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Dynamic Programming has been demonstrated to be a very effective technique for isolated word

recognition. Multi-pass and level building generalizations of Dynamic Programming have also

been suggested for connected word recognition. One of the major drawbacks to Dynamic Time

Warping is the excessive storage and computational requirements for large vocabularies. If a

method of data reduction can be developed to reduce these requirements the application of this

powerful technique to larger and more difficult recognition tasks may become feasible. This thesis

explores a technique of data reduction which makes use of segmentation based on acoustic similar-

ity. A generalized segmentation system is discussed and a specific implementation of this system is

used in performing the segmentation. Segments in this system are represented by a single parame-

ter vector, in this case the average over all the parameter vectors contained in the segment. Three

methods of dealing with the segmented representations are proposed and are expressed within the

mathematical formalism of the normal DTW algorithm. A comparison is made of the relative per-

formance of these methods, one which uses Dynamic Time Warping directly on the segmented

speech ignoring durational information, another which incorporates segment duration by weighting

local distances in the Dynamic Time Warping algorithm by the average segment duration, and one

which expands segments by effectively repeating the average frame to the number of frames con-

tained in the original speech segment, to determine what trade offs exist between data reduction,

computational efficiency, and recognition accuracy.

To demonstrate the advantages of this segmentation and data reduction technique three distance

measures, Itakura’s log likelihood ratio, cosh, and cepstral, are evaluated to determine their rela-

tive performance isolated word recognition. The one giving the highest recognition accuracy is

used in experiments using segmentation. The experimental work is conducted using a 30 word cal-

culator task vocabulary. Six repetitions of this vocabulary from each of four speakers, two male

and two female, are used in a speaker dependent system. The results of these experiments show

that the cosh distance measure gives the highest recognition accuracy in the unsegmented case. A

data reduction of almost 50% and a savings in computation time of 52% can be obtained without

significantly reducing recogniticn accuracy using the method of expanding segments. This method

gives significantly better recognition performance than the other two methods for all levels of data

reduction, but is poorer in terms of computation. The trade offs between data reduction, recogni-

tion accuracy, and computation are discussed in the thesis
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1. INTRODUCTION

|.1 Automatic Speech Recognition

With the ever growing presence of computers in society today, there has been considerable

interest in improving the quality of person-machine interaction. By improving the quality of this

relationship broader and more efficient use of these tools can be expected. Verbal communication

is one of the most natural means of conveying ideas and information among people. Studies have

indicated higher communication rates for speech than written or typed means!!!. Since it is the

most common method of communication for humans and does not require special training, such as

typing or key-punching, it would seem that speech is the most natural means for people to com-

municate with machines. Speech communication would also make interaction with computers

more human and perhaps less intimidating than other means. Automatic Speech Recognition

(ASR) by computers is thus a major goal in improving the quality of person-machine interaction.

Many applications of ASR have been suggested, from automatic control of assembly line raachinery

to aids for the handicapped(?]31.

There has been a great deal of research in the area of ASR, much of this having been initiated

by the Advanced Research Projects Agency with the ARPA-SUR project. Research in this field

has shown that there are several different classes of problems which all fall under the heading of

Automatic Speech Recognition. Reddy, in an overview, outlines some of the factors involved in

determining the different classes of speech recognition and discusses much of the research that has

been carried out in these areas. One of the major factors which classifies speech recognition prob-

tems is whether the input is connected speech or words spoken one at a time. The problems which

are incurred by connected speech make this class of problems significantly more difficult than for

isolated words and phrases. Other factors which classify speech recognition problems include.

vocabulary size, questions of speaker dependency, recording environment, and possible restrictions

on grammar and syntax.

(solated word recognition differs from connected speech recognition in that it restricts the
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speech input to be words from a predefined vocabulary spoken with distinct pauses between them,

hence the name isolated word recognition, or sometimes discrete utterance recognition. While this

is a very unnatural way of speaking, it does remove many of the coarticulatory effects that occur

when words are spoken in a continuous fashion and greatly simplifies the problem of recognition.

In general the vocabulary size will be relatively small, on the order of 10 to 100 words. Martin(?]

found that speaking rates between 30 and 70 words per minute on the average with peak rates close

to 120 words per minute can be achieved for isolated words or phrases. Many possible applications

of such limited speech recognition systems have been suggested.

Connected speech recognition problems remove the constraint of inserting pauses between words

and allow connected or continuous speech as input. Often the desired vocabulary for these systems

will be considerably larger than for an isolated word recognition system. These two factors make

these problems considerably more complex than for isolated word recognition. It is beyond the

scope of this thesis to attempt to solve the more difficult problems of connected speech recognition

and thus the work undertaken in this thesis falls under the category of isolated word recognition.

However, many of the techniques discussed in this work have application in other areas of speech

processing

1.2 Isolated Word Recognition as Pattern Matching

Isolated Word Recognition has traditionally been approached as a pattern matching problem

where the input is compared to a dictionary of stored references to determine the closest match.

The block diagram of an isolated word recognition system is shown in Figure 1.1. Typically the

reference dictionary is built up through a training process in which one or more repetitions of each

word in the vocabulary are recorded for use as the reference templates (patterns). Normally these

patterns are time varying sequences of parameter vectors, each vector representing a windowed

section, or frame, of the speech signal. Often the templates for several different speakers will be

combined in some way to form reference patterns for a speaker independent system{®]. Once a

eference dictionary has been established recognition is accomplished by comparing the unknown
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input, or test, utterance to each template in the dictionary and the closest match is given as the

recognized utterance.

One of the most critical factors involved comparing two utterances is their time alignment.

Since words or phrases are rarely spoken twice with exactly the same duration some form of time

alignment must be used before a measure of similarity between two utterances can be obtained.

Several approaches to the time alignment problem have been applied for isolated word recognition,

one of the most promising of these is a Dynamic Programming technique known as Dynamic Time

Warping (DTW). The application of Dynamic Programming to speech recognition was initially

proposed by Sakoe nd Chibal®! in 1971. Since that time many researchers have demonstrated that

this technique performs extremely welll’) [81 91 [10] "in some cases achieving recognition accuracies

of better than 99%°1119] This method achieves its high recognition accuracy by allowing a non-

linear time alignment between two utterances, compensating for local time variations in the speak-

ing rate. The basic principle behind Dynamic Time Warping is to find the optimum time align-

ment between the test and reference templates using a minimum total distance criterion.

One of the major drawbacks to Dynamic Time Warping is the amount of storage required for

the reference dictionary. It is necessary to store at least one reference template for each word in

the vocabulary. As a result the amount of storage required for larger vocabularies can be exces-

sive. Dynamic Time Warping is also computationally intensive, since the time alignment process

must be carried out against each of the reference templates. In general the amount of storage and

computation required will increase linearly with vocabulary size. These two requirements can place

severe constraints on the size of the vocabulary. A method of reducing these requirements must be

developed to enable the application of this technique to larger and more difficult speech recognition

sroblems

Several techniques have been suggested for reducing computation in the DTW algorithm, such

as absolute range limiting{®} or choosing a locally optimum path [!'l. While these techniques can

substantially reduce the amount of computation, they do not reduce the amount of storage required



for the reference templates. Tappert and Das('?} suggest a technique for reducing both storage and

computation requirements by creating the speech patterns in a manner that is not unlike variable

frame rate vocoding. In this technique only those frames which differ significantly from the last

stored frame are used in the speech template. Their work shows that savings of as much 50% to

60% in storage and a reduction in computation by a factor of 4 to 6 can be achieved without

significantly reducing recognition accuracy.

The results given by Tappert and Das indicate that much of the redundant information con-

tained within the steady state regions of an utterance are not of vital importance to the recognition

process. By eliminating this redundant information both storage and computation can be

significantly reduced. In order to implement this approach it is necessary to identify the steady

state regions, i.e. those regions that show little change in the spectral characteristics, and represent

them by a reduced amount of data. In other words the utterance must be segmented into transi-

tional regions and regions of steady state.

{.3 Segmentation for Data Reduction

There are basically two forms of segmentation that might be considered, phonetic and acoustic.

Phonetic segmentation attempts to segment an utterance into phonetic units, such as phonemes,

syllables, or demisyllables. Acoustic segmentation isolates units of acoustic homogeneity. Many

attempts have been made in the area of phonetic segmentation(!3] [14] [13] Unfortunately none

have performed flawlessly and often several alternative possible segmentations of an utterance must

be proposed{!®]l. It is generally accepted(!”! that phonetic segmentation is not possible on the basis

of acoustic information alone and often a detailed knowledge of the relations between phonology,

articulation, and acoustics must be applied to form a more reasonable segmentation. This higher

level phonetic knowledge is often implemented as phonetic or syntactic rules, which are usually

heuristic in nature and can be difficult to implement. Often the performance of such knowledge

sources can be unreliable. Our understanding of phonology and speech production is far from

complete and further research must be carried out in these areas before reliable phonological rules



~

can be accurately stated.

Within the context of data reduction the need for accurate phonetic segmentation is less of a

concern. For example, when the main objective of the segmentation process is to accurately del-

ineate phonetic units it is not acceptable to have extremely short segments. However, when the

objective is to accurately represent significant changes in the acoustic signal, segments consisting of

only a few frames of data are perfectly acceptable. Since the major concern in data reduction is to

preserve the acoustically significant information, i.e. the transitional information, one is primarily

interested in capturing the frames where there is a significant change in the acoustical characteris-

tics. Most phonetic units contain both steady state and transitional information giving rise to a

wide range of variation in the acoustical characteristics within the units themselves. For example,

stop consonants will usually have a brief period of silence, the stop gap, before release of the stop

burst. Combining these two acoustically diverse regions as one segment obscures the more impor-

tant transitional information. The variation of acoustical characteristics is even greater across a

syllable. Phonetic segmentation in general will segment regions containing significant variation in

acoustical characteristics and thus acoustic seementation is better suited for our approach to data

reduction.

Once the utterance has been segmented into units of acoustic homogeneity there is no need to

retain all of the data contained within a segment since much of it is redundant information. Data

reduction can then be achieved by storing each of these segments as a single representative vector.

This representative vector might be computed as the average of the parameter vectors for all the

frames of speech contained within the segment. Using a single representative vector is a con-

venient method of representing a speech segment since a segment composed of several frames is

handled in the same way as an isolated frame. The same processing techniques which are applied

0 unsegmented speech templates can be applied to segmented speech templates formed in this

nanner.



1.4 Scope of Thesis Research

It is the objective of this thesis to demonstrate the advantages of data reduction by acoustic seg-

mentation and determine what tradeoffs exist between storage, computation, and recognition accu-

racy. One of the most significant factors affecting recognition accuracy in this approach is how the

information contained in the segment durations is incorporated into the Dynamic Time Warping

algorithm. Three methods of handling durational information are evaluated and the results for

each are discussed. Another, lesser objective of this thesis is to determine the relative performance

of three distance measures proposed by Gray and Markel(!®), These distance measures are

avaluated for their performance prior to acoustic segmentation and the one yielding the highest

recognition accuracy is used in experiments involving segmentation.

The remainder of this thesis is organized in the following way. In chapter two the basic princi-

ples of acoustic segmentation are discussed and a generalized segmentation system is proposed.

The basic design choices in the segmentation system are presented and the choices used in the

actual implementation are given. In chapter three the principles of Dynamic Time Warping are

presented and the effects of segmentation on Dynamic Time Warping are discussed. Three alterna-

tive methods for making use of durational information are proposed in the last section of chapter

three. In chapter four the speech parameters and distance measures used in these experiments are

discussed.. Chapter five contains explanations of the experiments carried out and their results.

Chapter six contains conclusions and recommendations for future work.



i. ACOUSTIC SEGMENTATION

Acoustic segmentation is based on the assumption that transitions between phonetic sounds in

an utterance will exhibit large changes in the spectral or parametric representations of the speech

waveform and within phonetic sounds there will be relatively little spectral change. Thus if a

measure of acoustic similarity, or distance, is applied to adjacent or neighboring frames of speech

data the resulting contour will show peaks in the areas of sharp spectral change and valleys in the

areas of little of no spectral change. Figures 2.1 and 2.2 show plots of distance and energy versus

rime for the words "B" and "recall". One can, for example, hypothesize segment boundaries at

those points in the distance contour where a predetermined threshold is exceeded or at peaks in the

distance contour. Goldberg, et.al.!!®) describe a parameter independent segmentation system which

uses this principle. The major advantage of this approach is its simplicity. It only requires two

basic components, a parametric representation of the speech waveform and a metric or distance

measure over this parameter space. While this method of segmentation does not perform well in

generating phonetic segments without the use of some form of phonetic rules, it is well suited for

segmentation into units of acoustic similarity.

2.1 A Generalized Acoustic Segmentation System

To better understand the underlying principles of acoustic segmentation a general model of the

algorithm should be discussed. Consider the segmentation system shown in block form in Figure

2.3. In this system the digitized speech signal, s(n), is processed by digital techniques to gen-

erate a parameter vector, R(m), every L samples. A measure of similarity is computed between

the current frame, R (m), and the comparison fram~, C (mm), using a distance measure over the

parameter space. A boundary decision is made on the basis of the distance d( R(m),C(m)), and

the appropriate action is taken by the segmental representation scheme to generate the segmented

representation, R (k). A segmental mapping function, Syp(m), is created which is a monotonic

1ondecreasing function relating the frame number, m, to the segment number, k. Figure 2.4

ives an example of such a mapping function.
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This model indicates several of the areas in which major design decisions which must be made

in order to implement a segmentation system of this form. The major implementation details

include the following areas:

Parameter Generation, R (/m)

Frame Rate, L,

Distance Measure, d(x,y),

A

»

2

Comparison Frame, C (1m),

Boundary Decision,

5. Segmental Representation.

Design choices in each of these areas will affect the performance of the segmentation system. The

effects of these factors, possible design choices for each, and the choices made in the actual imple-

mentation are discussed in the following sections.

2.1.1 Parameter Generation

Factors involved in parameter generation include, the choice of the parameter set, the fre-

quency at which the speech signal is sampled, whether the speech is pre-emphasized or not, and

the size and shape of the analysis window. Unquestionably the most significant of these is the

choice of the parameter set. There are many different parameter sets for speech processing that

have been discussed in the literature and there is considerable debate as to which may be the best in

terms of accurately representing the important aspects of the spesch signal. Zue and Schwartz(20!

list a few of the more popular speech parameters used in speech processing. Rabiner and

Schafer(?!] present a very thorough discussion of methods for computing many of these speech

yarameters. It is important that the speech parameters adequately reflect the characteristics of the

speech signal that are of interest. An often used and quite reasonable approach is to require that

the parameters give an accurate spectral representation of the signal. Some parameter sets which

it this description include DFT representations, crtical-band spectral representations.
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homomorphically smoothed spectrum, or cepstrum, and linear prediction spectral estimate. Other

speech parameters include zero-crossing rate and overall signal energy. The technique of linear

srediction is often used because it can be efficiently computed and provides a reasonably accurate

spectral estimation which can be specified by a relatively small number of parameters. A cepstral

representation is frequently used as well, since only a few-low order coefficients are necessary to

provide a good spectral representation. Because of their wide acceptance and frequent use, linear

oredictive coding, LPC, and a cepstral representation derived from this LPC representation were

chosen as our parameter sets. These choices were also motivated by the choice of distance meas-

ures we wished to investigate. A minimal set of parameters for the LPC representation are the

inverse filter coefficients, ag;, and the autocorrelation coefficients, R(k). However, additional

components are normally added to reduce the amount of computation for the LPC distance meas-

ures. These are the minimum residual energy, a, and the autocorrelation coefficients of the

inverse filter polynomial, b(7/). The cepstral parameter set is usually the p+1 low order

coefficients, c¢, where p is the order of the LPC inverse filter from which they are derived. Com-

outation of these parameters and some of their properties will be discussed in more detail in chapter

our.

Choices for the other factors involved in parameter generation are primarily dictated by the

theory of digital signal processing. For example, the sampling frequency, F;, is given by the well

known sampling theorem, which states that the speech signal must be bandlimited to a maximum

frequency, F,,, and the sampling frequency must be at least twice this maximum frequency, i.e.

F.&gt;2-F,. 2.1)

Although the bandwidth of the telephone communication system is roughly 3 kHz and it provides

quite intelligible speech, there is a considerable amount of information, especially for female speak-

ers, contained in the speech signal above 3 kHz. It was decided a slightly wider bandwidth should

oe used in our system. The speech signal was then lowpass filtered to F,,=4.8 kHz and sampled

at F.=10 kHz.



The effect of pre-emphasizing the speech signal is to cancel the combined effect of the glottal

wave shape and the radiation characteristics and to compensate for the spectral tilt that is associ-

ated with them. The speech signal is pre-emphasized by passing the digitized signal through a first

order system with a transfer function of the form

H(z) = 1—pn-" (2.2)

where pu is the pre-emphasis factor. The pre-emphasized speech is thus related to the original sig-

1al bv

§(n) = s(n)—us(n—1) (2.3)

ypically the pre-emphasis factor will be in the range 0.9 &lt;u &lt;1. Rabiner et.al. [22] evaluated the

effects of varying several of the analysis parameters in an LPC based isolated word recognition sys-

tem. In comparing the recognition performance for no pre-emphasis, p =0, and pre-emphasis

with u =0.95 they concluded that the use of pre-emphasis was preferred. In our case a pre-

emphasis factor of p =0.95 was used.

The effects of window shape and size have been discussed in detail by Rabiner and Schafer(?!]

[n general a rectangular window is considered unacceptable due to its poor frequency characteris-

tics. A tapered window is usually preferred as it weights the central part of the frame of speech

data, the portion that is to be represented most accurately, more than the edges and it eliminates

discontinuities at window edges. The choice of window length is a trade off between resolution in

che time and frequency domains. In short time Fourier analysis good temporal resolution results

from a short window while good frequency resolution requires a long window. In linear prediction

longer windows increase the computation required for computing the autocorrelation coefficients.

however, the window must include several pitch periods to insure an accurate spectral estimate.

Typical window lengths used in LPC analysis using the autocorrelation method vary from 10 to 40

ms. The work of Rabiner et.al.(??] demonstrates that the length of the analysis window does not

significantly affect recognition performance in an LPC based isolated word recognition system. In

our system a 256 point (25.6 ms) Hamming window was used, i.e.,



w(n) = 0.54—0.46cosFani0&lt;n&lt;N—1 (2.4)

where N=256.

2.1.2 Frame Rate

The frame rate L is the number of samples that the analysis window is advanced in computing

the speech parameters. The frame rate can be expressed in terms of absolute time when it is

divided by the sampling frequency, i.e. L/F,. The frame rate is an important factor in speech

processing because it determines the temporal resolution of the speech parameters. Since speech is

a non-stationary signal the speech parameters vary over time; the ability to capture rapid changes

in these parameters is of critical importance. The lower the frame rate is the better the temporal

resolution that can be obtained. However, the amount of data required to represent the utterance

increases correspondingly. One would like to choose the lowest possible frame rate which still gives

adequate resolution of the speech parameters. Frame rates that have been discussed in the litera-

ture typically vary between 10 and 20 ms. Rabiner, et.al.[??] discuss the effects of varying the

frame rate within the context of isolated word recognition. In their evaluation, a frame rate of 15

ms yielded the highest recognition accuracy. While it is not clear that this measure of performance

is appropriate to segmentation, it does indicate that this frame rate gives an adequate temporal

resolution of the speech parameters. For this reason a frame rate of L=150 (15 ms) was chosen

for our system.

2.1.3 Distance Measures

The distance measure is a critical factor in the segmentation process due to the fact that the

boundary decision is based upon the distance d(R(m),C(m)). Consequently the distance meas-

ure should be sensative to changes in the parametric representation and reflect the magnitude of

these changes accordingly. Much research has been done in the area of distance metrics for speech

processing{!81{23] [24] (251 Some of this effort has been made in developing perceptually consistent

distance measures, which give high correlation to results of experiments in perceived acoustical

similarity in humans{?*1[25] The choice of a distance measure will in part be determined by the
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parameter set.

Our interest focused on the three distance measures presented by Gray and Markel(!®! and a

comparison of the relative performance of them. All of these distance measures are based on LPC

derived parameters and are referred to as the Itakura distance measure (or log likelihood ratio),

the cosh distance measure, and the cepstral distance measure. Their work discusses the derivation

of these distance measures and relates them to the L, norm, also known as the rms log spectral

difference. A more thorough discussion of these distance measures will be taken up in a later sec-

Hon.

2.1.4 Comparison Frame

The choice of comparison frame is important to the segmentation process because the segment

boundary decision is based on the distance between this frame and the current frame, R(m). It

should be noted that more than one comparison frame could be included in the distance used for

the boundary decision, as was the case in the segmentation system proposed by Goldberget.al. [1]

In their work the distance for the previous frame and the frame two analysis intervals prior were

included in the boundary decision, so as to capture both rapid and more gradual changes. The

additional computation costs in using more than one comparison frame were considered to

outweigh any potential gain from doing so. In addition, it was not clear how the relative impor-

tance of the distances from each of several comparison frames should be weighed. Thus in our sys-

tem only one comparison vector is used in computing the distance for the boundary decision.

Given this decision there are still several possible choices for the comparison frame, but only a

few logical ones for the purposes of acoustic segmentation. One would expect better performance

from the segmentation algorithm if the comparison frame is representative of the current segment.

That is, if the current frame should be considered the beginning of a new segment it should differ

significantly from the frames which make up the current segment. There are three choices which

seem to be reasonable given this restriction. The comparison frame could be an adjacent or neigh-

boring frame, the first frame of the segment, or the average of all the frames contained in the seg-



ment so far. These choices can be written as:

neighboring frame,

)

1

C(m) = R(m—j), j&gt;I

first frame of segment,

C(m) = R(m;)

average frame.

C(m) = AVERAGE [R(m;),R(m;+1),...,R(m)]

= R(m;, m)

© 5)
or

(~.6)

 7)
7)

where m; is the initial frame of the segment. The averaging function is not written as the arith-

metic mean, because the average vector for some parameter sets, in particular the LPC parameter

set, cannot be obtained from the arithmetic average. Computation of the average vector for these

parameter sets will be covered in detail in chapter four. Each of these choices will give rise to

slightly different behavior in the distance contour d(R(m),C(m)) and consequently in the seg-

mentation.

There is a certain amount of simplicity in using a neighboring frame. The average or hold

operation is a first-in-first-out buffer that operates independent of the boundary decision. By using

the adjacent or a neighboring frame more importance is given to local changes in the parametric

representation. The choice for j determines, to a certain extent, what rate of change in the

parametric representation that is to be weighed most in the segmentation. The value of j is res-

tricted to be positive to insure that the segmentation system is causal and can be implemented

directly. Larger values of j will capture more gradual changes, such as what might occur during a

transition from a sonorant to a vowel. However, the greater j the greater the storage required to

retain past frames. Choosing the first frame of the segment as the comparison frame will limit the

absolute change that may occur from the segment initial frame. This will capture the more gradual

changes, but there is some question as to whether the segment initial frame is most representative

of the current segment. The final choice is attractive because it is similar to a hypothesis test
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where the measure is how far the current frame is from the mean of the segment so far. This

choice unfortunately has significant overhead due to the fact that the average frame must be com-

puted at the frame rate. The algorithm which gives the simplest implementation and at the lowest

computational cost, which is the one used in this study, is to use the previous frame as the com-

parison vector, i.e. C(m) = R(m—1). We shall see in the following section how this choice also

provides a simple means of controlling the amount of segmentation that takes place, given the

proper choice for the boundary decision algorithm.

2.1.5 Boundary Decision

It is the task of the boundary decision algorithm to make a binary decision at each frame instant

as to whether the current frame should begin a new segment or not. In many speech recognition

systems boundary decisions will be based on heuristic methods which consider many different fac-

tors and parameters of the speech signal. For example, the segmentation and labeling system dis-

cussed by Weinstien et.al. ['*] considers formant trajectories and dips in the energy contour in mak-

ing boundary decisions. However, many of these methods are difficult to implement and are more

typically used in phonetic segmentation systems. It was our desire to develop a simple algorithmic

approach to acoustic segmentation and the use of heuristic methods was discarded in favor of more

direct means. As was suggested earlier the important factor in acoustic segmentation is to isolate

segments of acoustic similarity. For this reason the boundary decision is based on the distance

d(R(m),C(m)) alone. By considering the characteristic behavior of the distance contour two

relatively simple boundary decision algorithms can be suggested. As was discussed in section 2.1,

we can expect peaks in the distance contour at those points where there is a significant change in

the spectral characteristics. A peak picking or a thresholding algorithm would seem to be an ade-

quate method of determining segment boundaries. Each of these methods has its own advantages

and disadvantages.

A peak picking algorithm indicates a segment boundary at local maxima of the distance con-

our. Since not all such maxima are expected to be significant a more discriminating peak picking
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algorithm, such as Mermelstein’s!?) convex hull algorithm, could be used. Goldberg et.al.(!%)

used a peak picking algorithm which considered several additional factors, such as the slope of the

distance contour and the area beneath the peaks. The advantage of a peak picking algorithm is

that it can be made to detect gradual and less drastic changes in the spectral characteristics. This

is often desirable since transitions between different phonetic sounds will give rise to peaks in the

distance contour of different amplitudes. The disadvantages of a peak picking algorithm is that it is

more difficult to implement than a simple thresholding algorithm and it is also difficult to control

the amount of segmentation produced.

A thresholding algorithm indicates a boundary whenever d(R(m),C(m)) exceeds a predeter-

mined threshold. By adjusting this threshold the amount of segmentation, and the resulting data

compression, can be easily controlled. Using a comparison frame which does not introduce feed-

back into the boundary decision, i.e. one which is independent of the boundary decision, the

necessary thresholds for different compression ratios can be determined from the statistics of a set of

training data. For example, if an adjacent or neighboring frame is used as the comparison frame a

histogram of the distance contour can be generated from a set of training data which accurately

reflects the characteristics of the distance d( R(m),C(m)). The necessary threshold to achieve a

desired compression can be determined from this histogram. Since a major objective of this thesis

was to demonstrate how recognition accuracy varies with percent compression, the thresholding

algorithm was chosen over the peak picking algorithm.

2.1.6 Segmental Representation

As was suggested in section 1.3 the desired goal of data reduction can be achieved by careful

selection of the segmental representation. Since acoustic segmentation isolates segments which

show very little variation in the acoustic characteristics through out, a single parameter vector

should adequately represent an entire segment. Representing segments in this form can substan-

ally reduce the amount of data storage and computation required for isolated word recognition.

[here is little motivation for changing the speech parameters in creating the segmented representa-



tion since these parameters are already available and are assumed to provide a good spectral

representation. Using a single representative parameter vector from the original parameter set also

provides a convenient means of comparing recognition performance for differing amounts of seg-

mentation and for various DTW algorithms. Creating speech templates in this fashion allows one

to apply the same processing techniques to both the segmented and unsegmented templates.

With this concept in mind consideration must be given to the choice for the representative vec-

tor. The more accurately the representative vector reflects the characteristics of segment the better

the recognition accuracy that could be expected. As with the comparison frame there are several

reasonable choices for the representative vector. These fall into two categories, a single selected

frame in the segment, or an average of the parameter vectors contained within the segment. Rea-

sonable choices for the first category are the first frame of the segment, the last frame, or the mid-

dle frame. These can be written as:

” first frame.

R (k) = R(m,) 1) 8)

iast frame.

Rk) = R( mg) (2.9)

middle frame,

R(k) = R(m+(mp—m;)[2) (2.10)

[t is not clear that any of these choices is superior. However, one could argue that the middle

frame more clearly represents the steady state characteristics of the phoneme than the first or last

frames. There is always the risk in this approach that the selected vector is not the most represen-

ative for the segment. Consequently all of these choices were discarded in favor of using an aver-

aged vector, i.e.

R(k) = AVERAGE [R(m;),R(m;+1),...,R(m,)]

= R(m;, my)

(2.11)

t was felt that the average of all the frames in the segment was more representative of the overall
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characteristics of the segment.

There is an additional piece of information that is of interest in processing segmented data, that

is the length of the segments. Without this additional piece of information it is impossible to

determine what the actual length of the original utterance was. We shall see later how this dura-

ional information can be used in interpreting the segmented data. To retain this information an

additional component, L(k), containing the number of frames that are represented by the seg-

ment was added to the parameter vector. The representative vector now becomes

L(k) .R{%) = [Rm 12.12)

Note that, in our implementation, as the threshold is lowered the amount of segmentation and

resulting data compression are reduced. If the threshold is set to zero then the representation

reverts to the unsegmented case and the segmental mapping function becomes an identity relation-

ship, i.e.

Syap(m) = m | 2.13)

and the length of all segments becomes one,

L(k) =1, k=1.2,...,K. (2.14)

For convenience this representation was also used for the unsegmented templates and percent

compression is written as

. # of frames — # of segments
compression = 100%

# of frames
[2 15)

N— Suar(N) 100%

where N is the number of frames contained within the utterance

2.2 Summary

We have discussed a generalized acoustic segmentation system and presented the design deci-

sions made for the implementation used in our experiments. Many of the decisions that were made
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in the actual implementation of the segmentation system were made on the basis of simplicity and

ease of implementation. The resulting implementation allows a simple means to accurately control

the amount of data reduction, which will be used to compare recognition performance. Table 2.1

shows the design choices made in the actual implementation of the segmentation algorithm. In the

following chapter we will discuss the principles of Dynamic Time Warping and how the Dynamic

Time Warping algorithm can be modified for the segmented speech templates.



Design Choice
I C

Implementation
LPC derived Cepstrum

»

Parameter Set

Sampling Frequency

Pre-emphasis Factor

Window Function

Frame Rate

Comparison Frame

Distance Measures

Boundary Decision

Representative Vector

ay

R(i),

b(i),

I&lt;igp
F, = 10 kHz

p = 0.95

256 point (25.6ms) Hamming window

L = 150 samples (15ms)

C(m) = R(m—1)

log likelihood ratio, cosh, cepstral

thresholding algorithm
~ R(k) = AVERAGE [R(m,),...,R(m,)]

—

TABLE 2.1. Design Choices for Segmentation System



3. DYNAMIC TIME WARPING

The block diagram of an isolated word recognition system is shown in Figure 3.1. The most

important task in this process is the pattern matching algorithm, which in general constitutes the

time alignment of the test and reference utterances. The time variation from utterance to utter-

ance, and even between tokens of the same utterance, is such that some time normalization must

take place before a measure of similarity between them can be made. Two techniques have tradi-

tionally been used to accomplish this time alignment, linear compression or expansion, and a

Dynamic Programming technique referred to as Dynamic Time Warping (DTW). Linear

compression or expansion will stretch or shrink the time scales of the utterances linearly so that

they are of the same duration. Dynamic Time Warping allows the amount of compression along

the time axes to vary in a nonlinear fashion to achieve the time alignment. While linear time

alignment will align the endpoints of the utterances perfectly, the internal features of an utterance

will often be misaligned causing errors in recognition. Dynamic Time Warping uses Dynamic Pro-

gramming to achieve an optimal time alignment by allowing greater or less compression in those

areas where it is required, as illustrated Figure 3.2. White and Neely!!®l demonstrate that the

DTW technique performs substantially better than linear time alignment even when several alterna-

tive endpoints were used in the linear matching. In general DTW has been shown to give excep-

tional recognition performance for many vocabularies (7181091010).

The purpose of Dynamic Time Warping is to determine the optimum time alignment between

the unknown, or test pattern, T(m), m=1,2,...,.M, and a reference pattern,

R(n), n=1,2,...,N. These patterns are in general multidimensional time varying parameter

vectors, as might be generated by the segmentation algorithm. These time sequences of parameter

vectors are discrete in nature, i.e. the speech parameters are computed at distinct time intervals

and represent a given segment of speech data. The criterion that is used in Dynamic Time Warp-

ing for determining the "optimum" time alignment between test and reference patterns, or tem-

plates, is the minimum distance path along a surface defined by the distances between test frames

and reference frames. Again. as in acoustic segmentation, the distance is some measure of acoustic
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Figure 3.1. Isolated Word Recognition System (after Myers et.al.)
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similarity defined over the parameter space. The resulting surface will have a minimum along the

path of closest similarity between test and reference. This path defines the line of summation

which will yield the minimum possible total accumulated distance along the surface. It is the

objective of Dynamic Time Warping to determine this path and the corresponding minimum total

distance. Myers{?"18] presents an excellent discussion of Dynamic Time Warping and uses a gen-

eral formulation of the problem which will be covered here in some detail.

3.1 Principles of Dynamic Time Warping

In Myers work the time alignment is formulated as a path finding problem with the search

space defined by the two time axes, n and m, as depicted in Figure 3.3, where N and M are the

number of frames in the reference and test utterances respectively. At each point in this grid space

there is an implied distance, d( R(n),T(m)), which is the local distance between the n** frame of

the reference and the m*™ frame of the test. This distance,

d(R(n),T(m)), 1&lt;n&lt;N,1&lt;m&lt;M, (3.1)

defines the surface of interest. In general the time alignment path is specified by a pair of

parametric equations i(k) and j(k) which map the test and reference time axes onto a third

common time axis X, i.e.

n = i(k), k= 1,2...kK

m= j(k), k=1,2,..

(3.2a)

(3.2b)

where K is the length of the common time axis. This mapping is shown in Figure 3.3. The

objective of DTW is to minimize the total distance.

 nD

KX ~

p d(R(i(k)),T(j(k)) W(k)
=]

N( W)
(3.3)

where functions i(k) and j(k) are as defined above. W(k) is a weighting function, and N ( #)

is a normalization factor. In order to determine the minimum total distance along the surface

defined over the (n,m) plane, the DTW algorithm places several constraints on the time align-

ment process. These are: endpoint constraints. local continuity constraints. and global path
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constraints. These constraints and the means of computing the minimum total distance are covered

in the following sections.

3.1.1 Endpoint Constraints

In isolated word recognition it is usually assumed that the beginning and ending of an utterance

are well defined. Techniques for endpoint detection have been the subject of other work(28] (29) [30]

and will not be discussed here. Given that the beginning and ending frames of each utterance are

known one would like the time alignment to map the beginning of the test utterance to the begin-

ning of the reference and similarly map the end of the test to the end of the reference. The time

alignment path is therefore constrained to start at the point (1,1), the first frames of the test and

reference utterances, and end at the point (N, M), the final frames of the two utterances. This

requirement gives the endpoint constraints of:

i(l1) = 1, j(1) = 1 beginning point

i(K) = N, j(K) = M ending point.

(3.43)

(3.4b)

The path shown in Figure 3.3 demonstrates this constraint, it starts at the point (1,1) in the

(n, m) plane and ends at the point ( N, M) .

3.1.2 Local Continuity Constraints

In order to prevent totally unrealistic time normalization, for example excessive local or overall

compression or expansion of the time axes, some restrictions must be placed on the local variation

hat may occur in time alignment path. The first of these restrictions is that the alignment path be

monotonically increasing, i.e

i(k+1) &gt; i(k)

Jjlk+1) &gt; j(k).

(3.5a)

(3.5b)

This prevents the alignment path from going in the negative direction in either time dimension and

insures that the time order of the two utterances will be maintained. The second restriction is the

continuity or slope constraint which limits the amount of local compression or expansion that may

yecur by limiting the maximum and minimum slope of the alienment path. The slope constraints



can be written as

=j(k=1D) E k=1.2.3 K
Epin &lt; (i(k) —i(k=D) &lt; Epax, ,2,3,..., (3.6)

where Ep vy and Eyyare the maximum and minimum slope constraints respectively. Usually the

minimum slope is the reciprocal of the maximum slope constraint, i.e. Eygy=1/Eyx. Sakoe and

Chibal®! explored the effect of varying the slope constraints on recognition accuracy. They demon-

strated that a maximum slope constraint of EF, y=2 in the local path was the optimum choice.

These restrictions are termed the local continuity constraints. The local continuity constraints

are given as simple local paths which are combined to make up the overall path. There are many

possible local paths which can be used, Myers et.al.[?] explored the relative performance of several

local continuity constraints. These local constraints are shown in Figure 3.4. Myers et.al. showed

that the type I local constraints performed best, although not substantially better than the type 1I

or IIT constraints. Figure 3.5 shows a sample path using type I local continuity constraints. The

slope constraints which specify the maximum and minimum slope of the local paths also specify the

maximum and minimum slope of the overall path, since the overall path is made up of a combina-

tion of the smaller local paths. Notice that the local constraints of type I, II, and III all have a

maximum slope of two and a minimum slope of one half. The type I local continuity constraints

were used in our system.

3.1.3 Global Path Constraints

The local continuity constraints will limit the time alignment path to lie within a restricted

narallelogram shaped region of the total grid space. The limits of this parallelogram are defined by

the inequalities.

1 GOD sky &lt; 14 Byar(i(R)—1)
Eyvux

- k —

M+ Eyy(i(KY—N) &lt; jk) &lt; a
MAY

(3.72)

(3.7b)

where Ej x is the maximum slope constraint. This assumes that the minimum slope constraint is

given bv Egy = 1/ Ey,y. Equation 3.7a represents the valid range of points which can be
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reached from the beginning point (1,1). Equation 3.7b represents the valid range of points from

which the ending point, (NV, M), can be reached. There is an additional constraint on the overall

path that was originally proposed by Sakoe and Chibal®!. This constraint places an absolute limit

on the global range of the overall path. This is called the absolute time difference range constraint

and is written:

[i(k)—j(k)| &lt; R (3.8)

This constrains the absolute time displacement between frames in test and frames in the reference

0 be no more than RL/ F, seconds, where F, is the sampling frequency and L is the number of

samples between analysis intervals in the parameter generation. These global range constraints are

shown in Figure 3.6. The absolute time difference range constraint was originally proposed as a

method of reducing the amount of computation required in the DTW algorithm. Myers et.al.(8

showed that making use of this constraint reduced recognition accuracy for the normal DTW algo-

rithm and for this reason no absolute range constraint was used in our system, i.e. R=.

3.1.4 The Distance Function

[n determining the minimum total distance between a test and reference utterance the total dis-

ance along any path (i(k), (k)) is written as a normalized weighted sum of the local distances

d(i(k), j(k))

D(i(k),j(k)) —

 XK _ -

2 d(i(k),j(k)) W(k)

N( BY
(3.9)

where W(k) is a weighting function and N(#) is the normalization factor. For the DTW algo-

rithms discussed by Myers the local distance is given by

d(n,m) = d(R(n),T(m)). (3.10)

We shall see later how the local distance can be modified to include duration in the segmented

case. To completely specify the distance function we must define W(k) and N( W). Typically

he normalization factor will be dependent on the weighting function. Myerset.al.(®] present four

jotential weighting functions to be used in DTW and demonstrated that there was relatively little
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-hange in recognition accuracy with the choice of weighting function. We chose a symmetric

weighting referred to by Myers as type d which is written as

W(k) = i(k)—i(k=1)+j(k)—j(k=1) (3.11)

The choice of N ( #) is usually made so that D(i(k),j(k)) is the average local distance along

the path defined by i(k) and j(k). A natural choice for the normalization factor is the sum

- K _

NOW) = 2 W(k).=]

(3.12)

For the weighting function chosen the norn.alization factor can be easily computed and is indepen-

ent ~~ *h, i.e

- K

N(W) = 3 (i(k)—i(k=1)+j(k)—j(k—1))
k=1

= i(K)—i(0) + j(K)—j(0)

MAT

[ 13)

Now that we have covered the constraints placed on the time alignment path and the distance

function which is to be minimized we will discuss how Dynamic Programming is used to determine

the optimum path.

3.1.5 The Optimum Path

The best path is the set of functions i(k), j(k), k=1,2,...,K which minimizes the distance

function of Equation 3.9. To arrive at this path a Dynamic Programming approach is used. The

wo principles on which this approach is based arel®!

|. a globally optimal path is also locally optimal.

!. the optimal path to the point (n,m) depends only on the values of n’,m’ such that

n'&lt;n, m'&lt;m.

[hese two principles give rise to a recursive relationship which is the general form for Dynamic

Programming. Consider the partially accumulated distance function
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£ ~ . . ry

Dy(n,m) = I | 280.00) W(k) | (3.14)

where i(K')=n, j(K')=m. Using one of the local continuity constraints discussed in the previ:

Jus section we can write a simple recursive relationship for the partially accumulated distance. For

=xample, using the type I local constraints and type d weighting function which were chosen for

our system we have

D,(n, m)=min

'D(n—1,m=1)+2d(n,m)

Dy(n—1,m=2)+5(d(n,m=1)+d(n,m))
Dy(n=2,m=1)+=(d(n=1,m)+d(n,m))

(2.15)

The solution for the total accumulated distance then simply becomes

D = Dy(N, M)

N( #)
(2.16)

D,(N,M)
(N+ M)

and the DTW algorithm can be implemented in a three step procedure.

Initialization: Set D,(1,1) = d(1,1) W(1).

/ Recursion: Compute D,(n, m) recursively for 1 &lt;n&lt; N, I&lt; mg M.

3. Termination: Set D = D,(N, M)IN(W).

Now that the basic principles of DTW have been discussed it is necessary to consider how the

jurational information contained in the segmented templates can be incorporated into the DTW

algorithm.

3.2 Making Use of Durational Information

There are several possible ways to deal with the durational information contained in the seg-

mented test and reference templates. The segment durations are an important factor in matching

two templates, since the objective of Dynamic Time Warping is to determine the optimum time

alignment of the two utterances. One of the major objectives of this thesis is to determine the



tradeoffs between recognition accuracy and computation time. The method in which the segmental

durations are incorporated into the DTW algorithm will significantly affect performance in both of

these areas. In this section we propose three alternative methods for handling durational informa-

rion and discuss the implications of each in terms of recognition accuracy and computation.

It is difficult to determine how the nonlinear compression that is introduced by the segmenta-

tion will affect the ability of the DTW algorithm to align the utterances, since DTW is itself a non-

linear operation. It can be argued that by ignoring the segment durations and performing the time

alignment directly on the segmented templates themselves, one can obtain better recognition accu-

racy than if this information were incorporated into the solution. For example, many of the errors

that occur with the English alpha-digit vocabulary are mismatches among the words in the "B",

'D", "G", etc. confusion set. These errors occur because more emphasis is placed on the steady

state vowel portion than on the consonantal portion by virtue of the significantly longer duration of

the vowel. One could view small differences in the steady state of the vowels in the test and refer-

ence utterances as noise introduced into the time alignment process which, if accumulated, could

swamp the more significant transitional information. Acoustic segmentation emphasizes the

changes in the spectral characteristics of an utterance giving more weight to the transitional

regions, potentially resulting in better recognition accuracy.

An alternative argument is that by ignoring the durational information it is more difficult for the

Dynamic Time Warping algorithm to align the two utterances. Since a nonlinear compression has

already been performed on each of the utterances the required time warping function could exceed

the slope or range constraints. The global range constraints may have to be relaxed to allow the

time warping algorithm to compensate for the nonlinearities introduced by the segmentation. The

range constraints may have to be relaxed so much as to allow totally unreasonable time alignments.

[n order to prevent this the durational information must be incorporated into the solution.

Another argument for this case is that one would expect better performance to be achieved by tak-

ing advantage of all possible information, ignoring the durational information could be throwing

away valuable data.



In specifying a DTW algorithm for segmented speech templates there are three factors which

must be given additional consideration. These factors are the local distance, d(n, mm), the nor-

malization factor, N(#), and the effective size of the grid space, which is given by the expression

for the minimum total distance, D. By specifying these three factors for segmented templates

different methods for handling durational information can be implemented. In our work three

methods of handling durational information were considered. The DTW algorithms which imple-

ment these methods will be discussed next.

3.2.1 Method 1: Ignoring Duration

In this method we take the approach that the best recognition accuracy can be obtained by

ignoring durational information. Ignoring segment duration reduces the problem to one of normal

Dynamic Time Warping using the representative parameter vectors of the segmented templates.

This method is specified by the local distance

d(n,m) = d(R(n),T(m)), l 17a)

the normalization factor

N(W) = SRap(N) + Shap(M), I 1.17b)

and the minimum total distance

D&lt; Dy(Sfur(N), Shar(M))
N( #)

(3.17¢)

where SX.p and S%,p are the segmental mapping functions for the segmented reference and test

templates respectively. Since the segmental mapping function relates the frame number to the seg-

ment number, the number of segments in a segmented template is given by Spp( NV), where Nis

the number of frames in the utterance. The resulting grid space and the legal range for the seg-

mented templates is shown in Figure 3.7. We see that the global range constraints and the overall

size of the grid space are now defined in terms of the number of segments in the test and reference

as opposed to the number of frames. The formulation of this method specifies that the local dis-

ances are the distances between the representative vectors of the segmented test and reference tem-
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plates, as opposed to parameter vectors for a single frame in unsegmented case. The same local

continuity constraints, global range constraints, and weighting functions can be used as in the

unsegmented case since they do not influence the method of handling durational information.

Using the weighting function discussed in section 3.1.4 and the reduced size of the grid space the

normalization factor is given by the sum of the number of segments in the test and reference tem-

plates. This method is no different from the normal DTW algorithm excepting that it operates on a

smaller grid space and uses the averaged segment vectors.

This approach to handling durational information promises to yield the greatest savings in com-

putation since the number of local distances that need to be computed has been significantly

reduced and the durational component is not used. If the segmentation algorithm is set to yield a

data compression of 50% one can expect the average size of the grid space for the comparison of

two words to be reduced by a factor of four. The relationship between compression and grid size is

multiplicative because the size of the grid space is given by the product of the template lengths. To

make use of this approach it is necessary that both the test and reference templates be of the seg-

mented form.

3.2.2 Method 2: Weighting by Average

Determining the best means of incorporating the durational information into the Dynamic Pro-

cramming solution is a difficult problem since there are many alternatives available. A simple

approach is to weight the local distances between segment vectors by a function, G, of the segment

lengths. i.e.

d(n,m) = G(Lg(n),Lr(m))-d(R(n),T(m)) (3.18)

where Lg(n) and Ly(m) are the length, in number of frames, of the n* segment of the reference

and the m™ segment of the test respectively. This approach increases the amount of computation

over the previous method only slightly, yet it incorporates the durational information into the solu-

ion
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Many alternative weighting functions could be suggested, such as the sum or product of the

segment lengths, or perhaps a more complicated weighting function. The weighting function

should reflect the contribution of the local distance to total accumulated distance. The weighting

function type d discussed in section 3.1.4 uses the sum of the change in the n and m directions to

weight the local distances. To emulate this weighting function the weighting should be given by

the sum of the segment lengths. However, this weighting function must be normalized to give

anity for the case when both the test and reference segments are one frame in length. Conse-

quently it was decided that a simple average of the lengths of the two segments should be used to

weight the local distance computed between the representative vectors, i.e.

G(La(ny, Ly(m)) = —RDTLr(m) (3.19)

The DTW algorithm for this method is specified as follows, the local distances are given by

] Le(m)+Lr(m) Remy Fm).d(in.,m) = — (3.20a)

the normalization factor oy

N(W)=N+M. (3.20b)

and the total accumulated distance is

D
D,( Skap(N), Siap(M))

N(
(3.20c)

Notice that the normalization factor is the sum of the number of frames instead of the number of

segments as in the previous method, this is to account for the weighting of the local distances by

the average segment length. The grid space for this method is identical to the one for Method 1 as

the only changes made to the algorithm where in the local distance and the normalization factor.

3.2.3 Method 3: Expanding Segments

Another approach to handling durational information is to use this information in such a way as

to relate the solution for segmented templates to the solution for the unsegmented form. Previous

work has demonstrated that the solution for the unsegmented form gives excellent results for many
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vocabularies. Conceptually the simplest means of relating the segmented form to the original

unsegmented form is to expand the segments to their original length by repeating the average frame

the appropriate number of times. One could think of this as creating a new set of speech templates

as follows

R'(n) = R(SRp(n)), n=12,...,N

T'(m) = T(SL,p(m)), m=12,....M

(2.212)

(3.21b)

and using the normal DTW algorithm on these new templates. The resulting grid space will be

made up of areas of constant distance where segments intersect, the distance between the represen-

tative vectors being repeated for each point in such an area, as illustrated in Figure 3.8. Note that

the size of the grid space has been increased to the original unsegmented case, i.e. the product of

the number of frames in the test and reference. The global range constraints are again specified in

terms of the number of frames as in the unsegmented case. As in the previous methods this

method reduces the amount of computation required for the local distances, since each rectangular

area in Figure 3.8 requires the distance be computed only once. However, the size of the grid

space has been increased back to the original size and the number of paths which must be traced in

the Dynamic Programming algorithm has increased correspondingly. This method will show

improvement in the computational requirements over the standard Dynamic Time Warping algo-

rithm, but such improvement will not be as great as the previous two methods. By taking advan-

tage of the segmental mapping functions created by the segmentation system the minimum total

jistance. D. can be efficiently evaluated using the following specifications on the DTW algorithm,

the local distance is given by

d(n,m) = d(R(SZp(n)), T(Shap(m))), (3.22a)

he normalization factor by

N(W)= N+ M, (5.22b)

and the minimum total distance is given by
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D = Dy(N,M)

NW)
(3.22b)

The segmental mapping functions are used in Equation (3.22a) to map the frame number to the

segment number which correspond to the rectangular area in which the frame is located. The nor-

malization factor is the sum N+Mas the effective path length has been expanded to original

unsegmented case.

3.3 Summary

We have discussed the basic principles of Dynamic Time Warping and the factors involved in

specifying a DTW algorithm. The specifications for the DTW algorithm used in our experiments

are shown in Table 3.1. Implications for the DTW algorithm using segmented speech templates

were discussed, three methods for making use of durational information were proposed, and

specifications in the mathematical formalism of Myers et.al.[®] were given. Table 3.2 shows the

specifications for the DTW algorithm for the unsegmented case and for the three methods of han-

dling durational information for the segmented case. These three methods of handling durational

information were compared to determine the relative performance in terms of recognition accuracy

and computational requirements. These experiments and their results will be covered in chapter

five. In the next chapter we will discuss the parameter sets used and some of their properties as

well as develop the distance measures that are to be contrasted.
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Endpoint Constraints

Local Continuity Constraints

Global Range Constraints

i(K)=N, j(K)=M

\Dy(n—1,m—1)+2d(n,m)

Dy(n—1,m=2)+3(d(n,m=1)+3(n,m))
Dy(n=2,m=1)+3(d(n~1,m)+d(n, m))

1+ LE=Doy&lt;142000)-D)

M+2(i(K)=N)&lt;j(k)&lt;M+LHR=D)

D,(n, m)=min

R =m

TABLE 3.1. Specifications for DTW Algorithm
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Method
Normal |

Method 1]
Method 2

Method 3

Local Distance

d(n, m)=d(R(n),T(m))

d(a, m)=dR(n),T(m))

———
d(n, m= EEE yen n),T(m))

d(x, m)=dR(SEAm). T(SL A m)))

Normalization Factor
N(M=N+M

N(W)=SRAM+STAD

N(M=N+M

N(A=N+M

| Minimum Total Distance|

TDN,Mypo DulH.30)
_ NW»

Dm weenemer
NC)

D (SRAM).ST3D)
Dn cm sence eatin

N(#W)

po 2X. 30
N(W)

TABLE 3.2. Specifications for DTW Algorithm, Segmented Case
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i. SPEECH PARAMETERS

While there has been considerable research done in the area of speech parameters, it has been

very difficult to determine the cues and features of the speech signal which are important to human

speech perception and understanding. To date there is no complete and conclusive agreement

among speech scientists as to a specific set of speech parameters. However, there is some general

agreement as to some of the more fundamental ones. For example, the formants or resonant peaks

of the vocal tract transfer function, and the general spectral shape are unquestionably of critical

:mportance. Precisely what cues are taken from this information is not fully understood. But one

can take the approach that an accurate spectral representation is necessary for a speech recognition

system.

Representation of the entire spectrum of a frame of speech data, such as by a DFT, poses some

difficult problems. Among other reasons, such as glottal influence and harmonics of fundamental

frequency, the amount of data involved is considerable. The number of useful spectral points is

one half the DFT length and is often dictated by the frequency resolution desired. In general a

method of spectral estimation or smoothing which is specified by a relatively small set of parame-

ters, such as Linear Predictive Coding (LPC), or a Cepstral representation, is preferred.

4.1 Linear Prediction and LPC Parameters

Linear prediction is a method of spectral estimation that is based upon a simple all-pole model

»f the sequence of interest. i.e. the z-transform of the sequénce is assumed to be of the form

H(z) = -

1_

o______ _9g
TT A(2)

$ a, z=
rr —=1

(4.1)

[he basic theory underlying linear prediction, or linear predictive coding, is covered in great detail

by Rabiner and Schafer{?!! and by Markel and Grayl3!l. We will only briefly summarize this work

and give the method of solution used in our work.

[ypically LPC analysis will be applied to a windowed portion of the speech signal.
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x(m) = s(m+n)w(m) (4.2)

where w(m) is a finite length window which is defined over the interval 0 &lt;m&lt; N—1 and is zero

outside this interval. AN is the number of samples contained in the window function. In order to

generate the coefficients of the LPC model using the autocorrelation method it is necessary to gen-

erate the first p+1 autocorrelation coefficients, where p is the order of the model. The short time

autocorrelation is defined as

N—l-k

R(k)y= 3 x(m)x(m+k)
m=0

1.3)

The major advantage of LPC analysis is that it makes use of a least squares error criterion which

yields a simple set of linear equations which can be efficiently solved for the inverse filter

coefficients, a;. The set of equations yielded by the autocorrelation analysis can be written

$ aR(|i—k)=R(D), i=1 2. 0 4)

and expressed in matrix form

R(0) R(1) R(2)
R(1) R(0) R(1)
R(2) R(1) R(0)

R(p—1;

R(p-2)

R(p-3)

R(p—1) R(p—2) R(p=3) --- R(0)

a-

[al
oO:

wllA

a,

R(1)

R(2)

R(3)

1

LR(p) -

¢ 5)

A result of using the autocorrelation method is that the matrix equation is of Toeplitz form, is

guaranteed to be nonsingular, and lends itself to efficient methods of solution. One of the most

afficient solutions to this type of matrix equation is Durbin’s recursive solution(?'!, This method is

\n iterative approach in which the i+ 1% solution is based on the i solution.

This recursion is performed as follows:
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EQ = R(0)

|R(H=S (i—-
pr DR(i-))

r(i—1)

2; () = k;

a; = g,(=V— kag; “=D 1&lt;J

ED = (1— k~ ECG—1)

LIKP

C [—]

(4.6a)

(4.6b)

(4.6¢)

(4.6d)

(4.6e)

Equations (4.6b)-(4.6e) are solved recursively for i=1,2,..., p and the final solution is given as

| E(P) (4.7)

Ay = —|

2;
= q.(2)
= @; . 1&lt;j&lt;p

where a is the total square error, also called the minimum residual error

lhe minimum residual error, a, is the energy in the signal e(n) that results when the win-

dowed signal s(n) is passed through the filter with z-transform A(z), as shown in Figure 4.1.

The minimal residual error is thus written as

JY Sem. (4.8)

The filter A(z) is known as the inverse filter or the for the sequence x(n). The coefficients k;

are known as the partial correlation or PARCOR coefficients, and are related to reflection

coefficients in an acoustic tube model of the vocal tract. One of the advantages of the PARCOR

coefficients is that they can be linearly interpolated and are guaranteed to give a stable filter. We

will take advantage of this fact when we discuss computation of the average parameter vectors.

$.2 LPC Derived Cepstral Parameters

Another parameter set that is frequently used in speech processing is the low order cepstral

coefficients of the homomorphically smoothed spectra. The properties of homomorphic systems for
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Figure 4.1. Minimum Residual Error From Inverse Filter



convolution are discussed in great detail by Oppenheim and Schafer(33]. The cepstrum is defined

as the inverse Fourier transform of the log magnitude spectrum. Samples of the cepstrum are nor-

mally computed using the inverse discrete Fourier transform, i.e.

On
1S!

Nv 2 InS x 2m: (lev , 0&lt; N- (4.9)

where X(k) is the discrete Fourier transform of the sequence x(n). One of the disadvantages of

computing the cepstrum directly from the speech signal itself is that it requires two FFT’s and a

logarithm to generate the cepstral coefficients. For an all-pole system, however, the conversion

from an LPC spectral estimate to a cepstral representation turns out to be a fairly simple matter as

we shall now see.

The Fourier series expansion for the magnitude squared of the LPC spectral estimate is given

ort &gt; wo

rvs | = PIR jko (4. 10)

vhere

5 = In |o” | (4.11)

a A

 oeMN iy) (4.12)

Atall33] presents an efficient method of converting from the inverse filter coefficients a; to the cep-

stral coefficients ¢, of the corresponding spectrum. The recursive relationship can be written as

of a

n—1

Cy = 2 (I=kim) agers, l&lt;n

n—1

ce = O (1=kln)ageo_yx, n&gt;p
jy|

C

(4.13a)

(4.13b)

{ 4 13¢)

By defining a new variable
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gy = nc, (4.14)

this equation can be rewritten in a simpler form:

J 1

n—1

gy, = Na,+ &gt; Qk 8n— k
F=1

(4.153)

(4.15b)

where a,=0 for n&gt; p. It should be emphasized that the resulting cepstrum is not what would be

sbtained directly from the sequence x(n), but is derived from the LPC spectral estimate

o/A(2).

4.3 Computing the Average Parameter Vector

As was discussed in section 2.2.6 better recognition accuracy could be expected if the segments

were to be represented by the parameter vector which is the average of all the parameter vectors

within the segment. The average in this case is the arithmetic mean of these vectors. Due to the

nature of the parameters chosen computation of the average vector can not be achieved in a straight

forward matter. The means of computing the average vector will now be discussed.

For LPC parameters the filter coefficients, aj, cannot be linearly interpolated and still obtain a

stable filter{?!] The PARCOR coefficients, however, do not suffer from this restriction as they are

directly related to the reflection coefficients of an acoustic tube model. Linear interpolation of the

PARCOR coefficients is guaranteed to give a stable filter. The method of obtaining the average

LPC parameter vector is to compute the average PARCOR coefficients by

_ 1 “

Kk; Im ——— ki(m), 1 «I&lt; p(mp—m;+1) 3 (4.16)

where m; is the initial frame and my is the final frame of the segment. The average energy,

R(0). the zero'® autocorrelation coefficient of the average filter is computed as

1 5 Rr.
RO) = Zt)2

(4.17)

where R. (0) is the energy of the m frame. The filter coefficients, @;, the autocorrelation
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coefficients of the impulse response, R(i), and the minimum residual error, &amp;, can be obtained

for the averaged representation through the following relationships. The average filter coefficients

may be obtained from the average PARCOR coefficients by the recursion

7, () =.  Lr

a; (9 — a, _ka_ UY, 1&lt;j&lt;i—1.

(4.18a)

(4.18b)

The remaining autocorrelation coefficients for the average filter are computed using the following

recursion

£0) R (0)

_ amt oAy Bod a pam

R(i) = KREU-D43a"DR(i-j),1&lt;i&lt;p
j=1

ED = (1-F(1— k?) ECD

a fad]

(4 19a)

(4.19b)

(4.19¢)

(4.19d)

The average autocorrelation coefficients for the inverse filter polynomial can be obtained from the

average filter coefficients as follows

b( n="Sa a
2Tuli; (4 20)

The average parameter vector for the cepstral representation is much more straight forward, since

the arithmetic average of the cepstral coefficients yields the cepstral coefficients of the arithmetic

average of the log spectra.

 fr, =
 1 my

(mp—m;+1) $2 alm), —® kg (4.21)

The range given for the subscript k in the above equation is minus infinity to plus infinity, how-

ever, only the first L +1 coefficients are used since the filter characteristics are contained in the low

order coefficients. Taking advantage of this and the symmetry of the cepstral coefficients the range

on k in Equation (4.21) can be limited to 0 &lt; kA &lt;L.
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4.4 Distance Measures

Distance measures have many applications in the field of speech processing and considerable

research has been done to investigate the properties of many different distance measures. A dis-

tance measure should give a value related to the similarity of the two items being considered, the

closer these items are in their parameter space the smaller this value the farther apart the greater

this value. When discussing distance measures it is normal to talk about distance metrics which

are defined over the vector space. The properties which define a metric over a vector space are the

following

4( x,y) = d(y,x)

d(x,y) &gt; 0 for xy

(4.22a)

(4.220)

=0 forx=y

d(x,y) &lt; d(x,z) + d(y,z) (4.22¢)

The property of symmetry is expressed by Equation (4.22a), positive definiteness by Equation

(4.22b), and Equation (4.22c) is referred to as the triangle inequality. When speaking of distance

it is normally assumed that the distance from x to y is equal to the distance from y to x, and the

distance between x and y is positive, except for the case where x=y and the distance is zero.

Often one or more of these properties will be not be satisfied in favor of factors more appropriate to

speech processing, such as the efficiency with which d( x,y) can be evaluated('®! or correlation of

d( x,y) to perceptual distance?!

Consider two spectral models oo / A(z) and oo ’/ A’(z). The error between these two spectra is

riven bv

V(0) = In | 021] (em) 2 | — In (e147) 2 | (4.23)

One set of distance measures which might be considered is the set of L, norms defined by
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do

(47 = JIvolrs (4.24)

The mean absolute log spectral measure is given by p=1 and the rms log spectral measure is given

for p=2. The L, norms are related to the decibel scale by the multiplicative factor

{0/In(10)=4.3429... . While the L, norms are true metrics in that they satisfy all the require-

ments for a metric given by Equation (4.22), it is computationally expensive, requiring two FFT’s

and logarithms. As a result this method is prohibitive for most applications and other measures of

acoustic similarity must be explored. In the following sections we will discuss three distance meas-

ures presented by Gray and Markel('8] which can be related to the L, norm and can be evaluated

more efficiently. Note that for all the distance measures the distance between two average parame-

ter vectors is computed in the same way.

4.4.1 Itakura s Log Likelihood Ratio

One of the distance measures discussed by Gray and Markel is the log likelihood ratio originally

proposed by Itakural’l. This distance measure is based on the ratio of the residual errors resulting

from the two spectral models that are being compared. Consider the minimum residual error a for

the sequence x(n) and the inverse filter A(z). If this sequence is passed through a different

inverse filter 4'(z) which minimizes the error a ’ for another sequence x’( nn), see Figure 4.2, the

resulting residual error, 8 , must be greater than or equal to the minimum residual error a, i.e.

5 g 2 a'ix(n—1i) | &gt;a
n=0 |i=0

14.25)

with the equality holding if and only if A(z) = A'(z). The ratio 6 /a must always be greater

:han or equal to one. The greater the difference in the sequences x(n) and x‘'(n) and thus in the

spectral models oo/A(z)ando'/4’(z) the larger this ratio. This ratio provides a measure of

acoustic similarity between the two spectral models. Typically this measure is given as the log of

the ratio and is expressed in decibels bv

4(x.x") = 4.3429 In |6/a| 4 70)
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Figure 4.2. Minimum Residual and Residual Error From Inverse Filters
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This measure is referred to as a log likelihood ratio as under certain assumptions on the data and

window size it can be shown that this ratio is equivalent to a log likelihood ratio.

The log likelihood ratio can be efficiently computed through the use of autocorrelation

sequences. The minimum residual error can be computed as follows

Y 2s b(n) R(n) 27)

b(O)R(0) +23b(n) R(n),
m=]

where b(n) is the autocorrelation of the inverse filter coefficients, a, i.e.

b(n) 5°
2 iri (4.28)

and R(n) is the autocorrelation of the sequence x(n). Since the minimum residual error is a

result of the LPC analysis it is normally saved as a component of the parameter vector and not

recomputed. The residual error, however, must be computed and is similarly given by the relation

6 = b'(0)R(0) +23 b'(n)R(n).
n=0

(4.29)

The log likelihood ratio is a nonlinear measure which gives more weighting to peaks in ¥(0)

Gray and Markel propose the following nonlinear relationship to approximate the L, norm from the

ikelihood ratio

dy, = V2(6/a—1) for |V(0)]| &lt;&lt;]. (4.30)

This relationship was discarded in favor of using the distance measure as it is defined in Equation

(4.26) in order to demonstrate the relative performance of this widely used distance measure.

4.4.2 The Cosh Distance Measure

One of the drawbacks to the log likelihood ratio is that it is not a symmetric measure, i.e.

d(x,x’) % d(x’,x). (4.31)

[t is a desirable property of a distance measure in speech processing that the distance between two

spectral models be independent of which model is chosen as the test and which is the reference.
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Gray and Markel{!®! propose a symmetric distance measure based on the average of two nonsym-

metric likelihood ratios. The possible combinations for computing similarity between test and

reference data using the residual error are shown in Figure 4.3. As can be seen that by reversing

the sense of test and reference in the log likelihood ratio we obtain another ratio, 6 ‘/a’, which is

computed in exactly the same way as in Equations (4.27) and (4.29). with primes added as

appropriate.

{f a maximum likelihood formulation to linear prediction is used making the assumptions that

the speech was generated by a Gaussian process passed through an all-pole filter and the analysis

window length is much greater than the filter order the following integral results

~ { 4J le ©_yg)—1
de
Yar

(1.32)

Gray and Markel show that this integral can be written in terms of the likelihood ratios as

= = (alo)? (8/a) — 2In(o/a’) —1. (4 33)

{f the gains are taken to be equal we obtain

S/la =14+= (4.34)

[f the roles of the test and reference are reversed, see Figure 4.2, we can write the reverse likeli-

hood ratio, switching the primes

—
- 7

 -_ = (0/0)? (8'/a’) = 2In(o’/o) — 1 (4.35)

and with equal gains,

 ry a’ =14 = (4.36)

vhere

f = fers v(o)—1|22 (4.37)

Note that changing the roles of test and reference spectrum is equivalent to replacing V(8) with

Vl &gt;
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A symmetric distance measure can be arrived at by simply averaging the two nonsymmetrical

terms = and = ’. This is written as

) = E+E) = J feoshr@1-1 | 20
ll | 27

4.38)

This is arrived at by averaging the integrals of (4.32) and (4.37). Substituting the expressions for

= and EZ’ in Equations (4.33) and (4.35) respectively we obtain the relation

Q — (alo) (bla) + 2(o"10)3(8" a") _1. (4 39)

(f the gains are taken to be equal, {} reduces to

0 dla+8/a’ 1 (4.40)

the arithmetic mean of the likelihood ratios minus one. The value of is related to the decibel

scale by defining @ in terms of the inverse function used in the integral

~rosh(w)—1 = } (¢ 41)

solving for we have

w= |l +0 + VIET | (4.42)

The measure given by w is referred to as the cosh distance measure due to the form of the

integrand of Equation (4.38) and can be efficiently computed using the likelihood ratios and Equa-

tions (4.40) and (4.42). The cosh measure, w, is converted to decibels by multipling by the fac-

tor 4.3429. It can be shown that the cosh distance measure is always larger than the rms measure

d, and approaches it for small values of V( 8)

1.4.3 The Cepstral Distance Measure

Consider the expression for the L, norm

dé

(a)? = frog (4.43)

Jsing Parseval’s theorem and the relationship given in Equation (4.9) this measure can be written
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(dy)? = 2 (c—c'x)?. (4.44)

Unfortunately this relationship only demonstrates that the L; norm can be computed from the cep-

stral coefficients if an infinite number of terms are included. Gray and Markel suggest the use of a

truncated series to compute an approximation to (dy)?. They refer to this cepstral distance meas-

ure as u( L), which is written as

L

[u(L)]2 = 3 (x—c'x)?
k=L

4 45)

L

(o— co)? +23 (cx—c’y)?
k=1

where L is the number of terms in the series. The cepstral distance measure u(L) can be inter-

preted as the rms distance between the spectral models after each has been homomorphically

smoothed to L terms. As the number of terms increases, u(L) approaches d; from below and in

the limit

lim u(L) = 4, (4.46)

[his measure provides a convenient method of approximating the rms log spectral measure, d,.

The question of how many cepstral coefficients are necessary to adequately represent the spectral

model was addressed by Gray and Markell!'®!. Since the first p cepstral coefficients, not including

the gain term ¢,, uniquely determine the filter coefficients ay, it is necessary that L be greater than

or equal to p. If L is less than p the positive definiteness property of the distance measure is des-

troved. Their work shows that even for the minimum number of coefficients, L =p, the u(L)

distance measure is strongly correlated to the L, norm, with a correlation coefficient of 0.98.

4.5 Summary

In this chapter we have discussed the LPC and LPC derived cepstral speech parameters that

were chosen for our system. The means of computing these parameters. and their averages, has



been covered as well as the distance measures over these parameter sets that were considered. In

he following chapter we will discuss the experiments undertaken and the results of these experi-

ments



5. Experimental Work and Results

In the preceding chapters we have discussed the concept of segmentation for data reduction and

presented a generalized acoustic segmentation system. The principles of Dynamic Time Warping

and the mathematical formalism used by Myers et.al.[®] were covered in some detail. Three

methods of incorporating durational information into the DTW algorithm were presented. We also

discussed the methods of computation of the speech parameters and the distance measures used in

this work. In this chapter we will discuss the experimental work that was carried out to demon-

strate these concepts and present the results.

5.1 The Test Corpus

The vocabulary used in all our experiments was the 30 word calculator task shown in Table 5.1.

This vocabulary is of a reasonable size and provides several easily confused words, such as "store"

and’ "four", or "A" and "eight". This vocabulary was chosen as opposed to the English alpha-digit

vocabulary, because it contains predominately polysyllabic words and better demonstrates the

advantages that are gained from data reduction by acoustic segmentation. Since many of the words

of the alpha-digit vocabulary are simple consonant-vowel combinations, thé calculator task pro-

vides a wider range of phonetic transitional characteristics and is a more rigorous test of the seg-

mentation system.

Four speakers were used in these experiments, two female (CAB, JAJ) and two male (CDB,

RDB). Six repetitions of the calculator task were recorded for each speaker and were recorded in

two sessions of three repetitions each. The recording sessions were separated by a period of a week

in an attempt to avoid speaker bias that might arise from repetition within a short time interval.

The vocabulary list was randomized prior to the recording sessions to prevent particular word

sequences from influencing speaker pronunciation. The speech was recorded in a quiet room with a

Sony lapel microphone. The speech was subsequently processed by the system shown in Figure 5.1

and described here. The analog speech signal s(t) was lowpass filtered to 4.8 KHz, sampled at

.0 KHz, and linearly quantized to 12 bits to obtain the digitized signal s(n). The digitized
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A

B

add

cosine

degrees
delete

divide

eight
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five

four
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multiply
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ne
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tWO

7ero

# PHONEMES ARPABET TRANSLATION
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SIHKS
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ZIY ROW

TABLE 5.1. Calculator Task Vocabulary
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speech signal was pre-emphasized with a pre-emphasis factor of 0.95. The endpoints of the utter-

ances were determined using the endpoint detection system described by Lamel et.al.(2!1, No

attempt was made to correct errors in the endpoints as it was felt that this procedure would more

closely approximate a true operating environment for the speech recognition system. For some

speakers the stop burst from word final stop consonants would occasionally be missed. This did

not, however, present a significant problem to the word recognition system. After the endpoints

were determined, a tenth order LPC parameter vector was generated every 15 ms using a 25.6 ms

Hamming window. If a cepstral representation was desired these LPC coefficients were converted

using the recursive relation described in Chapter four to obtained the first eleven cepstral

coefficients, ¢;, k=0,1,...10. The parametric representation was then segmented and compressed

using the acoustic segmentation system discussed in Chapter two. The threshold for the segmenta-

tion was determined from statistics for the distance measure over the entire corpus. The reference

dictionary was speaker dependent, with the first repetition for each speaker arbitrarily chosen as the

reference set and the remaining five were used as test data. The Dynamic Time Warping algo-

rithms used for these experiments are those specified in chapter three. The Type I local continuity

constraints and the weighting function discussed in chapter three were used for all experiments.

The decision rule was simply choosing the word associated with the minimum total distance. The

entire system was implemented on a Digital Equipment Corporation PDP-11/60 minicomputer in

the "C" programming language. Before we discuss the experimental work we should discuss the

performance measures that were used to evaluate the DTW algorithms.

5.2 Measures of Relative Performance

There are several measures of performance which must be considered in evaluating an isolated

word recognition system. First and foremost is the recognition accuracy. A system which cannot

accurately recognize the input speech is of little use no matter how efficient in computation and

storage it may be. The higher the recognition accuracy, or conversely the lower the error rate, the

better the recognition system. We will use percent error to express this measure of performance.

Percent error is written



Q

percent error = Gf _raonier Suess 100%
- : 0.

total # of guesses
(5.1)

Computation time is another performance measure that is of great importance. If the computation

time is excessive then the vocabulary size may have to be restricted to allow recognition within a

reasonable amount of time, limiting the usefulness of the recognition system. The most useful

measure of computation time is the average time per word compare, or warp. This is usually

expressed as seconds per warp. A third measure of performance is the the amount of storage

required for the speech templates. This factor can also limit the vocabulary size in a speech recog-

nition system by placing restrictions on the size of the reference dictionary. The storage require-

ment, when considering data reduction, can be expressed as a percentage of the amount of data

used in the normal case. We will use percent compression as the measure of performance in

minimizing storage. Percent compression is written as

percent compression = tof frames — 3 of segments,# of frames 100%. (5.2)

In actuality the percent compression will be slightly less than this, since the segment duration

component is added to the segmented representation. However, this information can be encoded

in a relatively small number of bits and does not significantly effect the amount of storage required.

[t is interesting to evaluate recognition accuracy in terms of percent compression and computation

ime in order to determine what tradeoffs exist between these three factors. In the following sec-

tion we discuss the experiments that were performed and the results of these.

5.3 Experiments and Results

Four different experiments were carried out for this thesis. The first of these was a comparison

of the performance of the three distance measures. This experiment represents the best perfor-

mance in terms of recognition accuracy we can expect for isolated word recognition using previ-

ously tested methods. The second experiment tests the performance of the Method 1 algorithm for

handling durational information, which ignores the durational component of the segmented tem-

plates. The third experiment tests the Method 2 algorithm for handling durational information by

weighting the local distance by the average of the segment lengths. The fourth experiment tests the
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Method 3 for handling durational information, which expands the segments to their original

length. If our methods of improving storage and computation give recognition score as good or

better than for the first experiment then the use of these methods is clearly advantageous.

EXPERIMENT I: This experiment was conducted to determine the relative performance of the

three distance measures presented by Gray and Markel in isolated word recognition for the unseg-

mented case. Each distance measure was used for the local distance d(R(n),T(m)) in the nor-

mal DTW algorithm. The normal DTW algorithm, as was covered in chapter three, is specified as

follows: the local distance is given by

d(n,m) = d(R(n),T(m)) (Z.3a)

he normalization factor by

N(W)=N+M “~.3b)

and the minimum total distance by

N(W)
(5.3c)

As was previously stated no segmentation was used in this experiment, i.e. the threshold was set to

zero. Note that as the threshold is lowered the amount of data compression that occurs is reduced

and the representation naturally degenerates to the unsegmented case as the threshold approaches

zero. This experiment sets our baseline for computation, storage, and recognition accuracy and

the results from the remaining experiments can be evaluated in relation to this experiment. This

experiment was conducted for each speaker using the first repetition of the vocabulary as the refer-

ence and the remaining five as the test data. The error rates, in percent error, for each distance

measure are given in Table 5.2 and are also shown in Figure 5.2.

As can be seen from these results the cosh distance measure gave the lowest error rate overall

[he cepstral distance measure performed slightly poorer and the log likelihood ratio performed

poorest of the three. These error rates correspond well with previous work done in isolated word

recognition. Qur criterion for deciding which distance measure was to be used in the remaining
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speaker

CAB(f)
CDB(m)
JAJ(f)
RDB(m)
overall

cosh

3.353

2.04

1.33

J) 00

1.69

distance measure

cepstral
33

4.08

2.00

7.00

3 36

Itakura

6.67.
2.68

4.00

0.68

3.53

TABLE 5.2. Percent Error for Three Distance Measures, No Segmentation.
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experiments was the error rate alone. Consequently the cosh distance measure was chosen for

experiments in segmentation, Although similar results for the remaining experiments could be

expected for the other distance measures.

The remaining experiments compare the performance of three methods of handling durational

information for three levels of data compression, 50%, 75%, and 90%. In order to determine the

necessary thresholds for these compression ratios a histogram of the cosh distance contours for the

entire corpus was made. This histogram is shown in Figure 5.3. The histogram was used to

determine the threshold at which the ratio of number of times the distance, d(R(m),C(m)),

exceeds the threshold to the total number of distance points yields the desired compression. Using

this approach it was determined that a threshold of 5.75 dB gave approximately 90% compression,

3.75 dB gave approximately 75% compression, and 2.5 dB gave approximately 50% compression.

Table 5.3 gives the actual compression ratios that were obtained for these thresholds. Note that

the actual percent compression is less than predicted from the histogram. This was due to the fact

that the number of segments in an utterance is always the number of times the distance contour

exceeds the threshold plus one, there must always be at least one segment per utterance. This fact

was not taken into account in determining the thresholds and the compression ratios that are shown

in Table 5.3 are those that were used for all the remaining experiments.

EXPERIMENT II: In chapter three it was argued that recognition accuracy could be improved by

ignoring the durational component in the segmented templates. This experiment tests this

hypothesis by ignoring the durational component and applying the DTW algorithm directly to

parameter vectors of the segmented templates. This method was implemented by using the

specifications discussed in chapter three for Method 1, the local distances are given by

d(n.m) = d(R(n).T(m)). (5.4a)

he normalization factor

N(W) = SE p(N) + SLip(M), \ =~
 &amp; . 1b)

and the minimum total distance
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speaker

CAB(f)
CDB(m)
TAI(f)
RDB(m)
overall

$75

88.3

87.7

87.7

R46. 9

I  f

threshold (dB)

2.75

TR.

70.6

73.8

78.Q

 x

2.50

49.9

41.5

44.8

52.1

46.8

TABLE 5.3. Actual Percent Compression for Three Thresholds
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(5.4¢)

This experiment was conducted for each speaker using the first repetition as the reference and the

remaining five as test data. The error rates, in percent error, for each of the compression rates for

Method 1 are given in Table 5.4.

As can be seen from these results error rate increases significantly with percent compression.

Even for 50% compression the overall error rate has increased more than 5% over the unseg-

mented case. This is considerably worse than indicated by previous work{!?l. One reason for the

high error rate is that a considerable amount of information is contained in the segment durations

and that ignoring this information reduces recognition accuracy. Since the parameter vectors in the

segmented templates generally represent more than one frame of speech data, the contribution of

the local distance between test and reference segments is a significantly smaller factor than is actu-

ally required for more accurate recognition. In the following experiment Method 2 is used to

mprove recognition accuracy by weighting local distances in the DTW algorithm on the basis of

segment duration.

EXPERIMENT III: In this experiment Method 2 is used to incorporate durational information

into the solution, i.e. the local distances computed between parameter vectors of the segmented

test and reference templates are multiplied by the average of the durational components. The

specification for this method, as discussed in chapter three, is given by the local distances

Lg(n)+ Ly(m) - =
In. my = 27 RTL dR). T(m)). (5.53)

he normalization factor

N(W)=N+M, (5.5b)

and the total accumulated distance is

oy _ Da(Star(N). Shap)
N( |

(5.5¢)

This approach does not significantly increase the amount of computation over Method 1, yet it still
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speaker

CAB(f)
CDB(m) |

JAJ(f) |
RDB(m) |

overall

0%

3.33

2.04

1.33

0.00

%Q

;

percent compression

50% 15%
10.7 20.7
4.00 11.3
4.67 21.3

7.53 17.8

6.7 17.8

90%

38.7

35.3

45.3

38.4

39.4

TABLE 5.4. Percent Error for Segmented Templates, Method 1
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incorporates the durational information into the solution. Table 5.5 shows the percent error for

each of the compression rates using this method.

The results obtained from weighting the local distances did not improve the recognition accu-

racy and for the most part gave poorer recognition results than the previous method. A possible

explanation of the poor performance of both these methods is that the nonlinear compression

brought about by the segmentation algorithmcauses the required time alignment path to be more

drastic than for the unsegmented case. Consequently regions of similar acoustic characteristics in

the two segmented templates may fall outside the allowable range or slope constraints for time

alignment in the DTW algorithm. The weighting function used for Method 2 based on segment

durations does not effect the local or global range constraints and thus cannot improve recognition

accuracy.

EXPERIMENT IV: Method 3 eliminates the nonlinear time compression from the segmented tem-

plates by expanding the segments to their original length. This was achieved by repeating the seg-

mental average the appropriate number of times, i.e.

R‘(n) = R(SR,p(n)), n=12,....N

IT'(m) = T(STp(m)), m=12,....M

(5.6a)

(5.6b)

Dynamic Time Warping was then carried out on the expanded templates. While this method

requires more computation than the previous two, it still gives savings over the unsegmented case.

The Method 3 DTW algorithm is specified by the local distance

d(n.m) = d(R(SRp(1)), T(Skp(m))). (3.72)

‘he normalization factor

N(W)=N+ M. (5.7b)

and the minimum total distance is

D = DN, M)

N(W)
 § HY)
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speaker

CAB(f)

CDB(m) |JAJ(f)
RDB(m)

overall

0%

edd

2.04

1.33

0.00

percent compression

50% 715%

12.3

5.33

4.67

7.53

4.6

90%

40.0

36.0

43.3

30.8

 7 6

TABLE 5.5. Percent Error for Segmented Templates, Method 2
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This is similar to the approach taken by Tappert and Das('?] in their work. This experiment was

-arried out for each speaker using the first repetition of the vocabulary as the reference and the

remaining five as test data. Results from this experiment are shown in Table 5.6. This approach

gives substantially better recognition accuracy than the previous two methods and the results agree

more closely with those given by Tappert and Das. Figure 5.4 shows the overall recognition per-

formance of the three methods in percent error as a function of compression. From this figure we

can see the general trend reflected in the error rate as it increases with percent compression. Error

rates for Methods 1 and 2 increase at roughly the same rate, while the error rate for Method 3

increases more slowly but begins to accelerate above 75% compression. This indicates that the

segmented representation begins to deteriorate quickly above 75% compression.

We have considered the performance of all methods and distance measures in terms of recogni-

tion accuracy as function of distance measure and percent compression. The performance of these

algorithms should also be evaluated in terms of computation. Table 5.7 contains the average com-

putation time in seconds per warp for each of the three methods, these results are also plotted in

Figure 5.5. The amount of computation required for the first two methods drops off more quickly

with compression than that required for the expansion method. However, the recognition accuracy

s significantly better for this method.

Let us now consider the tradeoffs between computation and percent error. Figure 5.6 shows

overall percent error for each of the three methods as a function of computation time. This

demonstrates the trade off between computation and recognition accuracy, we can see that the

break even point in terms of recognition accuracy for the three methods is somewhere about 7%

arror and 5 sec/warp. If one is willing to accept a slightly higher computation time Method 3 is

definitely superior to either Methods 1 or 2.

y 4 Summary

In this chapter we have presented the experimental work carried out in support of this thesis.

The results of this work demonstrate several points. The cosh distance measure was shown to give
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speaker

CAB(f)

CDB(m) |JAI()
RDB(m)
overall

0%

3.33

2.04

1.33 |
0.00

1 69

percent compression
50% 75%

3.33 6.00

2.67 4.00

1.33 | 4.67

1.37 4.11

4.70

90%

19.3

20.0

21.3

21.9

20.6

TABLE 5.6. Percent Error for Segmented Templates, Method 3
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0%
sl.3

17.3

17.3

percent compression
50% 15%
4.17 0.89
4.26 0.89

7.76 5.04

50%

0.18

| 0.18
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TABLE 5.7. Average Computation Time (sec/warp) for Three Methods of Handling Duration
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better recognition performance than either the log likelihood ratio or the cepstral distance measure

in isolated word recognition using the normal DTW algorithm. None of the methods of handling

segment durations tested gave better recognition accuracy than the unsegmented case. Acoustic

segmentation cannot give improvements in recognition accuracy, however, it does give improve-

ments in computation and storage without significantly degrading recognition accuracy. Acoustic

segmentation gave savings in computation and storage with out significantly degrading recognition

accuracy only if the segments were expanded prior to recognition. This method gave a savings of

47% in storage and 52% in computation without significantly degrading recognition accuracy.

This result is slightly poorer than those reported by Tappert and Das{!2]. One reason for this is

that the English alpha-digit vocabulary was used in their experiments and the arguments for

improved recognition discussed in Chapter three are more applicable with the alpha-digit vocabu-

lary. One possible explanation of this result is that the time alignment for segmented templates

without expansion exceeds the slope and range constraints of the normal DTW algorithm. It is

possible that relaxing the global range and slope constraints could improve recognition accuracy.

Unfortunately it is likely that this would allow totally unreasonable time alignments, counteracting

any improvement in recognition accuracy obtained from segmentation. Whatever means are used it

is clear that segmental duration is an important factor in pattern matching techniques.
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6. DISCUSSION

In the preceding chapters we have discussed acoustic segmentation for data reduction and

demonstrated the performance improvements that can be obtained for isolated word recognition.

In this chapter we will discuss how this technique could be useful for other speech recognition

problems as well as make recommendations for future work. One point which should be

emphasized is that the methods discussed in this thesis do not make any fundamental changes to

the basic DTW algorithm and that it can easily be used in any system which makes use of this basic

algorithm. Many applications of Dynamic Time Warping have been suggested aside from isolated

word recognition. For example, techniques have been proposed for applying Dynamic Time

Warping to word spotting!**! 3] and connected word recognition!*! B71. The data compression

techniques discussed in this thesis can be applied to these algorithms as well. Techniques for

improving computation time of DTW algorithms, such as range limiting[®! or using the locally

optimum path!!! do not change the basic DTW algorithm and can be applied to any of the

methods discussed in chapter three to obtain further improvements in computation.

One implication of our work is that the use of this technique of data reduction could be used for

savings in storage alone. In systems for which computation is not an issue, for example the mul-

tiprocessing array proposed by Ackland, et.al.[38] [391 the reference dictionary could be stored in

compressed form and be expanded for comparison to the uncompressed input. Clearly if this is the

case then any technique for bandwidth compression, such as variable frame rate vocoding(*!, could

aqually be used. Experimental work should be undertaken to determine what savings in storage

can be obtained using this type of approach.

6.1 Recommendations for Further Work

There are two areas in which future work could be suggested. The results of our experimental

work indicate that this approach to data reduction will allow significant reductions in both storage

and computation without sacrificing recognition accuracy. It is quite reasonable to expect that

sven greater savings can be effected if improvements were made in the segmentation and DTW



algorithms.

6.1.1 Suggestions for Segmentation

One factor that was not evaluated in our experimental work was the effect of the comparison

frame of the segmentation algorithm. It would be useful to evaluate the impact of this choice on

recognition accuracy in the DTW algorithm. One problem with using the adjacent frame as the

comparison frame is that slow transitions will be missed and a segment with a rather large net

acoustic change will be averaged giving a poor representation of the segment. The use of the aver-

age frame of the current segment so far while having greater overhead would most likely result in a

better segmentation and consequently better recognition accuracy.

Another factor which plays an important role in the segmentation algorithm is the boundary

decision. In our system the thresholding algorithm was chosen for simplicity and ease of imple-

mentation. The use of a more sophisticated boundary decision algorithm, such as a peak picking

algorithm, could result in a better segmentation.

6.1.2 Suggestions for DTW Algorithms

As was discussed in chapter five one reason for the poor performance of Methods 1 and 2 was

he effect of the nonlinear compression causing significant features of the two utterances to fall out-

side the global range constraints. In order to verify that this is indeed the case it would be worth

while to test these methods using a local continuity constraint that had a greater range of slope. If

this improved the recognition accuracy we could conclude that this was the reason for the poor

recognition accuracy of Methods | and 2 in our experiments. One disadvantage of relaxing the

slope constraints is that the number of paths to be traced is increased and the potential for unrea-

sonable time alignments could arise.

One of the disadvantages of the Method 3 algorithm is its computational performance. Because

the number of paths which must be traced is same as for the normal DTW algorithm the computa-

sional savings is not as great as for Methods 1 or 2. A possibility for improving the performance of

‘his algorithm is to take advantage of the constant distance areas that occur in Method 3 from the



intersection of expanded segments. By proposing a modified local continuity constraint the number

of paths which must be traced can be reduced.

Consider the constant distance area represented by the intersection of a test and reference seg-

ment shown in Figure 6.1. In this figure n; and m; are the initial frames for the reference and test

segments respectively. The final frames for the reference and the test segments are ny and my. In

the recursive definition of the DTW algorithm a path could potentially enter this area anywhere

along the top or right sides of this rectangular area and exit at any point along the bottom or left

sides which falls within the angle formed by slope constraints, as shown in Figure 6.1. Using local

continuity constraints as specified in chapter three there are many paths which must be traced

through this region. Since the distance between test and reference is constant through out this

-egion, the path through this rectangular area will be of constant slope. In an area of constant dis-

tance a linear path is optimum. It is not known apriori what the slope of the optimum path will be

‘hrough this region be, so it is necessary to test all possible constant slope paths. The number of

constant slope paths will be considerably less than the paths given by the local continuity con-

straints of chapter three. For larger segments the difference in the number of paths will be greater.

if we specify a modified local continuity constraint which only tests the constant slope paths the

amount of computation required for comparing two utterances is reduced.

(f we apply a slope constraint to the time alignment path of

| | Eppax &lt; slope &lt; Epqx (6.1)

hen the set of valid exit points ( k,/) which can be reached from an entry point (n,m) is given

n—n;
or | (m;&lt; [oo + mand k=n;) or (n;&lt; k&lt; Eyqqy(n—n;) + mand I=m;) (6.2)

MAX

These merely represent the set of points along the lower and left sides of the constant distance area

which fall within the angle formed by the slope constraints, as shown in Figure 6.1. We can

specify this algorithm similarly to the way in which the other methods were specified in chapter

hree. In addition we must also specify the local continuity constraint. The local distance, for
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/ i) =2(i(k)-n) +m
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(n,,m,)
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Figure 6.1. Constant Distance Area and Legal Range of Exit Points
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efficiency, is given by the distance between the segmental representative vectors,

d(n,m) = d(R(SK4p(n)), T(Sfap(m))), (6.3)

the recursive definition for the accumulated distance, or the local continuity constraints, can then

be given bv

D(n,m) =

min

- n—n;

D(k—=1,1)+W(n,k,m,l)-d(n,m) for k= n;, ml =m)
Epax

. (n—n;)

D(k—1,1-1)+ W(n,k,m,l)-d(n,m) for k=n;, m&lt;&lt;I&lt;K————+m
Epax

D(k—1,1—1)+W(n,k,m,1)-d(n,m) for I=m;, m&lt;k&lt;Eyx(n—n;)+m

Dk, I=1) + W(n,k,m,1)-d(n,m) for I=m;, mi&lt;k&lt; Epqx(n—n;)+ m!

(6.4)

where W(n,k,m,l) is a weighting function that is based on the length of the path through the

constant distance area. In order to account for segments of one frame in length the weighting

function should be

Win. k.m,!]) =
[(n=ky+(m—1)if Lg(n)s%1 and Ly(m)z£1

otherwise (6.5)

This corresponds to the type d weighting function of Myers et.al. [®] which gives a normalization

factor of

N(W)=N+M (5.6)

Consequently the minimum total distance is given by

5 D(N, M)

N( ND
(6.7)

While the local continuity constraint is significantly more complex the potential for computational

savings remains. In order to implement this approach efficiently an additional component, the seg:

ment initial frame number n;, must be added to the parameter vector for the segmented represen-

ation
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