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ABSTRACT

This thesis presents a combired coding and modulation
technique for four-dimensional satellite transmissions in the
presence *f rnterference and noise. Improved error performance
is achieved by four-dimensional channel coding with expanded
signal sets in a manner which increases free Euclidean distance.

A power-efficien* four-dimensionally coded phase-shift-keying system
(PSK) is described. Convolutional coding with maximum likelihood
decoding is used to further trade off bandwidth for power. Using
Ungerboeck's rules for channel signal assignment, simple trellis
codes are selected. Lower bounds are derived for the free Euclidean
distance at the output of the modulator, and asymptotic perform-
ance is evaluated. It is shown that combining a rate 2/3 encoder
with four-dimensionally coded quarternary phase-shift-keying yields
an Eb/No gain of 3 to 4 dB over uncoded two-dimensional BPSK, at
moderate signal-to-noise ratios.

The performance of the coded four-dimensional system
in the presence of AWGN, co-channel interference, intersymbol
interference, and other satellite channel non-linearities is
simulated on the computer.

Thesis Supervisors: Dr. Pierre A. Humblet
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1. INTRODUCTION

Over the past few decades, there has been an exponential
growth in the needs for communication services [l1]. Continuous
efforts have been made to improve and expand the capabilities of
communication systems. Today, communication is no longer a gen-
eralization of telephony, radio and television transmissions.

It also offers a whole new spectrum of services to mankind, such
as navigation, weather-forecasting, astronomy, remote medical
diagnosis, electronic mail, teleconferencing, and many other
esoteric applications.

The rapid advancement in communications satellite tech-
nology has significantly lowered the costs of communications, and
extended communication links to remote corners of the world.

With the advent of the space shuttles, satellite deployment will
soon become a routine in space. The geosynchronous orbit is
already heavily congested with satellites operating in the com-
mercial C-band frequency region (6/4-GHz). Bandwidth availabil-
ity in this frequency region is limited to only about 500 MHz.
Hence, if future demands for communicetion services are to be
met, it is necessary to open up new spectral resources or to
utilize the limited available spectrum more efficiently. Higher
frequency bands are potentially available for satellite transmis-
sions. Frequencies in the K-band frequency region (14/11-GHz)
have already been employed by several commercial satellites such
as the INTELSAT V satellites.

An alternative solution to the problem of limited spec-
tral resources is multiple reuse of available frequency bands,
which can be achieved by orthogonal polarization or by multiple
exclusive spot beams [2]-[4]. Unfortunately, the utilization of
these frequency-reuse systems is strongly contingent upon a
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satisfactory level of antenna beam isolation or cross-
polarization discrimination. Non-ideal antenna systems often
impose a limit to the achievable level of beam isolation. Pro-
pagation difficulties such as attenuation and phase shifts due to
rain, particularly severe at frequencies above 10 GHz, can
significantly reduce the cross-polarization discrimination of a
dual-polarized frequency-reuse system [5]. Imperfect isolation
of channels utilizing the same frequency band results in co-
channel interference. Although it is possible to design antenna
systems with high directionality, or transmission systems with
adaptive cross-polarization cancelling devices, it is often very
costly and impractical to maintain perfect orthogonality between
the frequency-reuse channels under all weather and operational
conditions.

Besides co-channel interference (CCI), many other forms
of interference and noise are present in the satellite channels.
Additive white Gaussian noise is almost always present in any
communication system. Imperfect transponder frequency isolation
results in adjacent channel interference (ACI). Non-ideal chan-
nel filtering gives rise to intersymbol interference (ISI). Due
to the presence of various inter-channel interference, satellite
communication systems are often power-limited in the sense that
increasing the signal power does not improve the signal-to-
interference ratio without limit.

Given the power and bandwidth constraints, it is desir-
able to design and use modulation techniques with high resistance
to interference. On top of that, improved coding techniques can
also be used to protect the desired signals from interference and
noise impairment. Over the past few years, coding and modulation
have evolved to become a combined entity in the design of modern
communication systems.
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Communication data is often transmitted over multiple
channels which, due to various interference, are not per fectly
orthogonal. It is intuitively convincing that system per formance
is best if the coding and modulation problems are considered
Jointly for all the channels. However, this is usually not done
in the current technology, where the transmission system for each
Channel is often designed separately. For instance, frequency-
reuse channels have often been treated as independent channels.
In addition co-channel interference is usually assumed to be some
kind of additive Gaussian noise. Such assumptions have un-
doubtedly simplified the analysis and design of frequency-reuse
communication systems. Nevertheless, they are not very
realistic. Moreover, it appears to be possible and certainly an
advantage to cooperatively process the signals that are to be
transmitted through the channels employing the same frequency.
Information theory shows that the channel capacity region of a
multiple dimensional channel expands with increasing co-operation
among the transmitters and receivers for all the component
Cchannels.

With ever increasing orbital overcrowding by communica-
tions satellites, [6] and with improved knowledge of the nature
and statistics of rain depolarization [7], the problems of co-
channel interference in frequency~reuse systems have become a
greater concern of modern communications engineers. Advanced
communications technology, especially in the area of coding and
modulation, will enable future satellite systems to continue the
trend of expanding capacities with greater frequency-reuse, and
improving transmission reliability in the presence of interfer-
ence and noise.

In this thesis, we study a combined coding and modulation
technique for transmission systems with four dimensions, which
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consist of the in-phase and quadrature components of two two-
dimensional channels. Using the above technique, we then design
four-dimensional transmission systems which are highly resistant
to interference such as intersymbol interference and ~o-channel
interference. This thesis basically consists of eight sections.
Following this introduction to the problems in satellite communi-
cations is a review of brevious work on multi-dimensional
Systems, combined coding and modulation techniques, intersymbol
interference, rain depolarization, and other areas of concern in
this research.

Section 3 gives a detailed outline of the problems
addressed in this thesis, and the steps taken in the design of
the interference-resistant four-dimensional transmission systems.
In Section 4, we present the methods of four-dimensional modula-
tion and coding. The techniques involve optimal selection of
four-dimensional signals from an expanded signal set, and the use
Of convolutional codes which maximize the minimum free Euclidean
distance between channel symbol sequences at the output of the
modulator. The idea of four-dimensionally coded modulation is
also introduced. Asymptotic coding gains are evaluated.

Section 5 describes the application of four-dimensional
modulation and coding methods on the design of a transmission
system for channels with intersymbol interference. Asymptotic
coding gains in the presence of intersymbol interference are
evaluated, and the performance of the system is compared to that
of existing optimal two-dimensional systems.

In Section 6, the design of a four-dimensional
frequency-reuse transmission system is presented. The robustness
Of the system performance in the presence of both co-channel and
intersymbol interference is studied.
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The performance of the coded four-dimensional QPSK
systems is simulated on the computer, using some modified por-
tions of the Channel Modeling Program ("CHAMP") developed at
COMSAT Laboratories. The results are presented in Section 7. We
also examine the system performance in satellite channels subject
to various nonlinearities by similar computer simulations.

The last section providés a discussion of, and conclu-
sion from, the results obtained in this research. Suggestions

are made for future research.
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2. LITERATURE SURVEY

The studies of communication in the presence of noise
date back to as early as the 1900's. 1In the 1940's Shannon
showed that information could be transmitted over a noisy channel
at a positive rate, limited by its channel capacity, with an
arbitrarily low probability of error at the receiver [8],[9].
Since then, there have been extensive studies and considerable
interests in various transmission schemes which exhibit such
behavior [10]-[12].

The classical theories of detection, estimation and
modulation have been extensively studied by Schwartz, Helstrom,
Wozencraft, Jacobs, Van Trees and many others [13]-[16]. 1In a
paper published in 1962, Arthurs and Dym analyzed and compared in
detail three basic data transmission systems, namely phase-
shift-keying (PSK), amplitude-shift-keying (ASK) and frequency-
shift-keying (FSK) [17]. Various types of modulation have been
Studied and compared by Weaver [18]. More recently, Spilker,
Viterbi, Omura and Proakis have made invaluable contributions in
the area of digital communications [19]-[21].

Previous theories did not pay much attention to the
economics of bandwidth utility. Amoroso has given a summary of
the bandwidths of several modulation schemes under different
definitions of bandwidths [22]. Due to the increasing demand for
spectral resources, spectrally efficient modulation techniques
have received considerable attention. Two modulation techniques
which retain low spectral sidelobe levels while allowing effi-
cient detection performance are minimum-shift-keying (MSK) and
offset quaternary phase-shift keying (OQPSK). These two systems
have been analyzed and compared by Gronemeyer and McBride [23].
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Although spectral efficiency is a major concern in the
design of communication systems, signal design for improved pro-
bability of error has not been given less attention. The funda-
mentals of optimal signal design can be found in a book written
by Weber [24]. Cahn, Campopiano, Glazer, Lucky, Hancock, Salz,
Sheehan, Paris, Simon and Smith have studied combined amplitude
and phase modulation schemes, [25]-([29] whereas Foschini, Gitlin,
Weinstein, Kernighan and Lin have worked on the optimization of
two-dimensional signal constellations in the presence of Gaussian
noise and phase jitters [30],[31].

The tradeoff between bandwidth and signal power is well
known. Prabhu evaluated the performance of some modulation
systems that trade bandwidth for power [32]. 1In satellite com-
munications, the use of forward error correction (FEC) coding to
trade off bandwidth for power has been a very common approach,
since satellite repeaters are often more power limited than band-
width limited. However, as available frequency bands become more
and more congested, bandwidth efficiency will be an important
criterion in the design of coding systems as well. Multilevel
and polyphase signaling may be employed to increase coding gain
or improve error performance without expanding bandwidth.
Ungerboeck has a very good example of coding with multilevel and
polyphase signaling [33]. Earlier in 1965, Zetterberg published
a paper on a class of codes for polyphase signals in a band-
limited Gaussian channel [34].

Coding is a very extensively studied topic, [35]1-[38].
There are two types of commonly used codes, namely block codes
and convolutional codes. It has been recognized that con-
volutional codes generally outperform block codes of the same
order of complexity [39],[40]). The Viterbi decoding algo-
rithm [41],[42] which is an optimal maximum likelihood decoding
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technique, has been showh to be particularly suitable for satel-
lite channels by Heller and Jacobs [43]. Foremost, among the
recent work on convolutional coding theory is that of Forney,
which includes a three-part series devoted to algebraic struc-
ture, maximum likelihood decoding, and sequential decoding,
respectively [44]-[47].

The real satellite channels are never free from inter-
ference and noise. 1In the design of transmission systems for
satellite communications, it is difficult to combat interference
because its characteristics are usually nonlinear or have not
been fully understood. More often than not, the channels are
subject to well more than one type of interference. Stavroulakis
has put together and edited a volume of papers on interference
analysis of communication systems [48]. While most of the papers
are devoted to the analysis of one type of interference, Fang and
Shimbo presented a unified analysis of a class of digital systems
in additive noise and interference [49]. Benedetto, Biglieri and
Castellani have studied the combined effects of intersymbol,
interchannel, and co-channel interference in M-ary CPSK
systems [50]. Due to the complexity of multiple interference, it
is only practical to identify the largest interferer and com-
pensate for its undesirable effects. A widely used alternative
to interference compensation is to transmit signals with suf-
ficiently large minimum Euclidean distances between them in order
to ensure satisfactory performance.

Multiple reuse of frequencies to conserve spectrum is
not a very new approach. However, it is subject to many limita-
tions which are yet to be overcome. The primary limitation is
co-channel interference resulting in cross-talk between the
frequency-reuse channels [51]. There have been extensive studies
on co-channel interference in dual-polarized frequency-reuse
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systems due to depolarization [52]-[56]. Mathematical models of
the nature of rain depolarization have been developed by Oguchi
and Chu [57],[58]. Depolarization measurements have been carried
out by DiFonzo, Trachtman, Semplak, Tseng, Cheng and many

others [59]-[61]. Oguchi has a summary and a discussion of the
results obtained by many of them. Orthogonality restoring or
adaptive polarization control systems have been designed by many
researchers such as Chu, Kreutel, DiFonzo, Trachtman, Williams
and Lee [62]-[73].

Intersymbol interference arises in pulse-modulation
systems when signals in successive time dimensions are not per-
fectly orthogonal [74]. Appropriate baseband pulse shaping and
use of sampling rates that satisfy the Nyquist's criterion can,
in principle, eliminate intersymbol interference. Tufts gave a
fairly thorough discussion on the Nyquist's problem in one of his
papers [75]. Gerst and Diamond proposed a method of eliminating
intersymbol interference by input pulse shaping [76]. 1In prac-
tice, interference is often unavoidable because of non-linear
channel filtering and system timing errors [77]. Sometimes,
intersymbol interference is introduced deliberately for the
purpose of spectral shaping in certain modulation schemes for
bandlimited channels. Bershad and Vena proposed a method of
eliminating the effects of intersymbol interference with a state
space approach [78]. The effects of intersymbol interference on
pulse-modulated signals, and associated error probabilities, have
been studied in considerable detail in recent literature [79].
Optimum demodulation for channels with intersymbol interference
has been studied extensively by Forney [80], who showed that the
Viterbi algorithm can be used to optimally demodulate signals in
channels that suffer from intersymbol interference. Vermeulen
and Hellman considered using a reduced state Viterbi algorithm to
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combat intersymbol interference [81]. They showed that the method
is asymptotically optimal for large signal-to-noise ratios. On
the other hand, Viterbi and Omura suggested using an extended
State Viterbi decoder for the maximum likelihood demodulation of
convolutionally coded data transmitted over an AWGN channel with
intersymbol interference of finite memory [20].

Conventional design of coding systems involves selec-
tion of binary codes which maximize the minimum Hamming distance
between codewords. The codewords are then input to a modulator.
It has been realized that the above approach does not necessarily
optimize the performance of the overall system. The mid-
seventies saw a revolution in the concepts of optimal coding and
modulation. Combined coding and modulation techniques were
introduced, initially for the design of communication systems for
fadiny or dispersive channels. Chase, Bello, Pieper, Proakis,
Reed, and Wolf are among those who have studied the above novel
approach and demonstrated its promises in future cbmmunication
Systems ([82]-[84]. The joint optimization of encoder and modula-
tor can be viewed as a search for optimal signal-space codes. A
bandwidth-efficient cl ;s of signal-space codes has been proposed
by Anderson and Taylor [85]. Ungerboeck presented a power-
efficient coding and modulation technique with multilevel/phase
signals [33]. Convolutiocnally encoded bits are mapped onto an
expanded set of channel signals by set partitioning. The system
is optimized with the criterion of maximizing the free Euclidean
distance between channel signal sequences.

There have been significant advances in the area of
multi-dimensional and multi-user channels since the early six-
ties. A very comprehensive survey of multi-way channels in
information theory has been done by Van Der Meulen [86]. He gave
a summary of the results obtained by many information theorists
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during the period between 1961 and 1976. The multi-dimensional
and multi-user channels which have been studied include the
broadcast channels [87],[88], the multiple-access channels [89]-
[92], and other channels with various degree of partial coopera-
tion among the users [93]-[95]. The channel capacity regions of
the systems have been derived and used as a basis for compar ison.
It can be deduced from Ahlswede's and Sato's papers that for a
multiuser communication channel, the channel capacity region
expands with increasing user-cooperation until it reaches its
upper bounc when the users fully cooperate with each

other [96!-[98].

Single-user multi-dimensional systems have often been
considerec in two dimensions, such as QAM and PSK. Higher dimen-
sional systems which have received considerable attention are
various forms of diversity systems. Welti and Lee have studied
some four-dimensional transmission systems which are different
from orldinary diversity systems [99]. They showed that the per-
formance of the four-dimensional systems in general exceeds that
of two independent two-dimensional systems. Welti has, in parti-
Cular, proposed a novel four-dimensionally coded QAM [100],[101].
Welti's results provided the motivation for the author to study
four-dimensionally coded PSK, which are presented in subsequent
sections of this thesis.

Much work has been done in the area of communication in
the presence of noise and interference. A brief survey such as
the above can hardly cover every aspect of the area. Neverthe-
less, it does point out the collection of previous work which
provided the technical foundation and motivation for the studies
reported in this thesis.
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3. DESCRIPTION OF THE PROBLEM

Let us first look at multiple dimensional channels from
an abstract point of view. We will consider four-dimensional
channels in particular since they are our major concern here.
Generalizing the following discussiofi to higher dimensions is
straightforward. After the effect of interference on four-
dimensional channels has been discussed, design procedures for an
interference-resistant four-dimensional communication system will

be presented briefly.

3.1 FOUR-DIMENSIONAL CHANNELS

There are many types of four-dimensional channels,
which include four-user channels without cooperation (Fig-
ure 3-1), multiple-access channels (Figure 3-2), broadcast chan-
nels (Figure 3-3) and four-user channels with full cooperation
(Figure 3-4). A discrete memoryless four-dimensional channel is
completely characterized by its joint transition probabilities,
p(y|x), where x and y are four-dimensional vectors representing
the discrete inputs and outputs of the channel, respectively.

The four-dimensional channel can be represented by the block dia-
gram shown in Figure 3-5.

The capacity regions of multiple-access, broadcast and
multi-user channels have been studied by Ahlswede, Cover, Sato
and many other information theorists [86]-[98]. The general con-
clusion from their results is that the capacity region of a
multi~dimensional system increases with user cooperation, when

there is no perfect orthogonality among the component channels.
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We will examine a less general but common class of
four-dimensional discrete channels. The input/output matrix

representation is given below.

~— - - - = — -
Y1 ajl] alz2 aj3 ajpy FX1 nji
Y2 az] az az3 azy X2 n2
= + (3-1)
Y3 az) a3 asziz asgy X3 njs
LYy ([ 3ul 342 Ay3 Ayy | inj My

where {ajj} is assumed to be a setc of known interference coeffi-
cients, and nj,np, n3, and nyg are independent AWGN. In simpler
notations, the above expression can be written as follows.

Yy = AXx + n (3-2)

The joint transition probability is given by

=Y

4

ply|x) = p(n =y - Ax) = 1-r. P(nk = Yk -~ :E: aijj) (3-3)
k=1 j=1

Channels which are subject to various kinds of known cross-
channel interference can be sufficiently characterized by the
above joint transition probability.

A four-dimensional channel can be conveniently modeled
as two two-dimensional channels, each with separately modulated
in-phase and quadraturc components. Figure 3-6 depicts this
channel configuration.
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Let the matrix, A be partitioned into four two~by-two

matrices.

A1l A2
A: (3-4)
Az A

A}, and A,, are each the matrix pertaining to interference within
the respective two-dimensional system. A;, and Aj;) account for
the cross-channel interference. Traditionally, the two-
dimensional systems are designed separately, and the cross-
channel interference is ignored. In the research reported in
this thesis, we specifically assume that A} and Aj) are non-zero
matrices, which serve to describe the satellite channels more
realistically.

The above model of a four-dimensional discrete channel
applies equally well to continuous channels, since continuous
signals can easily be represented by vectors by choosing an

appropriate basis.

3.2 PROBLEM STATEMENT AND DESIGN PROCEDURES

As discussed, it is possible to improve the overall
performance of two two-dimensional communication systems with
interference by treating them as one four-dimensional system and
including sufficient cooperation between them. It is our objec-
tive, in this study, to design a four-dimensional system whose
per formance is better than its corresponding independent two-
dimensional systems, especially in the presence of interference
that destroys channel orthogonality. The performance of the
four-dimensional system in the presence of noise and interference
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will be evaluated and compared to that of the two-dimensional
systems.

Since the additive noise is assumed to be AWGN, the
system per formaince depends on the Euclidean distance between sig-
nals. It is a common practice to maximize the Euclidean distance
in the design of the systems. If the cross-channel inter ference
is known or has some linear properties that can be exploited
mathematically, the system performance can be improved somewhat
by employing appropriate interference cancellation devices. How-
ever, more often than not, the above approach introduces correla-
tion among the noise components, resulting in colored noise. It
therefore will complicate the design. 1In this study, the author
has taken the approach of maximizing the Euclidean distance in
the presence of interference.

We are interested in two types of dimensions, namely
dimensions in time and dimensions in space or polarization. 1In
the time-dimensional system, the four-dimensional signals consist
of pairs of consecutive pulses, each of which has both in-phase
and quadrature components. In the space or polarization-
dimensional system, the four-dimensional signals consist of pairs
of pulses which are transmitted over two frequency~reuse channels
that are not necessarily orthogonal in time.

In the next chapter, we will describe some simple
four-dimensional modulation systems which consist of two two-
dimensional systems. Attention is restricted to phase-
shift-keying because it is not sensitive to non-linear
amplification, which is common in satellite transmission systems.
A sub-optimal coding scheme for the above systems will be dis-
cussed. The coding scheme proposed in this study consists of two
parts. The first part involves coded modulation, which closely
resembles joint block coding and modulation. The second part is
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convolutional coding. Ideally, both parts should be optimized
together. Unfortunately, this would involve complicated mathe-
matical optimization techniques. Hence, we resort to optimizing
the two parts separately. Using a combined coding and modulation
approach, we manipulate the code in the signal space and try to
maximize the free Euclidean distance between channel symbol
sequences.

In the design of our coded four-dimensional PSK Sys-
tems, Ungerboeck's method of set-partitioning is used for the
assignment of channel signals to binary codewords such that the
minimum Euclidean distance between channel signals is maximized.
The above method of signal assignment also enables the derivation
of a simple but tight lower-bound for the Euclidean distance
between the four-dimensional signals.

We have chosen to use convolutional coding because of
its superior performance in satellite communications compared to
many other coding schemes of equivalent complexity. 1In a study
like this, it is important to obtain deep insights into the
structure as well as the performance of the proposed systems.
Using complicated convolutional codes with long constraint
lengths does not necessarily provide better insights than codes
with short constraint lengths. Hence, the author has chosen to
employ simple codes selected according to several basic rules
given by Ungerboeck.* The lower bounds for Euclidean distances
between channel signals, obtained with the aid of set-
partitioning, can be used in code searching by exhaustive compu-
tation. Nonetheless, in this 6 to 7 months of study, there was

not enough time for the author to carry out a computer search for

*Ungerboeck claimed that small memory codes obtained according to
his rules are optimum, and it could be confirmed easily by hand-
search [33]. Using Ungerboeck's rules, Wilson, et al. have
obtained some good rate 3/4 16-PSK phase codes [102].
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codes with large constraint lengths. Lower bounds for free
Euclidean distances are derived and used to evaluate the asymp-
totic performance of the codes.

The application of our coding scheme for four-
dimensional QPSK is demonstrated in two separate sections. In
Section 5, a nominally time-orthogonal four-dimensional system
with intersymbol interference is considered. Lower bounds for
free Euclidean distances in the presence of intersymbol inter-
ference are derived. Free Euclidean distances for the few simple
codes selected are obtained by exhaustive searching. In Sec- ‘
tion 6, the coding scheme for four-dimensional QPSK is applied on
a frequency-reuse system with co-channel interference. Lower
bounds for free Euclidean distances in the presence of co-channel
and intersymbol interference are derived.

Apart from evaluating the four-dimensional systems in
terms of their asymptotic performance, their coding gains at
moderate signal-to-noise ratios are also examined by computer
simulation. The deterioration in performance due to co-channel
interference, intersymbol interference, and other satellite
channel non-linearities is also simulated. The Channel Modeling
Proyram ("CHAMP") was used for the simulation.*

¥A description of CHAMP can be found in References [103]
and [104].

33



4. FOUR-DIMENSIONAL MODULATION AND CODING

In this section, we present the design of a four-
dimensional transmission system with cooperative encoding and
joint decoding. Phase-shift-keying systems are chosen because
they are not very sensitive to non-linear amplification which
abounds in most satellite channels [105],[106].

Let's consider the system block diagram shown in
Figure 4-1. We are interested in the channel coding for the sys-
tem. The four-dimensional joint coding and modulation scheme

consists of basically three parts, namely:

a. Signal design for four-dimensionally coded modulationj;
b. Four-dimensional channel signal assignment;

c. Selection of forward error correction (FEC) codes.

The inputs to the encoder are assumed to be two sym-
metrical, binary and memoryless message sequences. The encoder
outputs are mapped onto the four-dimensional channel signals by
the signal mapper, which plays the rolé of another encoder. 1In
this respect, the above coding scheme is actually some kind of
concatenated coding. The received signals are demodulated before
they are fed into the decoder, which jointly decodes the message
sequences. If convolutional codes are used, the decoder is a
Viterbi maximum likelihood decoder. The four-dimensional signals
are represented by number pairs, such as (a, b), whose components
represent the corresponding two-dimensional signals.
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4.1 FOUR-DIMENSTIONAL MODULATION

A four-dimensional modulator outputs pairs of two-
dimensional signals during every unit of time. The pair of two-
dimensional signals can be orthogonal in time, or orthogonal in
space or polarization. It is assumed that the signal constella-
tions of the two-dimensional components are identical. Thus, it
suffices to specify the four-dimensional signals by a two-
dimensional signal constellation together with the corresponding

set of number pairs.

Consider four-dimensional QPSK as an example. The sig-
nal constellation is shown in Figure 4-2. There are altogether
16 possible four-dimensional signals, represented by(0,0),(0,1),
(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),
(3,0),(3,1),(3,2),(3,3). '

4.2 CODED MODULATION AND SIGNAL DESIGN

In an ordinary modulation, an M-ary input sequence is
mapped onto an M—ary channel signal. The input sequence to the
modulator is usually the output of an encoder. 1In coded modula-
tion, an M-ary sequence is mapped onto an N-ary channel signal,
such that N > M. Ordinary modulation and coded modulation are
compared in Figure 4-3.

It is assumed in this section that the signal-space
code-base is a standard n-PSK. The subset of M channel signals
are selected such that the minimum Euclidean distance, denoted by

dpins is maximized. For two-dimensional PSK, maximization of the

minimum Euclidean distance results in choosing the signals such
that they are evenly distributed around a circle. Specifically,
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Figure 4-2. OQPSK Signal Constellation
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to choose an optimal subset of M = 29 signals from a code-base of
N = 2 PSK signals, where q and r are both integers and q < r,
the following method can be used.

Figure 4-4 shows a two-dimensional PSK constellation
with n = 2Y signals, distributed evenly around a circle of
radius, dg. The signals are labeled from 0 to n-1 in a counter-
clockwise manner. Let dy be the distance of the kth signal from

the signal labeled 0. Then, dyx is given by;

dg = 2 a2 (1 - cos 2:“) (4-1)

The minimum subset distance is given by

= 2d% (l - cos 2%) (4-2)

Observe that every signal has two nearest neighbors.

And, separating each signal from its neighbors will result in two
optimal subsets, with a minimum subset distance given by

= 242 (1 - cos 3%) (4-3)

The signals can be successively partitioned in the same manner,
yielding optimal subsets with minimum subset distance, Ay, after
the kth partitioning, where

= 243 (1 - cos 2k+tl %) (4-4)

Each optimal subset then has 2r-k signals. Hence, to obtain an
optimal subset with 29 signals, the original n-PSK signals have
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Figure 4-4. n-PSK Signal Constellation
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to be partitioned (r-q) times. The above method is best illus-
trated by an example, say, 8-PSK with r = 3. The various stages
are shown in Figure 4-5. The minimum squared subset distances

for various q are listed below.

q=13 ; A% = 0.586 43
2
q=2 ; Ay = 2.000 dyg
q=1 ; 22 = 4.000 d3 (4-5)

The above method of signal design can be applied on the
selection of four-dimensional PSK signals as well. Details are

discussed in the Subsection 4.2.1.

4.2.1 SIGNAL DESIGN FOR FOUR-DIMENSIONALLY CODED
PHASE-SHIFT-KEYING

It is assumed that the four-dimensional PSK signal con-
sists of a pair of two-dimensional PSK signals with identical
signal corstellations. Our objective is to select a subset of
M = 29 four-dimensional signals from a four-dimensional n-PSK
signal set, such that the minimum subset distance is maximized.
The code-base in the signal space has N = 2f = n? signals. Each
signal is represented by a number pair, (a, b). The two-
dimensional components, a and b, are represented on the constel-
lation shown in Figure 4-4.

Let's consider a typical signal, say (3, 4). We can
visualize, on a two-dimensional picture shown in Figure 4-6, the

signal (3, 4) being surrounded by its neighbors. It has four
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nearest neighbors, namely (3, 5), (4, 4), (3, 3) and (2, 4),
which are at a squared distance of d% away from it. The next
four nearest neighbors are at a squared distance of 2d% away from
(3, 4). Even further away at a squared distance of d% > 2d%,
there are another four neighbors. To obtain subsets with maximum
minimum distance, the signals are successively partitioned such
that every signal is separated from its four nearest neighbors.
After the kth partitioning, we obtain subsets with 2~k signals
each, and minimum subset distance, Ay, given by the following

expressions.

;X = 2k/2 for k even

IO

N
»
il

2(k=1)/2 for k odd (4-6)

It is easy to verify that Ai > A§ if k > j > 0. If a signal set

with M = 29 signals is desired, the original four-dimensional
signal set has to be partitioned (r-q) times. It is due to the
highly symmetrical structure of the four-dimensional PSK constel-
lation that we can partition the signals in the manner discussed
above to sort out the desired signal subset. For most other con-
stellations, more sophisticated algorithms are necessary. Notice
that the above signal design technique assumes signal sets whose
number of signals is an integral power of two. For practical
reasons, this is not an unreasonable assumption.

We now consider four-dimensional QPSK as an example.
The two-dimensional representation of the signals is shown in
Figure 4-7. There are altogether N = 16 four-dimensional sig-
nals. We have n = 4 and r = 4. The minimum squared subset dis-

tances for various q are listed below.
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q=4 ; ab=4a% =243
g=3 ; A% = 2d% = 44}
Q=2 ; A2 =45 =4d?
q=1 ; A3 =2d% = 843 (4-7)

It is confirmed that Aﬁ > A% for all k > j > 0. Suppose q = 3,
and M = 2d = 8, The above signal design gives rise to two
optimal subsets with a minimum squared subset distance of 4d%.
The two subsets are:

Subset A:

{(0,1), (2,3), (0,3), (2,1), (1,2), (3,0), (1,0), (3,2)}
Subset B:

{(0,0), (2,2), (0,2), (2,0), (1,1), (3,3), (1,3), (3,1)}.

It can be easily verified that any other collection of
eight signals from the four-dimensional QPSK constellation will
yield a minimum squared subset distance of 2d%.

It is worth pointing out that the above signal space
codes can be generated by a rate 3/4 block coding followed by
the usual one-to-one mapping of binary numbers onto the four-
dimensional signals.

Let us look more closelv at subset B. Notice that each

of the four-dimensional signals ccnsists of two two-dimensional
~ components which are not independent of each other. They are
either both odd-numbered signals or both even-numbered signals.
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This particular four-dimensionally coded QPSK is similar to one
of the four-dimensionally coded QAM proposed by
Welti [100],([101].

The presence of cross-channel interference, such as
intersymbol interference, and cross-polarization, can degrade the
minimum Euclidean distance to a significant extent. The degrada-
tion depends on the amount of interference as well as the choice
of signal subsets. The method of signal design described above
does not guarantee optimality in the presence of interference.

4.3 CHANNEL SIGNAL ASSIGNMENT FOR FOUR-DIMENSIONALLY CODED
PSK AND BOUND ON SQUARED DISTANCES

Given the set of four-dimensional signals, {(aj, bj):
i=1, 2 . . . M}, there are many ways of assigning binary num-
bers to each of them. A very common assignment is the Gray Code
mapping. Unfortunately, Gray Code mapping does not monotonically
translate large Hamming distances into large Euclidean distances.
Hence, with Gray Code mapping, it is very difficult to design
encoders which achieve maximum free Euclidean distance.

Ungerboeck has proposed a very useful technique of
assigning binary codewords to channel signals [33]. His approach
is based on a mapping rule, called "Mapping by Set Partitioning."
The mapping involves successive partitioning of a channel signal
set into subsets with increasing minimum distances Ag<A;<A7 . . .
petween the signals of these subsets. The concept of set parti-
tioning has earlier been illustrated in Figure 4-5 for 8-PSK for
a different purpose. The result of Ungerboeck's mapping by set
partitioning is best summarized on a tree diagram, shown in

Figure 4-8. The minimum subset distances are given below.
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Figure 4-8.

Ungerboeck's Set Partitioning of 8-PSK
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Ag = d; = 0.765 dy
A = d; = 1.414 dy
Ap = d3z = 2.000 dy ' (4-8)

The above method of channel signal assignment gives
rise to a very important property of the set of error vectors
corresponding to the binary sums of all pairs of binary code-
words. Let ek be an arbitrary error vector, and g(gg) be the
number of trailing zeros in gx. One can easily see that the
Euclidean distance corresponding to gx is always greater than or
equal to Ag(gk). It is very useful to have a free distance bound
which depends only on the error sequences because the bound can
be used to search for good trellis or convolutional codes.

Ungerboeck's method of mapping by set partitioning can
also be applied on the channel signal assignment for four-
dimensionally coded PSK. Let M(w) be the mapping of the code-
word, w, onto a four-dimensional channel signal. Then, the

signals, represented by a number pair is given below:
(a,b) = M(w) (4-9)

The squared Euclidean distance between (a,b) = M(w) and

(a',b') = M(w') is given by:
D{(a',b'),(a,b)} = D{M(w'), M(w)} = D{M(w (3} €), M(w)} (4-10)

where e, defined by w' = w (:) € is the error vector.
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In general, D{M(w (¥ €), M(w)} depends on both the
error vector, and the codeword w. Using Ungerboeck's method,
with only slight modification, we will derive a simple lower
bound on the squared Euclidean distance for a given error vector.

The bound depends only on the error vector. Let the bound be
Dp (g). Then we have

D{M(w (¥) €), M(w)} > Dple) (4-11)

To facilitate further discussion on channel signal assignment for
four-dimensionally coded PSK, we will describe a four-dimensional
rotational transformation and its properties in Subsections 4.3.1

and 4.3.2, respectively.

4.3.1 FOUR-DIMENSIONAL ROTATIONAL TRANSFORMATIONWN

Transformation of four-dimensional signals can be
represented by pairs of transformations on the two-dimensional
component signals. Let's define a four-dimensional rotational

transformation as follows:
T(a,b) & {Ry (463), Rp (A6p)} (4-12)

where Ry (A64), and Rp (A8p) are the signals resulting from rota-
tional transformations of the two-dimensional signals, a and b by
A65 and A6p respectively. Note that for an n-PSK, the rotational
transformations, Ry (A8,) and Rp (A8p), are both modulo n. Fig-
ure 4-9 shows the transformation of (a,b) into (a',b') = T(a,b).

Note that the transformation is discrete, and the angles of
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rotation are all integral multiples of the minimum phase differ-
ence, 6 = 2n/n. 1In addition, it is assumed that 0 < |A8| < .
Since the errors in a PSK system are directly related
to the rotational transformations, the Euclidean distance between
any pair of four-dimensional signals depends only on the phase
differences between the corresponding two-dimensional component

signals. Hence

D{[Ra(Aea)l Rb(Aeb)], (a, b)}

D[(a', b'"),(a, b)]
= D{Ra(A85), a} + D {Rp(A6p), b}
= D{Ro(aBa), 0} + D {Ry(Aa6p), 0}
= D{[Ro(883), Rola8h)], (0, 0)}

= D{ (&a, Ep), (0, 0)} (4-13)

where

>

@
v
|

84" - 85
8p' - 6p
Ro(46,)
Ro(A6p)

>

@
o

i

Y
o)
> e

Channel signal assignment gives rise to a "tree". Con-
sider any two sub-trees emanating from two intermediate nodes at
the same level, as shown in Figure 4-10.
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Theorem

If every corresponding pair of (aj, Bj) in B and
(aj,bj) in A are related by the same four-dimensional transforma-
tion T, i.e.,

(aj, Bj) = {Rg;(885), Rpj(A8p)} for all i (4-14)

then sub-tree A and sub-tree B are said to be "equivalent" in the

sense that they both have the same distance properties.

Proof

D{(a'l B'), (a, B)}

D{[Ra'(485), Rp,(46p)],
[Ra(86,), Rp(Adp)]}
= D{Ra'(465), Ra(A68;)}
+ D{Rp'(A8), Rp(A6y) ]
= p{a', a} + p{b*, b}

= Dp{(a', b'), (a, b)} (4-15)

Therefore, for every pair of (a',b') and (a,b), there is a

corresponding pair of (a', B8') and (a, B), such that

D{(a'l b'), (a,b)} = D{(d', B'), (a, B)} (4-16)
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4.3.2 PROPERTIES OF FOUR-DIMENSIONAL ROTATIONAL
TRANSFORMATION

a. A four-dimensional rotational transformation, T, moves
a four-dimensional signal point by the same Euclidean

distance as its inverse, T~ !l.
D{T(a, b), (a, b)] = D[T"!(a, b), (a, b)] (4-17)
b. The transformation is commutative.
T,Ty(a, b) = T,T;(a, b) (4-18)

It also follows that if a transformation consists of a series of
other transformations, the order in which they are taken is not

important. For example,
T,T,T3(a, b) = T3T,T;(a, b) = TT3Ta2(a, b) . . ., etc.

The above properties lead to the following result. Given a set
of k distinct transformations, and their inverses,

]

{1}, T3, T3!, coe e e e ey T

there are at most f = 2K~J different transformations which are
made up of k successive transformations selected from the set
without repeating any one or its corresponding inverse. Jj de-
notes the number of the components that are the same as their
respective inverses. It also follows from property (a) that the
f different transformations correspond to at most f/2 different
distances, D[T(a, b), (a, b)], for £ > 1.
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4.3.3 LOWER BOUNDS ON SQUARED EUCLIDEAN DISTANCES

It in the process of assigning channel signals to the
input sequences, care is taken to arrange the signals such that
every pailr of sub-trees, emanating from intermediate nodes of the
same level, are eguivalent in the sense described earlier, then a
tight lower bound for the squared Euclidean distance between the
four-aimensional signals can be obtained easily. The bound is
denocted by Dp(e), and is given by (4-11).

The key property 1s that one can write M(w ©) €) in

the form

d

T {T;lM(ﬁ)} (4-19)

j=lr Cj=1

where T, is the transformation associated with an error in the
jEh oie,

The derivation of the bounds is best illustrated by an
example. The channel signal assignment using set-partitioning
for a four-dimensionally coded 8-PSK is summarized in the tree
diagram shown in Figure 4-11. There are M = n?/2 = 32 coded
four-dimensional signals, and 512 Euclidean distances to be de-
termined. Fortunately, most of them can be found easily because
all tne sub-trees emanating from the same level are equivalent.
As defined, T;,Ty,T3,Tyand Tg are the transformations that corre-
spond to the vectors, (00001), (00010), (00100), (01000) and
(10000), respectively. Thus,

56



Figure 4-11.

0

Channel Signal Assignment for 4-D Coded 8-PSK
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T,(0,0) = (1,1) ; T,1(0,0) = (7,7)

T,(0,0) = (0,2) ; T,1(0,0) = (0,6)
T3(0,0) = (2,2) ; T51(0,0) = (6,6)
T,(0,0) = (0,4)  ; 77'(0,0) = (0,4)
T5(0,0) = (4,4) ; TS1(0,0) = (4,4) (4-20)

Note that T3! = T, and TE! = Ts. Other vectors
correspond to various combinations of Tfl; Tgl; Tgl; T, and T,.

For example, consider g = (10110), which corresponds to
various combinations of T#l, T3%l and Ts. 1In this case, k = 3,
j =1and f = 4. The set of £ = 4 different transformations are
given below.

{T3'T3'Tgh = (T,T,Tq, T,I3T, TIT T, TRITYIT

Since T2T3Ts and TZTSITS are inverses of TEITEITS and T !T3Ts,
respectively, the above set can further be reduced to f£/2 = 2
transformations that give rise to different distances. One of

the reduced set is thus,
{T2T3Ts, ToT3!Ts}

Whichever gives the smaller Euclidean distance will

then serve as the lower bound. Since
T,T3Ts (0,0) = (6,0) and T,T3!Ts (0,0) = (2,4),
thus,

Dp(10110) = DI(6,0),(0,0)] = 2 dg
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Similarly, Dp(e) for any e can be found. Let

pp = 2di =1.172 a}
D = 2d> = 2.000 d;
D, =4 d. = 4.000 dg
Dy =6 d> = 6.000 d;
p, =2d5 = 6.828 d;
Dg = 8 d% = 8.000 dg (4-21)

The lower bounds for the squared Euclidean distances
are tabulated in Figure 4-12. 1In Figure 4-13, the bounds derived
in this section are compared to those derived by Ungerboeck. It
is obvious that the former are much tighter than the latter.

4.4 FEC CODING FOR FOUR-DIMENSIONALLY CODED PSK

Four-dimensionally coded modulation maps every g-bit
binary word onto a four-dimensional channel signal chosen from an
expanded N-ary signal set, such that N > 29. The subset of coded
signals are selected such that the minimum Euclidean distance
between the signals is maximized. This mapping with redundancy
provides some coding gain. Further coding gains can be achieved
by conventional FEC coding, such as block coding and convolu-
tional coding.

Ordinarily, block codes are chosen to maximize the
minimum Hamming distance between codewords at the encoder output.
They do not necessarily maximize the minimum Euclidean distance
between channel signals, which dominates the probability of

error. The system can be improved by jointly designing the
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0 00000 Idencity 0
1 03001 T D
2 000110 T, D
i
3 00011 T, T3! D
ol
4 00100 T, D
2
5 00101 T, T3! D
£
6 00110 T, T3 D
7 00111 T, T, ¢!, oirilr, D
8 01000 T, D
9 011001 T, T D
10 0vlo01l0 T, T, D
1
11 o0l01l1 T, T;' T, D
12 o0l11l100 T, T D
3 - 2
13 0l1l101l T,T§1 T, D
14 01110 T,T{ T, D
15 o0l1l1l1l T, T, T3 T, . TYP T3P T, T, D
16 10000 T D
3 5
17 10001 T, T D
1 7S u
18 10010 T, T, D,
£
19 10011 T, T3 T, D,
20 10100 T, T D
21 10101 T, T T D
1
22 10110 T, T3 T D
x L3} sl
23 10111 T, T, T3! Ty . T{P TRL T, T D
24 11000 T T D
8 5 2
25 11001 T, T T D
1 Te 5 2
26 11010 T, T, T, D
* 3
1
27 11011 T, TSP T, T, D,
28 11100 T, T, T, D
k) - 2
%1
29 l11l1lo01 T, T3! T, T, D,
30 11110 T, T{' T, T, D,
z. xl =1
31 111111 7 7,757, T, , TP ORI T, T, T, D

Figure 4-12. Lower Bounds on Squared Euclidean Distances
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No. € Db(E)/dg Azq(e)/dﬁ
0 00000 0 0

1 00001 1.172 1.172
2 J 0010 2 2

3 00011 1.172 1.172
4 C o100 4 4

S 00101 1.172 1.172
6 00110 2 2

7 00111 1.172 1.172
8 01000 4 4

9 01001 4 1.172
i0 0106109 2 2

11 01011 1.172 1.172
12 01100 4 4

13 01101 4 1.172
14 01110 2 2
15 01111 2 1.172
16 10000 8 8

17 10001 6.828 1.172
18 10010 6 2

19 10011 4 1.172
20 10100 4 4

21 10101 1.172 1.172
22 10110 2 2

23 10111 1.172 1.172
24 11000 4 4
25 11001 4 1.172
26 11010 6 2
27 11011 4 1.172
28 11100 4 4

29 11101 4 1.172
30 11110 2 2

31 11111 1.172 1.172

Figure 4-13. Comparison Between Dp(E€)
and Ungerboeck's Bounds
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encoder and the signal mapper so that the minimum Euclidean
distance is maximized.

Suppose block coding is used and the scheme is repre-
sented by

wk = G(ug)

and
(ak, bg) = M(wg) = M[G(uk)]

where the subscript k indicates the kth block of the sequence
involved. Since G is a one-to-one mapping, M[G(ukx)] is just
equivalent to a different signal mapping of ug onto the same set
of channel signals. Thus, (ak, bk) = M'(ug).

Hence, combined block coding and coded modulation is
equivalent to another coded modulation with a smaller subset of
coded signals. For obvious reasons, we do not further pursue the
use of block coding in this study.

4.4.1 CONVOLUTIONAL CODING FOR FOUR-DIMENSIONALLY
CODED n-P3K

Figure 4-14 shows the block diagram of the above coding
scheme. For mathematical simplicity, we consider the number of
phases, n, as an integral power of two. Thus, n = 2M, where m is
an integer greater than or equal to 2. (ak,bk) represents one of
M
N
bit of redundancy through the signal mapper, and another bit

29 four-dimensional n-PSK signals, chosen from a set of

n2 = 22M possible signals. Suppose that we want to add one

through a convolutional encoder. Then, we have M = 22m-1 = N/2,
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Figure 4-14.

63

(a,,

4-D Coded n-PSK With Convolutional Coding

b,)

k



and the rate of the encoder is p/q = (2m-2)/(2m-1) for m > 1.
The technique of signal selection, as discussed in previous sec-
tions, can be used to obtain the M signals.

With the above configuration, the overall signaling
rate is (2m-2)/2m = (m - 1)/m. Since 2P = 22m~2 - (pm-1)2
= (n/2)2, the corresponding uncoded system, which transmits
information at the same rate, will require an n/2 - PSK modula-
tor. Thus, in subsequent discussions, our coded four-dimensional
n-PSK system will be compared with a pair of uncoded two-

dimensional n/2 - PSK systems.

4.4.2 SELECTION OF CONVOLUTIONAL CODES FOR FOUR-DIMENSIONALLY
CODED QPSK

The heuristic design of convolutional codes for four-
dimensionally coded QPSK will be discussed in some details.
First of all, recall that using an appropriate coded modulation
scheme, we can derive lower bounds for the squared Euclidean dis-
tances, which are functions of the error vectors only. The
scheme we have chosen is summarized in the tree diagram shown in
Figure 4-15. With this channel signal assignment, it can be
verified easily that the minimum squared Euclidean distance
between channel signals is 4 d%. And, the lower bounds are
satisfied with equality for all error vectors. Let

D(ek) = D [M(wx () ek )/ M(wg)]
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Then,

0 ; if ex = (000)
D(eg) = (8 d3 ; if e = (100) (4-22)
4 d% ; otherwise.

wk is the kth input to the channel signal mapper, and
€k 1s the error vector corresponding to the kth input vector.
M(*) is the signal mapping operation.

In the following section, we will borrow Ungerboeck's
rules for the heuristic selection of convolutional codes. With

only slight modification, the rules are restated as follows.

a. All four-dimensional signals should occur with equal
frequency, and with a fair amount of regularity and symmetry;

b. Transitions originating from the same state receive
signals either from subset BO or Bl;

c. Transitions joining in the same state receive signals
either from subset BO or Bl;

d. Parallel transitions receive signals either from subset
CO or Cl or C2 or C3.

The subset labels are defined in Figure 4-15.
| It has not been proved that the above rules always give
rise to optimal codes. However, Ungerboeck claims that for small
numbers of trellis states, the codes obtained according to the
above rules are optimum and this can be confirmed by an exhaus-
tive hand-search.

Simple rate 2/3 convolutional codes for up to 8 trellis
states have been selected, and the minimum free distances have
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(0,0) (2,2) (0,2) (2,0) (1,1) (3,3) (1,3) (3,1)
000 loo0 olo 110 oo1 |01 oll 111
0 4 2 6 1 5 3 7

Figure 4-15. Channel Signal Assignment for
4-D Coded QPSK (n = 4, M = 8)
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been determined by exhaustive examination of the trellis paths.
The trellis structures for 2, 4 and 8 states, and their corre-
sponding shift-register realizations are shown in Figures 4-16,

4-17 and 4-18, respectively.

4.5 ASYMPTOTIC PERFORMANCE OF CODED FOUR-DIMENSIONAL QPSK

The asymptotic performance of the system is dictated by
the minimum Euclidean distance between channel signals. For
coding schemes with memory, such as convolutional coding, the
minimum free Euclidean distance is a fairly good measure of the
system performance for high signal-to-noise ratios.

In this section, we will evaluate the asymptotic per-
formance of the coded four-dimensional system in the absence of
interference, and compare it with the per formance of some two-
dimensional systems. Comparison will be made with respect to both
time-orthogonality and space- or polarization-orthogonality. It
is assumed that the signals of the two-dimensional systems are
encoded independently, and transmitted separately over two dif-
ferent two-dimensional channels. If we accept the minimum dis-
tance between channel signals as a criterion for per formance
measures, then their overall performance is limited by the mini-
mum distance between channel signals in either one of the two-
dimensional channels. On the other hand, the per formance of the
four-dimensional system is limited by the minimum distance
between the four-dimensional channel signals. Since all pairs of
two-dimensional systems constitute one form of four-dimensional
systems, it can be expected that there exist four-dimensional
systems which can do no worse than the independent two-
dimensional systems.
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Figure 4-16. Trellis Structure with 2 States and
Shift-Register Realization
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Figure 4-17. Trellis Structure with 4 States
Shift-Register Realization
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Figure 4-18. Trellis Structure with 8 States
and Shift-Register Realization
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The minimum squared free distances of the coded four-
dimensional system have been found to be 8d§, Bd%, and 12d% for
2, 4 and 8 trellis states respectively. 1In the absence of inter-
ference, the performance of the four-dimensional system with
time-orthogonal two-dimensional components is the same as that
with space- or polarization-orthogonal two-dimensional

components.

4.5.1 CODING GAIN OF CODED 4-D n-P5K WITH RESPECT
TO UNCODED 2-D n/2~PSK

Tne coding gain of the four-dimensionally coded n-PSK
with rate (2m-2)/(2m-1) convolutional coding is now examined with
respect to a pair of uncoded two-dimensional n/2-PSK where
n = 2M, We have considered each pair of signal pulses tc be one
unit so that the two-dimensional systems can be treated as a
four-dimensional system for the sake of comparison. Using two
two-adimensional modulators and receivers, the space- or
polarization-orthogonal 51gna11ng requires only half as much
bandwidth as the time-orthogonal signaling, but the latter uses
only one two-dimensional modulator and receiver.

The minimum Euclidean distance, between channel signals

of the uncoded two-dimensional n/2-PSK system is given by

2 = 932 - _
dmin = 2d0 (1 cos (4n/n)] (4-23)
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Suppose the free Euclidean distance ensured by the
overall four-dimensional coding scheme is dg. Then the overall
asymptotic coding gain is given by

2
G = 10 log (dg/dmin) = 20 log (d¢/dpin)

Therefore,

2,32
dg/dg
2(1 - cos 4n/n)|{ '

G = 10 log n> 4 (4-24)

The coding gains for n = 4, 6, 8, 12 and 16 are plotted
against d%/dg, and the graph is shown in Figure 4-19,

4.5.2 CODING GAIN OF CODED 4-D QPSK WITH RESPECT
TO CODED 2-D QPSK

This section examines the coding gain of the four-
dimensionally coded QPSK with rate 2/3 (m = 2) convolutional
coding, derived in Subsection 4.5.1 with respect to a two-
dimensional QPSK with rate 1/2 convolutional coding. Note that
the overall coding rate of the four-dimensional system is
actually 1/2, because the coded modulation has a rate of 3/4. 1In
this respect, the comparison is fair.
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Respect to Uncoded 2-D n/2-PSK

73



The codes for the two-dimensional system are selected
according to Ungerboeck's rules. The trellis structures for 2, 4
and 8 states are depicted in Figure 4-20. Their corresponding
minimum squared free distances are 6 d%, 10 d% and 12 d%,
respectively.

1t appears that the four-dimensional system is not
always better than the two-dimensional systems. The two-
dimensional system with two memory registers provides a larger
free distance than the four-dimensional system with the same num-
ber of memory registers. However, it will be shown in Section 5
that the coded four-dimensional systems are more robust in the
presence of severe intersymbol interference than the above coded

two-dimensional systems.

4.5.3 COMPARISON WITH FOUR-DIMENSIONAL REPETITION SYSTEMS

Repetitive transmission techniques can be applied to a
four-dimensional system. Consider a repetitive 8-PSK system as
an example. The signal assignment resulting from set partition-
ing are shown in Figure 4-21. The minimum squared subset dis-

tances are

X2 = 2 = 2

i2 = 2 g2 1.172 43

32 = 4 d2

1

A2 = 2 -

i2 = 8 a2 (4-25)
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8 trellis states

Figure 4-20. Trellis Structures for Coded 2-D OPSK
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(0,0) (4,4) (2,2) (66) (1) (5.5) (33 (7.7)
0 4 2 S 1 5 3 1

Figure 4-21. Channel Signal Assignment for
Repetitive 8-PSK System
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Recall that the minimum squared subset distances for the four-

dimensionally coded OQPSK are

2 — 2
A% = 4 d3
2 = 2
% 4 42
Ag = 8 dg (4-26)

It is thus clear that Iy
Theorem

Suppose Kﬁ and AE are tight minimum squared subset
distances of two different channel signal assignments, such that
Zi < Aﬁ for all k. Then, for the same encoder complexity, the
free Euclidean distance, d% of the latter system is at least as

. . ~2
larye as the free Euclidean distance df of the former system.

Proof

Consider a path corresponding to d% = qu% + alA%
+ « « « o in the second system, where ag, a«;, . . ., €tc., are
positive integers. An upper bound on the squared free distance,
aé, in the first system is aozﬁ + aLZ% + « « « ., which is
less than or equal to d% by hypothesis. Hence 5% < d%.

For the comparison we are looking at, Zi < Ai for

k = 0, 1, 2. Hence, the free Euclidean distance for the
coded four-dimensional QPSK with convolutional coding is always
larger than or egqgual to that for the repetition system with
equivalent encoder complexity. The squared free distances for
the repetition system for various numbers of trellis states are

listed below for comparison.
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2 trellis states dé = K§ + Zf = 5,172 dz
o, 2 ~2 L2
4 trellis states dt‘ = A2 = 8.000 d0
. 2 ~2 ~2 2
8 trellis states de = A9 + 24, = 9.172 4, (4-27)
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5. CODING FOR CHANNELS WITH INTERSYMBOL INTERFERENCE

5.1 DESCRIPTION OF THE SYSTEM

In this section, we will demonstrate the application of
the 4-dimensional coding and modulation approach on the design of
systems subject to intersymbol interference. The ordinary
2-dimensional channel is viewed as a 4-dimensional channel by
considering the successive signal pulses in pairs.

A convolutionally encoded sequence, w, is mapped onto
the channel signal sequence, S, by using the signal mapper, as
described in the previous chapter. Each signal vector, Sk, has
an in-phase component, Ak, and a gquadrature component, Bk. The
modulator is assumed to be a PSK modulator. The transmitted sig-

nal, y(t), is given by

y(t) = :E: [Ak ¥2 h(t - KkT) cos uct
k

+ Bk Y2 h(t - kT) sin uct] (5-1)

where
Ay

YE cos 6y

By = - /E sin 6y. (5-2)
and 6k is the phase of the kth signal. E = Eg/2 denotes the
energy of each of the two-dimensional PSK signals.

It is convenient to express the transmitted signal in
terms of its odd and even time components.

S
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y(t) = :E: {Aﬁ Y2 h(t - (2k - 1)T] cos uct
K

# By vZ hl[t - (2k - 1)T) sin uct + A} V2 h(t - 2KT)

* COSs wgt + Bﬁ /2 h(t - 2kT) sin uct} (5-3)

where the superscripts, "o" and "e", stand for "odd" and "even",
respectively.

It is assumed that the linear impulse response, h(t),
which characterizes the modulator/channel filter, does not intro-
duce crosstalk between orthogonal signal components. The channel
noise, n(t), is an additive white Gaussian noise (AWGN), with a
two-sided power spectral density of No/2. The received waveform
is then given by

r(t) = y(t, u) + n(t) (5-4)
The received signal is demodulated to yield log likelihood func-
tions, {Ak}, which are then input into the decoder. The Viterbi

decoder, which is a maximum likelihood decoder, will be
used (40],[41),([42].

5.2 DERIVATION OF LIKELIHOOD FUNCTION

The maximum likelihood decision rule decides that u*
was transmitted if and only if
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| |r(t) = y(t, u*)||2 = min ||r(t) - y(t, u)||? (5-5)
u

Equivalently,
Alr(t), u*] = max {Alr(t), ul} (5-6)
u
where
A2 1
Alr(t), =—f t) t, dt - =— t, 2 dt 5-7
[r u] Ng r(t) y(t, u) NO./‘Iy( u) | ( )

o) yie, woae =Y (ag Jvz ee) nie - (2 - D) T
k

* cos uct dt + Bﬁ _/}5 r(t) h{t - (2k - 1) TI
* sin uot dt + Aﬁ ~/./§ r(t) h(t - 2kT)

. cos wct dt + By f/i r(t) h(t - 2KT)

« sin wct dt}

or

fr(t) y(t, u) dt = Z {ARr3k-1 *+ BRr3x-1 + ARr3k + Bkrak} (5-8)
k
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where

xm WO
e e

Jr r(t) h(t - kT) cos wot dt

r(t) h(t - kT) sin uct dt (5-9)
Let's define

A
hk-g = fh(t = KT) h(t - &T) dt = h!l.-k (5-10)

and assume that h(t) has a Fourier transform whose bandwidth 1is
much smaller than the carrier frequency. Then,

4/.|y(t' u)|® de = :E: Z {[agAT + BRBS + aga§ + BEBS]
k3

o.e o_e
* ha(k-j) + [AkAj + BKB3] hp(k_4)-1

e_o
+ [AkAT + BKBS] hp(k-jy+1) (5-11)

Hence, the likelihood function is given by

: 2 o.cC o_s e_c e_s
Az, u] = 2: {Ng [Akr2k-1 + Bkr3k-1 + Akr3k + Bkr3y]
k

1 0,0 0.0 e,e e_e
- % Z [(AkAj + BkBj + AkAj + BkBj) h2(k—_‘i)
J

o.e o,e
+ (AkAj + BkBj) h2(k-j)-1

+ (agA3 + BKBS) hp(k-j)+1]] (5-12)
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And it can be expressed in the following form.

Mz, u) = E Ak (5-13)

k

where
1 o_cC c_ s e _c e_s
K= W {2(Agr3k-1 + Bgrag-1 + Agrzk + Bgrog)
0,0 0,0 e e e_c
- E [(ARAT + BKBJ + AgA5 + BkBj) hp(k-j)
j
o,e o,
+ (AgAJ + BkBj) ha(k-j)-1
e o e_o =
+ (AkAj + BkBj) h2(k—j)+l]} (5-14)
For the satellite channel we are considering, hj << hg
for non-zero i. It is then reasonable to assume that hj/hg = 0

for i > 1. The likelihood function can then be simplified and

broken down into two parts, namely Ag(r(t), u) and Aj(u).

A
aglr(t), u) = :E: {%3 (ARrSk—1 + BRr3x-1 + ARrsx + Byray)
k
hO
TN [(aR)2 + (BR)2 + (ak)2 + (Bk)?]} (5-15)

is the likelihood function when there is no intersymbol

interference, and
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e

h)
o,e o,€ o,e o,€e
E ic;{[zAkAk + 2BpBy + AgAp.) + BgBp_j
k

Al(g)

- afa2uy + fee ]} (5-16)
is the correction term due to intersymbol interference.
A(r(t), u) = Ap(r(t), u) = A;(u) (5-17)

The maximization of A(r(t), u) over all possible u can be
efficiently performed with an extended state Viterbi
algorithm [19],([107].

5.3 EUCLIDEAN DISTANCE BETWEEN CHANNEL SYMBOL SEQUENCES
AND BOUND ON SQUARED DISTANCES IN THE PRESENCE OF
INTERSYMBOL INTERFERENCE

The probability of error is a common measure of the
performance of communications systems. In general, the probabil-
ity of error depends on the Euclidean distances between signals,
and is particularly dictated by the minimum distance.

In this section, we determine the Euclidean distance
between channel symbol sequences. Later, we will derive a lower
bound on the minimum squared free distance, which will be used to
evaluate the asymptotic performance of our coded four-dimensional
systems in the presence of intersymbol interference.

The transmitted signal can be expressed as a sum of its

in-phase and quadrature components. Thus,

y(t) = yi(t) + yd(t) (5-18)
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where

yice) :E: /Z {Agh[t - (2k - 1) T]
k

+ ARh(t - 2kT)} cos wct (5-19)

ya(t) }E: /2 {Bohlt - (2k - 1) T
k

+ BRh(t - 2kT)} sin wct (5-20)

Let's denote the operation of the modulation by Y(*). Suppose
y(t) = ¥(S) and y(t) = Y(S). Then the squared Euclidean distance

between the two signals is given by

[ly(t) = y(t)]]|?

lyi(e) = yiced||2 + ||y9(e) - ya(e)||2 (5-21)

D[S, SI

Thus,
p[s, 8] = pi[s, §] + pd[s, §] (5-22)
where

. ~ A . ~
Dl[s, §] = ||yt(t) - y(&)|[? (5-23)
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and
~ A ~
DA(s, S] = ||yd(t) - yd(e)]|?

Let

A ~ ~ ~
ASk = Sk - Sk = [(Ak - Ak), (Bkx - Bg)]

And assume that hj/hg = 0 for i > 1.

+

Dits, §) = D (nol(eaR)Z + (sa5)2]

k

+ AAQAAR_; + aAfAAR, ]}

+

pd(s, B) = ) {ne[(eBR)2 + (88§)?]

k

+ ABRABR_, + ABRABR.;]}

(aAk, aBk)

h,[28ARAAY

h,[2ABR ABR

(5-24)

(5-25)

(5-26)

(5-27)

Therefore, the squared Euclidean distance between S and E is as

follows:

+ h;[28ARAAR + 2ABRABE + AARAAR-

+ ABRABR.) + OARAAR,; + ABRABR.y]}
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Equivalently,

D(s, §) = D [no[(anR)? + (8A§)2 + (aB2)2 + (a8§)2]
k

+ 20, [8ARAAY + ABRABYE + 8AQAAR_; + aBDABS_;]} (5-29)
where the summation is over all k for which at least one of the
coefficients of hyg and h; is nonzero.

For phase-shift keying,

AAy = VE (cos 6y - cos 8y)

ABx = ~YE (sin 8y - sin §) (5-30)

It can be easily shown that

[(aag)? + (aaR)2 + (aBR)2 + (aBf)2]
= E[4 - 2 cos (o} - 8F) - 2 cos (ef - 5% ) ] (5-31)
AARAAR + 8BRABR) = E[cos (6§ - of) + cos (30 - 3%)
k8ak kaPk k k k k
- cos (B - 6F) - cos (ef - 88)]  (5-32)
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and

+ cos (8% - 8F_71) - cos (6p - Bp-1)
- o%-1)] (5-33)

Hence,

k
+ hy[cos (8) - of) + cos (3} - 8%) - cos (B} - ok)
- cos (8% - BF) + cos () - 8g_1) + cos (8% - 8k-1)
- cos (6f - 8%_7) - cos (B} - ox-1)]} (5-34)

In Section 4, we have derived a lower bound on the
squared Euclidean distances between channel signals in the
absence of intersymbol interference. The bound depends only on

the error vectors.
DIM(wx ® ex), M(wx)] > Dplek) (5-35)

Without much confusion, the corresponding bound on the
squared Euclidean distances between channel symbol sequences will
be written as
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DiM(w e, M(w)] > ), Dpley) (5-36)
k

where w and e are sequences of wy and ey, respectively.

Using results just derived, we will proceed to derive a
similar lower bound on the squared Euclidean distances, which de-
pends only on the error sequence and the intersymbol interference
parameters. The squared Euclidean distance hetween two channel
symbol sequences, S and E, can be written as follows:

D(s, 8) . .
3E = hgAg(S, S) + h;A;(s, S) (5-37)
Since the first intersymbol interference parameter, h;, can be
positive or negative, the squared Euclidean distance is upper and

lower bounded as follows:

D(s, §) N .

55— < NoAg(8, S) + |hy| Ay(S, S) (5-38)
D(S, §) . .
25— 2 hoAg(S, S) - |hy| Ay (S, S) (5-39)

In the absence of intersymbol interference,

[~

D(S, §) = 2EhgAg(s, S) £ Do(s, §) (5-40)
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where

~ A ~ ~
Ag(S, S) = 2{: [2 ~ cos (8F - 8%) - cos (6f - BF)]  (5-41)

Suppose M(w) corresponds to S, and M(E) = M(w + ¢)
corresponds to S, then

~

Do(S, 8)

DIM(w), M(w)] > hg Z Db (ex ) (5-42)
k

The term which accounts for the effect of intersymbol

interference on the squared distances is
D, (S, S) = 2Eh,A,(S, S) (5-43)

where

(5-44)

Suppose a lower bound can be found for D; (S, S), and
it depends only on the error sequence and h;. Then we can write
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D1(S, §) > - |hy] Z Dy (ekr ek-1) (5-45)
k

For convenience, we shall use ey in place of ek, where
ex is the octal representation of the binary vector ex. Thus,

D(S, §) 2 ho D Dpleg) - [hi| ) DY (e, exo1)  (5-46)
k k

The squared free Euclidean distance, dg, is then lower
bounded as follows:

az > mén 3“0 :E: Dpleg) - |hy] :E: D) (ek, ex-1)} (5-47)
e - -

We want to choose a coding scheme for our four-
. . 2, s s
dimensional systems such that de is maximized. The above bound,
being independent of the codeword sequences, w, is very useful

for code searching or for evaluating the asymptotic performance
of the convolutional codes used.

5.3.1 LOWER BOUND ON d% FOR FOUR-DIMENSIONAL QPSK IN THE
PRESENCE OF INTERSYMBOL INTERFERENCE

Having derived a general lower bound on d%, we would
like to investigate the bound for four-dimensional QPSK in
further detail and tighten it.
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The channel signal mapping for the class of four-
dimensionally coded QPSK we have chosen is shown in Figure 5-1.
It has the property that |ez - eﬁl = n/2 for all k.

From previous discussion, Dp(ek) has already been
determined. Equation (4-22) is repeated below, with dg§ replaced
by E.

0 if egx =0
Dp(ekx) = (4E if ex =1, 2, 3, 5, 6, or 7
8E if ey = 4 (5-48)

:E: Dg(ek, ex-1) can be derived from equation (5-44). We will do
k
it for a special case as follows.
Four-dimensionally coded PSK enables us to have some
control over A, (S, E). For example, if we always choose
|60 - of| = /2, and also |8} - | = n/2, then [cos (e} - ek)
+ cos (8% - 8§)] = 0. These two cosine terms simply vanish in
A (S, E) and can no longer degrade the squared Euclidean
distance.
Then, we have

k
+ cos (eof - e6f-1) + cos (B} - Bk-1)
- cos (8 - 8§-1) - cos (B} - ex-1)] (5-49)
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(o,1) (2,3) (0.3) (2,1) (r.o) (3 2) (12) (3,0)

Figure 5-1. 4-D QPSK Signal Assignment With
o) e
|ek - 6k| = /2
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A trivial bound on D;(S, §) is as follows:

Dy (S, 8) = 28h,A (S, §) > - |h,] E fog<ek, ex-1) (5-50)

k

where

L]
Db(ek, ek-1) = 12E (5-51)

For PSK systems with small numbers of phases, fairly
tight bounds can be derived. For the four~-dimensional QPSK

system we are considering,

4, 5, or 6

cos (B - 6) + cos (ef - BF) = (5-52)
*2 if ex = 3 or 7

0 if ey

o e ~0 ~e

and the various values of [cos(8k - 6k-j) + cos (0x - O6kx-1)
o ~€ ~0 e

- cos(6kg - 6k-1) - cos (8x - O6k-1)] are listed on the table

shown below.
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[cos(ez - eﬁ_l) + cos (3; - Ei_l)
k| ®k-1 o e ~0 e
- cos(6g - B8k-1) ~- cos (8K - 6k-1]
0 any 0
2 any % )
any ( 0
any 6 0
2 0, *4
4 0, *4
2 0, *4
4 0, *4
odd | odd 0, %2
odd | 2 +2
odd | 4 2
4 odd 2
6 odd 2

Hence, we can choose D!(ek, ek-1) to be as follows.

A

D) (ex, ek-1) = Wi(ek) + Wa(ex, ex-1) (5-53)
where
A 0 if ek, =0, 1, 2, 4, 5, or 6
Wy (ex) = (5-54)
4E if ex = 3 or 7
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and
0 if ex = 0, 2, or exk-1 = 0, 6

8E if (ek, ek_l) = (4, 2), (4, 4), (5-55)

2
) (6, 2), (6, 4)

Wo(ex, ex—1)

‘4E otherwise

' 2
Thus, the squared free Euclidean distance, dg, is lower bounded

as follows:

2 min
dt > "o | ho Z Dh(ex) - |hy] Z [wy(ek)
k

- k

+ Wa(ex, ex=1)] (5-56)

We will later make use of the above bound to evaluate
the asymptotic coding gains of our coded four-dimensional QPSK

systems in the presence of intersymbol interference.

5.4 DERIVATION OF SQUARED EUCLIDEAN DISTANCE
BOUNDS FOR TWO-DIMENSIONAL PSK IN THE
PRESENCE OF INTERSYMBOL INTERFERENCE

Before we can compare the performance of our four-
dimensional systems with respect to that of conventional two-
dimensional PSK systems, we have to derive similar lower bounds
on the squared Euclidean distance between channel signals of the
two dimensional systems.

In a two-dimensional PSK system, the number of channel
signals, M, corresponds directly to the number of phases. Let
4

ok = 2% ak : ak € {0, 1, 2, « . ., M = 1} (5-57)
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The transmitted two-dimensional signal is

y(t) = :E: [Ax Y2 h(t - KT) cos uct

k
+ By ¥2 h(t - kT) sin wct] (5-58)
where
A
Ak = YE cos 8, and
A —_
Bk = -YE sin 6. (5-59)

The squared Euclidean distance between transmitted
signals, y(t) = ¥(a) and §(t) = Y(E) is given by

D(a, a) = ||y(t) - y(t)]|]|2 (5-60)
D(a, a) = :E: [8Ak Y2 h(t - KT) cos act
k
+ AB 72 h(t - kT) sin wct] (5-61)

where

e
1}

AA A - A YE (cos 0, - cos 8
k k k k k

>
]

AB By - B -YE (sin 8y - sin 8y) (5-62)
k k k k k
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Again, h(t) is assumed to have the same property as de-
scribed earlier. Then the squared Euclidean distance can be

obtained simply from our previous results for the four-
dimensional systems.

E E (8AgAAj hy_§ + ABgABjhyk_ )
k b .

o
[
o))
1]

w!
v
V)]
I

2E Z ho[1l - cos (8 - 8k)]
k

+2E :Z: hg[cos (8x - 68k-g) + cos (Bx - 8k-y)
221

- cos (8) - gk_z) - cos Bk - 6x_g)] (5-63)

Again, assuming |hj|/hg << 1 for i > 1,

D(a, 3a) = Dg(a, 3) + Dy(a, a) (5-64)
where
~ A .
Do(a, a) = 2Ehyg Z [1 - cos (6 - 6k)] (5-65)
k

is the squared Euclidean distance in the absence of intersymbol
interference. And
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~ A ~ ~
Di1(a, a) = 2Eh, Z [cos (6 - 6x_1) + cos (B, - Ok-1)
k

- Ccos (Gk - §k~1) - Ccos (gk - ek_l]] (5-66)

represents the degradation due to intersymbol interference.
Again, we will examine the squared Euclidean distance of two-
dimensional QPSK in detail, and derive a tight lower bound on the
squared free distance. The table below shows the relationship

between the error vectors and their corresponding angular
differences.

[ ex | ex [ a6k
0 |00 |o
1 | o1 | #ny2
2 | 10 | #r
3 11 *n/2

We can easily show that

[cos (8x - 8k-1) + cos (B - 8x-1)

- cos (8 - 6k-1) - cos (Bk - 6k-1)]

ABy - AO). ~ ~
= 4 cos [( k 5 k l) + (Gk - Bk_l):l

. (A8k) . [A8k-) -
e sin (7?) sin ( > ) (5-67)
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Using the above identity, we have derived the following

table.
[cos(9x - 6k-1) + cos (B - Bk-1)
3 Ck~-114 ~ ~
- cos(8y - 8k_1) - cos (B - Bk-1)]
0 any 0
any{ O 0
odd | odd 0, %2
2 odd 2
odd| 2 2
2 2 0, *4

Using similar notations as before, we can lower bound
the squared Euclidean distance as follows:

D(a, 3) > hg Z Dplex) - |hy| Z D, (ex, ek-1)  (5-68)
k k
where
0 iIf ex =0
Dpleg) = (2B if ex = 1 or 3 (5-69)
4E if e = 2
and
0 if ex = 0 or exk-1 = 0
DB(ek, ex-1) = (8 E if ek = ex_] = 2 (5-70)

4 E otherwise
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It is important to point out that given the same set of
QPSK signals, the energy per symbol, Eg, for the four-dimensional
systems is twice as much as that for the two-dimensional sys-
tems.

A tight lower bound on the squared free Euclidean

distance is given as follows:

2 i '
dg > """ {ho E Dp(ex) - |hil E Dy (e ek_l)} (5-71)
k k

5.5 COMPARISON BETWEEN THE FOUR-DIMENSIONAL AND TWO-

DIMENSIONAL SYSTEMS IN TERMS OF BOUNDS ON dé

Simple trellis codes for both the four-dimensional and
two-dimensional systems have been selected in Section 4. Their
respective robustness in the presence of intersymbol interference
will be evaluated in terms of their squared free distance bounds
derived in Sections 5.3.1 and 5.4, respectively.

For simple codes with small numbers of trellis states,
the squared free distances can be determined by hand. When the
number of trellis states is large, it may be necessary to use a
computer to determine the distances. In this section, the
squared free distances, for 2, 4, and 8 trellis states, of both
the two-dimensional and four-dimensional systems have been de-
termined by hand, and compared. Figures 5-2, 5-3, and 5-4 show
the minimum squared free distances as a function of the nor-
malized intersymbol interference parameter, |h;|/hg, for both
systems. We can deduce from the graphs that when the level of
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Figure 5-2. d%/Eho vs |h|/hy for 2 Trellis States
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Figure 5-4. dé/Eho vs |h;|/hy for 8 Trellis States
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intersymbol interference is high, the four-dimensional systems
generally provide better protection to the signals than the cor-

responding two-dimensional systems.
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6. CODING FOR FREQUENCY-REUSE SYSTEMS WITH
CO-CHANNEL AND INTERSYMBOL INTERFERENCE

6.1 DESCRIPTION OF THE SYSTEM

Multiple reuse of frequencies contributes to an in-
Crease in the utilization of channel bandwidth. Orthogonality
between frequency-reuse channels can be achieved by antenna beam
isolation or by orthogonal polarization. Co-channel interference
arises when adjacent antenna beams overlap, or when dual-
polarized waves are depolarized by the propagation medium. Al-
though a satisfactory level of channel discrimination can be
achieved by using high quality antenna systems and adaptive
cross-polarization canceling devices, it is often extremely dif-
ficult, costly, and impractical to maintain reliable performance
under all weather and operational ccnditions. A suboptimal, but
practical solution is to employ coding and modulation systems
that are highly resistant to co-channel interference.

The nature of co-channel interference is usually very
complicated and time-varying. In the past, the interfering
sigrnals have often been treated as additive white Gaussian noise.
This assumption is, in fact, an over-simplification, especially
when the number of co-channel interferers is small.

With today's technology, co-channel interference can
often be measured or estimated with some confidence. Measure-
ments can be done by periodically detecting pilot signals which
are specially assigned in the transmission. Since the interfer-
ence is usually quasi-static, adaptive adjustment in the measure-
ments can be made as the interference varies slowly over time.

Under normal operational conditions and fair weather, 15-20 dB
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of discrimination between frequency-reuse channels 1is usually
achievable. 1In addition, with advanced phase-lock techniques,
reasonably good synchronization is possible. Hence, it is
reasonable to assume in our model that the co-channel interfer-
ence is known, carrier-to-interference ratio is moderate, and
there is perfect synchronization.

Consider a pair of frequency-reuse channels. Each of
the transmitted four-dimensional signals consists of two two-
dimensional PSK components.

Y2E; h(t) cos (uct + 08i71)

Siy(t)

Si2(t) = V2E) h(t) cos (uct + 0j2) (6-1)
where h(t), which defines the envelope of the signal pulses, is
assumed to have a narrow bandwidth compared to the carrier
frequency, uwc-.

The energy of the four-dimensional signal is Eg and is
Jdiven by

Eg =/s§1(t) dt + /s%z(t) dt = B} + By (6-2)

The two two-dimensional signals interfere with each
other due to imperfect isolation. Assume for the time being that
there is no intersymbol interference in each of the two two-
dimensional channels. In the absence of noise, the received
signals in the two nominally orthogonal channels are,
respectively:
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y1{t) = aj) Y2E, h(t) cos (ugt + 87 + By;)
+ a12 VY2E2 h(t) cos (ugt + 6 + B19)
y2(t) = apy Y2E; h(t) cos (uot + 087 + Bo1)

+ a2 Y2E; h(t) cos (uct + 6y + By)p)

0 <t<rT (6-3)
where {al and {R} are the co-channel interference parameters
corresponding respectively to the attenuation factors and the
phase-shifts of the transmitted signals. In the presence of

noise, the received signals are:

r)(t) yi{t) + nj(t)

ra(t) y2(t) + na(t) (6-4)
where n;(t) and n,(t) are independent additive white Gaussian
noise (AWGN), with spectral height Ny/2.

Without loss of generality, we will normalize the
signals in the two channels by a;; and azp, respectively. Let
ajp/ayy = py2 and aj1/az; = pay. Our earlier assumptions imply
that pjy << 1 and py; << 1. Assuming B;] = By = 0, we will
express the received signals in the following form:

r;(t) = v2E; h(t) cos (ugt + 6))
+ 012 /ZEZ h(t) cos (O.ct + 87 + 6190) + nl(t)
ra(t) = Y2E; h(t) cos (uct + 63)

+ p21 Y2E) h(t) cos (uct + 8 + 83)) + ny(t) (6-5)
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To facilitate further discussion, we would like

troduce vector notations by using the following basis:

$olt) Y2 h(t) cos uct

¢5(t) = = v2 h(t) sin uct

Then, s;(t) and sj,(t) can be represented by the

following vectors:

sC YE| cos 0
51 7 =

s$ YE| sin 8,

sS YE, cos 6o
Sp = =

s$ VYE2 sin 62

Let S be a four-dimensional vector such that
~-C )
ST

S
5 57

|
1
1l

C
5, S3

55 ]
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Similarly, we can represent the received signals and

the noise by four-dimensional vectors:

™ rC c “nC
r§ [v$7) ‘n¢
£y vi nY
R = ; Y = ; and N = (6-9)
- c = c - o]
r2 Y3 | 12
rS s - nS
Hence, R = Y + N. (6-10)
It is easy to show that
- 1 o~ -
c . c
Yy 1 0 P12 COs 6§12 =—p12 sin 8)3f sy
vy 0 1 P sin § s 3
cos
C . C
Yo P21 cos S31 -—-p2]1 sin 821 1 0 S,
\S 3 S
12 P21 sin §9) p21 cos 621 0 1 S,
| "4 L i I
which can be written simply as
Y = AS (6-12)
Let us define a two-by-two rotational matrix as follows.
cos § - sin §
Q(s) = (6-13)
sin § cos §
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Then, the matrix A can be expressed as a simple block

matrix.
I, pP120(6815)
A = (6-14)
p21 Q(6827) I,
6.2 COHERENT DETECTION OF FOUR-DIMENSIONAI SIGNALS

IN FREQUENCY~-REUSE SYSTEMS

We will first consider the sub-optimal detection, in
which the interfering signals are assumed to be Gaussian random

processes. The received signal vectors are:

il
ln
—_
+
=]
-

r =s; + 9125'2 + n)
(6-15)

ln
N
+
|o
o -

]
L2 = S + p2181 + np =

where Ei and gé are the signals s) and s, which have been phase-
shifted. n| and n) are AWGN with spectral heights Ngy;/2 and
Ng2/2 , respectively, and

2
= —2 + p12E2
(6-16)

2
+ p21E)

No}

2

Ng2 No
2
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The log likelihood function can be reduced to

My, £p) = E%T (eTs,) + ﬁ%; (£%s2) (6-17)

Let's consider four-dimensional BPSK as an example.
Assuming equally likely signals, we can show that the probability

of error for the above sub-optimal receiver is given Dby:

2El -Z—E-z—
P.(eg) =1 - |erfc - f erfc -[|7—— (6-18)
r Ng No2

where erfc(*) is defined as

® v 2
erfc(y) %/f 1 oexp (222) ax (6-19)
y V2m 2

Specifically, if E; = Ez = Ep, and Ng; = Ngp = NG: and
P12 = p21 = p, then

Py(e) (6-20)

[}
—
|
| —— |
(]
n
Hh
Q
!
S
Z| N
ok M
o
v
—— )
N

and

Eo _ Ep/No (6-21)

No 1 + 2p2% (Ep/No)

The bit error rate (BER) is at least half the symbol error rate,
since each four-dimensional BPSK symbol corresponds to two bits,
and the probability of double bit errors is very small. Thus,
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1 1 2B \]?
BER 2 = Pr(e) = = 1 - |erfc [~ " (6-22)
2 2 NG

The graph of BER versus Ep/N, for various values of p is shown in
Figure 6-1. Note that when there is no co-channel interference
(p = 0), the BER versus Ep/Ng curve is the same as that for two-
dimensional BPSK.

The optimal receiver does not assume that the interfer-
ing signals are Gaussian, but does assume that the matrix, A, is
known. The log likelihood function is proportional to
[|r - AS||%, which can be expanded and simplified by dropping
terms which do not directly depend on the signal, S. The log

likelihood function can thus be reduced to the following:

A(ry, xr2) = Ao(ri, r2) + Ar(ry, r3) (6-23)
where
Ao(ry, rp) 4 13,—0 (r} 51 + r3s,) (6-24)

is the usual likelihood function when there is no co-channel
interference, and
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lie>

2
A (k1. E2) Ng P12 rT Q(812) s2 + p21 r2T0O(621) s

- p12 sT 0(812) s2 - 021 s2T0(621) s

é— p12 (r1 - sT Q(812)s,
o]

+ é— p21 (£ = 50T 0(68,)) s, (6-25)
o S

is the correction term which accounts for the co-channel

interference.

6.3 RECEIVER DESIGN FOR FREQUENCY-REUSE SYSTEMS IN
THE PRESENCE OF CO-CHANNEL AND INTERSYMBOL
INTERFERENCE

Suppose we have applied the method of coding, developed
earlier, on the design of the frequency-reuse system we are now
considering. The transmitter consists of a convolutional
encoder, concatenated to a four-dimensional signal mapper whose
structure has been described in earlier sections. The same
trellis codes obtained earlier will be used here. During each
symbol period, the four-dimensional modulator outputs a pair of
PSK signals, which are then transmitted through two nominally
orthogonal channels employing the same frequency. It is assumed
that E; = E; = E = Eg/2 where Eg is the energy of each of the

four-dimensional symbols.
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In the absence of AWGN, the received signals are:

yi(t) = :E: Y 2E [cos (uct + 81k) h(t - kT)
k

+ P12 cos (uct + 8¢ + 813) h(t - KkT) ]

and

yo(t) = :E: Y2E [COS (mct + 92k) h(t - kT)
k

+ pp)] cos (uct + 81 + 82))h(t - kT)] (6-26)

Alternatively, we can write

yip(e) = Z :{“55 [sk + 12 SSkcos 615 - o1 S3ksin 61;]
k

* h(t - kT) cos wuct
- Y2E [STk + p12 S3ksin 613 + p1p S3kcos §12]

- h(t - KT) sin uct} (6-27)
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and

ya(t) = 2: 3"5 [S2k + 21 STkcos 621 - e21 STksin 621]

k

« h(t - KkT) cos uct
- V2E [Sgk + 021 S(i:ksin §21

« h(t - kT) sin wct

Let us define the following.

ne

C C
[Sik + p12 S3kcos 812 -

e

C .
[sTk + p12 S3ksin 635 +

ne

C C
[S2k + p21 Sjkcos 831 -

ne>

C .
[82k + p21 Siksin 837 +
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S
+ pp] Sikcos 63 ]

P12

P12

P21

P21

Sgksin
Sgkcos
S?ksin

S?kcos

8§12
§12]
821 ]

8§21 ]

(6-28)

(6-29)



Then the received signals in the absence of the

additive white Gaussian noise are:

yp(t) E /2E  [ufgh(t = kT) cos wct
k

- u?kh(t - KT) sin wct]

yo(t) = }E: Y2E [ugkh(t - kT) cos uct
k

- uSgh(t - kT) sin wct] (6-30)

For given interference parameters, the log likelihood

function is:

Alr(t)] = %S.jf ri(t) yp(e) de + %S.)f ro(t) yp(t) dt

1 2 1 2 _
- w5 ) _ vile) ae - N—o,/:w y5(t) dt (6-31)

/ rj(t)yj(t)dt = Z ;/E u?k/ /2 rj(t) h(t - KT) cos uct dt

- k

- /E uJS-k/ v2Z rj(t) h(t - kT) sin wct dtf ;

j =1,2 (6-32)
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Let

rgk 4 N V2 ry(t) h(t - kT) cos uct dt
r?k 4 -Q V2 rj(t) h(t - kT) sin uwot dt ; j = 1,2 (6-33)
Then,
j[m ry(t) yy(t) dt = /E 2{:(U§kr§k - u?kr§k) (6-34)
—® k
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4+ ‘

| =
./ y%(t) dt = E :i: gid ,j[ V2 [ugkh(t - kT) cos uct
K 4

-—C -—

- ujkh(t - KT) sin wgt]

+ /2 [u§gh(t = 2T) cos wct - ufgh(t - 2T) sin uct]

j =1,2
2 - c ¢ s s
- k 2
j=1,2 (6-35)
where
hk—l é / h(t - kT) h(t - LT) dt = hl-k (6-36)
Hence,
2 -
Me(e)] = g ’“E :E:(ngrgk - uikrik + udkrik - udkr3y)
k
1 C C c
T Ng E 2 : E :[(ulkull + ujgulg * ujzguzg + uskulg)
k 2
* hg_y] (6-37)
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Let

A 2 [o; s c
A = = (UIkrIk = UTKEIk + UkToKk - UDKT5 )
C C S S C C S S
- Z :[(Ulkull + ujguyg + uzguzg + uzpun,) hyog] (6-38)
2
Then,

E
Ae(E)] =N—OZ Ak (6-39)

K

We have thus derived the metric for maximum likelihood detection.
Ak is a function of r(t), 8k, P12+ P21, 812, €21, and the inter-
symbol interference parameters {hj}.

Given the received signals r(t) and the interference
parameters, the maximum likelihood receiver maximizes A[r(t)]
with respect to 8, the entire sequence of (6], 67¢). The above
maximization can be done by using the Viterbi Algorithm with
extended states [19]), [107].

6.4 EUCLIDEAN DISTANCE BETWEEN SIGNALS IN THE PRESENCE OF
CO-CHANNEL INTERFERENCE AND BOUNDS ON SQUARED DISTANCES

Given the coding scheme derived in previous sections,
we would like to evaluate the potential coding gains of the four-
dimensional systems in the presence of co-channel interference.
We will first assume that there is no intersymbol interference,
and derive the squared Euclidean distance between signals.
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Recall that the received signals are given by
R =AS + N (6-40)

The squared Euclidean distance between S and E, in
the absence of the AWGN, is given Dby

D(S, 8) = ||as - AS||2 = ||aas||2 = asTaTass (6-41)
Let
B11  B12
B & aTa =
B21  B22
2
Bijp = (1 +021) I2 = I for pp; << 1
2
Booy = (l + 912) I, =~ I3 for py1p <1
Bio = 0120(812) + p210T(627)
By = plon(ﬁlz) + 9210(621) = B'{z . (6-43)
We can simplify Bjy as follows.
cos 615 -sin §p9 cos 6891 sin 693
Bi2 = r12 | | + p21 _ ‘
sin 6§19 cos 612 -sin 6921 cos 621
cos ¢ -sin ¢
= 0o (6-44)
sin ¢ cos ¢
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where

Py COS ¢ P12 cos 812 + p2)] cos 831

Po sin ¢ P12 sin 612 - P21 sin 521 (6-45)

Therefore,

p sin § - p sin §
o = tan-l { 12 12 21 21} (6-46)
P12 COs 819 + pp) cos 87
and
. . 172
Po = [pr + pﬁl + 2012 p2) COsS (512 + 621)] = p12 + P21 (6-47)
Then, we have
12 poQ((b)
By = ({6-48)
00T (¢) 1)
2
(1 + p21) I B12 453
D(s, §) = [as], as3]
T 2
B]2 (1 + »12) Ipf[a8)
- 2 2 2 2
= (1 + p21)1188111% + (1 + pf2)|]2s2]]
T
+ 2A§1B12A§2 (6-49)
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Thus, for small co~-channel interference,

D (S, 8) =~ ||asy||? + ||asa|]? + 20, aST0(4) 487
= Do(s, 8) + D,(s, 8§) (6-50)
where
Do (S, 8) = |]asy|]|2 + [[as,]]2 (6-51)
is the squared Euclidean distance in the absence of interference.
And, Dp(g, E) = 2poA§¥Q(¢)A§2 accounts for the dependence of the
squared distance on co-channel interference.
By the Schwarz inequelity,

|asT Q(o)asy| < [1asy|| = [lQ(e)asy|| = jlasyl] « [[asp]] (6-52)

Also, since

2| |asy|| - |lasa|| < [lasy|[2 + ||asz]]? (6-53)
we have
IDp (S, 8)| < oo [I1881]12 + |]as2]]?] (6-54)
Hence,
D(S, ) > (1 - p,y) Do(S, §) (6-55)
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From the above result, we can conclude that co-channel
interference degrades the signal separation by at most [—10
log (1 - py)] dB. Since p, << 1, the degradation is normally
small,

Assuming that PSK signals are used, it is easy to show
that

—_ . A6, —_ . AB)
[1asy]] « |]|aSy|| = [2/E sin (7?)' + |2/E sin (7?)' (6-56)
where 487 = 6; - 31 and A8y = 85 - 52.
Hence, the squared Euclidean distance can be lower

bounded as follows.

~ ~ o frey) . fasy
D(S, 8) > Do(S, 8) = 8Epg |sin |—==| sin |=7]| (6-57)
2
6.4.1 BOUND ON dg FOR 4-D QPSK IN THE PRESENCE OF CO-CHANNEL
INTERFERENCE

We now proceed to improve the bound on squared
BEuclidean distance for the coded four-dimensional QPSK systems
studied in previous sections. As usual, we will derive a bound
which does not depend on A8;] and A63, but rather only on the
error in the binary sequence at the output of the convolutional

encoder.
It has already been shown in Subsection 4.4.2 that
0 if ex =
Do(sk, sk) = pplek) = {8E if ex = 4 (6=58)
4E if ek =1, 2, 3, 5, 6, or 7
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Table 6-1 shows the relationship between error and

angular differences |A8;x| and |A8yk

Table 6-1.
Error and Angular Diff
|A61k| and IAezk

Relationship Between

erences,

ek | Ek laeyk| | [a62k]
0 000 0 0
1 001 /2 n/2
2 010 0 m
3 011 n/2 n/2
4 100 n m
5 101 /2 n/2
6 110 m 0
7 111 /2 n/2
Note: AB1x = 81k - 01k
682k = 82k - B2k
Hence,
A A6 0 if ex = 0,
2|sin (—=%) sin (—2%)| = {1 if ex =1,
2 if ex = 4
Let us define:
0 if ex =0, 2, or 6
w(ey) 2 lae if ex,. =1, 3, 5, or 7
8E if ek = 4
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3,

or 6
5, or 7
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Then,
IDy (sk, 8K)| < powleg) (6-61)

And, D(§k, Ek) is lower bounded by

0 if ex = 0
Bley) = 4E if ek = 2 or 6
4E(1 - p,) if ex =1, 3, 5, or 7
8E(1 - py) if ex = 4 (6-62)

l<?

Suppose Vv and represent the entire sequence of §k

and §k, respectively.

D(v, v) = Z p(sk, §k) (6-63)
K

Then

D(v, E‘) > Z B(eg) = Z Dhlekx) - py Z wieg) (6-64)
K

k k

And, the squared free distance is bounded as follows.

dé > m(ien {Z Dp(ek) - po Z w(ek)} (6-65)
B k

k
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2
6.5 EUCLIDEAN DISTANCE AND BOUND ON dg IN THE PRESENCE
OF BOTH CO-CHANNEL AND INTERSYMBOL INTERFERENCE

When intersymbol interference is also present, the

squared Euclidean distance is only slightly modified.

D(v, ¥) = ||y1(t) = yi(£)]]2 + ||ya(t) = yo(t)]]2 (6-66)
where
yi(t) - () = Z [Au‘fk /2E h(t - kT) cos uct
k
+ Au?k Y2E h(t - kT) sin mct] (6-67)
yo(t) - yo(t) = E [Au%k V2E h(t - kT) cos uct
k
+ au, Y2E h(t - kT) sin u.ct] (6-68)
Thus,

D(v, V) = E Z E [Au‘i"k aufj + aufy Aufy + auly auf;
k]

+ Audy Au‘;’j] (6~69)
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And, assuming hy = 0 for i > 1,

plvs B = D7 dno [ (sufi)? ¢ (ufi)? ¢ (2§)7 + ()]
k
+ 2hy [Au?k Au?j + Au?k Au?j + Augk Augj
+ aujy Augj]s
where

Recall tnhat when hy; = 0, and hg = 1

D(sk, Ek) = As g sz + A§¥ Blz24s2 + ASE B?z As )

As) + As
Suppose when there 1is intersymbol interference,

D(3k, sk) = py(3k, sk) + p,(3k, sk)
+ Dj(sk, sk; sk-1, gk-1)
Then, by inspection,
Dy(sk, sk; 53, 53) = 2np {(asK)T (ssd) + (as§)T (ss])
+ (asK)T B12(asd) + (as§)T Bl2(ssd)]

for j = k - 1
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Again, using the Schwarz inequality, we can derive a
bound on Dj(sk, sk; sJ, sJ)

~ .~ o )
IDy(sk, sk; s3, s))| < [hl [wl(ek' ej) *+ pg wyleg, ej)] (6-74)

where

A0
lk\l sin (%l)

sin (
AB
sin (22k) sm(Tzl)l} (6-75)

AB ABH 4
{sin (21k) sin <—%J-)I

A ADq
+ 'sin (22k) sin (—2L1)|= for j =k -1 (6-76)

wo(e e:) A gg {
1 kr j =

+

p
wy (ex, ej) A 8E

o ‘ p
Table 6-2 shows the values of wj(eg, ex-j) and wjl(eg,
ekx-1) for various combinations of ek and ek-j.
We thus have derived a bound on the squared Euclidean

distance in the presence of both co-channel and intersymbol

interference.
D(Xr E) _>_ DO(X’ E’_) = Po Z W(ek)
k
o)
- |hy| :E: wy(eg, ex-1)
k
p
- po |1} :E: wl(ekx, ex-1) (6-77)

k

130



o p
Table 6-2. wj(ex, ex—)) and wi(eyx, ex_1)

° ek-1
WIZE g 2 3 4 5 6 7
w1/E
o 0 0 0 0 0 0
0 0 0 0 0 0
0 8 4v2 8 2 8 2 8
! 0 8 4v2 8 V2 8 4v2 8
0 4v2 8*  4v2 472 o* 4v2
K 2o w3 ot a3 &3 8 4v3
0 8 2 8 2 8 2 8
3 0 8 4v2 8 V2 8 V2 8
0 8v2 8v2 8v2 8v2
4 0 8Y2 8 872 8v2 8 8v2
0 8 4v2 8 2 8 472 8
> 0 8 V2 8 2 8 472 8
0 4v2 0*  4v2 8 4v/2 8*  4v2
6 0 4/2 8*  4v2 8 4v2 0* 4v?2
; 0 8 4v/2 8 8v2 8 4v2 8
0 8 472 8 8v2 8 472 8

o P
*w1/E # wi/E.
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_ o p
Since wj (eg, ex-1) and wj (eg, ex_)) are pretty much

the same except for a few combinations of ey and eg.j, the bound
can be simplified by defining

0 p
wyleg, ex-1) = max [}l(ek, ex-1), w;(ey, ek—lﬂ (6-78)

Minimizing the bound over the entire error sequence

. . . 2
will then give us a bound on the squared free distance, df.

) .
dg > M1 E Dplex) = py Z wlek)
B k

k

- (1 + po)lhll Z wylek, ex-1) (6~79)
k

The above bound on the squared free distance will be
evaluated in the next section for our coded four-dimensional QPSK
system which consists of a rate 2/3 convolutional encoder with
eight trellis states. The system performance will be simulated
on a computer, and the results will be compared to the bound we
have derived.
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7. SYSTEM PERFORMANCE EVALUATION USING DIGITAL
COMPUTER SIMULATION

7.1 INTRODUCTION

With rapid advancement in computer technology over the
past few decades, the cost of computer simulation has dropped
significantly with respect to that of hardware simulation. Soft-
ware simulation has, therefore, become an important procedure in
the design of modern communication systems. Despite inevitable
limitations in the mathematical models used for simulation, the
results often provide fairly accurate predictions of the actual
performance of the simulated systems.

An interactive computer program, known as CHAMP, has
been developed at COMSAT Laboratories for the performance evalu-
ation of communication systems in various transmission environ-
ments, including the nonlinear satellite channels. The program
consists of a large collection of subprograms, each of which is
used to simulate a different module, such as signal generator,
filter, nonlinear amplifier, and the like. Some of the sub-
programs have been modified by the author in order to simulate

the coded four-dimensional QPSK systems.

7.2 PERFORMANCE OF CODED FOUR-DIMENSIONAL QPSK SYSTEMS
IN THE. PRESENCE OF AWGN, CO-CHANNEL AND
INTERSYMBOL INTERFERENCE

The asymptotic performance of the coded four-
dimensional QPSK systems has been evaluated in earlier sections.
Lower bounds on the squared free distances in the absence as well
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as presence of co-channel and intersymbol interference have been
derived for the coded four-dimensional QPSK systems which employ
rate 2/3 convolutional coding. Let us now examine the bound,

derived in Section 6, more closely.

d; > min {}E: Db(ek) - P :E: w(ek) -
k

k

- (1 + p0)|hl| :E: wylek, ek—l)} (7-1)
k

The first sum, in the above expression, is the bound on
the squared Euclidean distance when there is no co-channel and
intersymbol interference. The second sum accounts for the degra-
dation in the squared distance due to co-channel interference
only. The last sum accounts for the further degradation when
both co-channel and intersymbol interference are present.

We have chosen to simulate the system performance in
the presence of a co-channel interference with 18.5 dB of
carrier-to-interference ratio (pg =~ 0.2)*, and a controlled
intersymbol interference with hj/hg = 1/6, since the above inter-
ference levels are typical of current satellite channels. Using
the above values of pg and h;, we can evaluate the bounds for the
coded four-dimensional systems. The bounds for the four-
dimensional system which employs a rate 2/3 convolutional encoder

‘with eight trellis states have been evaluated.

*From equation (6-47), pg + pp; = 2p. And, 18.5 dB of C/I

= P12
ratio corresponds to p = 0.119.
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a. AWGN only

e

dg > min {EE: Db(ek)} = 12E (7-2)
k

where E is the energy of each of the two-dimensional PSK
components. '

b. AWGN and co-channel interferengg

dé > min :Z Dplek) - o Z w(ek)} = 10.4E (7-3)

k k

C. AWGN, co-channel and intersymbol interference

- (1 + pg) |hy| }E: W) (ex, ek_l)} = 8.8E  (7-4)
k

Hence, the co-channel interference alone degrades the
performance by at most about 0.62 dB. When intersymbol interfer-
ence is also present, the overall degradation asymptotically
approaches about 1.35 dB.

The non-asymptotic performance of the coded four-
dimensional systems, in the environment as described above, has
been simulated. The block diagram for the simulation is depicted
in Figure 7-1. The transmitter consists of a rate 2/3 convolu-

tional encoder and a rate 3/4 channel signal mapper. The outputs
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of the transmitter are two sequences of complex impulses. The
transmit and receive filters have an impulse response which is a
raised cosine. Controlled intersymbol interference with

hij/hg = 1/6 is achieved by spreading the raised cosine pulses so
that there is a 50 percent overlapping between adjacent pulses.
The demodulator performs synéhronization and phase recovery, and
samples the RF signals to recover the baseband signals. The
automatic gain control normalizes the baseband signals to unity
to facilitate soft decisions by the decoder, which is a maximum
likelihood Viterbi decoder. A 5-bit quantization has been used,
and the decoder has a path memory length of 80. No extended
state has been used in the decoder, so that any coding gain
achieved is attributed to the coding scheme introduced in this
study. The signal calibrator measures the energy of the signals,
and provides a reference for the level of the additive white
Gaussian noise.

For the sake of comparison, the non-asymptotic perform-
ance of the uncoded two-dimensional BPSK systems in the same
environment has also been simulated. The block diagram for the
simulation is shown in Figure 7-2.

The results of the above simulations are summarized on
the graphs of bit error rate versus Ep/Ngy, as shown in Fig-
ures 7-3 and 7-4.

7.3 PERFORMANCE OF CODED FOUR-DIMENSIONAL QPSK SYSTEMS
IN NONLINEAR SATELLITE CHANNELS

The performance of the coded four-dimensional QPSK sys-
tems in the nonlinear INTELSAT V channel has been simulated.

Assuming that the systems will be used for time-division multiple
access transmission, we have also calibrated the signals in
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terms of peak power. The simulation block diagram is shown in
Figure 7-5. The transmit and receive filters in the main channel
have a raised cosine impulse response. Controlled intersymbol
interference with hj/hg = 1/6 has been included. We have assumed
that there is co-channel interference in the up-link, with
carrier-to-interference ratio of 18.5 dB. AWGN is added in the
down-1link.

The four-dimensional QPSK signals are transmitted at
the rate of 120 Mbit/s. The upper and lower adjacent channels
are respectively located at 80 MHz above and below the carrier
frequency of the main channel. The transmit filters in the
adjacent channels are assumed to be square-root Nyquist filters
with 40 percent roll-off. The inputs to the square-root Nyquist
filters are rectangular pulses. The outputs of all the transmit
filters are amplified by nonlinear high-power amplifiers before
they are transmitted to the satellite. The high-power amplifiers
are assumed to be operated at an input backoff of 10 dB from
saturation. The satellite is modeled as a cascade of an input
filter, a nonlinear traveling-wave-tube amplifier, and an output
filter. The satellite traveling-wave-tube amplifiers have an
input backoff of 2 dB from saturation. The received signals are
equalized and filtered before they are demodulated. The
automatic gain controls normalize the signals to unity. The
Viterbi decoder is the same as the one used in the previous
simulations.

The performance of the uncoded two-dimensional BPSK
systems in the nonlinear INTELSAT V channel has also been simu-
lated. The configuration is more or less the same except for
the encoder/modulator and the decoder.* The non-asymptotic

*The filters used are also different, as explained in
Subsection 7.4.
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pertormance of the simulated systems over the nonlinear
INTELSAT V channel is summarized on the graph shown in
Figure 7-6.

7.4 DISCUSSION OF THE RESULTS

The results from the simulations agree fairly well with
our theoretical predictions. Our theory predicts coding gains of
3.010 dB and 4.771 dB with respect to uncoded BPSK in AWGN for
4 and 8 trellis states, respectively. We can see from Figure 7-3
that at BER = 10~3, the coding gains are about 2.5 dB and 3 dB
for 4 trellis states and 8 trellis states, respectively. At high
Ep/Ng, we can expect that the coding gains will tend towards
their respective asymptotic values. Note that at moderate Eb/Ng.
both the coded four-dimensional QPSK with 4 trellis states and
that with 8 trellis states have similar performance.

Simulation results for the coded four-dimensional QPSK
with 8 trellis states §how that at BER = 1073, there is a degra-
dation of about 0.4 dﬁgdue to co-channel interference, and about
1.2 dB due to both co-channel and intersymbol interference. From
the bounds on squared free distances, we have evaluated the
asymptotic degradation to be no greater than 0.62 dB and 1.35 dB,
respectively. Again, the simulation results agree remarkably
well with our theory.

Note that the coded four-dimensional QPSK systems not
only have significant coding gains with respect to uncoded two-
dimensional BPSK, they also have more robust performance in the
presence of co-channel and intersymbol iﬁterference than the
uncoded two-dimensional BPSK.
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In the nonlinear INTELSAT V channel, the coded four-
dimensional QPSK has a superior performance compared to the
uncoded two-dimensional BPSK. However, note that the coded four-
dimensional QPSK is degraded more by the channel nonlinearities
than the uncoded two-dimensional BPSK. This is not surprising
because the transmit and receive filters of the two-dimensional
BPSK system are square-root Nyquist filters, whereas the cor-
responding filters in the four-dimensional system are filters
which have been used to introduce controlled intersymbol inter-
ference. The average-power calibrated performance curve for the
four-dimensional system in the INTELSAT V channel has been
included for a comparison with that for the same system in AWGN
only. The small degradation reflects the robustness of the
system performance in the presence of satellite channel
nonlinearities.
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8. CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH

8.1 CONCLUSTION FROM THE RESEARCH

This research has been motivated by the belief, due to
the results of an information theoretic study of the channel
capacity regions, that there exist four-dimensional systems which
perform more reliably than two-dimensional systems in the
presence of cross-channel interference [86]-[98].

A combined coding and modulation scheme has been pro-
posed for four-dimensional PSK systems. Significant coding gains
with respect to uncoded two-dimensional PSK systems are achieved
by concatenating a convolutional encoder with a four-dimensional
signal mapper which maps the outputs of the encoder onto an
expanded set of channel signals.

A family of four-dimensional QPSK sysfems with rate 2/3
convolutional coding have been designed. Some simple codes have
been selected using Ungerboeck's "set-partitioning method"
described earlier. Bounds on squared free distances have been
derived, and used to evaluate the asymptotic performahce of the
four-dimensional QPSK systems.

Non-asymptotic performance of the systems in the
presence of AWGN, co-channel, and intersymbol interference has
been simulated on digital computers. The results are quite con-
Sistent with the theoretically predicted performance. The coded
four-dimensional QPSK systems achieve coding gains of about 3 to
4 dB with respect to uncoded two-dimensional BPSK. Co-channel
interference with carrier-to-interference ratio of 18.5 dB,
together with intersymbol interference with |hy|/hg = 1/6, only
degrades the performance by a signal-to-noise ratio of 1 to 2 dB
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with respect to its performance in AWGN only. The degradation is
less for the coded four-dimensional systems than for the uncoded
two-dimensional systems.

The system performance in nonlinear INTELSAT V channels
has also been simulated, and compared to current uncoded two-
dimensional BPSK systems without intersymbol interference. It is
clear from the results that the coded four-dimensional QPSK sys-
tems with rate 2/3 convolutional coding and a four-dimensional
signal mapping, have indeed a fairly robust performance in non-
linear channels with co-channel and intersymbol interference.

Perfect measurements of co-channel interference have
been assumed in the design of our coded four-dimensional systems.
Perturbation studies can be carried out to invéstigate the sen-
sitivity of the system performance under imperfect knowledge of
the co-channel interference parameters. Nevertheless, an exami-
nation of the squared free distance bound in the presence of both
co-channel and intersymbol interference suggests that the systems
are not very sensitive to small variations in the interference
parameters.

In conclusion, when there is cross-channel interfer-
ence, the method of four-dimensional modulation and coding is

generally more desirable than lower dimensional systems.

8.2 SUGGESTIONS FOR FURTHER RESEARCH

It has been shown by this study that a combined design
of two two-dimensional systems provides a larger degree of free-
dom in the selection of signal sets and coding schemes, and
therefore can give rise to superior four-dimensional systems.
Nonetheless, it is not very clear whether it is worthwhile to
consider higher dimensional systems in the same manner. It is
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conceivable that as the number of dimensions increases beyond 4,
the design of signals and coding schemes will become increasingly
complicated and be subject to diminishing returns.

We have considered the four dimensions in time, and in
Space or polarizations. Similar design techniques may be applied
to other types of dimensions, such as frequencies. The coding
schemes presented in this study are particularly useful when the
channels in different dimensions are not perfectly orthogonal to
one another.

It can be verified easily that the simple trellis codes
obtained according to Ungerboeck's signal assignment rules have
the largest possible free Euclidean distance in the absence of
interference. However, whether the more complicated codes
obtained according to the same rules are optimal remains a ques-
tion to be answered. The bounds on squared free distances could
have been used to design algorithms for searching more compli-
cated codes and codes that are optimal in the presence of inter-
ference. However, this is beyond the scope of this research.

The issue of pulse-shaping to reduce bandwidth require-
ment, at the expense of introducing intersymbol interference, has
been left out completely. In the computer simulation, contrclled
intersymbol interference, with 50 percent pulse-overlapping, has
been achieved by simulating filters whose impulse response is a
raised-cosine with user-specified pulse width.

It has been shown that the coded four-dimensional sys-
tems can be further improved by extending the states of the
Viterbi decoder, in order to account for the dependence of the
log likelihood functions on the intersymbol interference param-
eters. This was not done in the simulation in order to study the
coding gains due to the coding scheme alone. Further simulation
studies of the coded four-dimensional systems may include
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extended-state Viterbi decoding. At higher levels of intersymbol
interference, more intersymbol interference parameters, in
addition to hj, may have to be included in the metrics. This
corresponds to a decoder with a larger number of extended states.
Four-dimensionally coded PSK has been considered in
this research. Four-dimensionally coded QAM has been studied by
Welti ([100],[101]. Other general signal constellations may lack
the symmetry we have exploited, especially in four-dimensional
PSK. Hence, a generalized four-dimensionally coded modulation

may require more sophisticated signal design techniques.
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