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ABSTRACT
To improve the performance of scanning and filtering, modern an-

alytic data systems such as Amazon Redshift and Databricks Delta

Lake give users the ability to sort a table using a Z-order, whichmaps

each row to a "Z-value" by interleaving the binary representations of

the row’s attributes, then sorts rows by their Z-values. These Z-order

layouts essentially sort the table bymultiple columns simultaneously

and can achieve superior performance to single-column sort orders

when the user’s queries filter over multiple columns. However, the

user shoulders the burden of manually selecting the columns to

include in the Z-order, and a poor choice of columns can signifi-

cantly degrade performance. Furthermore, these systems treat all

columns included in the Z-order as equally important, which often

does not result in the best performance due to the unequal impact

that different columns have on query performance. In this work,

we investigate the performance impact of using Z-orders that place

unequal importance on columns: instead of using an equal number of

bits from each column in the Z-value interleaving, we allow unequal

bit allocation.We introduce a technique that uses Bayesian optimiza-

tion to automatically learn the best bit allocation for a Z-order layout

on a given dataset and query workload. Z-order layouts using our

learned bit allocations outperform equal-bit Z-orders by up to 1.6×
in query runtime and up to 2× in rows scanned.
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1 INTRODUCTION
Scanning and filtering data is an important operation in analytical

databases. To improve scan performance, analytic databases often

horizontally partition tables into blocks and maintain a zone map for
each block, which contains metadata such as minimum/maximum

values per column [2]. When performing scans, the database engine
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first checks each zonemap todetermine if any relevant recordsmight

exist in the block and only scans the blocks that are relevant to a

query.

To increase the likelihood that blocks can be skipped, users typ-

ically sort their tables by a column that is commonly used in fil-

ters. For cases in which a table is commonly filtered by multiple

different columns, some analytic databases support multi-column

sort orders. One commonly used sort order technique involves a

multi-dimensional space-filling curve called theZ-order,whichmaps

multi-dimensional data to scalar “Z-values” while preserving the

locality of the data points: points that were close together in the

multi-dimensional space would still be close to each other on a one-

dimensional line after sorting by theirmappedZ-values. TheZ-value

for a record is calculated by interleaving the bits of the binary repre-

sentationof the columnvalues in a round-robin fashion. For example,

Fig. 1a shows how a record with two three-bit columns is mapped to

a four-bit Z-value by interleaving the first two bits from each column

value.

Systems such as Amazon Redshift and Databricks Delta Lake

allow users to sort on multiple columns using Z-orders. However,

the Z-order is typically not constructed over all columns of the ta-

ble (e.g., if sorting by a particular column has no impact on query

performance, then there is no reason to include it in the Z-order).

Therefore, users must manually choose which columns to include

in the Z-order. One heuristic approach they might take is to choose

the top 𝑛most important columns, where importance is defined by

the average selectivity of filters over the column or the frequency

with which the column is used in filters. However, a poor choice of

columns might result in scanning many more rows than necessary

that are not relevant to the query.

Furthermore, these systems give equal weight to the columns

included in the Z-order, in the sense that a roughly equal number of

bits from each column are included in the Z-order value due to the

round-robin nature of bit interleaving. Such an approach, however,

might not result in the best performance, since different columns

have different amounts of impact on query performance.

Therefore, in this paper, we consider Z-order layouts in which un-
equalweight is placed on different columns. Fig. 1 shows an example

where allocating an unequal number of bits to each column results in

better performance than equal bit allocation. This example table has

64 records and two columns, 𝑥 and𝑦, and each record is visualized

as an (𝑥,𝑦) point on a two-dimensional plane. We consider four-bit

Z-values: the Z-value for each (𝑥,𝑦) coordinate pair by interleaving
the bits of the 𝑥 and𝑦 columns. Using Z-ordering, we can arrange
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y 0 1 2 3 4 5 6 7

x 000 001 010 011 100 101 110 111

0 000 0000 0000 0001 0001 0100 0100 0101 0101

1 001 0000 0000 0001 0001 0100 0100 0101 0101

2 010 0010 0010 0011 0011 0110 0110 0111 0111

3 011 0010 0010 0011 0011 0110 0110 0111 0111

4 100 1000 1000 1001 1001 1100 1100 1101 1101

5 101 1000 1000 1001 1001 1100 1100 1101 1101

6 110 1010 1010 1011 1011 1110 1110 1111 1111

7 111 1010 1010 1011 1011 1110 1110 1111 1111

(a) A Z-order configurationwith equal bit allocation (2 bits each from
columns 𝑥 and 𝑦) in four blocks being scanned.

y 0 1 2 3 4 5 6 7

x 000 001 010 011 100 101 110 111

0 000 0000 0000 0000 0000 0001 0001 0001 0001

1 001 0010 0010 0010 0010 0011 0011 0011 0011

2 010 0100 0100 0100 0100 0101 0101 0101 0101

3 011 0110 0110 0110 0110 0111 0111 0111 0111

4 100 1000 1000 1000 1000 1001 1001 1001 1001

5 101 1010 1010 1010 1010 1011 1011 1011 1011

6 110 1100 1100 1100 1100 1101 1101 1101 1101

7 111 1110 1110 1110 1110 1111 1111 1111 1111

(b) A Z-order configuration with unequal bit allocation (3 bits from
column 𝑥 and 1 bit from column 𝑦) results in two blocks being scanned.

Figure 1: Example of two possible Z-order data layouts on a table with two integer columns, 𝑥 and𝑦, each with domain between
0 and 7. The table contains 64 unique records, each of which is visualized as an (𝑥,𝑦) point on a two-dimensional plane, and each
block contains 4 records. If a query needs to find all points that satisfy the filter (𝑥 ≥ 1 AND 𝑥 ≤ 2 AND 𝑦 ≥ 0 AND 𝑦 ≤ 3), a Z-order
configuration with an uneven bit allocation (b) results in fewer blocks scanned than one with an equal bit allocation (a).

the two-dimensional pairs on a one-dimensional line (Fig. 1a), which

follows a “Z” shape, hence the name “Z-order curve.” The block size

is four records; block boundaries are indicated by the black dotted

lines, which split the Z-shaped curve into blocks of four records each.

Note that tuples with the same Z-order value can be arranged in

any order on the one-dimensional line; the line in the figure shows

one possible ordering. Imagine that we are searching for records

with an 𝑥 value between one and two and a𝑦 value between one and

three. Since our data is two-dimensional, we are essentially looking

for records that fall within the rectangular query space where the

lower bound (upper left corner) is at [𝑥 = 1,𝑦 = 0] and the upper

bound (lower right corner) is at [𝑥 =2,𝑦=3]. Fig. 1a shows an equal
allocation of bits to columns:we interleave the bits by taking the first

bit of the 𝑥 column, the first bit of the𝑦 column, the second bit of the

𝑥 column, and the second bit of the𝑦 column. For this configuration,

four blocks intersect the query rectangle and are scanned.

In Fig. 1b, we show another layout where we allocate three bits to

the 𝑥 column and one bit to the𝑦 column. The Z-value is computed

by taking the first bit of the 𝑥 column, the second bit of the 𝑥 column,

the third bit of the 𝑥 column, and the first bit of the𝑦 column. This

configuration results in improved query performance, with only two

blocks being scanned, half of that in Fig. 1a. This demonstrates the

importance of considering the weight of each column in the Z-order:

the filter over column 𝑥 is more selective than the filter over column

𝑦, so for this particular query, sorting by column 𝑥 is more impactful

than sorting by column𝑦, and so the Z-order bit allocation should

reflect their relative importance.

In line with the insight that the default approach of allocating

equal bits to columns might not result in the best performance, we

propose an approach to automatically choose the best unequal-bit

Z-order configuration for a given dataset and query workload. We

use Bayesian optimization to search over possible configurations

and evaluate each candidate configuration by using a cost model to

estimate the average query runtime under that configuration.

One non-obvious insight we gained through our investigation

is that only the first 𝑘 bits of the Z-value really matter in improv-

ing query performance. However, the value of 𝑘 varies depending

on the dataset and workload characteristics, and it is important to

set 𝑘 appropriately: if 𝑘 is too small, we miss out on performance,

and if 𝑘 is too large, then Bayesian optimization may not be able to

explore the large search space efficiently. Instead of tuning 𝑘 as a

hyper-parameter, which would require running the Bayesian opti-

mizationmultiple times,we instead directly embed𝑘 as an additional

parameter in our Bayesian optimization formulation.

We evaluate the performance of Z-order layouts using our learned

bit allocations against several baselines, including equally-weighted

Z-orders over manually selected columns and range partitioning

over a single column, over four real-world workloads. Our bench-

marks show that our learned Z-order layouts achieve up to 1.6×
better query runtime performance and 2× improvement in rows
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scanned compared to equal-bit Z-orders and up to 5× better query

performance compared to range partitioning.

The remainder of the paper is organized as follows. Section 2

provides background. Section 3 presents our approach to producing

the best Z-order layout for a particular dataset and query workload.

We evaluate our learned Z-order indexes and discuss some of the

insights gained in Section 4. Finally, Section 5 concludes the paper

and identifies areas for future work.

2 BACKGROUND
In this section, we review the usage of zone maps and Z-order in

commercial database systems and prior work on Z-order indexes

and other multi-dimensional layouts.

Per-block zone maps, which track summary statistics such as

the minimum and maximum value of each column in the block, are

the predominant form of data-skipping indexes in modern analytic

systems. Zone maps allow blocks that do not satisfy the scan filter

predicates to be skipped, thereby improving scan performance. Zone

maps are used by Amazon Redshift, Azure Synapse, and Snowflake,

as well as data lakehouse systems such as Databricks Delta Lake that

run on open formats such as Parquet and ORC that store zone map

information in the file footer. Zone maps are coarse-grained indexes

in the sense that they store metadata at the block level, and they are

prevalent in analytic systems that support large scans. On the other

hand, fine-grained row-level indexes such as the B+ tree are more

prevalent in OLTP-oriented databases.

Zonemaps aremost effectivewhen the table is sorted, so rows that

are filtered by the same queries are typically co-located in the same

blocks. Databricks Delta Lake [8] andAmazon Redshift [3] both give

users the ability to sort tables over multiple columns using Z-orders.

In the case of Amazon Redshift, this is called an interleaved sort key

since Z-values are computed by interleaving the bit representations

of column values. Currently, users of these systems must manually

specify the columns to use in the Z-order.

Analytic systems also often support a form of multi-column sort-

ing based on compound sort keys, which sort by multiple columns

in succession. In compound sort keys, there is a clear order of im-

portance to the columns, whereas in Z-order, all columns are treated

roughly equally. Therefore, compound sort keys are idealwhen there

is one dominant column, but they suffer when multiple columns

are important, or when the dominant column has a high number

of distinct values (and therefore, there is little sorting effect on the

other columns).

It is interesting to consider why Z-order curves became the pre-

dominant method for sorting equally by multiple columns in com-

mercial analytic systems, even though a number of other space-

filling curves with locality-preserving properties have been exten-

sively explored in the broader scientific literature [15]. For example,

the Hilbert curve has actually been shown to possess more desir-

able locality-preserving behavior than Z-orders under certain met-

rics [5, 9]. Although the design choice to use Z-order curves over

other space-filling curves has not been explicitly explained by any

commercial systems, we conjecture that it has to do with a com-

bination of simplicity, interpretability, and performance. Z-orders

are based on a bit interleaving, which is easily understandable and

computationally efficient. On the other hand, computing analogous

values for a Hilbert curve is much more complex [16].

Other works have proposedmore complex index structures based

on Z-order. The UB-tree [1, 14] is based on the standard B-tree but

uses the Z-order curve to partition multi-dimensional space into

regions called Z-regions, each of which covers an interval on the

Z-order curve and is mapped to one leaf page of the UB-tree. The

UB-tree processes range queries by calculating the smallest and

largest Z-order value in the query rectangle (i.e., the lower left and

upper right vertices of the query rectangle) and retrieving all the

Z-regions that intersect the query rectangle. Similar to UB-tree,

Amazon DynamoDB allows users to create an index on the Z-order

value [17]. The way it handles range queries is similar to that of

UB-trees, in which it finds the minimum and maximum Z-order

values for the query and iterates through the Z-order values in that

range. However, analytic data systems typically eschewfine-grained

indexes in favorof zonemaps,whicharemore suited to the large scan-

heavy queries seen in most workloads, and so the UB-tree and its

variants have not been implemented in commercial analytic systems.

Our work aims to learn the best Z-order configuration for a given

dataset and query workload. There has been recent work on learned

multi-dimensional indexes such as Flood [10] andTsunami [4]. Flood

is a multi-dimensional in-memory read-optimized index that auto-

matically adapts itself to a particular dataset and workload. It works

by using a sample query workload to glean information such as how

often columns are used together in order to come up with the best

layout [10]. Tsunami extends the ideas of Flood with new optimiza-

tion techniques that allow it to adapt to skewed query workloads. It

also uses a simple analytic linear cost model to predict the runtime

of a query for a particular dataset and layout [4]. Our work draws

ideas from these systems to evaluate candidate Z-order bit allocation

configurations.

Prior work on learned Z-order indexes primarily focus on how

to use learned models to search for the record with a given Z-value

efficiently, but they do not address how to select the columns to

include in the Z-order, nor do they address the issue of unequal col-

umn importance. For example, the ZM-index [20] is a learned model

index that combines the Z-order curve with a model that learns the

distribution of Z-values.

A recent paper [13] proposes an instance-optimal variant of the

Z-order index that does not use bit interleaving to construct Z-order

values, but rather divides multi-dimensional space into cells by par-

titioning each dimension at selected values, then defines a curve

that visits each cell in some locality-preserving order. However, we

consider bit interleaving a fundamental characteristic of the Z-order:

its simplicity and interpretability are part of the reason that modern

data systems choose to support Z-order-based sorting. Therefore,

we do not consider [13] a learned Z-order index, but rather a more

general learned multi-dimensional index similar to Flood [10] and

Tsunami [4].

Furthermore, there are various multi-dimensional index struc-

tures, such as R-trees and k-d trees [12], but these are generally

specialized for spatial data and are not used for analytic databases.
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Figure 2: For the synthetic dataset and workload described in
Table 1, a Z-order configurationwith unequal bit allocation
results in better performance, in terms of both number of
rows scanned and query runtime, than one with equal bit
allocation.
3 OVERVIEW
In this section, we first formally present the problem statement. We

then motivate the problem statement through a concrete example of

how Z-order performance can be improved through unequal bit allo-

cation. We then explain our approach for automatically finding the

best Z-order configuration for a given dataset and query workload.

3.1 Problem Statement
We begin with some definitions:

Definition 3.1 (Z-Order configuration). We define a Z-order con-

figuration to be an allocation of bits to columns. Suppose we have

columns 𝑐𝑜𝑙0 to 𝑐𝑜𝑙𝑛−1. A Z-order configuration can be written as

a set of key-value pairs: {𝑐𝑜𝑙0: 𝑣0, 𝑐𝑜𝑙1: 𝑣1, ..., 𝑐𝑜𝑙𝑛−1: 𝑣𝑛−1}, where 𝑣𝑖
denotes the number of bits from 𝑐𝑜𝑙𝑖 to use in the Z-order bit inter-

leaving. Placing more weight on a column is equivalent to having

a higher 𝑣𝑖 value for a column.

Definition 3.2 (Z-value under a configuration). Consider a Z-order
configuration {𝑐𝑜𝑙0: 𝑣0, 𝑐𝑜𝑙1: 𝑣1, ..., 𝑐𝑜𝑙𝑛−1: 𝑣𝑛−1}, where 𝑣0 + 𝑣1 +
... + 𝑣𝑛−1 = 𝑘 . Given a record (𝑐0, 𝑐1, ... , 𝑐𝑛−1), the k-bit Z-value

under this configuration can be constructed by evaluating 𝑚 =

𝑚𝑖𝑛(𝑣0, 𝑣1, ... , 𝑣𝑛−1) and interleaving ⌊𝑣𝑖/𝑚⌋ bits of each column

at a time in a round-robin fashion (if there are fewer than ⌊𝑣𝑖/𝑚⌋
bits remaining in the allocation, we use all remaining allocated bits).

The order of the columns in the interleaving is in order of increasing

column number, i.e., 𝑐𝑜𝑙0, 𝑐𝑜𝑙1, ..., 𝑐𝑜𝑙𝑛−1.

Example. Consider the Z-order configuration {𝑐𝑜𝑙0: 2, 𝑐𝑜𝑙1: 11, 𝑐𝑜𝑙2:
7}. Here,𝑚=𝑚𝑖𝑛(2,11,7)=2. We can construct the Z-order value under
this configuration by interleaving ⌊2/2⌋ = 1 bit of 𝑐𝑜𝑙0, ⌊11/2⌋ = 5

bits of 𝑐𝑜𝑙1, and ⌊7/2⌋ = 3 bits of 𝑐𝑜𝑙2 at a time. Consider a record
(𝑐0,𝑐1,𝑐2,...,𝑐𝑛−1). Let 𝑐𝑖 [ 𝑗] denote the 𝑗-th bit of the binary represen-
tation of column 𝑖 . Then the Z-value for the record has the following
binary representation:

𝑐0 [0],𝑐1 [0],𝑐1 [1],𝑐1 [2],𝑐1 [3],𝑐1 [4],𝑐2 [0],𝑐2 [1],𝑐2 [2],𝑐0 [1],
𝑐1 [5],𝑐1 [6],𝑐1 [7],𝑐1 [8],𝑐1 [9],𝑐2 [3],𝑐2 [4],𝑐2 [5],𝑐1 [10],𝑐2 [6] .

Given a table with 𝑛 columns (i.e., a dataset) and a query work-

load in which each query is a filter over the dataset followed by a

projection over a subset of columns, the goal is to find a𝑘-bit Z-order

configuration that minimizes the total runtime of all queries in the

workload. The value of 𝑘 is not known beforehand, so finding an

appropriate 𝑘 is part of the problem statement. In our setup, we

constrain that 𝑘 ≤ 64 as we use an 8-byte integer to represent the

Table 1: Synthetic workload characteristics.

Column Max ColumnValue Selectivity (%) Queries

𝑐𝑜𝑙0 10 30 10

𝑐𝑜𝑙1 8 40 10

𝑐𝑜𝑙2 1,000,000 0.1 150

𝑐𝑜𝑙3 1,000,000,000 0.1 180

𝑐𝑜𝑙4 1,000,000,000 0.1 150

Z-value. Based on our experiments in Section 4, we expect 64 bits

to be sufficient for many realistic datasets.

More concretely, the goal is to find the bestmapping of 𝑘 bits to 𝑛

columns. A candidate mapping is represented as a length-𝑛 vector 𝑣 ,

in which each element is an integer representing the number of bits

allocated to the corresponding column, and the sum of all elements

is 𝑘 . A zero in the vector signifies that the corresponding column

is not included in the Z-order. The rest of the paper uses the terms

mapping and allocation interchangeably.
If 𝑣𝑖 bits are allocated to column 𝑖 , we use the most significant 𝑣𝑖

bits from each column value in the Z-value. However, in reality, the

values of a column often only span a small subset of the possible do-

main, e.g., a columnwith 4-byte integer typeonlyhas values between

0 and 1000, so the most significant 22 bits are always zero. Therefore,

as an optimization, we use 𝑣𝑖 to denote the number of “interesting”

most significant bits, i.e., we ignore all leading bits whose values are

the same for all records in the dataset.

3.2 Motivating Example
The choice of bit allocation in a Z-order configuration can have a

significant impact on query performance. As a motivating example,

consider the synthetic dataset described in Table 1, which consists

of 10 million rows where each column’s value is a random integer

chosen uniformly between zero and the maximum column value.

The query workload contains 500 queries, with each query filtering

over one column and projecting over that same column.

In Fig. 2, we compare a 64-bit Z-order configuration that gives

each of the five columns an equal number of bits ({𝑐𝑜𝑙0 : 13,𝑐𝑜𝑙1 :
13,𝑐𝑜𝑙2 : 13,𝑐𝑜𝑙3 : 13,𝑐𝑜𝑙4 : 12}) and a better Z-order bit allocation

({𝑐𝑜𝑙0 : 3,𝑐𝑜𝑙1 : 3,𝑐𝑜𝑙2 : 17,𝑐𝑜𝑙3 : 22,𝑐𝑜𝑙4 : 19}). For eachconfiguration,we
sort the dataset’s rows by the corresponding Z-order, then horizon-

tally partition the dataset into 5000 equally-sized blocks, each with

2000 rows, and then build a zone map on each block that stores the

min/max value per column in the block. For each of the 500 queries,

we then use the zonemaps to determine whether or not each block’s

rowsneed tobe scanned.Wesee that thebetterZ-order configuration

results in a 33% reduction in the number of rows scanned. An uneven

bit allocation helps in this example because column 0 and column 1

have a small domain, and predicates over them are less selective, so

a small number of bits is sufficient. On the other hand, columns 2, 3,

and 4 have amuch larger domain. Filters over themare very selective,

and theyappear inmanyqueries, so it is essential to allocatemorebits

to these columns. This example demonstrates that considering the

columns to include in the Z-order and the number of bits allocated

to each column can have a significant impact on performance.
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3.3 Approach
There are two parts to our approach to tackling the problem state-

ment. First,weneeda searchalgorithmto search the spaceof possible

configurations, i.e., the 𝑛-dimensional space of candidate mappings.

We use Bayesian optimization as our search algorithm. Second, the

true objective function that we want to minimize as part of Bayesian

optimization (total query runtime) is too expensive to evaluate since

it would require sorting the dataset by the candidate configuration

and running all the queries, so we need a proxy objective function

that is cheaper toevaluate.Weuseananalytic costmodel asourproxy

objective function. We now describe these two parts in more detail.

3.3.1 Search Algorithm. To search the space of possible configu-

rations, we use Bayesian optimization [6], which is a derivative-

free global optimization method for black-box objective functions.

Bayesian optimization is a natural choice of search algorithm for our

problem for two reasons:

• Bayesian optimization iswell-suited to expensive-to-evaluate

objective functions as it typically requires fewer invocations

of the objective function than other global optimizationmeth-

ods. Since our objective function is relatively expensive to

evaluate (see Section 3.3.2), Bayesian optimization helps limit

the amount of time we spend finding the best Z-order config-

uration.

• Bayesian optimization tolerates stochastic noise and uncer-

tainty in the objective function. Since the objective function

we use for the optimization (i.e., the output of our cost model)

is only a proxy for the true objective function (i.e., total run-

time of the query workload), there is uncertainty in our ob-

jective function evaluations.

Bayesian optimization is an iterative search algorithm: during

each iteration of the search, the algorithmproposes a point to sample

fromits searchspace, evaluates thispointusing theobjective function

(see Section 3.3.2 for a description of our objective function), stores

the evaluation result, and uses the history of sampled points and

evaluation results to suggest a point to sample for the next iteration.

We formulate our Bayesian optimization search space as follows:

for a given dataset and queryworkload, we first identify the columns

that appeared infilters in thequeryworkload (wedonot consider any

other columns since allocating bits to themwould not improve the

performance of scanning and filtering). If there are 𝑛 such columns,

thenwe create an (𝑛+1)-dimensional search space. Thefirst𝑛 dimen-

sions have continuous domains between 0 and 1, and they represent

the relative number of bits allocated to each corresponding column.

The last dimension has a discrete domain of integers between 1 and

64, inclusive, and it represents 𝑘 .

Givena sampledpoint (𝑝0,𝑝1,...,𝑝𝑛) from the search space,we con-

struct a candidate mapping that represents a 𝑝𝑛-bit Z-order configu-

ration, in which the number of bits allocated to 𝑐𝑜𝑙𝑖 is

(
𝑝𝑛 · 𝑝𝑖∑𝑛−1

𝑗=0 𝑝 𝑗

)
.

If the bit allocation is a fractional number, then we round it to the

nearest integer. If the resulting candidate mapping has less than (or

more than) 𝑘 bits, which may happen due to skew during rounding,

thenwemodify the candidatemapping tohave exactly𝑘 bits through

a process of randomly selecting a column and adding (or removing)

a bit until reaching the desired number bits. The candidate mapping

is then inputted to the objective function (see Section 3.3.2).

3.3.2 Cost Model. Our cost model is a proxy objective function:

it takes a candidate mapping as input and produces the estimated

runtime of a query. The cost model that we use for a single query is:

Query Time=𝑤 ∗(num rows scanned)∗(num filtered columns) .

The constant term𝑤 represents the time to scan a single column

of a single point and is set empirically based on experiments. The

number of filtered columns is clear from the query itself. To compute

the exact number of rows scanned, wewould need to sort the dataset

by the candidate configuration, horizontally partition the dataset

into blocks, construct zonemaps over each block, then examine each

block’s zone map to determine whether the query would skip the

block (i.e., not scan its rows).

However, this step of sorting the entire dataset by a candidate

configuration is time-consuming, especially when it must be done

for each iteration of the search algorithm. Therefore, instead of com-

puting the exact number of rows scanned,we estimate the number of

rows scanned by only sorting and creating zone maps over a sample

of the dataset. At the beginning of the overall Bayesian optimization,

we create a sample dataset where rows are chosen uniformly from

the dataset. Then, for each evaluation of the objective function, we

estimate the rows scanned statistic using the sample dataset, which

is much more efficient than computing the true statistic using the

full dataset.

4 EVALUATION
In this section, we evaluate the performance of our learned Z-order

bit allocation approach. We present the results of an experimental

study that comparesourapproachwith traditional equal-bitZ-orders

and other sorting methods on several datasets and query workloads.

Results reveal that:

• Our learned Z-order configurations are up to 1.6× faster in

query runtime and scan up to 2× fewer rows than equal-bit

Z-orders (Section 4.4). Our learned Z-order configurations

are never slower than other sort techniques, whereas equal-

bit Z-order sometimes underperforms a single-column range

partitioning.

• Only the first 𝑘 bits in a Z-value have a significant impact on

query performance, and Z-order configurations with as few

as 20 bits can be as good as 64-bit Z-order configurations (Sec-

tion 4.5.1). Tomake the Bayesian optimizationmore tractable,

it is useful to learn 𝑘 as part of the optimization procedure.

• Our cost model accurately reflects true query execution time

(Section 4.5.2), and learning the configuration on a dataset

with 175M rows and 13 columns completes within 12minutes

(Section 4.5.3).

4.1 Baselines
We compare our approach to the following partitioning methods/in-

dexes:

(1) Default sort order: queries are performed on the original

dataset, without any explicit sort order. In most cases, the

original dataset is implicitly sorted on a timestamp column,

since that is the order of ingestion. The data is still partitioned

into blocks and uses zone maps to skip blocks.
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(2) Range partitioning: the dataset is sorted on a user-picked col-
umn.We select the column with the lowest average selectiv-

ity
1
. Choosing the columnwith the lowest average selectivity

appears to work well for our workloads since our definition

of average selectivity takes into account both the number

of queries the column appears in and the selectivity of the

column, thus allowing for effective filtering over the column.

(3) Z-order: equal bits to three columns: we distribute 64 bits, allo-
cating an equal number of bits to the threemost frequently oc-

curring
2
columns in the queryworkload.We choose the three

most frequently appearing columns since it seems plausible

for a database administrator to easily identify these columns

if they had to tune Z-order themselves. Specifically, we give

22 bits to the first column and 21 bits each to the other two

columns. This is used as a baseline to see how a naive equal-

bits approach compares to our learned unequal-bit Z-order

configuration.

4.2 Implementation
4.2.1 Z-Order. Tables are stored in Parquet format [19], a column-

oriented file format, on disk; data is partitioned into sets of rows

called rowgroups, and within each rowgroup, data from different

columns are stored separately. The rest of this paper uses the terms

rowgroup and block interchangeably. TheApacheArrowC++ library

[18] is used to work with the Parquet files, such as loading the Par-

quet files in memory. For Bayesian optimization, we use the Python

package [11]. For each dataset and workload, we run Bayesian op-

timization for 600 iterations to find the best Z-order configuration.

4.2.2 Evaluation Setup. We use the Google C++ benchmark to eval-

uate the performance of the partitioning/indexing methods detailed

in Section 4.1. For all the methods, the sorted table is stored in the

Parquet format and divided into rowgroups of size 4MB. Parquet

stores the minimum/maximum statistics per column for each row-

group and uses these statistics to skip rowgroups when executing

queries. All the experiments are single-threaded and run on an Arch

Linux machine with an Intel Xeon 2.1GHz CPU and 125GB RAM.

4.3 Datasets and QueryWorkloads
We evaluate indexes on four real-world datasets collected from [7]:

contributions, flights, taxi, and tweets (see Table 2). The query work-

load consists of range and equality filters that filter over several

columns. Each query has a selectivity of 1% or less. Query execution

involves scanning/filtering, projection over the columns that appear

in the query, and materialization of the output tuples.

Our first dataset, contributions, contains 25 years of political con-

tributions data. The query workload consists of queries with range

filters on donation amount, donation date, and location (latitude/-

longitude), and equality filters on recipient name and party.

The flights dataset consists of 120 million records of U.S. airline

flights from 1987 to 2008. It has 21 columns, with flight data includ-

ing origin and destination city and state, carrier, day of week, and

1
Average selectivity is calculated for each column by evaluating the mean of the

selectivity of each query — if the col does not appear in the query, then it would be

considered 100% selectivity; otherwise, the selectivity would be 𝐶𝐷𝐹 (right end of

range) −𝐶𝐷𝐹 (left end of range) . A query of the form 𝑥 <𝑐𝑜𝑙 < 𝑦 would contribute

𝐶𝐷𝐹 (𝑦) −𝐶𝐷𝐹 (𝑥 ) to the average selectivity for that column.

2
For each column, we count the number of queries it appears in.

Table 2: Dataset and query characteristics.

Contributions Flights Taxi Tweets

Rows 86M 120M 175M 15M

Columns 9 21 13 16

Size (GB) 4.5 9.1 12 1.7

NumQueries 500 500 500 451

flight distance. The queries answer analytics questions, such as “How

many flights departed from a certain state at a certain time (defined

by time of day, day of the week, and/or month) and arrived at a

particular destination state?” and “Howmany flights were operated

by a specific carrier and departed in a certain time interval?”

Our third dataset, taxi, contains information on taxi rides in NYC

over a seven-year period,with data such as pickup time, trip distance,

number of passengers, and stores within 30 meters of a pickup or

dropoff location. Thequeries performaggregations, such as counting

the number of taxi rides in which passengers were picked up at a

particular region defined by latitude/longitude in a particular time

interval.

The tweets dataset contains geocoded tweets from November

2014 to February 2015, with information such as the tweet time, lan-

guage the tweet was sent in, sender name, and country. The queries

perform tasks such as gathering the tweets in a certain geographical

location and sometimes also filtering by tweet time and language.

For each dataset, sample datasets were constructed by randomly

selecting between 0.2% and 1% of the rows in the full dataset (except

for tweets, which samples 10% of the rows from the full dataset since

the full dataset is much smaller than those of other datasets). These

sample datasets are used during optimization: for each candidate

mapping, the rows scanned statistic is estimated using the sample

dataset and inputted into the cost model to estimate the query time

(see Section 3.3.2). If the full dataset contains 𝑥 rowgroups, we also

partition the sample dataset into 𝑥 rowgroups when estimating the

rows scanned statistic.

4.4 Overall Results
We show howwell our learned Z-order bit allocation approach per-

forms when compared to the baseline sort order approaches.

Fig. 3 shows the average number of rows scanned for each sort

order on each dataset. We observe that our learned Z-order config-

urations achieve high performance on all the datasets: they result in

fewer or comparable average number of rows scanned compared to

every other layout. On three of the datasets, the Z-order configura-

tion produced by our approach achieves between 1.2× and 2× reduc-

tion in the number of rows scanned compared to the next-best layout.

Fig. 4 shows the average query time for each sort order on each

dataset. The trends for query runtime are similar to those for the

average number of rows scanned (Fig. 3).

Overall, these results show that our learned Z-order configura-

tions generally resulted in a significant improvement in performance

when compared to the default sort order and range partitioning. This

is due to the fact that Z-order allows for multi-dimensional sorting,

which is particularly beneficial since the queries in the workload

filter over multiple columns.
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Figure 3: Total number of rows scanned for the different indexing/partitioningmethods.

Figure 4: Total workload execution time for the different indexing/partitioningmethods.

In general, Z-order layouts aremost effective forworkloadswhere

most of the queries filter over a relatively small number of columns.

For workloads in which queries filter primarily over one column,

range partitioning performs as well as Z-order. For workloads in

which queries filter over a large number of columns, we can only

allocate a few bits to each column,whichmay not be enough to allow

for effective query filtering, especially since only the first𝑘 bits truly

matter for performance (see Section 4.5.1).

For example, Z-order performs particularly well for the Flights

dataset, in which the learned Z-order configuration allocated bits to

five total columns, and the queries in the Flights workload each filter

over two to four of the columns among the five columns used in the

Z-order. The Z-order configuration for the Taxi dataset displayed

similar behavior.

In contrast, theContributionsworkload consistedofmanyqueries

that filter over four or more columns. Based on analysis of the rows

scanned for each query, we observed that queries with four or more

columns contribute to the greatest increase in query runtime and

rows scanned.

Meanwhile, most of the queries in the Tweets workload filter over

a total of ten different columns, but one column clearly appearsmost

frequently in filters and is the most selective. This makes Z-order

doubly ineffective: first, it is not possible to allocate an adequate

number of bits to all ten columns, especially since only the first 𝑘

total bits really matter for improving performance. Secondly, since

there is one dominant column in filters, a range partitioning over

that column achieves performance that is nearly as good as Z-order.

In addition, we observe that the decrease in query time is not as

significant as the decrease in the average number of rows scanned.

One reason is that query execution involves not only scanning the

rowgroups to find the rows that intersect the queries but also ma-

terializing the output tuples. The former is improved through using

better Z-order configurations, but the latter is constant among all the

different partitioning methods. Moreover, Parquet stores rowgroup

metadata such as the minimum/maximum value for each column in

the file footer. Each partitioningmethod has to iterate over the meta-

data for all the rowgroups in the footer in order to read the rowgroup

metadata, thereby incurring I/O cost. As a result, the reduction in

query time is not as drastic as the reduction in the average number

of rows scanned.

4.5 Microbenchmarks
We now use microbenchmarks to evaluate more detailed perfor-

mance characteristics.

4.5.1 Number of Bits in the Z-Order. Although we are allowed to
allocate up to 64 bits to the columns in the dataset, it turns out that

only the first 𝑘 bits really matter for query performance, where 𝑘

varies for each dataset and workload but is typically less than 64.

Fig. 5 shows, for each value of 𝑘 between 1 and 64, the estimated

performance of the best 𝑘-bit Z-order configuration found during

Bayesian optimization from Section 4.4. The plot demonstrates that

many different values of 𝑘 are explored during the 600 iterations

of Bayesian optimization. More importantly, they demonstrate that

Z-order configurations with as few as 20 bits are able to achieve

performance that is roughly on par with 64-bit configurations.

This implies that only the first 𝑘 bits of a Z-value are important

for improving performance. There are two reasons for this:

• For datasets in which columns have a low number of distinct

values, a small number of bits is already sufficient to differ-

entiate all unique values. For example, on the Flights dataset,

one of the frequently-filtered columns consists of integers

that range from 0 to 52. Therefore, it is possible to uniquely

identify every value in that range by allocating 6 bits to the

column, since 2
6 ≥ 53, and there is no reason to allocate more

than 6 bits to the column.

• Once a set of rows are placed in the same block/rowgroup,

there is no benefit (in terms of skipping blocks) to further

sorting the rows within the rowgroup. For example, imagine

that under𝑘-bit Z-order configuration, themin/max Z-values
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Figure 5: Estimated performance of the best 𝑘-bit Z-order configuration found during Bayesian optimization for each value
of 𝑘 . Formost datasets, 𝑘 much less than 64 is sufficient for achieving good performance. Note the log scale on the y-axis.
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Figure 6: Actual vs. estimated query times (using the cost
model in Section 3.3.2) for a workload.

in each rowgroup are non-overlapping, i.e., there is no case in

which rows in different blocks have the same Z-value. Then,

increasing the number of bits used in the Z-value would only

shuffle the order of rows within a rowgroup, but would not

result in rows being shuffled between rowgroups, so the zone

maps for each rowgroup remain the same, and there is no

impact on rowgroup skipping.

The value of 𝑘 at which more bits have no impact on performance

is difficult to compute upfront, since it depends on not only the size

of the dataset and the number of rowgroups it is divided into, but

also the domain, cardinality, and data distribution of each column.

Including 𝑘 as a parameter in the Bayesian optimization is im-

portant because it allows us to directly learn the appropriate value

of 𝑘 and thereby restrict the search space to a more tractable size.

On the other hand, we found that running Bayesian optimization

for the same number of iterations, but with 𝑘 fixed to 64, resulted in

finding Z-order configurations that performed up to 20% worse, be-

cause it is harder for Bayesian optimization to efficiently explore the

unnecessarily large search space of 64-bit Z-order configurations.

4.5.2 Cost Model. In Fig. 6, we plot the estimated and actual times

of individual queries in the Taxi workload, under the learned Z-

order configuration. The results show that the cost model produces

relatively accurate estimates of query time, which is important for

comparingcandidatemappingsduring thesearch for thebestZ-order

configuration.

4.5.3 Z-Order Index Creation. Table 3 shows the time it takes to cre-

ate the learnedZ-order configuration.We separate time into learning

time, which is the time taken for Bayesian optimization to run 600

iterations, and repartitioning time, which is the time to compute the

Z-values for the full dataset and sort by them.

Table 3: Best Z-order index creation time in seconds.

Contributions Flights Taxi Tweets

Learning 438.2 1015.6 718.5 93.1

Sorting 135.4 265 271.5 31.2

Total 573.6 1280.6 990.0 124.3

Note thatwedidnot fullyoptimize theperformanceof the learning

code; with further optimization, the learning time should decrease.

For example, instead of sampling and evaluating one point at a time

from the search space, parallel Bayesian optimization techniques can

process multiple points simultaneously [6]. Furthermore, Bayesian

optimization is an anytime algorithm: we can stop it at any number

of iterations and take the best configuration found so far. If decreas-

ing the training time is important, then it is always possible to run

Bayesian optimization for fewer iterations, though this would mean

that we might find a sub-optimal Z-order configuration.

5 CONCLUSIONAND FUTUREWORK
Analytic data systems such as Databricks Delta Lake and Amazon

Redshift give users the ability to sort a table by multiple columns

using Z-orders. However, Z-orders traditionally place equal weight

on the table’s columns, which does not result in the best perfor-

mance when different columns have an unequal impact on perfor-

mance. Ourwork uses a Bayesian optimization approach to learn the

best unequal-weight Z-order configuration for a particular dataset

and query workload. Our learned Z-order configurations outper-

form other sort order methods, including traditional equal-weight

Z-orders and single-column range partitioning, by up to 1.6× in

query runtime and 2× in rows scanned.

Z-order data layouts are a rich area for future work. In particular,

one open question is how to handle dynamic datasets, in which new

rows inserted into the dataset expand the domain of certain columns,

such that the bits used to compute the Z-value are no longer themost

significant bits of that column. In order tomaintain the invariant that

themost significant “interesting” bits are used from each column,we

would eitherneed to re-computeZ-valuesusing thenewset of bits, or

anticipate the domain expansion during the initial Z-order optimiza-

tion and over-allocate bits to the column, or a combination of both.



Learning Bit Allocations for Z-Order Layouts in Analytic Data Systems aiDM ’24, June 14, 2024, Santiago, AA, Chile

REFERENCES
[1] Rudolf Bayer. 1997. The Universal B-Tree for Multidimensional Indexing: General

Concepts. InWorldwideComputingand ItsApplications, TakashiMasuda,Yoshifumi

Masunaga, andMichiharu Tsukamoto (Eds.). Springer BerlinHeidelberg, 198–209.

[2] Nigel Bayliss. 2014. Optimizing Table Scans with Zone Maps. https://blogs.or

acle.com/datawarehousing/post/optimizing-table-scans-with-zone-maps.

[3] Zach Christopherson. 2016. Amazon Redshift Engineering’s Ad-

vanced Table Design Playbook: Compound and Interleaved Sort Keys.

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-

advanced-table-design-playbook-compound-and-interleaved-sort-keys/.

[4] JialinDing, VikramNathan,MohammadAlizadeh, andTimKraska. 2020. Tsunami:

A Learned Multi-dimensional Index for Correlated Data and SkewedWorkloads.

CoRR abs/2006.13282 (2020). arXiv:2006.13282 https://arxiv.org/abs/2006.13282

[5] C. Faloutsos and S. Roseman. 1989. Fractals for Secondary Key Retrieval.

In Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (Philadelphia, Pennsylvania, USA) (PODS
’89). Association for Computing Machinery, New York, NY, USA, 247–252.

https://doi.org/10.1145/73721.73746

[6] Peter I. Frazier. 2018. A Tutorial on Bayesian Optimization. h t tps :

//doi.org/10.48550/ARXIV.1807.02811

[7] HEAVY.AI. [n.d.]. OmniSci. Retrieved March 24, 2021 from

https://www.omnisci.com/

[8] Adrian Ionescu. 2018. Processing Petabytes of Data in Seconds with Databricks

Delta. https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-

in-seconds-with-databricks-delta.html.

[9] Jonathan K. Lawder and Peter J. H. King. 2000. Using Space-Filling Curves

for Multi-Dimensional Indexing. In Proceedings of the 17th British National
Conferenc on Databases: Advances in Databases (BNCOD 17). Springer-Verlag,
Berlin, Heidelberg, 20–35.

[10] VikramNathan, JialinDing,MohammadAlizadeh, andTimKraska. 2019. Learning

Multi-dimensional Indexes. CoRR abs/1912.01668 (2019). arXiv:1912.01668

http://arxiv.org/abs/1912.01668

[11] Fernando Nogueira. 2014–. Bayesian Optimization: Open source constrained

global optimization tool for Python. https://github.com/fmfn/BayesianOptimi

zation.

[12] Beng Chin Ooi, Ron Sacks-Davis, and Jiawei Han. 2019. Indexing in Spatial

Databases.

[13] Sachith Pai, Michael Mathioudakis, and Yanhao Wang. 2022. Towards an

Instance-Optimal Z-Index [Extended Abstract] (AIDB).
[14] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt, and

Rudolf Bayer. 2000. Integrating the UB-Tree into a Database System Kernel. In

Proceedings of the 26th International Conference on Very Large Data Bases (VLDB
’00). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 263–272.

[15] Hans Sagan. 2012. Space-filling curves. Springer Science & Business Media.

[16] John Skilling. 2004. Programming the Hilbert curve. AIP Con-
ference Proceedings 707, 1 (04 2004), 381–387. h t t p s : / / d o i . o r

g / 1 0 . 1 0 6 3 / 1 . 1 7 5 1 3 8 1 arXiv:https://pubs.aip.org/aip/acp/article-

pdf/707/1/381/11557416/381_1_online.pdf

[17] Zack Slayton. 2017. Z-Order Indexing for Multifaceted Queries in Amazon

DynamoDB. https://aws.amazon.com/blogs/database/z-order-indexing-for-

multifaceted-queries-in-amazon-dynamodb-part-1/.

[18] The Apache Software Foundation. [n.d.]. Apache Arrow. h t t p s :

//arrow.apache.org/

[19] The Apache Software Foundation. [n.d.]. Apache Parquet. h t t p s :

//parquet.apache.org/

[20] Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index

for Spatial Queries. In 20th IEEE International Conference on Mobile Data
Management, MDM 2019, Hong Kong, SAR, China, June 10-13, 2019. IEEE, 569–574.
https://doi.org/10.1109/MDM.2019.00121

https://blogs.oracle.com/datawarehousing/post/optimizing-table-scans-with-zone-maps
https://blogs.oracle.com/datawarehousing/post/optimizing-table-scans-with-zone-maps
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://arxiv.org/abs/2006.13282
https://arxiv.org/abs/2006.13282
https://doi.org/10.1145/73721.73746
https://doi.org/10.48550/ARXIV.1807.02811
https://doi.org/10.48550/ARXIV.1807.02811
https://www.omnisci.com/
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://arxiv.org/abs/1912.01668
http://arxiv.org/abs/1912.01668
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://doi.org/10.1063/1.1751381
https://doi.org/10.1063/1.1751381
https://arxiv.org/abs/https://pubs.aip.org/aip/acp/article-pdf/707/1/381/11557416/381_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/acp/article-pdf/707/1/381/11557416/381_1_online.pdf
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://arrow.apache.org/
https://arrow.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://doi.org/10.1109/MDM.2019.00121

	Abstract
	1 Introduction
	2 Background
	3 Overview
	3.1 Problem Statement
	3.2 Motivating Example
	3.3 Approach

	4 Evaluation
	4.1 Baselines
	4.2 Implementation
	4.3 Datasets and Query Workloads
	4.4 Overall Results
	4.5 Microbenchmarks

	5 Conclusion and Future Work
	References

