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ABSTRACT

Designing an effective industrial policy is a critical issue for governments. How does the
policy’s effect on an industry as a whole vary with the attributes of the supported firms and
with the nature of the supported industry? To answer this question, this thesis develops a
model describing firm dynamics under government support in the form of tax credits and
conducts simulation experiments while varying policy scenarios and parameters representing
the industry’s nature.

The results show that the impact of government support on an industry varies greatly de-
pending on a parameter representing one of the nature of the industry: inertia to the past
market share. For industries where the inertia is within a certain degree, there is a particu-
lar trend in the impact of government support on an industry, a clear trade-off depending on
the target of the support: the support to large firms has the effect of increasing the size of the
largest firms but reduces competition and widens the gap between firms, while the support
to small and medium-sized firms has the effect of increasing competition and narrowing the
gap, but reduces the size of the largest firm in the industry. However, in industries where the
inertia is greater than a certain level, the effect of such policies disappears. The inertia domi-
nates the growth dynamics of the firms, and the policy becomes unable to change the state of
the industry.

These results highlight the importance of identifying the nature of the industries to be
supported when designing industrial policies. They also show that even when targeting the
industries that policies can affect, it is difficult to find a single policy scenario that simulta-
neously improves the state of an industry from all perspectives. Policymakers need to design
industrial policies that meet their purposes with an understanding of the benefits and sacri-
fices that result from different targets of government support.

Thesis supervisor: Johan Chu
Title: Assistant Professor of System Dynamics, Sloan School of Management
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Chapter 1

Introduction

In this chapter, we first review trends in industrial policy. Next, the motivation and scope of

this research, as well as the choice of research method, are explained. Finally, the structure of

this thesis is described.

1.1 Trends in Industrial Policy

What is industrial policy? Warwick [1] offers the following comprehensive definition after

reviewing the various definitions of industrial policy in the prior literature.

“Any type of intervention or government policy that attempts to improve the busi-

ness environment or to alter the structure of economic activity toward sectors,

technologies or tasks that are expected to offer better prospects for economic growth

or societal welfare than would occur in the absence of such intervention.” (p.47)

In other words, industrial policy, in a broad sense, refers to government intervention aimed

at changing the economy for the better, whether through subsidies, tax cuts, regulation, or

other policy measures. On the other hand, one definition of industrial policy in a narrower

sense is, for example,

13



“Government efforts to promote specific industries that policymakers have identi-

fied as critical for national security or economic competitiveness.” [2, p. 3]

When people use the term industrial policy without any academic context in mind, they

may often use it in the latter sense.

Industrial policy is often discussed as a factor in the economic development of Asian coun-

tries such as Japan, China, Taiwan, and Korea [3]–[5]. On the other hand, industrial policy

has also been the subject of criticism. One of the most common criticisms concerns “target-

ing.” Industrial policy usually involves government targeting, which is focused investment in

specific industries deemed important [6]. Traditionally, the criticism has been that govern-

ments are likely to waste policy resources because they cannot make the right choices about

which firms and industries to support [7], [8]. Another criticism has been that fostering home-

grown industries may cause problems with foreign governments because of the potential for

increased international competition, which could negatively affect other countries’ industries

in the short run [9]. The current trade friction between theU.S. andChina can be said to fit this

very criticism. In the past, Japan’s industrial policy was criticized by theU.S., which reportedly

led to a reduction of the Japanese government’s industrial policy [10].

Nevertheless, attention to industrial policy has increasedworldwide in recent years [3], [4],

[9], [11]. The following reasons are cited as contributing factors in the literature.

• The financial crisis of 2008-2009 has led to a drive to restore growth by supporting in-

dustries that have been particularly adversely affected [1].

• With the growing awareness of the enormous damage caused by future climate change

[12], a greater role of the government is expected to achieve a clean economy with virtu-

ally zero emissions, especially in terms of innovation [8], [13], given the risk of market

failure for green technologies [8] and the limited time left to avoid such damage [14].

• China’s economy has actually grown rapidly due to the government’s industrial devel-

opment support, including large-scale investments in advanced technologies, and China

14



has become a competitive threat to the U.S. and other developed countries [3], [15].

• Concern that trade friction between the U.S. and China will disrupt global supply chains

has increased demand for the development of home-grown industries such as semicon-

ductors [9].

• The COVID-19 pandemic has necessitated large-scale government intervention in the

economy to secure vaccines, medicines, and other supplies and to provide assistance to

adversely affected companies [9], [16].

These recent changes in the situation have not eliminated criticism of industrial policy.

However, it is true that governments are now implementing industrial policies [9]. It is also

said that many countries have been engaged in some form of industrial policy for some time,

whether intentionally or not, and whether they name it industrial policy or not [4].

1.2 Motivation and Research Scope

Given that countries are already engaged in industrial policy, as pointed out in the literature

[4], [17], the key question is not whether industrial policy should be implemented, but how to

effectively implement industrial policy. In what follows, I use the term “industrial policy” to

refer to government support, such as subsidies and tax breaks, for specific industries and firms

with specific attributes, to move the discussion toward the substance of this research. Many

empirical studies have examined the effects of industrial policy (for literature reviews, see [9],

[18]). However, there are several important points that have not been adequately covered in

these studies.

The first point is the impact of a policy on an entire industry through interactions among

firms. When empirical studies examine the effects of government support, they usually eval-

uate the impact of the policy on the productivity, growth, etc., of the firms that received the

support. However, there are interactions, or competitions, among firms in a market. There-
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fore, when a firm receives government support, other firms operating in the same market are

affected, at least through the competition, and this may cause some changes in the state of the

industry, such as the distribution of firm size. Changing the attributes, e.g., size, of the firms

that receive government support may also affect the changes that occur in the industry. The

second is the heterogeneity of the industries targeted by government support [9]. Government

support for different industries may have different effects, even if the support is of the same

type. Some industries may benefit more from the policy, while others may not.

These points lead to the following question:

When a government supports firms in an industry with limited policy resources,

how does the state of the industry change? How do the effects of such policies vary

with the attributes of the supported firms and with the nature of the supported

industry?

The objective of industrial policy is to change an entire industry to a state that is somehow

desirable, and which industries to focus government support on is always a matter of debate

when making industrial policy. Therefore, answering this question will help policymakers to

design industrial policies that meet their objectives. To contribute to answering this question,

I use computer simulations to examine the dynamics of firms under government support and

its impact on the state of an entire industry.

1.3 Research Method

To perform this simulation, I use agent-based modeling (ABM), a modeling method that gen-

erates a large number of agents that make up a population on a computer and allows each

agent to evolve over time according to specific rules that simplify real-world dynamics to in-

vestigate how the behavior of the population as a whole changes. Other than ABM, statistical

models and differential equation models can also be used. However, the purpose of this study

is not to examine the average impact of government support on the firms that receive it, but to
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examine how the state of the industry as a whole changes. For this purpose, I treat each firm

as an agent, construct a model that simply approximates the growth process of firms in reality,

and conduct simulation experiments using the model.

As ameans of government support, I consider tax credits, one of themost typical industrial

policy tools. Four policy scenarios are set up according to the attributes of the firms to be

supported: no support, support for all firms, support for large firms, and support for small

and medium-sized enterprises (SMEs). Under each policy scenario, Monte Carlo simulations

are performed by varying probability distribution parameters that represent the nature of an

industry, to investigate how the state of the industry changes under each scenario.

1.4 Structure of the Thesis

The structure of this thesis is as follows: Chapter 2 briefly discusses previous studies on firm

dynamics and firm size distribution, and then constructs amathematical model describing the

process of firm growth under government support, explaining the components of the model

in detail. Chapter 3 describes the policy scenarios and parameter settings used when running

simulations with the model constructed in the previous chapter. By running simulations with

a parameter setting, we confirm that the model can generate a firm size distribution that is

consistent with a basic empirical fact about the firm size distribution and that the firm size

distribution changes depending on the policy scenario. In Chapter 4, I conduct comprehen-

sive simulation experiments while varying the parameters of the model. First, I define three

industry indicators to evaluate the state of an industry. Next, Monte Carlo simulations are

conducted while varying the policy scenarios and the probability distribution parameters for

the nature of industries. By showing the time series behaviors of the model, the sensitivity to

the probability distribution parameters, and the relations between the industry indicators, I

investigate how the industry state changes depending on the policy scenarios and the indus-

try’s nature. Chapter 5 summarizes the thesis and describes the policy implications that can
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be drawn from it. Appendix presents the results of the simulation experiments performed in

this research, including those not included in Chapter 4.

18



Chapter 2

AModel for Firm Dynamics under

Government Support

In this chapter, a mathematical model to describe the process of firm growth under govern-

ment support is developed. First, we review studies on the distribution of firm size and the

dynamics that generate it and then show the need to construct a new model. Next, the com-

ponents of the model developed for this study are described in detail.

2.1 Research on Firm Dynamics and Size Distribution

A lot of studies have been conducted onmodels of firm size dynamics and the size distributions

that these dynamics produce. The most famous early work was done by Gibrat [19], who

modeled the growth of firm size under the simple rule that the expected increment in firm

size in each period is proportional to the current firm size. This is called Gibrat’s law or the

law of proportionate effect, which also implies that the growth rate of a firm is independent of

its size.

Following Sutton [20], the implications of the Gibrat’s model can be derived as follows. Let

𝑥𝑡 be the firm size at time 𝑡 and 𝜖𝑡 be the random variable representing the growth rate of the

firm,
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𝑥𝑡 − 𝑥𝑡−1 = 𝜖𝑡𝑥𝑡−1 ⇔ 𝑥𝑡 = (1 + 𝜖𝑡)𝑥𝑡−1 (2.1)

By taking the logarithm of both sides of Equation (2.1) and taking a sufficiently small in-

terval between times 𝑡, using the approximation ln(1 + 𝜖𝑡) ∼ 𝜖𝑡 and the assumption that the

term ln𝑥0 about initial values is sufficiently small compared to ln𝑥𝑡,

ln𝑥𝑡 ∼
𝑡

∑
ᵆ=1

𝜖ᵆ (2.2)

When 𝜖𝑡 is an independent random variable with mean and variance in each period, ap-

plying the central limit theorem to Equation (2.2), it follows that the distribution of firm size

𝑥𝑡 is approximated by a lognormal distribution.

Since Gibrat’s work, many studies on the firm size distribution have been accumulated.

Althoughno conclusionhas been reached on the exact shape of the distribution, one of the best

knownempirical facts about it at this point is that the distributionhas heavy tails, especially the

upper tail, which follows a power law (e.g., see [21], [22]). A lot of models describing the time

evolution of firm size that reproduce such distributions have also been proposed, ranging from

simple modifications of the Gibrat’s model to more complex models (for a literature review on

the models, see [21]).

2.2 Model Building

As mentioned in the previous section, a number of models have been proposed to explain the

dynamics of firm size. The firm size in this context includes sales, number of employees, assets,

and so on, with sales in particular often used. However, these models are mainly concerned

with reproducing the empirically confirmed distribution of firm size and growth rate, rather

than the relationship between firm size and policy. For this reason, these models usually do

not explicitly take into account the link between firm size and other firm financial variables.
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Tax credits, which are considered in this study as the government support tool, contribute to

an increase in total assets by reducing the tax burden of firms and increasing their net profit.

Therefore, it is difficult to evaluate the impact of tax credits on firm growth in a model that

does not consider the link via profits between sales and total assets.

For this reason, I build a simple stochastic model with core relationships between financial

variables in a firm to be able to account for government support such as tax credits. In the

following, I explain the model with particular attention to sales and total assets.

2.2.1 Formulation of Sales

Denote each firm by a subscript 𝑖 and the number of firms at time 𝑡 by 𝑁𝑡. First, I denote the

sales 𝑆𝑖,𝑡 of firm 𝑖 in period 𝑡 using the total assets 𝐴𝑖,𝑡−1 of the firm at the end of period 𝑡 − 1,

which is equal to the total assets held at the beginning of period 𝑡.

For simplicity, I begin the discussion by considering a market with no cap on demand.

In this case, sales will continue to increase over time. In addition, since firms can supply as

many products and services as they wish within their capacity, there is no interaction, i.e., no

competition, among firms to obtain the demand. Sales under these assumptions are called

potential sales, denoted by 𝑆𝑝,𝑖,𝑡.

Next, assume that the potential sales 𝑆𝑝,𝑖,𝑡 in period 𝑡 is determined only by the firm’s total

assets𝐴𝑖,𝑡−1 held at the beginning of period 𝑡. Under this assumption, expressing the capability

of firm 𝑖 to generate sales from one unit of total assets held at the beginning of 𝑡, i.e., the

efficiency of total assets in generating sales, using a random variable 𝑟𝑒𝑎,𝑖,𝑡, 𝑆𝑝,𝑖,𝑡 can be written

as follows.

𝑆𝑝,𝑖,𝑡 = 𝑟𝑒𝑎,𝑖,𝑡𝐴𝑖,𝑡−1 (2.3)

Since 𝑆𝑝,𝑖,𝑡 is non-negative, 𝑟𝑒𝑎,𝑖,𝑡 should be a non-negative random variable. Therefore,

𝑟𝑒𝑎,𝑖,𝑡 is assumed to be a random variable that follows a lognormal distribution, and we denote
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its mean and variance by 𝜇𝑟𝑒𝑎 and 𝜎2𝑟𝑒𝑎, respectively.

Equation (2.3) implies that potential sales 𝑆𝑝,𝑖,𝑡 are determined solely by total assets held

by the firm and the non-negative random variable, but in reality, firms’ sales depend on their

past sales. In particular, consumers have shown that, in many cases, they are more likely to

purchase a product when they have previously purchased that product [23]. To reflect the

effect of such an inertia, I rewrite Equation (2.3) as follows.

𝑆𝑝,𝑖,𝑡 = 𝑟𝑒𝑎,𝑖,𝑡𝐴𝑖,𝑡−1 + 𝑟𝑖𝑛,𝑖,𝑡𝑆𝑝,𝑖,𝑡−1 (2.4)

where 𝑟𝑖𝑛,𝑖,𝑡 is a random variable that represents the degree to which potential sales, the

capability to generate sales, in period 𝑡 depends on itself in the previous period 𝑡 − 1. As can

be seen from the Equation (2.5) shown below, 𝑆𝑝,𝑖,𝑡 determines the market share of sales that

firm 𝑖will obtain when firms compete under the demandwith cap. Therefore, 𝑟𝑖𝑛,𝑖,𝑡 can be said

to represent inertia to past market share and thus takes on non-negative values. Then, 𝑟𝑖𝑛,𝑖,𝑡

is assumed to be a random variable that follows a lognormal distribution, and we denote its

mean and variance by 𝜇𝑟𝑖𝑛 and 𝜎2𝑟𝑖𝑛, respectively.

InEquation (2.4), 𝑆𝑝,𝑖,𝑡 takes a form similar to theGibratmodel of Equation (2.1) inmarkets

where 𝑟𝑒𝑎,𝑖,𝑡 is very small and potential sales are determined only by itself in the previous period

and stochastic variations. However, even in such a case, this model differs from the Gibrat

model in the following two respects: First, 𝑆𝑝,𝑖,𝑡 and 𝑆𝑖,𝑡 do not necessarily coincide because

competitions among firms are introduced into themodel, as described later. Second, themodel

deals with changes in total assets 𝐴𝑖,𝑡 as well as sales 𝑆𝑖,𝑡, and assumes that firms with 𝐴𝑖,𝑡 ≤ 0

exit the market at the end of period 𝑡. Then, even if we assume a market in which 𝑆𝑝,𝑖,𝑡 does

not depend on total assets and is determined by sales in the previous period and stochastic

variations, sales do not necessarily follow a lognormal distribution.

So far, we have considered a market with no cap on demand. However, in the real world,

there is a cap, and companies compete to capture the demand. Here, I exogenously set the total

demand 𝐷𝑡 at time 𝑡. Rahmandad [24] presents a model in which, in a market such that total
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demand is constant, a firm’s sales are the smaller of its potential output or its demand allocated

in proportion to its own potential output. We follow this idea by using the total demand𝐷𝑡 and

potential sales 𝑆𝑝,𝑖,𝑡 to denote sales 𝑆𝑖,𝑡 as follows.

𝑆𝑖,𝑡 = min {𝑆𝑝,𝑖,𝑡, 𝐷𝑡
𝑆𝑝,𝑖,𝑡

∑𝑁𝑡
𝑗=1 𝑆𝑝,𝑗,𝑡

} (2.5)

Equation (2.5) implies the following: The allocation of demand among firms is determined

in proportion to their potential sales. If the potential sales are smaller than the allocated de-

mand, the potential sales become sales, while if the potential sales are larger than the allocated

demand, the allocated demand becomes sales. This means that the potential sales determine

the market share of sales that the firm will earn.

As shown in Equation (2.4), 𝑆𝑝,𝑖,𝑡 is expressed using 𝑆𝑝,𝑖,𝑡−1 and 𝐴𝑖,𝑡−1. Thus, a firm’s sales

are determined by the firm’s potential sales and total assets in the previous period, the total

assets of all firms, the total demand in themarket, and firm-independent stochastic variations.

2.2.2 Formulation of Total Assets

Next, express total assets 𝐴𝑖,𝑡 at the end of the 𝑡 period using sales 𝑆𝑖,𝑡.

Let a random variable 𝑟𝑃𝑏,𝑖,𝑡 be the pre-tax profit ratio of firm 𝑖 in period 𝑡, profit before

taxes 𝑃𝑏,𝑖,𝑡 is expressed using 𝑆𝑖,𝑡 and 𝑟𝑃𝑏,𝑖,𝑡 as follows.

𝑃𝑏,𝑖,𝑡 = 𝑟𝑃𝑏,𝑖,𝑡𝑆𝑖,𝑡 (2.6)

𝑃𝑏,𝑖,𝑡, unlike 𝑆𝑝,𝑖,𝑡, can be negative. Then, 𝑟𝑃𝑏,𝑖,𝑡 is assumed to be a random variable that

follows a normal distribution with mean 𝜇𝑟𝑃𝑏 and variance 𝜎2𝑟𝑃𝑏.

Deducting corporate income taxes from the profit before taxes yields net profit 𝑃𝑖,𝑡.

𝑃𝑖,𝑡 = 𝑃𝑏,𝑖,𝑡 − 𝑇𝑖,𝑡 (2.7)
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Net profit is divided into dividends paid to shareholders and retained earnings retained

within the firm. Here, the dividends paid are ignored for simplicity. Let 𝑅𝑖,𝑡 be the retained

earnings at the end of 𝑡 period, then the change in retained earnings from the end of 𝑡 − 1

period to the end of 𝑡 period, Δ𝑅𝑖,𝑡, is equal to 𝑃𝑖,𝑡: Δ𝑅𝑖,𝑡 = 𝑅𝑖,𝑡 − 𝑅𝑖,𝑡−1 = 𝑃𝑖,𝑡.

Next, we consider the corporate income tax. Only firms with positive taxable income in a

given period pay the corporate income tax. Assuming that profit before taxes 𝑃𝑏,𝑖,𝑡 equals the

taxable income, the corporate income tax 𝑇 (𝑛)
𝑖,𝑡 paid by firm 𝑖 in period 𝑡 in the normal case

without any tax credit is

𝑇 (𝑛)
𝑖,𝑡 = max {𝜏𝑃𝑏,𝑖,𝑡, 0} (2.8)

where 𝜏 is the corporate income tax rate, which is assumed to be constant for all firms over

the entire period.

Next, consider the case where the government provides financial support to firms through

tax credits. Let 𝑇𝑐,𝑖,𝑡 be the amount of tax credits applicable to firm i in period t. Assuming

that the portion of 𝑇𝑐,𝑖,𝑡 that cannot be fully deducted from the corporate income tax before

tax credits cannot be carried forward to the next period or later, the corporate income tax after

applying tax credits 𝑇𝑖,𝑡 is

𝑇𝑖,𝑡 = max {𝜏𝑃𝑏,𝑖,𝑡 − 𝑇𝑐,𝑖,𝑡, 0} (2.9)

As can be seen from this equation, only firms that generated positive profit before taxes

can take advantage of tax credits, and of these, only firms that generated profit before taxes of

𝑇𝑐,𝑖,𝑡/𝜏 or more can fully utilize the amount of the applicable tax credits. Thus, the tax credits

applied to firm 𝑖 in period 𝑡 are as follows: 𝑇 (𝑎)
𝑐,𝑖,𝑡 = 𝑇 (𝑛)

𝑖,𝑡 − 𝑇𝑖,𝑡.

Assuming that the firm does not raise additional financings, such as debt or equity fi-

nancing, total assets at the end of the current period are the sum of total assets at the end

of the previous period and the change in retained earnings. As already mentioned, since
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Δ𝑅𝑖,𝑡 = 𝑅𝑖,𝑡 − 𝑅𝑖,𝑡−1 = 𝑃𝑖,𝑡, the total assets at the end of 𝑡 period are as follows.

𝐴𝑖,𝑡 = 𝐴𝑖,𝑡−1 + Δ𝑅𝑖,𝑡

= 𝐴𝑖,𝑡−1 + 𝑃𝑏,𝑖,𝑡 − 𝑇𝑖,𝑡

= 𝐴𝑖,𝑡−1 + 𝑃𝑏,𝑖,𝑡 −max {𝜏𝑃𝑏,𝑖,𝑡 − 𝑇𝑐,𝑖,𝑡, 0}

(2.10)

As shown in Equation (2.6), 𝑃𝑏,𝑖,𝑡 is expressed using 𝑆𝑖,𝑡. Thus, a firm’s total assets at the

end of the period are determined by its total assets at the end of the previous period, its sales in

the current period, government support through tax credits, and firm-independent stochastic

variations.

The total assets represented by Equation (2.10) can become negative depending on the

value of 𝑟𝑃𝑏,𝑖,𝑡. For this reason, we assume that firms with 𝐴𝑖,𝑡 ≤ 0 exit the market at the end

of period 𝑡. Note that since sales 𝑆𝑖,𝑡 are non-negative, it is irrelevant to the exit condition.

2.2.3 Assumptions on Demand Growth

As alreadymentioned, the total demand𝐷𝑡 is given exogenously in thismodel, so it is necessary

to model changes in 𝐷𝑡. It has been empirically confirmed that the growth of demand for

various new products can be described by a logistic curve [25]. Then, 𝐷𝑡 is assumed to grow

according to a logistic curve.

There are several ways to determine what to treat as parameters in the logistic curve. Here,

𝐷𝑡 is expressed as follows, using three parameters: the ceiling of the demand𝐷𝑐, the timewhen

the demand reaches half of its ceiling 𝑡𝑚, and the time interval between the times when 10%

and 90% of the ceiling are reached [26], [27].

𝐷𝑡 =
𝐷𝑐

1 + exp (−𝑙𝑛(81)
𝑡 − 𝑡𝑚
Δ𝑡10,90

)
(2.11)
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From Equation (2.11), the initial demand 𝐷0 is automatically determined by setting the

three parameters 𝐷𝑐, 𝑡𝑚, and Δ𝑡10,90.

𝐷0 =
𝐷𝑐

1 + exp (𝑙𝑛(81)
𝑡𝑚

Δ𝑡10,90
)

(2.12)

In this model, the total demand and total sales of all firms do not necessarily coincide at

the beginning of the market launch. At some point, sales will catch up with the total demand,

and thereafter, the two will coincide.
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Chapter 3

Simulation Settings and Basic Model

Behaviors

This chapter describes the policy scenarios and parameter settings used when running simu-

lations with the model constructed in the previous chapter. Next, simulations are run under a

parameter setting to demonstrate the size distribution generated by the model. This confirms

that themodel can generate a distribution consistent with a basic empirical fact about the firm

size distribution, and that the size distribution changes depending on the policy scenario.

3.1 Policy Scenarios on Tax Credits

In this section, we consider setting policy scenarios for tax credits. Assuming that the govern-

ment grants tax credits to firms in period 𝑡 up to corporate income tax revenue∑𝑁𝑡−1
𝑖=1 𝑇𝑖,𝑡−1 in

period 𝑡 − 1, the following four policy scenarios are set.

• TcType = 0: No support

• TcType = 1: Support for all firms

• TcType = 2: Support for large firms
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• TcType = 3: Support for SMEs

where TcType is a parameter that distinguishes between policy scenarios.

In this study, we consider all firms to fall into two categories: large firms and SMEs. If

the government is to implement support for either large firms or SMEs, it needs to identify

whether each firm is a large firm or an SME. Then, we set the percentile rank (PR), which is

the criterion for large firms in the distribution of firm sales, as Large𝑃𝑅, and the government

considers firms with a PR of Large𝑃𝑅 or higher as large firms and all other firms as SMEs.

Putting these settings together, the flow of the government support is as follows: First, at

the beginning of period 𝑡, the government classifies all firms as either large firms or SMEs

based on the PR of each firm in the distribution of sales 𝑆𝑖,𝑡−1 in period 𝑡 −1. Firm 𝑖 is allowed

to deduct an amount up to 𝑇𝑐,𝑖,𝑡 from its corporate income tax calculated without considering

the tax credits.

However, as discussed in the previous chapter, only firms that generate positive profit be-

fore taxes are eligible to take advantage of the tax credits. Of those firms, only firms that gen-

erated profit before taxes of 𝑇𝑐,𝑖,𝑡/𝜏 ormore can take advantage of the full amount of applicable

tax credits. Therefore, considering the tax credits actually applied to firm 𝑖 in period 𝑡, 𝑇 (𝑎)
𝑐,𝑖,𝑡,

the total amount of 𝑇 (𝑎)
𝑐,𝑖,𝑡 is always less than or equal to the corporate income tax revenue in

period 𝑡 − 1: ∑𝑁𝑡
𝑖=1 𝑇

(𝑎)
𝑐,𝑖,𝑡 ≤ ∑𝑁𝑡−1

𝑖=1 𝑇𝑖,𝑡−1.

3.2 Parameter Settings

This section describes how to set parameters to run simulations using the model constructed

in the previous chapter.

3.2.1 Probability Distribution Parameters for Industry Nature

The model includes three random variables, 𝑟𝑒𝑎,𝑖,𝑡 ≥ 0, 𝑟𝑖𝑛,𝑖,𝑡 ≥ 0, and 𝑟𝑃𝑏,𝑖,𝑡, that are inde-

pendent of the state of the firm. The first two of these random variables follow a lognormal

28



distribution and the last one a normal distribution. Thus, the model has the following six

probability distribution parameters: 𝜇𝑟𝑒𝑎, 𝜎𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, 𝜎𝑟𝑖𝑛, 𝜇𝑟𝑃𝑏, and 𝜎𝑟𝑃𝑏.

The values of these parameters can be viewed as representing the nature of the industry

described by the model. For example, a model with a large value of 𝜇𝑟𝑒𝑎 corresponds to an

industry where a firm’s capability to generate sales heavily depends on the size of its assets. A

model with a large 𝜇𝑟𝑖𝑛 corresponds to an industry with large inertia in which a firm’s market

share strongly depends on its past market share. A model with a large 𝜇𝑟𝑃𝑏 corresponds to an

industry with high profitability.

First, we consider the three probability distribution parameters that represent the mean

values: 𝜇𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏. The 𝑟𝑒𝑎,𝑖,𝑡 represents the dependence of potential sales on total

assets. However, total assets 𝐴𝑖,𝑡 is actually a concept similar to net assets since the model

assumes that firms do not raise additional financings, such as debt or equity financing, as

explained in the model building process. For this reason, we set the lower and upper bounds

of 𝜇𝑟𝑒𝑎 to 1 and 5.5, respectively, considering the range that the net asset turnover ratio can

normally take. The 𝑟𝑖𝑛,𝑖,𝑡 denotes the dependence of the current period’s potential sales on

itself in the previous period, i.e., inertia. Therefore, the lower bound of 𝜇𝑟𝑖𝑛 can be considered

to be 0, while too large values of 𝜇𝑟𝑖𝑛 are unrealistic settings. Here, the upper limit of 𝜇𝑟𝑖𝑛 is set

to 1.2. The 𝑟𝑃𝑏,𝑖,𝑡 represents the profitability of a business. Since an industry with 𝜇𝑟𝑃𝑏 lower

than 0 is not considered sustainable, the lower limit of 𝜇𝑟𝑃𝑏 is set to 0. The upper bound of

𝜇𝑟𝑃𝑏 is set to 0.6, taking into account the fact that some industries have very high profitability.

In summary, the ranges of these three probability distribution parameters are set as follows.

1 ≤ 𝜇𝑟𝑒𝑎 ≤ 5.5, 0 ≤ 𝜇𝑟𝑖𝑛 ≤ 1.2, 0 ≤ 𝜇𝑟𝑃𝑏 ≤ 0.6 (3.1)

In the next chapter, we examine how the effect of government support on an industry varies

with the nature of the industry by performing a sensitivity analysis for different values of these

three probability distribution parameters.

Next, we consider the three probability distribution parameters that represent the standard
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deviation: 𝜎𝑟𝑒𝑎, 𝜎𝑟𝑖𝑛, and 𝜎𝑟𝑃𝑏. To perform a sensitivity analysis, the number of the probability

distribution parameters included in the model should be reduced as much as possible. For

this reason, we assume that the magnitude of variation of the three random variables 𝑟𝑒𝑎,𝑖,𝑡,

𝑟𝑖𝑛,𝑖,𝑡 and 𝑟𝑃𝑏,𝑖,𝑡 is proportional to their mean values, and that their coefficient of variation 𝐶𝑉𝑟

is equal for these three. Under this assumption, 𝜎𝑟𝑒𝑎, 𝜎𝑟𝑖𝑛 and 𝜎𝑟𝑃𝑏 are as follows.

𝜎𝑟𝑒𝑎 = 𝐶𝑉𝑟𝜇𝑟𝑒𝑎, 𝜎𝑟𝑖𝑛 = 𝐶𝑉𝑟𝜇𝑟𝑖𝑛, 𝜎𝑟𝑃𝑏 = 𝐶𝑉𝑟𝜇𝑟𝑃𝑏 (3.2)

In subsequent simulations, we set 𝐶𝑉𝑟 = 0.5.

3.2.2 Parameters in Logistic Curve of Demand

To characterize the logistic curve of 𝐷𝑡 shown in Equation (2.11), three parameters 𝐷𝑐, 𝑡𝑚,

and Δ𝑡10,90 should be set. Here, we set 𝑡𝑚 = 100 and Δ𝑡10,90 = 200 so that Δ𝑡10,90 = 2𝑡𝑚.

This means that 𝐷0 = 𝐷𝑐/10 and 𝐷4𝑡𝑚 = 729𝐷𝑐/730 ∼ 0.999𝐷𝑐 always holds, and 𝑡0 and 𝑡4𝑡𝑚

represent the times when the demand is 10% and 99.9% of its ceiling 𝐷𝑐, respectively.

Another parameter 𝐷𝑐, which also characterizes 𝐷𝑡, is set to a rounded value to match the

initial number of firms𝑁0 set in the simulation. Setting𝑁0 = 500, as described later, we set the

initial demand to 𝐷𝑐 = 5000. This gives 𝐷0 = 500 under Δ𝑡10,90 = 2𝑡𝑚 and an initial demand

of 1 per firm.

3.2.3 Policy-related Parameters

A parameter related to government support is the criterion Large𝑃𝑅 of PR to distinguish be-

tween large firms and SMEs. Regardless of the country or region, there are far fewer large firms

than SMEs. Then, we set Large𝑃𝑅 so that 10% of all firms are large firms and the remaining

90% are SMEs.

Large𝑃𝑅 = 90 (3.3)
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The parameters other than Large𝑃𝑅 related to the government support are the time at

which the support begins and the time at which the simulation ends, i.e., the time at which

the effect of the support is observed.

We first consider the start time of the government support. As already mentioned, in the

next chapter, we will perform a sensitivity analysis by varying three parameters that represent

the nature of the industry. The impact of the support on industries needs to be fairly compared

across different industries, but if there is a large difference in the industry size, or total sales

of all firms, across industries at the start of the support, then it may not be possible to make

a fair comparison. In this model, since demand 𝐷𝑡 grows exogenously logistically, the size of

an industry matches demand once the total sales of all firms in the industry catch up with the

demand. In an industry where its growth is fast and catches up to the demand ceiling early,

each firm’s growth prospects by the end of the simulation will be small, while in an industry

where its growth is slow and there is a large gap to the demand ceiling, each firm’s growth

prospects will be large. To provide government support under the condition that the industry

size is the same across all industries at each time, it is necessary to set the start time of the

support to a time after the size of each industry has caught up with demand. One of the times

that satisfies this condition under our parameter settings, 𝑡 = 101, is set as the start time of the

government support. This is the period following 𝑡𝑚 when demand reaches 50% of its ceiling.

Another parameter, the end time of the simulation, is set to 𝑡 = 4𝑡𝑚 = 400 to allow the

policy to run long enough to see its effects. This is the period when the demand reaches 99.9%

of its ceiling.

3.2.4 Initial Total Assets

The initial value of total assets,𝐴0, is given by using the initial value of demand,𝐷0, as follows.

𝐴0 =
𝐷0

𝑁0𝜇𝑟𝑒𝑎
(3.4)
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This means the assumption that, given the initial demand 𝐷0 at 𝑡 = 0, 𝑁0 firms are estab-

lished at the end of period 𝑡 = 0 with total assets 𝐴0 = 𝐷0/(𝑁0𝜇𝑟𝑒𝑎) necessary to meet average

demand per firm 𝐷0/𝑁0 in the following period 𝑡 = 1, respectively, and start businesses from

period 𝑡 = 1, that is, start generating sales.

3.2.5 Other Settings

The initial number of firms is set to 𝑁0 = 500, and the corporate income tax rate is set to

𝜏 = 0.3 = 30%. Since all firms are assumed to be established at the end of period 𝑡 = 0 and

to start businesses in period 𝑡 = 1, the initial values of potential sales and sales are set to 0:

𝑆𝑝,𝑖,𝑡 = 0 and 𝑆𝑖,𝑡 = 0.

3.3 Firm Size Distribution Generated by the Model

Under the simulation settings defined so far, we can run the simulation to check the firm size

distribution generated by the model. Here, the three probability distribution parameters 𝜇𝑟𝑒𝑎,

𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏 are set to themedian value in the range of each parameter indicated by Equation

(3.1): 𝜇𝑟𝑒𝑎 = 3.25, 𝜇𝑟𝑖𝑛 = 0.6, and 𝜇𝑟𝑃𝑏 = 0.3. As described in the parameter settings, we first

run the simulation without policy up to 𝑡 = 100. Then, from 𝑡 = 101 to 𝑡 = 400, simulations

are run under each policy scenario of TcType = 0, 1, 2, and 3.

Figure 3.1 shows the distributions of firms’ sales 𝑆𝑖,𝑡 and total assets𝐴𝑖,𝑡 at 𝑡 = 400 obtained

from simulations under the four policy scenarios. These distributions are shown in the form

of probability density function (PDF) and complementary cumulative distribution function

(CCDF). The CCDF is defined as the probability 𝑃(𝑋 ≥ 𝑥) that a random variable 𝑋 takes on

a value greater than or equal to 𝑥. Each plot shows the results of fitting the data to a power

law using the method developed by Clauset et al. [28], [29]. Both the PDF and the CCDF

following the power law are straight lines when plotted in both logarithms. Looking at each

plot, some plots deviate from the power law at the edges of the distribution, but the upper
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tails of both the sales and total assets distributions appear to generally follow the straight line

of the power law. Since each plot is generated from a single simulation using the stochastic

model, these distributions change each time the simulation is run. Therefore, we will not

always get distributions that have the same shapes as these. However, this figure shows that

under a certain parameter setting, the model can reproduce a basic empirical fact about firm

size distribution described in the previous section.
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Figure 3.1: PDFs and CCDFs of sales 𝑆𝑖,𝑡 and total assets 𝐴𝑖,𝑡 at 𝑡 = 400 obtained by running
simulations under four policy scenarios of TcType = 0, 1, 2, and 3, respectively, setting 𝜇𝑟𝑒𝑎 =
3.25, 𝜇𝑟𝑖𝑛 = 0.6, and 𝜇𝑟𝑃𝑏 = 0.3. The dotted lines indicate power law fitting. x and y axes are
both on logarithmic scales. 34



Figure 3.2 compares the plots under the different policy scenarios shown in Figure 3.1 with

one plot for sales and total assets, respectively. The common feature of the plots of sales and

total assets is that the distribution is wider both upward and downward under the support for

large firms (TcType=2), while it is narrower bothupward anddownwardunder the support for

SMEs (TcType = 3). Under all firm support (TcType = 1), the distribution of total assets shifts

upward compared to the no support case (TcType = 0), but the distribution of sales changes

little. These results may suggest the following. Under the support for large firms, larger and

smaller firms arise, widening the gap between firms. Under the support for SMEs, the number

of very large and very small firms decreases, while the number of small firms increases. Under

the support for all firms, total assets increase, but sales do not change a lot. This difference in

the distributions of total assets and sales may be partly due to the assumed demand ceiling

under this model.

In this section, we saw how the distribution of firm sizes generated by the model changes

by varying the policy scenarios. Since the model’s behavior is stochastic, we cannot draw con-

clusions from this single simulation, but these results are useful for building intuition about

the behavior of the model. In the Monte Carlo simulations presented in the next chapter, 10

simulations are run, each with one parameter setting, and conclusions are drawn from these

results.
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Figure 3.2: PDFs and CCDFs of sales 𝑆𝑖,𝑡 and total assets 𝐴𝑖,𝑡 at 𝑡 = 400 obtained by running
simulations under four policy scenarios of TcType = 0, 1, 2, and 3, respectively, setting 𝜇𝑟𝑒𝑎 =
3.25, 𝜇𝑟𝑖𝑛 = 0.6, and 𝜇𝑟𝑃𝑏 = 0.3. x and y axes are both on logarithmic scales.
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Chapter 4

Comprehensive Simulation

Experiments

In this chapter, we conduct comprehensive simulation experiments by varying the parameters

of the model. First, three industry indicators are defined to evaluate the state of an industry.

Next, Monte Carlo simulations are conducted while varying the policy scenarios and the prob-

ability distribution parameters for industry nature. Based on the simulations, we investigate

how the industry state changes depending on the policy scenarios and the nature of the in-

dustry by showing the time-series behaviors of the model, the sensitivities to the probability

distribution parameters, and the relations between the multiple industry indicators.

The main findings gained from the simulations are summarized as follows.

• The impact of government support through tax credits on an industry varies significantly

depending on one of the nature of the industry, the magnitude of inertia to the past

market share, represented by the parameter 𝜇𝑟𝑖𝑛.

• When the inertia is within a certain degree, the effect of government support on an in-

dustry is clear. Large firm support has the effect of significantly increasing the largest

firm size in sales. This effect is large for industries with large values of parameters 𝜇𝑟𝑒𝑎

and 𝜇𝑟𝑃𝑏, i.e., industries with a large dependence of the capability to generate sales on
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assets and large profitability, while it weakens competition and widens the gap between

firms. On the other hand, SME support increases competition and decreases the gap and

the largest firm size in the industry. Support for all firms has little effect on such a state

of an industry.

• However, as the inertia increases and 𝜇𝑟𝑖𝑛 reaches around 1, the effect of such a policy

disappears. In an industry with strong inertia, such as with 𝜇𝑟𝑖𝑛 ≥ 1, this inertia domi-

nates the growth dynamics of the firms. Some firms grow rapidly, where the largest firm

size and the gap become so large, and competition becomes so weak. The policy cannot

affect the state of such an industry.

4.1 Industry Indicators

The purpose of this study is not to examine changes in individual firms that directly received

government support, but to assess changes that occur in an industry as a whole as a result

of those changes and interactions among firms. For this reason, we need industry indicators

to assess the state of an industry to interpret the simulation results. Here, we adopt three

industry indicators that can reflect changes in the distribution of firm size under different

policy scenarios: the largest firm size in sales, the Herfindahl-Hirschman Index (HHI), and

the Gini coefficient.

The largest firm size in sales is the sales of the firm with the largest sales in an industry.

We refer to this simply as the largest firm size.

The HHI is a widely used measure of market concentration [30]. Market concentration is

used to assess the degree of competition in an industry. When market concentration is low,

competition is intense, andmarket power is limited. On the other hand, whenmarket concen-

tration is high, competition is loose, and a few firms have high market power [31]. The HHI

is defined by the sum of the squares of the market shares of each firm competing in a given

market. It takes a maximum value of 1 when one firm dominates the market and approaches
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a minimum value of 0 when there are many small firms in the market.

TheGini coefficient is ameasure of inequality in a population. It is usually used tomeasure

income inequality, but can also be used to measure inequality in various distributions [32].

Here, it is used as a measure of the gap among firms in terms of sales and market share in an

industry. The Gini coefficient is defined as follows using all differences between possible pairs

of 𝑛 observed values 𝑥𝑖, but can be computed faster in practice by sorting 𝑥𝑖 and transforming

Equation (4.1) [33].

𝐺 =
∑𝑛

𝑖=1∑
𝑛
𝑗=1

||𝑥𝑖 − 𝑥𝑗||
2𝑛2 ̄𝑥 (4.1)

TheGini coefficient takes aminimumvalue of 0when all firms have equal sales andmarket

shares, and approaches a maximum value of 1 as the gap among firms increases.

By using these three industry indicators, we can assess the effect of a policy on an industry

from different perspectives: the creation of large firms, the degree of competition, and the

gap among firms. The three industry indicators can be thought of as objective functions in

multi-objective optimization: minimizing the HHI and Gini coefficient while maximizing the

largest firm sizewould be ideal. In reality, however, there are trade-offs between thesemultiple

objective functions, and such an ideal state is often not feasible. By simultaneously assessing

changes in multiple industry indicators, we could understand the trade-offs that a policy may

have on an industry and select Pareto-optimal policies that are tailored to its purpose and the

nature of the industry. In the following, wedenote these three industry indicators— the largest

firm size, the HHI, and the Gini coefficient — bymax 𝑆, ℎℎ𝑖, and 𝑔𝑖𝑛𝑖, respectively.

4.2 Simulation Experiments

In this section, we present the results of comprehensive Monte Carlo simulation experiments

inwhichwe vary the parameterTcType, which represents the type of policy scenario, and three

probability distribution parameters, 𝜇𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏, which represent industry nature. 10
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simulations were run for a particular parameter setting. Asmentioned in the previous chapter,

in each simulation the model was allowed to evolve in time without policy from 𝑡 = 0 to 100,

and from 𝑡 = 101 to 400 the simulation was continued under the respective policy scenario

with TcType = 0, 1, 2, and 3. The results of the simulation experiments are presented by plot-

ting the three industry indicators, max 𝑆, ℎℎ𝑖, and 𝑔𝑖𝑛𝑖, either as they are or averaged over 10

simulations under the same parameter settings. The figures shown below are selected plots

that are necessary to interpret the results of the simulation experiments. The results of the

more extensive simulations performed in this study are presented in the Appendix.

4.2.1 Time-series Behaviors

First, we examine the change in the industry indicators over time from 𝑡 = 0 to 400.

Figures 4.1, 4.2, and 4.3 plot the time series of max 𝑆, ℎℎ𝑖, and 𝑔𝑖𝑛𝑖 for each of the four

policy scenarios when 𝜇𝑟𝑖𝑛 is fixed at 0.6.

We first focus on the time series of max 𝑆. One thing that can be seen from Figure 4.1

is that large firm support (TcType = 2) has the effect of increasing max 𝑆 significantly for all

parameter settings shown in this figure. This effect is larger for parameter settings where 𝜇𝑟𝑒𝑎

and 𝜇𝑟𝑃𝑏 have large values. Thismeans that the effect of supporting large firms on the creation

of very large firms is larger in industries where the dependence of the capability to generate

sales on total assets and the profitability are high.

This result can be interpreted as follows. In this model, the government sets an amount

of tax credits applicable to a qualifying firm in proportion to their sales. However, since the

amount of tax credits actually applied is limited to profit before taxes multiplied by the corpo-

rate income tax rate, firms in industries with low profitability may utilize only a small portion

of the applicable tax credits. On the other hand, industries with high profitability could ap-

ply much of the amount allocated to them, allowing firms to enjoy greater benefits from the

government support. In addition, the financial support provided to firms through tax credits

increases their total assets through higher profit after taxes. Therefore, in industries where
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total assets have a large impact on sales and market share, the effect of the large firm support

on sales growth is large.

Turning to the time series of SME support (TcType = 3) in Figure 4.1,max 𝑆 is reduced for

all parameter settings shown in this figure, contrary to the case of the large firm support. All

firm support (TcType = 1) makes little difference compared to the no support case.

We next focus on the time series of ℎℎ𝑖 and 𝑔𝑖𝑛𝑖. Comparing Figures 4.2 and 4.3, we find

that the effects of each policy scenario are almost the same for ℎℎ𝑖 and 𝑔𝑖𝑛𝑖. The large firm

support increases ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 significantly, while the SME support has the effect of decreasing

both indicators. This is because under the large firm support, the growth of large firms accel-

erates and the market share of other firms decreases, which weakens competition and widens

the gap between firms, while the SME support has the opposite effect to this by supporting the

growth of SMEs. The all firm support makes little difference compared to the no support case,

as in the case of max 𝑆.
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Figure 4.1: Time series ofmax 𝑆 from 𝑡 = 0 to 400with𝜇𝑟𝑖𝑛 = 0.6. The curve and the upper and
lower bound of the shaded region in each plot are the mean and the 25th and 75th percentiles
of the data from 10 simulations for each parameter setting, respectively. The color of each
curve and shaded region is set according to the policy scenario, TcType.
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Figure 4.2: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.6. The curve and the upper and
lower bound of the shaded region in each plot are the mean and the 25th and 75th percentiles
of the data from 10 simulations for each parameter setting, respectively. The color of each
curve and shaded region is set according to the policy scenario, TcType.
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Figure 4.3: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400with 𝜇𝑟𝑖𝑛 = 0.6. The curve and the upper and
lower bound of the shaded region in each plot are the mean and the 25th and 75th percentiles
of the data from 10 simulations for each parameter setting, respectively. The color of each
curve and shaded region is set according to the policy scenario, TcType.

Next, we increase the value of 𝜇𝑟𝑖𝑛 and plot the time series of industry indicators for the

cases with 𝜇𝑟𝑖𝑛 = 1.0 in Figures 4.4, 4.5, and 4.6. These figures show completely different

results from the cases with 𝜇𝑟𝑖𝑛 = 0.6.

First, all of these figures have in common that changing the policy scenario has almost no

effect on any of the three industry indicators. In addition, if we look at the y-axis scales of
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Figures 4.4, 4.5, and 4.6, the three industry indicators are much larger than those of Figures

4.1, 4.2, and 4.3, and 𝑔𝑖𝑛𝑖 converges to 1 with time. As discussed in the previous chapter,

𝜇𝑟𝑖𝑛 represents the effect of inertia in that the current period’s market share and capability

to generate sales depend on those in the previous period. The dynamics of firm growth and

industry change are expected to be significantly different in industries with large inertia and

those with not so large inertia.

Figure 4.4: Time series ofmax 𝑆 from 𝑡 = 0 to 400with𝜇𝑟𝑖𝑛 = 1.0. The curve and the upper and
lower bound of the shaded region in each plot is themean and the 25th and 75th percentiles of
the data from 10 simulations for each parameter setting, respectively. The color of each curve
and shaded region is set according to the policy scenario, TcType.
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Figure 4.5: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 1.0. The curve and the upper and
lower bound of the shaded region in each plot is themean and the 25th and 75th percentiles of
the data from 10 simulations for each parameter setting, respectively. The color of each curve
and shaded region is set according to the policy scenario, TcType.
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Figure 4.6: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400with 𝜇𝑟𝑖𝑛 = 1.0. The curve and the upper and
lower bound of the shaded region in each plot is themean and the 25th and 75th percentiles of
the data from 10 simulations for each parameter setting, respectively. The color of each curve
and shaded region is set according to the policy scenario, TcType.

4.2.2 Sensitivity to Probability Distribution Parameters

To examine the dependence of the industry indicators on the probability distribution param-

eters presented in the previous section in more detail, sensitivity analyses were performed.

Figures 4.7, 4.8, and 4.9 show the sensitivity of the industry indicators at 𝑡 = 400 to one

probability distribution parameter under each policy scenario. Since each data point corre-
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sponds to one simulation, this figure gives the change in the distribution of each industry

indicator when the policy scenario and each probability distribution parameter are varied.

First, we focus on the plots of sensitivity to 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏. The distributions of the in-

dustry indicators in these plots are all multimodal with multiple peaks. Focusing only on the

collections of data points containing the lowest peaks in each plot, they suggest the same im-

plications as those presented in the previous section for the case 𝜇𝑟𝑖𝑛 = 0.6. Large firm support

has the effect of increasingmax 𝑆, and themagnitude of the increase is large for larger 𝜇𝑟𝑒𝑎 and

𝜇𝑟𝑃𝑏, while SME support decreases max 𝑆. ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 increase with large firm support and

decrease with SME support. All firm support has little effect on any of the industry indicators.

On the other hand, focusing on the collections of data points containing the top peaks

in each plot of sensitivity to 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏, we cannot confirm the change in the industry

indicators due to the policy scenario. Turning to the plots of sensitivity to 𝜇𝑟𝑖𝑛, we see that the

industry indicators increase rapidly as 𝜇𝑟𝑖𝑛 approaches 1 in every plot.

Figure 4.7: Sensitivity of max 𝑆 to one of 𝜇𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏 at 𝑡 = 400. 10 simulations have
been performed under one parameter setting, and one data point corresponds to one simula-
tion. The color of each data point is set according to the policy scenario, TcType.
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Figure 4.8: Sensitivity of ℎℎ𝑖 to one of 𝜇𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏 at 𝑡 = 400. 10 simulations have been
performed under one parameter setting, and one data point corresponds to one simulation.
The color of each data point is set according to the policy scenario, TcType.

Figure 4.9: Sensitivity of 𝑔𝑖𝑛𝑖 to one of 𝜇𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏 at 𝑡 = 400. 10 simulations have been
performed under one parameter setting, and one data point corresponds to one simulation.
The color of each data point is set according to the policy scenario, TcType.

The reasons for these results are confirmed by the plots of the sensitivity of the industry in-

dicators to the three probability distribution parameters shown in Figures 4.10, 4.11, and 4.12.

In these figures, two-dimensional plots with 𝜇𝑟𝑃𝑏 and 𝜇𝑟𝑒𝑎 on the x- and y-axes are arranged

from top to bottom, with 𝜇𝑟𝑖𝑛 changing from small to large values. The values of 𝜇𝑟𝑖𝑛 are set

to 0.067, 0.733, 0.867, 1.0, and 1.133 so that the changes in the plots around 𝜇𝑟𝑖𝑛 = 1.0 can be
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examined.

Looking at Figure 4.10 showing the sensitivity of max 𝑆, the dependence of max 𝑆 on the

policy scenario and on 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 is clear for 𝜇𝑟𝑖𝑛 values between 0.067 and 0.733. Large

firm support increases the industry indicators, and the larger 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are, the larger the

increase is. However, when 𝜇𝑟𝑖𝑛 = 0.867, the dependence on 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 changes, and the

effect of large firm support is no longer maximized when 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are large. When 𝜇𝑟𝑖𝑛

is further increased and reaches 1.133, the effect of the policy on max 𝑆 almost completely

disappears. Figure 4.11 (ℎℎ𝑖) and Figure 4.12 (𝑔𝑖𝑛𝑖) also show such a trend.

This may indicate the following: In industries where the market share and capability to

generate sales have strong inertia to themselves in the past, this inertia dominates the growth

dynamics of firms. The impact of policy on firms is buried in these dynamics, making it im-

possible for the policy to change the state of the industry. The color bars in Figures 4.10, 4.11,

and 4.12 show that the scales of the industry indicators actually increase with increasing 𝜇𝑟𝑖𝑛,

corresponding to the fact that with increasing 𝜇𝑟𝑖𝑛, the effect of the policy is obscured.
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Figure 4.10: Sensitivity of max 𝑆 to 𝜇𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏 at 𝑡 = 400. Each plot is a heatmap
of max 𝑆 values in 𝜇𝑟𝑃𝑏-𝜇𝑟𝑒𝑎 space, with plots in the same row under the same 𝜇𝑟𝑖𝑛 value and
plots in the same column under the same policy scenario, TcType. Plots in the same row have
the same scale.
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Figure 4.11: Sensitivity of ℎℎ𝑖 to 𝜇𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏 at 𝑡 = 400. Each plot is a heatmap of
ℎℎ𝑖 values in 𝜇𝑟𝑃𝑏-𝜇𝑟𝑒𝑎 space, with plots in the same row under the same 𝜇𝑟𝑖𝑛 value and plots
in the same column under the same policy scenario, TcType. Plots in the same row have the
same scale.
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Figure 4.12: Sensitivity of 𝑔𝑖𝑛𝑖 to 𝜇𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏 at 𝑡 = 400. Each plot is a heatmap of
𝑔𝑖𝑛𝑖 values in 𝜇𝑟𝑃𝑏-𝜇𝑟𝑒𝑎 space, with plots in the same row under the same 𝜇𝑟𝑖𝑛 value and plots
in the same column under the same policy scenario, TcType. Plots in the same row have the
same scale.
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4.2.3 Relations between Industry Indicators and Pareto Front

Finally, we examine the relations between the industry indicatorsmax 𝑆, ℎℎ𝑖, and 𝑔𝑖𝑛𝑖. As al-

ready mentioned, there are usually trade-off relations between these indicators that the policy

affects. By considering these indicators as objective functions and obtaining the Pareto front

in the objective space, we can explore Pareto-optimal policies under each parameter setting.

Figure 4.13 shows the relations between two industry indicators, from top to bottom, with

𝜇𝑟𝑖𝑛 changing from small to large values. The values of 𝜇𝑟𝑖𝑛 are set to 0.067, 0.733, 1.0, and

1.133 so that the changes around 𝜇𝑟𝑖𝑛 = 1.0 can be examined. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are

set to the median values in the respective parameter ranges: 𝜇𝑟𝑒𝑎 = 3.25 and 𝜇𝑟𝑃𝑏 = 0.3. On

each plot, a Pareto front is drawn, connecting the Pareto-optimal data points.

Focusing on the plots of 𝜇𝑟𝑖𝑛 values between 0.067 and 0.733, we find that there is a clear

trade-off between max 𝑆 and ℎℎ𝑖 and between max 𝑆 and 𝑔𝑖𝑛𝑖, respectively. Supporting large

firms significantly increasesmax 𝑆, but at the same time worsens ℎℎ𝑖 and 𝑔𝑖𝑛𝑖. SME support,

on the contrary, improves ℎℎ𝑖 and 𝑔𝑖𝑛𝑖, but decreases max 𝑆. Support for all firms has little

effect on any of the industry indicators. None of the policy scenarios considered here can sub-

stantially improve all industry indicators at the same time. This indicates that the optimal tar-

get of government support varies depending on the purpose of the policy. In this figure, one

data point corresponds to one simulation, so the Pareto front depicted in each plot changes

stochastically with each simulation experiment. However, the trend is consistent (for simula-

tion results for a wider range of parameter settings, see Appendix): when max 𝑆 is the most

important, the optimal policy will be to support large firms, and when ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 are the

most important, the optimal policy will be to support SMEs.

On the other hand, for values of 𝜇𝑟𝑖𝑛 greater than or equal to 1.0, this trend does not hold.

In the 𝜇𝑟𝑖𝑛 = 1.0 plots, the data points corresponding to different policy scenarios appear

to be randomly arranged on the Pareto front, and no specific trend can be read off. In the

𝜇𝑟𝑖𝑛 = 1.133 plots, the data points under each policy scenario are almost aligned. As discussed
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in the previous section, this is considered to be because, as 𝜇𝑟𝑖𝑛 increases, the impact of the

policy on firms is buried by the effect of the inertia to the past market share and capability to

generate sales, and the policy effect disappears.
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Figure 4.13: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 3.25 and 0.3 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.

56



Chapter 5

Discussion

This chapter summarizes the contents of this thesis and presents the implications for policy

that can be drawn from this study.

5.1 Summary

The chapters of this thesis are summarized as follows.

Chapter 1 provides an overview of recent trends in industrial policy that form the back-

ground for this study, and presents the scope and methodology of this study. While industrial

policy has traditionally been criticized, the reality is that governments are intervening in in-

dustries with the goal of changing the economy to more desirable states. To better understand

how to effectively implement industrial policy, I focus on the impact of the policy not on the

firms that receive government support, but on the industry as a whole, and the heterogeneity

of the industries targeted by the government support, and posed the following research ques-

tions: When a government supports firms in an industry with limited policy resources, how

does the state of the industry change? How do the effects of such policies vary with the at-

tributes of the supported firms and with the nature of the supported industry? To address this

question, I employed ABM to simulate the dynamics of firms and changes in the states of the

industry under government support.
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Chapter 2 presents a mathematical model describing the process of firm growth under

government support. Although a lot of models have been proposed to explain the dynamics

of firm size, these models are mainly concerned with reproducing the empirically confirmed

distribution of firm size and growth rate rather than the relations between firm size and policy.

This makes it difficult to use these models to assess the impact of government support on firm

growth. I constructed a simple stochastic model of firm dynamics with the relations between

financial variables in the firms to allow for taking into account government support such as

tax credits.

Chapter 3 shows the policy scenarios and parameter settings required to run the simulation

using the model. There are four policy scenarios for the tax credit: no support, support for

all firms, support for large firms, and support for SMEs. The model includes three random

variables that are independent of the states of the firms. In this thesis, the mean values of

these random variables, 𝜇𝑟𝑒𝑎, 𝜇𝑟𝑖𝑛, and 𝜇𝑟𝑃𝑏, represent the nature of an industry described by

the model: the dependence of the capability to generate sales on total assets, the inertia to the

capability and themarket share in the past, and the business profitability, respectively. We also

find that a simulation runwith a parameter setting can produce a distribution that is consistent

with a basic empirical fact about the size distribution of firms.

In Chapter 4, comprehensive simulation experiments are conducted. Prior to the results

of the simulation experiments, three industry indicators to assess the state of an industry are

defined: the largest firm size in sales, the HHI, and the Gini coefficient. We then examined

changes in these industry indicators based on the Monte Carlo simulations performed under

varying the policy scenarios and the probability distribution parameters representing the na-

ture of the industry. The main findings from the simulation experiments are as follows.

• In themodel, the impact of government support through tax credits on an industry varies

greatly depending on one of the nature of the industry, i.e., the magnitude of the inertia

to the past market share, represented by the parameter 𝜇𝑟𝑖𝑛.

• When the inertia is within a certain degree, i.e., at least 𝜇𝑟𝑖𝑛 ≤ 0.733 in the range stud-
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ied here, the impact of government support on an industry is clear. Large firm support

significantly increases the largest firm size. The effect is particularly large for industries

with large parameters 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏, i.e., industries with large dependence of the capa-

bility to generate sales on assets and large profitability. However, the support of large

firms worsens the HHI and the Gini coefficient. On the contrary, SME support improves

the HHI and the Gini coefficient, but decreases the largest firm size. All firm support

has no significant effect on these indicators.

• On the other hand, as the inertia increases and𝜇𝑟𝑖𝑛 reaches around 1, this trend changes,

and the effect of the policy in the model almost disappears. In industries with strong

inertia, such as with 𝜇𝑟𝑖𝑛 ≥ 1, the inertia dominates the growth dynamics of firms.

In such an industry, some firms grow rapidly with the inertia as a driving force, and

all industry indicators, such as the largest firm size, the HHI, and the Gini coefficient,

become very large.

5.2 Policy Implications

The main policy implications of this thesis are as follows.

The first implication relates to the effect of a policy on an industry as a whole, taking into

account the effect of the policy on firms other than those targeted by the policy. In a market,

there are interactions among firms through competition, so government support for firmswith

a particular attribute has an indirect effect on other firms, changing the distribution of firm size

in the industry. Since demand is assumed to be exogenously determined in this study, when the

largest firm size increases due to the large firm support, the sales of SMEs decrease, and when

the SME support improves the HHI and Gini coefficient, the largest firm size decreases as the

sales of large firms decline. In reality, demand is affected by the activities of firms themselves.

Although this model ignores such endogenous demand growth, there is no market in which

demand grows infinitely due to firm activities, and therewould be an upper limit due to factors
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such as population. Therefore, it is likely that changes in competition due to government

support and the resulting changes in an industry as a whole cannot be ignored as a realistic

effect of a policy.

The second implication is trade-offs regarding the effects of government support. As the

results of the simulation experiments show, it is difficult to substantially improve all industry

indicators simultaneously under any of the policy scenarios considered here. Supporting large

firms may contribute to creating a small number of huge firms, but it may lead to widening

gaps among firms and weakening competition in the domestic market. On the other hand,

supporting SMEs may reduce gaps and increase competition, but it may not be suitable for

the purpose of creating large, internationally competitive firms. Furthermore, supporting all

firms with the multiple objectives of creating super-large firms, reducing inequality, and in-

creasing competition may not actually improve an industry from any perspective in a market

where sufficient demand growth is not expected. Policymakers will need to look at these trade-

offs, understand the benefits and sacrifices of different targeting, and design industrial policies

consistent with their purposes.

The final implication is the importance of considering the industry’s nature in policy tar-

geting. Simulation experiments suggest that in industries with strong inertia to past market

share, policy cannot substantially affect the state of the industry. This is thought to be because,

as already mentioned, this inertia determines the growth dynamics of firms. In such indus-

tries, even if government support appears to have affected the creation of super-large firms,

gaps among firms, and competition, these may, in fact, have been obtained simply by chance

and not as a result of the policy. The resources available for policies are always limited, which

is why targeting is always an issue in industrial policy. In designing industrial policy, it is im-

portant to identify the nature of the industries to be supported to direct resources to industries

where the policy can have a substantial impact.

In this thesis, simulations were conducted using a simplified model of the rules that real

firms are expected to follow. For this reason, many factors associated with real business activi-
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ties and industry development have been omitted. However, because it is a simple model, it is

easy to understand the factors that contribute to the dynamics generated by themodel and, un-

der certain assumptions, to examine how policies affect firm dynamics and how they change

the state of an entire industry. Themodel could be calibrated tomore closely reproduce real in-

dustries by combining it with real financial data for firms in different countries. After further

incorporating factors such as those on real business activities, if necessary, simulations using

this model could contribute to policymakers’ decision-making about what industrial policies

a country’s government should design to achieve their purpose.
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Appendix A

Time-series Behaviors and Relations

between Industry Indicators

This appendix presents the time-series behaviors and the relations between the industry indi-

cators obtained from the simulation experiments in Chapter 4 for a wider range of probability

distribution parameters.

A.1 Time-series Behaviors

In Chapter 4, we presented the time series of max 𝑆, ℎℎ𝑖, and 𝑔𝑖𝑛𝑖 for each of the four policy

scenarios when 𝜇𝑟𝑖𝑛 is fixed at 0.6 and 1.0. In the following figures, the values of 𝜇𝑟𝑖𝑛 are set at

nine equally spaced levels throughout the range, 0.067, 0.2, 0.333, 0.467, 0.6, 0.733, 0.867, 1.0,

and 1.133, to examine the changes in the time series of each industry indicator by changing

𝜇𝑟𝑖𝑛 in more detail.
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Figure A.1: Time series of max 𝑆 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.067. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.

64



Figure A.2: Time series of max 𝑆 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.2. The curve and the upper
and lower bound of the shaded region in each plot are the mean and the 25th and 75th per-
centiles of the data from 10 simulations for each parameter setting, respectively. The color of
each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.3: Time series of max 𝑆 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.333. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.

66



Figure A.4: Time series of max 𝑆 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.467. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.5: Time series of max 𝑆 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.6. The curve and the upper
and lower bound of the shaded region in each plot are the mean and the 25th and 75th per-
centiles of the data from 10 simulations for each parameter setting, respectively. The color of
each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.6: Time series of max 𝑆 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.733. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.7: Time series of max 𝑆 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.867. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.8: Time series of max 𝑆 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 1.0. The curve and the upper
and lower bound of the shaded region in each plot are the mean and the 25th and 75th per-
centiles of the data from 10 simulations for each parameter setting, respectively. The color of
each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.9: Time series of max 𝑆 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 1.133. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.10: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.067. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.11: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400with 𝜇𝑟𝑖𝑛 = 0.2. The curve and the upper and
lower bound of the shaded region in each plot are the mean and the 25th and 75th percentiles
of the data from 10 simulations for each parameter setting, respectively. The color of each
curve and shaded region is set according to the policy scenario, TcType.
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Figure A.12: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.333. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.13: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.467. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.14: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400with 𝜇𝑟𝑖𝑛 = 0.6. The curve and the upper and
lower bound of the shaded region in each plot are the mean and the 25th and 75th percentiles
of the data from 10 simulations for each parameter setting, respectively. The color of each
curve and shaded region is set according to the policy scenario, TcType.
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Figure A.15: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.733. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.16: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.867. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.17: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400with 𝜇𝑟𝑖𝑛 = 1.0. The curve and the upper and
lower bound of the shaded region in each plot are the mean and the 25th and 75th percentiles
of the data from 10 simulations for each parameter setting, respectively. The color of each
curve and shaded region is set according to the policy scenario, TcType.
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Figure A.18: Time series of ℎℎ𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 1.133. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.

81



Figure A.19: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.067. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.20: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400with 𝜇𝑟𝑖𝑛 = 0.2. The curve and the upper and
lower bound of the shaded region in each plot are the mean and the 25th and 75th percentiles
of the data from 10 simulations for each parameter setting, respectively. The color of each
curve and shaded region is set according to the policy scenario, TcType.
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Figure A.21: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.333. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.22: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.467. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.23: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400with 𝜇𝑟𝑖𝑛 = 0.6. The curve and the upper and
lower bound of the shaded region in each plot are the mean and the 25th and 75th percentiles
of the data from 10 simulations for each parameter setting, respectively. The color of each
curve and shaded region is set according to the policy scenario, TcType.
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Figure A.24: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.733. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.25: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 0.867. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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Figure A.26: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400with 𝜇𝑟𝑖𝑛 = 1.0. The curve and the upper and
lower bound of the shaded region in each plot are the mean and the 25th and 75th percentiles
of the data from 10 simulations for each parameter setting, respectively. The color of each
curve and shaded region is set according to the policy scenario, TcType.
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Figure A.27: Time series of 𝑔𝑖𝑛𝑖 from 𝑡 = 0 to 400 with 𝜇𝑟𝑖𝑛 = 1.133. The curve and the
upper and lower bound of the shaded region in each plot are the mean and the 25th and 75th
percentiles of the data from 10 simulations for each parameter setting, respectively. The color
of each curve and shaded region is set according to the policy scenario, TcType.
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A.2 Relationsbetween Industry Indicators andParetoFront

In Chapter 4, the values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏were set to themedian values in the respective param-

eter ranges. The following figure shows the relations between the two industry indicators for

a total of nine parameter settings consisting of three levels equally spaced across the range of

each of the two probability distribution parameters. Although the shape of the Pareto front in

each plot is different, we can see a similar trend shown in Chapter 4: the impact of each policy

scenario is clear for values of 𝜇𝑟𝑖𝑛 between 0.067 and 0.733, while for values of 𝜇𝑟𝑖𝑛 greater

than or equal to 1.0, the effects of such policies disappear.
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Figure A.28: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 1.75 and 0.1 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.
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Figure A.29: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 3.25 and 0.1 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.
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Figure A.30: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 4.75 and 0.1 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.
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Figure A.31: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 1.75 and 0.3 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.
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Figure A.32: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 3.25 and 0.3 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.
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Figure A.33: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 4.75 and 0.3 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.
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Figure A.34: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 1.75 and 0.5 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.
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Figure A.35: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 3.25 and 0.5 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.
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Figure A.36: Relations between max 𝑆 and ℎℎ𝑖, max 𝑆 and 𝑔𝑖𝑛𝑖, and ℎℎ𝑖 and 𝑔𝑖𝑛𝑖 at 𝑡 = 400.
The plots in the same row are scatter plots of the two industry indicators under the same 𝜇𝑟𝑖𝑛
value. The values of 𝜇𝑟𝑒𝑎 and 𝜇𝑟𝑃𝑏 are fixed to 4.75 and 0.5 in all plots, respectively. The color
of each data point is set according to the policy scenario, TcType. The gray broken line in each
plot is the Pareto front.
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