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ABSTRACT
Causal inference remains a cornerstone for scientific discovery
in the natural and social sciences; however, the accuracy of such
causal discoveries is susceptible to unobserved confounding bias,
the “Achilles heel of most non-experimental studies”. Our princi-
pal objective is to bolster the validity of reported causal findings
by marshalling pertinent data to corroborate or refute them. In
this workshop submission, we describe how data marshalling can
turbocharge sensitivity analysis, detail technical challenges, and
illustrate a case study as a proof of concept. Our aim in this work is
to gather feedback from the audience, gauge interest in solving this
open problem relevant to the responsible AI and data management
community, and continue iterating on systems that advance the
trustworthiness and reproducibility of scientific discoveries.

CCS CONCEPTS
• Computing methodologies → Causal reasoning and diag-
nostics; • Information systems→ Information retrieval; In-
complete data; Data analytics; Information integration; Information
retrieval query processing.
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1 INTRODUCTION
Causal inference remains a cornerstone for scientific discovery,
helping us answer questions like “Does social media cause teenage
mental illness?", or “Does cured meat consumption cause colon
cancer?". While manual intervention and randomized control trials
are considered gold standard, often such approaches are not feasible
or ethically permitted. Causal inference methods give scientists rig-
orous means to estimate answers from observational data, guiding
experiments toward real-world discoveries.
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However, the accuracy of such causal discoveries can depend
on the dataset that was used, as datasets can be susceptible to bias
in unexpected ways. One such bias is unobserved confounding
bias, where the existence or magnitude of some causal effect is
misattributed by unobserved, associated confounding factors; when
unaddressed, such bias can lead to erroneous conclusions due to
the presence of spurious correlations [17]. For example, children
sleeping with a light on leading to child myopia [27] was later found
to be confounded by parental myopia [37] and no causal effect has
been found after adjusting for that factor. Prior literature addresses
this “Achilles heel of most non-experimental studies” through sensi-
tivity analysis [22], which allow one to test the robustness of one’s
conclusions against possible unforeseen or unobserved threats to
validity. Sensitivity analysis featured prominently in establishing
the link between smoking and lung cancer when Cornfield et al. [8]
established that an unobserved confounder would need to be "at
least nine-fold more prevalent" among smokers compared to non-
smokers to explain away the smoking-lung cancer link; no such
confounder was found in the study and the authors asserted such a
confounder does not exist. Uses of these analysis methods generally
follow this same argument structure [15]; however, the inclusion of
new data can dramatically revise confidence in conclusions believed
to be strong and defensible [9, 12, 33].

Our principal objective is to automatically find possible
unobserved confounders in causal mechanisms by building
automatic data marshalling systems. While demand for repro-
ducibility is strong [3], the manual effort required to verify causal
claims can be prohibitively high. To address this, we propose con-
structing systems which can refute causal claims by marshalling
pertinent data to corroborate or refute these causal assertions.

In this submission, we describe how data marshalling can tur-
bocharge sensitivity analysis, detail technical challenges, provide a
solution sketch, and illustrate a small case study as a proof of con-
cept. We aim to gather feedback from the audience, gauge interest
in this open problem relevant to the responsible AI and data man-
agement community, and continue iterating on systems that bolster
the trustworthiness and reproducibility of scientific discoveries.

Example 1. To illustrate how data management methods can
boost the effectiveness of sensitivity analysis, we detail an example
inspired by a real-world scenario [9, 33] and illustrated in Table 1:

Liora, an Economics PhD candidate, aims to analyze whether pa-
role decisions are affected by duration relative to a food break, to
demonstrate how legal processes can be influenced by seemingly irrel-
evant factors. Since parole decision sessions are scheduled throughout
the workday already, Liora decided to analyze an existing dataset of
parole decisions from multiple judges who send prisoners to several
major prisons in the area, sorted by time of hearing (see the un-shaded
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Judge Prisoner Location Date Time Time after Session Start Crime Prisoner Age Judge Age Parole Decision Scheduled Time Attorney
A MC 12 9/3 9:00AM 0 min Theft 29 51 Accept 9:00AM LW
A JQ 12 9/3 9:39AM 39 min Loitering 40 51 Accept 9:30AM RT
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
B PO 14 9/3 4:57PM 117 min Tax Fraud 56 46 Deny 4:45PM -
C LU 11 9/3 5:08PM 128 min Phishing 24 31 Deny 5:00PM -
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Liora’s Original Data, Time after Session Start causally influences Parole Decisions

Keren’s Additional Data, Attorney confounds relationship between time and parole decision

Table 1: Example Table with conclusions made with or without marshalled data

portion of Table 1). In her data analysis process, she derives a new
’Time after Session Start’ metric as her treatment variable and observes
a significant discrepancy (65% favorable decisions right after a break
to almost 0% favorable right before the next break). She analyzes the
robustness of her finding through: the introduction of hypothesized
‘dummy’ variables, which do not impact the estimated effect; and
through incorporating all other possible explanatory factors found in
her dataset (severity of crime, judge-specific decision inclinations, pris-
oner demographics, etc.) which also do not sway her conclusion. She
publishes the paper and shares the news through widespread media
coverage in popular science news outlets and magazines.

Keren, another Economics PhD candidate, reads Liora’s paper and,
through gathering of background knowledge and additional data
tables from the same municipal data source (see the shaded region on
Table 1), rebuts that when controlling for attorney representation, the
magnitude of the effect goes away. Unfortunately, Keren’s paper is
not as widely-communicated to the public as Liora’s, and the general
public is unaware of this threat to validity.

In this example, if Liora had found the confounder Keren re-
trieved from the same data source, Liora may have better commu-
nicated her finding to the wider community. Liora already put in
her best effort in her sensitivity analysis based on the data she had
in her dataset; Keren had to put in the work in finding the relevant
attribute(s) to compose a credible argument against validity.

Our key insight is this: scientists show study robustness by
describing necessary parameters of unobserved confounders;
with data management techniques, we can now directly find
and evaluate such threats to validity. In this way, we can better
support what scientists, like Liora and Keren, are already doing by
using techniques from the data management research community.

2 PROBLEM DEFINITION & OPPORTUNITIES
Here, we explore how researchers currently find threats to validity,
define our problem, and touch on technical challenges and oppor-
tunities for such an automatic data marshalling system.

2.1 Finding Threats to Validity
Causal analysts validate their estimations using statistical refutation
as a first line of defense. These methods check that 1) the estimation
remains stable after invariant transformations to the data (via data
subsampling, introducing a random confounding variable) and 2)
the estimation of related causal relationships drops to zero (via
replacing the treatment with a random variable, randomly shuffling
outcomes among study units). [30, 31] These are easily achievable
methods which only use data the analyst already has, are non-
parameterized, and do not require complex interpretation.

Beyond statistical refutation, sensitivity analysis methods [22]
test the robustness of one’s conclusions against possible unobserved
threats to validity. One family of approaches [28] asks how much
of a study population needed to have a different outcome result in
order to change the causal conclusion of the study. For instance, if
a study of 1000 patients only needed 2-3 people with an outcome
demonstrating no observed treatment effect to change the study
conclusion, the casual claims of the study would likely considered
to be too weak to publish. Another family of approaches [8, 22]
reasons that control and treatment groups can still differ on some
unobserved confounding characteristic, so they determine how
robust their conclusion is to hypothesized confounders of various
strengths. Other tactics, like stratification, allow for one to inspect
whether the causal estimation, in addition to meeting assumptions
like independence, irrelevance, and positivity, remains stable [4, 23].

Prior art illustrates three primary approaches to confounding
bias sensitivity analysis: simulation-based sensitivity analysis [25],
linear partial-correlation-based sensitivity analysis [7, 32], and non-
parametric sensitivity analysis [6], adapted to work for multiple
robust estimations, partial linear models, and machine learning
based estimations. All of these methods are parameterized by par-
tial correlations and are compatible with our proposed system (see
Problem 1). These techniques focus on characterizing a single un-
observed confounder; related methods [34] consider scenarios with
multiple unobserved confounders as seen in gene expression studies
and other high-dimensional causal analysis scenarios.

As mentioned in Section 1, scientists conclude study robustness
by demonstrating that confounders with high threat to validity are
incredibly unlikely to exist [8, 15]. However, hidden explanatory
factors occasionally do come to light [12], sometimes after multiple
publications [9, 33] as seen in Example 1.

2.2 Problem Definition
We aim to automate sensitivity analysis via automatic data mar-
shalling; given existingmethodological literature detailed in Section
2.1, we propose the following problem:

Problem 1 (Confounder Discovery and Retrieval). Given:

(1) base table: a single-relation database D with a schema A =

(𝐴1, 𝐴2, · · · , 𝐴𝑠 ) where:
(a) each 𝐴𝑖 is categorical, discrete, or continuous,
(b) its tuples (rows) contain each study unit’s entry 𝑑𝑖 =

(𝑎𝑖1, 𝑎𝑖2, · · · , 𝑎𝑖𝑠 ) according to the schema A, and
(c) the user annotates a treatment variable𝑇 ∈ A, an outcome

variable𝑂 ∈ A, and optionally some observed confounders
C = {𝐶1,𝐶2, · · · } ⊂ A;

(2) correlation constraints: a pair of constraints for a potential
confounding threat to validity 𝐻 :
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(a) a user-defined minimum 𝑅2
𝑇∼𝐻 |C, or partial correlation

with the treatment given observed confounders and
(b) a user-defined minimum 𝑅2

𝑂∼𝐻 |C∪{𝑇 } , or partial correla-
tion with the outcome given confounders and treatment,

(3) additional data sources: a set of target data sources S =

{𝑆1, 𝑆2, · · · } fromwhich the user wishes to find hypothesized
confounding threats to validity,

construct an augmented database D′ with a schema A′ = (𝐴1, 𝐴2,
· · · , 𝐴𝑠 , 𝐻1, 𝐻2, · · · , 𝐻𝑘 ) where each 𝐻𝑖 is a potential confounder
which meets the user-defined minimum partial correlation values
𝑅2
𝑇∼𝐻 |C and 𝑅2

𝑂∼𝐻 |C∪{𝑇 } , and each study unit 𝑑𝑖 is populated with
(𝑎𝑖1, 𝑎𝑖2, · · · , 𝑎𝑖𝑠 , ℎ𝑖1, ℎ𝑖2, · · · , ℎ𝑖𝑘 ).

Recalling the example in Section 1, Liora’s base table D is the
unshaded portion of Table 1 where each row represents a parole
decision. She indicates the treatment𝑇 is "Time after Session Start"
and the outcome 𝑂 is "Parole Decision". Keren uses additional data
sources S to find attributes "Scheduled Time" as 𝐻1 and "Attorney"
as 𝐻2. Using Liora’s base table D and the two attributes 𝐻1 and 𝐻2,
he constructs the augmented data table D′, illustrated in Table 1
including both the shaded and unshaded portions.

2.3 Technical Challenges & Opportunities
Our primary technical challenge is to enable fast, scalable potential
confounder search based on bounds on partial correlations with
conditioning sets. Case Study 3 illustrates a naive solution to such
a problem which follows three predominant steps:

(1) find join paths linking external data to the base table,
(2) augment the base table using those join paths, and
(3) filter augmented attributes for sufficiently relevant confounders.

Such naive algorithms are inefficient due to the computational
consequences of joins; if we proceed by joining all 𝑛 tables available
in a data lake, we can expect an𝑂 (𝑒𝑛) space and runtime complexity
due to the curse of dimensionality [36] when constructing the
denormalized table. Even if filtering the universal relational table is
accomplished in linear time, that time complexity is linear relative
to the size of that table. Furthermore, since empirically less than
0.5% of augmented attributes are applicable to the end goal [14],
we may expect around 99.5% of the augmented variables to be not
applicable. Consequently, an exponential-complexity amount of
discovery and augmentation work would be completed and then
pruned away in order for the system to succeed. Users working
with such systems could execute joins to augment large numbers of
causal variables that are mostly not consequential to their potential
refutation. A time-honored approach to this performance bottleneck
is to push down the filter past the join, which is critical from both
a computational performance and human review perspective.

Using rigorous parameters to shrink the candidate confounder
search space can also limit concerns around contradictory metadata
(e.g., randomization or interference assumptions) that arise from
joining large pools of discovered data gathered from disparate tables
[36]. Rather than finding all possibly relevant confounders and
summarizing the results, our data marshalling approach could focus
on finding only attributes that are potential threats to validity.

Traditional correlation- or similarity-based methods in data dis-
covery [5, 11, 14] fall short on the confounder discovery task due to

their focus on direct pairwise correlations. For instance, knowledge
graph based methods like [5, 19] excel in capturing pairs of highly
related attributes; directly using these methods to capture partial
correlation relationships, say by adding a new edge type per condi-
tioning set, can be impractical given the space of conditioning sets is
exponential (2𝑘 for 𝑘 possible confounders). Still, these methods in
data discovery, table search, and integration [5, 10, 11, 14, 19, 20, 26]
can play a critical component in the overall goal by finding join
paths that link potential confounders to the base table.

While Youngmann et al. [35] tackle a virtually identical con-
founder search problem, their work relies on calculating conditional
mutual information for high-dimensional conditioning sets on a
single integrated table of analysis. Estimating conditional mutual
information with high-dimensional conditioning sets is challenging
to do accurately; fortunately, in our problem formulation, we do not
need high-dimensional conditioning sets to determine confounder
candidates. We focus our interest in calculating conditional mutual
information, or otherwise evaluating potential confounders, across
multi-table and multi-hop joins without executing the joins.

Greedy search approaches to finding augmentation candidates
[14, 35] may not effectively address confounding bias when these
factors are not individually strongly correlated with either the treat-
ment or outcome, but multiple confounders in a set have strong
aggregate explanatory power of the remaining unexplained residu-
als after adjusting for known confounders.

Galhotra et al. [14] provide a compelling framework for imple-
menting a greedy search for potential confounder retrieval using
the guidance of a monotonic utility function (say, distance of causal
estimation from 0); after clustering candidate augmentations into
distinct groups of similar augmentations, their system greedily
searches for augmentation groups based on a user-provided utility
function until the search space is exhausted or a stopping criterion
is reached (i.e. utility threshold). The main challenge to realizing
a possible solution for Problem 1 based on this framework is in
designing appropriate data profiles or sketches [1] that will act
as sieves for compelling confounding threats to validity. For ex-
ample, [29] retrieves joinable tables with correlated columns by
constructing a sketch of the hypothetically-joined table for calcu-
lating correlations between attributes. Similar to [14, 35], this work
would need to be nontrivially adapted for partial correlation calcu-
lations with distinct conditioning sets, without losing the pre-join
correlation calculation feature of this work.

Furthermore, for treatments defined by thresholds on a discrete
or continuous distribution, future approaches employing scaled
mean difference calculations or fixed-value filters based on robust-
ness values [7, 32] can offer a performance improvement in the con-
struction of any data sketches; such metrics only require subtract-
ing two aggregate values based on partitions of the data, which is
computationally cheaper than evaluating partial correlation or con-
ditional mutual information. On the other hand, re-parameterizing
our search problem into conditional mutual information can also
provide robustness in non-linear scenarios. To avoid redundant
work, if the database already has existing aggregation metrics, pre-
computed correlation statistics, or sketches with stratified data
summaries, we can take advantage of them to accelerate the search.
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To overcome limitations of statistical methods in automatic co-
variate selection [36], use of large languagemodels (LLMs) or knowl-
edge graphs (KGs) [18, 21, 36] can introduce semantic knowledge
critical for evaluating confounder candidacy; for example, an artifi-
cial agent can employ happens-before causality and commonsense
reasoning as examples of background knowledge.

3 CASE STUDY: CATHOLIC SCHOOL
?−→ MATH

In this case study, we aim to assess whether students attending
Catholic high school (as opposed to public school) causes higher
math grades in their senior year. To do this, we use a sample of
5671 students from the National Education Longitudinal Study of
1988 (NELS:88) [13] whose households had an annual income less
than $75,000 in the first year of the survey; this is a commonly used
example to discuss confounder bias adjustment [2, 24]. The dataset
contains columns with demographics like race and gender, pre-
high-school academic achievement metrics like 8th grade math test
scores, familial circumstances like parental education, and student
behavior attributes like frequency of class disruption or fighting.

We calculate the causal effect of attending Catholic high school
on 12th grade math scores using the dowhy package [30] by speci-
fying the treatment (whether the student attended Catholic high
school), outcome (12th grade math score), and observed covariates
[16, 24] including household income, 8th grade math scores, and
disruptiveness. Without adjustment, we estimate that students at-
tending Catholic high schools score 3.895 more points in math than
those in public school; with adjustment, the score difference drops
to an estimated 1.437 point boost for Catholic high school students.

To analyze the robustness of this textbook example finding, we
follow the procedure detailed in [7], which bounds the necessary
parameters that an unobserved confounder must have to either
nullify the observed causal effect or render it no longer statistically
significant. The analysis provides a robustness value, which asserts
that any unobserved confounder that explains less than that pro-
portion of the variance in the treatment and outcome would not be
strong enough to explain away the observed effect.

Our robustness value is 8.05%. If an unobserved confounder
explains more than that proportion of residual variation in the
treatment and outcome, we may have found a threat to validity of
our finding. When we hypothesize the existence of an independent
unobserved confounder with partial correlation strength equal to,
twice, or thrice that of all observed confounders, the hypothesized
confounders are an order of magnitude too weak to lead to any
noticeable changes in the causal effect. We have demonstrated the
existence of a small but statistically robust causal effect.

While this is a small example, this narrative is the pattern of
least resistance for scientists working with such data analyses. With
large data resources like NELS:88, statisticians [2, 24] generally
request the data needed for their specific task and proceed with
analysis the way we did in this case study so far; the rest of the
unretrieved data is unlikely to be purused or incorporated into the
analysis, due to the scale of the dataset (NELS:88 has over 10,000
attributes in the full survey). Beyond the attributes already used in
the causal analysis, we have a curated set of 16 additional columns
from the NELS:88 dataset to consider in our analysis, including
those around race, gender, parental education level, and non-math

Figure 1: Contour plot for the causal estimation of Catholic
school attendance on math scores in NELS:88, based on po-
tential confounders from other parts of NELS:88 rather than
hypothetical variables. read8 is circled in brown (Section 3).

academic performance. With a brute force search through partial
correlation pairs for each such attribute, we repeat the sensitivity
analysis procedure [7] with marshalled potential confounders.

Looking at Figure 1, we see a black diamond at (0, 0) labeled
with a Cohen’s 𝑑 (magnitude of causal effect adjusted to standard
deviation) of 0.03 given the observed confounders; this represents
the proverbial ’starting point’ of our sensitivity analysis. Each red
triangle represents the potential inclusion of that variable in the
adjustment set, plotted according to the partial correlation values on
the x- and y- axes. The red line indicates the frontier at which causal
effect estimation is nullified, or turns to 0, by including additional
confounders; if any triangles are found to lie to the upper right of
the red line, the inclusion of that variable in the adjustment set
may change the causal conclusion entirely. Potential confounding
variables that lie above the red frontier line indicate the discovery
of previously hidden confounders which pose a threat to validity.

We find read8 (reading ability in 8th grade) meets the criteria
put forth by our sensitivity analysis, with a partial correlation
with the treatment 𝑅2

𝑇∼𝐻 |C of 8.48% and partial correlation with
the outcome 𝑅2

𝑂∼𝐻 |C∪{𝑇 } of 15.94%. When incorporated into the
estimation, the 12th grade math score difference between Catholic
school students and public school students drops 15% to 1.204.While
it did not invalidate our causal claim, it did impact a considerable
portion of the effect, which may have gone unnoticed without this
search. Based on domain knowledge, we dismiss other attributes
from being valid confounders, as they are factors not influential to
Catholic high school enrollment: inpse (whether the student is in
post-secondary education), read12 (reading ability in 12th grade),
and hsgrad (whether the student graduated from high school).

4 CONCLUSION
In this work, we discussed data marshalling for sensitivity anal-
ysis, defined the confounder discovery problem and its technical
challenges and opportunities, and demonstrated it in a case study.
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