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Abstract 
Flexibility in household energy consumption is crucial for improving grid efficiency and reducing peak 
electricity demand. The ongoing impact of climate change and the move towards electrification worsen these 
challenges, emphasizing the need for effective peak demand reduction strategies. Current approaches often 
involve peak pricing retail tariffs, behavioral responses to grid operator notifications, or expensive 
technologies such as demand-side batteries. However, these methodologies rely on unpredictable consumer 
participation or substantial capital investments. On the other hand, the growing use of smart thermostats 
presents an opportunity for passive, efficient control of household energy consumption. Combining smart 
thermostats with appropriate price signals creates an opportunity to optimize the balance between energy cost 
and thermal comfort. This work examines the role of smart thermostat automation and dynamic retail rate 
designs in maximizing heating and cooling flexibility while ensuring consumer comfort. The research 
introduces a new approach to demand-side management by using reinforcement learning (RL) to optimize 
thermostat settings based on individual thermal preferences and price signals. A comprehensive testbed 
simulation framework was developed to analyze these effects, incorporating bottom-up energy modeling, 
individualized thermal comfort profiles using smart thermostat data, and advanced thermostat controls to 
investigate the impacts of various rate designs on residential energy demand. The study evaluates these 
impacts at a population level, considering the effects on over 80 household archetypes across a localized 
region. Key findings show that partitioned time-of-use rates with moderate pricing shifts effectively reduce 
energy usage without creating new peaks, unlike more aggressive pricing strategies that can lead to pre-
cooling-induced new peaks. These insights offer valuable guidance for policymakers and utility operators in 
designing rate frameworks that decrease overall electricity consumption and peak demand without 
compromising personal comfort. 
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Chapter 1.  Introduction 

The ongoing effects of climate change present an increasingly urgent challenge to household energy 

consumption, particularly in heating and cooling. Residential and commercial building energy consumption 

accounts for nearly 75% of all U.S. electricity use, making it a key component in grid demand [1]. This 

significant energy footprint contributes approximately 40% of all primary energy use and associated 

greenhouse gases (GHG) [1]. As temperatures rise globally, the strain on energy resources intensifies. An 

analysis of smart thermostat usage has shown that based on the current heating and cooling preferences of 

residential consumers, there will be a stark increase in cooling energy requirements—potentially up to 70% 

higher by 2050 compared to the 2019 baseline [2]. This will directly impact residential consumers' household 

budgets as heating and cooling systems typically account for 43% of a home utility bill [3]. The Federal 

Energy Regulatory Commission (FERC) predicts a nationwide increase in electricity demand by 4.7% over 

the next five years [4]. 

Due to the increase in demand from climate impacts and the continued push for electrification, one 

of the pressing concerns of grid operators is the reduction of peak electricity demand. Most of the U.S. grid is 

summer peaking due to the cooling requirements from summer afternoons when air-conditioning loads are 

added to relatively constant daytime loads, such as commercial lighting and industrial processes [5] [6] [7] [8]. 

ERCOT, or the Electric Reliability Council of Texas, has forecasted its peak demand will increase by 13.7% 

over the next ten years, resulting in an additional 10.9 GW of capacity needed to meet the demand [9].  

Since the 1980s, utilities have been implementing demand-side flexibility (also referred to as demand-

side management - DSM) strategies to address the challenges they face balancing grid supply and demand 

[10]. These strategies, which refer to the measures adopted by utilities, consumers, and third parties to adjust 

the timing and quantity of electric consumption, aim to reduce peak electricity demand during critical times 

by eliminating some electricity use or shifting it to non-peak times. The electricity saved through DSM is 

more valuable than electricity generated because after accounting for transmission and distribution along line 

losses, one unit saved on the consumer side is worth roughly 5% more than the unit saved on the generation 

side [11]. These strategies have typically been adopted by commercial and industrial customers who can be 

more easily coordinated than individual residential consumers [12]. Two specific types of DSM - Direct Load 

Control (DLC) and Demand Response (DR) - concentrate on directly controlling end-use loads or 

encouraging consumers to modify their usage in response to price signals such as Time of Use (TOU) 

electricity rates or critical peak event reduction. However, residential participation in peak demand is usually 

unreliable, especially on sweltering days, highlighting a shortfall if DR programs are not adequately rewarded 

[13]. Thus, utility companies must design incentives that maximize the tradeoffs in complexity, consumer 

participation, and program effectiveness. More details on these types of programs will follow in Chapter 2. 
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One effective way to increase demand flexibility for residential consumers is using smart thermostats 

that optimize the thermostat settings based on energy price signals. This helps to manage the increased 

demand on the grid more efficiently. However, incorporating this type of automation requires a complex 

understanding of the trade-off between individual thermal comfort preferences and price responsiveness. 

Each residential consumer has a unique idea of what they consider a comfortable temperature and what they 

are willing to pay for it. This represents an individualized optimization problem for each residential consumer 

to maximize the price-to-comfort tradeoff. A promising technique in the field of optimization is to use 

Reinforcement Learning (RL) to have an agent “learn” a model without having the parameters for the 

tradeoff explicitly defined. Through this learning (which is termed model-free), every end-user thermostat can 

have a control sequence learned solely based on their preferences. This type of control structure allows for 

demand flexibility to be personalized and the potential of heating and cooling flexibility to be maximized 

across participating households. 

This work aims to study the impact of maximizing demand-side flexibility through smart thermostat 

automation alongside various rate designs and measure how they affect residential consumer demand when 

considering cooling and heating flexibility. To achieve this, a testbed simulator has been created that utilizes 

smart thermostat control, which considers a population's thermal preferences while trying to deliver optimum 

flexibility potential. The main contribution of this study is to provide a framework that can simulate and 

analyze the impacts of rate design and thermostat automation on a population’s demand flexibility and energy 

consumption. This work creates a simulator using bottom-up energy modeling paired with advanced smart 

thermostat control that considers individualized thermal comfort preferences. It does not focus on 

technology adoption beyond smart thermostat investment (which most utilities offer steep discounts on to 

promote adoption [14]) but instead on the operational levers that can be used in the short term to support 

grid efficiency and influence the climate change transition. The work evaluates how creative rate design can 

reduce greenhouse gas emissions and mitigate climate impact without requiring immediate substantial 

investment. Furthermore, given the wide variety of comfort preferences across households, it also assesses 

the effectiveness of thermal flexibility at a regional scale. By evaluating this potential, the study provides 

policymakers and utility operators with actionable data to create more effective demand response strategies 

and rate frameworks that optimize energy consumption in line with the grid’s needs while maintaining 

consumer comfort and affordability. This study contributes a forward-thinking perspective to the 

contemporary discourse on energy management, innovative technology, and sustainable living. 

The rest of this thesis will be laid out in the following structure: Chapter (2) will focus on the 

background of the critical concepts covered in the thesis, Chapter (3) will introduce related work in the field 

and extensions on current methods, Chapter (4) presents the methodology and implementation, Chapter (5) 

provides the technical details about the simulation environment and data, Chapter (6) outlines the key results 
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and discussion points and finally Chapter (7) concludes the work, provides an overview of limitations and 

addresses future work considerations. 
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Chapter 2.  Background 

2.1 Demand Flexibility 

Demand flexibility creates substantial opportunities for grid efficiencies. A meta-analysis reveals that 

flexible operations exhibit varying performance levels depending on the technology and application scope. 

Peak power reductions range from 1% to 65%, while energy savings can reach 60%. Additionally, flexible 

operations can lead to operational cost reductions between 1% and 48% and greenhouse gas emission 

reductions of up to 29% [15]. Another analysis observed that when the outside temperature goes beyond 

75°F (24°C), adjusting the thermostat setpoint leads to a proportional increase in the magnitude of zone 

temperature setpoint adjustments [16]. This is particularly important on days with higher demand for hotter 

outside temperatures. During such conditions, it is estimated that a 2-degree setpoint change can produce a 

load reduction potential from 20% to 35%. 

  As mentioned previously, demand flexibility has two primary strategies used to try and match supply 

and demand constraints: Direct Load Control (DLC) and Demand Response (DR). Direct Load Control 

programs allow utilities to control specific appliances directly and remotely in consumers’ homes during peak 

energy demand, such as air conditioners or water heaters. These programs can help reduce the load on the 

grid by allowing the utility to turn off appliances or even control thermostat setpoints [17]. Participants in 

DLC programs often receive financial incentives or reduced utility rates to enable the utility to control their 

appliances during these critical periods. A study conducted on incentives for demand-side management 

revealed that people value the option to override more than financial incentives [18]. They are willing to 

participate if they can override based on their preferences and do not want to lose control. Recently, this 

concern was validated when Xcel Energy prevented manual overrides, causing 22,000 people in Denver, 

Colorado, to lose control of their home thermostats [19]. 

On the other hand, DR is a method that encourages consumers to adjust their electricity usage 

during peak periods in response to price signals or financial incentives. DLC is where the utility directly 

controls the consumer’s energy usage; DR is based on the consumer’s choice and flexibility. The users can 

decide how and when to reduce their energy usage through time-based rates, including time-of-use pricing, 

critical peak pricing, variable peak pricing, real-time pricing, and critical peak rebates [20]. Demand Response 

is a more consumer-friendly approach as it gives them autonomy over their consumption and the opportunity 

to contribute actively to grid reliability and efficiency. However, because of this flexibility, it is often difficult 

for utility companies to accurately predict or quantify the impact of any consumer-focused action. For 

instance, in a study examining the implementation of thermostat-based demand response programs, it was 

observed that the rate at which participants overrode the program varied greatly, ranging from 1% to 39% 
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[21] [22] [23]. This inconsistency has significant implications for load-shifting efforts and poses a challenge 

for electrical utilities. The high rate of overrides can lead to missed opportunities for reducing demand, which 

can significantly shape the effectiveness of a program. This problem can be solved by improving the 

program’s design and delivery and increasing household participation to reduce the variability in aggregate 

demand response from these loads. This leads to better predictability and reliability when using Thermostat 

Controlled Loads (TCLs) for grid services [24]. One way to improve predictability is by designing a better 

retail rate system. This can condition residential users to follow a more consistent pricing schedule rather than 

relying on reducing consumption during critical peak events. 

2.2 Electricity Pricing in the United States 

In the United States, the cost of electricity in wholesale markets fluctuates based on various factors, 

such as the time of day, demand, and the cost of generating electricity from different sources. However, most 

end-use consumers are not directly exposed to these fluctuating prices. Instead, they typically pay a fixed price 

per kilowatt-hour (kWh) for their electricity consumption, regardless of the actual cost of producing and 

delivering that electricity at any given time [25]. This fixed pricing structure does not reflect the true variability 

in the price of electricity production, which can lead to inefficiencies in the electricity market. 

Moreover, the cost of producing electricity isn’t the same for every unit of electricity generated. 

When demand is high, the cost of producing additional electricity increases dramatically. This is because some 

power plants can’t quickly increase their electricity when demand suddenly rises. And even for power plants 

that can quickly ramp up production, like those that run on natural gas, the cost of producing this additional 

electricity is often much higher. 

Because of these factors, the price of electricity can vary a lot from one hour to the next. Sometimes, 

especially during certain times of the year when demand is very high, the price of electricity can spike to levels 

that are more than ten times the average price. It varies depending on the amount of electricity used and how 

much it costs to produce that electricity at a given time. Different retail rate designs have been implemented 

to manage fluctuating electricity prices and reduce peak demand. These designs aim to communicate the price 

to consumers without exposing them to real-time market pricing. The goal is to provide consumers with price 

signals that encourage them to adjust their energy usage without facing the risks associated with pricing 

fluctuations, such as during the Texas winter storm in 2021 when the price of electricity skyrocketed to 

$9/kWh [26]. 

To that end, there has been some debate regarding the efficacy of different rate structures, but recent 

reports have shown that thoughtfully crafted Time-of-Use (TOU) rates, especially when paired with a Critical 

Peak Pricing (CPP) initiative of infrequent periods of elevated costs, are more effective than previous 
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research suggested [27] [28]. There has even been success in exposing residential consumers to modified 

hourly prices that fluctuate with the real-time cost of electricity but protect them from extreme events. For 

instance, ComEd’s Hourly Pricing program had 37,578 participants in 2022 and provided a net benefit of 

over $6 million from a societal and environmental perspective. Participants saved an average of $20 (2%) per 

year compared to ComEd’s default fixed-price rate (“Rate BES”). Participants saved an average of $28 on 

their bills due to conservation efforts, resulting in a total average bill savings of $48. In 2022, the total supply 

savings from the combined bills of all Hourly Pricing participants was $729,306 [29]. 

Improved retail electricity rates do more than provide a clear understanding of the cost of electricity 

at different times. These rates are also crucial to efforts to reduce carbon emissions. By aligning retail rates 

more closely with the actual costs and demands of the system, it becomes easier to make household 

electrification affordable on a large scale [30]. This creates an opportunity to speed up the adoption of clean 

energy, which is both economically and environmentally sustainable. Adopting new end-use technologies at 

the household level directly impacts electric rates that accurately reflect system costs [30]. When consumers 

see the financial benefits of rates, they are more likely to adopt energy-saving technologies. This can lead to 

widespread behavioral change and significant energy savings. At a planning and system level, better-aligned 

rates can help avoid grid costs that directly impact customers' rates. These include generation, transmission, 

and distribution capacity costs, subject to different timing and locational constraints. Better alignment can 

help avoid the need for all three types of investments [31]. 

Rate 
treatment 

Number of 
observations 

Avg peak demand 
reduction 

Avg reduction in 
overall consumption 

Median peak 
demand reduction 

Median reduction in 
overall consumption 

CPP 13 23% 2.8% 23% 2.6% 

PTR 11 18% 2.3% 18% 0.6% 

TOU 17 7% 1.2% 6% 1.0% 

TOU+CPP 8 22% 2.1% 20% 2.3% 

TOU PTR 1 18% 7.4% 18% 7.4% 

All 50 16% 2.1% 14% 1.3% 

Table 2.1: Results from rate design studies showcasing the potential to reduce consumption and peak load [32] 

2.3 Retail Rate Designs 

The most common types of retail rates include: 

Real-time pricing (RTP) 

Under this pricing scheme, the cost of electricity is determined hourly based on the actual cost of 

delivering it to consumers. This means the prices can fluctuate significantly from one hour to the next and 



 17 

from day to day. For instance, during a heatwave, when the electricity demand is high, the prices may rise to 

several times the average price. While this scheme can encourage consumers to shift their electricity usage to 

lower-priced hours, it can also subject them to more significant uncertainty and risk. 

Time-of-use (TOU) rates 

Time-of-use (TOU) rates divide the day into off-peak, mid-peak, and on-peak periods. Each period 

has a different price per kilowatt-hour (kWh), with on-peak prices being the highest and off-peak prices being 

the lowest. Unlike Real-Time Pricing (RTP), TOU rates offer a more predictable and stable pricing structure 

since the cost for each period stays the same over a more extended period, such as a season or a year. This 

allows consumers to plan their electricity usage more effectively and take advantage of lower-priced periods. 

Fixed rates 

This rate is mainly adopted by residential consumers today. They pay a fixed rate for electricity 

consumption, irrespective of the time of day or the actual cost of electricity production. This rate offers 

simplicity and predictability for consumers, but it does not encourage changes in consumption behavior based 

on the varying costs of electricity production. 

Critical peak pricing (CPP) 

Critical Peak Pricing (CPP) is a combination of Time of Use (TOU) rates and Real-Time Pricing 

(RTP). Under CPP, customers pay TOU rates for most of the year, but during a limited number of “critical 

peak” days, when the electricity demand is exceptionally high, prices increase significantly for a short time. 

Utilities typically notify consumers a day before these critical peak events, allowing them to reduce their 

consumption and avoid paying higher prices. 

Flat Rate 

This pricing structure is very straightforward. Consumers pay a fixed monthly fee for their electricity 

usage, regardless of how much they use. This fixed rate provides consumers with complete predictability as 

their monthly costs remain constant, allowing them to plan their expenses without worrying about changes in 

electricity usage or prices. However, this pricing structure does not encourage energy conservation since the 

payment amount remains constant, irrespective of how much energy is consumed. 

Several factors influence the efficacy of retail rate designs in promoting demand flexibility and 

reducing overall electricity consumption, such as consumer awareness, the availability of enabling 

technologies such as smart meters and thermostats, and the specific design features of each rate structure. 
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2.4 Factors that Contribute to Thermal Comfort and Personal Preferences 

Thermal comfort is a highly subjective experience that can vary significantly from one individual to 

another, even when they are in the same environment. A detailed study examining various climates and 

operational modes suggested that the comfortable temperature ranges can be as comprehensive as 51.3°F to 

86.4 °F. In temperate climates, the average comfortable temperature is 73.2 °F; in tropical climates, it is 76.1 

°F; in sub-tropical climates, it is 74.1 °F; in continental climates, it is 71.1 °F; and in polar climates, it is 51.3 

°F [33]. This variability is due to a complex interplay of physiological differences, personal preferences, 

behavioral patterns, and environmental conditions [34]. Physiological factors, such as skin temperature, heart 

rate, and metabolic rate, can influence an individual’s sensitivity to heat or cold. Personal factors, like clothing 

insulation, age, sex, and health status, also play a role in determining comfort. Behavioral aspects, such as 

fans, heaters, or windows, can further modify an individual’s perception of comfort. Finally, environmental 

factors, including air temperature, humidity, and air velocity, contribute to the overall thermal experience. 

Given the wide range of factors that influence thermal comfort, it is essential to recognize and 

accommodate individual preferences when operating indoor environments. Failing to do so can lead to 

discomfort, dissatisfaction, and potentially reduced productivity among occupants [35]. Adhering to thermal 

comfort preferences extends beyond mere comfort. It can also significantly impact energy consumption in 

buildings. When designed and operated without considering individual preferences, HVAC systems may 

waste energy by overheating or overcooling spaces. Recognizing the diversity of thermal comfort preferences 

and developing strategies to accommodate them can lead to more responsive, efficient, and comfortable 

indoor environments. 

2.5 Thermostat Setpoint Control Methods 

Controlling heating and cooling systems is crucial for indoor environmental quality. Several control 

methods have been developed, each with strategies and technologies to manage these systems’ operations. 

The most common types of control algorithms are: 

Rule-based controllers (RBC) 

These are the most traditional forms of HVAC controls widely used in commercial and residential 

buildings. Rule-based systems operate on predefined rules or conditions (“if-then-else”), typically using 

thermostats and timers to control the HVAC components based on specific inputs like temperature and time. 

For example, a rule might specify that heating should be turned on when indoor temperature drops below a 

certain point. These controllers are straightforward but can be inefficient as they do not adapt to changing 

conditions or learn from past performance. Typically, there is little optimization at the entire building level 
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because it would require an incredibly complex RBC controller for each scenario, and it’s almost impossible 

to create general rules for the entire building [36]. 

Model Predictive Controllers (MPC) 

Recently, MPC has emerged as a popular alternative to rule-based control because it can handle 

multi-input, multi-output systems and readily integrate constraints [37]. MPC is an advanced optimization 

method that uses a model of the HVAC system to predict future conditions and make decisions that optimize 

performance over a time horizon [38]. This approach can significantly reduce energy consumption and 

improve comfort by anticipating future needs and adjusting control actions accordingly. MPC requires a 

detailed mathematical model of the HVAC system and external factors like weather conditions. Despite its 

potential for high efficiency, the complexity of developing accurate models and the computational demands 

have limited its widespread adoption [36]. Therefore, MPC is better suited for regulating lower-level processes 

and components of HVAC systems where the control was designed along with the system, modeled in 

advance, and not influenced by dynamic behavior [39]. 

MPC is based on model-based learning, which relies on a detailed model of the environment to 

simulate and predict future states. The control actions are then optimized based on the predictions made by 

the model. This approach is advantageous when the system dynamics are well-understood and can be 

appropriately modeled. However, the effectiveness of model-based algorithms heavily depends on the 

model’s accuracy, which can be challenging to achieve in complex systems or when considering the need for 

adaptive tradeoffs for individuals. 

Reinforcement Learning Controllers  

Reinforcement learning (RL) controllers are algorithms that do not require a pre-existing model of 

the HVAC system. In contrast to model-based learning, model-free algorithms used in RL do not need a 

comprehensive model of the system [40]. Instead, they learn directly from their interactions with the 

environment. They use a form of machine learning where the controller learns to make decisions through trial 

and error using a reward system.  This method is beneficial when it is challenging to model the system 

accurately or highly dynamic and unpredictable. RL controllers can be adaptive across a range of inputs 

without having to optimize performance in a particular environment. This allows for more exploration across 

a range of actions of where personalized dynamics are at play. 

Trade-off MPC vs. RL 

When considering control algorithms, studies have shown that Model Predictive Control (MPC) 

slightly outperforms Reinforcement Learning (RL) methods [41] [42] [43]. However, MPC often uses linear 



 20 

or quadratic objective functions, which limits its application to large-scale problems. Every aspect added for 

optimization increases the dimensionality of the problem space, thus increasing the computation time needed 

[39]. In contrast, RL does not restrict the reward signal, which allows for considering short-term and long-

term reward structures. Work has also been done to combine RL’s flexibility with MPC’s performance, but 

this still requires defining an optimization function for MPC and encoding the proper predictive model per 

environment [44] [45] [46].  Moreover, the studies highlighting MPC’s superiority are focused on 

demonstrating the potential of a single building rather than scaling the implementation regionally. 

Given that the outcome of this research is focused on population-level impacts of rate design, the RL 

controller method provides an adaptive way to differentiate environments without the need for direct domain 

knowledge encoding. Although MPC is more accurate, the performance of the Reinforcement Learning (RL) 

method is still reliable for implementing an adaptive control algorithm with similar results (within 5% of the 

MPC controller for energy savings) [47]. Using the RL approach requires fewer computational resources (it 

does not require a known model for every implementation), making it a better choice for prototyping and 

faster iteration of various environments and reward structures (rate designs)[48]. This eliminates the need for 

an optimized method for each household or end-user thermal comfort preference. 
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Chapter 3.  Prior and Related Work 

Model predictive control (MPC) and reinforcement learning (RL) for building control have been a 

topic of interest in the scientific community for some time. However, only a few studies have been conducted 

to evaluate how varying time rates may affect these types of automation. Moreover, to the best of my 

knowledge, very few studies have examined the effects of such controls on the broader population and how 

individual preferences impact the outcomes of control optimizations. Below is an analysis of the current 

landscape of research that covers these topics. 

3.1 HVAC Control Methods 

Model Predictive Control (MPC)  

As mentioned before, several studies have applied MPC methods and have seen significant energy 

savings while maintaining thermal comfort for residents. A study found that using the MPC controller 

reduced energy consumption by 9.7-25% and cost from 8.2% to 18.2%. Despite this, the controller could 

maintain the temperature within the personalized comfort band [49]. That research team also integrated 

demand response, occupancy, and occupant behavior within the controller framework. In addition, a meta-

analysis of multiple MPC controllers found that incorporating them as part of control objectives resulted in 

significant reductions in peak loads, typically around 30% [36]. This was achieved by explicitly formulating the 

objective function or implementing an indirect variable energy prices policy. However, an excessively 

conservative MPC algorithm can significantly reduce the anticipated flexibility potential without significantly 

improving thermal comfort satisfaction [50]. If not executed correctly, the parameters for optimization in the 

MPC approach, which necessitates a higher level of environment-specific optimization than defining a single 

reward function (as in RL), may cause issues. 

Reinforcement Learning (RL) 

Due to the nature of AI research, many researchers have developed methods for utilizing RL in 

building HVAC control. When applied to commercial and office simulations, results showed that it is possible 

to achieve significant energy savings by implementing reinforcement learning techniques while keeping 

thermal comfort levels within acceptable limits. Additionally, when reinforcement learning is applied with 

demand response, average power consumption can be reduced (or increased) by up to 50% while maintaining 

a comfortable environment [51]. Another implementation in office buildings that utilized TOU rates showed 

the RL method can reduce total energy cost by 75.25% over the rule-based methodology [52]. 



 22 

Similar results have been replicated in the residential sector. A study used multiple neural networks to 

predict comfort and control thermostat usage. The results showed an improved performance of thermal 

comfort prediction by 14.5%, reduced HVAC energy consumption by 4.31%, and improved the occupants’ 

thermal comfort by 13.6% [53]. An additional application was conducted where an RL control strategy was 

implemented in a multi-zone household. The results showed that machine learning reduced energy 

consumption costs by 15% compared to rule-based methods. It also reduced comfort violations by 79% and 

complaints by 98% [54]. However, these studies have some drawbacks. They focus on single household 

simulations and static environments and frame the reward function to optimize consumption and comfort 

without considering price as a variable. Moreover, a meta-analysis of utilizing RL in home energy 

management showed that over half of the implementations have used a discrete observation space and action 

space, which oversimplifies the complexity of the building environments where the simulations occur and the 

available action sequences to smart devices [55]. 

3.2 Large Impact Analysis Using Simulators 

While less developed as a research area, some work has been done to understand the broader scaled-

level impacts of control models and alternative methods for demand flexibility. 

DyMonDS for ALM [56] [57] 

In previous work, Joo and Ilic introduced the Dynamic Monitoring and Decision Systems 

(DyMonDS) framework for Adaptive Load Management (ALM), which aimed to integrate different energy 

resources and demand responses in the power grid. The framework focuses on exchanging information at 

multiple levels and directions to optimize interactions between market participants by using demand bid 

curves provided by end-users through load aggregators. Similar to the method proposed in this thesis, this 

system dynamically adjusts electricity consumption based on real-time price signals to optimize user comfort 

and grid stability. In DyMonDS, the economic value perceived by each end-user is represented through a 

demand function closely related to the marginal benefit or willingness to pay. However, determining these 

parameters can be challenging due to limited knowledge of electricity demand price-responsiveness, requiring 

iterative experiments with real-time pricing to induce and measure price elasticity. In contrast, this thesis 

proposes an innovative approach by encoding the energy-comfort tradeoff in an RL framework instead of 

using predefined demand functions. This approach offers several advantages. Firstly, RL does not require 

explicitly defined functional parameters, making adapting to each household's unique thermal comfort 

preferences and behaviors easier. Secondly, RL can handle probabilistic thermal comfort profiles, 

accommodating the inherent variability and uncertainty in user preferences and environmental conditions. 

This adaptability provides a more robust and efficient HVAC control mechanism for enhancing demand 

response effectiveness and user satisfaction. 
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Network Optimized Distributed Energy Systems (NODES)[58]  

A recent project developed by the MIT Lincoln Laboratory has introduced a sophisticated multi-

layered control model that is specifically designed for HVAC systems. This model focuses on enhancing 

energy management and operational efficiency at the feeder level. The core of this approach is the integration 

of two control techniques - Model Predictive Control (MPC) and Sliding Mode Control (SMC). This 

configuration allows for proactive energy usage planning and real-time operational adjustments rather than 

modeling price-reactivity, which is where this research effort differentiates itself. In addition, the NODES 

study was designed for 25 analogous homes in the Pecan Street Community and utilized a fixed energy cost 

of $10/kWh rather than exploring alternative pricing opportunities. 

The impact of energy-efficiency upgrades and other distributed energy resources on a residential 

neighborhood-scale electrification retrofit (NREL) [59] 

The NREL project analyzed the effects of multiple residential building electrification retrofit 

scenarios, including energy efficiency upgrades, heating and hot water electrification, and distributed resource 

integration. They used a hypothetical community of 30 single-family homes in Denver to analyze metrics such 

as energy use, carbon emissions, utility bills, peak demand, and distribution grid voltages for each scenario. 

The NREL study is based on a centralized optimization scheme with perfect knowledge of building and 

equipment models using an MPC. On the other hand, this research effort diverges from the NREL study to 

develop a more personalized and realistic approach using reinforcement learning. For this research, the 

control agent seeks to learn each household’s unique preferences and thermal flexibility through interaction 

without requiring an explicit forecasting model. Moreover, this work focuses on advanced rate structures 

rather than a broad home electrification analysis, which requires homeowners to invest capital for house 

envelope and technology upgrades. This research aims to determine the potential for aggregating thermal 

demand flexibility through rate-specific incentives while respecting the diversity of individual household 

preferences and behaviors. 

Centralized Planning Agents  

Additional efforts have developed learning environments to study group-level impacts through the 

lens of a centralized planner [60]. For instance, CityLearn is an open-source gym environment for 

implementing Multi-Agent Reinforcement Learning (RL) for building energy coordination and demand 

response in cities [61]. CityLearn enables users to implement reinforcement learning agents quickly in single 

and multi-agent settings to control active energy storage for load shifting and heat pump or electric heater 

power for load shedding. In a particular scenario utilizing CityLearn, a deep RL controller was developed and 

tested against a manually optimized RBC. According to the results, the deep reinforcement learning algorithm 
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can potentially reduce clustered populations' overall electricity costs while decreasing the peak energy demand 

by 23% and the peak-to-average ratio (PAR) by 20%. However, it’s worth noting that CityLearn has limited 

control structures and only allows for manipulating heat pumps, not HVAC equipment. Similarly, 

AlphaBuilding ResCommunity has implemented a gym environment to train thermostat-controlled load 

(TCL) algorithms to shift the load and provide grid services [62]. One limitation of their implementation is 

that they utilize an “ON/OFF” control framework in a discrete action space instead of a continuous action 

space that allows for more granular control. Lastly, it is also worth noting that these implementations model 

control from a centralized planner point of view instead of implementing personalized control algorithms that 

maximize the potential for each environment. 

3.3 Demand Flexibility 

Various attempts have been made to quantify demand flexibility, but the results are often difficult to 

quantify outside of real-world implementations due to the stochasticity of consumer responses and the lack of 

generalizing methodologies to expand to a more significant number of households [63]. A study comparing a 

Deterministic MPC-based approach versus a Stochastic MPC approach found that flexibility potential was 

overestimated due to neglecting uncertainties, which is often the case when research attempts to model 

flexible resources [64] [50]. However, there have been some promising results. One study developed a new 

design for residential thermostats to eliminate the need for a dead band and use discrete-time control to 

enhance the aggregate load response to real-time pricing. The proposed thermostat was found to give the 

residential load an energy demand elasticity between 10% and 25% during peak times [65]. However, it 

should be noted that this method was only validated on a single simulated residence. 

An additional experiment using multi-task DDPG (Deep Deterministic Policy Gradient (DDPG) is a 

specific algorithm type in Reinforcement Learning) showed lower total energy costs than the rule-based 

control strategy for both peak/off-peak pricing and PJM market pricing in cooling and heating scenarios. The 

cost savings ranged from 6.1% to 10.3% across the different pricing schemes and HVAC modes. However, 

the DDPG method did result in slightly longer temperature violation times in some cases compared to the 

rule-based approach, but the average violation magnitude was only around 0.6 degrees Celsius [66]. In 

another simulation with a standardized prototype single-family home model, the authors conducted a 

simulation to measure the possibilities of demand flexibility in residential space heating under various 

scenarios of phase change material (PCM) thermal storage and control across the regions of the US with high 

heating demand. The results showed that peak-load shifting of up to 98.5% was achievable, with electricity 

cost-saving/revenue potential reaching 338.3% of electricity cost reductions for US residential heating [67]. 

While encouraging, these studies’ limitations are their lack of understanding of each consumer’s preferences 

and the tangible impacts of various reward incentives for demand response. To understand a complete 
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picture, it’s essential to consider how end-user preferences will manifest in their behaviors towards any 

flexibility measures. 

3.4 Modeling with Thermal Comfort Implications 

When modeling setpoints for thermal comfort, many of the papers reviewed above, regardless of 

whether they are MPC or RL, choose either a fixed set point band or synthetically generate them. For 

example, four different probabilistic occupant behaviors were randomly selected in one approach to represent 

diverse behaviors and test the algorithm under extreme cases [68]. In another study, the authors categorized 

the comfort temperature range as 23.0°C − 26.0°C in summer and 20.0°C − 23.0°C in winter [69]. The 

AlphaBuilding ResCommunity uses temperature data from the ASHRAE Global Comfort Database. This 

database provides objective measurements of the indoor environment, along with subjective evaluations from 

people who occupy buildings worldwide [70]. While this dataset is better than setting fixed bounds, it is not as 

regionally condensed to account for local context, distribution, and density differences. In NREL’s 

neighborhood study, they generate synthetic setpoint schedules from Resstock End Use Load Profiles [59] 

[71]. Still, an analysis comparing ecobee’s smart thermostats and the Resstock profiles highlighted some loads 

were underestimated by as much as 40% [72]. Instead of using fixed schedules or synthetic data, this study 

incorporates the variation in thermostat setpoints, including seasonality and home / away schedules, from a 

group of smart thermostats in one region. The data will be used to analyze behavioral patterns that determine 

the capacity for demand flexibility across the region. 

3.5 Novelty 

This research builds upon the existing work in HVAC control methods, population-level analyses using 

simulators, and demand flexibility. It introduces innovative contributions to the field, centered around a novel 

simulation framework that is designed to push heating and cooling flexibility to its capacity through 

thermostat automation and rate design and includes:  

1. Quantitative analysis of different rate designs on demand flexibility at a population scale and how 

pricing strategies influence grid efficiency when smart thermostats are controlled  

2. Integrating individualized energy-comfort tradeoffs into reinforcement learning models to allow for 

personalized HVAC control that accounts for unique consumer behavior, preferences, building 

environment characteristics, and multiple different set point schedules  

3. Incorporation of smart thermostat data as thermal comfort profiles to analyze and predict demand 

flexibility under different retail tariffs across a population while maintaining the variability of 

consumer responses to energy pricing. 
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4. Methods 

The methodology for exploring the effects of time-varying rates using an RL model is outlined 

below. The primary implementation consists of 1) a bottom-up resistance capacitor (RC) building simulator, 

2) a thermal comfort model that estimates the probability of an individual degree of comfort based on ecobee 

smart thermostat data, and 3) an RL controller that determines the continuous heating and cooling setpoint 

for each environment. The methodology contains several tools to encode specificity and domain knowledge 

that increase the fidelity of the data modeling. The following sections describe the system in more depth. 

 
Figure 4.0.1: Overview of the proposed simulation framework 

 

4.1 Bottom-up Energy Modeling 

Defining Bottom-up Modeling in Energy Systems 

Bottom-up modeling is an analytical method that begins with the smallest level of detail, i.e., 

individual households and builds a comprehensive representation of the entire energy system. Unlike top-

down models that use general assumptions and aggregate data to analyze energy consumption and forecast 
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demand at the macro level, bottom-up models allow for increased fidelity at the individual component level 

of the system, which, in this case, is the residential consumer. 

The granularity of bottom-up modeling allows for high precisions in representing energy 

consumption. It encompasses detailed energy usage characteristics, including the timing, location, housing 

build components, and behavior of individual loads and resources. This method is particularly valuable 

because it captures the complexity and variability inherent in energy use, reflecting the heterogeneity of 

appliances, human behavior, and system dynamics. Bottom-level modeling provides a robust foundation for 

developing highly accurate energy management strategies and simulating the potential impact of demand 

response and other interventions by capturing the nuances of individual devices and usage patterns. 

Object-oriented Controllable High-resolution Residential Energy (OCHRE™) Model 

Within the scope of this work, the building energy simulator utilized is the Object-oriented 

Controllable High-resolution Residential Energy (OCHRE™) model. OCHRE™ is a reduced-order 

residential building model that aims to maintain essential system dynamics without the complexity of detailed 

simulation models. At its core, it represents the building’s envelope through a multi-node equivalent circuit, 

commonly known as an RC model. 

The RC model is an abstraction that uses electrical analogs—resistors (R) and capacitors (C)—to 

mimic the thermal behavior of a building’s envelope. Resistors represent the resistance to heat transfer (akin 

to the insulation of walls), while capacitors symbolize the building’s ability to store heat. This representation 

creates a simplified yet effective way to model how quickly and effectively a building can respond to 

temperature changes both internally and from the external environment, which is critical for energy usage 

predictions. OCHRE™ allows for the control of significant loads and Distributed Energy Resources (DERs), 

including space conditioning systems, domestic hot water systems, batteries, photovoltaic (PV) systems, and 

electric vehicles (EVs). Each element can respond to control signals, meaning the model can simulate the 

response to various demand-side management strategies. 

The OCHRE model was validated against the industry standard EnergyPlus simulation tool. To do 

this, the model developers ran annual simulations at a 1-minute resolution in OCHRE and a 10-minute 

resolution in EnergyPlus. The results showed that the two models had a reasonable agreement. Regarding 

HVAC heating, OCHRE underestimated the energy consumption by 8.7% compared to EnergyPlus. On the 

other hand, OCHRE slightly overestimated the energy consumption of HVAC cooling by 0.8%. The 

differences in HVAC-delivered heating and cooling were minor (i.e., the temperature management services 

provided by an HVAC, including heating or cooling of spaces, maintaining indoor air quality, and controlling 

humidity.). The authors suggest that most of the discrepancy was caused by an overestimation of OCHRE’s 



 28 

air-source heat pump efficiency, and differences in solar radiation heat transfer through the windows might 

contribute to more heating and less cooling in OCHRE compared to EnergyPlus. Based on these results, the 

differences will not significantly impact the overall outcomes of the study [73]. 

Resident Schedule Stochasticity in the OCHRE Model Using Resstock Schedules 

Accurately reflecting human activities' unpredictable and variable nature is crucial for realistic 

residential energy modeling. Traditional approaches often rely on deterministic, homogeneous activity 

schedules that do not capture the complexities of daily human behavior. As a result, inaccuracies can occur in 

modeling electricity demands and assessing the effectiveness of energy-saving technologies. To enhance the 

realism and accuracy of simulations, the OCHRE model incorporates the advanced stochastic event generator 

developed by the National Renewable Energy Laboratory (NREL) [74]. This advanced approach utilizes a 

combination of time-inhomogeneous Markov chains and probability sampling of event durations and 

magnitudes. Markov chains are used to model the likelihood of transitioning from one activity state to 

another based on the current state, capturing the sequential nature of human behaviors throughout the day. 

Probability sampling complements this by varying the lengths and intensities of each event, thereby 

introducing realistic randomness into the daily routines modeled in the simulations. These realistic behavior 

patterns better assess the potential flexibility of energy usage in response to price signals or other demand-

response initiatives. 

Building Representations 

The OCHRE™ model employs a consistent and standardized approach to define building properties 

by using the Home Performance eXtensible Markup Language (HPXML). HPXML serves as the 

infrastructure guidelines for all relevant building inputs required for the energy model of a residential building 

[75]. Resstock (another tool developed by NREL for bottom-up modeling) generates the HPXML input files, 

which utilize NREL’s U.S. Building Stock Characterization Study to generate U.S. home profiles [76]. In this 

model, the United States housing stock is segmented into 165 distinct subgroups based on critical factors 

such as climate zone, wall structure, housing type, and year of construction to create building profiles that 

accurately reflect the diverse conditions of U.S. homes. For each subgroup, thermal energy use is quantified, 

including energy needed for heating, ventilating, cooling, and water heating, broken down by end use and 

segment. Resstock uses a down-sampling method to reflect the vast diversity within the U.S. housing stock, 

comprehensively capturing variations in building types. This approach ensures that simulation-building 

profiles represent regional diversity, enhancing the model’s applicability and accuracy in various geographic 

and climatic contexts. Using the housing profiles from NREL and Resstock, this research can model unique 

regional characteristics in building design, construction practices, and climate conditions See Figure 4.1.1 for 

an overview of different building types and key segmentation characteristics.   
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Figure 4.1.1: A high-level summary of the different types of buildings available in the Resstock dataset, along 
with summary distributions on key characteristics 

 

Preparing OCHRE™ for Reinforcement Learning 

To implement the OCHRE model with reinforcement learning (RL), it was necessary to configure it 

to function within a Gymnasium environment. Gymnasium is a widely used framework that employs a high-

level Python class to represent a Markov Decision Process (MDP) flow from reinforcement learning theory 

and allows for creating custom environments that can be used to train RL algorithms [77]. The team at 

NREL developed the initial building blocks for using OCHRE within a Gymnasium environment, but 

significant modifications were needed to tailor the system to the specific needs of this research [78]. These 

adjustments included expanding the observation space to capture a broader range of environmental inputs, 

modifying the action space to allow for more nuanced control strategies, and reconstructing the reward 

function to better align with the desired energy efficiency outcomes. More information about the 

implementation of RL and how it was applied within this modified framework will be discussed in the 

subsequent sections. 

By utilizing the OCHRE™ model, this research can simulate the behavior of a residential energy 

system with high accuracy and specificity. This allows for modeling energy usage and reactions to time-
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varying rates with fidelity that other modeling approaches may not achieve, especially for individualized and 

adaptive control schemes. A complete description and documentation of the OCHRE™ model and its 

capabilities are available online [79]. 

4.2 Thermal Comfort Modeling 

About the ecobee Dataset  

The modeling of thermal comfort probabilities relies on data from ecobee’s Donate Your Data 

program [80]. ecobee Inc.’s customer base has voluntarily shared anonymized records to support various 

research endeavors. The dataset contains environmental and operational data obtained from their connected 

thermostats. The dataset captures five-minute interval readings from thermostats and any linked remote 

sensors, providing a detailed temporal snapshot of indoor climatic conditions, HVAC system operations, and 

occupancy. The dataset spans from each thermostat’s initial connection to the current day. In addition to the 

interval data, the dataset is enriched by user-provided metadata describing housing characteristics, HVAC 

equipment details, and geographical information such as state or province when available. The substantial 

breadth of data offers a robust foundation for modeling thermal comfort, and the dataset presents an exciting 

opportunity to model thermal comfort based on the exact indoor temperature instead of just heating and 

cooling set points. Furthermore, it provides a high density of data points per geographic area representing 

diverse user preferences and environments. A complete list of the timeseries and metadata points available in 

the dataset is listed in the Appendix.  

The Thermal Comfort Model 

Thermal comfort modeling concentrates on understanding the thermal preferences of people 

occupying a space. Typically, these preferences are acquired through one of two methods: active solicitation 

of feedback, where occupants explicitly report their comfort levels, or passive inference, where the system 

deduces preferences based on how occupants interact with their heating, ventilation, air conditioning (HVAC) 

—for example, adjustments to temperature settings or changes in usage frequency and timing [81]. 

Active methods involve directly asking residents for feedback or using interfaces to record their 

comfort levels. In contrast, passive methods track adjustments made to environmental controls, assuming 

that these adjustments reflect the residents’ comfort needs. For example, if an occupant consistently lowers 

the temperature setting on the thermostat, it is inferred that they prefer cooler conditions. While actively 

seeking direct feedback can provide accurate data, it requires continuous resident engagement, which can be 

burdensome and lead to response fatigue. Additionally, occupants may not always be willing or able to 

provide regular and accurate reports of their comfort levels, which can result in gaps or inaccuracies in the 

collected data. 
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To avoid requiring explicit feedback, this model uses a passive inference approach that relies on 

direct temperature data within households to estimate the comfort levels of the occupants. In the literature, 

adjustments in thermostat setpoints often indicate an occupant’s thermal preference [82] [83] [84]. Although 

this method has some drawbacks, such as imperfect knowledge of the overall system, varying thermal attire, 

and individual physiological differences, it is still a good proxy to determine thermal comfort without direct 

sensation ratings. The primary assumption is that the acceptable temperature range for occupants is the range 

of temperatures they experience when they are in their household and the HVAC system is inactive, 

indicating that the ambient temperature is within their comfort zone. 

The approach used in this model involves segmenting data based on a household's seasonal and 

climatic settings, considering the heating and cooling seasons and the home and sleeping climate settings. 

Looking at the ERCOT’s time of year segmentation for their analysis reports, the seasons are segmented 

where a Peak Season is defined as June - September, and all other months are Non-Peak [85]. Based on prior 

analysis of smart thermostat data, the home schedule was considered from 6 AM to 10 PM, and the sleep 

schedule was started at 10 PM and continued until 6 AM [86]. By creating a probability distribution of the 

internal household temperatures, the model can predict the most likely thermal comfort conditions 

experienced by the occupants. A Kernel Density Estimation (KDE) with a Gaussian kernel is used to make 

the distribution. KDE is a non-parametric method used to estimate the probability density function of a 

random variable. It smooths out the distribution by assigning weights to contributions around each data point 

using a Gaussian (bell-shaped) curve. This flexible method models the temperature preferences within a 

household without making rigid assumptions about their distribution. This smoothing is crucial for capturing 

the nuances in the dataset, allowing for a better representation of the temperature ranges that individual 

occupants find comfortable. Using KDE, we obtain a probabilistic model that respects the varied nature of 

comfort across different households and adapts to the subtle shifts in preferences that may occur within 

individual homes over time. 

Segment Months Home Away 

Peak Jun, Jul, August, Sept 6 AM to 10 PM 10 PM to 6 AM 

Non-Peak Jan, Feb, Mar, Apr, May, Oct, Nov, Dec 6 AM to 10 PM 10 PM to 6 AM 

Table 4.2.1: Segmentation of thermal comfort profiles based on season and time of day 

 

Gaussian Kernel Distribution  

Given a set of 𝑛𝑛 data points {𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑥𝑥}, the Gaussian KDE at any point 𝑥𝑥 is given by 
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Where h=5 is the bandwidth, a positive parameter affecting the kernel's width. Each term in the 

summation calculates the contribution of the kernel centered at a data point 𝑥𝑥𝑥𝑥 to the overall density estimate 

at the point 𝑥𝑥. 

Figure 4.2.1 provides a visual representation of applying the KDE transformation over the ecobee 

timeseries data for a year, creating a probability distribution representing an individual’s thermal comfort 

profile segmented by season and climate mode. The probability represents the likelihood that a household 

occupant will feel comfortable at a given temperature. For the model, a 50% threshold is determined as the 

lowest point of thermal flexibility to which the control agent can push the thermostat setpoint range before 

the user’s thermal comfort is sacrificed. Due to utilizing the KDE for smoothing, the probability can drop 

below 0, but this is a mathematical byproduct rather than a direct physical measure. In reality, the lowest 

probability would be 0. The figure illustrates how climate settings can vary significantly between daytime and 

nighttime and across cooling and heating seasons. The broader shape of the "Cooling Home" curve suggests 

a wider acceptable temperature range during active periods, influenced by daily activities and a higher 

tolerance for moderate indoor temperatures or a desire to reduce energy bills during hotter summer days. The 

key takeaway is that by modeling individual comfort profiles by season and climate setting, the model can 

more accurately segment household behaviors and climate preferences, tailoring HVAC control to individual 

users' needs. Table 4.2.2 provides the summary characteristics of the thermal comfort profile in Figure 4.2.1, 

including the 50% and 0% temperature bounds.  

 

Figure 4.2.1: An example of Thermal Comfort Profile Probability Distribution by Season and Climate 
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 100% Temp (°C) 50% Temp Range (°C) 0% Temp Range (°C) 

Cooling Home 23.4 21.8 - 24.5 20.1 - 27.5 

Cooling Sleep 21.3 20.4 - 22.2 15.6 - 27.5 

Heating Home 21.2 20.0 - 23.1 15.7 - 25.8 

Heating Sleep 21 19.6 - 22.1 15.6 - 26.6 

Table 4.2.2: The summary characteristics of a single thermostat profile 

 

Expanding the Comfort Zones 

A recent study published in Nature sheds light on how humans perceive changes in environmental 

temperature and created a metric for the smallest temperature difference that humans can detect 50% of the 

time, called the Just Noticeable Difference (JND). The JND for temperature was found to be 0.38°C, 

indicating that individuals could detect a temperature change of 0.38°C with 50% accuracy. However, the 

threshold where 95% of participants can detect a temperature change, known as JND95, is +/- 0.92°C. 

Notably, the results were consistent among all participants, regardless of their temperature preferences. These 

findings are significant in understanding the energy flexibility available while optimizing energy usage and 

thermal comfort. Therefore, the comfort bands in the model were adjusted based on the empirical insights 

obtained from the study. The adjustment was made by setting the comfort bands at a minimum of +/- 

0.92°C around the highest probability temperature points for those whose 50% comfort thresholds did not 

meet the 1.84°C comfort band breadth. This adjustment reflects the Just Noticeable Difference with 95% 

confidence, ensuring that the temperature changes within this range are perceptible yet not discomforting for 

most individuals and provide a minimum value to which thermal flexibility can be controlled [87]. 

4.3 Reinforcement Learning 

A Quick RL Primer 

Reinforcement Learning (RL) is a computational method that learns by interacting with an 

environment to solve a problem, known as a Markov Decision Process (MDP) [88]. The MDP, which is 

essential to the RL framework, is based on the Markov Property, meaning that the future state of the 

environment depends only on its current state and not on the sequence of events that came before it. An 

MDP consists of four key components: a set of states (𝑆𝑆), a set of actions (𝐴𝐴), a probability distribution that 

determines the likelihood of transitioning from one state to another (T), and a reward function (𝑅𝑅) that 

assesses the benefits of actions taken from certain states. 
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In simple terms, a Reinforcement Learning (RL) agent starts by observing its current state 𝑠𝑠𝑡𝑡 and 

then chooses to perform an action 𝑎𝑎𝑡𝑡 from the set of possible actions. These actions could be either discrete, 

as in a game of chess where the agent selects from a predefined set of moves, or continuous, such as a self-

driving car making navigational decisions on an open road. The chosen action 𝑎𝑎𝑡𝑡 impacts the environment 

and causes the state to transition to a new state 𝑠𝑠𝑡𝑡+1, during which the agent receives a reward or penalty. This 

feedback, represented as reward 𝑟𝑟, indicates the effectiveness of the chosen action in achieving the desired 

outcome. The primary goal of the RL agent is to maximize the cumulative reward over time. To accomplish 

this, the agent continuously refines its decision-making process based on the feedback received from each 

action. By adapting its policy 𝜋𝜋 through experiential learning, the RL agent enhances its ability to make 

optimal decisions that align with the overall objectives of the learning process. This iterative feedback and 

adjustment process allows the RL agent to develop sophisticated policies that effectively navigate the 

complexities of the environment it is interacting with. 

 

 

Figure 4.3.1: A high-level overview of how an agent interacts with a reinforcement learning environment 

 

For this study’s scenario, the RL agents have been assigned to adjust the thermostat’s heating and 

cooling setpoint at every timestep, affecting the indoor temperature. Each timestep has a 30-minute duration. 

Different timestep duration settings were tested, including 10 minutes, 15 minutes, 30 minutes, and 1 hour. If 

the control frequency was too high, the setpoint control changes did not immediately impact the 

environment. If it were too low, the thermostat would make more drastic changes to overcompensate for the 

time lag of the larger timesteps. A mid-point of 30 minutes was found to be the most optimal duration. Once 

the setpoint adjustment has been made, the agent is either rewarded or penalized based on two core factors: 

the power usage of the HVAC system multiplied by the current electricity price and the level of occupant 
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comfort (a more nuanced breakdown of the reward function is below). Through continuous interaction, this 

setup teaches the agent about the underlying dynamics of the HVAC system, as well as the tradeoff between 

energy consumption and electricity costs. As the agent experiences the outcomes of different setpoints, it 

learns to balance the goal of reducing energy consumption, particularly during peak periods, with maximizing 

occupant comfort. A detailed list of the Action Space and Observation (state) Space follows. 

Action Space 

The system utilizes two continuous control actions to adjust the heating and cooling set points. This 

dual action system allows for independent modification of each set point, providing precise environmental 

control within the simulated space. To optimize the learning process and ensure practical applicability, the 

action spaces were individually tailored to each thermostat profile before integration into the learning 

environment. By predefining the action space boundaries based on realistic and feasible settings from user 

profiles, the training phase of the model was able to spend less time searching out of bound temperatures and 

more time refining the control. This approach simplifies the complexity often associated with continuous 

action spaces by limiting the range of actions to those most relevant and likely to be utilized by actual users. 

Specifically, the maximum and minimum values from the ‘Expected Cool’ and ‘Expected Heat’ settings from 

each ecobee thermostat were used to delineate the boundaries for the cooling and heating continuous action 

spaces, respectively. Table 4.3.1 lists the definitions of the continuous action spaces. 

Action Type Parameter Minimum Value Maximum Value 

HVAC Cooling Expected Cool min(x)°C max(x)°C 

HVAC Heating Expected Heat min(y)°C max(y)°C 

Table 4.3.1: The action space for the reinforcement learning environment  

 

Observation Space  

The reinforcement learning model considers various environmental and operational parameters in its 

observation space to evaluate the current state and make informed decisions. This space includes 

environmental and time-related metrics, reflecting the dynamic nature of HVAC operations and energy 

consumption. A foresight feature was also encoded into the observation space to deliver upcoming energy 

prices before usage. This feature provides the next 2.5 hours of energy prices, allowing the model to adjust its 

strategies in response to impending price changes preemptively. This is similar to how a smart thermostat, or 

an informed user would operate ahead of a time-of-use rate increase. By adding these values to the state 
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space, the model can take actions such as pre-heating or cooling the building to reduce costs during peak 

periods. Table 4.3.2 summarizes the components of the observation space. 

Parameter Description 
Day of Week Monday - Sunday 
Energy Price ($) Current electricity cost 
HVAC Cooling Electric Power (kW) Power used by the cooling system 
HVAC Heating Electric Power (kW) Power used by the heating system 
Hour of Day Time of day 
Month Month of the year 
Rate Type Type of energy billing 
Climate Mode The operational mode of HVAC 
Temperature - Indoor (C) Indoor ambient temperature 
Temperature - Outdoor (C) Outdoor ambient temperature 
Total Electric Power (kW) Total electricity usage 
Net Sensible Heat Gain - Indoor (W) Heat gain inside the building 
Window Transmitted Solar Gain (W) Solar heat gain through windows 
Lookahead - Future Energy Prices (2.5h) The following six energy rates in the future 

Table 4.3.2: The observation space for the control environment 

 

Crafting The Reward Function 

The reward function guides the agent toward the desired behavior, balancing thermal comfort and 

energy efficiency. The overall reward 𝑅𝑅 at each timestep is a composite of a thermal comfort and energy 

efficiency reward, an energy penalty, and a small action regularization penalty. The weights, 𝑤𝑤1, 𝑤𝑤2, and 𝑤𝑤3, 

are additional hyperparameters used to balance the trade-off of thermal comfort and energy usage. 

𝑅𝑅 = 𝑅𝑅thermal + 𝑤𝑤1𝑅𝑅efficiency − 𝑤𝑤2𝑅𝑅energy − 𝑤𝑤3𝑅𝑅action 

The final weights used are as follows: 𝑤𝑤1 = 0.1 𝑤𝑤2 = 0.5 𝑤𝑤3 = .01 

Thermal Comfort Reward 

The thermal comfort reward is calculated based on the KDE-interpolated probability of the indoor 

temperature, representing the likelihood that the current temperature is within a comfortable range. A 50% 

threshold (the comfort range) is determined to be the lowest probability that the agent should allow the 

indoor temperature to deviate to optimize energy cost and flexibility. The detailed calculation of the thermal 

comfort reward is as follows: 

𝑅𝑅thermal = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇curr) − 𝜆𝜆2�max(𝑇𝑇min − 𝑇𝑇curr, 0)� + 𝜆𝜆3�max(𝑇𝑇curr − 𝑇𝑇max, 0)� 
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Where 𝑇𝑇curr is the current temperature, 𝑇𝑇min is the temperature threshold with a 50% probability of 

comfort on the left side of the distribution curve, and 𝑇𝑇max is the temperature threshold with a 50% probability 

of comfort on the right side of the distribution curve. 

The reward is adjusted to increase the penalty for temperatures outside the desired comfort range 

(thermal comfort probability > 50%), with 𝜆𝜆2 and 𝜆𝜆3 serving as a tuning parameter to control the influence 

of the trapezoidal penalty when outside of the range. Additionally, the function applies a quartic root 

transformation to the KDE-derived probability if it exceeds 0.5 to smooth out the reward’s curve towards 

unity while keeping the original shape of the distribution to ensure that the highest rewards are granted for 

temperatures within the optimal comfort zone. This is a crucial distinction. Instead of providing a fixed or 

linear reward for probabilities over 50%, the curve gradient allows the model to make informed tradeoff 

decisions about energy cost vs. thermal comfort. 

ComfortProbability = 0.5 + (1 − 0.5)�
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇curr) − 0.5

0.5 �

1
4
 

The lambda values for the equation are dynamically calculated for each thermostat to apply a 

trapezoidal penalty that still accounts for the shape of the KDE distribution but provides a large negative 

penalty for values past the 50% probability. The calculation for the 𝜆𝜆2 and 𝜆𝜆3 are below:  

𝜆𝜆2 

1
max�𝑇𝑇min − 𝑇𝑇min0 , 0.01�

 

𝜆𝜆3: 

1
max�𝑇𝑇max0 − 𝑇𝑇max, 0.01�

 

Where 𝑇𝑇min0 is the temperature threshold with a 0% probability of comfort on the left side of the 

distribution curve, and 𝑇𝑇max0 is the temperature threshold with a 0% probability of comfort on the right side of 

the distribution curve. 

Energy Efficiency Reward 

The efficiency term, 𝑅𝑅efficiency, is calculated to promote energy efficiency based on the current 

temperature, the season (cooling or heating), the energy price, and the normalized energy use and is only 

applied when the current temperature is within the desired comfort range (above the 50% probability 

threshold), otherwise it is set to 0. The efficiency term helps encourage energy-efficient temperature settings 
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while considering the energy price and normalized energy use. Initially, the algorithm tended to optimize 

solely for the highest probability temperature, quickly learning that any deviation decreased rewards. As a 

result, the agent did not adequately explore the environment to find a better trade-off between sacrificing 

positive comfort rewards in favor of reducing energy usage when prices were high. Despite the SAC 

algorithm being explicitly chosen for its ability to explore complex environments, the thermal inertia in 

building environments—where it takes time for thermostat changes to manifest—caused the agent to get 

stuck in local minima. To address this problem, the reward function was redesigned to include efficiency 

rewards, providing the agent with additional signals of positive actions rather than relying solely on 

maximizing thermal comfort. Incorporating the efficiency term into the reward function significantly 

enhanced the reinforcement learning algorithm, enabling it to explore and converge toward policies that 

balance occupant comfort and energy efficiency. The term is calculated as follows: 

Case 1:  

When the current temperature is within the desired comfort range (𝑇𝑇min < 𝑇𝑇current < 𝑇𝑇max): 

If the season is Cooling: 

𝑅𝑅 efficiency price = min�(𝑇𝑇current − 𝑇𝑇min) ⋅
𝐸𝐸price,t

E usagenormalized,𝑡𝑡 + 0.01 ⋅ 𝑤𝑤efficiency, 2� 

If the season is Heating: 

𝑅𝑅efficiency price = min�(𝑇𝑇max − 𝑇𝑇current) ⋅
𝐸𝐸price,t

E usagenormalized,𝑡𝑡 + 0.01 ⋅ 𝑤𝑤efficiency, 2� 

In both cases, the efficiency term is calculated as the product of the temperature difference (between 

the current temperature and the minimum or maximum temperature as defined by the individual’s thermal 

comfort range), the ratio of energy price to normalized energy use (with a small constant of 0.01 added to 

avoid division by zero), and a scaling factor of 𝑤𝑤efficiency = 0.1. The resulting value is then limited to a 

maximum of 2. 

Case 2 

An additional efficiency boost was given when the current temperature is within the desired comfort 

range but deviates from the highest probability temperature, signaling that it is on the more energy-efficient 

side of the thermal comfort range based on the season. As mentioned above, this boost encourages the agent 

to explore temperature settings outside the highest probability when energy prices are higher. If the current 

temperature is higher than the highest probability temperature for the cooling season, the efficiency reward 
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increases to reflect the improved energy efficiency. Conversely, the reward similarly increases during the 

heating season if the current temperature is lower than the highest probability temperature. The logic is: 

If the season is Cooling and 𝑇𝑇current > 𝑇𝑇highest_prob: 

𝑅𝑅efficiency = 𝑅𝑅efficiency price + �𝑇𝑇current − 𝑇𝑇highest_prob� ⋅ 𝑤𝑤temp ⋅ 𝐸𝐸price 

If the season is Heating and 𝑇𝑇current < 𝑇𝑇highest prob: 

𝑅𝑅efficiency = 𝑅𝑅efficiency price + �𝑇𝑇highest prob − 𝑇𝑇current� ⋅ 𝑤𝑤temp ⋅ 𝐸𝐸price 

The reward is calculated as the absolute difference between the current and highest probability 

temperatures, multiplied by a factor of 𝑤𝑤temp = 0.2 and the energy price. This additional term in the efficiency 

reward signals to the agent that exploring the upper end of the thermal comfort range during high-price 

periods is more beneficial. If the reward collected from deviating from the highest probability temperature 

(deviation times energy price) is greater than the loss of reward value from deviating from the value received 

as a comfort reward, it will make sense to move towards the upper bounds of the thermal comfort range. In 

contrast, when energy prices are lower, the efficiency reward for deviating from the highest probability 

temperature is less significant. Therefore, the agent finds it more optimal to maintain the highest probability 

temperature, balancing comfort and energy efficiency across varying price scenarios. Note: If the current 

temperature is outside the desired comfort range (𝑇𝑇current ≤ 𝑇𝑇min or 𝑇𝑇current ≥ 𝑇𝑇max), the efficiency term is set 

to zero: 𝑅𝑅efficiency = 0. 

Energy Penalty  

The energy penalty reward, on the other hand, is defined as: 

𝑅𝑅energy = 𝐸𝐸usage × 𝐸𝐸price 

where energy usage is log normalized against a benchmark energy use for the given timestep’s month, 

calculated as 

Eusagenormalized,𝑡𝑡 =
𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸𝑡𝑡 + 1)
𝐸𝐸benchmark

 

𝐸𝐸benchmark is calculated using the mean log normalized energy consumption hours in each month 

under OCHRE’s standard Rule-Based Controller. Before each dwelling was simulated, the setpoints were 

manually adjusted to reflect the highest probability temperature for each matched simulation building to 

thermostat profiles. This benchmark also served as the standard operating benchmark for each building 

simulation and was used as the baseline when comparing the different rate outcomes. 
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Action Regularization Penalty 

L2 regularization is a technique that enhances the effectiveness and efficiency of control signals by 

providing small negative rewards for significant fluctuations in signals. For thermostat settings, this promotes 

stable temperature regulation. Stable temperature regulation is crucial for maintaining a consistent indoor 

environment and reducing the wear and tear on the HVAC system, which results from frequent cycling on 

and off. Every time HVAC systems are activated, they incur startup energy costs, and the frequent switching 

can lead to accelerated degradation of system components. The L2 regularization helps to prevent these 

issues by discouraging large swings in thermostat settings. This approach aids in smoothing out temperature 

variations throughout the day, leading to a more stable indoor climate from one timestep to the next. Without 

such regularization, the thermostat might adopt an optimal policy that frequently toggles the system on and 

off to optimize short-term efficiency rewards, particularly in fluctuating energy prices. Moreover, the 

inclusion of L2 regularization helps the agent recognize the delayed impact of actions on the environment 

and helps prevent the agent from creating a false representation of HVAC control settings whereby it 

determines more significant increases in the control settings will change the internal temperature of the 

environment faster. This understanding is beneficial for strategies like pre-cooling, where the rewards for 

actions taken are realized later. This technique improves the agent’s ability to manage the temperature 

consistently and effectively by aligning the system’s operation more closely with real-world dynamics and 

costs. It also avoids the discomfort and annoyance of continuous noise and temperature fluctuations. 

The Action penalty is formalized as follows: 

𝑅𝑅action = �𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
2 + �𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2
 

Where 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are the current heating and cooling setpoints and 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

are the setpoints from the previous timestep. 

Why Benchmarking  

One of the key challenges in reinforcement learning is how to properly shape rewards given to the 

agent. In the case of this control problem across many building archetypes, the reward signals need to be 

appropriately scaled to achieve the desired effects across different settings. The core principle is to align the 

usage penalty with the comfort reward as closely as possible, forcing the algorithm to make calculated 

tradeoff decisions.  However, high energy usage variability among buildings makes applying a consistent 

reward function to all the simulations challenging. To address this, the reward function needed to be designed 

to be generalizable, ensuring broader applicability. Thus, normalization of energy usage was necessary. This 

scaling proves effective for most households and balances energy penalty and comfort rewards around a 

scaled value of 1. However, in extreme conditions, such as under critical peak pricing or severe weather 
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events leading to high energy usage, the penalty portion of the reward could exceed 1. In such situations, the 

reinforcement learning agent must evaluate how much violation of energy comfort is justifiable against 

excessive energy use. This approach enhances the model’s adaptability and decision-making in diverse 

operational environments, and normalization allows for scalable comparison across the buildings.  

To normalize the data, an adaptive rolling window approach was first used to calculate the average 

energy usage of a building. This approach aimed to adjust dynamically to the building’s energy patterns. 

However, this method faced a cold start and a runaway problem. First, the initial observations didn’t have 

enough data to set the rewards accurately. Second, the calculated average escalated continually during the 

heating season. This led to progressively higher baseline energy assumptions. As described previously; to 

solve this problem, the algorithm was given benchmarked data that utilized the log normalized mean of the 

energy usage at every timestep. This was the most effective strategy to familiarize the model quickly with the 

building’s dynamics. Interestingly, it was discovered that the average energy usage at each timestep was 

enough for the algorithm to determine what a typical energy profile should look like. This simplified 

approach made the initial learning phase more efficient and stabilized the reward calculations.  

Transition Hours  

One crucial improvement in this study over previous work involved creating multiple set point 

schedules tailored to individual sleep and heating preferences. This is an essential factor as it reflects realistic 

household behaviors. This customization is particularly significant because it accounts for possible end-of-day 

rate shifts, which could coincide with increased energy demands from nighttime electric vehicle charging 

activities. A transition period, T, was established to help the reinforcement learning agent understand the 

transition between typical home and sleep-specific climate settings. This period averaged the sleeping and 

cooling probability distributions and served as a guide for adjusting between the home and sleep climate 

settings. Incorporating this transition was crucial to mitigate energy spikes during the set point change, 

ensuring a smoother and more gradual energy consumption shift. This approach is particularly beneficial for 

households with significant variations in their thermal preferences between day and night. Without such a 

transition adjustment, the model could risk aggressive over-corrections, potentially leading to suboptimal 

thermal comfort and energy inefficiency. Introducing a calibrated transition period allowed the agent to more 

accurately and gently adapt to the appropriate set point schedules, enhancing energy efficiency and occupant 

comfort. For this study, the transition period was set as two hours after the sleep schedule and two hours 

after the home schedule. 
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Summing Up the Reward Function Design 

The reward function was designed to balance the flexibility of the thermostat between the 50% and 

100% comfort thresholds. This range sets the minimum target for the reward function to ensure significant 

energy efficiency while maintaining comfort. A substantial reward reduction was implemented if the 

temperature exceeded this preferred zone to discourage it. However, the function is not rigidly cut off at this 

threshold. It can handle exceptional situations involving extreme energy prices, such as critical peak pricing, 

coupled with high usage. In such cases, the model must decide whether each marginal increase in energy 

usage can be optimized for thermal comfort and justify deviating from optimal comfort levels. A steeply 

sloped negative reward is applied for each comfort decrease below the 50% threshold. This compels the 

model to weigh the energy cost against the decrease in thermal comfort. This design ensures that the model 

strives to maintain comfort while also dynamically adjusting its strategies based on the severity of the 

circumstances. By integrating these components, the reward function encapsulates both critical aspects of 

HVAC control—comfort and cost—providing a quantitative measure that the RL agent aims to maximize 

over time. Figures 4.3.2-4.3.4 are samples from the training logs used to monitor the agent’s progress. They 

provide visual insights into how the model’s training improves from the first rollout to the last before training 

ends. Figure 4.3.2 breaks down each of the components of the reward function by timestep. Even though the 

rewards are segmented, the agent only receives the cumulative value and can derive what environment states 

returned what reward value. Figure 4.3.3 highlights how the agent learns to maximize the internal temperature 

while utilizing pre-heating and pre-cooling strategies before the rate switch. Figure 4.3.4 displays the internal 

temperature of the environment across each timestep whereby the agent learns to maximize towards the 

higher end of the temperature spectrum.  

 

Figure 4.3.2: The reward function’s components over the training steps (from timestep 17,280 to 967,860) 
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Figure 4.3.3: The model’s adjustment of the electricity usage and indoor temperature. The left side of the 
charts represent the electric energy and the right side the indoor temperature (from timestep 17,280 to 967,860) 

 

 

Figure 4.3.4: The internal temperature adjustments over time with the gray zones representing the temperature 
is within the 50% thermal comfort probability (from timestep 17,280 to 967,860) 

 

Final Steps: Choosing an Algorithm 

Off-Policy vs. On-Policy  

In reinforcement learning, agents can use two types of algorithms to learn and make decisions: On-

Policy and Off-Policy. On-policy algorithms require the agent to learn and improve upon the same policy it 

uses to make decisions. This means that the agent learns from the direct consequences of its actions under 

the current policy. On the other hand, Off-Policy algorithms allow the agent to learn a potentially optimal 

policy while acting on a different, possibly exploratory policy. This method provides greater flexibility and 

enables the agent to learn from a broader range of actions. The choice between these two algorithms can 
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impact the learning speed, the safety of the learning process, and the agent’s ability to handle new scenarios. 

On-policy algorithms are more conservative, while Off-Policy algorithms allow for a more robust exploration 

of possible strategies. An On-policy algorithm is more adept for scenarios where safety, stability, and 

adherence to specific behavior patterns are prioritized, such as when a robot operates alongside human 

counterparts. However, an Off-Policy algorithm was chosen for this work to allow for extensive exploration 

of the action space and more aggressive learning of optimal strategies. 

Deep RL 

Deep Reinforcement Learning (DRL) algorithms represent an advanced subset of reinforcement 

learning techniques that integrate deep learning. This integration allows DRL to handle highly complex 

decision-making environments by using deep neural networks to approximate functions, which traditional RL 

methods may struggle with due to their complexity or the sheer volume of data. 

Actor-Critic Methods  

Actor-critic methods are a popular type of algorithm used in reinforcement learning. These methods 

involve two models: an actor and a critic. The actor selects actions, and the critic evaluates how good the 

actor’s action is. This separation enables more efficient processing and learning because the critic’s feedback 

continuously helps refine the actor’s policy decisions. The actor learns to perform actions that maximize 

rewards, while the critic estimates the value of being in a particular state and evaluates the actions’ quality. 

Soft Actor-Critic Algorithm  

One popular Actor-Critic reinforcement learning algorithm variant is the Soft Actor-Critical (SAC) 

algorithm. SAC adds an entropy term (ambiguity in the decision-making process) to the reward function, 

incentivizing the actor to choose uncertain actions. This promotes a balance between exploring new actions 

and exploiting known strategies, leading to improved exploration capabilities and faster convergence. As a 

result, SAC is a highly effective algorithm for environments with many local optima that could trap less 

robust algorithms. In optimizing energy cost and consumption while maintaining comfort, the SAC algorithm 

has proven to be particularly effective, especially when using a continuous action space instead of discrete 

(ON/OFF) thermostat actions [89]. Some studies have shown that SAC achieves stable performance with ten 

times less data than on-policy methods [90]. Its ability to continuously explore and exploit makes it adept at 

finding and maintaining optimal balance. Due to its ability to balance sample efficiency and exploration, the 

SAC algorithm from the Stablebaselines3 library was utilized [91]. 
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Chapter 5. The Environment and Simulation 

Austin, Texas, was chosen as the area of interest due to its high summer peak loads. Oiko Lab 

provided the 2023 AMY weather data, and ecobee's thermostat data was collected for the same year [92]. The 

selected simulation timeframe accounts for post-pandemic behavior patterns, especially work habits, and 

aligns with how people who have settled into permanent work-from-home situations or returned to offices 

have been operating. Specifically, the simulation ran for 90 days, starting from June 1st, 2023, to cover the 

summer months. Austin is situated in the Texas Interconnection, operated by the Electric Reliability Council 

of Texas (ERCOT), an Independent System Operator (ISO) that provides electricity to over 26 million 

customers in Texas, representing 90% of the state's electric demand [93]. A unique aspect of ERCOT is that 

most residents must pick their electric supplier upon sign-up for electricity instead of defaulting to the 

distribution company's electric supply plan. As a result, over 140 active retail electric suppliers offer retail 

electricity rates to consumers [94]. Interestingly, this system incentivizes market participants to design 

different electricity tariffs tailored to individual preferences rather than locking all participants into default 

fixed rates. With that said, Austin, Texas, is unique in that it is serviced by Austin Energy, a publicly owned 

utility by the City of Austin. It does not provide residents with alternative supply options and uses a 

progressive tiered rate structure that increases the charge for electricity based on the incremental amounts 

above a tiered threshold, much like the federal tax system [95].  

Lastly, to help the model converge faster, the HVAC heating action was adjusted. This was done 

because the simulation runs during the summer months in a cooling-dominated climate. The HVAC heating 

power was set below 20°C during the summer months to avoid providing action noise. This adjustment is 

based on reality, where smart thermostats have settings that only allow heating or cooling use based on the 

time of the year. 

Location Year Start Date Duration Total Timesteps Simulated 

Austin, Texas 2023 June 1st, 2023 90 days 4,320 timesteps per environment episode 

Table 5.0.1 Study Design Parameters 

 

5.1 Mapping Resstock to ecobee 

To connect the buildings in the Resstock dataset with the thermostats in the ecobee dataset, each 

home needed to be matched to a thermostat. This mapping allows the simulation environment to establish a 

link between the simulated building types and the real-world thermostat data. The ecobee dataset underwent a 
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thorough cleansing process to ensure data quality and consistency. The process involved removing duplicate 

account IDs, thermostats with incomplete information (missing internal temperatures, expected heat, or cool 

settings), thermostats that did not have building type information, and outliers such as buildings over 120 

years old or those with an area of 10,000 square feet. Following the cleansing process, the final ecobee dataset 

included 597 thermostats suitable for clustering analysis. To pair with these thermostats, 110 homes were 

sampled for the simulation in Resstock. However, seven homes could not be mapped due to multi-source 

heat pump compatibility issues within OCHRE. So, the sample was reduced to 103 homes. Resstock uses a 

down-sampling technique that automatically generates building representations covering the region's 

segmentation, including various home types, vintages, envelope characteristics, and heating/cooling system 

types. This approach adds robustness because the sampled homes accurately represent the diverse building 

stock in the region of interest. 

Clustering  

To ensure a representative distribution of the ecobee thermostat profile data on the limited number 

of Resstock samples, a K-Nearest Neighbor (KNN) clustering algorithm was used on the thermostat profiles. 

This was done by computing each thermostat's ideal comfort profile and analyzing the "Cooling" season 

settings based on the lower and upper bound 50% threshold for the home and sleep climate schedules. The 

KNN algorithm was preferred to group similar data points based on their proximity in the feature space. The 

clustering was performed separately for each thermostat building type after aggregating similar types in the 

ecobee dataset: Detached, Attached, and Multiunit. Evaluation metrics include the elbow method, Silhouette 

coefficient, and Davies-Bouldin index to determine each building type's optimal number of clusters. These 

metrics assess the clusters' compactness, separation, and overall quality. After careful review, the following 

cluster sizes were chosen: Detached - 6 clusters, Attached - 7 clusters, and Multiunit - 6 clusters. Figures 5.1.1 

and 5.1.2 below visualize the clusters based on their Cooling Home Min and Cooling Home Max thermostat 

settings. The linear bottom shape is due to manually extending the thermal comfort profiles of all residents to 

be +/- 0.92°C. 

 

Figure 5.1.1: The grouping of clusters by building type. The y-axis is the maximum cooling temperature for the 
home climate setting, and the x-axis is the minimum temperature for the home climate setting 
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Figure 5.1.2: The temperature range (for Cooling and Home climate setting) for each of the different clusters 

broken out by building type 

 

Mapping Approach  

Clusters were formed based on the ecobee thermostat metadata, and a mapping algorithm was used 

to match thermostat profiles to corresponding Resstock building profiles. The objective was to ensure that 

each Resstock building was paired with the most suitable thermostat profile while maintaining the distribution 

of housing archetypes from Resstock and the thermal preferences captured by the ecobee thermostats. Figure 

5.1.2 provides an overview of the methodology. The mapping algorithm employed a distance-based search to 

find the closest match between each Resstock building and the available thermostat profiles within the same 

building type and cluster. A combination of normalized features was used to calculate the distance, including 

the vintage year, number of floors, floor area, and the presence of a heat pump. These features were selected 

to capture the similarity between the building characteristics and the thermostat settings. 

The algorithm used for the mapping process involved iterating over each building type, such as 

detached, attached, or multiunit, and their respective clusters. The number of buildings assigned within each 

cluster was determined based on the cluster percentages obtained from the clustering analysis. The algorithm 

then calculated the distances between each unassigned building and the available thermostat profiles within 

the cluster. The building-thermostat pair with the shortest distance was considered the best match and 

assigned accordingly. This process was repeated until all buildings within the cluster were assigned a 

thermostat profile or until no more suitable matches were found. If any buildings remained unassigned after 

iterating through all clusters, the algorithm performed an additional assignment round. It searched for the 

closest match among the unassigned thermostats, regardless of the cluster, to ensure all buildings were paired 

with a thermostat profile. The distance-based mapping approach linked each Resstock building with the most 

representative thermostat profile while preserving the distribution of housing archetypes and thermal 

preferences. The clustering and mapping approach mapped the 597 thermostats to 103 Resstock buildings. 

See the Appendix for the full breakdown of the clusters.  
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Figure 5.1.2: An overview of the mapping methodology to align thermostat comfort profiles to Resstock 
housing stock buildings  

 

5.2 Utility Rates 

This simulation analyzed four different utility rates to assess their impact when combined with automated 

thermostat control. This study focuses only on the electricity supply portion of a residential electric bill as this 

portion is directly exposed to the wholesale retail electric market. It does not consider the distribution, 

network, or transmission fees associated with an electric bill. Each rate was chosen to represent a distinct 

pricing structure: 

1. Fixed Rates: These rates were calculated using the Load Weighted Average Price from historical 

Day Ahead prices in ERCOT during 2023. The average rate for each hour throughout the year was 

determined, providing a baseline rate that reflects general market conditions without considering 

intra-day fluctuations. 

2. Power Shift - Rhythm Energy: Rhythm Energy uses a power shifting rate structure that applies 

peak rates from 6 PM to 10 PM daily, from April to December. Georgetown, Texas, was selected due 

to its location in the South-Central Load Zone of ERCOT, which includes Austin. This decision was 

made because Austin consumers do not have the option to choose their supplier. The rate mentioned 

here was accessed from the Rhythm Energy website on May 9, 2024. 

[96] 

Figure 5.2.1: The Power Shift rate, inspired by Rhythm energies summer rate 
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3. TOU Optimized: This rate structure is constructed using a partitioning algorithm proposed by Yang 

and Schittekatte [97] [28]. It divides hours into Time of Use (TOU) periods, with a maximum of 

three daily periods. The algorithm calibrates based on Day Ahead price patterns and a clustering 

method from Yang et al. (2019). Each period lasts at least three consecutive hours and reflects a 

more dynamic pricing model designed to encourage energy use that aligns more closely with grid 

demands. These periods can repeat within the same day, such as off-peak, shoulder, peak, and 

shoulder. A more detailed overview of the partitioning algorithm is available in the Appendix. 

4. TOU Optimized with CPP: This rate plan includes five critical peak pricing (CPP) events based on 

the ERCOT South Central Load Zone peak load and combines them with the optimized TOU 

structure above. Each critical peak pricing event lasts three hours and is scheduled during the highest 

load periods observed from June to August 2023. These events signify a time of significant stress on 

the power grid. To minimize the energy load during these critical times, the hour and the hours 

preceding and following each peak are designated as the "3-hour" Critical Peak pricing window. If all 

5 of the peak hours could be reduced to the 6th highest peak in 2023, it would result in a 364.85 MW 

reduction across the South-Central zone. Figure 5.2.2 and Table 5.2.1 below show the peak electricity 

usage for the South-Central Peak Load Zone [98]). 

 

Figure 5.2.2: ERCOT South Central Load for June – September 2023. The red line represents the threshold set 
for the top 5 peaks in the system 

Date Peak Load (MW) 

08-17-2023 @ 17:00 15,174.02 

08-10-2023 @ 17:00 15,093.31 

08-09-2023 @ 17:00 15,057.03 

08-11-2023 @ 17:00 14,987.43 

08-08-2023 @ 17:00 14,953.16 

Table 5.2.1: Top 5 Peak Load days in (MW) for ERCOT's South Central Region 
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Final Rates 

Each rate was calibrated against the load-weighted average price from the day-ahead prices in the 

Austin Energy Zone within ERCOT [99] [98]. This calibration process ensured that the rates accurately 

reflected the South-Central region's energy demand and load characteristics during the simulation period. The 

final rates are outlined in Table 5.2.2 below after adjusting for the Load Weighted Average scaling. 

Rate Type Day Type Time Block Rate ($/kWh) 
Fixed - - 0.171 

Power Shift - 18:00 - 22:00 0.493 

 - All other times 0.092 

TOU Weekend 00:00 - 08:00 0.0227 

 Weekend 09:00 - 23:00 0.2424 

 Weekday 00:00 - 08:00 0.0206 

 Weekday 09:00 - 11:00 0.0325 

 Weekday 12:00 - 20:00 0.3232 

 Weekday 21:00 - 23:00 0.0325 

CPP - 17:00-20:00 1.216 

Table 5.2.2: Final rate designs used for the simulations 

 

5.3 Soft Actor-Critic Model and Hyperparameter Selection 

The success of the simulation heavily depends on tuning hyperparameters for the Soft Actor-Critic 

(SAC) algorithm. These values influence the learning dynamics of the model, affecting how quickly and 

accurately the model converges to an optimal policy. If the settings are inappropriate, the model may 

overshoot the optimal policy or fail to converge, especially in complex environments with nonlinear patterns 

and varying constraints. This becomes even more critical as the same algorithmic configuration is used in 

multiple environments with different physical properties and thermostat comfort profiles. Additionally, the 

environments have stochastic occupant schedules and diverse energy usage patterns that change with every 

environment reset. Effective hyperparameter tuning ensures that the SAC model can adapt to these dynamics, 

optimizing energy management strategies across varied scenarios without overfitting to any single 

environment. The final list of hyperparameters and their values are in Table 5.3.1. 
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Hyperparameter Value Description 

Learning Rate 0.003 Moderates update magnitude per learning step, balancing speed and stability. 

Batch Size 512 The batch size used for training provides a trade-off between stability and data diversity. 

Buffer Size 100,000 The capacity of the memory buffer to store experiences 

Tau 0.005 Ensures gradual integration of new knowledge 

Gamma 0.99 Discount factor for future rewards, emphasizing the importance of long-term gains. 

Train Frequency 32 Balances learning speed and resource use. 

Gradient Steps 32 The number of gradient steps per training session is linked to the depth of each learning update. 

Entropy Coefficient auto Automatically adjusts exploration versus exploitation to prevent suboptimal policy convergence. 

Target Entropy -2 Sets desired entropy to maintain a specific level of exploratory behavior in the policy. 

Table 5.3.1: Training hyperparameters for the Soft-Actor Critic (SAC) algorithm 
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Chapter 6. Results 

An efficient computational batching framework was designed to run on the MIT SuperCloud for the 

final simulation. The simulations ran for 1,000,000 timesteps, at which point the incremental rewards and the 

actor and critic loss metrics showed diminishing returns. Each simulation was aligned with a single rate 

structure to enhance the computational efficiency and specificity of the results. Initially, each Time-of-Use 

(TOU), Power Shift, and Fixed Rate were run simultaneously within a single simulation where a single agent 

was tasked to learn how to account for each rate. However, this approach did not yield generalizable results 

because cross-interference between rate structures led to atypical energy usage patterns. For example, the 

Fixed Rate, typically characterized by stable energy consumption, unexpectedly mirrored the pre-peak 

patterns of the TOU rate and attempted to pre-cool before a rate change, indicating a spillover effect from 

one rate structure to another. This observation necessitated the segregation of rate structures into separate 

simulations to isolate and accurately assess the impact of each agent. As a result, 309 (TOU and TOU CPP 

were run together) different models were processed in parallel through a batch job framework on the 

supercomputer, and the total training time lasted under 8 hours. A final data cleansing step was necessary to 

remove simulations that did not compute correctly, which left the final count of homes to 82. 

For the Benchmark, the simulations were compared against the OCHRE model runs with a basic 

rule-based control (RBC) setting. The purpose of this Benchmark was to replicate a typical scenario of 

consumer behavior, where the thermostat follows pre-set schedules based on the highest probability 

temperatures for cooling during day and night. This RBC setup was purposefully designed to be non-

responsive to price variations, which mimics a conventional thermostat that functions without dynamic 

adjustments to fluctuating electricity costs. Additionally, the study uses a set of Key Performance Indicators 

(KPIs) to measure how well each agent responded to each rate structure. These KPIs include Thermal 

Comfort Percentage, Thermal Comfort Maintained over the 50% Threshold, Total Energy Usage, 

Cost Savings, and Peak Reduction. Each indicator gives valuable information about different aspects of 

agent performance, from energy efficiency and cost-effectiveness to maintaining optimal thermal comfort for 

occupants. The results chapter will begin by evaluating the overall impacts. Then, it will explore how different 

segments of housing stock are affected. Finally, it will examine two specific examples, one high and one low 

level of flexibility. 

6.1 Thermal Comfort 

Thermal comfort is essential in determining the agent's success when combined with different rate 

structures. The main goal is to ensure that the control algorithm and the rate structure do not negatively 

impact the comfort of the occupants within their comfort range.  
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Thermal Comfort Percentage  

Using their personal thermal comfort probability distribution, this is the average probability of a 

user’s thermal comfort at any given time relative to indoor temperature. It can be expressed quantitatively as: 

Thermal Comfort Percentage =
1
𝑇𝑇�𝑃𝑃

𝑇𝑇

𝑡𝑡=1

(comfort at 𝑡𝑡) 

Where 𝑇𝑇 is the total number of timesteps in the simulation, and 𝑃𝑃(comfort at 𝑡𝑡) is the probability of the user 

being comfortable at timestep 𝑡𝑡, determined by the indoor temperature. 

Rate Type Mean (%) 

Benchmark 93.1 

Fixed 81.7 

Power Shift 82.9 

TOU 81.2 

TOU + CPP 81.4 

Table 6.1.1: Average thermal comfort probability for each of the rate types  

 

Table 6.1.1 above and Figure 6.1.1 below emphasize the Benchmark having the highest average 

thermal comfort percentage at 93.1%. This is expected since the Benchmark has set the temperature to the 

highest probable for comfort. The temperature transition period between sleep and home settings is why this 

percentage is not 100%. On the other hand, the agents under the different rate types demonstrate 

substantially lower (mean values range from 81.2% to 82.9%) and more variable thermal comfort percentages 

compared to the Benchmark. This intentional outcome reflects the effectiveness of the trade-off the agent is 

making between optimizing costs and achieving 100% thermal comfort. 

 

Figure 6.1.1: Thermal comfort probability by rate type 
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Thermal Comfort Maintained over the 50% threshold  

This measures the percentage of time during which the probability of thermal comfort was at least 

50%, emphasizing the agent's ability to maintain comfort levels above a minimally acceptable threshold: 

Thermal Comfort > 50% = �
Number of timesteps with 𝑃𝑃(comfort) ≥ 50%

𝑇𝑇 � × 100 

Rate Type Percentage Above 50% 

Benchmark 98.4 

Fixed 97.4 

Power Shift 97.6 

TOU 97.7 

TOU CPP 97.6 

Table 6.1.2: The percentage for timesteps above the 50% threshold by rate type 

 

When evaluating the ability to maintain comfort, the control algorithms account for less than a 1% 

difference from the Benchmark. As shown in Figure 6.1.2, when examining the 50% threshold across the 

distribution, the agent-based controllers have a more consistent distribution than the Benchmark. This 

validates the control algorithm's ability to maintain thermal comfort under different rate structures. 

 

Figure 6.1.2: The distribution of Thermal Comfort Probabilities by rate type 
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A closer examination of the indoor temperature and thermal comfort probability over the simulation 

timesteps highlights how the agent opts to push the comfort probability to the 50% threshold to achieve cost 

savings but very seldom goes below it (Figure 6.1.3). Figure 6.1.4 showcases how this household's internal 

temperature fluctuates throughout the simulation.  

 

Figure 6.1.3: The Thermal Comfort Probability comparison over every timestep based on the indoor 
temperature at the timestep (blue for OCHRE Benchmark, orange for TOU agent) 

 

 

Figure 6.1.4: The internal temperature of the household throughout the simulation (blue for OCHRE 
Benchmark, orange for TOU agent) 

 

6.2 Total Energy Usage 

Total Energy Usage evaluates the agent's effectiveness in reducing the overall amount of energy 

consumed during the time, providing a direct measurement of the energy impact of different rate designs. It is 
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essential to comprehend how much energy can be saved by optimizing settings within an individual's comfort 

zone. The formula for calculating Total Energy Usage is straightforward: 

Total Energy Usage = �𝐸𝐸
𝑇𝑇

𝑡𝑡=1

(𝑡𝑡) 

Where 𝐸𝐸(𝑡𝑡) represents the energy used at each timestep 𝑡𝑡, and 𝑇𝑇 is the total number of timesteps. 

Rate Type Percentage Difference (lower is better) 

Fixed -2.27% 

Power Shift -1.77% 

TOU -2.32% 

TOU CPP -2.26% 

Table 6.2.1: The Total Energy Reduction from the Benchmark for every rate type 

 

Evaluating the total energy usage across different rate types shows that each rate type can potentially 

reduce overall energy consumption when paired with an agent. See Figure 6.2.1. In fact, all rate types 

exhibited a decrease in energy usage compared to a Benchmark. The Time-of-Use (TOU) rate demonstrated 

the highest reduction in energy usage (2.32%). Additionally, the data indicates that even adding a smart 

thermostat with a Fixed rate could potentially reduce energy consumption by 2.27%. These results prove the 

effectiveness of the control agent's optimization goal of reducing energy usage. 

 

Figure 6.2.1: The Total Electricity Usage (in kWh) throughout the simulation 
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When analyzing the energy usage data by hour of the day, the agent's different strategies to minimize 

energy usage become visible (Figure 6.2.2). For TOU and TOU CPP, small pre-cooling bumps are noticeable 

at 8 AM and 11 AM, which align with the price increase. Similarly, there is a significant increase in energy 

usage at 5 PM for the Power Shift rate, which corresponds to the hour before the Power Shift's rate increases. 

The energy usage during the peak rate window (6 PM to 10 PM) significantly decreases before normalizing. 

The peak usage section below will further analyze the impact of the time varying rates. 

 
Figure 6.2.2: The hourly Average Total Electric Usage (in kWh) by rate type 

6.3 Cost Savings 

Cost savings are crucial for encouraging consumers to adopt different tariffs. Savings provide a 

tangible incentive for users to switch from traditional settings to more dynamic, automated systems. Cost 

savings are particularly important when consumers are expected to accept minor deviations from their ideal 

thermal comfort levels in exchange for enhanced efficiency and reduced expenses. 

For each rate structure, the cost savings are calculated by integrating the amount of energy used with 

the corresponding rate at each timestep: 

Cost during simulation = �𝐸𝐸
𝑇𝑇

𝑡𝑡=1

(𝑡𝑡) × Rate(𝑡𝑡) 

Where 𝐸𝐸(𝑡𝑡) is the energy consumption at timestep 𝑡𝑡, and Rate(𝑡𝑡) is the cost rate at that same 

timestep for the different rates (TOU, Power Shift, and Fixed). 𝑇𝑇 represents the total number of timesteps. 

The Benchmark total cost is calculated using the tariffs for each rate structure to compare cost 

savings across different scenarios accurately. The Benchmark total cost represents the rate cost under a non-

price-responsive control scenario. The calculation is as follows: 
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Cost in Benchmark scenario = �𝐸𝐸Benchmark

𝑇𝑇

𝑡𝑡=1

(𝑡𝑡) × Rate(𝑡𝑡) 

Where 𝐸𝐸Benchmark(𝑡𝑡) is the energy used at each timestep in the Benchmark scenario. This approach 

allows for an assessment of how a non-price-responsive system or individual would incur costs under each 

rate tier, providing a baseline against which to measure the cost-effectiveness of the agent. 

Rate Type Avg Benchmark Cost ($) Avg Rate Cost ($) Avg Savings ($) Savings Percent (%) 

Power Shift 876.26 820.83 55.42 6.32 

TOU 820.42 777.68 42.74 5.21 

TOU CPP 893.00 849.01 43.99 4.93 

Fixed 718.79 702.41 16.38 2.28 

Table 6.3.1: The average savings when utilizing smart thermostat control as opposed to no thermostat control 
under each of the different rate schemes 

Agent-based control with variable rate structures results in significant consumer savings. The data 

shows that all rate types lead to cost savings compared to a Benchmark scenario. The savings percentage in 

the table above is based on combining the control agent with the rate instead of non-price responsive usage. 

Therefore, assuming that the Power Shift rate (6.32% reduction) would provide more savings than the TOU 

rate (5.21% reduction) is not appropriate. Instead, the incentive for smart thermostat control is higher for the 

Power Shift rate than the TOU or TOU CPP rates. This is because the agent can better plan for price shifts 

around the peak windows. As expected, given the lack of a price signal for which to optimize, the Fixed rate 

provides significantly fewer savings (2.28% reduction). Furthermore, the longer tails in the distribution of 

cost savings for the time-varying rates indicate a higher variability in the savings achieved by different users. 

These extended tails suggest that some users may achieve significantly higher savings. Table 6.3.1 above and 

Figure 6.3.1 below highlight the results. 

 

Figure 6.3.1: The distribution of savings when combined with smart thermostat control over the Benchmark 
with no price-sensitive thermostat control 
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Figure 6.3.2 demonstrates how cost savings vary by hour for different rate types. The most 

significant increase in savings occurs just after the rate switches for each time-varying rate, which aligns with 

expectations. Notably, these savings are not sustained. This suggests that consumers can save the most if they 

cool their homes before the rate switches, but the savings from pre-cooling quickly diminish as the HVAC 

returns to normal usage to maintain the environment temperature. 

 

Figure 6.3.2: The savings are broken down by the hour. The effects of saving and pre-cooling are shown in the 
hours after the rate switches from a high price to lower price  

 

6.4 Peak Reduction 

Peak reduction is essential for grid operators and utility companies, who play a critical role in setting 

rate structures. It is vital for maintaining grid stability by preventing outages, enhancing cost efficiency by 

reducing reliance on expensive Peaker plants, and decreasing environmental impact by lowering emissions 

from peak power generation. Additionally, peak reduction helps preserve infrastructure by minimizing strain 

on the power grid, thereby extending the lifespan and efficiency of energy systems. Peak consumption is 

determined by identifying the highest cumulative energy usage (Total Electric Power (kW)) at any given 

timestamp throughout the day. Due to the 30-minute timestep, this approach provides a more precise 

measure of peak energy demand as it accounts for the continuous operation of power generation and the 

non-discrete nature of energy consumption cycles instead of considering the entire hour timeframe. 

Peak Consumption = max
𝑖𝑖
�𝐸𝐸(𝑖𝑖)� 

Here, 𝐸𝐸(𝑖𝑖) represents the energy usage at each timestep 𝑖𝑖, and the summation of all the timesteps 

captures the peak usage within that window. 
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Rate Type Max Peak (in kW) Time % Difference from Benchmark 

Power Shift 372.08 08/10/23 17:30 3.66 

Fixed 363.23 07/13/23 18:00 1.19 

Benchmark 358.95 08/10/23 18:00 0 

TOU 356.8 08/09/23 18:00 -0.6 

TOU CPP 351.54 08/12/23 19:00 -2.06 

Table: 6.4.1 The Max Peak and time for each of the different scenarios  

 

The Power Shift showed the highest peak of the different rate types on August 10, 2023, at 5:30 PM, 

with a maximum peak of 372.08 kW. Interestingly, this peak occurred half an hour before the second-highest 

peak from the 2023 ERCOT Load Data. This suggests that this rate type when paired with an optimal cost-

minimizing strategy, may overcompensate for price increases and not be effective in reducing critical peaks. 

The reason is the agent's optimization to pre-cool the building, which encourages shifting consumption to 

off-peak hours to save money. Figure 6.4.1 confirms this by the significant reduction (18%) in usage half an 

hour later (during the Benchmark's peak timestamp) when the rate switches to the higher price. 

 

Figure 6.4.1: The percentage difference between the Benchmark scenario's Max Peak (kW) and the rate types 
of Total Electric Usage (kW) at the same time as the Benchmark's peak (8/23 @ 6 PM).  

 

Furthermore, the Fixed rate with agent control showed a slight peak increase (1.19%) compared with 

the Benchmark. Given that the Fixed rate’s peak date is in July, this result is likely due to the agent 

overcompensating for temperature changes to maintain thermal comfort. If we remove this outlier date, the 

second-highest peak for the Fixed rate corresponds with the Benchmark’s peak date and time and is 1.04% 

below the Benchmark’s peak. Holding the assumption that the July date was a computational error, this 

analysis highlights how utilizing fixed rates does not send the appropriate signals to shift usage, but it does 

point to a slight potential in peak reduction when an agent can adjust to find the optimal point of trade-off 

between thermal comfort and energy savings. On the other hand, the TOU and TOU CPP demonstrated 

worthy performance in peak shaving, with the TOU CPP rate showing the lowest peak with a 2% reduction. 
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This validates the potential of smart thermostat automation and TOU CPP to effectively reduce peak usage 

through price signals without sacrificing thermal comfort. The key takeaway is understanding that carelessly 

designed rate structures can produce unintended consequences if participants take advantage of pre-cooling. 

The agent created new peaks outside the Power Shift peak pricing window by encouraging energy use during 

off-peak times. Figure 6.4.2 below indicates that the Power Shift rate created higher peaks than the 

Benchmark rate for nearly every day. 

 

Figure 6.4.2: Daily electric peak (in kW) for each of the different rate types 

 

Further analysis narrowing in on the ERCOT peak dates (2023-08-08, 2023-08-09, 2023-08-10, 2023-

08-11, 2023-08-17) during peak times (17:00 - 20:00) highlights the differential impact of CPP and Power 

Shift pricing. Figure 6.4.3 shows that the CPP maintains a modest peak energy reduction below the 

Benchmark. Intriguingly, the CPP price does not seem to have a significant pre-cooling effect. This could be 

because the TOU rate and TOU CPP rate were trained on the same agent, which might have dampened the 

impact of the CPP rate. To validate this assumption, training the rates on two different agents would be 

necessary. A slight rebound effect is observed after the demand response (DR) event ends at 20:00, which, 

though below the daily peak, could pose future challenges if not managed properly. As more renewables are 

integrated into the grid, energy availability during late evening hours could be affected.  

Time  Benchmark Power Shift (PS) % Reduction (PS) TOU CPP % Reduction (CPP) 

17:00:00 332.73 353.32 -6.19 317.29 4.64 

17:30:00 335.46 362.55 -8.08 332.27 0.95 

18:00:00 348.97 276.37 20.8 341.39 2.17 

18:30:00 337.49 307.37 8.93 327.01 3.11 

19:00:00 332.44 315.59 5.07 332.33 0.03 

Table 6.4.1: An analysis of the average of the top 5 peak days and the performance of the time-varying rates to 
assess the price responsiveness to reduce the peak.  
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On the other hand, the Power Shift’s electric power usage increases dramatically just before the peak 

rate takes effect (the rate changes at 18:00). This can be visualized in Figure 6.4.3. The Power Shift rate results 

in a more sustained reduction below the peak compared to the CPP rate. This is likely due to the agent's 

exposure to the daily increase in peak pricing. There are two potential explanations for this effect. First, the 

consistent exposure to dramatically increased peak pricing enables the Power Shift agent to handle the peak 

pricing shift more effectively. On the other hand, the CPP agent experiences extreme price events only for 

five days in a simulation cycle, resulting in less exposure and suboptimal agent performance. Additionally, the 

CPP rate was trained alongside the TOU rate for performance efficiency, but this might have reduced the 

critical peak pricing effect. The other explanation could be that the more moderate step increases in the TOU 

rates create less dramatic spikes before the peak period than the large price swings associated with the Power 

Shift rate. This results in a reduced need for significant pre-cooling of the building. 

 

Figure 6.4.3: The average of the top 5 peak days in the system versus the electric usage of the time-varying 
rates during the same period 

 

6.5 Segmentation Analysis 

One of the benefits of the study's simulation approach is the ability to segment households based on 

characteristics in the metadata available for each Resstock household. To understand how agents and rate 

designs affect different consumers, two primary characteristics, house size (in square feet) and house vintage 

(age in years), were analyzed. These factors were chosen because they significantly influence a home's energy 

usage patterns and thermal "storage" capabilities. Larger homes typically require more energy for heating and 

cooling. In comparison, older homes often have less efficient insulation, making it challenging to retain heat 

or cooling, thus requiring a more constant energy flow to maintain desired temperature levels. Each 

characteristic was divided into three roughly equal-sized groups to facilitate a comparison across groups. 
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Category Bucket Group Building Count 

House Vintage Old < 1980 17 

 Mid 1980-2000 33 

 New > 2000 32 

Floor Area Small 0-1500 sqft. 37 

 Medium 1500-2500 sqft. 29 

 Large 2500+ sqft. 16 

Table 6.5.1: The breakdown of the different segments and their building counts 

 

House Vintage 

Electricity Usage (Figure 6.5.1) 

For new homes, all rate types generally show a lower deviation from the Benchmark than middle-

aged and older homes, indicating that newer constructions are perhaps already optimized for energy 

efficiency, resulting in a lesser range of potential flexibility. The mid-category has the highest density of 

homes, above the Benchmark for electric usage. Interestingly, older homes perform best when paired with an 

agent based on their thicker, more elongated distribution. Amongst other things, this might indicate that older 

homes, possibly due to their inherent inefficiencies, have more room for reductions in energy usage, 

regardless of the rate type. 

 

Figure 6.5.1: The distribution of electricity usage by rate type and vintage category 

Cost Savings (Figure 6.5.2) 

The results show that the savings potential is generally modest for new homes built with modern 

energy-efficient designs. This indicates that these newer properties are already optimized and have a lower 
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overall savings potential. However, in older homes, using an agent-based smart thermostat has a high 

potential to help with energy and cost optimizations, resulting in significant savings across all rate types, 

especially with time-varying rates like Power Shift and TOU.  

 

Figure 6.5.2: The distribution of savings over the Benchmark by rate type and vintage category 

 

Floor Area (Square Feet) 

Electricity Usage (Figure 6.5.3) 

In larger homes, all rate types provide higher energy savings compared to the Benchmark with a 

similar distribution across rates, implying that larger homes have more capacity to reduce electricity usage 

below the Benchmark levels. Even a minor adjustment in internal temperature to optimize for the energy-

comfort trade-off can lead to significant savings. On the other hand, smaller homes show more variance in 

energy savings potential and have the highest simulation results that fall above the Benchmark. This pattern 

intuitively suggests that smaller homes lack the capacity for energy reduction that larger homes have. 

 

Figure 6.5.3: The distribution of electricity usage by rate type and floor area category 
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Cost Savings (Figure 6.5.4) 

The data shows that larger homes are more likely to benefit from the Power Shift rate, which is more 

cost-efficient due to pre-cooling to reduce energy costs before peak pricing. The Time of Use (TOU) and 

TOU Critical Peak Pricing (CPP) rates also offer adequate savings. In medium-sized homes, all rate types 

show a more extended tail distribution of outcomes, with outliers having higher savings potential than large 

homes, but the overall mean is below that of larger homes. Small homes exhibit the lowest variability in 

savings across all rate types, with generally lower savings, reflecting their smaller baseline energy usage.  

 

Figure 6.5.4: The distribution of savings over the Benchmark by rate type and floor area category 

 

6.6 High Flexibility 

This section analyzes a specific instance of a highly flexible household to showcase the effects of the 

agent. For the Fixed rate, energy consumption remains constant throughout the day, indicating that the Fixed 

rate does little to motivate changes in energy consumption habits. However, with the Time-of-Use (TOU) 

rate, a more dynamic consumption pattern is observed, with visible adjustments in usage that correspond to 

the varying rates throughout the day. These spikes have a minimal impact on the system, and the scaled TOU 

rate based on the partitioning algorithm is proven effective. The individual household peak is reduced for the 

TOU rate, while the benefits of pre-cooling provide cost savings to the household. In contrast, the Power 

Shift rate significantly differs from the Benchmark during evening peak hours. There is a noticeable reduction 

in energy use during the peak pricing window, but it is preceded by a significant increase in consumption just 

before the pricing switch. In Figure 6.6.1, along the second Y-axis in the chart, the thermal flexibility is 

observed as the indoor temperature exhibits variations throughout the day to optimize for price. 
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Figure 6.6.1: The average hourly usage (first Y-axis) and indoor temperature (second Y-axis) by rate type for a 
household with high flexibility 

 

6.7 Low Flexibility 

The analysis below considers a household with limited capacity to adjust energy consumption. Figure 

6.7.1 illustrates the low level of flexibility due to a smaller energy-use footprint and a more tightly clustered 

thermal comfort preference (Figure 6.7.2). The hourly electricity usage graph shows that the household's 

ability to shift or reduce energy consumption is significantly limited regardless of the rate structure 

implemented. The second y-axis in the chart highlights the limited flexibility in the indoor temperature with 

minimal opportunity for pre-cooling. The usage patterns largely align with the Benchmarks. The narrow range 

of thermal comfort offers minimal scope for adjustments that could lead to energy savings without impacting 

comfort levels. These results highlight households' challenges with low flexibility in leveraging rate structures 

and technology for energy savings. Energy-saving strategies through rate manipulation may have limited 

effectiveness for such homes, emphasizing the need for alternative approaches or technologies that can 

provide benefits without requiring significant deviations from established comfort patterns. 
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Figure 6.7.1: The average hourly usage (first Y-axis) and indoor temperature (second Y-axis) by rate type for a 
household with low flexibility 

 
Figure 6.7.2: The Thermal Comfort Probability distribution for the low-flexibility household  
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7. Discussion and Conclusion 

Based on the simulation results, it is evident that an agent that maximizes the balance between 

thermal comfort and price responsiveness can help reduce peak load if it is paired with the appropriate rate 

design. The smart thermostat control agents provided comparable comfort to the Rule-Based Controller, with 

less than a 1% difference in maintaining thermal comfort above 50%. These agents optimized energy 

consumption without significantly compromising user comfort, particularly during high-demand periods. 

Additionally, dynamic rate structures have trade-offs, varying effectiveness based on household flexibility. 

Understanding these nuanced effects is crucial for designing rate structures that maximize efficiency without 

compromising comfort. The research shows that older and larger homes exhibit greater flexibility and cost-

saving potential than newer and smaller homes, owing to their higher thermal comfort capacity and larger 

scope for energy optimization. 

Furthermore, the design of carefully partitioned time-of-use (TOU) rates can encourage a reduction 

in energy usage without creating new peaks. This is most likely because the pricing shifts during peak events 

are less dramatic. On the other hand, the Power Shift pricing model can create new peaks as the thermostat 

agents anticipate price hikes. This finding is critical as it parallels the rebound effect observed in demand 

response (DR) events, suggesting that encouraging pre-cooling through price incentives must be carefully 

designed to avoid unintended consequences. In terms of fixed rates, utilizing smart thermostat control can 

help reduce overall energy consumption, where less energy means fewer carbon emissions, but it fails to 

support the reduction in the peak, which has a higher impact on grid efficiency.  

Lastly, this approach demonstrates how the law of large numbers can help mitigate outlier effects 

from individual households, resulting in a net positive outcome. The Fixed rate showed a tighter impact 

distribution, while the time-varying rates displayed a more considerable variance of reactivity to different 

pricing schemes. It is essential to scale up the simulation setups to include more simulations and 

environments to understand the full effectiveness of energy efficiency strategies such as smart thermostat 

automation. It's not enough to view the effects of any mechanism in isolation; the bigger picture must be kept 

in context. As demonstrated by this work, the net impact of different time-varying rate structures resulted in a 

higher distribution of electricity consumption and peak usage, but the aggregation of all the households run in 

the simulation reduced the deviations and smoothed the distribution. 

7.1 Limitations 

While this study is extensive, it has some limitations to be considered. One primary constraint is that 

the OCHRE platform models single occupancy zones, which only simulate single setpoint temperatures for 
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the entire house, neglecting the complexities of multi-zone heating and cooling systems that vary 

temperatures across different rooms. This simplification may not accurately capture energy usage and comfort 

in residences with more complex layouts. Additionally, the thermal comfort models employed in this study 

assume that the registered internal household temperature is a representation of their personal comfort 

preference. However, this generalization might not align with the varied personal comfort preferences based 

on other factors, such as socio-economic status, where some individuals might set their thermostats outside 

their comfort range to save money. The study also relied exclusively on data from the ecobee smart 

thermostat program, further introducing potential biases. This dataset may not fully represent the diversity of 

thermal preferences across the general population, skewing results toward the behaviors and preferences of 

smart thermostat owners. 

Furthermore, the simulations intentionally had a limited action space to increase model convergence 

and efficiency. This was done by excluding unnecessary heating actions during summer. Although this 

restriction helps with computational efficiency, it simplifies the control environment. With that said, in the 

real world, most thermostats can selectively enable heating and cooling modes, which restrict instances where 

the heater might attempt to turn on in the summer (a highly, highly unlikely event in Texas). Moreover, initial 

efforts to train the model simultaneously on four different rate structures did not produce reliable results. 

Therefore, separate training sessions were conducted for each rate structure. Multiple approaches, including 

behavioral cloning, initiating the model with a set of "expert" examples to learn from instead of cold starting, 

and staged learning, were tested to overcome these obstacles, but they were unsuccessful in either improving 

the model's performance or significantly enhancing its efficiency. It's worth noting that other research in the 

space has seen some success using imitation learning, but their approach utilized a different type of 

reinforcement learning algorithm [100]. This difficulty highlights the inherent complexities of creating a 

model that can adapt to multiple complex rate structures without compromising learning quality. 

Lastly, it should go without saying that reinforcement learning is a difficult task. Minor changes in the 

configuration can significantly impact its performance. Fractional changes in the reward function can lead to 

unintended behaviors that, while seemingly inappropriate, are to be expected based on the design. For 

example, at one point, the reward function included a term to reward energy efficiency by dividing the 

comfort probability by the energy cost (energy usage times price). The goal was to find an energy efficiency 

metric that weighed the incremental increase in thermal comfort vs. the rise in energy price. However, the 

model learned to adopt counterintuitive behavior due to the price component. The agent minimized energy 

usage by letting the temperature rise to the top of the thermal comfort threshold in the building just before an 

energy price hike to reduce the denominator and maximize the reward. As a result, there was a slight loss in 

reward for re-cooling the building during a high price period, but a much more significant reward was 

achieved in the timesteps before. This variability in the performance of reinforcement learning models 
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highlights the need for a balanced approach while tuning and applying these algorithms. These limitations 

highlight crucial areas for further research, such as developing more sophisticated models capable of handling 

multi-zone systems, incorporating more diverse datasets, and refining learning algorithms to manage a 

broader array of complex rate structures more efficiently. 

7.2 Future Work 

This research sets the groundwork for multiple opportunities for future work. The simulations can 

expand their geographic scope to include different climates and regions. This would offer more 

comprehensive insights into the effectiveness of smart thermostats across different regions. The simulation 

can be extended to cover both winter and summer seasons to better understand the year-round performance 

and potential energy savings under different thermal demands. Running simulations over a year can provide 

data on annual energy usage patterns, offering a more detailed view of how different rate structures perform 

throughout all seasons. Additionally, different rate designs, such as staggering time-of-use rate blocks for 

different individuals at varying times, could help understand how to create smaller peaks while achieving the 

benefits of actions such as pre-cooling. Moreover, exploring scenarios that include adopting photovoltaic 

systems (PV), battery storage, heat pumps, and other technologies could reveal opportunities that enhance 

energy efficiency and demand flexibility. 

The environment can also be fine-tuned to account for occupancy and multiple zones. Utilizing 

predictive models to gauge occupancy patterns could significantly improve the optimization of building 

energy usage. Research has shown that HVAC energy savings ranging from 1% to 20% can be achieved with 

occupancy-based controls, indicating the potential benefits of this approach. Furthermore, expanding the 

models to manage multi-zone heating and cooling more effectively can lead to substantial improvements in 

energy efficiency and occupant comfort. 

Lastly, as the field of reinforcement learning continues to expand, researchers are exploring new ways 

to improve the efficiency and generalization of models. One promising approach involves using multi-task 

learning strategies in reinforcement learning models, which could enable simultaneous learning across various 

rates and thermostats without attaching a single thermostat to a single building. Another potential avenue is 

leveraging transfer learning techniques to apply knowledge gained in one setting to others, which could 

increase the robustness and adaptability of models, allowing them to perform well across different rate 

structures and technological scenarios. Although transfer learning has not yet shown significant success in 

HVAC control to date, it is an exciting area to continue exploring, especially as it creates the potential for 

offline models to be trained and transferred to an online (live thermostat) environment [101]. 
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Wrapping Up 

This thesis presents a new simulation framework designed to maximize heating and cooling flexibility 

through thermostat automation and rate design. The framework builds on existing control methods and 

introduces innovative contributions to the field. These include a quantitative analysis of different rate designs 

on demand flexibility at a population scale, integrating individualized energy-comfort trade-offs into 

reinforcement learning models for personalized HVAC control, and using smart thermostat data as thermal 

comfort profiles to predict demand flexibility under different retail tariffs across a population. These 

advancements provide a comprehensive understanding of how pricing strategies affect grid efficiency and 

consumer behavior, leading to more efficient and personalized flexibility solutions. 
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Appendix 

Appendix A: ecobee Smart Thermostat Data Dictionary 

The limited set of data points used in the analysis from the ecobee timeseries data: 

Name Column Name Description Units 

Datetime date_time Date and time that the reading was taken NA 

Serial Number Identifier Unique identifier for the device or reading NA 

HVAC Mode HvacMode The current mode of the HVAC system (heating, cooling, off, etc.) NA 

Calendar Event 

Name 

CalendarEvent Items that override the set schedule (e.g., a temperature hold, demand 

response event, vacation, smart recovery feature) 

NA 

Climate Name Climate User-defined comfort period (e.g., home, away, sleep, etc.) NA 

Control 

Temperature 

T_ctrl Average indoor temperature based on relevant sensors as defined by 

the schedule or mode the user is in 

ºF 

Cooling Setpoint TemperatureExpectedCool Indoor cool setpoint ºF 

Heating Setpoint TemperatureExpectedHeat Indoor heat setpoint ºF 

 

The set of metadata points used in the analysis and clustering: 

Field Range Description 

Used For 

Clustering? 

identifier - Unique identifier for the data entry  

account_id - Unique identifier for the user account  

runtime - Total runtime of the HVAC system  

model - Model of the ecobee thermostat  

country - Country where the thermostat is located  

province_state - Province or state where the thermostat is located  

city - City where the thermostat is located  

building_type - Type of building (e.g., residential, commercial) Yes 

floor_area_sqft 0 - 10500 Total floor area of the building in square feet Yes 

number_floors 0 - 10 Number of floors in the building  

building_age_yrs 0 - 2020 Age of the building in years Yes 

number_occupants 0 - 20 Number of occupants in the building  

number_cool_stages 0 - 2 Number of cooling stages in the HVAC system  

number_heat_stages 0 - 2 Number of heating stages in the HVAC system  
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Field Range Description 

Used For 

Clustering? 

allow_comp_with_aux False - 

True 

Indicates if the compressor can run with auxiliary heat  

has_electric False - 

True 

Indicates if the HVAC system has electric heating  

has_heatpump False - 

True 

Indicates if the HVAC system has a heat pump Yes 

number_remote_sensors 0 - 10 Number of remote sensors connected to the thermostat  

first_connected - Date when the thermostat was first connected to the 

ecobee service 
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Appendix B: Cluster Distribution 

After ensuring at least one cluster for each dataset was included in the samples, the table below provides a 

summary of cluster densities and building types: 

Building Type Cluster Distribution Number of Buildings in Simulation 

DETACHED (63) Cluster 4: 26.07% 14 

 Cluster 2: 23.31% 12 

 Cluster 0: 19.80% 11 

 Cluster 1: 12.03% 6 

 Cluster 3: 11.03% 5 

 Cluster 5: 7.77% 3 

MULTIUNIT (33) Cluster 2: 31.43% 15 

 Cluster 1: 25.71% 12 

 Cluster 5: 20.95% 10 

 Cluster 3: 1.12% 1 

 Cluster 0: 6.67% 2 

 Cluster 4: 2.86% 1 

ATTACHED (7) Cluster 1: 24.72% 1 

 Cluster 4: 23.60% 1 

 Cluster 0: 21.35% 1 

 Cluster 5: 21.35% 1 

 Cluster 2: 6.74% 1 

 Cluster 6: 1.12% 1 

 Cluster 3: 12.38% 5 
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Appendix C: Constructing the Dynamic TOU Rates 

This study aimed to evaluate different TOU-based rates. To achieve this goal, one of the rates took 

inspiration from a refined partitioning algorithm, adapted from the approach outlined initially by Yang and 

utilized in further studies by Schittekatte [58] [11]. The algorithm optimizes the day into different periods 

based on historical price and load data. Each period will last a minimum of 3 hours to avoid rates that are 

impractical to adopt. Specifically, the algorithm was tailored to utilize the ERCOT 2023 Day Ahead prices. 

Partitioning Optimization Overview  

1. Input and Initialization: The first step in the algorithm involves normalizing the prices for each 

season and day type. The normalization process adjusts the prices relative to the maximum price 

observed each day.  

2. Step Initialization: The step length for moving through the price data is set, and the variables (𝑘𝑘1, 

𝑘𝑘2, 𝑘𝑘3) used to define the boundaries of the time blocks are initialized where 𝑘𝑘𝑛𝑛 is the number of 

desired periods.  

3. Calculation of Moving Variables: Provisional boundaries for time blocks are established by 

calculating moving variables as a function of the minimum price (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) adjusted by the step variables 

(𝑘𝑘𝑛𝑛) for each potential partitioning. 

4. Formation of Time Blocks: The day is tentatively divided into three periods based on the 

calculated moving variables.  

5. Filtering Time Block Sets: The sets are evaluated to ensure each set meets the minimum duration 

of 3 hours. If not, parameters are adjusted, and the process repeats.  

6. Objective Function Calculation: After identifying a valid period set, the next step is calculating the 

objective function, essentially the Root Mean Square Deviation (RMSD) between the normalized 

price profile and a proposed partitioning. The objective function measures how well the time blocks 

fit the price data. 

7. Iterative Optimization: The step variables are adjusted in a loop to explore various configurations 

in a controlled manner. This iterative process continues until the algorithm arrives at a solution 

where the period boundaries optimize the objective function or until all configurations within the 

predetermined limits are tested. 

A simplified overview of the partitioning algorithm is below:  
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Figure C.1: An overview of the portioning algorithm for creating the TOU rates 
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