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ABSTRACT

In the ocean domain, opportunities for a paradigm shift in the science of autonomy
involve fundamental theory, rigorous methods, and efficient computations for autonomous
systems that collect information, learn, collaborate and make decisions under uncertainty, all
in optimal integrated fashion and over long duration, persistently adapting to and sustain-
ably utilizing the ocean environment. The ocean is a prime example of multiscale nonlinear
multidisciplinary and strongly coupled dynamics where measurements of one variable can
be used to infer other fields through their joint dynamic probability density functions. In-
tegrating ocean dynamics with autonomy enables the principled exploration, sustainable
utilization, and strong conservation of our oceans. The object of this thesis is to develop
theory, algorithms, and computational systems for the high dimensional optimal path plan-
ning of autonomous vehicles in the physical space augmented with other dynamical fields,
and for the Bayesian nonlinear assimilation of the observations gathered by these vehicles
along their trajectory. The resulting high dimensional optimal path planning and general-
ized Lagrangian Bayesian data assimilation enable the sustained and optimal operation of
autonomous vehicles over a long time duration in realistic uncertain ocean settings. With
this vision, the vehicles autonomously make decisions to optimally achieve their mission
targets in the augmented space of physical and collectible fields, e.g., reach the destination
in minimum time while using the minimum energy, harvest the maximum wave-solar-wind
energy, or farm the maximum amount of kelp. To this end, we focus on three specific
theoretical and methodological goals: (i) Develop exact differential equations and accurate
algorithms to efficiently predict and compute the reachable sets and optimal controls for
complex high-dimensional objectives in dynamical fields and showcase these controls in real-
istic ocean scenarios; (ii) Develop Bayesian theory and schemes to predict Lagrangian field
probability densities and rigorously assimilate Lagrangian data collected by moving vehicles
or drifters, leveraging the different sensitivity and timescales of the underlying Lagrangian
and Eulerian systems; and (iii) Integrate the optimal planning and assimilation to enable
learning from the information gathered on-board the vehicles, from Bayesian updates of the
optimal controls to the acquisition of knowledge using Bayesian learning. We showcase the
theory and methods in a range of ocean applications.
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In the first part, we review the theory and schemes to predict joint energy-time, harvesting-
time, and energy-harvesting-time reachability fronts and optimal paths using state augmen-
tation. We validate our energy-time algorithms in analytical and representative dynamical
fields. We then derive theory to predict reachability fronts across multiple times simulta-
neously and obtain a closed loop control law allowing vehicles to accomplish their mission
even after straying from their initial plan due to forecast errors. The theory and schemes
are developed for both backward and forward reachable tubes with time-varying target and
start sets. The resulting value functions elegantly capture not only the reachable tubes but
also time-to-reach and time-to-leave maps as well as start time versus duration maps. We
validate results with analytical solutions and demonstrate wider applications for optimal
control in dynamic environments.

In the second part, we develop and implement fundamental schemes for multi-timescale
Bayesian data assimilation for coupled dynamical systems, with a focus on Lagrangian-
Eulerian systems. We obtain a Gaussian Mixture Model (GMM) - Dynamically Orthogonal
(DO) based hybrid filter for Lagrangian and Eulerian stochastic fields and observations. We
first showcase the schemes for a coupled system where we analytically validate the perfor-
mance of the filter. We subsequently demonstrate results by applying the filter for a general
coupled chaotic system and for a joint Lagrangian-Eulerian system with a more complex
quasi-geostrophic flow.

In the third part, we integrate the schemes developed for the first two parts. We pro-
pose coupled methods that allow ocean vehicles to robustly and optimally complete their
mission while continuously learning from the new information being collected, updating the
Lagrangian and Eulerian fields, their joint probabilities, and the robust optimal control of
their future trajectories. We showcase preliminary results using the proposed method.

We conclude by demonstrating several planning and Lagrangian algorithms in data-
assimilative ocean simulations and real-time ocean experiments with real data and forecasts.
This includes the characterization of residence times and connectivity in the Red Sea, the
transport of plastics in the coastal ocean showcasing results for Massachusetts Bay, the
subduction pathways of surface waters to intermediate depths in the Alboran Sea, and the
Bayesian Eulerian-Lagrangian data assimilation of drifter data in the Balearic Sea.

Thesis supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

The growth of autonomous vehicles has been staggering in the last few decades. Self driving

cars on land, autonomous gliders in the air and remotely operated underwater vehicles in

the ocean have all seen a surge of interest in the engineering and research community in the

past years [6, 55, 61, 122, 185].

Central to the effective operation of all autonomous vehicles is efficient and accurate

motion control which falls under the purview of path planning[111]. Path planning, in the

most general sense, corresponds to a set of rules to be provided to an autonomous robot for

navigating from one configuration to another in some optimal fashion [134]. The metric for

optimality, moreover, is problem dependent and depends on the user specified objective of

interest. With the rise in the capabilities of these autonomous vehicles, the complexities on

their mission also increases. There is thus a need of methods that can plan paths for these

vehicles in a way that meets these complex optimality criteria.

As humans, we often combine what we learn over time, and then make informed decisions

and complete desired and new tasks. Since these autonomous vehicles need to operate with

little or no human input, they require intelligent predictive capabilities so as to forecast their

best courses of action, optimally sense their surroundings and adapt to the new information

collected. The learning over time, or backward and forward inference, is critical for long-term
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autonomy, especially in complex nonlinear settings that are ubiquitous in the ocean domain.

The problem of robust, optimal path planning algorithms can be broken down into two

parts: (a) Finding optimal control for complex objectives in dynamic, stochastic environ-

ments, and (b) Learning from the measurements to update the optimal control strategy and

the ocean model.

In the first part of the thesis, we will focus on the first objective. In chapter 2 we

summarize our collaborative contributions published in [37, 41], where we present a high-

dimensional Hamilton-Jacobi reachability approach for optimal path planning with complex

in stochastic environments and demonstrate the validity of this method in controlled settings

where an analytical optimal solution is available. We also demonstrate the scalability of these

methods by computing these optimal paths with realistic ocean forecasts. In chapter 3, we

present our contributions published in [39]. With our collaborators, we obtained and applied

new governing equations for reachability analysis over multiple start and terminal times all

at once, and for systems operating in time-varying environments with dynamic obstacles and

any other relevant dynamic fields.

While the first part of the thesis focuses on path planning in a deterministic setting, the

next part of the thesis focuses on the learning in a stochastic environment. Accurately pre-

dicting complex and planetary scale dynamical systems requires the integration of numerical

models with observed data through Data Assimilation (DA) methods. Our focus within

this domain is on Lagrangian Data Assimilation (LaDA), a critical area given the increas-

ing reliance on Lagrangian instruments like floats and drifters in oceanographic research.

Chapter 4 introduces a novel multi-timescale filtering algorithm for assimilating data from

these instruments, which traverse the ocean currents and provide valuable data from a highly

chaotic system. The proposed filter takes into account the challenges posed by (i) the highly

nonlinear nature of Lagrangian dynamics, which contrasts with the relatively stable (but still

chaotic) Eulerian state variables, and (ii) the computationally expensive high dimensional

stochastic Eulerian dynamical system, which contrasts the relatively cheap computational
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cost of the stochastic Lagrangian system. The proposed multi-timescale filter is derived for

general coupled systems with a special focus on the Eulerian-Lagrangian system.

In the third part, in chapter 5, we integrate the schemes developed for the first two

objectives and propose coupled methods that allow ocean vehicles to robustly and optimally

complete their mission while continuously learning from the new information being collected,

updating the Lagrangian and Eulerian fields, their joint probabilities, and the robust optimal

control of their future trajectories.

Finally, in chapter 6, we demonstrate the novel utilization of several of our planning and

Lagrangian algorithms in data-assimilative ocean simulations and real-time ocean experi-

ments with real data and forecasts issued by our MIT MSEAS group. These results were

obtained using inputs from varied members of the MSEAS group, several of whom wrote

significant portions of this chapter.

Chapter 7 summarizes the main conclusions of these thesis and proposed various future

research direction.
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Chapter 2

Energy-Time Optimal Path Planning in

Dynamic Flows1

The contributions summarized in this chapter on joint energy-time optimal path planning

were completed as part of the SM thesis of Doshi [37] and were further elaborated upon

in [41]. We refer the reader to these references for more comprehensive descriptions and

examples.

2.1 Introduction

The rapid expansion of autonomous vehicles such as self-driving cars, drones, and underwater

vehicles has marked a significant advancement in the last decade, driven by the crucial role

of efficient and accurate motion control within the realm of path planning [6, 55]. Path

planning involves the development of optimal navigational strategies for these vehicles to

move from one point to another, considering factors like travel time, energy consumption,

safety, and data quality [134, 190]. The push for these vehicles to operate autonomously in

challenging conditions over longer durations has particularly emphasized the need for energy

optimization.
1This chapter is based on [41].

23



Given the dynamic nature of environments such as the ocean, where currents and waves

significantly influence navigational paths, it’s essential to incorporate the effects of such

external flow fields into path planning [176, 184]. This paper addresses the complexities

involved in predicting these flows and their impacts on vehicle paths, presenting fundamental

differential equations that govern the joint optimization of energy and time in dynamic

flows, and proposing effective numerical solutions for these equations, thereby offering a

methodology for predicting optimal paths based on multi-objective optimization [132].

2.2 Problem Statement

Energy-time optimal path planning presents a multi-objective optimization challenge, aim-

ing to minimize both travel time and energy consumption, which are typically conflicting

objectives. This problem falls under the realm of non-trivial multi-objective optimization,

where no single solution can optimally satisfy all objectives, leading to a set of Pareto op-

timal solutions. Each Pareto optimal solution is such that no objective can be improved

without compromising another, forming a Pareto front. This research focuses on deriving

the entire Pareto front using exact differential equations, taking into account the vehicle’s

dynamics, including its position and energy state over time, under the influence of a known

deterministic background flow.

The vehicle’s motion is modeled as a point particle, with its dynamics dictated by both

its thrust and the advection from the background flow, governed by ordinary differential

equations (ODEs). The energy consumption, primarily for thrust, is considered to vary with

the vehicle’s speed, encapsulated in a power function, which, for the sake of simplicity, is

assumed here to follow a quadratic drag model. The optimization problem seeks to identify

Pareto optimal solutions that minimize the final time and maximize the remaining energy,

subject to the vehicle’s initial conditions, its dynamics, and the energy constraints outlined

by the first law of thermodynamics.
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The notation for the problem parameters are given in Table 2.1.

x, e, t Physical-space, energy & time coordinates Xp(t) Vehicle position at time t
xs Start point Ep(t) Vehicle energy at time t
xf Target point F (t) Vehicle nominal speed at time t
es Initial vehicle energy at start point Fmax Maximum vehicle nominal speed
ef Final vehicle energy at target point ĥ(t) Vehicle heading at time t
ts Start time V (x, t) Spatio-temporal velocity field
tf Final time Ẇ (F ) Energy loss rate as a function of

k, n Parameters of the power-energy law vehicle speed

Table 2.1: Summary of main problem parameters.

The dynamics of the system are given by equation 2.1.

dXp

dt
=V (Xp(t), t) + F (t) ĥ(t) , (2.1a)

dEp

dt
=− Ẇ (F (t)) . (2.1b)

The constraints of the problem are given by equations 2.2 and the problem statement is

given by equations 2.3.

Xp(0) = xs (2.2a)

Ep(0) = es (2.2b)

Xp(tf ) = xf (2.2c)

Ep(t) > 0 ∀t ∈ [ts, tf ] . (2.2d)

minimize
F (t), ĥ(t)

[tf ,−ef ]

subject to Eqs. (2.2a-d)

Eqs. (2.1a-b)

(2.3)

25



2.3 Theory

The core of time optimal path planning revolves around the concept of a vehicle’s reach-

able set, R(xs, t), which encompasses all potential states accessible from an initial state xs

through valid control sequences, with the reachability front ∂R(xs, t) marking the spatial

extremities achievable at any given time [7]. The level set method, particularly as detailed in

works by Lolla et al. [133, 134], is pivotal in computing and evolving this front, representing

it as the zero level surface of an implicit function ϕ(x, t), thereby allowing the determination

of time optimal paths by tracking the front’s progression to the target and retracing the

optimal trajectory.

The derivation of the differential equations governing the evolution of the reachability

front in the energy-time space begins with the vehicle’s dynamics in both physical and energy

spaces, leading to the definition of an augmented state space Ωa ⊆ Rd+1, which includes both

spatial and energy states of the vehicle. Through a specified control policy, involving heading

and speed functions, the vehicle’s trajectory within this augmented space is determined by

an Ordinary Differential Equation (ODE) system.

dXa
p (t)

dt
=Ua(Xa

p (t), t) + V a
(
Xa

p (t) , t
)
, (2.4)

where

Xa
p =

Xp

Ep

 , (2.5a)

Ua(Xa
p (t), t) =

F (Xa
p , t) ĥ(X

a
p , t)

−Ẇ (F (Xa
p , t))

 , (2.5b)

V a
(
Xa

p (t) , t
)
=

V (Xp, t)

0

 . (2.5c)
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The primary objective is to establish a Partial Differential Equation (PDE) that governs

the evolution of the augmented reachable set and its boundary, the reachability front, within

Ωa. This PDE characterizes the ensemble of points in the augmented space that are accessible

from the initial position and energy state at any given time, thus framing the foundation

for analyzing vehicle dynamics in a comprehensive energy-time framework. This PDE for

evolving the implicit function (and thus the reachability front) is given in equation 2.6. The

schematic in Figure 2.1 illustrates this reachability front in the augmented space. Readers

are referred to [41] for details on derivation of the below equation

∂ϕ(xa, t)

∂t
+max

ĥ,F

{
Ua(xa, t) · ∂ϕ

∂xa

}
︸ ︷︷ ︸

Maximization term

+ V a(xa, t) · ∂ϕ

∂xa
= 0

=⇒ ∂ϕ(xa, t)

∂t
+max

ĥ,F

{
F ĥT · ∂ϕ

∂x
− Ẇ (F ) · ∂ϕ

∂e

}
+ V · ∂ϕ

∂x
= 0 (2.6)

ϕ(xa, t = 0) = ϕ0(x
a)

While this equation holds for a general energy use function Ẇ (F ), we are also specifically

interested in the case where the energy use follows a power law Ẇ (F ) = k ·F n. Here, k and

n are constants and we assume n ≥ 2. For such a power law, we obtain the optimal vehicle

speed to be

F ∗(x, e, t) =


Fmax if ∂ϕ

∂e
≤ 0

min

(
Fmax,

(
∥ ∂ϕ

∂x∥
k·n ∂ϕ

∂e

) 1
n−1

)
if ∂ϕ

∂e
> 0 .

(2.7)
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Figure 2.1: Augmented reachability front and Pareto front schematics. (a) Evolution of the
reachability front in the augmented state space. (b) Pareto front which can be computed by
tracking the intersection of the level set with the energy line at the destination. (c) Contours
of the reachability front at different energy levels projected onto the physical space. For these
schematics, we assumed a three-dimensional (3D) augmented space thus a two-dimensional
(2D) physical space.

and the corresponding law for evolving the reachability front is given by

∂ϕ(xa, t)

∂t
+ F ∗(x, e, t)

∥∥∥∥∂ϕ∂x
∥∥∥∥+ V (x, t)T · ∂ϕ

∂x
+

[
− k · [F ∗(x, e, t)]n

]
· ∂ϕ
∂e

= 0,

ϕ(xa, t = 0) = ϕ0(x
a) .

(2.8)

2.4 Applications

We demonstrate our proposed method by applying it to various testcases in the aforemen-

tioned published research[37, 41].

Here, we briefly describe the application of our approach on a complex, time-dependent

simulated double-gyre ocean flow field (often used to model near-surface ocean circulation
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in mid-latitude regions, such as an idealized version of the Gulf Stream). Governed by

non-dimensional Partial Differential Equations (PDEs) reflecting fluid dynamics, including

Coriolis effects, wind stress, and Reynolds number considerations, the model is solved nu-

merically using a modular finite volume framework. A specific scenario is investigated where

a vehicle navigates from the northwest to the southeast of the domain, contending with dy-

namic flow fields and energy constraints. The testcase highlights the significant impact of

the gyre-induced flow field on the propagation of the vehicle’s reachability front, particularly

evident in the circular advection patterns observed in the early time frames. The testcase

underscores the relationship between ocean dynamics and the optimal path, emphasizing the

gyre’s role in influencing the vehicle’s trajectory and energy consumption. Figure 2.2 plots

snapshots of the background flow. Figure 2.3 demonstrates the evolution of the reachability
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Figure 2.2: Snapshots of the quasi-geostrophic double gyre flow field at three non-dimensional
times, with non-dimensional flow currents reaching 50 units. The fields of ocean currents
are represented by velocity vectors, with the non-dimensional vorticity field colored in the
background.

front with different colors corresponding to different energy levels. Figure 2.4 plots out the

optimal path for various energy constraints and the pareto curve corresponding to the case
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2.5 Conclusion

This work introduces a new theoretical foundation and computational schemes for the joint

optimization of energy and time in the path planning of autonomous vehicles navigating

through strong and dynamic flow fields. By augmenting physical space with an energy di-

mension and integrating exact Partial Differential Equations (PDEs), the study establishes

a methodology for determining the energy-time Pareto front, from which optimal paths and

controls can be derived without resorting to heuristics. The approach utilizes the level set

method for forward reachability analysis and implicit schemes for backward trajectory com-

putation, ensuring computational efficiency and accuracy. The methodology’s applicability

is demonstrated through a numerical example in a double-gyre flow representative of mid-

latitude ocean circulations. The results highlight the method’s precision and efficiency in

capturing the optimal solutions influenced by dynamic flow conditions. Future extensions

include applications to time-varying objectives, motion constraints, uncertain flow fields,

and real-time adaptive path planning, underscoring the method’s broad potential for diverse

environmental and operational scenarios.
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Figure 2.3: Dynamic quasi-geostrophic double gyre flow: Forward solve. Snapshots of the
evolution of the augmented reachability front. Plotted are the contours of the front at
different energy levels projected onto the physical domain and overlaid on the dynamic
field of simulated ocean velocity vectors. The reachability front is here a surface in a 3D
space (x, y, e), and the contours plotted are slices of this front at different energy values (as
schematized in Figure 2.1(c)). The start time for the vehicle is T = 0, with the start point
(circle) and target endpoint (star) as shown.
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(a) Pareto front for the multi-objective path
planning. Three Pareto optimal solutions are
marked. Their optimal speed functions and
paths are shown in the other Panels.

(b) Optimal speed functions for the three
marked Pareto optimal solutions.

(c) Optimal paths for the three marked
Pareto optimal solutions.

Figure 2.4: Dynamic quasi-geostrophic double gyre flow: Final Pareto optimal solutions to
the energy-time optimal path planning.
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Chapter 3

Hamilton-Jacobi Multi-Time

Reachability1

For the analysis of dynamical systems, it is fundamental to determine all states that can be

reached at any given time. This chapter is concerned with this question and results have been

published in [39]. Specifically, we obtain and apply new governing equations for reachability

analysis over multiple start and terminal times all at once, and for systems operating in

time-varying environments with dynamic obstacles and any other relevant dynamic fields.

The theory and schemes are developed for both backward and forward reachable tubes with

time-varying target and start sets. The resulting value functions elegantly capture not only

the reachable tubes but also time-to-reach and time-to-leave maps as well as start time

vs. duration plots and other useful secondary quantities for optimal control. We discuss the

numerical schemes and computational efficiency. We first verify our results in an environment

with a moving target and obstacle where reachability tubes can be analytically computed.

We then consider the Dubin’s car problem extended with a moving target and obstacle.

Finally, we showcase our multi-time reachability in a non-hydrostatic bottom gravity current

system. Results highlight the novel capabilities of exact multi-time reachability in dynamic
1This chapter is based on [39].
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environments.

3.1 Introduction

Reachability analysis quantifies the states that can be reached by an actuated dynamical sys-

tem. With optimal control, Hamilton-Jacobi (HJ) reachability analysis formalized this con-

cept with differential equations, leading to recent successes [7, 23]. Classical HJ reachability

is mainly concerned with the computation of reachable sets, forward and backward in time,

often for robotics and autonomy applications. It provides analyses of the performance and

safety of dynamical systems [7], including formal safety guarantees by determining regions of

a system’s state space that results in catastrophic failure (ex. hitting an obstacle) [22]. With

some modifications, it handles moving obstacles and targets in both steady and time-varying

systems [16, 17, 54, 103]. HJ reachability is a versatile method for path planning, even in

complex environments such as strong and dynamic ocean currents [133, 134, 136]. It then

provides the exact solution and is more efficient than other schemes, e.g., graph methods

[144]. Reachability planning has been extended to uncertain environments [191] and risk

optimality [192]. Finally, HJ reachability has been used in aircraft auto-landing, model pre-

dictive control (MPC) of unmanned aerial vehicles (UAVs) and underwater vehicles (AUVs),

and multiplayer reach-avoid games [5, 7, 8, 35, 78, 193].

In this paper, the aim is to drastically extend reachability analysis. Some of the key

questions that motivate our work include: i) How can we extend classical reachability theory

to multiple start and terminal times?; ii) What is the corresponding value function that

provides all level sets at once and what is its governing HJ reachability equation?; iii) Could

we compute reachable tubes for all possible times without having to resort to repeated solves

of classic reachability PDEs?; iv) What are other quantities that such multi-time forward

and backward analysis could compute?; and v) What are the corresponding computational

costs?
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To address the above questions, we derive a new approach for analyzing the reachability of

time-varying dynamical systems that we refer to as multi-time reachability. We formulate the

optimal control problem using a new running cost term, and obtain new governing equations

for reachability analysis over multiple start and terminal times all at once, and for systems

operating in time-varying environments with dynamic obstacles and any other dynamic fields

relevant to their control. Unlike the prior results on moving targets and obstacles, we present

a theory that incorporates these effects in the system dynamics without introducing extra

dimensions [103] and fields [54]. We apply our results to three applications and demonstrate

that the new governing equations not only more efficiently compute backward and forward

reachable tubes, but also generate new secondary quantities that encode valuable reachability

information such as duration maps.

In what follows, Section 3.2 outlines the problem statement and introduce key notation.

Section 3.3 develops the theory and equations for multi-time reachability. Numerical methods

are briefly discussed in 3.4. In Section 3.5, applications and numerical results for new multi-

reachability problems are presented, followed by the conclusions in Section 3.6.

3.2 Problem Formulation

Our primary goal is to accurately and efficiently compute reachable tubes for general time-

varying dynamical systems. There are essentially two main cases. In the first, we consider

a time-varying target set and predict what is known as the backward reachable tube. In

the second, we consider a time-varying start set and compute the forward reachable tube.

For each case, we derive the governing equations and also solve the added complexity of

time-varying obstacles that must be avoided in the dynamic environment.

Next, we formalize the above concepts. We define the properties of the dynamical sys-

tems. We then describe the start, target, and obstacle sets, as well as the backward and

forward reachable tubes. Finally, we combine all these components and define the types of
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problems we solve.

3.2.1 System Dynamics

In this work, we consider dynamical systems defined by an ordinary differential equation

(ODE) of the form

ξ̇(s) = f(ξ(s),u(s), s), s ∈ [0, T ], (3.1)

with given initial or terminal conditions, where ξ ∈ Rnx is the system state governed by

the ODE, s the temporal variable in an interval [0, T ], and u(·) the control from a set U of

measurable functions of s ∈ [0, T ] with values in U :

U = {ϕ : [0, T ]→ U | ϕ(·) is measurable}. (3.2)

The dynamical systems (3.1) govern state variables explicitly affected by the controls (e.g.

autonomy variables) but the dynamics f in general includes all other relevant forcing such

as the dynamic environment with dynamic obstacles and other dynamic fields that affect the

autonomy, e.g. [14, 122]. The control space U is often a closed bounded set in Rnu , where nu

is the number of control inputs. The system dynamics f : Rnx × U × R → Rnx are further

assumed to be continuous, bounded and Lipschitz continuous in ξ uniformly in u [7]. Then,

there exists a unique solution to Equation (3.1) for any control sequence u(·) [7, 104]. For

the initial value problem, this solution is the trajectory of the system from an initial state

x at time t ∈ [0, T ] forced by the control sequence u(·) and denoted here by ξ
u(·)
t,x (s).

3.2.2 Start, Target, and Obstacle Sets

We focus on systems either launched from some dynamic start set or being required to reach

a dynamic target set, with the constraint of avoiding the dynamic obstacle set, i.e. any

dynamic disjoint obstacles that may be present. We now formalize some of the properties of

these sets.
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For each t ∈ [0, T ], we denote the time-varying start, target, and obstacle sets as St, Tt
and Ot respectively, where all sets are closed subsets of Rnx . Following closely [54], these

sets, in turn, yield corresponding space-time sets S, O, and T, which are all closed subsets

of Rnx × [0, T ]:

S :=
⋃

t∈[0,T ]

St × {t}, T :=
⋃

t∈[0,T ]

Tt × {t},

O :=
⋃

t∈[0,T ]

Ot × {t}. (3.3)

The start, target, and obstacle sets are further assumed to evolve “smoothly” in time.

Specifically, a setMt is said to evolve smoothly in time if there exists a Lipschitz continuous

function gM(ξ) : Rn → Rn such that for the system

ξ̇ = gM(ξ), (3.4)

all trajectories that start in Mt at some time t stay in the set Mt̄ at all subsequent times

t̄ ∈ [t, T ]. That is,

ξt,x(t̄) ∈Mt̄ ∀t ∈ [0, T ], ∀x ∈Mt, ∀t̄ ∈ [t, T ]. (3.5)

Practically, this implies that the dynamic start, target, and obstacle sets cannot teleport or

disappear in the state space.

3.2.3 Reachability Sets and Tubes

In reachability analysis, backward and forward reachable sets or tubes are commonly needed

[7]. The maximal sets and tubes encompass all the states to which the system can be

driven to when going forward or backward through time, avoiding dynamic obstacles. These

maximal sets and tubes can be defined as follows [7, 22, 23]:
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Backward Reachable Set (BRS)

Given a specified final time tf ∈ [0, T ], the BRS at time t ≤ tf is the set of all states at time

t that can reach a target set Ttf exactly at the final time tf :

R(t,tf , Ttf ,O) = {x̂ | ∃u ∈ U, x = x̂,

ξ
u(·)
t,x (tf ) ∈ Ttf ∧ ∀s ∈ [t, tf ], ξ

u(·)
t,x (s) /∈ Os}. (3.6)

Backward Reachable Tube (BRT)

BRTs extend BRSs. Given a specified final time tf ∈ [0, T ], the BRT at time t < tf is the

set of all states that can reach a time-varying target T ⊂ Rnx × [0, T ] at any time t̄ ∈ [t, tf ]:

R̄(t,tf ,T,O) = {x̂ | ∃u ∈ U, ∃t̄ ∈ [t, tf ], x = x̂,

ξ
u(·)
t,x (t̄) ∈ Tt̄ ∧ ∀s ∈ [t, tf ], ξ

u(·)
t,x (s) /∈ Os}. (3.7)

Forward Reachable Set (FRS)

Given a specified start time ts ∈ [0, T ], the FRS at time t ≥ ts is the set of all states that

can be reached at time t when starting from a state within the set Sts at time ts:

F(t,ts,Sts ,O) = {x̂ | ∃u ∈ U, ∃x ∈ Sts ,

ξ
u(·)
ts,x(t) = x̂ ∧ ∀s ∈ [ts, t], ξ

u(·)
ts,x(s) /∈ Os} (3.8)

Forward Reachable Tube (FRT)

FRTs extend FRSs. Given a specified start time ts ∈ [0, T ], the FRT at time t > ts is the

set of all states that can be reached when launched from a state from a time-varying start
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set S ⊂ Rnx × [0, T ] at any time t̄ ∈ [ts, t]:

F̄(t,ts,S,O) = {x̂ | ∃u ∈ U, ∃t̄ ∈ [ts, t], ∃x ∈ St̄,

ξ
u(·)
t̄,x (t) = x̂ ∧ ∀s ∈ [t̄, t], ξ

u(·)
t̄,x (s) /∈ Os} (3.9)

3.2.4 Problem Statement

Given a dynamical system of the form (3.1) operating in a dynamic environment with obsta-

cles and possibly affected by other dynamic fields, our goal is to obtain equations that govern

the backward and forward reachability tubes, as well as schemes that solve these equations

efficiently:

Backward Reachability

Given a final time tf ∈ [0, T ], a time t < tf , and time-varying target and obstacle sets that

define space-time sets T and O, Eq. (3.3), we seek to derive and solve the equations for the

BRTs, R̄(t, tf ,T,O), Eq. (3.7).

Forward Reachability

Given a start time ts ∈ [0, T ], a time t > ts, and time-varying start and obstacle sets that

define space-time sets S and O, Eq. (3.3), we seek to derive and solve the equations for the

FRTs, F̄(t, ts,S,O), Eq. (3.9).

Once the BRTs and/or FRTs are computed ∀(t, tf ) and/or ∀(ts, t), they can be used to

compute various other quantities of interest. Such quantities include: time-to-reach maps,

i.e. maps of the minimum travel time to the target given the present state and time; start

time vs. duration plots, i.e. function that maps the travel time to the target to the time at

which the trajectory starts given a start state; and time-to-leave maps, i.e. maps of the latest

time at which one can depart from the start state and reach the target point at a given time.

The computation of these secondary quantities is discussed in Section 3.3.3
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3.3 Multi-Time Reachability for Dynamic Sets

We now develop the theory and obtain the governing equations for HJ multi-time reachability

for systems operating in dynamic environments. We start with multi-time reachability in

the backward context, i.e. predict backward reachable tubes for time-varying target sets. We

use continuous-time, optimal control and show how the resulting value function elegantly

captures not only the backward reachable tubes but also time-to-reach maps. We then extend

the results to the forward counterpart, i.e. predict forward reachable tubes for time-varying

start sets. Finally, we present remarks and discuss secondary quantities such as time-to-reach

and time-to-leave maps as well as start time vs. duration plots.

3.3.1 Backward Multi-Time Reachability

Augmented Dynamics

To account for the dynamic target and obstacle sets, we define a new augmented dynamical

system as follows:

ξ̇ = fa(ξ,u, s) =


gO(ξ, s), ξ ∈ Os

gT (ξ, s), ξ ∈ Ts and ξ ̸∈ Os

f(ξ,u, s), otherwise

. (3.10)

where gO(ξ, s) and gT (ξ, s) are functions that keep trajectories within their respective sets as

defined by Eq. (3.4). With this augmentation, we provide valuable properties to the system.

First, once a state enters an obstacle set, it will remain in that set for all subsequent times

irrespective of the controls applied. Second, the same holds for states that enter the target

set. These properties will be shown to be key in our optimal control setting.
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Optimal Control

For our optimal control problem, we first define the terminal cost at time T ,

lterm(ξ) =


∞, ξ ∈ OT

d(ξ, TT ), otherwise
. (3.11)

Eq. (3.11) defines the terminal cost of a state in the obstacle set to be infinitely high (in

Section 3.4 we address how this property can be numerically handled). For all other states,

the cost is defined as the distance of the state (ξ) from the target set at the terminal time

(TT ) under some distance metric d which depends on the system at hand. Being a distance

metric, we require d(ξ, TT ) ≥ 0 ∀(ξ, TT ) and d(ξ, TT ) = 0 if and only if ξ ∈ TT .

The running cost is defined as a constant negative value at the target set and zero

everywhere else

l(ξ, s) =


−α, ξ ∈ Ts and ξ ̸∈ Os

0, otherwise
, (3.12)

where α is an arbitrary positive constant which we set to 1. The solution is exact irrespective

of the value of α. Values of α can however be used to minimize numerical errors due to

discontinuities that arise out of this loss function (not shown).

Using the augmented dynamics (3.10), terminal cost (3.11), and running cost (3.12), the

total cost function incurred when using controls u(·) and initial state x at initial time t is

J(x,u(·), t) = lterm(ξ
u(·)
t,x (T )) +

∫ T

t

l(ξ
u(·)
t,x (s), s)ds (3.13)

To obtain an intuition for the meaning of the total cost, we substitute the functions for
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the case when the trajectory ξ
u(·)
t,x (s) never enters the obstacle set,

J(x,u(·), t) = d(ξ
u(·)
t,x (T ), TT )︸ ︷︷ ︸

Terminal distance
from target set

−α
∫ T

t

ITs
(
ξ
u(·)
t,x (s)

)
ds︸ ︷︷ ︸

Time spent in target set

(3.14)

where the identity function ITs(ξ) = 1 when ξ ∈ Ts and is 0 otherwise. We note that if the

trajectory ever enters the obstacle set, it will stay in the obstacle set at the terminal time

under the augmented dynamics and will incur an infinitely high total cost. Additionally, the

value function under the optimal control for trajectories that avoids the obstacles is,

J∗(x, t) = min
u(·)∈U

[
d(ξ

u(·)
t,x (T ), TT )− α

∫ T

t

ITs
(
ξ
u(·)
t,x (s)

)
ds

]
(3.15)

To explain this minimization physically, we consider two cases. In the first, we assume

there exists some control that drives the system from initial state x (or set) at time t into

the target set at a time t̄ ∈ [t, T ] while avoiding the obstacles. In the opposive second, we

assume no control can drive the system to the target set while avoiding the obstacles.

Case 1 Let u∗(·) be the set of controls that drives the system from state x at time t (under

the augmented dynamics) to the target set at the earliest possible time t∗ = min(t̄) while

avoiding the dynamic obstacle set O. We reiterate that for the augmented system (3.10), if

the target set is reached at some t∗ < T , the system will stay in the set at all future times

and hence ξ
u(·)
t,x (T ) ∈ TT . It follows then that the cost for such a set of controls is:

J(x,u∗(·), t) = d(ξ
u(·)
t,x (T ), TT )︸ ︷︷ ︸

0

−α
∫ T

t

ITs
(
ξ
u(·)
t,x (s)

)
ds︸ ︷︷ ︸

T−t∗

= −α(T − t∗) .
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We now provide the lower bound of the value function (3.15) under the optimal control

J∗(x, t) = min
u(·)∈U

[
d(ξ

u(·)
t,x (T ), TT )−

α

∫ T

t

I
{
ξ
u(·)
t,x (s) ∈ Ts

}
ds

]
(3.16)

≥ min
u(·)∈U

[
d(ξ

u(·)
t,x (T ), TT )

]
+ min

u(·)∈U

[
−α
∫ T

t

I
{
ξ
u(·)
t,x (s) ∈ Ts

}
ds

]
(3.17)

J∗(x, t) ≥ −α(T − t∗) . (3.18)

This lower bound is achieved under the control u∗. Therefore, when the vehicle can reach

the destination, the optimal control under the given loss function generates a time optimal

trajectory to the target state. The value function is given by J∗(x, t) = −α(T − t∗) where

t∗ is the minimum time at which a trajectory starting at (ξ, t) can reach the target state.

Case 2 When there exists no control u(·) that can drive the system from (x, t) to the

target set while avoiding the obstacles, the term ITs
(
ξ
u(·)
t,x (s)

)
in the value function (3.15) is

always 0 by construction. It follows then that:

J∗(x, t) = min
u(·)∈U

[
lterm(ξ

u(·)
t,x (T ))

]
(3.19)

That is, when a trajectory with initial conditions (x, t) cannot reach the target set, the

minimization of the cost function will lead the system as close to the target set as possible

while avoiding the obstacle (since hitting the obstacle will drive the terminal cost infinitely

high).

To summarize, the value function corresponding to the optimal control problem is given
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as

J∗(x, t) =



−α(T −min(t̄)), if∃u(·) s.t.

ξ
u(·)
t,x (t̄) ∈ Tt̄

∞, if ̸ ∃u(·) s.t.

ξ
u(·)
t,x (t̄) ̸∈ Ot̄

∀t̄ ∈ [t, T ]

minu d(ξ
u(·)
t,x (T ), TT ), Otherwise.

(3.20)

In other words, at any state x at a time t ∈ [0, T ], the value of J∗(x, t), if negative, physically

implies that a state starting at x at time t can reach the target set before the terminal time

T . Moreover, the earliest time that it can reach the destination is given by T + J∗(x,t)
α

. If

the value of J∗(x, t) is positive, it implies that a state starting at x at time t cannot reach

the target set in the time interval [t, T ], and the value physically corresponds to how close

such a state could possibly get to the target set at the terminal time T . Finally, for states

for which J∗(x, t) is infinite, we have that for a system starting at x at time t, the obstacle

will inevitably be hit.

The Hamilton-Jacobi-Bellman Equation

The value function can be efficiently computed using dynamic programming. For continuous-

time optimal control, it is the viscosity solution of the Hamilton-Jacobi-Bellman (HJB)

partial differential equation (PDE) [12, 48, 91]

∂J∗(x, t)

∂t
+min

u
[l(x, t) +∇xJ

∗ · fa(x,u, t)] = 0

J∗(x, T ) = lterm(x), (3.21)
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where lterm and l are the terminal and running costs, respectively. For our problem, these

costs are defined in Eqs. (3.11) and (3.12). Inserting them and the augmented dynamical

system (3.10) in Eq. (3.21), we obtain the final HJB PDE:

∂J∗(x, t)

∂t
=


− [−α +∇xJ

∗ · gT (x, t)] , x(t) ∈ Tt ∩ (Ot)
c

− [∇xJ
∗ · gO(x, t)] , x(t) ∈ Ot

−minu [∇xJ
∗ · f(x,u, t)] , otherwise

J∗(x, T ) =


∞, x ∈ OT

d(x, TT ), otherwise
. (3.22)

Eq. (3.22) is a terminal-value problem which is solved backward in time to obtain the value

of J∗(x, t) for all states in the state space and all times t ∈ [0, T ].

Equation for Backward Reachable Tubes

Using the value function J∗ governed by the HJB PDE (3.22), we now obtain the equation for

the BRTs defined by Eq. (3.7) as well as an efficient scheme for their computation. Consider

a fixed time tf ∈ [0, T ] and a time t < tf . From Eq. (3.20), it follows that for any state x

satisfying J∗(x, t) ≤ −α(T − tf ), a control function u(·) exists that will drive the system

from state x at time t to the target set at some time t̄ ∈ [t, tf ]. This results in an efficient

scheme to compute the BRT:

R̄(t,tf ,T,O) = {x | J∗(x, t) ≤ −α(T − tf )}. (3.23)

For a specified final time tf , the BRT at any time t < tf can simply be extracted by

considering the appropriate sub-level set of the value function at that time. This is because

an agent in this set would reach the target while avoiding the obstacle at t < tf under the

optimal control and stay in the target because of the augmented dynamics 3.10 accumulating
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the negative cost at the destination.

Equation for Time-to-Reach Maps

The value function stores important information regarding the optimal time a system can

reach the target set. This can be used to compute time-to-reach or duration maps D from

Eq. (3.21) or (3.22):

D(x, t) = T +
J∗(x, t)

α
− t, ∀(x, t) s.t., J∗(x, t) < 0.

For a state x at time t satisfying J∗(x, t) ≤ 0, Eq. (3.20) implies that such a state can reach

the target set and the earliest possible time this will happen will be at T + J∗(x,t)
α

. It follows

then that for all (x, t) with J∗(x, t) ≤ 0, D(x, t) corresponds to the minimum duration for

a trajectory starting at state x at time t to reach the target set.

Closed-loop optimal controller

As discussed in Section 3.3.1, an optimal controller that minimizes the cost function will: (a)

avoid dynamic obstacles; (b) reach the target in minimum time if it can; and (c), reach as

close to the target as possible if it cannot reach it. The optimal controller can also compute

the minimum duration to the target set from the current state. Thus, solving for J∗(x, t)

using Eq. (3.22) provides a powerful closed-loop control policy:

π(x, t) = argmin
u

[∇xJ
∗(x, t) · f(x,u, t)] ∀x ̸∈ (Ot ∪ Tt) ,

as demonstrated with reliable navigation in complex time-varying ocean currents with fore-

cast errors [205].
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3.3.2 Forward Multi-Time Reachability

Section 3.3.1 addressed backward multi-time reachability. That is, we considered how to

efficiently compute backward reachable tubes (and time-to-reach maps) in a dynamic envi-

ronment with time-varying target and obstacle sets. In this section, we examine the forward

counterpart, and derive how to compute forward reachable tubes in dynamic domains con-

taining now time-varying start sets.

The forward problem can be addressed analogously to the derivation in Section 3.3.1,

but now analyzing the system evolution backwards in time. First, an augmented dynamic

system akin to Eq. (3.10) can be defined as follows:

ξ̇ = f̃a(ξ,u, s) =


gO(ξ, s), ξ ∈ Os

gS(ξ, s), ξ ∈ Ss and ξ ̸∈ Os

f(ξ,u, s), otherwise

. (3.24)

where now the start set is used instead of the target set. This system’s evolution backwards

in time can be studied by mapping time to a new “reverse-time" variable, τ(t) = T − t,

resulting in a mapped augmented dynamical system:

dξ

dτ
= −f̃a(ξ,u, T − τ) . (3.25)

Analogous to backward multi-time reachability, we can formulate an optimal control for the

system (3.25) while using the start set in place of the target set. Specifically, we define a

terminal cost, now at time τ = T , of the form:

l̃term(ξ) =


∞, ξ ∈ O0

d(ξ,S0), otherwise
. (3.26)

To remain consistent with the set indexing convention introduced in Section 3.2.2, the sets
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in Eq. (3.26) are evaluated at time t = 0 (corresponds to the “terminal" reverse-time τ = T ).

Moreover, a running cost can be similarly defined:

l̃(ξ, τ) =


−α, ξ ∈ S(T−τ) and ξ ̸∈ O(T−τ)

0, otherwise
, (3.27)

The value function for this optimal control problem can again be computed by forming

a HJB PDE using now the dynamical system (3.24), terminal cost (3.26), and running cost

(3.27). Mapping the resulting HJB PDE back to the original time variable t so as to not

have to explicitly work in reverse-time τ , the HJB PDE can be shown to be given as:

∂J̃∗(x, t)

∂t
+max

u

[
−l̃(x, t) +∇xJ̃

∗ · f̃a(x,u, t)
]
= 0

J̃∗(x, 0) = l̃term(x), (3.28)

which, upon inserting the augmented dynamics (3.24), and the costs (3.26) and (3.27), yields:

∂J̃∗(x, t)

∂t
=


− [α +∇xJ

∗ · gS(x, t)] , x(t) ∈ St ∩ (Ot)
c

− [∇xJ
∗ · gO(x, t)] , x(t) ∈ Ot

−maxu [∇xJ
∗ · f(x,u, t)] , Otherwise

J̃∗(x, 0) =


∞, x ∈ O0

d(x,S0), otherwise
. (3.29)

In duality to the backward multi-reach setting where a terminal-value problem was obtained,

in this case the value function J̃∗(x, t) is given as the solution to an initial value problem.

Furthermore, analogous to the backward setting, the value function can be used to extract
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the FRT,

F̄(t,ts, S,O) = {x | J̃∗(x, t) ≤ −α · ts}, (3.30)

and the time-to-leave maps,

D̃(x, t) = − J̃∗(x, t)

α
, ∀(x, t) s.t., J̃∗(x, t) < 0. (3.31)

In comparison to backward reachability, the optimal controller obtained by working in

reverse-time allows computing the start set as quickly as possible in a reverse-time setting.

This is not as commonly useful since the universe runs forward in time, thus usually requiring

an open-loop controller to execute the corresponding trajectories.

3.3.3 Remarks and Discussion

With the evolution equations derived for multi-time reachability, we now present several

properties and differences when compared to classic reachability.

Ability to compute BRTs /FRTs with arbitrary start and end times

We note that we require a single solve of the PDE 3.22 / 3.29 to compute all possible

BRTs /FRTs for a given dynamical system, target/start set, and obstacle set using Eq.

(3.23) / (3.30). With classic reachability, one would instead a solve of a HJB PDE for every

terminal time tf , or start time ts. While this benefit is inconsequential when dealing with

a time-invariant system (since the backward and forward reachability tubes depend only on

the time duration, tf − t and t− ts, respectively), this property is very useful for analyzing

dynamic systems. Many multi-time autonomy problems today indeed involve dynamic envi-

ronments governed by PDEs (e.g., UAVs or AUVs affected by currents or winds), dynamic

target / start sets, and / or dynamic obstacle sets [135]. Multi-time reachability thus has

strong appeal.
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While finishing this work, [128] posted a related framework that also adds a running

cost to the HJB equation. Presently however, we derive and apply the exact governing

equations for BRTs /FRTs and associated quantities, for the first time for systems operating

in time-varying environments with dynamic obstacles and affected by other dynamic fields.

Field of Level Sets

In classical reachability, only the data on the zero level set of the value function is typically

used, as this decomposes the space into the reachable and non-reachable regions which is

usually what is of interest In multi-time reachability, a PDE of essentially identical complex-

ity is solved, yet every value on the field provides useful physical reachability information.

Specifically, in the backward reachability setting, the physical meaning of other level sets of

the value function is given by Eq. (3.20). In this case, we reiterate, level sets with a negative

value provide minimum times at which a target set can be reached from a given state, level

sets with a positive value correspond to the closest distance to the target that can be reached

for states that cannot reach the target, and finally an infinite value for J∗ are states where

it is unavoidable that an obstacle will be hit. The case of forward reachability has a similar

physical interpretation for its different level sets.

Secondary quantities

While the value function obtained by classical backward reachability determines if one can

reach the destination by time tf given a starting time and position, the value function

obtained using multi-time backward reachability determines when one can reach the target

set (D(x, t)). When evaluated at a given position x, one can infer the map between the

starting time of the trajectory to the duration it takes to reach the target. Similarly, the

forward value function determines when to start a journey to be able to reach an arbitrary

point from the starting set (D̃(x, t)). This information can be extremely valuable for time

varying systems where the time to reach the destination can vary drastically with the time
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at which the trajectory starts. We refer to the resulting plots as duration vs. arrival time,

and start time vs. duration.

Optimal Controller

The closed loop controller under the value function for multi-time reachability (Sect. 3.3.1)

has varied desirable properties including obstacle avoidance, time optimality if the target

is reachable, and distance to target minimized if not. This drastically augments classical

reachability that only minimizes the terminal signed distance from the target set at time T

and does not provide time optimality when the state is not on the zero level set.

3.4 Computation and Numerical Schemes

In Section 3.3, the PDEs (3.21)-(3.22) for the value function of backward reachability and

PDEs (3.28)-(3.29) for the value function of forward reachability are HJB PDEs. These

PDEs, including the existence, uniqueness, and properties of their viscosity solutions, have

been extensively studied in recent years due to their broad applicability [48, 162, 186].

Several options exist for numerically computing a viscosity solution to a given HJB

PDE, ranging from Finite Volume methods to high-order discontinuous Galerkin methods

[75, 134, 135, 137, 148]. Presently, we used the method of lines, with high-order finite

difference methods for the temporal and spatial discretization, on structured, uniform, rect-

angular meshes [13, 41]. Our software was built on top of an open-source HJ equation solver,

hj_reachability [183], built on JAX [18]. To numerically compute the viscosity solution, the

Local Lax-Friedrichs scheme was used [15, 41, 186].

Since the above scheme is fully explicit, the computational cost is O(NxNt) where Nx

and Nt are the total number of spatial gridpoints and of timesteps, respectively. The explicit

scheme allows direct parallelization of the computation across gridpoints. The cost of our

method is thus exactly of the same order as that of classical reachability while providing
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much richer information about the system.

Finally, we discuss two numerical implementation details: (1) Handling the infinite con-

dition in the terminal cost for when a state terminates in an obstacle set, i.e. Eqs. (3.11) and

(3.26), is straightforward. Since the numerical solve is inherently restricted to a closed and

bounded state space, we simply set the terminal cost value when in an obstacle set to an

arbitrary constant greater than the largest possible signed distance value in the domain at

terminal time. When processing the final numerically computed value function, we simply

mask off all values that equal this arbitrary constant as there are no controls that allow

the system to avoid the obstacle. (2) The constant α in Eq. (3.12) can be chosen to de-

crease round off errors associated to the numerical solve. By setting α to the order of the

characteristic time of the problem, the contours of interest will be O(1).

3.5 Numerical Results

We illustrate our theory and schemes on three numerical cases. In the first, we verify our

method by applying it to a system with analytical reachability tubes. In the second and

third cases, we consider more complex systems and demonstrate the various capabilities of

our approach.

3.5.1 Analytical Moving Target and Obstacle

Problem Setup

This case uses the example of [54, Sec 5.1]. The 2D dynamical system consists of a vehicle

moving with a constant speed in any heading, ẋ = uvehĥ, where the state x = [x, y] is

the vehicle position, ĥ the unit heading, and uveh = 0.5 the constant speed of the vehicle.

The dynamic target set is a square of side length 0.4 units centered at [0, 0.75] at t = 0

travelling with velocity of [0,−1.5] units. The obstacle is a square of side length 0.2 initially

centered at [0, 0] and traveling with velocity of [0,−1] units. Our goal is to compute backward
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reachability tubes and compare them to the analytical solution we obtained geometrically

using [54, Sec 5.1.1]. The augmented dynamics is here straightforward: we modify the system

dynamics such that when the agent is in the target (/obstacle) it moves exactly with the

known velocity of the target (/obstacle).

Results

Fig. 3.1 shows the analytical, overlaid on the numerical, backward reachability tubes using

our multi-time reachability. The analytical and numerical tubes (left half of the domain)

are effectively identical. When compared to the results in [54] that compute the BRTs for

tf = 0.5, our approach accurately computes tubes for all terminal times tf and in a single

PDE simulation.

3.5.2 Dynamic Dubin’s Car

Problem Setup

We now consider a more complex 3D dynamical system often referred to as the Dubin’s car.

The state space of the car is given by its position and orientation: x = [x, y, θ]. The only

control is that of the steering rate θ̇ = uα. The dynamics is given by

[
ẋ ẏ θ̇

]T
=

[
v cos θ v sin θ uα

]T
,

where v = 1 is the velocity of the car. We additionally constrain the steering rate to satisfy

|uα| < π
3

units.

We add a moving target and moving obstacle with velocities [0.4, 0] and [0.2, 0], respec-

tively. The positions of the target and obstacle at various times are shown in Fig. 3.2 (the

target is blue and obstacle orange). Our goal is to compute backward reachable tubes as

well as time-to-reach maps.
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Figure 3.1: Backward reachability tubes for various start and end times. Analytically com-
puted tubes are superimposed in the left half on top of numerically computed tubes (dashed
line).

Results

Since the state space is 3D, the value function now lives in a 3D space. To get an intuition

of what kind of information can be gained from the value function, we consider the duration

map at a slice D(x, y, θ = 8.95o, t) (Fig. 3.2). At a given (x, y) and time t, the duration map

returns the amount of time needed to reach the target when starting at that position and

time, and being initially aligned at the given angle (i.e. θ = 8.95o). As expected, states to

the left of the target can reach the target set more easily given their initial orientation (states

to the right need to turn around to reach the target set). In addition, note the triangular

region which forms on the left of the obstacle, corresponding to regions where the car cannot

avoid the obstacle.
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Figure 3.2: Slice of the duration map at θ = 8.95o. This map physically represents the time
needed to reach the target set based on the initial position of the car. The point marked
with the star denotes an arbitrary start point that is used in subsequent analysis (Fig. 3.5).

Fig. 3.2 highlights a key feature of the power of multi-time reachability. Consider the

following question: given a start point (xs, ys, θs) (marked with a star), what is the minimum

duration to the target as a function of the start time (ts)? This information is readily available

using the duration map, D(xs, ys, θs, ts), as seen in Fig. 3.3. As different contours of the

duration map reach the start point, we see vastly different gradients of the value function –

implying changing optimal control strategies based on when the car starts.

Suppose we pose another question: Given a start position (xs, ys) what is the optimal
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Figure 3.3: Duration of the journey to the target set as a function of the starting time. Since
this is a time varying system, the duration is not constant. Due to the moving obstacle, the
duration first decreases and increases. Times of interest are marked with a black dot.

starting angle at different starting times to minimize the duration to the target set? We

can use the following expression to compute the duration under optimal θ as a function

of the starting time ts: d(ts) = minθD(xs, ys, θ, ts). The corresponding optimal θ is given

by argminθD(xs, ys, θ, ts). Fig. 3.4 shows, for a start position (xs, ys) = (−3,−0.7), this

minimum duration and optimal θ as a function of start time. These plots, trivially generated

using the multi-time reachability value function, contain information that is invaluable in

deciding when and how to start the journey from a given start point.

Figure 3.4: (Left) Minimum duration to reach the target set, given the starting position
(xs, ys) = (−3,−0.7), as a function of starting time (ts). (Right) Initial angle θs under
which this minimum duration can be achieved for each corresponding starting time. Points
of interest are marked with black dots.

Different regimes of the optimal solution can be noted, as the car decides to start with
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drastically different angles based on the starting time. To see why this is occurs, we plot the

trajectories (Fig. 3.5) of all the points of interest marked with black dots in Figs. 3.3 and

3.4. The plot on the left traces out optimal trajectories when starting at the star (for various

Figure 3.5: Trajectories for various start points, start times and start angles. (Left) Tra-
jectories starting at fixed start point but with the optimal angle to reach the destination as
early as possible. (Right) Trajectories start at a constrained position and angle. Both set
of trajectories start at a user defined time and end at different times before the final time
horizon T

start times marked in Fig. 3.3) while constraining the initial heading the vehicle must start

with. We find that the duration initially falls with start time as cutting across the front of

the obstacle is difficult for the agent given this constrained initial angle. The plot on the

right corresponds to the trajectories starting at optimal θ at various times (Fig. 3.4). We

see that early on, the optimal agent cuts across the front of the obstacle and heads straight

for the target. If it starts later, it has to go out of its way to drive around the front of

the obstacle. However, if it waits long enough, the agent can reach the target by traversing

behind the obstacle.

This case shows how we compute optimal trajectories for a variety of starting positions,

angles, and start/terminal times. We further note that these can all be efficiently computed

using information from a single multi-time reachability PDE solve – something not possible

with other approaches.
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3.5.3 AUV in a Bottom Gravity Current Flow Field

Problem Setup

Finally, we showcase results when a time-varying dynamic environment affects the system

and optimal control. We consider an AUV in 2D with state variables x = (x, z) where x

and z are position and depth of the vehicle. We denote the dynamics by

ẋ =

[
Fx cos(uθ) + Vx(x, t) Fy sin(uθ) + Vy(x, t)

]T
,

where uθ is the sole control and V = [Vx, Vy] is the dynamic background ocean flow field

that advects the AUV around. The background flow is that of a non-hydrostatic bottom

gravity current simulated using our Finite Volume ocean modeling software [197]. This flow

involves heavy salt water flowing down an incline and creating eddies due to Kevin-Helmholtz

instabilities, as visualized in Fig. 3.6 [129].

Figure 3.6: Salinity field (left) and x-component of the velocity field in m/s (right) for the
bottom gravity flow. The units of x and y are in km.

Results

We consider a domain of interest at the bottom of the incline. As expected, we see that the

duration map is uniform at the time before the current reaches the bottom, whereas it is

non-uniform and time-varying at the time frame when the current and its billows and waves

arrive (Fig. 3.7).
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Figure 3.7: Duration maps under the bottom gravity flow after (left) and before (right) the
current enters the domain. The units of x and y are in km, and the unit for time is hours.

Applications of multi-time reachability to dynamic ocean environments can be found in

[205].

3.6 Conclusions

We obtained the governing equations for reachability over multiple start and terminal times

all at once, for systems operating in time-varying environments with dynamic obstacles and

any other relevant dynamic fields. We verified results analytically for a moving target and

obstacle problem, then applied multi-time reachability to an extended dynamic Dubin’s car,

and finally showcased the method in a bottom gravity current system. Results highlight the

novel capabilities of exact multi-time reachability in dynamic environments. Future work

include stochastic effects, adaptive control, data assimilation, learning, and multi-time flow

maps [98].
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Chapter 4

Split GMM Schemes for Coupled

Multi-timescale Dynamical Systems:

Application to Lagrangian Data

Assimilation1

4.1 Introduction

Data assimilation (DA) refers to a set of numerical methods that integrate numerical models

and observed data to obtain improved estimates of the underlying state variables. DA is

especially crucial, and thus ubiquitous, in geosciences for accurately predicting complex and

dynamic Earth systems [21].

In geophysical applications, a common configuration involves coupled systems operating

across multiple timescales. In such configurations, the primary system typically pertains

to fluid dynamics, encompassing variables like flow velocities, temperature, salinity, and

density, while the secondary system models dependent variables such as pollutant densities
1This chapter is based on [38].
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or nutrient fields, whose dynamics are intrinsically linked to the state of the primary system.

The objective in such a setup is to achieve simultaneous state estimation for both primary

and secondary state variables, leveraging observations from either or both systems.

One specific example of such a coupled system is Lagrangian data assimilation (LaDA),

where the secondary system is the dynamics of Lagrangian drifters in the ocean. With the

widespread use of Lagrangian instruments, such as floats and drifters [139, 140], the field of

LaDA has gained a lot of attention over the last three decades.

Early approaches for LaDA primarily focused on estimating Eulerian measurements from

Lagrangian data for assimilation using established methods of Eulerian data assimilation

[74, 82, 149, 213]. The main disadvantages of this method is that (a) it ignores that the

underlying measurements are related to each other and come from a single trajectory and

(b) extra assumptions are made when estimating the Eulerian fields from the Lagrangian

data.

As a result, a new, more robust, class of methods where the Eulerian and Lagrangian

dynamics and state spaces are augmented were developed [79, 105, 178]. Here, assimilation

in the augmented state space is performed using Kalman-like methods. These methods

were an improvement over the earlier methods, and converged when the assimilation time

interval was at the order of the Lagrangian autocorrelation timescale [32]. While they were a

significant improvement, these methods suffered from filter divergence issues [105] especially

when the assimilated trajectories passed through saddle points and when the assimilation

interval was increased beyond the Lagrangian autocorrelation timescale.

The key underlying reason for this divergence is the highly chaotic and nonlinear nature of

the passive Lagrangian advection equation. There are two primary methods for representing

the movement of passive tracers within a fluid: the Lagrangian and Eulerian approaches.

The Lagrangian method focuses on tracking individual tracer particles over time, whereas the

Eulerian approach calculates the spatial flow map, which maps tracer positions between two

points in time. Despite both methods capturing equivalent information, the representation
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of trajectories through Lagrangian positions rather than a spatial field leads to significant

differences. Specifically, a minor change in the initial position of a Lagrangian drifter can

result in a substantial alteration in its subsequent path and state. This effect manifests as

steep spatial gradients in the Eulerian flow map. Consequently, a filter operating in the

Lagrangian state space must effectively manage greater non-linearity and deviation from

a normal distribution, while an Eulerian space filter needs to accommodate the increased

complexity arising from field-based representation. This is important to note because we

don’t expect the velocity fields to be as nonlinear and as non-Gaussian as the tracer positions

despite also undergoing advection itself (using a dynamical equation analogous to that of the

flow map [98]) because of this Eulerian representation. Indeed, dynamical studies of tracer

advection [52, 69, 100] show the existence of hyperbolic points in even simple flows. When

trajectories pass close to these points, the exponential stretching nature of the localized

dynamics gives rise to a highly non-Gaussian pdf for the Lagrangian dynamics. Because of

this, Kalman-like methods which assume locally linear dynamics and Gaussian pdfs tend to

fail. While Eulerian dynamics are also nonlinear, the fact that even simple flows can give

rise to extremely chaotic Lagrangian systems results in the typical methods being used for

nonlinear Eulerian assimilation fail for Lagrangian data assimilation.

This gave rise to a new set of methods which used alternatives to Kalman-like filters of

assimilation of the Lagrangian state. Apte et al. [4] used Markov chain Monte Carlo (MCMC)

methods – which are known to be very effective in low dimensional non-Gaussian settings –

for assimilation of the Lagrangian state. However, they become computationally intractable

when computing joint Lagrangian-Eulerian posteriors due to the high-dimensional Eulerian

state space. Salman [177] proposed a hybrid scheme where the marginal Eulerian state space

was assimilated using a particle filter (PF) and the conditional pdf in the Lagrangian state

space was computed on a grid by solving the Fokker-Planck equation. Solving the Fokker-

Planck is expensive [146] and the high dimensionality of the Eulerian state space makes

the PF approach susceptible to probability collapse. Slivinski et al. [188] proposed another
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hybrid approach where the Eulerian system is assimilated with a Kalman-like filter and the

Lagrangian system is assimilated with a PF like system.

We propose a novel filtering algorithm that is based on a GMM filter [10] in a reduced

state space [131, 189]. The primary advantage of the GMM-DO filter is that it allows

us to (a) capture the non-Gaussian pdfs and (b) work with the high-dimensional Eulerian

system that is commonly low-rank for adaptive subspace [114]. It is worth noting that

the two approximate extremes of the GMM filter, with one component and with as many

components as ensemble members, reduce to a square-root ensemble Kalman filter (EnKF)

[123, 195] and a PF respectively. Our proposed algorithm also uses a split scheme where

the Eulerian assimilation is performed using a PF-like reweighting approach whereas the

Lagrangian assimilation is performed by resampling at every step. This approach, like the

other hybrid methods mentioned, is similar in idea to that of the Rao-Blackwellized particle

filters (RBPF) [155] with some key differences which we will elaborate on in Section 4.4.3.

Our proposed method uses the fact that the Lagrangian autocorrelation timescale is much

lower and the Lagrangian dynamics much more chaotic than the Eulerian counterpart to

implicitly allow for a different resampling frequency for the two systems. Since the Eulerian

system is much more computationally expensive than the associated Lagrangian system,

resampling the Eulerian variables with a higher assimilation timescale gives us significant

computational savings. This third improvement our framework gives us is the ability to

use a higher number of Lagrangian ensemble members than the higher-dimensional Eulerian

counterpart to allow for a more robust description of the non-Gaussian features without

substantially increasing the underlying computational cost.

While this paper focuses on LaDA, it is important to note that our proposed methods are

generally applicable to one-way coupled dynamical systems, especially those with differences

in timescales, nonlinearity, computational costs, assimilation frequencies, or ensemble size

requirements. Such systems can generally be modeled as one-way coupled, wherein the

secondary system is influenced by the primary system, but the influence of the secondary
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system on the primary is negligible. Examples specific to geosciences include coupled systems

where the primary system solves for the ocean state (velocities, salinity, density, etc., as

before and the secondary system governs biological fields in the ocean [175], fields of plastic

pollutants or other debris [125], etc.

The rest of the paper is organized as follows. Section 4.2 gives the mathematical back-

ground for the methods used in our framework. Section 4.3 defines the rigorous problem

statement we are trying to solve. Section 4.4 describes our proposed filtering method in

detail. We present our numerical results in section 4.5 and provide concluding remarks and

avenues for future improvement in section 4.6.

4.2 Review of Relevant Work

In this section, we will go through some relevant filtering methods and the mathematical

framework for them. Our proposed methodology will build upon this work.

The sequential approach to data assimilation in filtering problems can be formalized as

follows: Given a state space represented by x, with dynamics defined by ẋ = f(x;ω) where

f is the dynamical model and ω a stochastic event, and an observation model expressed

as yi ∼ N (Hi(xi); Σi) where Hi is the observation operator and Σi the covariance for the

observations, the objective is to iteratively compute the conditional state estimate xi+1 given

xi and all prior observations y1···i+1. This formulation encapsulates the core of sequential

data assimilation, where each state update integrates new observational data to refine the

state estimate progressively.

The Kalman filter [87] comprises a set of analytical equations specifically designed for

filtering scenarios where the system dynamics are linear and the state variables follow Gaus-

sian distributions. To extend the Kalman filter’s applicability to non-linear systems, vari-

ous adaptations have been developed. These adaptations typically involve representing the

underlying distribution with an ensemble of state estimates and linearizing the non-linear
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dynamics [59]. These adaptations, such as the ensemble [49], extended [172], and unscented

[203] Kalman filters are particularly effective for systems with quasi-linear dynamics and in

high-dimensional state spaces. They enable the formulation of update equations that ap-

proximate the Kalman filter’s performance even when its foundational assumptions are not

strictly met.

The particle filter [36, 201], in contrast, conceptualizes the distribution of the state space

as a collection of weighted Dirac delta functions located at the positions of each ensem-

ble member. Utilizing principles of importance sampling theory, the filter recalculates the

weights of these ensemble members at each assimilation step. This approach is markedly ef-

fective in scenarios where the system exhibits highly non-linear dynamics and the state space

distributions are notably non-Gaussian. The Particle filter’s strength lies particularly in low-

dimensional state spaces, where its discrete representation of the distribution can capture

complex, non-linear relationships more effectively than methods assuming Gaussianity.

A more recent development, the GMM-DO filter, considers dynamical systems where (a)

the state space is high dimensional, but assumed well approximated by a dynamic reduced

space, i.e., a low-rank space that is dynamic, such that it can be well represented as

x(t, ω) = x̄(t) +
r∑

m=1

x̃m(t)Φm(t;ω) (4.1)

and (b) the stochastic variables in the reduced state space (Φm(t;ω)) can be well approxi-

mated by a pdf given by a GMM. At every assimilation step, a GMM distribution is fit to

the prior ensemble of coefficients Φ(r)
m (t) using the expectaion-maximization (EM) algorithm

Φ(f)
m (t;ω) ∼ GMM (f)(π(f),µ(f),Σ(f)) (4.2)

The posterior distribution is then analytically computed under the observations

Φ(a)
m (t;ω) ∼ GMM (a)(π(a),µ(a),Σ(a)) (4.3)
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The equations to compute these can be derived by following the Bayes’ law and are detailed

in Sondergaard and Lermusiaux [189].

The GMM-DO filter is especially useful for Lagrangian systems because it can handle

both non-Gaussian pdfs, due to chaotic Lagrangian dynamics, and high dimensional, low rank

state spaces due to gridded representation of the Eulerian data. As a result, we build upon

the GMM-DO filter and introduce modifications to allow different resampling frequencies for

the Lagrangian and Eulerian dynamics. In the following sections, we delve into a rigorous

mathematical description of the problem statement and detail our proposed method.

4.3 Problem Statement

Consider a one-way coupled stochastic dynamical system

ẋE = fE(xE , t;ω) Primary system (4.4a)

ẋℓ = fℓ(xℓ,xℓ, t;ω) Coupled system (4.4b)

These stochastic differential equations (SDEs) are accompanied by their corresponding initial

and boundary conditions. As a consequence of the one-way coupling, the trajectories/solu-

tions of the primary system xE(t) are independent of the trajectories/solutions of the coupled

system xℓ(t). Consider the observation operator

yℓ(tk) ∼ N (H (xE(tk),xℓ(tk)) ; Σobs) (4.5)

where tk are the observation times. We assume H to be a linear operator in the combined

Lagrangian and Eulerian spaces, capable of handling measurements that are either purely

Eulerian, purely Lagrangian, or a combination of both being observed simultaneously. Since

the focus of the paper in on LaDA, we specifically focus on examples where the observations

are purely Lagrangian. We also note that, practically, we often obtain observations taken at

67



multiple different times at once. In such cases, the observations are assimilated sequentially,

each at its respective time.

We wish to obtain a filtering scheme to estimate the joint probability distribution of state

given past observations

ρ
(
xE(t),xℓ(t)

∣∣{yℓ(tk) ∀tk ≤ t}
)

(4.6)

Specifically, we consider the case of Lagrangian data assimilation, where the primary

system corresponds to the Eulerian state and the coupled system corresponds to the La-

grangian state. In this context, xE represents the Eulerian state variable describing the

fluid flow. This includes spatiotemporal fields for the flow velocity, temperature, density,

humidity or salinity, and other relevant state variables governed by the Eulerian dynamical

model, denoted by fE . This model fE can take various forms, including the Navier-Stokes

equations for classic fluid dynamics, or the primitive equations with temperature, salinity,

humidity, and other variables for classic ocean or atmospheric applications. In some cases,

other approximations such as shallow water equations might be employed, tailored to the

particular requirements of the system being studied.

The Lagrangian state variables, denoted by xℓ, represent positions and measurements of

drifters advected by the fluid flow. The Lagrangian model, fℓ, describes this advection. In its

simplest form, fℓ may embody a passive drifter trajectory flow equation, asserting that the

drifter’s velocity equals that of the fluid at its location, supplemented by a Brownian noise

term to accommodate subgrid velocity scales not captured by the Eulerian fluid model.

Additional modeling options include windage terms, considerations for inertia, and tidal

effects.

The system under consideration (Eqs 4.4) exhibits several notable properties:

1. The computation of fE is computationally expensive, making frequent assimilation and

restarts impractical at a high assimilation frequency.

2. fℓ is a highly chaotic dynamical system, necessitating frequent assimilation and resam-

68



pling to prevent rapid filter divergence.

3. Due to the grid-based description of the Eulerian system, xE is of extremely high

dimensionality. However, strong spatial correlations contribute to a reduced effective

rank.

4. The true space occupied by xE is physically constrained, for instance, in fluid simula-

tions involving non-divergent flow. Designing resampling-based assimilation schemes

that guarantee resampled points adhere to physical constraints is challenging. Con-

sequently, frequent resampling of xE may lead to the filter producing a non-physical

pdf.

5. Importantly, the solution for xE remains independent of xℓ, indicating a one-way

coupling.

The goal of this work is to develop a Bayesian assimilation scheme for one-way coupled

systems that leverages these properties.

4.4 Bayesian DA for One-way Coupled Dynamical Sys-

tems

Our filtering algorithm is designed to exploit the distinctive characteristics of Eulerian(slow)

and Lagrangian(fast) frameworks, as outlined in Section 4.3. Our objective is to establish

a comprehensive filtering approach that: (1) accommodates the highly non-Gaussian pdfs

inherent in the chaotic fast system and manages the expansive state space of the slow sys-

tem; and (2) implements a more frequent resampling and a larger ensemble for the more

chaotic fast dynamics, in contrast to a less frequent resampling and smaller ensemble for the

computationally demanding state variables of the slow system.

To address the varying timescales of these variables, we propose segregating the joint
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posterior distribution of the coupled system, as delineated in Equation 4.4:

ρ(xE(tk),xℓ(tk)|yℓ1···k)︸ ︷︷ ︸
Joint

Posterior

= (4.7)

ρ(xℓ(tk)|xE(tk),yℓ1···k)︸ ︷︷ ︸
Conditional
Posterior

ρ(xE(tk)|yℓ1···k)︸ ︷︷ ︸
Marginal
Posterior

This decomposition enables us to differentiate between the fast and slow states’ attributes,

recognizing the high dimensionality and statistical richness of the distribution of the slow

states, and the lower dimensionality yet greater statistical richness of the distribution of

the fast states. This framework facilitates the propagation of both states, respecting their

chaotic dynamics and computational demands.

The marginal posterior ρ(xE(tk)|yℓ1···k) is represented through samples and weights, uti-

lizing particle filtering and importance sampling techniques:

xE (i)(tk) ∼ ρ(xE(tk)) (4.8)

w(i)(tk) =
ρ(xE (i)(tk)|yℓ1···k)

ρ(xE (i)(tk))
(4.9)

Conversely, we can represent the conditional posterior of the fast system, ρ(xℓ(tk)|xE(tk),yℓ1···k),

by samples

xℓ(i,j)(tk) ∼ ρ(xℓ(tk)|xE (i)(tk),yℓ1···k) (4.10)

This allows us to have multiple ensemble members of the fast system for every given ensemble

member of the slow system, thus enabling us to capture the more chaotic dynamics of the

fast system.

Given this split of the posterior, we can perform the forecast step, which involves com-
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puting

ρ(xE(tk+1),xℓ(tk+1)|yℓ1···k)︸ ︷︷ ︸
Joint

Forecast

= (4.11)

ρ(xℓ(tk+1)|xE(tk+1),yℓ1···k)︸ ︷︷ ︸
Conditional

Forecast

ρ(xE(tk+1)|yℓ1···k)︸ ︷︷ ︸
Marginal
Forecast

As before, we can represent the marginal forecast using the particle filtering approach

by solving for ensemble members xE (i)(tk+1) by propagating the members in equation 4.8

through the slow dynamics and maintaining the weights described in Equation 4.9. The key

idea is that since the slow samples are sampled from the prior, they can be pre-computed

and don’t need to be resampled/forecasted every time there is an assimilation step. The

only quantity that changes is the associated weight.

The forecast of the fast system on the other hand involves propagating the resampled en-

semble members from equation 4.10 through the fast model with the associated pre-computed

ensemble members of the slow system. Since the members are sampled based on a distribu-

tion that is conditioned on the observations, this resampling step has to be done at every

assimilation step.

Building on this conceptual foundation, we now present the filtering algorithm in detail.

4.4.1 Algorithm

Initialization

Initialization involves drawing ensembles that respect the initial conditions. We first draw

the ensembles for the flow variables xE(i)(t0), where i = 1 . . . NE , from the initial marginal pdf

ρϵ,0(xE). We then draw an ensemble of Lagrangian variables xℓ(i,j)(t0), where j = 1 . . . Nℓ,

for every Eulerian ensemble member xE(i)(t0) from the conditional distribution ρℓ|ϵ,0(xℓ|xE =

xE(i)(t0)). This gives us a total of NE ×Nℓ Lagrangian state variables.
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Finally, we define weights corresponding to every Eulerian ensemble member wi =
1
NE

,

where i = 1 . . . NE .

Data Assimilation Loop

We now describe the data assimilation loop. The first observation has the index k = 1 and

is due to arrive at tk. We start with the current time tc = tk−1 = t0

Eulerian Forecast: The first step is to use a stochastic numerical solver to obtain the

forecast xE(i)(t), ∀t ∈ [tc, T ], for the newly sampled Eulerian ensembles xE(i)(tc). A good

choice for T is time till which we can solve the system in the wallclock time tk − tc until

the next observation arrives. A good choice for a numeric stochastic solver for the typically

high dimensional Eulerian system is the dynamically orthogonal (DO) solver [180, 181] which

allows one to solve the dynamics in a reduced space, as given by equation 4.1. If one were

to use a full rank method like the Monte-Carlo approach instead, it would be recommended

to perform a KL decomposition [182] to obtain a reduced state space representation if the

Eulerian state space is high dimensional.

Lagrangian Forecast: The next step is to use the stochastic numerical solver to obtain

the forecast xℓ(i,j)(t), ∀t ∈ [tc, tk]. That is, we will be forecasting the Lagrangian system until

the next Lagrangian observation for all available Lagrangian ensemble members xℓ(i,j)(tc).

Obtaining joint prior at tk: We now assemble the joint ensembles

 xE,(i)(tk)

xℓ,(i,j)(tk)

∀i = 1 . . . NE , j = 1 . . . Nℓ

. If using a DO representation, one would use the coefficients Φ(i) instead of the full rank

representation xEi,. We will now fit a Gaussian Mixture Model to this set of ensembles using

the (weighted) EM algorithm (with the BIC criterion) to get an approximate distribution of
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our joint prior. Let this distribution be GMMf
tk
(xE ,xℓ) = GMMtk(xE ,xℓ;π

f ,µf ,Σf). The

weighted EM algorithm is described in Appendix A.1. Figure 4.1a illustrates this step for a

simplified system with one Eulerian and one Lagrangian dimension each. We note that for

every Eulerian ensemble member, there are multiple Lagrangian ensemble members (denoted

by the semi-transparent points on the plot). The fitted GMM consists of three components

represented by the three ellipses. The contour plot represents the pdf values in the joint state

space and the plots to the edge are the marginal pdfs of both the Eulerian and Lagrangian

state spaces.

Computing the posterior: Due to conjugacy properties of GMMs under linear Gaussian

observation models, we can compute the analytical posterior GMM for the joint model using

the Bayes law [189]. Let this distribution be

ρaℓ,ϵ|yℓ(tk)
(xE ,xℓ)) = GMMa

tk
(xE ,xℓ) (4.12)

= GMMtk(xE ,xℓ;π
a,µa,Σa) . (4.13)

Figure 4.1b illustrates this posterior for the simplified system with the associated posterior

marginals.

Re-weighting Eulerian ensemble: We will now use the posterior and the prior distri-

butions to obtain the new weights of the particles. We first compute the marginal GMMs in

just the Eulerian space (Details in Appendix A.3): GMMf
E and GMMa

E . That is, we integrate

out the Lagrangian variables. We define the new weights as follows

wi ← wi

GMMa
E(xE,(i))

GMMf
E(xE,(i))

, ∀i = 1 . . . NE (4.14)

The new weighted ensembles of Eulerian simulations now represent the posterior distribution

and are conditioned on the observations at tiℓ . This step is further illustrated in Figure 4.1c.
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The ratio of the posterior to the prior is the update factor in the weights. We specifically

follow three Eulerian ensemble members given by xE = {−1, 0, 1} indicated by the brown

dotted vertical lines in the various plots. The updated thickness of the lines in Figure

4.1c represents the updated weights. The members more likely to show up in the posterior

distribution than the prior are weighted higher and the ones less likely to show up are

weighted lower. This step is essentially an importance sampling step with the sampling

distribution being the prior marginal GMM and the target distribution being the posterior

marginal GMM. Statistics of the Eulerian sample computed using these weights represent

statistics of the posterior computed with a effective sample size (ESS) given by

ESS =
(Σiwi)

2

Σiw2
i

(4.15)

If the posterior pdf is close to the prior pdf, the prior ensemble will be a good representation of

the true distribution and the ESS will be close to the number of Eulerian ensemble members.

On the other hand, if the pdfs are significantly different, the ESS will be much lower. The

concept of ESS is commonly used in PFs to make decisions on resampling [20]. A high value

of ESS is a signal that resampling the Eulerian ensemble isn’t necessary at this timestep and

for the next timestep, we can use the same reweighted ensemble that we have solved for. A

very low value of ESS is a signal that the quality of this ensemble is poor and it should be

discarded and a resampled ensemble should be used for the next timestep.

(Optional) Resampling the Eulerian ensemble: Based on the value of the ESS, one

can decide to either (a) not resample the Eulerian variables at all (b) discard the reweighted

ensemble and resample both the Eulerian and Lagrangian state variables or (c) keep the

reweighted ensemble and additionally resample the Eulerian and Lagrangian state variables

and use both set of ensembles together for assimilation at future timesteps.

Resampling is done by drawing from the posterior Eulerian marginal computed from the
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joint posterior (Eq. 4.12)

xE,(i)(tk) ∼ GMMa
ϵ,tk

(xE) (4.16)

Resampling the Lagrangian ensemble: Irrespective of whether we decide to just reweight,

resample or use a combination for Eulerian ensembles in the previous step, we will always

resample the Lagrangian ensemble. We first analytically compute the conditional posterior

distributions GMMa
ℓ|E (Details in Appendix A.2). That is, the posterior Lagrangian distribu-

tion given the Eulerian state. For every Eulerian member i, we resample the corresponding

Lagrangian states from this posterior conditional GMM.

xℓ, (i, j)
a(tiℓ) ∼ GMMa

ℓ|E(xℓ;xE = xE, i) (4.17)

This is illustrated in Figure 4.1d for the three Eulerian ensembles mentioned before. The prior

and posterior densities plotted are the slices of the joint pdf at the three Eulerian ensemble

values respectively. The blue scatterpoints at the bottom are the various Lagrangian prior

ensemble members for the given Eulerian ensemble, xℓ(i,j),
f , and the orange points are the

resampled Lagrangian points, xℓ(i,j),
a.

Looping: Finally we loop. We set tc = tk and k ← k + 1. The key things to keep in mind

as we loop are (i) We would compute a new Eulerian forecast only if we resampled newer

Eulerian ensemble members in this assimilation step. Otherwise, previously reweighted Eu-

lerian simulations still hold and we can skip the Eulerian forecast altogether. (ii) We will

be forecasting all active (not discarded) Lagrangian ensembles at every Lagrangian assimi-

lation step. If we choose to keep multiple ensemble members active during this assimilation

step, we will compute the Lagrangian forecast for all of them. (iii) When computing the

joint prior, we can have multiple weighted ensemble sets at the time of interest. We will use

all of them to fit the prior. (iv) The computation of the posterior remains unchanged (v)
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When reweighting the Eulerian ensembles, the multiplicative step ensures that the weights

are consistent over multiple reweighting steps.

The overall method is summarized in algorithm box 1

Algorithm 1: Method summary
Input: Numerical stochastic solvers for fE(·) and fℓ(·). Initial and boundary

conditions for the dynamical systems at t0. Observation operator H(·, ·) as
defined in equations (4.4) and (4.5)

Data: Observations yℓ(tk) for observation times t1 . . . tN
Result: Filtered joint state distribution functions xE(tk),xℓ(tk)|yℓ(t1) . . .yℓ(tk)
Initialization:

Obtain ensembles of the Eulerian state from the marginal IC for xE :
xE(i)(t0) i = 1 . . . NE ;

Initialize the weights corresponding to the Eulerian states wi =
1
NE

Obtain
ensembles of the Lagrangian state from the conditional IC for xℓ|xE(i):
xℓ(i,j)(t0) j = 1 . . . Nℓ;

for k = 1 to N do
For newly sampled Eulerian ensembles, generate a forecast state estimate for the
base dynamical system xE(i)(tk′) ∀k′ = k . . . N, i = 1 . . . NE ;

Generate a forecast state estimate xℓ(i,j)(tk) using the Lagrangian model for all
existing Lagrangian ensemble members;

Fit a GMM with parameters πf , µf ,Σf using EM to the set of joint weightd
ensembles xE(i),xℓ(i,j) with weights wi;

Compute the posterior GMM(πa, µa,Σa) using Bayes’ law;
Compute the marginal distributions for xE(tk). Update weights with ratio of
likelihoods given in equation 4.14 for all members xE(i)(tk).;

Use the updated weights to compute the ESS for each sets of ensembles launched
using Equation 4.15;

(Optional) Using the ESS values, discard certain sets of ensembles if their ESS is
below a predecided threshold.;

(Optional) Using the total ESS from currently active sets of Eulerian ensembles,
resample a new set of Eulerian ensembles with unitary weights from the
marginal posterior GMM to ensure that the total ESS is above a given
threshold.;

Compute the conditional distribution and resample the Lagrangian ensemble
members from these conditionals xℓ(i,j)(tk) ∼ xℓ(tk)|

(
xE(tk) = xE(i)(tk)

)
.;
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4.4.2 Proof of Consistency

We want to prove that re-weighting the Eulerian ensemble and resampling the Lagrangian

conditional ensembles gives us an accurate distribution for the posterior according to Bayes’

law.

To prove this, we show that the weighted expected value of an arbitrary function of the

posterior ensembles is equal to the expected value of the function under the true posterior.

Let h(xE ,xℓ) be the arbitrary function in question. We wish to compute the expected

value of this function under the posterior

Eρa (h(xE ,xℓ))

=

∫
h(xE ,xℓ)ρ

a(xE ,xℓ)dxEdxℓ

=

∫
h(xE ,xℓ)ρ

a(xℓ|xE)ρ
a(xE)dxEdxℓ

=

∫
ρa(xE)

ρf (xE)︸ ︷︷ ︸
Weights

h(xE ,xℓ) ρ
a(xℓ|xE)ρ

f (xE)︸ ︷︷ ︸
Weighted ensemble
distribution

dxEdxℓ

We note that the drawing from the distribution ρa(xℓ|xE)ρ
f (xE) is equivalent to drawing

the Eulerian state variable from the prior and drawing the Lagrangian state variable from the

conditional posterior. This is exactly the distributions our ensembles live in. Since we do not

resample the Eulerian variables, they are drawn from the prior distribution. The resampled

Lagrangian variables on the other hand, are drawn from the conditional posterior.

Eρa(xE ,xℓ) (h(xE ,xℓ)) =

Eρa(xℓ|xE)ρf (xE) (w(xE)h(xE ,xℓ))
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Our assimilation scheme is thus consistent with the true Bayesian posterior.

4.4.3 Comparison to Existing Methods

In this section, we comment on the key similarities and differences between our DA method

for coupled systems and other related schemes. In comparison with RBPF-based filters [e.g.

143, 177], the similarity is the hybrid approach where one scheme is used for the marginal

posterior of the primary system and another for the conditional posterior of the coupled

system (conditioned on the primary system). The key difference is that a pure Particle filter

approach is used in these methods for the primary system (as opposed to using GMMs to

compute the weights) and the conditional posteriors are computed for each primary ensemble

member separately (as opposed to computing a joint posterior all at once). Salman [177]

solves the Fokker-Planck equation on a grid to compute these conditional posterior while

Majda et al. [143] uses an uncertainty quantification scheme that represents the secondary

states conditioned on the primary state as a Gaussian distribution and subsequently uses

Kalman filtering to compute the conditional posterior.

A second set of filters that we compare to combine particle filtering ideas and Gaussian

filtering ideas but aren’t necessarily targeting coupled systems or state spaces. The Gaussian

particle fitler(GPF) and the Gaussian sum particle filter (GSPF-1) described in Kotecha and

Djuric [94] and Kotecha and Djuric [95] use a method very similar to what we propose in the

marginalized probability space for the primary sytsem – where the underlying distributions

are assumed to be Gaussian or GMM – but instead of computing the posteriors analytically,

weights are computed for ensemble members based on the likelihoods. The key motivation

for that approach is to use the weighted members to compute the posterior distribution

without having to perform the covariance inversion step. The motivation for our approach,

instead, is that we have precomputed the trajectories of these samples and re-weighting them

allows us to very quickly get a representation of the distribution at future timesteps without

having to solve the dynamical system again. The weighted ensemble Kalman filter [24, 164]
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also uses a hybrid approach where the Ensemble Kalman filter is used to obtain a proposal

distribution for the PF which is closer to the posterior and hence performs better.

Finally, Slivinski et al. [188] proposes a hybrid assimilation approach specifically for

LaDA which uses an EnKF for the Eulerian system and a PF for the Lagrangian system.

Like the RBPF-type filters above, assimilation is performed in the marginal and conditional

spaces separately. However, since the EnKF results in the Eulerian ensemble members being

transformed, the method is no longer consistent as the conditional Lagrangian ensembles no

longer map to the same Eulerian ensemble members. Moreover, it is a strong approximate

filter with strong performance, as described in Slivinski et al. [188], which can efficiently

account for the highly chaotic nature of the Lagrangian dynamics. Another difference to our

porposed approach is the fact that transforming the Eulerian ensemble members at every

assimilation step means that Eulerian ensemble members need to be solved for with the same

assimilation frequency as that of the more chaotic Lagrangian system.

4.5 Numerical Experiments

To demonstrate the application of this novel filtering scheme, we present three numerical

experiments. First, we construct a simplified flow such that the dynamics of the flow and

the corresponding lagrangian tracer can be represented by a linear system. We validate the

performance of our method in this scenario to an exact analytical solution and compare

performance with an Ensemble Kalman filtering approache. Second, we demonstrate our

method on a multi-timescale Lorenz-95 system, illustrating the applicability of our approach

for an arbitrary multi-timescale coupled system. Finally, we demonstrate our algorithm on

a more realistic flow where we use the abovementioned DO algorithm to solve for the flow

in a reduced space and infer this flow using Lagrangian tracer position measurements.
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4.5.1 Validation Case: Linear System

For this first experiment, we assume that the background flow is spatially uniform and the

direction of the flow is constantly rotating in time. We represent this flow with a vectoru
v

 and the position of the tracer with another vector

x
y

. The Eulerian and Lagrangian

dynamics respectively are given by

d

dt

u
v

 =

 0 1

−1 0


u
v

 (4.18)

d

dt

x
y

 =

1 0

0 1


u
v

 (4.19)

The augmented system is simply

d

dt



x

y

u

v


=



0 0 1 0

0 0 0 1

0 0 0 1

0 0 −1 0





x

y

u

v


(4.20)

We set the stochastic prior as independent Gaussians for the four state variables
[
x y u v

]
with means

[
0.5 0.0, 1.0, 0.0

]
and standard deviations

[
2.0 2.0 1.0 1.0

]
.

The truth is given by the same system and observation model is given by

yℓ ∼ N


x
y

 ;

0.12 0

0 0.12


 (4.21)

The true dynamics and the corresponding observations are given in Figure 4.2.

Given the linearity and the Gaussianity of the systems involved, we can solve for the
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true posterior of the joint state analytically using the Kalman filter. To validate, we use our

novel filtering method with the following parameters: (a) we set the number of mixtures in

the model to 1 since all distributions are Gaussian and (b) we set it up so that the Eulerian

ensembles are resampled at every observation timestep and combined with the pre-existing

re-weighted Eulerian ensembles from previous timesteps. We compare this to a pure EnKF

based approach where we resample the same number of Eulerian ensemble members (800)

at every step but do not use the reweighting scheme. As a result, if the bottleneck of the

system is the Eulerian solve, both approaches have the same total cost.

We look at the state estimate of both approaches right before the third observation arrives

and compare the mean and variance of our state estimate to that obtained analytically using

the Kalman Filter. To compare the two methods and check their consistency, we repeat this

experiment a number (100) of times and look at the variance of the estimators of the state

mean and variance. The results are plotted in Figure 4.3.

We see that both schemes are consistent and successfully obtain the mean and variance

of the state at the given time. However, the variance of these estimators are much lower

using the novel scheme due to a greater effective sample size obtained by reweighting and

reusing the Eulerian simulations before the first and second assimilation step.

4.5.2 Multi-timescale Lorenz-95

The next dynamical system we look at a version of multiscale Lorenz 95 system[138], which

is one-way coupled. The dynamics are given by

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F (4.22)

dy(i,j)

dt
= −cby(i,j+1)

(
y(i,j+2) − y(i,j−1)

)
− cy(i,j) +

hc

b
xi (4.23)

with b = 5, c = 5, h = 1.

The ‘synoptic’ variables, given by x, have a slower evolution over time and are supposed
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to represent observations on a given Latitude circle. The ‘convective’ variables have a faster

dynamics and vary over smaller timescales[19]. This is a coupled chaotic system where both

the slow, and the fast system are chaotic. However, the faster system is more chaotic and

has a smaller assimilation timescale. This is similar in principle to the case of Lagrangian

data assimilation and is a good testcase for our approach. We consider a system with Ni = 5

synoptic variables with periodic boundary conditions and observations y(1,1...4). That is, we

receive observations only corresponding to the fast system coupled to x1.

The dynamics and the observations corresponding to the true system, which are obtained

by simulating with a halved timestep, are given in Figure 4.4. In our assimilation system, we

implement an adaptive scheme where several samples of the slower system are resampled to

maintain a constant ESS after each assimilation step. The ESS for each ensemble, initiated

at different assimilation times, is summarized in Figure 4.5. Each colored region in the

figure corresponds to a distinct set of ensemble members launched simultaneously. The

height of these colored patches indicates the ESS of the respective ensemble at various

assimilation times. Initially, due to a lack of knowledge about the state of the fast dynamics,

the first assimilation step primarily updates the pdf of the fast dynamics, yielding minimal

information about the slow system. Consequently, the posterior distribution of the slower

state remains close to its prior distribution, necessitating only a few additional ensemble

members to preserve the ESS of the slower system. As the assimilation process progresses,

the inherent chaos in the slow system leads the algorithm to almost entirely resample the slow

state at each assimilation step. This pattern continues until the assimilation framework aligns

with the true state, at which point the belief about the slow state changes less significantly

with each assimilation step. Subsequently, we can extend the usage of previous ensembles

representing the slower states for longer periods.

Over time, however, since the truth drifts away from simulations as a result of simulation

errors, the ESS of simulations drop with increasing time and eventually are discarded.

Figure 4.6 provides a visual representation of the results obtained from running our algo-
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rithm. In this figure, we display the mean and standard deviation of each set of (weighted)

ensemble forecasts for the slow state. The lines in the graph are color-coded to match the

corresponding colored regions in Figure 4.5. During each assimilation step, the plotted line

represents the mean forecast from that specific set of forecasts, with the shaded area around

the line indicating a one standard deviation range from the mean. The initial Eulerian fore-

casts fairly innacurate when compared to the truth. As more observations are assimilated,

the ESS of these early forecasts drops low enough to require resampling. After observation

9, however, we see that the newly launched Eulerian simulation does a good job at tracking

the truth and consequently is actively contributing to our knowledge about the true state

after observation 12 is assimilated.

In Figure 4.7, we present the trajectories of fast ensemble members corresponding to

selected slow ensemble forecasts initiated at t = 2.0s after the ninth observation. These

plots illustrate the resampling process of fast ensemble members at each timestep, guided

by the conditional posteriors. Blue violin plots depict the conditional distribution of fast

variables at various observation times, conditioned on the specific slow ensemble member

and both current and past observations. Conversely, orange violin plots represent these dis-

tributions conditioned solely on past observations, highlighting the evolution of conditional

distributions of the fast state with each new observation. The green dot signifies the actual

observation at each respective time. The color-coded annotation in the top right corner of

the plots reflects the varying weights of specific slow ensemble members through the assimi-

lation of different observations. This color coding reveals that members in closer agreement

with the actual observations attain higher weights, thereby more accurately forecasting both

the slow and fast state variables. We note that we are only plotting the timeseries of the

first observation variable.
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4.5.3 Quasigeostrophic Double Gyre

Finally, we show a more practical application where we assimilate Lagrangian data corre-

sponding to a drifter being advected in a Quasigeostrophic double gyre flow, which is an ide-

alized near-surface wind driven barotropic ocean circulation in the mid-latitude regions[134].

We numerically solve this flow with uncertain initial conditions using the aforementioned

reduced order DO approach. We numerically solve a reduced order version of the dynamics

given by Equation 4.24 with a modular finite volume (FV) solver[197].

∂u

∂t
=

∂p

∂x
+

1

Re
∆u− ∂(u2)

∂x
− ∂(uv)

∂y
+ fv + aτx

∂v

∂t
=

∂p

∂y
+

1

Re
∆v − ∂(uv)

∂x
− ∂(v2)

∂y
− fu+ aτy

0 =
∂u

∂x
+

∂v

∂y
. (4.24)

The DO approach allows us to effectively have a very high number of stochastic ensemble

members that live in a reduced space. Here, we run our algorithm in a way that the Eulerian

simulation is always re-weighted and never resampled. The true flow and corresponding

trajectory is plotted in Figure 4.8. The Eulerian forecasts are summarized in Figure 4.9,

where the time evolution of the DO coefficients are plotted. The black line corresponds to

the true DO coefficients and the blue line and shaded region corresponds to the weighted

means and standard deviations respectively. Every column represents a new assimilation

step with updated weights leading to an updated forecast (and a lower ESS, mentioned on

the X axis). Figure 4.10 represents the Lagrangian forecasts for specific Eulerian ensemble

members. The green dot represents the observation assimilated at the given timestep and

the blue points represent the resampled Lagrangian forecasts. Yellow points represents the

prior distribution of the Lagrangian state. The background color represents the weight of

the Eulerian member in question.
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4.6 Conclusions and Future Work

In this study, we presented a novel filtering algorithm specifically tailored for the challenges

posed by Lagrangian Data Assimilation (LaDA) in geophysical systems characterized by

coupled dynamics across multiple timescales. Our approach leverages the Gaussian Mixture

Model-Dynamically Orthogonal (GMM-DO) filter within a reduced state space, effectively

capturing the non-Gaussian probability density functions (pdfs) inherent in the chaotic La-

grangian dynamics, while efficiently handling the high-dimensional Eulerian system.

Our proposed methodology represents a significant advancement in the assimilation of

Lagrangian data, addressing the limitations of traditional Kalman-like methods that struggle

with the nonlinear and non-Gaussian nature of such data. By employing a hybrid assimila-

tion scheme, which combines a Particle Filter (PF)-like reweighting approach for Eulerian

variables with a resampling strategy for Lagrangian variables with a higher number of en-

semble members, we achieve a balance between accuracy and computational efficiency.

The numerical experiments conducted demonstrate the efficacy of our approach in accu-

rately capturing the dynamics of coupled multi-timescale systems, leading to improved state

estimates and predictions. The results underscore the potential of our filtering algorithm

to enhance the forecasting capabilities in various geoscience applications, using data from

coupled systems.

Future extensions to this work include implementing these to other multi-timescale cou-

pled systems. For instance, a weather model coupled with a climate model would be a very

good candidate for this filtering approach. Development of an associated smoother is also a

natural next step which would allow assimilation of future data from a faster timescale to

correct past fields from both fast and slow timescales.
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Descriptors
(·)E Primary (Eulerian) dynamical system
(·)ℓ Coupled (Lagrangian) dynamical system
(·)f Forecast
(·)a Analysis
(̄·) Mean of a stochastic quantity

Scalars
(i) Primary (Eulerian) Realization index

(i,j) Coupled (Lagrangian) Realization index
(̃·)m mth DO Mode

r Rank of DO decomposition
dE Dimension of primary(Eulerian) state vector
dℓ Dimension of coupled (Lagrangian) state vector
k Discrete observation time index

NE Number of realizations of the primary (Eulerian)
state space variable

Nℓ Number of realizations of the coupled (Lagrangian)
state space variable for every given primary realization

ω Stochastic process realization
t Time variable

Vectors
xE State space for primary (Eulerian) system
xℓ State space for coupled (Lagrangian) system
yℓ Observation vector
x Spatial variable

Φm mth DO coefficient (random variable)
Matrices, Operators and Functions

fE Primary (Eulerain) dynamical system
fℓ Coupled (Lagrangian) dynamical system
H (Linear) observation operator

ρ(·)(·) Probability density function

Table 4.1: Summary of notation
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(a) Prior GMM (b) Posterior joint (c) Marginals (d) Conditionals

Figure 4.1: Schematics illustrating various steps of the algorithm. (a) A GMM is fitted
to joint ensembles of the Eulerian and Lagrangian system. Note that there are multiple
Lagrangian ensemble members for every given Eulerian ensemble member. As a result,
the joint ensemble members, represented by the black dots in the background, occur in
vertical lines. The fitted GMM consists of three mixture components whose mean and
standard deviations are represented by the ellipses and whose weights are represented by the
transparency of the ellipses. The contour plot in the background represents the total value of
the pdf. The black line plots at the edges of the plot correspond to the marginal distributions
with contributions from each of the specific mixtures given by the corresponding color-coded
line plots. The vertical brown lines correspond to arbitrarily chosen Eulerian ensembles of
interest that we will use to illustrate the next steps of the algorithm. The horizontal pink
line corresponds to the Lagrangian observation that will be assimilated at this step. (b) The
posterior GMM computed using the Bayes’ law with prior GMM, the observation model, and
the Lagrangian observation. The various components of the plot are identical to the plot for
the Prior GMM. We see that the probability mass further away from the observation ‘line’
significantly drops, as expected. (c) We then plot the prior and posterior marginals (the
black line plots at the top of the previous two plots) together and update the weights of the
Eulerian ensemble members we were observing using the ratio of these marginal values. The
thickness of the brown lines corresponding to these Eulerian ensemble members reflect their
new weight. The ensemble member xE = −1.0 has a higher posterior value than prior value
and as a result has a higher weight. Conversely, xE = 1.0 has a lower weight. We not that
we do not resample the Eulerian values and just reweight them in a way that the weighted
ensemble members correspond to samples from the posterior marginal. (d) Here, the prior
and posterior conditionals pdfs of the Lagrangian ensemble members corresponding to each
of the three Eulerian ensemble members are plotted. The dots at the bottom correspond to
the prior and posterior ensemble members. We note that the Lagrangian ensemble members
are resampled based on the posterior at every step.
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Figure 4.2: True dynamics for the validation test with associated observations. The first plot
represents the trajectory of the drifter with the green and red points corresponding the true
position of the drifter and the measurement received by the algorithm (with measurement
error) respectively.

(a) We compare the estimator of the mean state
after two assimilation steps, before the third ob-
servation is assimilated. For each of the state
variables, the red line refers to the mean of the
state pdf using the analytical Kalman Filter.
The histogram refers to the distribution of the
estimates of the state mean using EnKF and the
hybridized method respectively over 800 exper-
iment runs. It is clear that the variance of the
estimator for state mean is lower when using the
hybridized method.

(b) We compare the estimate of the covariance
of the state obtained by EnKF and our hy-
bridized approach. We plot the RMSE of the
entries of the covariance matrix obtained by the
two approaches over 800 runs. The hybridized
approach does a better job at estimating the
covariance matrix of the state after two assimi-
lation steps

Figure 4.3: Comparison of estimators of Bayesian posterior using EnKF and our proposed
hybrid scheme
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Figure 4.4: True dynamics and observations for the coupled multiscale lorenz system

Figure 4.5: Effective sample size (ESS) of various ensembles initiated at different assimilation
times
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Figure 4.6: Eulerian forecast ensembles after various observations
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Figure 4.7: Simulations of fast dynamics conditioned on the slower dynamics

Figure 4.8: True Eulerian realization with the true trajectory superimposed on it

Figure 4.9: Eulerian forecast
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Figure 4.10: Conditional Lagrangian forecast
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Chapter 5

Data Assimilative Path Planning

5.1 Introduction

Modern Autonomous Underwater Vehicles (AUVs) and Autonomous Surface Vehicles (ASVs)

possess the endurance for extended missions spanning several weeks, making them highly

suitable for prolonged ocean experiments. Such missions benefit from pre-planned optimal

paths that consider factors like time, energy, and data collection efficiency. This thesis,

particularly in Chapters 2 and 3, has explored path planning methodologies that leverage

long-term ocean current forecasts. In these chapters, the forecasts were presumed to be

accurate and deterministic. However, given the lengthy durations associated with modern

AUV and ASV missions, the inherent forecast inaccuracies become non-trivial.

Probabilistic forecasts [197, 199] capture these errors by modelling them as uncertainties

in the estimate of the state. Uncertainty quantification methods allow for these uncertainties

to be propagated through the model. As a result, we obtain distributions of the state of the

ocean at various times as opposed to a point estimate. The ability to obtain optimal paths

in these stochastic environments would allow us to plan paths in a way which is robust to

model errors.

Incorporating real-time data from AUVs and ASVs into their mission planning frame-
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works presents a powerful approach to improve performance. By assimilating the immediate,

on-the-fly data from these autonomous vehicles, we can dynamically refine our predictive

models, leading to more adaptive and responsive mission strategies. As discussed above,

ocean currents can change rapidly and deviate significantly from forecasted patterns due to

numerical errors. By using real-time data, AUVs and ASVs can adjust their trajectories

on-the-fly to accommodate these changes, ensuring that the mission objectives are met in

the most efficient and robust manner possible.

The formulation of this problem is that of a stochastic optimal control problem with time-

varying dynamics and colored noise (since errors with respect to the true background flow

are not independent in time (in fact, they are highly correlated). Various approaches have

been used to plan optimal paths in a stochastic setting. Work by Hollinger et al. [77] build

upon their previous work[166], to plan in stochastic environments by modelling the errors as

stationary (which assumes the dynamics don’t change in time) and non-stationary Gaussian

Processes. An Markov decision process (MDP) formulation of the problem inherently implies

an assumption of white noise because of the Markovian assumption and subsequently leads

to approximations being made despite considering time correlated Gaussian processes.

Another way to formulate this problem is to capture the time-correlated colored noise

in the state space itself. This leads to a partially observable MDP (POMDP) formulation

where the state now contains the location of the vehicle as well as the state of the total ocean.

The dynamics now include the stochastic ocean dynamics augmented with the advection of

the vehicle in the ocean. The ‘partial’ observation is just the location of the vehicle (the

entire state of the ocean is not observed). Various existing approaches to solving MDPs and

POMDPs tend to rely on machine learning based approaches and discretization of state and

action spaces[102].

We wish to propose a method that works in continuous spaces and rigorously deals with

the uncertainty in the environment of the vehicle and the position of the vehicle. Our

proposed approach aims to use stochastic optimal control approaches based on the work
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in chapter 3 coupled with Bayesian data assimilation approaches we introduced in Chapter

4 to simultaneously improve the ocean forecasts based on the vehicle measurement while

attempting to complete its mission in a time optimal way.

5.2 Problem Statement

We first present a more basic time-optimal version of the problem statement and then propose

various ways in which the problem statement can get more complicated. Consider stochastic

ocean ocean dynamics, where the ocean state variables are given by xE , and the vehicle

dynamics, where the state variables are given by xℓ, be

ẋE = fE(xE , t;ω) Ocean dynamics (5.1a)

ẋℓ = fℓ(xℓ,xℓ,u, t;ω) Vehicle dynamics (5.1b)

where u represent the controls of the dynamical system.

The initial position of the vehicle is given by xℓ(0) = xℓ,0. The goal is to reach the target

at a future time xℓ(tf ) = xℓ,f

The observation model is given by

yℓ ∼ N (xℓ,Σobs) (5.2)

implying that we observe the postition of the vehicle at observation times.

The goals of the algorithm are:

• Obtain a policy u(t) = π(xℓ, t) that minimizes the time tf to reach the target xℓ,f

using the stochastic ocean forecast xE(t, ω)

• Assimilates the data yℓ to update the ocean forecast xE(t, ω) and subsequently the

95



policy π(xℓ, t)

5.3 Proposed Algorithm

We split the algorithm into two steps.

First, we compute the optimal control law within the known stochastic environment using

ideas of stochastic optimal control. We essentially implement the multi-time reachability

algorithm[39] on the expected velocity field to obtain a policy that is optimal under the

expected velocity. Here, we implicitly (incorrectly) assume that the noise is white. We hope

for future work which uses ideas from POMDP algorithms to explore alternative ways to

compute this optimal policy which works under the assumption that future data is going to

be assimilated and the noise model will change based on that assimilation. However, such an

approach will require a tree based approach as is common in POMDP solvers and is expected

to be expensive.

Secondly, we use the optimal policy and actuate our vehicle based on the optimal policy

we computed. We obtain the observations as described by the observation mode. Under the

given policy, the coupled ocean and vehicle dynamical system given by equations 5.1 obey the

constraints and properties of coupled systems set out in chapter 4. As in the coupled systems

we discussed when talking about Lagrangian Data assimilation, the primary system is still

the stochastic ocean dynamical system which is extremely high dimensional and extremely

expensive to solve. The coupled system on the other hand is the dynamical system of the

vehicle and is a simple ODE. We thus use our multiscale filter to assimilate the background

velocity of the ocean (by reweighting the ensemble members) and subsequently update the

mean velocity of the ocean field. This updated velocity field (which varies in time) is then

used to compute the new optimal control law.

Our approach is summarized in the flow chart given in Figure 5.1
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Ini�al Condi�ons:

Forecast: Eulerian equa�ons

Represented by

Observa�ons:

Forecast: Compute op�mal controller using 
stochas�c mul�-�me reachability

Forecast vehicle dynamics with opt. control

Represented by

Work in augmented subspace

Fit a GMM to prior ensemble to obtain

Use Kalman like updated to obtain

Figure 5.1: Proposed algorithm for data assimilative path planning

5.4 Preliminary Results

We tested out our approach in a moving swirl flow, where the parameters and the location

of the swirl flow obeyed a chaotic Lorenz system. Results are summarized in Figures 5.2 and

5.3. We see that the vehicle does indeed learn about the environment and does reach the

target. We note that at each assimilation step, we redo the path planning steps but only

re-weight the fluid simulations.

We also tested out the approach on an analytical double gyre flow. Results are shown in

figure 5.4

Finally, we also showcase the algorithm for a more realistic flow – the quasigeostrophic

double gyre flow. This is the same flow we used in 4.5.3. The probabilistic forecasts are

computed using the DO methodology discussed earlier in the thesis. Resulting paths and

coefficient assimilation plots are give in Figures 5.5 and 5.6.
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Figure 5.2: Path of the vehicle as it attempts to go from the start point(triangle) to the
destination(star). The color of the path changes at every assimilation step.

Figure 5.3: Assimilation of swirl flow parameters as the vehicle moves in the flow

98



Figure 5.4: Data assimilative path planning on a double gyre flow. The black points are
the noise position observations of the vehicle. The colored line is the true trajectory of the
vehicle with the color changing when the planning algorithm is solved again. In this setup,
4 observations are assimilated at a time before replanning. The transparent black lines are
the stochastic simulations of the vehicle between observation points.

Figure 5.5: Path of the data assimilative vehicle. The black dots correspond to observations
which were assimilated
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Figure 5.6: The assimilation of DO coefficients describing the quasigeostrophic double gyre
flow. Every row corresponds to a new assimilation step
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5.5 Conclusions and Future Work

What we present in this chapter are very preliminary results for an approach to a integrated

path planning and data assimilation framework. It is a first attempt at formulating a data

assimilative path planning framework in a continuous spacetime setting. Future work in-

cludes validation and comparison with POMDP and GP based approaches[77, 167], exploring

more complicated loss functions and goals (robustness, risk optimality[192] as opposed to

expected time optimality), and adding POMDP-like tree search steps when solving for the

maximization term in the Hamilton-Jacobi-Bellman PDE.
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Chapter 6

Application of Lagrangian Algorithms in

Realistic Ocean Settings

In this Chapter, we demonstrate the utilization of several planning and Lagrangian algo-

rithms in data-assimilative ocean simulations and real-time ocean experiments with real

data and forecasts issued by our MIT MSEAS group. These results were obtained in col-

laboration with varied members of the MSEAS group. They involve the characterization of

residence times and connectivity in the Red Sea (section 6.1), the study of the transport

of plastics in the coastal ocean showcasing results for Massachusetts Bay (section 6.2), the

computation of subduction pathways of surface waters to intermediate depths in the Alboran

Sea (subsection 6.3.2), and the real-time Bayesian Eulerian-Lagrangian data assimilation of

drifter data in the Balearic Sea (subsection 6.3.3).
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6.1 Flow Maps and Coherent Sets for Characterizing Res-

idence Times and Connectivity in Lagoons and Coral

Reefs: The Case of the Red Sea1

For the results described in this subsection, we computed flow maps and coherent sets in the

Red Sea using methods and software developed by others in our group [51, 52, 98, 99] and

contributed to the writing of the results. The ocean fields and a significant portion of the

text were contributed by the other authors of [40].

6.1.1 Introduction

Predicting the residence times and biophysical connectivity of ocean regions is extremely

important to characterize the behaviors, dynamics, and health of marine ecosystems as well

as to predict the effects of human activities in localized areas on the ecosystems connected

to these areas. This is especially critical for the health and resiliency of marine lagoons and

coral reefs. Considering the case of the Red Sea, its lagoons and coral reefs constitute an

amazing undersea world home to 300 hard coral species and about 1,200 fish, of which 10

percent are local to the region. Its large number of lagoons along the coast (75 on the coast

of Saudi Arabia) have large residence times that help coral growth due to the absence of

erosion. However, the restricted exchange of water between these lagoons and the Red Sea is

also responsible for pollution in the lagoons [170]. Characterizing the different connectivities

in the region is thus very important. For example, [168] have showed that connectivity

patterns can explain the gene diversity of the coral reefs found in the region.

To understand the connectivity patterns and study the exchange of water masses between

various lagoons in the Red Sea, we resort to using Lagrangian field analyses. In the broad-

est sense, such analyses refer to studies performed using the Lagrangian viewpoint of fluid
1This section is based on [40].
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mechanics [101]. These field analyses provide a quantitative understanding of the transport

characteristics of passive materials that flow with the fluid. They compute the attracting

basins and repulsive surfaces, and accurately predict the flow patterns of such passive ma-

terial through determining coherent and incoherent sets [56, 71, 99]. Extensive work has

been done regarding Lagrangian transport in geophysical systems, and we refer the readers

to [60, 62] for comprehensive reviews.

To address the challenges in lagoons and coral reefs, we utilize our recent advances

in efficient four-dimensional (4D: time and space) Lagrangian field theory and methods

[50, 51, 97, 98] for characterizing in a principled fashion the residence times and connectiv-

ity fields, showcasing the results for the Red Sea. Specifically, we study the connectivity

patterns between the Eastern and Western coasts of the Red Sea Basin and the isolation of

the southern part of the sea. By looking at how the structures of the flow evolve in pres-

ence of seasonal streams, we better understand the effects of these streams on connectivity

patterns. Our approach is rooted in the fundamental Eulerian partial differential equations

(PDEs) for the Lagrangian flowmap. With our novel numerical method of composition,

we can solve these PDEs accurately and efficiently without compounding numerical errors

[98]. As a result, instead of classic trajectory-based analyses, we provide accurate 4D field

characterization of the Red Sea coherent water masses, residence time, and connectivity

dynamic features. The long-term goal is to provide sustained 4D Lagrangian predictions,

analyses, and characterizations of multiscale ocean transports, coherent structures, material

sets, residence times, connectivity, and stirring and mixing processes in the Red Sea region.

To represent the unsteady and multiscale nature of the ocean fields in the Red Sea region,

we utilize the MIT general circulation model (MITgcm) [145] in 3D, including 8 major tidal

components. The model is forced by hourly atmospheric fluxes, and a fine scale bathymetry

field generated by assimilating several in situ observations is employed. The dynamical

characteristics of the regional lagoon basins are mainly forced by tides at local scales, whereas

the long term circulation inside the lagoons is driven by the general circulation outside the
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lagoon. Another motivation of the present work is to investigate these regional dynamics

in the Lagrangian field sense and, in the future, collaborate with observational scientists to

help design adaptive monitoring campaigns and plan principled optimal sampling strategies

for characterizing the 4D residence times and connectivity fields in the lagoons and coral

reefs.

The long-term objectives of the present collaborative Red Sea research are to: (i) Utilize

our new Lagrangian field transport theory and methods to forecast, characterize and quantify

ocean processes involved in the four-dimensional transports and transformation of water

masses, and residence times in the Red Sea; (ii) Apply and expand our multi-resolution

submesoscale-to-regional-scale ocean modeling, 2-way nesting, and uncertainty predictions,

for real-time forecasting and process studies in the region; (iii) Help design field experiments

and predict sampling strategies that maximize information on residence times, 4D pathways

and dynamics in the region.

The section is organized as follows. Subsection 6.1.2 overviews the state-of-the-art in

Lagrangian analyses and our novel field PDE-based approach, with a specific focus on marine

environments. Subsection 6.1.3 discusses the ocean modeling methodology and the regional

oceanography of the Red Sea. We then showcase in Subsection 6.1.4 selected results regarding

the Lagrangian field dynamics of the Red Sea and its residence times, with an emphasis on

specific lagoons. Finally, conclusions are provided in Subsection 6.1.5.

6.1.2 Lagrangian Methods

Lagrangian Fields and Computation

We now briefly review the fundamentals of the Lagrangian viewpoint of material transport

field analysis, and the associated recent advances. Typically, we denote any quantity that

is being passively advected by the background fluid flow as a (passive) tracer, denoted

henceforth by α(x, t), where x is the (vectorial) position in the domain of interest Ω and t is
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the time, with t ∈ [0, T ]. Examples of typical passive tracers include temperature, salinity,

inertia-free particulate matters etc. We assume that the tracer quantity α(x0, t0) that was

at location x0 at time t0 is passively transported with the underlying fluid parcel that was

at location x0 at time t0, and ends up at location x at time t. Thus, we have that:

α(x, t) = α(x0, t0) = α0(x0) (6.1)

However, we know that the motion of the fluid parcel is governed by eq. 6.2.

ẋ(t) = v(x(t), t) given x(t0) = x0 (6.2)

where v(x, t) is the dynamic velocity field in the domain Ω. For the dynamical system given

by eq. 6.2, the forward flow map between times t0 and t1(≥ t0) is defined as:

ϕt
t0
(x0) = x where ẋ(t) = v(x(t), t) with x(t0) = x0 (6.3)

That is, the forward flow map is simply the position of the fluid parcel at some later time

(t) mapped onto its initial position (at time t0). The inverse of the forward flow map, called

the backward flow map is analogously given by eq. 6.4, where now the transport ODE 6.2 is

solved in backward time with a specific terminal condition:

ϕt0
t (x) = x0 where ẋ(t) = v(x(t), t) with x(t) = x (6.4)

Substituting eq. 6.4 into eq. 6.1, we obtain eq. 6.5 that concisely states

α(x, t) = α0(ϕ
t0
t (x)) . (6.5)

Eq. 6.5 suggests that computing a passive tracer transport ultimately amounts to accurately

computing the flow maps of the underlying dynamical system and composing the said flow
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maps with the tracer initial condition.

The forward and backward flow map fields also provide a wealth of additional information.

The singular values of the Jacobians of these maps, when scaled logarithmically are referred

to as the ’finite time Lyapunov exponents’ (FTLEs) [70, 165]. These forward and backward

FTLE fields are commonly used to identify Lagrangian coherent structures (LCSs). The

ridges of the forward FTLEs approximate the repelling manifolds: they tend to ’repel’ water

parcels. Two parcels that are close to each other at initial time but on different sides of the

forward FTLE ridge will tend to advect farther away from each other than other parcels.

The forward FTLEs thus act as material barriers to connectivity, and the forward FTLE

ridges can be thought of as a skeleton to the connectivity pattern. On the other hand, the

ridges of the backward FTLEs approximate the attracting manifolds: they tend to ’attract’

water parcels. They thus increase the chances of connectivity among different water regions,

ultimately by sub-mesoscale or turbulent mixing along the ridges in the backward FTLEs.

Several other theories and metrics rooted in the flow map are used to determine attracting

- repelling manifolds, coherent - incoherent material sets and other quantities of interest in

fluid flows [56, 62, 71].

The typical trajectory-based approach to compute the flow maps is to appropriately solve

eq. 6.2 in forward or backward time using certain time marching schemes for all possible

initial conditions. However, the same can also be achieved by solving a single PDE whose

characteristics are described by the said ODE. Specifically, one can obtain the backward

flow map ϕ0
t by solving the PDE eq. 6.6 forward in time from time 0 to t, with the initial

condition α0(x) = x:

∂α

∂t
+ v · ∇α = 0; α0(x) = x then α(x, t) = ϕ0

t (x) . (6.6)

Similarly, the forward flow map ϕt
0 is obtained by solving eq. 6.7 backward in time, with the
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terminal condition αt(x) = x:

∂α

∂t
+ v · ∇α = 0; αt(x) = x then α(x, 0) = ϕt

0(x) . (6.7)

Once the flow map is computed, its associated quantities can be appropriately computed.

Further, the flow map can be composed with the tracer initial condition to obtain the ad-

vected tracer field.

Finally, instead of computing the flow maps over the entire considered interval, one can

also compute flow maps over smaller intervals and then compose them appropriately to

obtain the flow maps over the larger time interval. Specifically:

ϕtn
t0

= ϕtn
tn−1
◦ ϕtn−1

tn−2
◦ . . . ϕ2

1 ◦ ϕ1
0 (6.8)

ϕt0
tn = ϕ0

1 ◦ ϕ1
2 ◦ . . . ϕtn−2

tn−1
◦ ϕtn−1

tn (6.9)

We refer to this method are the ‘method of flow map composition’. Composing such indepen-

dent flow maps over smaller intervals presents the opportunity to parallelize the computation

in the temporal direction, yielding a significant speedup. The individual flow maps are com-

puted over a short interval and hence introduce minimal numerical errors. Further, the

individual flow map computations are independent and hence the numerical errors are not

compounded, which results in a much lower total error. Further details can be found in [98].

Residence Times Fields

Presently, we are primarily interested in efficiently computing the residence time fields in the

domain of interest. These fields represent the time required for a water parcel that started

at the considered position to leave the chosen domain of interest. An efficient approach to

compute these fields is now developed.

Let ΩD be the domain of interest in which we wish to compute the residence times. We
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initialize a hypothetical tracer field given by:

α(x) =


1 ∀x ∈ ΩD

0 otherwise
. (6.10)

As stated earlier (eq. 6.5), the tracer concentration at a location x at some time t, i.e. α(x, t)

is computed using the initial tracer concentration (α0(x)) as:

α(x, ti) = α0

(
ϕ0
ti
(x)
)
. (6.11)

This equation can simply be inverted to obtain eq. 6.12.

α0(x) = α
(
ϕti
0 (x), ti

)
. (6.12)

We can now use this initial concentration field to determine which water parcels (with their

positions indexed at the initial time t = 0) will be inside or outside the domain of interest

at t = ti, specifically:

1. α0(x) = 0 and x ∈ ΩD (inside-outside): Water parcel at x starts in the domain of

interests and is outside the domain at time ti.

2. α0(x) = 1 and x ∈ ΩD (inside-inside): Water parcel at x starts in the domain of

interests and stays in the domain at time ti.

3. α0(x) = 0 and x ̸∈ ΩD (outside-outside): Water parcel at x starts from outside the

domain and is outside the domain at time ti.

4. α0(x) = 1 and x ̸∈ ΩD (outside-inside): Water parcel at x starts from outside the

domain and is inside the domain at time ti.

By computing these values at different times ti we can construct the residence time fields

based on when a water parcel exits the domain. Similar fields can be constructed to represent
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the intruding time fields as well as the other two cases described above.

6.1.3 Ocean Modeling and Regional Dynamics

A high-resolution MIT general circulation model (MITgcm) [145] was configured at KAUST

for the coastal lagoon area offshore of Al Wajh region in the central Red Sea, extending

from 36.35◦E to 37.25◦E and from 25.2◦N to 26.4◦N (Figure 6.1). The coastal model

has a horizontal resolution of about 75 m and 50 vertical z-levels, the thickness of which

gradually increases from 0.5 m at the surface to 180 m near the bottom. The model is

nested within a regional 1-km model configured for the Red Sea with temperature, salinity,

and horizontal velocity fields prescribed at the southern and western boundaries on a daily

basis. Barotropic tidal currents are added through the amplitudes and phases extracted from

the inverse barotropic tidal model TPXO 7.2 Indian Ocean (Red Sea) [REF], including eight

major tidal components of semi-diurnal and diurnal frequencies (M2, S2, N2, K2, K1, O1,

P1 and Q1). The model is forced by hourly surface wind, air temperature, specific humidity,

precipitation, and downward shortwave and longwave radiation of a 3-km Weather Research

Forecast (WRF) product [202] downscaled from ERA-Interim products of the European

Centre for Medium-Range Weather Forecasts (ECMWF) [34]. Various sources of data have

been collected and merged to generate the fine-scale model bathymetry, including several

in-situ cruise measurements that were conducted in the lagoon, the General Bathymetric

Chart of the Oceans (GEBCO) [80] and satellite images from Google Earth.

At local scales in the Al Wajh region, tides constitute the major forces that determine the

dynamical characteristics of lagoon-like basins; however, the long-term circulation inside the

lagoons is primarily driven by larger-scale meteorological forces and the general circulation

outside the lagoon. Northwesterly winds are dominant over the sea all over the year [107],

while the wind regime from the land is more variable with smaller valleys cutting across

the mountain ridges and lead to strong easterly jets [84]. The regional oceanic circulation

commonly consists of a northward boundary current along the Saudi coast [207, 208], and
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Figure 6.1: Modelling Domains

frequent eddies that are more energetic during winter [209–212]. Such eddy and boundary

current events may affect the regional circulation outside the lagoon and potentially influence

the flow inside.

6.1.4 Lagrangian Dynamics and Residence Times Results

We now apply the above methodology to compute flow maps, FTLEs, and residence times in

the Al Wajh region and overall Red Sea. We then showcase how the FTLE fields qualitatively

depicts the skeleton of connectivity in these regions.
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Figures 6.2 show the forward x and y flow maps at 0.25m and Figure 6.3 the forward x,

y and z flow maps 2.75m, all plotted at the initial positions. That is, these maps collectively

plot the final position (through x, y, and z coordinates, with z being positive downward) of

a water parcel that started at a particular location at the start time. From the intensity in

the gradients of the flow map, it can be seen that the amount of mixing in the Lagoon is

much less than outside the Lagoon.

(a) x flow map (b) y flow map

Figure 6.2: Forward flow maps (m) over the Al Wajh Lagoon modeling domain from 3 Nov,
2017 to 10 Nov, 2017 at 0.25m.

Figure 6.4 shows the vertical sections of the 3D x, y and z flow maps, with the Red Sea

located to the left of the shown sections. The tall ridges in the repelling FTLE field signify

very little mixing with the Red Sea. The z flow map shows upwelling at the eastern ridge

of the Lagoon and downwelling on the western coast of the Lagoon. Hence, the regions of

larger vertical transport within the Lagoon are located near its edges. Nutrient inputs can

thus be expected to occur there as well.

The forward FTLE fields computed using the flow maps from Figure 6.2 are shown in
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(a) x flow map (b) y flow map (c) z flow map

Figure 6.3: Forward flow maps (m) over the Al Wajh Lagoon modeling domain from 3 Nov,
2017 to 10 Nov, 2017 at 2.75m (z being positive downward).

(a) x flow map (b) y flow map (c) z flow map

Figure 6.4: Vertical section of forward flow maps over the Al Wajh Lagoon modeling domain
from 3 Nov, 2017 to 10 Nov, 2017 at 25.61◦N.

Figure 6.5. We illustrate the forward FTLE for two different depths: 0.25m (i.e. close to

the surface) and 2.75m from Nov. 3, 2017 to Nov. 10, 2017. As mentioned before, forward

FTLEs tend to repel water parcels and thus act as barriers to connectivity. In Figures

6.5(a) and (b), we see a prominent FTLE ridge on the north side of the domain at both

the considered depths. Further, we also highlight the existence of the ridges connecting the

different small islands at the southwestern boundary of the lagoon. As the forward FTLEs

form barriers to connectivity, these ridges together imply that during the 7-days considered,

the water in the lagoon does not mix very well with the waters offshore at the southwestern

boundary. This can be further confirmed by the FTLE fields over the entire red sea in Figure
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6.6 (from Jan. 1, 2006 to Jan. 13, 2006), where we see prominent FTLE ridges between

the Red Sea and the northeastern coastal regions. Moreover, there seems to be a significant

amount of mixing of parts of the lagoon waters and the Red Sea on the northwest and

southeast boundaries of the Al Wajh lagoon.

(a) forward FTLE at 0.25 m (b) forward FTLE at 2.75 m

Figure 6.5: Forward FTLEs over the Al Wajh Lagoon modeling domain, from Nov. 3, 2017
to Nov. 10, 2017 at 0.25m and 2.75m, respectively.

Figure 6.6: Forward FTLEs over the entire Red Sea from Jan. 1, 2006 to Jan. 13, 2006.

While the FTLE fields can indicate which waters of the lagoon are most likely (or not

likely) to mix with the offshore Red Sea waters, they do not tell us directly where the mixing

occurs spatially (i.e. whether the sea water enters the lagoon or whether the lagoon water
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enters the offshore sea). The aforementioned residence time fields can be utilized to perform

this analysis.

To this end, Figure 6.7 shows residence time fields for water parcels inside the lagoon.

Specifically, what is show is the amount of time it takes for a water parcel that started at the

specific position to leave the lagoon. We observe that waters near the southeastern boundary

exit the domain while those on the northwestern boundary remain inside the lagoon. We also

see that the parcels that leave the domain are not uniformly spread out in the lagoon but

form a distinct structure near the south eastern boundary. This egress happens mainly at

the surface as the residence time fields at 2.75m depth show significantly less water exiting

the domain, see Figure 6.7(b). This is also verified by the stronger FTLE ridges at 2.75m,

see Figure 6.5(b), at the border of the lagoons implying lower horizontal mixing at depth.

(a) Residence Time at 0.25m (b) Residence Time at 2.75m

Figure 6.7: Residence time fields in the Al Wajh region, from Nov. 3, 2017 to Nov. 10, 2017
at 0.25m and 2.75m, respectively.

Using our PDE-based Lagrangian methodology, we can also compute when waters from

outside the Lagoon in the offshore Red Sea have entered the Lagoon. We refer to these fields

as the “Entrance time” fields, as shown in Figure 6.8. We see that the outside waters enter

the northwestern boundary of the Lagoon mainly at the surface. This is the portion of the

offshore sea which we had predicted would mix with the waters in the Lagoon. We also note

that the seawater parcels that enter the Lagoon form interesting filament structures, as seen

in Figure 6.8.

Finally, we observe structures on the southwestern boundary of the Lagoon that enter the
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(a) Entrance Time at 0.25 m (b) Entrance Time at 2.75 m

Figure 6.8: Entrance time fields in the Al Wajh region, from Nov. 3, 2017 to Nov. 10, 2017
at 0.25m and 2.75m, respectively.

domain of interest. Since we predict that these waters in the Red Sea will not significantly

mix with the Lagoon waters, we predict that most of these waters enter and then leave the

lagoon domain during the period of interest, without significant mixing.

6.1.5 Conclusions

In this work, we studied the residence times and connectivity patterns of water masses in

the Red Sea and Al Wajh Lagoon region. Such capabilities are of great use in characterizing

the behavior, dynamics and health of the marine ecosystems native to the region.

To compute the residence times and connectivity patterns, we resort to recent advances in

efficient four-dimensional (3D+time) Lagrangian analyses using partial differential equations.

Specifically, we show how the method of composition can be efficiently used to compute

the residence time fields, i.e. spatial fields that denote the amount of time a water parcel

spends before exiting the domain of interest. With the same method, we also compute and

describe the entrance time fields, i.e. spatial fields that denote the amount of time before

water parcels offshore enter the domain of interest. We confirm that the ridges of the

forward FTLE fields (approximating the repelling coherent structures) do indeed correspond

to barriers to material flow, and we observe minimal water flux across these FTLE ridges
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in the simulations. That is, the residence time for most of the waters inside the Al Wajh

Lagoon region is large, and a comparatively little amount of water mass leaves the Lagoon

region. This indicates that even though the Lagoon waters are physically connected to the

larger Red Sea offshore, they are only weakly connected in terms of material flow. This is

especially important as the Lagoon ecosystem remains relatively protected from any major

disturbances or events in the Red Sea. We believe that such in-depth scientific analyses

of the biogeochemical ecosystems and their connectivities would go a long way in making

informed policy decisions regarding their conservation.

6.2 Plastic Pollution in the Coastal Oceans: Characteri-

zation and Modeling2

For the results described in this subsection, we used the data-assimilative ocean fields ob-

tained by several of the other authors of [125] to compute and study the plastic transports in

the Massachusetts Bay region. For the first time, we characterized the plastic field structures

and sets in the Bay based in part on the methods developed in [98, 99]. We contributed to

the writing of these results. A significant portion of the text and analyses were completed

by the other authors of [125].

6.2.1 Introduction

Since the 19th and early-20th century, plastics have become ubiquitous in the world. They

have outgrown most man-made materials: plastics global volume production has surpassed

that of steel in the late 1980s [53]. Plastic pollution has proliferated globally, in our lands,

rivers and oceans, in wildlife, livestock and consumables, and even in snow from the Alps to

the Arctic [11]. Plastic pollution has been described as the next planetary crisis after ozone

depletion [194]. Solving this crisis can be broken into two problems: engineering sustainable
2This section is based on [125].
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alternative materials and environmental cleanup of existing plastic contamination, especially

in the oceans. The latter problem is of high importance due to the long decay times of most

polymeric materials in nature. One of the challenges is the accurate characterization and

modeling of the dynamics of marine plastics, from local to global scales. This is one of our

motivations.

The need for comprehensive modeling and smart observing of marine plastic pollution is

rapidly increasing. This is in part because of the societal realization of the dangers posed by

marine microplastics. A major recent effort is that of the “Ocean Cleanup” team [187] who

plans to remove surface plastic by utilizing floating collection devices and the ocean currents

to gather debris, creating ‘sinks’ for collecting plastics. As part of this effort, Lebreton

et al. [110] modeled and measured plastic concentration in the Great Pacific Garbage Patch

(GPGP), and found evidence that the patch is rapidly accumulating plastic. They estimated

that more than three-quarters of the GPGP mass consisted of debris larger than 5 cm and

that at least 46% of it was comprised of fishing nets. These findings suggest that cleaning

larger plastics (macroplastics) is an important task. They also indicate that macroplastics

found in the open-ocean likely have sources other than rivers.

Prior studies on marine plastic pollution can be classified into observational and modeling

efforts. Observational studies are important because they help us understand the dynamics

of plastics in the ocean, and thus could guide the development of plastic models [e.g. 29, 109].

Modeling studies either utilize a global or a regional ocean model to track the dispersion of

plastics, using plastic observations for initialization, source functions, and parameter tuning

[e.g. 47, 110]. Most studies model plastic as a passive tracer on the surface. However, winds

can cause subsurface mixing of microplastics [96]; thus three-dimensional plastic transport

models are needed. To go beyond passive tracers, dynamic plastic models are also required to

account for sinking, fragmentation, interaction with biology (biofouling), etc. [e.g. 83, 108].

In this spirit, theoretical developments in the motions of finite size particles in fluid flows

[e.g. 68, 179] could be extended to modeling of larger plastic pieces as inertial particles.
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Finally, several modeling efforts are source-inversion studies, with the aim of better locating

the sources of plastic pollution [e.g. 2, 85, 86, 92]. For such efforts, high-resolution regional

modeling is needed to better identify the main sources and best mitigate pollution.

There are many pathways through which plastics end up in the coastal ocean. The

prominent sources are river and sewage discharges, beach and nearshore litter, and inflows

from the local and remote oceans. Both macroplastics and microplastics contaminate coastal

waters. The focus of the present study is to outline and illustrate a new partial-differential-

equation (PDE) methodology for characterizing and modeling such plastic transports in time

and three-dimensional space (4D), showcasing results for Massachusetts Bay (Mass. Bay).

Specifically, we couple our primitive equation solver for ocean dynamics [64, 65] with our

composition based advection solver for 4D Lagrangian transport [98]. We quantify the skill

of our ocean physics predictions by comparison with synoptic data. We then forecast for

Mass. Bay the fate of plastics originating from four different sources: rivers and sewage,

beach and nearshore, local Bay, and remote offshore. We analyze the transport patterns

and the regions where plastics tend to accumulate, comparing the results obtained with

and without plastic settling. We evaluate our simulated transports and attracting regions

using debris and plastic data from the literature and local monitoring systems. Finally, we

illustrate global-scale estimates of plastic concentrations.

The section is organized as follows. The methodology is outlined in subsection 6.2.2. The

4D predictions of ocean physics and plastic transports for Mass. Bay are showcased, analyzed,

and evaluated in subsection 6.2.3. Global scales estimates of plastic concentrations are not

a part of the contribution in this thesis but are presented in the associated paper[125].

Conclusions are in subsection 6.2.4.

6.2.2 Methodology: Ocean and Plastic Modeling

Ocean currents and dynamics are required to model the influx, transport, dispersion, and

accumulation of plastic waste in marine systems. Rigorous Lagrangian analyses are essential
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to understand and predict such transport characteristics, ideally including settling, fragmen-

tation, and degradation, for the main plastic classes. To plan and implement mitigation

and cleanup strategies, understanding the origins and prominent sources of plastics entering

the world’s oceans is needed. Identifying regions where plastics are prone to be mixed and

regions where plastics remain contained is equally useful. Finally, such studies should be

performed in full three-dimensional (3D) domains as subduction zones and vertical mixing

may have key impacts on plastic transport. Our methodology to address such modeling is

outlined next.

Ocean Modeling

To model the ocean, we use PDEs that govern the 4D velocity, temperature, and salinity

fields, the so-called primitive-equations [31], here also with a dynamic ocean free-surface

field and tidal and atmospheric forcing. The modeling system is our Multidisciplinary Sim-

ulation, Estimation, and Assimilation System (MSEAS) [64, 65, 154]. It has been used

around the world’s oceans [26, 57, 63, 89, 116, 118, 121, 122, 127, 161, 169]. Applications

include monitoring [117]; real-time acoustic predictions and DA [42, 106, 124, 206]; environ-

mental predictions and management [9, 27, 28]; relocatable rapid response [33, 174]; path

planning for autonomous vehicles [120, 133, 134, 185]; and, adaptive sampling [72, 73, 114].

MSEAS has been tested and validated in many real-time forecasting exercises [1, 57, 58,

116, 118, 121, 122, 124, 126, 163, 169]. Recently, we issued multi-resolution forecasts of

3D Lagrangian transports, coherent structures, and their uncertainties, and guided drifter

releases for optimal sampling (NSF-ALPHA). Using ensemble methods [114], we issued large-

ensemble forecasts at high-resolution for 3D underwater-GPS exercises (POINT). MSEAS

also includes finite-element codes for non-hydrostatic dynamics [198, 200] and a stochastic

modeling framework [197, 199].
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Plastic Modeling

In the present study, we model marine plastics motions as Lagrangian transport with vertical

settling. In the horizontal, plastics thus travel with ocean currents, i.e. they are passively

advected by the flow. In the vertical, their motion is however driven by 2 components: (i)

w, the ocean velocity in the vertical, and (ii) ws, the local settling velocity of the plastic

material. That is, the total vertical velocity is wtot(x, t) = w(x, t)+ws(x, t), where x is the 3D

position in the domain of interest Ω and t is time, with t ∈ [0, T ]. An implicit assumption is

thus of quasi-staticity, i.e. the material is assumed to reach the settling velocity immediately.

We denote the plastic field by α(x, t). We assume that the plastic quantity α(x0, t0) that

was at location x0 at time t0 is transported with the underlying fluid parcel that was at

location x0 at time t0 and also settles due to the buoyancy effects, and ends up at location

x at time t. Thus, we have:

α(x, t) = α(x0, t0) = α0(x0) . (6.13)

However, the motion of the fluid parcel is governed by,

ẋ(t) = v(x(t), t) , given x(t0) = x0 , (6.14)

where v(x, t) is the velocity field in Ω. As described earlier, the motion of the plastic field

can then be written as:

ẋα(t) = v(x(t), t) + ws(x(t), t) = vtot(x(t), t) (6.15)

given x(t0) = x0 .

For the dynamical system given by eq. 6.14, the forward flow map between times t0 and
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t1(≥ t0) is defined as:

ϕ̄t
t0
(x0) = x where ẋ(t) = v(x(t), t) with x(t0) = x0 . (6.16)

That is, the forward flow map is simply the position of the fluid parcel at some later time

(t) mapped onto its initial position (at t0). The inverse of the forward flow map, called the

backward flow map is given by eq. 6.17, where now the transport ODE (6.14) is solved in

backward time with a specific terminal condition,

ϕ̄t
t0
(x) = x0 where ẋ(t) = v(x(t), t) with x(t) = x . (6.17)

Similarly, one can also define the forward and backward flow maps for the modified dynamical

system (eq. 6.15) that accounts for plastic settling. These are given by eqs. 6.18 and 6.19,

ϕt
t0
(x0) = x where ẋ(t) = vtot(x(t), t) with x(t0) = x0 (6.18)

ϕt
t0
(x) = x0 where ẋ(t) = vtot(x(t), t) with x(t) = x (6.19)

Substituting eq. 6.19 in eq. 6.13, we obtain eq. 6.20 that concisely states

α(x, t) = α0(ϕ
t
t0
(x)) . (6.20)

Eq. 6.20 implies that computing the plastic transport amounts to computing the flow maps

of the underlying (modified) dynamical system and composing the said flow maps with the

initial condition.

The forward and backward flow map fields also provide a wealth of information about

the flow characteristics over the time interval of interest. ‘Finite time Lyapunov exponents’

(FTLEs), which are the logarithmic scaling of the singular values of the Jacobians of these

maps are often used to identify Lagrangian Coherent Structures (LCSs) [70, 165]. Two parcels
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that are close to each other at initial time but on different sides of a forward FTLE ridge will

tend to advect further apart from each other than other parcels, and thus forward FTLEs

approximate repelling coherent structures. On the other hand, ridges of the backward FTLEs

act as repelling coherent structures in backward time, i.e. attracting coherent structures in

forward time. Several other theories and metrics rooted in the flow map are used to determine

attracting - repelling manifolds, coherent - incoherent material sets and other quantities of

interest in fluid flows [56, 62, 71].

The typical trajectory-based approach to compute flow maps is to solve eq. 6.14 in forward

or backward time using time-marching schemes for all possible initial conditions. However,

for continuous fields, the same can also be achieved by solving a single PDE whose charac-

teristics are described by the said ODE. Specifically, one can obtain the backward flow map

ϕ0
t by solving the PDE (6.21) forward in time from time 0 to t, with the initial condition

α0(x) = x:
∂α

∂t
+ v · ∇α = 0; α0(x) = x then α(x, t) = ϕ0

t (x) . (6.21)

The flow map can then be composed with the tracer initial condition to obtain the advected

tracer field. Finally, instead of computing the flow maps over the entire considered inter-

val, it is beneficial to compute flow maps over smaller intervals and then compose them

appropriately to obtain the flow maps over the larger time interval. Specifically:

ϕtn
t0

= ϕtn
tn−1
◦ ϕtn−1

tn−2
◦ . . . ϕ2

1 ◦ ϕ1
0 (6.22)

ϕt0
tn = ϕ0

1 ◦ ϕ1
2 ◦ . . . ϕtn−2

tn−1
◦ ϕtn−1

tn (6.23)

We refer to this method are the ‘method of flow map composition’. Composing such indepen-

dent flow maps over smaller intervals presents the opportunity to parallelize the computation

in the temporal direction, yielding a significant speedup. The individual flow maps are com-

puted over a short interval and hence introduce minimal numerical errors. Further, the

individual flow map computations are independent and hence the numerical errors are not
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compounded, which results in a much lower total error. Further details can be found in [98].

6.2.3 Plastic Predictions in Mass. Bay

Mass. Bay Regional Dynamics

The circulation in Mass. Bay is commonly from north to south and remotely driven from

the Gulf of Maine coastal current and mean wind stress. However, it varies seasonally and

in response to wind events. The coastal current can have three branches [113]: one goes

around the Bay, one enters the Bay but not Cape Cod Bay, and one flows along Stellwagen

Bank, without entering the Bay. Two gyres are often present: one in Cape Cod Bay and

another to the north of Stellwagen Basin, but their sense of rotation is variable. Below the

main pycnocline, currents are usually of smaller amplitudes than, and of directions opposite

to, the main buoyancy flow.

Mass. Bay Ocean Predictions

Ocean Simulation Set-up Our MSEAS-PE modeling system was used to produce anal-

yses and forecasts for Mass. Bay. The modeling domain (Fig. 6.9) off the northeast US coast

has a 333 m horizontal resolution and 100 vertical levels with optimized level depths (e.g., in

deeper water, higher resolution near the surface or large vertical derivatives, while at coasts,

evenly spaced to minimize vertical CFL restrictions). The bathymetry was obtained from

the 3 arc-second USGS Gulf of Maine digital elevation model [196]. The sub-tidal initial and

boundary conditions were downscaled from 1/12◦ Hybrid Coordinate Ocean Model (HY-

COM) analyses [30] via optimization for our higher resolution coastlines and bathymetry

[65]. Local corrections were made using synoptic CTDs of opportunity. Tidal forcing was

computed from the high-resolution TPXO8-Atlas from OSU [45, 46], by reprocessing for our

higher resolution bathymetry/coastline and quadratic bottom drag (a nonlinear extension of

[130]). The atmospheric forcing consisted of hourly analyses/forecasts of wind stresses, net
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Figure 6.9: MSEAS PE Mass. Bay modeling domain (boundary shown in magenta) and
bathymetry (m).

heat flux, and surface fresh water flux from the 3 km North American Mesoscale Forecast

System (NAM) [156].

Atmospheric Forcing The wind stress fields used to force our simulations were computed

from wind fields provided by the National Centers for Environmental Prediction (NCEP)

NAM forecasts (3 km at 1 hr temporal resolution) [156]. Our analysis of these winds showed

six moderate wind events (stresses at least 0.1 N/m2) and one major event. Specifically,

during the first event (Jul. 31–Aug. 1), the prevailing winds were toward the northeast;

during the second (Aug. 7–8), toward the northeast; during the third (Aug. 21–22), toward

the north-northeast; during the fourth (Aug. 24–26), toward the west-southwest; during the
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Figure 6.10: Comparison of MSEAS-PE simulated temperature (◦C; black line) and NDBC
buoy temperature (red line) between August 19 12Z and September 13 0Z, 2019, at buoy
44029 (off Gloucester, MA; left), 44073 (near Isles of Shoals; center; stopped recording on
August 31), and 44090 (Cape Cod Bay; right).

fifth (Sep. 2–3), toward the north; and during the sixth (Sep. 4–5), toward the northeast.

Finally, on Sep. 7–8, tropical storm force winds from Hurricane Dorian were first toward

the northwest, then transitioned toward the southwest. At all other times during the study

period, winds were generally light and variable. Also computed from NCEP NAM fields

were net heat flux and evaporation minus precipitation (E-P); analysis of the daily-averaged

net heat flux fields revealed cooling events on Aug. 6, 14–17, and 25, Sep. 1–2, 6–7, and

Sep. 12; analysis of the daily-averaged E-P fields revealed significant rain events on Jul. 31,

Aug. 8 and 29, Sep. 3, and Sep. 7.

Ocean Observations

Temperature Buoys. Temperature fields predicted by our simulations were compared to

data recorded by four buoys from the NOAA National Data Buoy Center (NDBC) [157]. One

buoy (44090) is located near the center of Cape Cod Bay; two (44013, 44029) are near the

center of Mass. Bay; the remaining one (44073) is by the Isles of Shoals, near the northern

boundary of our modeling domain. Data depths range from 0.46 m to 1 m. The temporal

resolution is 30 minutes for buoy 44090 and 1 hour for the other buoys.

CTD Data. During Aug. 2019, the National Marine Fishery Service conducted one of

their regular surveys of the US eastern seaboard (ECOMON GU1902 survey [158]). As a

part of this survey a number of CTD profiles were taken in the Gulf of Maine, including

eight profiles in our modeling domain. The 8 profiles were collected on Aug. 28.

Historical Current Meter Data. Data from a 2011 survey of Boston Harbor and Mass. Bay
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(a) 10 m, August 20 (b) 10 m, August 26 (c) 10 m, September 4

(d) 30 m, August 20 (e) 30 m, August 26 (f) 30 m, September 4

Figure 6.11: MSEAS-PE simulated daily-averaged velocity (cm/s) overlaid on speed, at 10 m
and 30 m on Aug. 20, 26, and Sep. 4, 2019.

were obtained from the National Oceanic and Atmospheric Administration (NOAA) [160].

These data consist of time series of velocity measurements at 2–10 minute intervals and at

10–20 depths at a single location. For this survey, the duration was a bit over 1 month.

Ocean Model Validation and Data-Model Comparisons Mass. Bay has a fairly small

extent (roughly 1
2

◦ × 1◦) and even smaller features affecting its circulation (e.g., Cape Cod,

Cape Ann, narrow coastal currents, river inputs). It is therefore not feasible for a 1
12

◦ global

model to resolve its dynamics. Hence, part of our downscaling methodology includes the use

of in situ data to correct the under-resolved fields. We were able to acquire synoptic CTD

data from the NMFS [158]. We computed differences between these profiles and the HYCOM

128



Figure 6.12: MSEAS-PE simulated temperature (Aug 21, 2019) in a section through Stell-
wagen Bank showing internal tides/waves.
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fields and objectively mapped these error profiles to correct the downscaled HYCOM IC/BC

fields.

We used the historical NOAA current meter data to improve our tidal forcing. From

these data, time series of the barotropic velocities were constructed. Tidal constituents were

then best fit to these series using the UTide code [25]. These were then used to tune the

bottom drag and friction parameters in our barotropic tide model. The tuned tidal fields

had a 30% smaller RMSE than the original global TPXO8 fields [45]. These tuned tides

were then used to force our MSEAS-PE simulations.

Having employed the CTD profiles in the downscaled IC/BCs, they are no longer inde-

pendent validation data. Hence, for such validation, we used other data, including NOAA

NDBC buoy data [157]. In Fig. 6.10, we show the comparison of near-surface temperature

data from the buoys (red curves) to the MSEAS-PE simulated temperature interpolated to

the buoy positions/depths (black curves). Given the uncertainties in the 3 km atmospheric

forcing and those arising from the unresolved processes in the downscaled IC/BCs, we do not

expect tight matching in these point comparisons. Nonetheless, we find that the MSEAS-PE

produces similar daily cycle excursions (both in amplitude and frequency). We also see that

the general trends and events do align well and that the mismatches (typically between 0

and 2 ◦C) are what we expect for the given uncertainties. We also note that by September,

for the two buoys that recorded data, the accuracy becomes very good. Comparisons with

SST and HF-radar data (not shown) also indicate acceptable simulations.

Simulated Dynamics During Aug.–Sep. 2019, several wind events modified the coastal

circulation, as in [9, 113]. Initially, the flow in the thermocline (30 m) enters Mass. Bay

from the north by Cape Ann (Fig. 6.11d). It proceeds southward to the west of Stellwagen

Bank and enters Cape Cod Bay. The flow then moves up the shallower bathymetry of Cape

Cod Bay and joins an upper layer (10 m) anticyclonic circulation in Cape Cod Bay before

it exits Mass. Bay by Race Point (Fig. 6.11a). Also during this period, a number of small
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eddies persist in the upper layers of north and central Mass. Bay but below the mixed layer.

Following the wind event of August 24–26, the 30 m southward flow is displaced east of

Stellwagen Bank (bypassing Mass. Bay; Fig. 6.11e). In the upper layers (10 m) a cyclonic

coastal circulation is established all along Mass. Bay, including a cyclonic coastal flow in

Cape Cod Bay (Fig. 6.11b). The small subsurface eddies are replaced by a large cyclonic

eddy in northern Mass. Bay whose western side is part of the cyclonic coastal circulation.

During Aug. 26–31, the 30 m flow reestablishes itself in Mass. Bay. The 30 m inflow by Cape

Ann is maintained through the wind event of Sep. 2–3, along with the general southward

flow in the northern half of the Mass. Bay (Fig. 6.11f). South of 42◦ 12’, the flow is still

mainly south but with some rising along bathymetry on the western side and in Cape Cod

Bay. At 10 m depth south of 42◦ 6’, the remnants of the cyclonic coastal circulation carry the

water that came up from 30 m around to the south of Cape Cod Bay where it again climbs

topography to join an anticyclonic circulation at the surface (Fig. 6.11c). These overall

conditions are modified by tides and resulting internal tides and solitary waves generated by

the bathymetry, especially from Stellwagen Bank (Fig. 6.12).

Mass. Bay Plastics Predictions: Surface Passive Tracers

We now showcase the method of composition to predict and analyze plastic transport in

Mass. Bay, using the MSEAS-PE 4D current fields. We first consider surface plastics and

assume that plastics are passively advected by the surface ocean flow during Aug. 16–Sep. 5,

2019. We consider four initial sources of surface plastics: (i) river mouths, (ii) beach and

nearshore, (iii) offshore inside domain, and (iv) offshore outside domain (plastics entering the

domain during the simulation), as shown in Fig. 6.13(a). The final surface plastic field after

10 and 20 days of passive advection are shown on Figs. 6.13(b) and (c), respectively. We

observe that there is significant stirring between the nearshore and interior plastics, especially

over 20 days. Further, plastics from the Merrimack River mouth exit the domain through

the northern boundary. This is largely driven by winds over the first 3 days. Although not

131



(a) Initial plastic location (b) Plastic location after 10
days (Aug. 16–26)

(c) Plastic location after 20 days
(Aug. 16–Sep. 5)

Figure 6.13: Surface plastic location initially and after 10 and 20 days of simulated passive
advection. Red denotes plastic originating at the mouth of the Merrimack River, beige plastic
originating at the shoreline, blue plastic originating in the rest of the Mass. Bay domain,
and white plastic originating outside the domain.

strong, the daily average winds are consistently to the northwest during this time, north of

Cape Ann, while the instantaneous winds are to the northwest and north-northeast. We

further observe that the surface waters (and hence the passively advected plastics) that start

around the Stellwagen Bank area are replaced by waters from outside the domain especially

after 20 days.

Comparing the advected fields (Fig. 6.13) with the attracting FTLE fields (Fig. 6.14), we

clearly observe the chaotic stirring in the Stellwagen Bank and Basin, and Boston harbor

regions, as delineated by the presence of several entangled FTLE ridges. We also observe

strong attractive ridges near Cape Cod that include regions of subduction. These ridges

attract the surface waters and also the passively advected plastics in this region, as cor-

roborated by Fig. 6.13(b). Much of the beach and nearshore plastic from northern Mass.

Bay is flushed into the Stellwagen Bank/Basin stirring region by the cyclonic circulation

set up during the wind event of Aug. 24-26 (see subsection 6.2.3). The cyclonic circulation

established in Cape Cod Bay by the same wind event also drives the beach and nearshore

plastic from the “Upper Cape" (southwest portion of the Bay) into the attracting ridges of

the northern Cape Cod Bay, while the beach and nearshore plastic from the “Middle Cape"
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(a) Backward FTLE field over 10 days (b) Backward FTLE field over 20 days

Figure 6.14: Predicted backward (i.e., attracting) FTLE fields over the Mass. Bay domain:
(a) Aug. 16–26 and (b) Aug. 16–Sep. 5, 2019.

(southern portion of the Bay) is driven to the western shore of the “Lower and Outer Cape"

(southeast corner of the Bay). Later, the surface anticyclone that develops from the Sep. 2-3

wind event flushes the plastic off this south-southeast corner of the Bay and into the large

patch that develops in western Cape Cod Bay extending northeast to Stellwagen Bank.

(a) Plastics released
from the Merrimack
River mouth

(b) Plastics released at
the shoreline

(c) Plastics released in
the coastal ocean inte-
rior

(d) Plastics enter-
ing from the domain
boundaries

Figure 6.15: Predicted final spatial location and depth of marine plastics after 10 days
of advection with settling (Aug. 16–26) when starting within 0–10 m depth, from the: (a)
mouth of Merrimack, (b) shoreline, (c) offshore inside domain, and (d) offshore outside.
Final location colored by vertically-averaged depth.
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Mass. Bay Plastics Predictions: 3D Active Tracers with / without Settling

We now analyze 3D simulations of plastic transport, with and without plastic settling. For

this settling, we assume that the plastic settles down homogeneously at a vertical velocity

of 1 m/day (based on published values [81, 88, 90, 93]). In reality, plastics of different types

and sizes settle at different velocities. Further, the local dynamics (such as the temperature

and density) also affects settling velocities.

Plastics are now initialized within a 10m deep layer at the surface. We highlight the

same source regions as before: mouth of Merrimack, beach and nearshore, offshore inside

domain, and offshore outside. Fig. 6.15 shows the final plastic positions, but colored with

their final vertically-averaged depths, after 10 days of advection and settling.

Most of the plastics that start at the mouth of the Merrimack settle to the bottom near

the coast (especially off Plum Island). Some plastics make it as far south as Cape Ann. We

find that the majority of the plastics that started nearshore also settle in shallow water. A

large portion of that nearshore plastics in western Cape Cod Bay follows the cyclonic flow

which develops from the August 24-26 winds (subsection 6.2.3) to end up along the western

shore of Cape Cod. A bit of plastics that started nearshore sink deeper in the interior of

Mass. Bay. Some of the plastics that start within Mass. Bay, but away from the shore,

manage to get closer to the shoreline (following the cyclonic coastal circulation, especially

near the South Shore). However, most remain in the interior but sink deeper, especially in

Stellwagen Basin where large solitary waves from Stellwagen Bank may bring the plastics to

depth where they become entrained in the deeper flows, see Fig. 6.12. Finally, we observe a

sizable influx of plastics from outside the domain, mainly from the eastern boundary. These

plastics have 3 distinct zones: (i) the ones that end up near the eastern boundary of Cape

Cod rise close to the surface (following flows forced up topography, not shown); (ii) the

ones at the eastern boundary of the domain settle deeper, around 85 m; and (iii) the others

settle at around 50m. The regions outside Mass. Bay have a general slight bias towards

downward ocean vertical velocities at depth in this time period (not shown). The regions

134



where plastics reach 85m are regions where internal tides are frequently propagating (not

shown), with smaller amplitudes than the solitary waves of Stellwagen Basin but more wide

spread. These waves can give an initial downward impetus into the zones with the slight

downward bias.

When comparing these results with those from Fig. 6.13, we observe that plastics that

started at the mouth of the Merrimack sink before they can exit the domain (as they did in

Fig. 6.13). We also find that in the 3D case, the plastics that started off near the coast do

not spread as much. They instead accumulate and sink around the attracting ridges at the

surface near Cape Cod, indicating subduction. Finally, we also observe that when settling

is on, plastics that enter our modeling domain from the outside do not advect west (towards

the coast) as much as they did in the case of 2D floating plastics, see Fig. 6.13(b).

Mass. Bay Plastics Observations

There are no sustained comprehensive plastic observation programs in Mass. Bay, but debris

and plastic data have been collected in the region off and on in the past decades [150, 159,

171, 204]. In the Gulf of Maine, [76] find that most debris from beach cleanups appear

to be from shore-based sources, while commercial fishermen account for half of the ocean-

based debris. Overall, the Northeast region, with a limited population growth, has relatively

limited land-based and general-source debris loads [173].

Mortimer [150] observed surface debris and humpback whales from 17,700 km of trackline

by commercial whale watch vessels during the summer of 2014. These synoptic data indicate

that plastic and other floating trash and debris concentrated in several areas, in accord with

our modeling results. Plastics were found in the region from the South Shore (e.g. Scituate)

to Provincetown, and the southwest corner of Stellwagen Bank, as in Fig. 6.13 and in accord

with FTLEs. Another region was around the northwest corner of Stellwagen Bank, but

plastics there were more dispersed, again in accord with our simulation results. The MWRA

samples the Mass. Bay outfall every year and has completed debris and plastic surveys [171].
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They found that much of the surface debris caught in tows were likely advected by wind-

driven currents, as in our simulations. Several smaller debris and plastic pieces were also

sampled, indicating that microplastics from rivers and offshore sources were also present.

While we have focused on the Massachusetts bay region for our work, global-scale es-

timates of plastic transports also pose a critical question in the context of plastic cleanup.

This is discussed in Lermusiaux et al. [125]

6.2.4 Conclusions

In this work, we outlined our MSEAS coupled data-driven ocean modeling and Lagrangian

transport PDE methodology for marine plastics, and showcased results in Mass. Bay.

We showed that our ocean physics predictions had skill by comparison with synoptic data.

We predicted the fate of plastics originating from four sources: rivers, nearshore, local Bay,

and remote offshore. We showed that the distribution of floating plastics vary in time and

space, often in response to wind-driven ocean circulations. However, intermittent preferential

locations are likely since wind events tend to be similar. We also found that: (i) Currents set-

up by wind events strongly affect floating plastics. Winds can for example prevent Merrimack

outflows to reach the Bay; (ii) There is significant chaotic stirring between nearshore and

offshore floating plastics as explained by ridges of Lagrangian Coherent Structures (LCSs);

(iii) With 4D plastic motions and settling, plastics from the Merrimack and nearshore regions

can settle to the seabed before offshore advection; (iv) Internal waves and tides can bring

plastics downward and out of main currents, leading to settling to the deep bottom. (v)

Attractive LCSs ridges are frequent in the northern Cape Cod Bay, west of the South Shore,

and southern Stellwagen Bank. They lead to plastic accumulation and sinking along thin

subduction zones. Our study can help guide plastic cleanup strategies in the region.
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6.3 Real-time Forecasting of Subduction Pathways and

Real-time Bayesian Lagrangian Data Assimilation3

In this subsection, we describe our real-time results in the Mediterranean Sea, the forecasts

of three-dimensional subduction pathways and the real-time Bayesian assimilation of drifter

data. To obtain these results, we employed the stochastic data-assimilative ocean field

forecasts and analyses issued in real-time by members of our MIT MSEAS research group as

part of the Coherent Lagrangian Pathways from the Surface Ocean to Interior (CALYPSO)

Departmental Research Initiative (DRI) [151]. These MSEAS forecasts and analyses were

completed during the international multi-university CALYPSO real-time ocean experiments

in the Alboran Sea [141, 152] and Balearic Sea [153]. Some of the MSEAS results are

described in [66, 67, 147]. For our contributions, for the first time, we predicted three-

dimensional subduction pathways of surface waters to intermediate depths in the Alboran

Sea in 2019 (section 6.3.2), using three-dimensional PDE-based flow maps [98, 99] and our

new developments (see prior sections of this thesis). For our second contribution, for the

first time, we assimilated drifter data in the Balearic Sea in 2022 (section 6.3.3) improving

forecast skill in real-time, using new Bayesian Eulerian-Lagrangian data assimilation based

on the uncertainty quantification and assimilation methods developed in [43, 44, 51] and in

Section 4 of this thesis.

6.3.1 Introduction

The CALYPSO initiative aims to describe and quantify the truly three-dimensional and

time-dependent transports of ocean properties from the surface ocean to the interior, with a

focus on the southwest Mediterranean Sea region [142]. This integrated DRI effort involved

many national and international observing and modeling scientists. Many of the research
3This section is based on [147].
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results are based on two real-time ocean experiments.

The 2019 CALYPSO real-time ocean experiment took place during the late winter of

2018-2019 (March 28 to April 11) in the Alboran Sea [152]. The goal of this cruise was to

identify transport pathways from the surface into the interior ocean during the late winter

in the Alboran sea. Theory and previous observations indicated that these pathways likely

originated at strong fronts, such as the one that separates salty Mediterranean water and the

fresher water inflowing from the Atlantic [141]. Our specific goal was to map such pathways

and quantify their transport (section 6.3.2).

The two-part 2022 CALYPSO ocean experiment occurred in the Balearic Sea from Febru-

ary to June 2022 [153]. In real-time, our MIT-MSEAS group issued multi-resolution deter-

ministic and uncertainty forecasts of ocean fields, as well as Lagrangian flow maps, coherent

sets, subduction forecasts, and drifter forecasts.

During the two real-time experiments, nested high-resolution deterministic Eulerian sim-

ulations were completed using the MIT Multidisciplinary Simulation, Estimation, and As-

similation System primitive equation (MSEAS-PE) model [64, 65], and stochastic uncer-

tainty predictions were completed using the Error Subspace Statistical Estimation (ESSE)

method [112, 115]. At its core, MSEAS-PE is a solver of governing fluid and ocean dynam-

ics equations. It is part of an extensive modeling system for hydrostatic primitive-equation

dynamics with a nonlinear free surface, based on second-order structured finite volumes

[64]. It is used to study and quantify tidal-to-mesoscale processes over regional domains

with complex geometries and varied interactions. The modeling system is used for funda-

mental research and for realistic simulations and predictions in varied regions of the World

Ocean [63, 119, 121, 122, 127, 161, 169]. Its many applications include monitoring [117],

real-time acoustic prediction and data assimilation [42, 106, 206], and ecosystem prediction

and environmental management [9, 27].
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6.3.2 Transport, Flow Maps, and Subduction Pathways in the Alb-

oran Sea

The CALYPSO 2019 experiment occurred in the Alboran Sea from March 26 to April 10,

2019. The specific objectives of our MSEAS group [147, 152] were to: (i) Utilize our new

Lagrangian transport theory and methods to forecast, characterize, and quantify ocean

processes involved in the three-dimensional transports and transformation of water masses

and subduction dynamics in the Alboran Sea; (ii) Apply and expand our multi-resolution

submesoscale-to-regional-scale ocean modeling, 2-way nesting, and uncertainty predictions,

for real-time forecasting and process studies; (iii) Help design field experiments and predict

sampling strategies that maximize information on 4D pathways and dynamics in the region.

To map the transport pathways described above, Lagrangian analyses of the ocean flow

are utilized. As opposed to Eulerian descriptors of fluid flow, where properties of fluids are

monitored at fixed locations in space, Lagrangian descriptors follow fluid parcels as they move

through the flow. One set of descriptors, the forward (backward) flow map, refers to a map

from initial (final) positions of passive particles to their final (initial) positions when advected

by a fluid flow in a given time interval. Lagrangian coherent structures (LCS), which refer to

a robust skeleton of material surfaces that shape the patterns of passive trajectories in the

ocean, can be computed using these flow maps [70]. Surface LCS attractors are considered

good descriptors of subducting regions [3]. Flow maps are also used to compute subduction

maps, the set of points on the surface of the ocean which will be advected below a certain

depth under the flow. These maps provide a more direct description of the subducting water

masses and their pathways.

The computation of the flow maps, and subsequently the other Lagrangian descriptors,

is done using a novel numerical partial differential equation (PDE) based method which uses

flow map composition to remove compounding errors [98]. This method has been successfully

used to compute flow maps and tracer advection in Massachusetts Bay [125], the Red Sea [40],
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Figure 6.16: Subduction maps and FTLE fields for forecasts issued on April 08 2019

and other domains.

Furthermore, we used the flow map forecasts to compute regions of the ocean near the

surface that would subduct in the future. This allowed us to try and infer the underlying

ocean dynamics at play by looking at the subduction pathways. Examples of such subduction

maps and FTLE fields are given in figure 6.16

6.3.3 Real-time Bayesian Eulerian-Lagrangian Data Assimilation of

Drifter Data in the Balearic Sea

The two-part CALYPSO 2022 experiment occurred in the Balearic Sea [153] from February

18 to March 12, 2022 (with modeling work starting February 8) and from March 25 to

June 29, 2022 (with modeling work starting on April 13). Specific new capabilities included

nested ensemble forecasts downscaled from multiple models, the use of our MSEAS 2D and

3D SeaVizKit visualization tools, and the evaluation of our Lagrangian data assimilation

and adaptive sampling in real-time.
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Figure 6.17: Lagrangian Data Assimilation for probabilistic MSEAS-PE forecasts using
drifter data in realtime

In collaboration with our MSEAS group, during the experiment and for the first time,

we assimilated data from real drifters in the ocean. Members of our research group then

issued forecasts starting from our real-time Eulerian-Lagrangian data assimilation results.

We found that the forecast skill significantly improved after assimilating this data. These

results are summarized in figures 6.17 and 6.18. This assimilation was performed using the

GMM-DO filter in an augmented space. We note that the multi-timescale filter was not

used to assimilate this data. This exercise motivated the derivation of the multi-timescale

GMM-DO filter presented in chapter 4.
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Figure 6.18: Improvement of forecast skill when using fields assimilated by real drifter data
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Chapter 7

Conclusions and Future Work

This thesis presented various contributions that were made under the primary goal of devel-

oping methods to allow path planning in strong stochastic dynamic ocean environments. In

pursuit of this goal, we developed various algorithms for path planning, lagrangian analysis,

and data assimilation.

7.1 Summary of Contributions

Optimal Path Planning We introduced a variety of novel methods for optimal path

planning for ocean vehicles with complex mission objectives including time, energy and

collection optimality for multiple start and end times all at ones in a time-dependant highly

dynamic ocean environment with strong flow.

Lagrangian Data Assimilation We derived and implemented a novel filtering algorithm

aimed at multi-timescale coupled systems in general and specifically for assimilation of data

from Lagrangian instruments in the ocean. This approach adeptly addresses the nonlinear

dynamics and computational challenges inherent in oceanographic data assimilation, thereby

improving the quality of probabilistic ocean forecasts.
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Data Assimilative Path Planning The integration of path planning and LaDA method-

ologies represents a significant stride towards achieving long-term autonomy for ocean vehi-

cles. This coupled approach enables continuous learning and adaptation to new information,

optimizing both the exploration capabilities and the operational efficiency of these vehicles.

Real-World Applications In collaboration with members of our MSEAS research group,

we demonstrated the implementation of various Lagrangian algorithms in real-time ocean

experiments and with real ocean data and forecasts.

7.2 Future Work

There are various avenues for future research for each of the contributions discussed.

Optimal Path Planning One straightforward extension to the work presented in this

thesis is to derive and implements multi-time reachability schemes for vehicles with different

dynamics (for e.g., floats, sailboats). Another extension of our work could be implementing

our energy optimal schemes for vehicles that can harvest wind, wave, tidal and other sources

of energy from their environment.

Lagrangian Data Assimilation The novel filtering algorithm presented in chapter 4 can

be extended to other multi-timescale coupled systems such as a coupled weather-climate

model, coupled biology-ocean dynamics systems, etc., . The proposed filter can also be ex-

tended to coupled dynamical systems with more than two dynamical systems. By choosing

different filtering schemes for various marginal and conditional distributions one can po-

tentially derive similar filtering schemes tailored to the properties of the various dynamical

systems.

Data Assimilative Path Planning Extensions to the work we presented include imple-

menting POMDP-like tree search approaches when evaluating the maximization term in the
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Hamilton-Jacobi-Bellman term, exploring risk-optimal and robust path planning strategies

as opposed to minimizing expected time and exploring strategies to minimize on-board com-

pute and communication costs to implement this scheme for a realistic low-powered ocean

vehicle.
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Appendix A

Equations for Gaussian Mixture Models

A.1 Weighted Expectation Maximization

The weighted expectation maximization algoritm for fitting a GMM is very similar to the

expectation maximization algorithm with the exception that the weights are taken into

account in the expectation step when computing the likelihood that a datapoint xi comes

from mixture j. The algorithm is summarized in algorithm box 2

As with [189], we can use the Bayesian information criteria (BIC) to obtain the optimal

number of mixture components.

A.2 Conditionals of GMMs

Consider a GMM in the space of

x
y

 characterized by the mixture coefficients, means, and

covariances

πk,

µx,k

µy,k

 ,

Σxx,k Σxy,k

Σyx,k Σyy,k




K

k=1

. The objective is to compute the conditional

distribution p(y|x).

In a hierarchical GMM framework, a latent categorical variable Z determines the com-

147



Algorithm 2: Weighted Expectation Maximization for GMM
Result: Parameters of the GMM: {πk, µk,Σk}Kk=1

Initialize the number of components K;
Initialize πk, µk,Σk for all k randomly or using something like the k-means
algorithm;

Start with data points xi and corresponding weights wi;
while not converged do

// E-Step: Compute responsibilities
for each data point i do

for each component k do
γ(zik) =

wiπkN (xi|µk,Σk)∑K
j=1 wiπjN (xi|µj ,Σj)

;

end
end
// M-Step: Update parameters
for each component k do

πk =
∑N

i=1 γ(zik)∑N
i=1 wi

;

µk =
∑N

i=1 γ(zik)xi∑N
i=1 γ(zik)

;

Σk =
∑N

i=1 γ(zik)(xi−µk)(xi−µk)
T∑N

i=1 γ(zik)
;

end
// Check for convergence
Check if the log-likelihood of the data under the model has converged;

end
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ponent from which a data point is sampled. For each component Z = k, data points are

generated from a multivariate Gaussian distributionN (µk,Σk). The conditional distribution

p(y|x) can be expressed as a mixture of the component-specific conditional distributions,

weighted by the posterior probabilities of Z given x:

p(y|x) =
K∑
k=1

p(y|x, Z = k)p(Z = k|x) (A.1)

=
K∑
k=1

N (y;µy|x,k,Σy|x,k)p(Z = k|x) (A.2)

where p(Z = k|x) is the posterior probability of component k given x, computed as:

p(Z = k|x) = πkN (x;µx,k,Σxx,k)∑K
j=1 πjN (x;µx,j,Σxx,j)

(A.3)

The parameters of the component-specific conditional distributions are given by:

µy|x,k = µy,k +Σyx,kΣ
−1
xx,k(x− µx,k) (A.4)

Σy|x,k = Σyy,k −Σyx,kΣ
−1
xx,kΣxy,k (A.5)

This formulation leverages the hierarchical structure of the GMM, where the latent vari-

able Z guides the mixture component selection, and the conditional distribution within

each component follows a Gaussian distribution parameterized by the adjusted means and

covariances. One can use a very similar approach to compute posterior GMMs under a lin-

ear observation model. A detailed derivation for computing the posterior can be found in

Sondergaard and Lermusiaux [189].
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A.3 Marginals of GMMs

Consider a GMM in the space of

x
y

 characterized by mixture coefficients, means, and

covariances

πk,

µx,k

µy,k

 ,

Σxx,k Σxy,k

Σyx,k Σyy,k




K

k=1

. The goal of this section is to derive the

marginal distribution p(x), which involves integrating out the variable y from the joint

distribution.

The marginal distribution of x in a GMM is a mixture of the marginal distributions of

x for each component, weighted by the mixture coefficients. For each component k, the

marginal distribution of x is a Gaussian distribution with mean µx,k and covariance Σxx,k.

Therefore, the marginal distribution p(x) can be expressed as:

p(x) =
K∑
k=1

πkN (x;µx,k,Σxx,k) (A.6)

This expression shows that the marginal distribution of x is a weighted sum of the

Gaussian distributions for x in each component of the GMM, with weights given by the

mixture coefficients πk. The mean and covariance of x in each component come directly

from the parameters of the GMM associated with x, without the need to perform any

integration explicitly.
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