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1. INTRODUCTION

1,1 WHAT TS _FORCE CONTROL?

Force control, as used in robotics, refers to a manipulator
system in which the interaction force between the manipulator
and its enviropment can affect the manipulator's position. This
is in contrast to a typical position-controlled manipulator,
where position commands are executed without regard to the
force exerted on objects being handled. In a force control
system, both force and position information are fed back, as
shown in Fig. 1-1..

Force control can take many different forms. One type is
termed Hybrid control (Mason 1985) where different axes are
specified as either pure force control or bure posjition control.
Pure force control means that a force, e.g. 4.8 oz, is
specified in a given direction, and the controller attempts t§
maintain that level of force,

Another form of force control which is in a sense more
general than Hybrid control is jimpedan ontrol, where the
mechanical impedance of the manipulator arm seen from the
external environment is specified arbitrdrily (Hogan 1982)., A
simple example of this would be specifying the spring constant
of the manipulator about any desired set point. The systenm
would them look as if it were built out of springs; the two-
dimensional case is shown in Fig. 1-2. Commanded positions, r,

would serve to move the "frame", with the actual position of the
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end-effector, x, depending on the environment and the

interaction force, f.

1.2 BENEFITS OF FORCE CONTROL

Some of the advantages of force control are immediately
apparent. Any roboties application dealing with fragile objects
could benefit from force control, as well as any where obstacles
(possibly living) may be present but whose location is unknown.

Another application for force control is one involving
uncertainty. Consider the problem of trying to writé_on a table
whose vertical position is known to within two inﬁhes. A human
has no difficulty with this maneuver as force information is
utilized unconsciously. With fdfce control, a robot can also
perform this‘task without writing uselessly in the air or
destroying the pen. Other examples where force control obviates
tﬁe need for precise positional information include closing av
door, turning a crank, and fitting a bolt into a hole of
uncertain position. 1In closing a door or turning a crank, a

'purely positional controller would need to know the exact radius

of thé path required.
1,3 TIMPEDANCE CONTROL

Impedance control, as mentioned above, is a type of force
control which is fairly general. It consists of specifying the
mechanical impedance (mass, viscocity, and spring constant) of

the end-effector. The actual-concept of impedance control was



- 13 -

|
]

23y il
YT T T T T
| |

FIGURE |-2: SIMPLE IMPEDANCE
CONTROL (STIFFNESS)



- 14 -

described by Hogan and Cotter (1982).

An impedance controlled manipulator can act like a hybrid
control system, with the proper choice of parameters. If a very
high stiffness is commanded, a purely positional controller is
approximated. If some axes are specified as very low stiffness,
they are virtually pure force controlled as the rate of change
of force with position will then be very small. Fig. 143 shows
pictorially a system with position control in the x-axis.and
pure force control (virtually) in the y-axis.

Because of the generality of impedance control énd its
relative simplicity of specification (i.e. Mass-Damping-
Stiffness), it will considered further. This thesis will be
concerned with the design of an'impedance controlled manipulator
system. Additional justification will not be given for the
actual use of impedance control nor for the selection of desired

parameters,

1.4 PRESENTATION of PROBLEM

Here then is the impedance control problem that will be
examined in this thesis:

Design a controller to implement impedance control for a
robotic manipulator. The design should be done keeping in mind
that it will actualiy be implemented on a small research robot,
the Rhino XR-1 (see section 4.2). Thus it should be practical
and make reasonable approximations and assumptions. Hopefully,

the structure of the controller will not depend on the exact
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robot parameters.

1.5 CONTRIBUTIONS

There are two parts to this thesis: analytical and
experimental. The contribution of the analytical part consists
of presenting a structure'for a controller and demonstrating its
feasibility. It is shown that the structure presented will
function correctly for proper choice of parameter values. Some
problems due to both the nature of the impedance control problem
and the coordinate transformations involved are indiéated, as
well as a possible method for partially overcoming them.

The experimental part of this thesis consists of the actual
demonstration of an impedance cdhtrol system on a real robot.
Due to real-time computation limitations and to simplify the
implementation, only a controlled-stiffness manipulator (i.e.
mass and damping in impedance specification are zero) was
built, but it still serves to demonstrate the usefulness of

impedance control.
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1.6 NOTATION

AH complex conjugate transpose of the matrix A.
AT : transpose of the matrix A.
det 4 determinant of the matrix A.
A (4) i M eigenvalue of 4, I
oi(A) i th singular value of A = )\i}_/z(AHA)._
I , identity matrix.
A"l inverse of the matrix A.
[x | magnitude of the scalar x.
H;IIZ euclidean norm of the vector x.
1] ] maximum singular value of the matrix A.
A20 A is positive semidefinite.

A>0 A is positive definite.
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2., PRELIMINARY ANALYSIS

2.1 INTRODUCTION

The purpose of this chapter is to provide a preliminary
view of several facets of the impedance control problem. The
basies will be provided here as background for the linear
controller development of chapter 3.

Section 2.2 provides a historical perspective of force
éontrol results previously pﬁblished, related to both hybrid
methods as well as impedance control.

Section 2.3, 2.4, and 2.5 give modeling detaiis for the

environment, the manipulator, and the reference model,

respectively.

2,2 HISTORICAL OVERVIEW

2.2.1 Hybrid Control

Hybrid control, as degcribed by Mason (1981), consists of
partitioning the degrees of freedom of a manipulator into force-
controlled axes and position-controlled axes. This is done so
that the motion of the manipulator is compatible with the so-
called natural constraints of the environment. For movements
along a surface, that surface represents the natural constraints
imposed by the environment. Position control into the surface
is meaningless as is pure force control tangent to the surface.

No forces can be exerted by an object (the manipulator) in free
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space,

Hybrid control is in a sense open-loop because while the
measured force is used on the force control axes, the form of
theAenvironment is assumed known—this information is in fact
used in deciding how to partition the axes of the manipulator.
No measured information regarding the shape of the environment
is utilized by the controller.

Mason discusses such a hybrid mechanism for force control;
no dynamical control issues are addressed. BHe deals mainly with
the mathematical framework for conceptual development of hybrid
control from an artificial intelligence viewpoint.- He deals
only with ideal (perfectly inelastic) surfaces and mentions that
in going from one surface to andfher, one uses "guarded moves",
in which the manipulator moves slowly until a force is sensed
telling the controller that the surface has been reached. He

does not discuss the implementation of these "guarded moves",

2;2.2 Impedance Control

Impedance control describes a system in which the
mechanical impedance of the manipulator is specified
arbitrarily. This general approach was defined by Hogan and
Cotter (1982), and consists of defining a stiffness, viscous
damping, and inertia desirea for the end-effector as seen from
the environment. In general, these can be nonlinear tensor
quantities. In the linear case, to be considered in this

thesis, the arm looks like a mass-spring-dashpot system with
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adjustable parameters. Hogan and Cotter (1982) proposes an
implementation of impedance control using a nonlinear pole-
Placement algorithm in which the manipulator dynamiecs are forced
to look like the desired differential equation. This implemen-
tation requires an exact nonlinear model of the manipulator in
order to funection properly.

Specialized cases of the more general impedance control
concept are the generalized spring and the generalized damper
(Mason 1981)..

A demonstration of the generalized spring is gi#en by
Andrews (1981), in which the force applied by the ﬁanipulator is
proportional to the distance from some desired set point. Thus,
it acts as a controlled-stiffnesé manipulator. Andrews' manipu-
lator could turn a crank without exact knowledge of its radius.
The design of the controller was done under quasi-static assump-
tions using motor currents to estimate forces, rather than |
external force sensors,

Another demonstration of the generalized spring is given by
Salisbury (1980). This design uses feedback of measured forces,
the control being done without analysis of stability of the
whole system. The implementation includes rotational stiffness
about three axes, as well as positional stiffness in 3-dimen~
sions. He demonstrated his approach by an assembly problem
involving the insertion of a stem of hexagonal cross-section
into a matching hole.

Whitney (1977) presents a generalized damper in which the
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velocity of the manipulator's end-effector is proportional to
the external force applied. This is a special case of impedance
control with zero stiffness and zero mass, His implementation
assﬁmes velocity-controlled servos and he gives stability condi-
tions for the system based on both the desired manipulator
impedance and the encountered environmental impedance. He

worked with a decoupled manipulator without coordinate transfor-

mations.

The generalized damper is useful in certain types of assem-
bly operations where a constant pressure on a non-moiing object
does not need to be applied. If this is not the case, stiffness

is needed and the generalized damper will not suffice.

MODELIN E ENVIRONMENT

This section will present a model of the environment
suitable for the purpose of the impedance control design of
Chapter 3.

If the manipulator is in contact with'an object in the
environment, we can represent the force of interaction as being
proportional to the displacement of the manipulator end-

effector. Thus, we model it as a spring:

£ =K (x - 4d) (2-1)
K E

where EE is a matrix representing the environmental spring

constant,

X is the manipulator end-effector postion vector.
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d is the offset induced by the object, since the
object is not always at location x = 0.
In addition to the proportional force due to deformation of
thebenvironment, there is a component due to accelerating any

mass held in the gripper:

fo= DX = Mg¥ C (2-2)
where HE = mEl = mass held in the gripper

X acceleration vector of end-effector.

Combining fy¢ and fy, we obtain the block diagram of Fig. 2-1.
Note that in free space, Kg = 0 and against avhard surface
the norm of EE isbvery large. Practically Kgp is limited by the
actual stiffness of the manipulétor itself; pressing against a
hard surface will cause bending in the manipulator's members.
Technically speaking, the above representation of the
iﬁteraction force is inaccurate because that force is not shoﬁn
affecting the manipulator dynamiecs. To be more accurate, the
interaction force would feed into the manipulator model as a
torque on the links of the manipulator. However, for small
interaction forces, the representation of Fig. 2-1 is suffi-
cient. The whole reason for using impedance control is to
control the interaction forces and we do not want the forces so
large that they alter the d&namics of the manipulator signifi-
cantly; this would indicate straining of the motors, pulleys,

ete. .
From physical arguments of passivity, we know that
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FIGURE 2-1: MODELING THE ENVIRONMENT
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conditions on LE, M are
LE > 0 (det LE = 0 if against a smooth surface),
M = I
% ¢ mgl2 0,

2.4 MODELING THE MANIPULATOR
2.,8,1 Statices

In robotics it is frequently the case that the coordinate
system most useful to describe the position of the manipulator's
Joints is not the most useful to describe points in the robot's
workspaée. The former system is termed 1glng_ggg£§1gggg§ while
the latter task coordinates. Task coordinates are usually
cartesian or cylindrical coordinétes; they are'chosen so as to
make task specifications easy.

Let 6 = [91 ° n..en]T be the n-vector of joint coordinates,
where ei represents the position of joint i. Note that Gi may
not be in degrees ( e.g. a translational joint). Let
=[x x, ... xm]T be the m-vector of task coordinates repre-
senting the position of the end-effector.

If n<m, we have a manipulator which cannot move about in
our desired task-space. Either m must be reduced or a robot
with more degrees of freedom must be considered. If n>m, then
we have a redundant manipulétor, or one in which we have extra
degrees of freedom that must be specified. For a treatment of
this case involving removing the redundancy, see Hewit and

Padovan (1978).
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The case m=n=3 will be considered here. Then there is a
one-to-one mapping between joint positions and end-effector
positions (barring redundancies in the joints such as two rota-
tidnal Joints with equivalent centers).

Let x = T(8) be the nonlinear transformation between coor-
dinate frames. In general, T(®) is obtainable, while §_=‘l'q(1)
rarely is in closed form. Any useful control algorithm should
avoid the necessity of computing de(;) directly. Now, we have

X = [Tl(e_) T (8) Ta.(e_) 'I'm(g)]T (2-3)
Define J = [DT] ds the Jacobian matrix of T (8). The mxn.

Jacobian matrix is defined as follows:

3T (8 3T (8 3T (8)
1= 1 1
30 30 30
1 d L4 1 2 n
Jd = [DT] =
3 T (8 3T (8
2~ 2 .
30 30 .
1 2 .
3T (®) 3T (8)
m 3 . . . m
ael 36

(2-4)



_26_

Thus we can write

dx = Jd§ (2-5)
AX = J A8 (2-6)
and x = Jor 6= g lx (2-7)

for infinitesmal dx, dé or small Ax, A8 (2-7) allows us to
decide what direction to move in Joint coordinates, given a
direction in task coordinates. This is used in a robot-control
technique call "Resolved-motion-rate control™ (Hewit and Burdess
1980). It is a linearization of the nonlinear coordinate trans-
formations used with small incremental variables.

Consider the simple two-link manipulator showﬁ in Fig. 2=-2.
Note that the standard way of defining angles for manipulators
is for ¢2 to represent the anglé of deflection in the center
Jjoint; however, the Rhino XR-1, to be used for demonstration
purposes, is more easily described as in Fig. 2=2.

From simple trigonometry, we have

x sin(¢_ ) + sin( ¢ )
X = = T(g) = d[ 1 2 ] :
y cos(¢1) + cos( ¢2 (2-8)

While equal length links were assumed here, unequal length arms
can be treated in a similar manner.

Taking derivatives,

cos(¢ ) cos( ¢ )
i=d[ 1 2]

-sin(¢1) —sin(¢2) (2-9)
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FIGURE 2-2: SIMPLE TWO-LINK MANIPULATOR
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Note that det

lew
1]

-d[sin(¢ ) cos( ¢) - cos(éd ) sin(¢ )]
2 1 2 1

d sin(¢1- ¢g (2-10)

Therefore det J = 0 occurs only if¢2 :43 or¢2=‘H + 180°.

The Jacobian is singular when the manipulator is either at the

origin or on a circle of radius 2d.
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2.4 Dynamics

This section will present a short deviation of the
dynamical equations for a two-link manipulator as shown in Fig.
2-2. For a more complete and general derivation (n-1link
manipulator) see Paul (1981), Chapter 6. Consider the
manipulator modeled in fig. 2-2, with masses m1 and m2 .

The dynamical equations for a mechanical system can be

written
Fi =_d BL_ i i-= 1’ 2’ . ,n-
dt 3q; 3q; (2-11)
where Q; = generalized coordinate (distance or angle)

q. = generalized velocity.
F. = corresponding force or torque
L = the Lagrangian, defined as the differnce between the
the kinetic and potential energy of the system.
By writiﬂg the kinetic energy of each mass-——m, is easier done
in cartesian coordinates—and potential energy, the Lagrangian

can be found. The resulting equations of motion are:

o e = ) 12 4 54 +D ¢ 6 +D (2-12)
T1 D11¢1 * D12¢2 * D111¢1 * D122¢2 D112¢1¢2 1214)2¢ 1
- ;s 5 52 $2 + 66 +D § ¢ +D (2-13)
r2 D12¢1 * D22¢2 * D211¢1 * D222¢2 D212¢1¢2 221¢2¢1 2
where
.th . .
TS torque at i joint coupling inertias
2 relating the
D =d [m + 2m + 2m cos¢ ] accelaration at (2-14)
1 1 2 2 2 one joint to the
D = d2m [1 = cos ¢ ] torque at another (2-15)
12 2 2 (or the same one).
D = d?m (2-16)

22 2
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where g
In vector

T =

- 30 -

-m d %in ¢
2 2 centripetal
-m d &in ¢ acceleration
2 2 coefficients
0
D = -m d’sin¢ coriolis
121 2 2 coefficients
D = -m d%sin¢
221 2 2
-(m + m )gdsin® + m gdsin(% +9¢ )| gravity
1 2 1 2 1 terms

m gdsin( ¢+9¢ )
2 1 2
acceleration due to gravity

form, we can write

D(8) B+ Cc(88) + (o).
D( ) - l)11 D12
B D D

(2-17)
(2-18)
(2-19)
(2-20)
(2-21)
(2-22)

(2-23)

(2-24%)
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2.4.3 Manipulator System Eguations

In order to extract usable information from the above full
nonlinear dynamic equations, some engineering approximations
will have to be made. Furthermore, terms ignored above (e.g.
friction) may well be larger than the second order effects which
Wwill be removed here.

If speeds are below some threshold, we can ignore the
coriolis and centripetal terms. This threshold could be
increased through the use of velocity feedback, if necessary.
When linearized about an operating point, the nonlinear terms
- are seen as viscous damping terms. The gravity terms will be
treated as disturbances and ignored here. Inverting the
inertial ternms,

(8) 8 (2-25)

(8) =, where P(8) = D7X9).

T =

o

we obtain E

1]
o

It will be assumed that DC electric motors are used to
drive the joints with a voltage source drive system for the
motors. Our system now looks like Fig. 2-3.

Here

input voltage to motor

le
n

torque applied to motor shaft

|1
"

= motor gain [torque/amps]

motor back EMF [volts/rad/sec]

Eal o
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FIGURE 2-3: MOTORS AND MANIPULATOR
SYSTEM
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The system can be Placed in state equation form as

o

8 0 I ol
8 e el u
8 0 -P(®) KK,| |8 P(8) K -
TV 7 (2-26)
or z = A(8)z + B(9)u. (2-27)

From Fig. 2-3, we can see that the loop transmission of the

motor loop 1s(1/®g(g)§rgv. Therefore, if

1
Omin |Jw 2(—)&1‘£V >>1 or Gmin[E(Q)KTKV] >> w (2-28)

we then have a velocity control with no coupling between the
" Joints. For low frequencies the coupling is magnificent. The
larger gv, the higher the frequency at which coupling becomes

important. Fig 2-4 shows the frequency domain model in general

and at low frequencies.
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IN GENERAL

l.c

-} s6 / 8
-KV - = -

AT LOW FREQUENCIES

FIGURE 2-4: FREQUENCY DOMAIN MANIPULATOR
| MODEL
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2.5 REFERENCE MODEL

Later on an explicit refernce model will be needed, it will

be presented her first. Impedance control requires that the

model have a dynamic equation:

MX = K(r-x) - Bx + f (2-29)

M=mI (m>0) for all physical masses. This equation results

in Fig 2-5.. This can be implemented as in Fig. 2-6..
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FIGURE 2-5: REFERENCE MODEL
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FIGURE 2-6: IMPLEMENTING REFERENCE MODEL
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Note that this reference model is in task coordinates while
ocur manipulator system is linear in joint coordinates. Thus, a
coordinate transformation will be necessary and will cause prob-

lems, as will be seen later.

2.6 CONCLUSION

Now that some of the necessary preliminary blocks have been
examined, they can be integrated. The system must look some-
thing like Fig. 2-7. If the controller drives the error, e, to

zero, then we have the desired position,x equal to the actual

d’

position, x. This structure will be examined much more closely

in Chapter 3.. One of the problems that will be addressed is the
effect on system stability of having a coordinate transformation
within the loop of a linear system. We have this coordinate
transformation because we choose a reference médel which was
linear and time-invariant when expressed in a coordinate system

other than joint coordinates.
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3. A LINEAR APPROACH TO IMPEDANCE CONTROL

3.1 Introduction

In this chapter, a method for the design of an impedance
control system is developed. A linear controller structure is
first presented with a general undetermined compensator. A
particular choice for the compensator is chosen, namely a track-
ing regulator, as this allows the use of a variety of existing
techniques for compensator design. Obviously, we do not pieck a
compensator soley on the basis of ease of design, so it must be
shown that this compensator actually works and is stable under a
variety of operating conditions. This is done through the use
of a standard normed robustnessAfest used in a not-so-standard
way.

From this robustness test the difficulty of introducing
coordinate transformations into the control loop is demonstrafed

and a method for partly overcoming this difficulty is shown.
Pos on Regulator for Impedance Contro

We can redraw the block diagram of Fig. 2-7 as Fig. 3-1,
where a coordinate transformation has been moved out from the
controller and shown explicity. We can verify the validity of

this structure by examining what happens if the error, e, goes

to zero. Theng= gd’

desired position.

X = Zd’ and our manipulator is at the

We can see from Fig. 3-1 that the controller is acting as a
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tracking regulator, trying to keep 6 close to Qd'

there are no coordinate transformations involved, simplifying

Furthermore,

the controller_design. Any of a number of methods for designing
the controller can be used, such as Linear-Quadratic-Gaussian or
a frequency domain Bode plot approach, depending on the exact
manipulator and its model.
Again looking at Fig. 3-1, we can see that the function

Qd =1-i(;) is required. Inverting the function IQD is extreme-
ly diffiecult to do in real time (Hewit and Burdess 1980) and it .
would be best to avoid it. However, we have a way éut:‘ we can
take advantage of the fact that & should be close to zero (for a
good controller),.

£28,-0 = IM(xy) -8 T0(x + (x-x,) - (x-x) - &
= ITH(E) - Nz - x) - 8= JT1@)Ix g - T(HI. (3-1)
The use of this approximation is shown in Fig. 3-2.

| Thus, in Fig. 3-2, we now have an impedance control that,
assuming stability, has good performance. This is guaranteed
due to the tracking regulator, as explained previously. The
stability issue will be studied in Section 3.3..
In order to examine the loops involved, we will need a

linearized version of the system in Fig. 3-2, shown in Fig. 3-3.
The command input to the reference model, r, and the disturbance

due to the environment, d

have been supressed as we will be
examining only the loops for stability. Reference and
disturbance inputs have no effect on system stability, for

linear systems. The reference model, M(s), represents the
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desired transfer function from measured force to desired

position, in work-space coordinates. From section 2.5, we have

M(s) = [Ms® - Bs + K17 M, B, K > 0. (3-2)
The.environment is modeled as F(s), representing an
approximation for the measured force in response to movements of
the manipulator. From section 2.3,

E(s) * E; + s?M_ Kp, Mg 2> 0. (3-3)
Recall‘that EE and ME Will not be known to the controller and
will not be constant.

The manipulator model, developed in section Z.A;,is
represented by the transfer matrix G(s), and the compensator
transfer matrix for the tracking regulator is denoted K(s).
Thus, the loop transmission of fhe position (inner) 1loop is
G(s)K(s). Define H(s) to be the closed-loop transfer matrix of
the tracking regulator, i.e.,

H(s) 2 G(s)K(s) [I - G(s)k(s)] ! (3-1)
H(s) should look like the identity matrix for low frequencies,
and we expect its singular values to look similar to Fig. 3-14.
In fact, if the tracking regulator does a good job, then H(s)
should be diagonal (or nearly diagonal). Fig. 3-5 shows the
system with H(s), and Fig. 3-6 shows the system for low
frequencies, where the assumption H(jw) = I is made.

The system shown in Fig. 3-6 is stable, as we expect it to
be. If the loop were not stable, we made a mistake in speci-
fying M(s), since it is performing exactly as specified. Thus,

the low-frequency approximation is stable, and we wish to know
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if the general system (Fig. 3-5) is stable. This will be the

subject of the next section.
___Robustness Ana is

This section will attempt to verify the stability of the
system of Fig. 3-3 through the use of a normed robustness test.
For a derivation and more complete description of robustness
tests, see Lehtomaki (1981).

First, the robustness test to be used will be stated.
Consider the system shown in Fig. 3=-7. P(s) represents the
nominal open loop system and L(s) represents a gerﬁurbgtign on
that nominal system. Assume that the nominal system is closed
loop stable, i.e. that the entire system in Fig. 3-7 is stable
with L(s) = I. Then the system is stable if

o . [L(8) = I1 < o . [I + P-i(s)]. (3-5)

min
If we let P(s) = M(s)f(s) and L(s) = J(8)H(s)J"(6) then we
can use this test on the system of Fig, 3-5, since we know that

the system is stable for L(s) = I, or H(s) = I.

For illumination, consider a one-dimensional case, where

1

M(s) = ms? + bs + k
F(S) = ke + szme
-1
H(s) = T1s + 1 (3-6)

Because we are dealing with scalars, J and J -t cancel and we

have
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(m + m)s + bs?+ (k + ko)
mes? + kg (3-7)

Opinl1 + P-1(s)]

)
g [H(s) - 1] = T8 + 1 (3-8)
max

Fig. 3-8 shows a representative plot of those quantities. There
are several important features of this figure. Note that
Oﬁax[H(s) - 1] is much less than 1 at low frequencies and ap-
proaches 1 as the frequency increases. The fact that this plot
has nb overshoot in it is an artifact of the one-pole form
selected for H(s) above. This will be important, as will be
seen in section 3.5. Next, note that Omin [1 + P_l(s)] is
greater than 1 at DC and at high frequencies, because m, mg, k,
ko are all greater than zero.

Thus, for the situation depicted in Fig. 3-8, the impedance
control system will be closed loop stable: The "perturbation"
represented by the tracking regulator's closed loop response is
sma;l enough to not affect system stability.

As this procedure is 5enera1ized to the multi-variable case,
the Jacobian matrix remains in and causes difficulty as will be
shown next.

Let the reference model be represented by

M(s) = [Ms? + Bs + kI"'; M = nI >0, B>0, K > 0. (3-9)
and the environment be represented by

E(s) = K_+ s?M_ Mo =mnI20;K 20, (3-10)
Now, the system of Fig. 3-5 is stable if

o [I(OE()I™I(8) - I1 < o, [I + [M(s)E(s)I"'].  (3-11)
max i m

in
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Now,

O o [L(B)H(S)I7H(O) - I] = Ol S(8)[H(s) - 11 371 (8)]

ma
(3-12)
andvsince o (A) is a norm, we have
max
Opax[L(EIH(S)L7H(B) - 11 < o [J(®)]+ 0 [I71(8) 1
Omax[ﬂ.(s) - 1.
(3-13)
Utilizing the fact that o”! (4) = o . (A”'), we obtain
max min
o [J(0)H(s)I7(8) - 11 < (o _[J(8)]
maxo B X o [H(s) - I
o . [d(g)] | ™ :
min -
(3-14)

The quantity in braces is given a special name (Strang 1980); it
is called the condition number of J(8), denoted here by
condv(i(g))., It represents a measure of the difficulty of
inversion of i(g) and gives the maximum amplification of the
norm of a matrix undergoing a coordinate transformation induced
by'i(g). Our test for the stability of Fig. 3-5 is now
OpaglH(S) = I1 » cond (4(8)) < o, [I + (M(s)E(s)) '1.. (3-14)
A plot of this, analogous to Fig. 3-8, is shown in Fig. 3-9.
Letw1 denote the frequency of the peak in
0 o [L+ (M(s)F(s))~'] and W, denote the breakpoint for
g [H(s) -1]. From Fig. 3-9 we can then obtain some

max
approximate rules for stability of our impedance control system.

Remark 1: We must have sufficient separation between the two

curves A and B in Fig. 3-9 to allow for the condition
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number of J(0); we must allow for the largest expected value
so that curve C remains below curve A. Note that this
margin is only required for the middle frequencies.

Remark 2: If w2 >> wi and the above conditions are satisfied,

then we will be safe for all values of LE,

as EE only
impacts the low frenquency behavior of curve A. This is
saying that the robot dynamies should be significantly
faster than the model dynamies. This makes good intuitive
sense, as we don't wish to command the manipulator to move
faster than it is capable.

Remark 3: If we don't have significant separation between w,
and w, , we may be still safe, if ohin[(i + gE)gélq is
large enough. This indicates that we may get into trouble
if LE is very "large". As will be seen in chapter 4§, a

large Gmax(EE) can cause instability. Fig. 3-10 shows such

a situation.

Since this robustness test is only a sufficient condition
for stability and not a necessary one, we expect the
requirements'it gives to be somewhat conservative. We could
also use any of a number of other forms of normed robustness
tests, but they do not appear to give the intuitive insight that
the one used here does. The next section will attempt to
present some conditions under which the conservativeness of the
test can be reduced and thus lessen the seriousness of the‘

coordinate transformation involved.
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.4 Some Less Conservati unds
The last section rested heavily on the fact
|| 4[H(s) - 114 7| < cond (J) || H(s) - I ]]. (3-15)
and used this to derive a sufficient condition for the stability
of the impedance control system:
o tL + (M(s)E(s))~'] > cond(d)s0 _ [H(s) - I]. (3-16)
In order to get a feel for the condition number of‘iQQ), we
can‘caiculate it for our simple two-link manipulator for
various angles. Consider the manipulator of Fig. 2-2. Since it
does not affect the condition number, d = 1 will be éssumed (d

just scales all of the singular values). We have

o (d)
cond (J) = _™m&xX
o . (J4) (3-17)
mln
and
o (3) = are (415 o . (2) = ¥ rgHal. (3-18)
max max min min ‘
J% = Teos ¢1 -sin¢1 cos ¢1 cos ¢2
cos(% -sind)2 -sincb1 -sind)2
i 1  cos (¢1- ¢2)
cos (¢1- ¢Q 1 (3-19)

Notice that the matrix iHi'(and thus the singular values) are a
function of ¢1 - ¢2which is just the angle of deflection of the
central link. Thus curves of equal singular values are circles

centered at the origin, since radius is only a function of
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central angle. We have

_ VA
2 = /3 + cos?( ¢ - ¢2 )
o, (d) = ‘ > = (3-20)
min
(2 . J3 + cos?( ¢, - ¢>2)‘— 72
Opax (L) = i 2 | (3-21)

Due to the cosine-squared term, the condition number of Jd is

equal _for - ¢1 - ¢2 = 0 and ¢1 -¢2= 180 -a, 0 < o < 180°.

Table 3~1 lists the singular values as a function of angle. 1In

Table 3_1,
r(a) = distance of end-effector from the origin for ¢1 - ¢2=u
r(180 -a) = distance of end-effector from origin for

Ad>1- ¢2= 180 - a -
Jd(a) = Jacobian matrix for ¢1 - ¢2=u . Fig. 3-11 shows these
values as circles of equal condition numbers.

For example, if we allow the end-effector of the
manipulator to come to within 0.17 units of the origin, the
cdhdition number of J could reach 23.0. Therefore we must allow
a factor of 23 between our two singularvvalue curves (A and B in
Fig. 3-9). This puts a very stringent requirement on the speed
of our manipulator system. “ﬁ must be very high to give us the
required separation (perhaps two decades between model and
manipulator- quite a waste of bandwidth.). Thus, we would like
to reduce the conservativeness of our robustness test. This can
be done as will be shown next.

Suppose H(s) = A(s)I, A(s) a scalar function of s. Then
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CONDITION NUMBERS

o r (@) 180°- a| r(180°- o) [0 [J(@)] 0 i, [3(D7T [cond(Jia))
1d 2.0000 180 0.0000 1.4142 0.0000 . e

1 1.9999 179 0.0175 1.4142 0.0062 229.2
2 1.9997 178 0.0349 1.4142 0.0123 114 .6
3 1.9993 177 0.0524 1.4141 0.0185 76.42
y 1.9988 176 0.0698 1.4140 0.0247 57.32
5 1.9981 175 0.0872 1.4139 0.0308 45,87
10 1.9924 170 0.1743 1.4129 0.0615 22.99
15 1.9829 165 0.2611 1.4112 0.0917 15.39
20 1.9696 160 0.3473 1.4090 0.1214 11.61
25 1.9526 155 0.4329 1.4062 0.1503 9.36
30 1.9319 150 0.5176 1.4029 0.1782 7.87
35 1.9074 145 0.6014 1.3993 0.2050 6.83
4o 1.8794 140 0.6840 1.3953 0.2303 6.06
45 1.8479 135 0.7654 1.3912 - 0.2541 5.47
50 1.8126 130 0.8452 1.3870 0.2762 5.02
55 1.7740 125 0.9235 1.3829 0.2962 4,67
60 1.7321 120 1.0000 1.3789 0.3140 4.39
65 1.6868 115 1.0746 1.3753 0.3295 4,17
70 1.6383 110 1.1472 1.3721 0.3424 .01
75 1,5867 105 1,2175 | 1.3695 0.3526 3.88
80 1.5321 100 1.2856 1.3676 0.3600 3.80
85 1.4746 95 1.3512 1.3664 0.3645 3.75
90 1.4142 90 1.4142 1.3660 0.3660 3.73

'TABLE 3-1
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FIGURE 3-/1: CONDITION NUMBERS FOR
MANIPULATOR POSITIONS
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[{4(H(s) - D)3~ ] = [l 2(s) - 1|l because Jd will commute with

H(s).. The closer H(s) is to a diagonal matrix with equal

elements, the less the effect of the coordinate transformation.

In order to be more quantitative about this, we can
investigate the effect of a general matrix, H(s), which we can
write as

H(s) = Xs)I + B(s).. (3-22)
This allows us to take advantage of the desirability of the
AM(s)I term. We now have
|[|L[B(s) = Z13 M| [[(A(s) = DI[| + ||4B(s)IM]]< |A(s) - 1
+ cond (Z»||B(s)]]
(3-23)

This shows that if H(s) is decomposed into
H(s) = A(s)I + B(s) such that [[B(s)|| is minimized, we can
reduce the effect of the condition number on our robustness
test.

As ﬁentioned earlier (section 3.2), if the tracking
regulator, K(s), does a good job, we expect H(s) to be diagonal,
as commandedvpositions in one channel shouldn't affect another
channel. Consider the 2 x 2 case (for the two-link manipulator
being studied). Then

h (s) 0
- H(s) = 1 = A(s)I + B(s).
0 h, (s) (3-24) -
We can decompose this so that E(s) has the smallest norm

possible by inspection:
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o B y(s) + hy(s) 0
HE(s) = %
0 hl(s) + hZ(S)
1(s) = hy (s) 0
+

0 hz(s) - hl(s)

(P (h () + h6NT hy (s) - ha(s) E o:l
= * 0 -1

2 (3-25)
Therefore )\(s) = h,(s) + hy(s)
2
and ||B(s)|] = n;(s) - h,(s)
2 (3-26)

If H(s) is not quite diagonal, the off-diagonal terms will
appear in B(s). If their magnitude is small compared to the
magnitude of-%[hl(s) - h,(s)] they will not bother us, as they
will not affect the norm of B(s). If they are not small, they
will have to be added in to the norm of B(s).

, Now, we know that our control system will stable if
TpinLL + (M(s)E(s))71 1 > [AX(s) - 1] + cond (J) Oy [B(8)]

(3-27)
where X(s)L + B(s) = H(s), our tracking regulator closed loop
response. Thus, we can reduce the conservativeness of our
original robustness test if we know something of the structure
of the‘"error", ﬂ(sj - I. The smaller hl(s) - hz(s) is, the
less will be the amplification due to the coordinate transforma-
tion.

This suggests that we could reduce the effect of the
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coordinate transformation by proper selection of K(s), which is
our only control over H(s). We may now be able to use our
robustness test for design rather than Just analysis. Above, it
was discovered that a small Ihl(s) - ha(s) lwill reduce the
effect of the coordinate transformation on system stability.
This suggests that hl(s) and h,(s) should behave similarly, and
since H(s) = G(s)k(s)[I + g(s)g(s)]—l, we may be able to select
K(s) to give us the form we want, namely equal frequency
response in the different channels. This will form the subject

of the next section.

Mo tions Based on Robustness

The last section suggests that a "good"™ structure for H(s)
is one in which all the channels are as similar as possible.
This makes intuitive sense in another way: If the channels have
significantly different bandwidths, we will be in trouble when
we attempt to follow an arbitrary path in task-coordinates
(cartesian coordinates), as the different servo lags (error
coefficients for ramp inputs) will causée the actual path to 1lie
to one side of the desired path.

From the last section
h, (s) 0
H(s) = = A(s)I + B(s).
0 h,(s) (3-28)
To minimize the effect of the coordinate transformation, we

want hl(s) - hz(s) to be as small as possible. Fig. 3-12
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hyls) Wy(s)=hy(s)
—
Re{x}
I=-ho(s)

FIGURE 3-12: CALCULATION OF hI(S)—hz(s)
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shows the veetors h;(s) - h,(s), 1 - h,(s), and 1 - h, (s).

Remember that we also want 1 - h;(s) and 1 - hy(s) small, as we

want
hl(S) + hz(S) -1
[A(s) = 1] = 2 (3-29)
small,
dote that
hii(s) + h,(s)
Fr1 - 8 ()] + 31 - b ()]] = 5

(3-30)
The purpose of all this is that we can now see that hl(s)
and hz(s) should remain in the first quadrant in order that
there difference remain small. While it is true that they
could both go into the second quandrant "together"
[i.e. h;(s) = h(s)], we must keep in mind that modeiing errors
and parameter perturbations do exist. Consider what happens if
a perturbation brings h,(s) back into the first quadrant. Then
’hl(s) - hz(s)l could reach (almost) 2. Thus, by keeping both
hi(sj and h,(s) in the first quadrant (at least until their
magnitude has decreased significantly), we guarantee that
lhl('s) - h ()| < 2. (3-31)
(Remember that hl(O) = h2(0) = 1).

Thus, consider

-1 0
T 8 + 1
H(s) = 1
0 -1
T,8 + 1 (3-32)

Suppose that we manage to bring the bandwidth of the channels to

within a factor of two, i.e. T = T1 = 2'1'2
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—1 .
H(s) = 2Ts + 1 0 = ,l(s) 0
-1
0 Ts + 1 0 hz(s) (3-33)

: 1
The largest deviation h (jw) - h (jw occurs at o = /2
1 2

and is of magnitude

1 - 1
Twj + 1 ZTjw+1I

d 2 |h (ju) -nh (jw)l =
1 2
Tiw
= (1w + 1)(2Tjw + 1) (3-3%)
1
Evaluating at w = TJ2°
la|=1/3 . (3-35)

Thus, for the system, we have

|| 4(B(s) - I)I7Y|| < |Xs) =1| + cond (J)-

| B(s) || (3-36)

or

Tacats) = DM < B () b (s)) - 1]+ condéq)%:lkxﬂ-hakﬂ

<z + (T)cond (3)
. (3-37)

where the /2 is approximate (the actual upper bound will be
smaller and thus give a tighter bound). The main point is that
now the Jacobian, J, whose condition number we may allow to go
to 10 or 20 is much reduced in its effect on our system's
stability.

Therefore, to utilize this new information, we must simply‘
bring the two channels to approximately the same bandwidth with
a single dominant pole—~other dynamics must be at a higher

frequency. This is done through proper selection of the compen-
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sator K(s). 1In the case of the Rhino, discussed in chapter 4,

this is relatively straightforward.

3.6 Conclusion

This chapter has presented a method for implementing impe-
dance control. The purpose of this analysis was to provide
analytical justification for the intuitive introduction of the
method and to provide some information about the proper compen-
sator., It was shown that the closed loop response of the track-
ing regulator should be as close to IA(s) as possible, where
M0) = 1 and A(s) has a single dominant pole.

Without this information, implementing this controller
would be intuitive guesswork, not that this is itself undesir-
able, but rather the idea is that if the intuitive approach can

be justified with theory, better insight and performance can be

obtainedf

Thus, it has been shown that the presented method does work
under certain conditions and justifies its use in an actual
implementation, described in the next chapter. The controller
built, while not as complex as that described in this chapter,

does work and shows the value of pre;énalysis.
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4. ACTUAL IMPLEMENTATION

e e e e e S e S S 2 e AN

4.1 Introduction

This chapter describes an implementation of the controller
analyzed in the previous chapter. The purpose of the demonstra-
tion impedance control system was two-fold: to illustrate the
analytical controller and to illustrate the usefulness of impe-
dance control for the performance of certain tasks. Due to
computation limitations, the full impedance control version was
not built. \;nstead, the reference model was a simple spring

-econstant, E, or desired offset from the reference position

. proportional to measured force: f = K(x-r).
Hardware and Mechanice I ion; T R

The Rhino XR-1 is a small research oriented robot, produced
by Saudu Machine Design Inc. of Champaign, Illinois. It has six
degrees of freedom, driven by 12V DC electric motors. Photo 4-1
shows the Rhino. Joint 1 is the elbow, joint 2 the shoulder,
joint 3 the waist, joint 4 the wrist, joint 5 the wrist rota-
tion, and joint 6 the gripper. The 2 arm links are both nine
;nches long.

The control circuit board that comes with the Rhino was not
used, as it was too simple for use as is, and would have been
too involved to alter. 1Instead, two interface boards were
designed and built by the author. They are shown in Photo 4-2.
The board to the rear provided interfacing and motor drive,

while the other provided signal conditioning for the locad cells
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THE RHINO
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PHOTO 4-I
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(see section 5.3). Both boards are connected to an Intel 8086
mirocomputer system (not shown). The small cdntrol panel on the
robot base was ﬁsed to direct movements. One modification to
the robot itself was to replace a rubber belt with a steel chain
to prevent slippage and loss of position information.

Fig. 4-1 shows a block diagram of the entire system. An
Intel Microcomputer Development System (MDS) was used for
software development.

The position decoder takes the position information from
the Rhino—in the forﬁ of a 2 phase optically generated
-waveform—and conditions it for the 8086 to interpret. One
revolution of the motor (and chopper plate) causes 6 pulses of

position information.
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4.3 Force Sensors

Because load cells to measure small (0-10 oz) forces are
scarce, and 3-axis ones even more scarce, it was decided to have
custom ones built. They were built by the Materials and
Processes Lab of the General Electric Co., Schenectady, New York
and are shown in Photos 4-3 and 4-4. They were designed so as to
attach directly to the Rhino's gripper (Photo 4-5). Each load
cell measures forces in three axes and thus the pair can resolve
gripping force as well as x, y, and z forces.

Specifications are:
z axis (vertical) linearity better than 1%
range: 0-500 grams..

x axis (parallel to face) linearity better than 1%
range: 0-500 grams..

y axis (into loadcell) linearity better than 1%
range: 0-2000 grams..

All the axes are very sensitive. With the signal condipioner
shown in Photo 4-2 (very inaccurate), forces under 1 gram have
been resolved in the z-direction (vertical).

The mounting of the force sensor on the gripper itself is
rather unconventional. The usual method is somewhere farther
back on the wrist, where it is more isolated from the gripping
mechanism. The prOblem with the gripper mounting is that as an
object is squeezed between the jaws, an offset force is set up
due to the jaws not being perfectly parallel, or the object not .

being oriented perfectly. Thus the sensors must be nulled every

T T S 30 A € it hrs e s e e vrn A e e
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3-AXIS LOAD CELL (INTERIOR)

PHOTO 4-4
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time an object is picked up. However, this does not greatly
interfere with the robot's operation, as the nulling can be

performed in software.
4 Control System Design

If we take the full reference model
M(s) = [Ms2 + Bs + K]™' (4-1)
and simplify it by making M = 0 and B = 0 (or equivalently, only

using the DC value), we get

M(s) = K7z ¢ (4-2)

~where C %s a compliance (inverse stiffness).. Using this in the
control scheme of the last chapter, we get the system shown in
% Fig. 4-2. Note that
- Q‘x = K-1f - x (4-3)
implying that e ,= 0 causes Kx =f. As before, G(s) represents
the manipulator dynamics, x = T(6) is the coordinate
transformation, and J is the Jacobian of I(8). The doﬁted
outline represents the influence of the environment, where I (8)
has been placed inside this time because this I(89) is not
computed by the controller, but rather induced by the
environment.
The matrix P in Fig. 4-2 is a gain in work-space
coordinates. It is used to improve performance in directions

where the environmental impedance is low. Its use will be

explained more fully in section 4.5..

K(s) is the tracking regulator's compensator, whose design
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will be discussed next. Because the Rhino's motors have such a
high gear reduction ratio, they appear as virtual velocity
controlled servos, and any coupling between joints is insignifi-
cant. A mechanical time constant of 0.10 sec was measured and
thus a suitable model of typical motor was chosen as
g(s) =1, ___ _k ,
s 0.1s + 1 (4-=4)

The actual value of k here is unimportant as it depends on where
the input signal is defined (motor input, amplifier input, etec.)
as well as what the output signal is (rotation in degrees,
'radiaus, or position encoder hdles)._ Therefore, for this dis-
cussion, k = 1 will be assumed. | N

A block diagram for this motor is shown in Fig. 4-3, where
a frictional disturbance has been included. This is important
because now_é can be zero with a non-zero torque, ¢, or non-zero
input, u, applied. Becauses the disturbance enters before the
free integrator, we are not guaranteed zero steady-state error
when a position loop is eclosed around the motor, as shown in
Fig. 4-4. Normally, a free integrator is thought of as reducing
steady-state errors to zero, but in this case it doesn't. This
can be seen by writing the transfer function from df to 9 :

6 (s) = g(s)
de (8) 1 + k(s)g(s)

(4-5)

‘where g(s) is the transfer function for the motor. The
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standard free integrator in k(s) causes 9(0)/df(0) = 0, but
here we have an integrator in g(s), not k(s). Then

8(0)/ds (0) = 1 and we don't reject the disturbance. lThus, we
will have to provide another integrator in k(s) if we desire

zero steady-state errors.
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Let us now examine what happens if k(s) = k, a constant.
Fig 4-5 shows a root locus as k varies from 0 to . As k
increases, not only does the bandwidth not increase past 5
rad/sec, but we no longer have one dominant pole. Thus, if we
select k(s) = k = 2.0, we get closed-loop poles at approxi-
mately -2.8 and -7.2, which are sufficiently separated to pro-
vide predominantly one pole roll-off. Notice that if we in-
creasevthe gain past k = 2, we will increase the bandwidth of

G(s) and thus mz in Fig. 3-9. While we want a large w, we must
2

have the one-pole rolloff to be able to apply the results con-

- cerning reduction of the effect of the coordinate transformation

on system stability.

In order to reduce steady-state errors we need to introduce

an integrator into k(s)

k(s) = k + P = ks + P (4-6)
S S

Thé root locus for k(s)g(s) are shown in Fig 4-6. The zero was
placed at -1 (k = P) and a value of k = 4 gives closed-loop poles
of -1+45 and -4.28 4+ 3~.05i, still dominated by one pole. This
k(s) was selected as the final compensator. A bode plot of

k(s)g(s) is given in Fig. 4-7. The system has a phase margin of

°

547,
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4.5 Demonstration

For the demonstration of impedance control the Rhino, only
three axes were used: joint 1, 2, and 3 in Photo 4-1. The
three smaller knobs shown in that photograph are the reference
inputs to the controller: radius, height, and rotation. Thus,
the controller works in cylindrical coordinates, rather than
cartesian, as too much computatidn was involved in inverting the
3 x 3 matrix.

All of the computation was done in 16 bit integer arithme-
tic, which was possible due to proper scaling of variables.
Sines and cosines were found by table look-up in a sine table
tabulated by degree increments.

A simple top level routine was written which allowed a user
to "teach" a series of moves (reference points) to the Rhino,
and have them played back, with the impedance control on or off,
as desired (off = simple position control). A background
) précedure ran every 1.0 millisecond and updated the positions of
the motors and output the desired voltages via a multiplexed
analog line. Fig 4-8 shows an overview of the system software.

As predicted by chapter 3, a stiff surface in the
environment could cause instability. This was in fact observed
with the Ehino. Fig. 4-9 gives a rough idea of the stability
boundary for a particular set of gains. There, k, , k

yA

represent the desired manipulator stiffness and the

EZ

environmental stiffness in the z-direction (vértical)._ This
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graph can be explained by our singular value robustness test.
Since our model is
M(s) = E* (4-7)
and since we are expecting both low speeds and small masses
held (a plotter pen in this case), we can assume Me = 0, so that
F(s) = ¥ (4-8)

Under these conditions, our singular value test becomes: system

stable if o . [ (K + K) g‘] > o [JE(s)J™ - I]. This is

illustrated in Fig. 4-10. Notice that as (%wx(xf) gets smaller,
curve A rises. But as Oﬁax[g ] gets smaller, the curve falls.

- Thus we can understand the shape of the stability boundary in
Fig. 4-g9..

Now the presense of the diagonal gain matrix P in Fig. 4-2
can be explained. If we make P small in a particular channel,
we cause curve A in Fig. U4-10 to rise because the curve is
really o . [I + (PM(s)E(s)™? ] when we include P. The
disédvantage of using a Very small P matrix in all directions
is that our performance suffers; P is really controlling loop
gain and if we make it very small we increase our sensitivity to
disturbances.

The reason P is included in the controller is that we can
selectively raise and lower gains in workspace coordinate chan-
nels. For example, suppose we are going to be writing on a hard
surface. VWe simply choose P to be "small™ in the direction of

low stiffness (perpendicular to the surface) and P "large" in

other directions so as to obtain good performance in controlling
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pen movements laterally. Since the controller was designed for
P = I, choosing P "small"™ means increasing the gain for good
performance (to 2, say, seen from root locus).

The robot/controller system was used in a variety of demon-
strations. Some of the more interesting ones will be described
here. Also, a videotape presentation was prepqred showing the

robot in operation writing on thin sheets of paper held in a

frame.

One demonstration involved writing with uncertainty. With
a pen held in the gripper, the robot was programmed £o write on
~a pad of paper on the table. In between repetitiohs, a one-half
inch pad was slipped under the paper. The robot still managed
to write on the surface. With éistandard (stiff) manipulator,
the pen would have been destroyed by such a maneuver.

Another demonstration involved writing on a sheet of paper
held tightly in a space frame. Photo 4-1 shows the frame with a
sheet of plastic. The robot could write on the paper, with
impedance control turned on (compliant), even as the frame was
moved vertically or tilted horizontally. For these demonstra-
tions, the compliance was set low in the horizontal directions
and high vertically. This allowed fhe robot to track reference
positions accurately horizontally but be compliant vertically to

allow for uncertainty.
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4.7 Conclusion

This chapter has briefly described an implementation of an
impedance controller for a robotic manipulator. The robot was
capable of performing certain tasks under uncertainty that would
have been exceedingly difficult without impedance control or
extra external sensors. It also served as a simple demonstra-
tion of some of the analytical results of the last chapter. Due
to limitations on computational ability and to the simpliecity of
the Rhino (high-gear reduction DC motors), a complex controller
was not used. However, the main point of the demohstfation was
to provide some insight into the types of tasks amenable to

impedance control and the capabilities of such a system.

- as - e e N . . P e . - e e o ——————— L
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5. CONCLUSTON

5.1 Summary

This thesis has attempted to show the benefits of a class
of force control for robotics and present some basie information
on its implementation.

Impedance control, one type of force control, has hany
benefits, such as the ability to perform certain classes of
tasks under uncertain or changing conditions. By mimicking the
techniques humans use in performing tasks, a robot cén be
- equipped to handle writing, sanding, and scraping on surfaces
with uncertain position. Cranks can be turned and doors opened
without exact knowledge of theirAparameters.

In order to demonstrate these concepts first an analytical
robustness verification of therviability of a linear controller
of assumed form was presented in chapter three. This verificé-
tion thus allowed the implementation to proceed: some hardware
was designed and built, load-cells were custom built, and
approximately 2k of 8086 assembly code was written. Some of
these details were presented in ehapter 4, The actual impedance
control equipped robot was then used to demonstrate the capabi-
lity of force control. A jideo tape presentation of approki-
mately five minutes duration was then made to provide illustra-

tion of these principles.
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5.2 Suggestion for Future Research

Obviously, many questions are still unanswered in terms of
implementing impedance control. Some of them are as follows.

Is there any way of further reducing the conservativeness
of the robustness test presented in chapter 3? Perhaps a new
test would be better.

If this linear controller cannot be improved, is there a
better form for the controller? Due to the large parameter
variations of the environment and possibly the manipulator,
perhaps a linear control method will not suffice—adaptive
control is one possibility.

Aside from the implementation issue, there are questions
about choosing the actual model reference parameters--i.e. the
stiffness, damping, and mass of the reference., Does it matter
what the exact values of these parameters are? If it is

important, how should they be chosen?
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