).
Then, every cluster of C1 is fully contained in some cluster of C2,
together with its 𝑑𝑠-neighbourhood.

Proof. Consider any cluster 𝐶 of C1, and any node 𝑣 of 𝐶 .

All its 2𝑑𝑠-neighbourhood is contained in some cluster of C2. As

𝑑𝑖𝑎𝑚(𝐶) ≤ 𝑑𝑠 , 𝐶 and its 𝑑𝑠 neighborhood are contained in this

cluster. □

This allows us to build a tree-like structure on clusters of sparse

covers of different layers. Choose 𝐵 = Θ(log
3 𝑛) so that

𝐵
2
is an

upper bound on the stretch of sparse covers.

Definition 3.4. For any D, we define a layered sparse D-cover to
be a collection of sparse 𝐵 𝑗 -covers for all 𝑗 ∈ {0, 1, . . . , ⌈log𝐵 2D⌉},
with the following constraint:

• For any 𝑗 < ⌈log𝐵 2D⌉, every cluster 𝐶 of sparse 𝐵 𝑗 -cover is
assigned a cluster of sparse 𝐵 𝑗+1-cover that completely contains
it and its 𝐵 𝑗+1

2
-neighborhood (nodes at distance at most 𝐵 𝑗+1

2

from 𝐶) (every node of 𝐶 has to know the identifier of this
cluster). Such cluster is called a parent cluster of 𝐶 , and is
denoted by 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶).

3.3 D-Thresholded BFS given a Layered Sparse
D-Cover

Suppose we are already given a layered sparseD-cover of the graph.

We will see how to construct this in Section 3.5. Let 𝐿 = ⌈log𝐵 D⌉,
and 𝑆 be the set of sources of BFS.

Idea of the algorithm. We will have two processes in parallel:

BFS, and collecting information in the cluster trees of sparse covers,

as described in Section 3.1.1. For a node 𝑣 , we want to ensure that

it is active when BFS actually reaches it. For that, we want the

frequency with which 𝑣 is awake to increase as BFS comes closer

and closer to 𝑣 . We will achieve this by having smaller clusters

operate at higher frequencies: clusters of sparse 𝐵𝑖 -covers will

operate with period 𝐵𝑖 , and will be activated only when BFS gets

“pretty close" to them. More precisely, a cluster 𝐶 will get activated

when 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶) detects that the BFS got pretty close, and tells 𝐶

to activate. Now, let us formalize this idea by providing the exact

details of the algorithm.

First, we will introduce the notion of relevance.

Definition 3.5. A cluster of the 𝐵𝐿-cover is called relevant if it
contains nodes from 𝑆 . Otherwise, let us call it irrelevant. Let us
recursively extend the notion of relevancy as follows: a cluster 𝐶 of
𝐵 𝑗 -cover with 𝑗 < 𝐿 is relevant if and only if 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶) is relevant.

Lemma 3.6. For any 𝑗 < 𝐿, every cluster of the 𝐵 𝑗 -cover which
contains a node 𝑣 with 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) ≤ D is relevant.
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Proof. Consider the 𝐿−1− 𝑗-th ancestor of such a cluster, denote

it by𝐶 .𝐶 contains some node 𝑣 with 𝑑𝑖𝑠𝑡 (𝑆, 𝑣) ≤ D. As 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶)
contains

𝐵𝐿

2
-neighborhood of 𝐶 , and 𝐵𝐿

2
≥ D, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶) contains

at least one node from 𝑆 , and therefore is relevant. □

The idea is that D-thresholded BFS will never get to irrelevant

clusters, so irrelevant clusters should not be involved in this ac-

tivating/deactivating process. Now, we describe how clusters are

activated, deactivated, initialized, and how do they learn whether

they are relevant.

Activating clusters.When some nodes of cluster 𝐶 of sparse

𝐵 𝑗
-cover are active, they will collect the following information with

the convergecast and broadcast:

"Are any of nodes of 𝐶 reached by BFS?"
If all nodes of 𝐶 are active, then in at most 𝑂 (𝐵 𝑗

log
3 𝑛) rounds

after some node of 𝐶 becomes reached by BFS, all its nodes will

learn that the cluster has been reached by BFS. When a node of 𝐶

learns this, it activates itself in all children clusters of 𝐶 in which it

is present.

Deactivating clusters.A cluster will deactivate after it has been

reached by BFS and all its children clusters have been activated

(which is learned by the same convergecast and broadcast process).

Additionally, for clusters of 𝐵0
-cover we require that all nodes of a

cluster are reached by BFS before it deactivates.

Initialization.We start by making one cycle of convergecast-

broadcast for every single cluster, which takes𝑂 (𝐵𝐿 log
3 𝑛) rounds.

By the end of that cycle, for every cluster𝐶 , all its nodes will know

whether 𝐶 contains any node from 𝑆 . Clusters of 𝐵𝐿-cover will

learn whether they are relevant. Only relevant clusters of 𝐵𝐿-cover

will be active and tell their children to activate; irrelevant clusters

are never involved. Nodes will also learn, for each cluster 𝐶 in

which they are contained, whether they should be active for 𝐶 (by

checking whether 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶) contains any nodes from 𝑆).

After this initialization period of 𝑂 (𝐵𝐿 log
3 𝑛) rounds, all nodes

(that have to) start doing convergecast-broadcast, and, simultane-

ously, BFS starts. One iteration of BFS will happen every Θ(log
3 𝑛)

stages (with constant determined from Lemma 3.7).

Correctness argument.

Lemma 3.7. At any point in time after the initialization period the
following statement holds:

• For any 0 ≤ 𝑗 ≤ 𝐿 and any relevant cluster 𝐶 of the sparse
𝐵 𝑗 -cover, all its nodes are active for 𝐶 before BFS reaches any
of its nodes.

Proof. We can prove this by induction by 𝑗 , from larger 𝑗 to

smaller. For clusters, 𝐶 , such that 𝐶 or 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶) contain nodes

from 𝑆 , this is ensured in the initialization stage. As all clusters

of sparse 𝐵𝐿-covers contain simply all nodes the statement is true

for 𝑗 = 𝐿. Suppose that it is true for 𝑗 + 1, Let us prove it for 𝑗 .

Consider any cluster 𝐶 of sparse 𝐵 𝑗
-cover, such that 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶)

does not contain vertices from 𝑆 . Consider the moment when BFS

first reaches 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶).
On the one hand, after at most𝑂 (𝐵 𝑗+1

log
3 𝑛) rounds, all nodes of

𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶) will learn that 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶) has been reached, so all nodes

of𝐶 will become active for𝐶 . On the other hand, it will take at least

𝐵 𝑗+1

2
steps for BFS to reach 𝐶 after that, with one step happening

every Θ(log
3 𝑛) rounds, so it won’t reach 𝐶 before all its nodes

become active for 𝐶 (where we choose an appropriate constant for

this Θ(log
3 𝑛), so that this BFS is indeed slow enough). □

Theorem 3.8. Given a layered sparse D-cover, there exists an
algorithm that correctly computes BFS in time 𝑂 (D log

11 𝑛) and
energy cost 𝑂 (log

18 𝑛).

Proof. The case 𝑗 = 0 of Lemma 3.7 implies that every node will

be awake when it’s reached by BFS, so the BFS will work properly.

We next bound the time and energy complexities.

Let us start with time. After𝑂 (𝐵𝐿 log
3 𝑛) = 𝑂 (D log

6 𝑛) rounds
of initialization, one iteration of BFS happens every Θ(log

3 𝑛)
rounds, and there are 𝑂 (D) of them, so there are 𝑂 (D log

6 𝑛)
rounds in total. But here we might have to deliver several messages

through an edge at a time, hence the scheduling question arises. Re-

member that every edge is used in only 𝑂 (log
4 𝑛) cluster trees per

sparse cover, so every edge is used in only𝑂 (log
5 𝑛) cluster trees in

total. So, in terminology from Section 3.1.3, we need megarounds,

each of which contains𝑂 (log
5 𝑛) rounds. Hence, the resulting time

complexity becomes 𝑂 (D log
11 𝑛).

Now, let’s consider energy cost. Consider any cluster 𝐶 of a

sparse𝐵 𝑗
-cover. It becomes active only after some node in 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶)

is reached. As diameter of 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶) is at most 𝑂 (𝐵 𝑗+1
log

3 𝑛),
in at most 𝑂 (𝐵 𝑗+1 · log

3 𝑛) BFS iterations after that, all nodes of

𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶), and, therefore, of𝐶 too, will be done with BFS, so𝐶 will

deactivate. As there is one iteration of BFS per Θ(log
3 𝑛) rounds, a

node can be active for 𝐶 for at most 𝑂 (𝐵 𝑗+1
log

6 𝑛) rounds. As
it is awake with period 𝐵 𝑗

, it will be awake for 𝐶 for at most

𝑂 (𝐵 log
6 𝑛) = 𝑂 (log

9 𝑛) rounds.
Note, however, that a node is in 𝑂 (log

4 𝑛) clusters in total, and

that it has to remain awake for the entirety of every singlemegaround,

which takes 𝑂 (log
5 𝑛) regular rounds. So, every node is awake for

at most 𝑂 (log
18 𝑛) rounds. □

3.4 Synchronous Deterministic Construction of
𝑑-Cover

So far, we have assumed that we are given sparse covers. In this

subsection, we review the synchronous construction of Rozhon and

Ghaffari [36]. In the next subsection, we explain how to adapt this

construction to the ENERGY model.

We start by introducing a deterministic algorithm for construct-

ing the 𝑑-cover in 𝑂 (𝑑 · polylog(𝑛)) rounds in a synchronous envi-

ronment. For that, we will a network decomposition.

Definition 3.9. (𝑘-separated Weak Diameter Network Decomposi-
tion) Given a graph𝐺 = (𝑉 , 𝐸), we define a (C,D) 𝑘-separated weak
diameter network decomposition to be a partition of 𝐺 into vertex-
disjoint graphs 𝐺1, 𝐺2, . . . , 𝐺C such that for each 𝑖 ∈ {1, 2, . . . , C},
we have the following property: the graph 𝐺𝑖 is made of a number of
vertex-disjoint clusters 𝑋1, 𝑋2, . . . , 𝑋ℓ , so that:

• For any 𝑋𝑎 and any two vertices 𝑣,𝑢 ∈ 𝑋𝑎 , 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≤ 𝐷 in
graph 𝐺 .

• For any two 𝑋𝑎, 𝑋𝑏 with 𝑎 ≠ 𝑏 and any 𝑢 ∈ 𝑋𝑎 , 𝑣 ∈ 𝑋𝑏 holds
𝑑𝑖𝑠𝑡 (𝑢, 𝑣) > 𝑘 .
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3.4.1 Construction of 𝑘-Separated Network Decomposition in the
CONGEST Model. We first recall the notion of Steiner trees: A

Steiner tree of a cluster is a tree with nodes labeled as terminal
and nonterminal; the aim is to connect all terminals, possibly using

some nonterminals.

Theorem 3.10. [Rozhon and Ghaffari[36]] There is an algorithm
that, given a value 𝑘 known to all nodes, in 𝑂 (𝑘 log

10 𝑛) communi-
cation rounds outputs a 𝑘-separated weak-diameter network decom-
position of𝐺 with 𝑂 (log𝑛) color classes, each one with 𝑂 (𝑘 · log

3 𝑛)
weak-diameter in 𝐺 .

Moreover, for each color and each cluster C of vertices with this
color, we have a Steiner tree 𝑇C with radius 𝑂 (𝑘 · log

3 𝑛) in 𝐺 , for
which the set of terminal nodes is equal to C. Furthermore, each edge
in 𝐺 is in 𝑂 (log

4 𝑛) of these Steiner trees.

For accessibility, we provide a (simplified) description of the

algorithm of [36] in the full version of this paper. Our low-energy

construction will refer to the language used in this description. For

proof of the correctness of their algorithm, we refer to [36].

3.4.2 Construction of 𝑑-Cover in the CONGEST Model.

Theorem 3.11. There is an algorithm that, given a value 𝑑 that is
known to all nodes, in 𝑂 (𝑑 log

10 𝑛) communication rounds outputs
a sparse 𝑑-cover of this graph, together with the Steiner trees of its
clusters, such that each edge appears in only 𝑂 (log

4 𝑛) cluster trees.

Proof. We start by constructing a 2𝑑+1 separated weak network

decomposition in 𝑂 (𝑑 log
10 𝑛) rounds, according to Theorem 3.10.

Then, for each color separately, we expand each of its clusters to its

𝑑-neighborhood. As different clusters of the same color are at least

2𝑑 + 1 apart, the clusters remain disjoint, so each node will be in

𝑂 (log𝑛) clusters (at most one per color). Additionally, each edge

will join at most one cluster tree, so each edge still appears in only

𝑂 (log
4 𝑛) cluster trees. □

3.5 Construction of Sparse 𝐵 𝑗 -Cover, given a
Layered Sparse 𝐵 𝑗−1-Cover in the ENERGY
Model

The algorithm described in Section 3.4 for constructing sparse 𝑑-

covers consists of simple multi-sources BFSs up to distance𝑂 (𝑑). It
turns out that, given a layered sparse 𝐵 𝑗−1

-cover, we can construct

a sparse 𝐵 𝑗
-cover with �̃� (1) energy cost in the ENERGY model, by

making a small adjustment to our approach from Section 3.3.

Theorem 3.12. Given a layered sparse 𝐵 𝑗−1-cover, there exists an
algorithm that works in time𝑂 (𝐵 𝑗

log
15 𝑛) and energy cost𝑂 (log

25 𝑛),
and computes

• a sparse 𝐵 𝑗 -cover, and

• for every cluster 𝐶 of sparse 𝐵 𝑗−1-cover, assigns it a cluster
of a newly found sparse 𝐵 𝑗 -cover that completely contains it
and its 𝐵 𝑗

2
-neighborhood (so that every node of 𝐶 knows the

identifier of this parent cluster)

Proof. We start by providing an algorithm to build (2𝐵 𝑗 + 1)-
separated weak decomposition from the Theorem 3.10. As a re-

minder, a brief structure of an algorithm is provided below:

• Algorithm consists of constructing 𝑂 (log𝑛) colors, one at a
time

• Constructing one color involve𝑂 (log𝑛) phases, correspond-
ing to the number of bits in the identifiers; in each phase we

kill some nodes and change labels of some other nodes

• One phase consists of𝑂 (log
2 𝑛) steps, each consisting of two

substeps:

– Performing a BFS up to depth (2𝐵 𝑗 + 1) = 𝑂 (𝐵 𝑗 ) from all

the blue nodes

– Collecting the number of proposing nodes in the roots

of the Steiner trees, and making corresponding decisions

(accept/reject)

From Theorem 3.8 we know how to perform 𝐵 𝑗−1
-thresholded

BFS. So, we can implement 𝑂 (𝐵 𝑗 )-thresholded BFS as 𝑂 (log
3 𝑛)

rounds of 𝐵 𝑗−1
-thresholded BFS, which takes time𝑂 (𝐵 𝑗−1

log
11 𝑛 ·

log
3 𝑛) = 𝑂 (𝐵 𝑗

log
11 𝑛) and has energy cost 𝑂 (log

21 𝑛). As we

perform 𝑂 (𝐵 𝑗 )-thresholded BFS 𝑂 (log
4 𝑛) times, the total time

spent here is 𝑂 (𝐵 𝑗
log

15 𝑛), and the energy cost is 𝑂 (log
25 𝑛).

Collecting the number of proposing nodes in Steiner tree roots,

making decisions, and propagating them is easier with our already

developed convergecast and broadcast approaches. For each such

convergecast/broadcast, we need 𝑂 (1) energy cost per Steiner tree,

with 𝑂 (𝐵 𝑗−1
log

3 𝑛) rounds. But, since each edge is in 𝑂 (log
4 𝑛)

Steiner trees of clusters of 𝐵 𝑗
-cover, we have to divide rounds of

this step into mega-rounds of length𝑂 (log
4 𝑛), leading to𝑂 (log

4 𝑛 ·
log

4 𝑛) = 𝑂 (log
8 𝑛) energy cost per all Steiner trees, and time com-

plexity𝑂 (𝐵 𝑗−1
log

3 𝑛 · log
4 𝑛) = 𝑂 (𝐵 𝑗

log
4 𝑛). As we perform such

collecting 𝑂 (log
4 𝑛) times, the time spent is 𝑂 (𝐵 𝑗

log
7 𝑛), and the

energy cost is 𝑂 (log
12 𝑛). Thus, overall, the total time complexity

is 𝑂 (𝐵 𝑗
log

15 𝑛), and the energy cost is 𝑂 (log
25 𝑛).

After constructing the (2𝐵 𝑗 + 1)-separated weak decomposition,

we apply the algorithm from Theorem 3.11: we do 𝑂 (log𝑛) BFSs
up to depth 𝐵 𝑗

, one from nodes of every color; these BFSs are domi-

nated by the time complexities of constructing this decomposition.

Finally, we need to mention how to assign a parent to every

cluster of the sparse 𝐵 𝑗−1
-cover. For every node 𝑣 , we make it

remember the cluster of its color, obtained after expansion by the

BFS up to distance 𝐵 𝑗
. Now, for every cluster𝐶 of sparse 𝐵 𝑗−1

-cover,

we assign to it a cluster remembered by the root of its Steiner tree.

This cluster contains 𝐵 𝑗
-neighborhood of the root, so it satisfies

the required conditions (refer to Observation 3.3 for details). Then,

we do one round of broadcast from the roots of Steiner trees to the

nodes of the trees. □

3.6 The Complete BFS Algorithm in �̃� (𝐷) Time
and �̃� (1) Energy

Theorem 3.13. Let 𝐷 denote the diameter of the entire graph.
There exists an algorithm that correctly computes BFS from scratch,
works in time 𝑂 (𝐷 log

18 𝑛), and has energy cost 𝑂 (log
26 𝑛).

Proof. We start by computing sparse 1-cover and sparse 𝐵-

cover, by simply having all nodes be awake for the entire duration.

By Theorem 3.11, we can do this with time complexity and energy

cost of 𝑂 (𝐵 log
10 𝑛) = 𝑂 (log

13 𝑛). Next, we will compute sparse
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𝐵2
-cover, sparse 𝐵3

-cover, . . ., sparse 𝐵𝐿-cover, where 𝐿 = ⌈log𝐵 𝐷⌉,
as in Theorem 3.12. Then, with the layered sparse 𝐷-cover, we will

compute the actual BFS, as in Theorem 3.8.

How do we know when to stop the BFS? Nodes do not know 𝐷 .

So, instead, after we constructed sparse 𝐵 𝑗
-cover, we check if any

of its clusters contains all the nodes of the graph, and tell all nodes

that the phase of constructing sparse covers is over, and they can

start the BFS part now.

How to check if any cluster of the sparse 𝐵 𝑗
-cover contains all

the nodes of the graph? After the construction of 𝐵 𝑗
-cover, Let us

have a period of log𝑛 rounds, in which all nodes are awake, and

all nodes tell all their neighbors the list of clusters of 𝐵 𝑗
-cover, in

which they are present. Then, for every cluster 𝐶 of the sparse

𝐵 𝑗
-cover, every node checks whether all its neighbors told it that

they are in 𝐶 . Then, this information is propagated to the root of 𝐶

with the convergecast. If the root detects that 𝐶 contains all nodes,

it broadcasts this information to them. This would take extra𝑂 (𝐵 𝑗 )
time and extra 𝑂 (log𝑛) +𝑂 (1) = 𝑂 (log𝑛) energy cost, which are

dominated by the construction of sparse covers.

By the time we construct sparse 𝐵𝐿-cover, some clusters will

definitely contain all the nodes. So, the resulting time complex-

ity is 𝑂 (log
11 𝑛) + 𝑂 (log

15 𝑛(𝐵2 + . . . + 𝐵𝐿)) = 𝑂 (log
15 𝑛𝐵𝐿) =

𝑂 (𝐷 log
18 𝑛), and the resulting energy cost is 𝑂 (log

25 𝑛 · log𝑛) +
𝑂 (log

18 𝑛) = 𝑂 (log
26 𝑛), as desired. □

With this idea, we can now compute D-thresholded BFS for any

D, with an analogous proof.

Theorem 3.14. Let D be any integer. There exists an algorithm
that correctly computes D-thresholded BFS from scratch, works in
time 𝑂 (D log

18 𝑛), and has energy cost 𝑂 (log
26 𝑛).

3.7 Closest-Source Shortest Paths in the
ENERGYModel

Now we go back to the original problem, where weights are non-

negative integers in [0, poly(𝑛)].
Theorem 3.15. Consider a graph 𝐺 = (𝑉 , 𝐸) and a set of sources

𝑆 . If the weights of all edges in 𝐺 are nonnegative integers bounded
by 𝑂 (poly(𝑛)), there exists an algorithm that computes all distances
𝑑𝑖𝑠𝑡 (𝑆, 𝑣), in time 𝑂 (𝑛 log

19 𝑛) and energy cost 𝑂 (log
26 𝑛).

The algorithm is analogous to the algorithm in Section 2.3. The

only energy-consuming components are running thresholded BFSs

for computing approximations of distances, and computing con-

nected components and their (rooted) spanning trees. We replace

the first one with the low-energy thresholded BFS algorithm from

Theorem 3.14, and the second one with the algorithm from Theo-

rem 3.1. We defer the complete description of the algorithm and

the proof to the full version.
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