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ABSTRACT

To combat the risk of nuclear smuggling, the U.S. deploys scanning systems at ports of en-
try. Radiation portal monitors are capable of identifying unshielded nuclear or radiological
threats by detecting radiation that is passively being emitted from a container. Radiogra-
phy systems offer complementary detection capabilities, capable of identifying large, dense
objects, such as a heavily shielded nuclear warhead. However, this analysis reveals that
a smuggler might be able to evade detection from both passive scanning systems and ra-
diography using a lightly shielded nuclear threat. One avenue to improve the capability to
identify concealed illicit materials is through dual energy radiographic systems, which enable
a rough elemental analysis of cargo contents due to the atomic number dependence of pho-
ton attenuation. This work investigates the capabilities and limitations for atomic number
discrimination using dual energy MeV systems, finding that different materials can some-
times produce identical photon transparency measurements. This degeneracy introduces a
fundamental ambiguity when differentiating between materials of different atomic numbers,
even in systems with perfect resolution and no statistical noise. Despite these limitations,
we describe a new and more precise method for approximating the atomic number of ra-
diographic images by introducing a semiempirical transparency model. By incorporating
a simple calibration step, this model captures second-order effects such as bulk scattering
and uncertainties in the source energy spectrum and the detector response function. This
methodology was benchmarked using both Monte Carlo simulations and experimental mea-
surements from commercial scanning systems, demonstrating the ability to obtain accurate
material predictions on noisy input images by incorporating an image segmentation step.
Furthermore, we show that this approach can be adapted to identify shielded objects using
a two-pass procedure.

Thesis supervisor: Areg Danagoulian
Title: Associate Professor of Nuclear Science and Engineering
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Chapter 1

Introduction

Customs and Border Protection (CBP) processes more than 33.4 million imported cargo

containers through U.S. ports of entry each year [1]. Since 1993, the International Atomic

Energy Agency (IAEA) database shows 320 incidents of theft or illicit tra�cking involving

nuclear material, 20 of which involve highly enriched uranium (HEU) or plutonium [2]. The

economic costs of a nuclear detonation at a U.S. port could exceed $1 trillion [3], while a

smaller scale radiological dispersal device (�dirty bomb�) could result in losses of $10s of

billions due to trade disruption and port shutdown costs [4].

To combat these threats, the U.S. Congress passed the Security and Accountability For

Every (SAFE) Port Act of 2006 [5]. The SAFE Port Act mandated 100 percent screening

of U.S.-bound cargo as a means of improving port security. In this context, �screen� sim-

ply means a visual or automated review of information about goods, which could include

reviewing a paper manifest. The act further required scanning 100 percent of containers

identi�ed as high-risk. In this context, �scan� means measuring the container using non-

intrusive imaging equipment, radiation detection equipment, or both. However, evaluating

a container as high-risk is a somewhat subjective metric. As of 2016, only about 5 percent

of incoming containers are �agged as high-risk for X-ray inspection [6].

More ambitiously, the SAFE Port Act called for a full-scale implementation to scan all

inbound containers at foreign ports prior to U.S. entry using both non-intrusive imaging

equipment and radiation detection equipment. However, the legislative text did not specify

a concrete deadline, instead stating that the full-scale implementation should be implemented
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�as soon as possible� with the requirement that the scanning systems �do not signi�cantly

impact trade capacity� along with other similar provisions. The language of the SAFE Port

Act was amended by the Implementing Recommendations of the 9/11 Commission Act of

2007, which set a 2012 deadline for the full-scale implementation [7]. The law allowed the

Department of Homeland Security (DHS) secretary to extend this deadline by two years,

accompanied by a report describing the technological capabilities of available scanning sys-

tems and the steps taken to implement the full-scale implementation. Since 2012, the DHS

secretary has continued to renew this extension every two years.

In 2021, the U.S. Congress passed the Securing America's Ports Act, requiring the DHS

secretary to submit a plan to achieve 100 percent scanning of passenger vehicles and rail

cargo entering through U.S. ports of entry [8]. This requirement di�ered from the full-scale

implementation set out by the SAFE Port Act of 2006, as the Securing America's Ports

Act only required 100 percent scanning atdomestic ports rather than foreign ports. The

Securing America's Ports Act outlined a six-year timeline towards this 100 percent scanning

requirement and mandated that the DHS secretary submit a biennial report describing the

progress towards implementing this plan. Despite continued legislative e�orts from the

U.S. government, the task of scanning 100 percent of U.S.-bound cargo using non-intrusive

imaging equipment remains an unsolved challenge.

1.1 Passive Detection Overview

During the inspection of cargo at U.S. ports, containers pass through a radiation portal

monitor (RPM), which detects neutron and/or gamma radiation passively being emitted

by nuclear or radiological materials that may be hidden in a cargo container [9], [10]. If

the measurement is signi�cantly above background measurements, an alarm would trigger,

detecting the smuggling attempt. CBP currently uses RPMs to scan 100 percent of mail

parcels, truck cargo, and personally owned vehicles, as well as nearly 100 percent of maritime

containers, for radiological materials prior to release from U.S. ports of entry [11].

One such portal monitor is the TSA VM250, as shown in Fig. 1.1 [12]. This system scans

vehicular tra�c and consists of two pillars placed on either side of the roadway to be moni-
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Figure 1.1: TSA VM250 Radiation Portal Monitor for scanning vehicular tra�c. Image
source: Rapiscan Systems.

tored. Each pillar contains two organic plastic scintillators to detect gammas and four3He

tubes to detect neutrons. The TSA VM250 is capable of detecting 10g of unshielded239Pu

or 1000g of unshielded235U with a false alarm rate of less than one per 1,000 passages [12].

However, a smuggler could defeat this mode of detection through su�cient shielding of the

smuggled material [13], [14]. As a result, passive detection alone is insu�cient to detect

shielded nuclear materials.

1.2 Radiography Overview

To aid passive detection, CBP also scans 100 percent of containers identi�ed as high-risk using

non-intrusive imaging equipment. Non-intrusive inspection (NII) systems generate photons,

which are then shaped into a vertical fan beam using a series of collimators. The beam is

directed through the shipping container, where the photons are attenuated as they interact

within the cargo material. Some photons pass through the cargo and are subsequently
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Figure 1.2: Example diagram of a radiographic scanning system. Figure source: Lee et al.
(2018) [16].

measured by a stack of detectors downstream from the container, producing a vertical slice of

the radiographic image. The detectors are heavily collimated to limit the e�ects of scattered

radiation [15]. In Fig. 1.2, we show a diagram of an NII system.

As the container passes through the photon beam, thousands of vertical image slices are

stitched together to form the full, 2D radiographic image. This image displays a sensitive

density pro�le of the scanned cargo container, where the pixel intensity indicates the to-

tal attenuation along the photon beam path. An example radiographic image of a cargo

container is shown in Fig. 1.3. Radiography is of particular interest because it could catch

high-density shielding material that is used to evade passive detection [14]. Nuclear or radio-

logical material that is heavily shielded would appear as anomalously large on a radiograph,

triggering a follow-up manual inspection.
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Figure 1.3: Radiographic image of a cargo container, taken using a 9 MeV cargo inspection
system developed in Tsinghua University, cooperating with NUCTECH® . Figure source:
Tang et al. (2009) [17].

Most non-intrusive scanning systems use a linear accelerator (linac) to generate a pen-

etrating photon beam. These systems accelerate electrons towards a radiator (typically

composed of tungsten or tantalum), producing bremsstrahlung photons. Bremsstrahlung

beams are frequently used for cargo radiography applications due to their availability, �exi-

bility, and high photon output [18]. The Rapiscan Eagle® P25 is an example of a linac-based

cargo scanning system, shown in Fig. 1.4, generating a bremsstrahlung photon beam with

an endpoint energy of 2.5MeV [19]. The Eagle® P25 is capable of penetrating up to 23.5 cm

of steel. Penetration is de�ned by the American National Standards Institute (ANSI) as the

maximum thickness of steel through which the orientation of a test object can be determined

in an X-ray image [20]. To calculate the penetration, a kite-shaped arrow is placed behind

increasing thicknesses of steel plates and oriented in a random cardinal direction. The �xture

is scanned, and if the direction of the arrow can be determined by the operator, the test is

considered successful [21].

Other non-intrusive scanning systems utilize decay sources, such as Cobalt-60 (60Co) or

Caesium-137 (137Cs), to generate a photon beam. Decay sources are typically less preferred
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Figure 1.4: Rapiscan Eagle® P25, a gamma radiographic detection system. Image source:
Rapiscan Systems.

than linac-based systems due to their lower energy and �ux rate, and thus weaker pene-

tration. An example of such a system is the Rapiscan GaRDS mobile inspection system,

as shown in Fig. 1.5, which scans trucks using a60Co source, capable of penetrating up to

17.5 cm of steel [22]. The decay of60Co produces gammas with energies of 1.17 MeV and

1.33 MeV.1 The decay of137Cs produces gammas with an energy of 0.662 MeV2 and is thus

less penetrating than60Co. For example, the VACIS mobile inspection system is capable of

penetrating 15.9 cm of steel using a 0.75 Ci60Co source, versus 10.2 cm of steel using a 1.0

Ci 137Cs source [23].

1.3 Dual Energy Radiography

A further bene�t of many non-intrusive inspection systems is the ability to infer atomic

number information about cargo contents through the use of dual energy technology. This

1Cobalt-60 decays by beta decay into an excited state of Nickel-60. Nickel-60 then decays into its ground
state, emitting two gamma rays, with energies of 1.17 MeV and 1.33 MeV.

2Caesium-137 decays by beta decay into an excited state of Barium-137m. The deexcitation of Barium-
137m emits a 0.662 MeV gamma.
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Figure 1.5: Rapiscan GaRDS, a gamma radiographic detection system. Image source: Rapis-
can Systems.
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Figure 1.6: Schematic diagram of a dual energy radiographic scanner. A photon beam is
directed through a cargo container and measured by a stack of detectors. In the top image,
both stages of the linac are active, producing a high energy photon beam. In the bottom
image, one stage of the linac is cycled o�, resulting in a lower energy photon beam. By
cycling between the high and low energy beam, two images are obtained.

is possible because the attenuation of photons through a cargo container is dependent on

the atomic number (Z ) of the contents. This enablesZ discrimination by taking multiple

measurements of the same container using photon beams with di�ering energy spectra. Dual

energy systems typically use interlaced bremsstrahlung beams, where one stage of the linac

is cycled on and o� to produce pulses at a rate of� 200� 400 Hz [24], [25]. These pulses

typically only last a few microseconds and result in tens to hundreds of thousands of X-ray

photons arriving at the detector in the absence of any attenuating material [26]. The result

is a high �ux photon beam which alternates between high- and low-energy spectra, allowing

for two radiographic images to be produced simultaneously during a scan of the container.

Fig. 1.6 shows a schematic diagram of a dual energy cargo inspection system.

By calculating the atomic number of cargo contents using dual energy radiography, it is

possible to separate materials into di�erent material classes. The radiographic image can

then be color-coded based on material composition, enabling improved qualitative image

understanding. In their seminal work in the �eld, Ogorodnikov de�ned four material classes:

organics (Z � 5:3), organics-inorganics (Z � 13), inorganics (Z � 26), and heavy substances
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Figure 1.7: Radiographic image of a shipping container, colorized using dual energy radiog-
raphy. Figure source: Ogorodnikov et al. (2002) [27].

(Z � 82). Fig 1.7 shows a colorized image of a shipping container, where organic materials

are indicated in orange, organics-inorganics in green, inorganics in blue, and heavy substances

in lilac. Dual energy technology can also improve algorithmic detection capabilities, although

the majority of current radiographic analysis is performed manually by port operators.

One example dual energy radiographic system is the Rapiscan Eagle® R60 scanner, de-

picted in Fig. 1.8 [28]. The Eagle R60 scans rail cargo at speeds up to 15 km/h, capable of

penetrating up to 31 cm of steel [29]. The Eagle® R60 utilizes dual energyf 6; 4g MeV end-

point bremsstrahlung beams and a vertical array of cadmium tungstate (CdWO4) detectors.

1.4 False Alarms and Secondary Inspections

Passive scanning and non-intrusive inspection comprise the primary screening of a cargo

container. Inevitably, some fraction of containers will trigger a false positive due to statistical

�uctuations in background or the mischaracterization of a non-threatening object. If an

alarm is triggered during primary inspection, the container is sent for a secondary inspection,

where it undergoes a more extensive Anti-Terrorism Contraband Enforcement Team (A-
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