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Abstract

Wide-field magnetic imaging using nitrogen-vacancy (NV) centers in diamond can
yield high-quality images for various applications, including biology, geology, condensed-
matter physics, and electronics troubleshooting. These quantum sensors yield wide-
field-of-view images with micron-scale spatial resolution and operate in ambient con-
ditions. Most of the sensing work with NV centers in diamond has focused on DC
and low frequency AC fields. This thesis demonstrates a wide-field magnetic im-
ager and its capabilities with test structures of varying complexity. We overcome the
challenges for measuring MHz frequency magnetic fields with a quantum frequency
mixing approach.
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Chapter 1

Nitrogen-Vacancy Centers in

Diamond for Wide-field Magnetic

Imaging

1.1 Introduction

A magnetometer is a device that measures a magnetic field. Quantum sensors have

gained significant attention for their capabilities as high sensitivity magnetometers,

historically in atomic magnetometers and more recently using solid state defects such

as nitrogen-vacancy (NV) centers in diamond. A quantum sensor utilizes properties

of quantum mechanics (such as quantized energy levels, quantum coherence, or quan-

tum entanglement) to observe a phenomenon [1]. Examples of quantum sensors used

for magnetometry include neutral atoms, atomic vapors, superconducting quantum

interference devices (SQUIDs), and NV centers in diamond [1, 2]. NV centers in dia-

mond are promising quantum sensors because they operate over a wide temperature

range from room temperature to cryogenic temperatures, have long electronic spin

lifetimes, and are capable of sensing vector magnetic fields [3]. Moreover, because

each NV center is fixed in the lattice, NV centers in diamond are capable of spatially

resolved imaging. Both single NV centers and NV ensembles are used for magnetic
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imaging. NV ensembles for wide-field imaging have the ability to acquire an image

without sensor scanning, enabling the acquisition of spatio-temporal dynamics while

still offering micron-scale spatial resolution [4, 5]. This thesis focuses on the wide-field

magnetic imaging capabilities of ensemble NV centers in diamond.

1.2 Motivation

High-resolution wide-field magnetic imaging using NV centers has been demonstrated

for a wide range of interdisciplinary applications in geology, biology, condensed-matter

physics, and electronics [5, 6, 7]. With a few exceptions [8, 9, 10, 11, 12], most NV

magnetic imaging experiments have implemented an apparatus sensitive to DC or low-

frequency (∼ 1 kHz) AC magnetic fields. High-sensitivity imaging of higher frequency

AC fields with NV ensembles typically requires more complex apparatuses with pulsed

diamond interrogation and gated optical readout. Moreover, these measurements

are restricted to specific and often narrow frequency ranges. For example, pulsed

dynamical decoupling is limited by NV spin lifetimes and microwave 𝜋-pulse durations

to typically < 10 MHz [5, 13], while Rabi AC magnetometry senses in a narrow

band around the NV spin resonance frequency, usually near ∼3 GHz [14]. Though

application of a strong bias magnetic field can offer tunable-frequency sensitivity over

a wider frequency range, bias field requirements are typically impractical. As a result,

magnetic imaging demonstrations with NV centers to date have sacrificed frequency

range, field of view, or both.

This thesis demonstrates an NV widefield magnetic imaging system that measures

both DC and AC magnetic fields up to 70 MHz. To enable this broad-frequency sen-

sitivity, we implement a quantum frequency mixer (QFM) approach recently demon-

strated with small NV ensembles on our imager [15]. We first demonstrate pulsed

magnetic imaging for sensing DC fields. We then image the AC magnetic fields from

a straight wire to confirm that NV AC magnetometry using QFM extends to imag-

ing. After validating simple magnetic images are what was expected, we magnetically

image more complex test structures.
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This work, which combines a high-performance NV AC magnetometry widefield

imager and the QFM AC magnetometry technique, opens the possibility of new high-

resolution magnetic microscopy applications, including diagnostics of quantum com-

puting hardware (e.g. ion trap chips), high-resolution power spectrum analysis (PSA)

imaging of integrated circuits, and validation of ∼1-100 MHz electrical components

(e.g. band-pass filters) [16]. Following this initial demonstration, our anticipated

future work includes implementing a "spectrum analyzer imager" (compiling a fre-

quency spectrum for every pixel) and imaging the time-dependent dynamics of a wide

variety of electronic devices.

1.3 Theory of Nitrogen-Vacancy Centers in Diamond

A nitrogen-vacancy center in a diamond lattice is an atomic-scale defect composed

of a substitutional nitrogen and an adjacent vacancy that have replaced two carbon

atoms in the lattice (Fig. 1-1). The two predominant electronic charge states for

an NV center are the negatively charged NV− state and the neutral NV0 state [17].

This thesis focuses on the negatively charged state NV−, whose Zeeman-sensitive

energy level structure is a natural fit for magnetometry, as shown in Fig. 1-2. This

charge state occurs because a nearby nitrogen serves as an electron donor, making

a total of six electrons in the NV center that form a system with one unit of spin

angular momentum, which can be coupled to both microwave and optical fields. The

electronic ground state of the NV− center is a spin triplet state with a 2.87 GHz zero-

field splitting [14]. The electronic spin axis is determined by the nitrogen and vacancy

site orientation [18]. Nitrogen has two isotopes, 14N and 15N. For our imager, we use

a diamond incorporating mostly 15N, which is preferred because 15NV only has two

hyperfine features with a larger splitting between the two resonances, compared to

the three hyperfine features of 14N [5]. Unless otherwise specified, all further mentions

of NV center will specifically refer to 15NV−.

Optical photons with frequencies higher than the NV center’s 637 nm zero-phonon

line excite transitions between the ground and excited triplet states that preserve the
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Figure 1-1: Schematic of a nitrogen-vacancy center in a diamond lattice. The NV
center as shown is along the [111] crystallographic direction. Two of the carbon atoms
have been removed from the lattice and replaced with a single nitrogen atom. Thus,
the system is composed of a nitrogen and a "vacancy". For our imager, the diamond is
a single crystal chip with a cuboid shape (not drawn to scale). The x and y directions
of the crystallographic axes are off-set from the sides of the diamond at a 45 degree
angle.

state’s spin, and the excited state subsequently decays by emitting fluorescence in

the 638-800 nm range. (For optical excitation, 532 nm wavelength is often chosen as

a balance of using conveniently available lasers while minimizing excitation of NV0

centers). The excited triplet states can also return to the ground state through a non-

radiative decay pathway via an intersystem crossing, which is preferentially chosen

by the 𝑚𝑠 = ±1 states [19, 5]. In addition, this decay pathway does not preserve

the spin projection and deposits population in the 𝑚𝑠 = 0 ground state. As a result,

the 𝑚𝑠 = 0 state is more likely to emit fluorescence, and continual optical excitation

results in a higher population in the 𝑚𝑠 = 0 state. Then, detecting the amount of

fluorescence can determine the population of NV centers in each of the 𝑚𝑠 = 0 and

𝑚𝑠 = ±1 states, which can be reached by applying MW fields. Thus, NV centers can

be optically initialized into the 𝑚𝑠 = 0 quantum state and optically read out through

the spin-dependent fluorescence [5, 17].
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Figure 1-2: Excitation of the 15NV− Center. Optical illumination of the NV center
with green light excites the system from the ground to excited electronic state. The
excited 𝑚𝑠 = ±1 states are more likely to decay to the ground 𝑚𝑠 = 0 state through
the intersystem crossing. Repetition of this process ensures that the population is
primarily in the 𝑚𝑠 = 0 ground state.

1.4 Nitrogen-Vacancy Center Hamiltonian

The Hamiltonian for the NV center includes dipole-dipole interactions between the

two unpaired electrons in the ground state, coupling to any external magnetic fields,

interactions with the diamond lattice strain, and hyperfine interaction terms [5, 14].

Since we are not using highly strained diamonds, we can safely neglect the strain

and transverse hyperfine interaction terms, since they are relatively small (< 1 MHz)

[14, 5, 18, 20]. The resulting Hamiltonian for the NV centers along the NV symmetry

axis, which we term the 𝑧-axis, is:

𝐻

ℎ̄
= 𝐷𝑆2

𝑧 + 𝐴‖𝑆𝑧𝐼𝑧 + 𝛾NVB · S (1.1)

where 𝐻 represents the Hamiltonian, ℎ̄ is the reduced Planck’s constant, S and I

are the spin operators for the electron and nuclear spins with 𝑆𝑧 and 𝐼𝑧 their 𝑧-

components, 𝐷 ≈ 2870 MHz is the zero-field splitting of the NV center, B is the

external magnetic field, 𝛾NV ≈ 28 GHz/T is the NV center gyromagnetic ratio, and
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𝐴‖ ≈ 3.0 MHz is the coupling parameter for the hyperfine splitting [14, 20].

We apply a static bias magnetic field along the NV axis, B0 = 𝐵0̂︀𝑧 ≈1 mT, which

eliminates the degeneracy between the 𝑚𝑠 = +1 and 𝑚𝑠 = −1 levels. If we address

the 𝑚𝑠 = 0 to 𝑚𝑠 = +1 transition individually (with 𝑚𝐼 = +1/2), we can treat the

resulting Hamiltonian as an effective two-level subspace:

𝐻0 = ℎ̄

⎡⎣ 𝐷 +
𝐴‖
2

+ 𝛾NV𝐵0 0

0 0

⎤⎦ . (1.2)

We call 𝜔0 = 𝐷+𝛾NV𝐵0 +
𝐴‖
2

the natural resonance frequency of the two-level system

[14]. Shifting the zero-point of energy to lie half-way between the two levels, the

internal Hamiltonian is now

𝐻0 =
ℎ̄𝜔0

2
𝜎𝑧 (1.3)

where we used the Pauli spin matrix 𝜎𝑧 [14, 20].
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Chapter 2

Quantum Sensing Protocols

2.1 Quantum Sensing Protocol

The characteristics of nitrogen-vacancy centers outlined above satisfy three of the

requirements necessary to perform quantum sensing as outlined in [1]:

∙ They have discrete energy levels that can be spectroscopically resolved. (The

energy levels are determined by the amount of red fluorescence emitted by the

NV centers.)

∙ They can be initialized into a well-known quantum state. (Optical initialization

ensures that the population is primarily in the 𝑚𝑠 = 0 ground state.)

∙ There is a physical system that interacts with the quantum system. (When

addressing NV centers, this physical system is an external magnetic field applied

to the system.)

The final element required to perform quantum sensing is:

∙ Protocols that coherently control the quantum system.

We will use Rabi and Ramsey magnetometry protocols for our sensor, which will

be outlined in the following sections. The generic Hamiltonian for a quantum sensing
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protocol includes the internal Hamiltonian of the system, the Hamiltonian of the sig-

nal to be sensed, and the Hamiltonian of a control used to tune the sensor. For sensing

with NV centers in diamond, which have symmetry axes fixed by the diamond lattice,

the signal Hamiltonian is generally split into two components: a component parallel

to the NV axis and a component perpendicular to the NV axis [1]. For a quantum

sensing protocol using NV centers, the coupling parameter is the NV gyromagnetic

ratio 𝛾 ≈ 28 GHz/T [20]. The parallel components lead to a shift of the energy

levels and thereby the transition frequency, which is what is measured in a Ramsey

experiment. The transverse (non-commuting) perturbation induces transitions be-

tween levels, which are efficient when on resonance [1]. These transition frequencies

are measured in a Rabi protocol.

2.2 Interaction Picture

The interaction picture is used for systems where the evolution of the internal Hamil-

tonian is easily solvable, but a perturbation 𝑉 drives dynamics that are unknown.

In the interaction picture, the state |𝜓⟩ becomes:

|𝜓⟩𝐼 → 𝑈 †
0 (𝑡) |𝜓⟩, (2.1)

where we use 𝑈0 = 𝑒𝑖𝐻0𝑡, and 𝐻0 is our solvable Hamiltonian [21]. The Hamiltonian

in the interaction picture is:

𝐻𝐼 (𝑡) → 𝑈 †
0 (𝑡)𝐻 (𝑡)𝑈0 (𝑡) + 𝑖ℎ̄

𝜕𝑈 †
0 (𝑡)

𝜕𝑡
𝑈0 (𝑡) , (2.2)

such that the vector state |𝜓⟩𝐼 in the interaction picture evolves according to a

Schrodinger’s Equation governed by such a Hamiltonian [21, 20]. Any Hermitian

operator A in the interaction picture becomes:

𝐴→ 𝑈 †
0 (𝑡)𝐴𝑈0 (𝑡) . (2.3)

[21]. We can use the interaction picture to solve the Hamiltonian for a system with a
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perturbation (i.e. a signal and control Hamiltonian) for which we do not understand

the dynamics, such as the Rabi magnetometry protocol described in the following

section [21, 20].

2.3 Rabi Magnetometry

For our imager, we utilize a Rabi-based magnetometry scheme. When a two-level

system is driven by a resonant magnetic field, the population oscillates between the

two states sinusoidally [21]. Rabi driving involves initializing the NV spin state into

the 𝑚𝑠 = 0 state and then applying a microwave (MW) driving field at the resonance

frequency to initiate population oscillations. The Rabi frequency is proportional to

the amplitude of the MW drive, so detecting the Rabi frequency can be used to

determine the strength of the magnetic field [14].

For example, assume we have a static magnetic field along the 𝑧-axis that splits

the degenerate 𝑚𝑠 = ±1 energy levels of an NV system. If we add an oscillating

magnetic field with angular frequency 𝜔 along the transverse 𝑥 direction such that

the total magnetic field is given by:

B = 𝐵0𝑧 +𝐵MW cos (𝜔𝑡) �̂�, (2.4)

then the Hamiltonian is a sum of the internal Hamiltonian and the Hamiltonian of

the signal field:

𝐻

ℎ̄
=
𝜔0

2
𝜎𝑧 + Ω cos (𝜔𝑡)𝜎𝑥 (2.5)

where Ω = 𝛾𝐵MW/
√

2 for a spin one system [14]. This time-dependent Hamiltonian

can be solved using the interaction picture transformation: 𝑈0 = 𝑒𝑖(𝜔𝑡/2)𝜎𝑧 . We use the

identities: 𝑒𝑖(𝜔𝑡/2)𝜎𝑧𝜎𝑥𝑒
𝑖(𝜔𝑡/2)𝜎𝑧𝑡 = cos (𝜔𝑡)𝜎𝑥 + sin (𝜔𝑡)𝜎𝑦 and 𝑒𝑖(𝜔𝑡/2)𝜎𝑧𝑡𝜎𝑧𝑒

𝑖(𝜔𝑡/2)𝜎𝑧𝑡 =

𝜎𝑧, and the resulting Hamiltonian in the interaction picture is now:

𝐻𝐼

ℎ̄
=
𝜔0

2
𝜎𝑧 +

Ω

2
(𝜎𝑥 + cos (2𝜔𝑡)𝜎𝑥 + sin (2𝜔𝑡) 𝜎𝑦) −

𝜔

2
𝜎𝑧 (2.6)
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where we also used double angle and half angle trigonometric identities. The terms

oscillating at a frequency of 2𝜔 will average out during the evolution of the system

[14]. This is referred to as the rotating wave approximation. The Hamiltonian in the

interaction picture is now time independent:

𝐻𝐼

ℎ̄
=
𝛿

2
𝜎𝑧 +

Ω

2
𝜎𝑥 (2.7)

where 𝛿 = 𝜔 − 𝜔0 is the detuning from the driving frequency 𝜔 and the resonance

frequency 𝜔0. The evolution of the state in the interaction picture is:

|𝜓 (𝑡)⟩𝐼 = 𝑒−𝑖𝐻𝐼 𝑡|𝜓⟩𝐼 = 𝑒−𝑖( 𝛿
2
𝜎𝑧+

Ω
2
𝜎𝑥)𝑡|𝜓⟩𝐼 . (2.8)

If we start in the |0⟩ state, the probability of flipping to the |1⟩ state is:

|⟨1|𝜓 (𝑡)⟩|2 =
Ω2

Ω2 + 𝛿2
sin2

(︃√
Ω2 + 𝛿2

2
𝑡

)︃
(2.9)

and when the MW field is on resonance, this becomes

|⟨1|𝜓 (𝑡)⟩|2 = sin2

(︂
Ω

2
𝑡

)︂
=

1

2
(1 − cos (Ω𝑡) , (2.10)

where 𝑡 is the total duration of the applied driving field. [14, 21].

For a single NV center, this equation refers to the probability of being in the

𝑚𝑠 = +1 state at a given time 𝑡. For an ensemble of NV centers, this becomes

the relative population of NV centers in the 𝑚𝑠 = +1 state. In practice, camera

frame rates inhibit detecting the Rabi oscillations with a continuous MW drive, so

to perform a Rabi experiment we initialize the state, apply a MW drive for a fixed

duration 𝜏Rabi, read out the state, and then repeat this sequence, varying the duration

of 𝜏Rabi as shown in Fig. 2-1. Detecting the frequency of these oscillations can be used

to determine the amplitude of the magnetic field as shown in Fig. 2-2. If the MW

amplitude is known, Rabi sensing can be used to measure the MW field frequency or

the amplitude of an additional DC field, which would manifest as a change in 𝛿 from

Eq. 2.9 [1, 5].
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Rabi Pulse Sequence

(Sweep MW pulse duration)

ReadoutInitialization Pulse

Figure 2-1: Example Rabi pulse sequence. An optical laser pulse initializes the NV
centers into the 𝑚𝑠 = 0 state. A MW pulse is applied that transfers population to
the 𝑚𝑠 = +1 state according to Eq. 2.10. The population is read out using a final
optical laser pulse. The sequence is repeated with an increased value of 𝜏 , the length
of time of the MW pulse.

Pulse Dura�on 𝜏

Pulse Dura�on 𝜏

𝑃|0

𝑃|0

1

0

0

1

Ω1 =
1

𝑇1
∝ 𝛾𝐵1

Ω2 =
1

𝑇2
∝ 𝛾𝐵2

Figure 2-2: Visual demonstration of Rabi oscillations. The length of the MW pulse
is swept in time, and the probability of being in either the 𝑚𝑠 = 0 or 𝑚𝑠 = +1
state oscillates according to Eq. 2.10. If the magnitude of the magnetic field changes,
then the period 𝑇 of this probability oscillation will also change. By determining the
frequency of the Rabi oscillations Ω, the magnitude of the applied magnetic field 𝐵
can also be determined.
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2.4 Ramsey Magnetometry

In order to measure static magnetic fields (produced by direct current) and broad-

band kHz magnetic fields, we use a Ramsey protocol [5, 22]. In a Ramsey protocol,

we apply a resonant MW drive field as the control, and the DC field to be sensed

is the perturbation. Instead of sweeping the duration of the MW pulse, Ramsey

spectroscopy applies a "𝜋/2" pulse which creates a superposition of the 𝑚𝑠 = 0 and

𝑚𝑠 = +1 states: |𝜓⟩ = 1√
2
|0⟩+ 1√

2
|1⟩. When the system is in this superposition state,

it evolves for a free precession time under the perturbation 𝐻𝑉 = 𝛾𝐵DC

2
𝜎𝑧. The super-

position state accumulates a relative phase proportional to the applied magnetic field,

and then an additional 𝜋/2 pulse maps the accumulated phase to relative populations

of 𝑚𝑠 = 0 and 𝑚𝑠 = +1 states [20].

For example, to create the 𝜋/2 pulse, we start with the lab frame Hamiltonian:

𝐻

ℎ̄
=
𝜔0

2
𝜎𝑧 +

𝛾𝐵DC

2
𝜎𝑧 + Ω cos (𝜔𝑡)𝜎𝑥 (2.11)

where the Ω term is the same MW drive as the Rabi scheme. We assume this driving

field is much larger than the sensing field and temporarily ignore 𝐻𝑉 . The Hamilto-

nian in the interaction picture then becomes like the Rabi scheme above:

𝐻𝐼

ℎ̄
=
𝛿

2
𝜎𝑧 +

Ω

2
𝜎𝑥 (2.12)

and the system undergoes Rabi oscillations with Rabi frequency Ω. The MW drive is

turned off after a time 𝜏Rabi = 𝜋/(2Ω) which represents a 90 degree or "𝜋/2" rotation

about the 𝑥-axis of the Bloch sphere and places the state in an equal superposition

state. With the MW drive off, we include the signal perturbation and the Hamiltonian

is now (assuming we are on resonance):

𝐻𝐼

ℎ̄
=
𝛾𝐵DC

2
𝜎𝑧. (2.13)
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The evolution becomes:

|𝜓
(︀
𝜏𝜋/2 + 𝜏Ramsey

)︀
⟩ = 𝑒−𝑖(𝛾𝐵DC𝜏Ramsey/2)𝜎𝑧 |𝜓

(︀
𝜏𝜋/2

)︀
⟩ =

1√
2

(︁
𝑒−𝑖𝜑

2 |0⟩ − 𝑖(𝑒𝑖
𝜑
2 )|1⟩

)︁
(2.14)

where we allow the system to evolve for a free precession time 𝜏Ramsey and the state

accumulates a phase:

𝜑 = 𝛾𝐵DC𝜏Ramsey. (2.15)

Another 𝜋/2 pulse maps the accumulated phase information back to a population

difference:

|𝜓 (𝑡total)⟩ = 𝑒−𝑖𝜋
4
𝜎𝑥

(︂
1√
2

(︁
𝑒−𝑖𝜑

2 |0⟩ − 𝑖(𝑒𝑖
𝜑
2 )|1⟩

)︁)︂
(2.16)

and the population difference is detected by measuring the spin-projection operator

𝑆𝑧:

⟨𝑆𝑧⟩ =
ℎ̄

2
⟨𝜓 |𝜎𝑧|𝜓⟩ =

ℎ̄

2

(︂
cos2

(︂
𝜑

2

)︂
− sin2

(︂
𝜑

2

)︂)︂
=
ℎ̄

2
cos (𝜑) (2.17)

which for NV centers in diamond is read out as change in the optical fluorescence

[14, 20, 21]. Thus, a change in the magnetic field induces a change in the phase, which

results in a cosinusoidal change in the fluorescence.

2.5 Quantum Frequency Mixed Rabi

The Ramsey sequence in the previous section measures static fields or low-AC fre-

quency fields while the Rabi sequence described in Sec. 2.3 induces Rabi oscillations

when the MW field is on resonance 𝜔0, which for our NV system is in the ∼2.87 GHz

range. In order to measure signal fields outside of these limited ranges, we apply

quantum frequency mixing.

A quantum frequency mixer applies principles of classical frequency mixing to a
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quantum system [23]. Classical frequency mixers shift signals to a different frequency

range; they multiply two input signals such that the output is at a desired frequency.

For example, a diode’s non-linear relationship between voltage and current allows two

input sinusoidal signals to be multiplied together, which by trigonometric properties

results in new frequencies that are the sum and difference of the input frequencies

[24]. This is used in quantum engineering to up-convert MW control fields to a desired

frequency, usually the resonance of the quantum system. Quantum frequency mixing

is a technique that uses the quantum system itself as the mixer, where the two input

signals are multiplied by the intrinsic non-linearity in the dynamics of the quantum

system. This is practically important in that it allows mixing on the nanoscale,

offering resolution unavailable with classical mixers.

When the system is driven with two fields at different frequencies, the dynamics

can be described as a quantum frequency mixer, where the effective Hamiltonian

derived in the multi-mode Floquet picture provides an elegant approach as developed

by Wang, et al. [23]. Here, we briefly reintroduce the principle of quantum frequency

mixing and its application in this work. To bring a signal of frequency 𝜔𝑠 to resonance

with a transition in an NV center, we apply a bias oscillating field with a frequency

𝜔𝑏. Here, 𝜔𝑠 and 𝜔𝑏 are analogous to the input radio frequency and local oscillator of

a classical mixer. The effective quantum signal generated by the nonlinear process, is

at frequency 𝜔𝑇 , which is analogous to the intermediate frequency of a classical mixer

as shown in Fig. 2-3.

Because this is a quantum system under a time-dependent drive, Floquet theory

is required to predict the precise resonance frequencies and dynamics. In the Hilbert

space, the combined effect of two Fourier components 𝐻𝑏𝑒
𝑖𝜔𝑏𝑡 and 𝐻𝑠𝑒

𝑖𝜔𝑠𝑡 caused

by the combination of the input signal 𝜔𝑠 and the bias ac field 𝜔𝑏 are equivalent

to an effective Hamiltonian with a frequency 𝜔𝑏 − 𝜔𝑠. The effective target signal

is thus a signal down-converted to the GHz resonance frequency of the NV system,

and existing quantum sensing protocols such as the Rabi magnetometry sequence

described in Sec. 2.3 can be used to probe the system.

Wang, et al. describes multiple pulse sequences for quantum frequency mixing.
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Figure 2-3: Visual of quantum frequency mixing for Rabi sensing. In the presence
of a signal field (yellow) at 𝜔𝑠, which is analogous to the RF signal of a classical
mixer, and a control or bias field (teal) at 𝜔𝑏, which is analogous to a classical local
oscillator, a target field (green) at the sum or difference frequency 𝜔𝑇 is generated,
which matches the resonance of the NV system.

We implement a quantum frequency mixing scheme to detect a signal oscillating in

the plane of the NV axis using a Rabi pulse sequence. The Hamiltonian for such a

scheme in the lab frame for a signal with frequency 𝜔𝑠 is given as:

𝐻 =
𝜔0

2
𝜎𝑧 + Ω𝑠𝑧 cos (𝜔𝑠𝑡+ 𝜑𝑠)𝜎𝑧 + Ω𝑏 cos (𝜔𝑏𝑡+ 𝜑𝑏)𝜎𝑥 (2.18)

where Ω𝑏 is the amplitude of the bias field, Ω𝑠𝑧 is the amplitude of the signal frequency

projected along the 𝑧-axis, and 𝜑𝑏, 𝜑𝑠 are the phases of the bias and signal respectively.

Using the same interaction picture as for a normal Rabi sequence: 𝑈0 = 𝑒𝑖(𝜔0𝑡/2)𝜎𝑧

and applying multi-mode Floquet theory to solve for the mixed frequency effective

Hamiltonian gives:
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𝐻𝐼 =
𝛿𝑧
2
𝜎𝑧 + Ω𝑇𝑧 cos [(𝜔𝑏 − 𝜔0 − 𝜔𝑠) 𝑡+ (𝜑𝑏 − 𝜑𝑠)]𝜎𝑥

+ sin [(𝜔𝑏 − 𝜔0 − 𝜔𝑠) 𝑡+ (𝜑𝑏 − 𝜑𝑠)]𝜎𝑦

−Ω′
𝑇𝑧 cos ((𝜔𝑏 − 𝜔0 + 𝜔𝑠) 𝑡+ (𝜑𝑏 + 𝜑𝑠))𝜎𝑥

+ sin [(𝜔𝑏 − 𝜔0 + 𝜔𝑠) 𝑡+ (𝜑𝑏 + 𝜑𝑠)]𝜎𝑦 (2.19)

where the amplitude of the target signal field at 𝜔𝑏 − 𝜔0 − 𝜔𝑠 projected along the

𝑧-axis, is given by

Ω𝑇𝑧 =
Ω𝑠𝑧Ω𝑏

4

(︂
1

𝜔𝑏 − 𝜔0

+
1

𝜔𝑠

)︂
(2.20)

[23]. Wang, et al. makes the following assumptions for the first order Floquet theory

approximation to work for this sequence: Ω𝑠𝑧,Ω𝑏, |𝜔𝑏 − 𝜔0 ± 𝜔𝑠| ≪ 𝜔𝑠. We choose a

bias frequency 𝜔𝑏 such that:

𝜔𝑏 − 𝜔0 − 𝜔𝑠 = 𝛿𝑧 (2.21)

where 𝛿𝑧 is the detuning from the frequency-mixed resonance. Using the classical

mixing analogy, this essentially says:

𝜔𝑏 − 𝜔𝑠 = 𝜔𝑇 = 𝜔0 (2.22)

with 𝜔0 the NV resonance frequency. This makes an effective Hamiltonian similar to

Eq. 2.5 that induces Rabi oscillations. The oscillation frequency experimentally mea-

sured when using this protocol is proportional to the inverse of the signal frequency
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ΩQFM =
Ω𝑠𝑧Ω𝑏

𝜔𝑠

. (2.23)

where ΩQFM = 2Ω𝑇𝑧. With this frequency, we can extract the amplitude of the

signal. The full details of the multi-mode Floquet theory and the derivations for this

quantum frequency method are found in Wang, et al. [23].
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Chapter 3

Wide-field Magnetic Imaging

3.1 Nitrogen-Vacancy Magnetic Imager Concept

NV centers can be used for high-spatial-resolution, wide-field-of-view imaging of mi-

croscopic magnetic fields. A diamond magnetic imager is a type of bulk ensemble

sensor; it employs a large number of NV centers and statistically averages the results

to determine the magnetic field strength. This yields a higher signal-to-noise ratio

than an individual NV center; however, ensembles have more complicated spin bath

environments that can speed up decoherence and dephasing [5, 8, 20]. Diamonds with

bulk ensembles of NV centers can have NV centers oriented along all four crystal-

lographic directions. If we apply the static magnetic field along a specific NV axis

direction, we can selectively address that NV orientation subset, which becomes our

𝑧 direction.

Figure 3-1 shows a schematic of an NV diamond magnetic imager. At the top

is a macroscopic, single-crystal diamond chip with a thin, uniform layer containing

a high concentration of NV centers at the surface. A laser excites NV centers in

a region of the diamond chip, causing the NV centers to emit fluorescence, which

can yield spatially-resolved magnetic field information by imaging the light onto a

sensor array using a set of imaging optics. We place a test structure with a spatially-

varying magnetic field on top of the diamond. As described previously in Chap. 2,

the amount of fluorescence emitted by the NV centers depends on the magnetic field
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strength of the signal being sensed. Thus, for a spatially-varying magnetic field, the

sensor array will map out the spatially-varying fluorescence from the different sections

of NV centers, thereby creating a "magnetic" image. Because the NV centers across

the chip fluoresce simultaneously, these imagers have faster image acquisition times

than other imaging techniques like raster scanners. This speedup of acquisition time

adds spatio-temporal dynamics to the traditional imaging techniques, since images

can be taken in rapid succession [5, 22].

Figure 3-1: Schematic diagram of an NV diamond magnetic imager. A green laser
illuminates a region of NV centers in diamond. A specific region of the diamond
sensor film (highlighted by a red cartoon spin) responds to the magnetic field in that
region and produces magnetic-field-dependent fluorescence, which is imaged onto a
sensor array using a set of imaging optics. An example test structure generating a
spatially-varying magnetic field, a spiral with attached wire leads, is displayed at the
sensor plane, and an image of the magnetic field-dependent NV fluorescence due to
the test structure is projected at the focal plane.
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3.2 Experimental Methods for Imaging

Figure 3-1 also shows the relevant coordinate systems we use to orient our experi-

mental setup: {𝑥, 𝑦, 𝑧} indicates the NV coordinate system (with 𝑧 along the N-V

axis we selectively address, which is also the diamond [111] crystallographic axis)

and {𝑋, 𝑌, 𝑍} indicates the imager coordinate system (with 𝑍 out of plane for the

image). For our magnetic imager, a 5 × 5 × 0.5 mm3 diamond sample with a 20 µm

layer of NV centers is illuminated with 1 W of 532 nm laser light, which is passed

through an acousto-optic modulator (AOM) switch and flat-top beam shaper. We

place the test structures on top of the NV center layer, which is coated with 10 nm

of Ti metal and then 50 nm of Au to prevent light leakage. The diamond is attached

to a mount that applies a uniform microwave field along the 𝑥 direction, and the NV

centers detect DC magnetic fields (with Ramsey magnetometry) and AC magnetic

fields (with QFM) along the 𝑧-axis. The mount also acts as a heat sink to dissipate

diamond laser heating. We applied a 1 mT bias magnetic field 𝐵0 along the +𝑧 direc-

tion using permanent magnets. This bias field sets the transition frequencies between

NV ground-state sublevels to be 𝐷 ± 𝛾𝐵0, where 𝐷 ≈ 2870 MHz is the zero-field

splitting, and we use 𝜔0 ∼ 2890 MHz (the resonance fluctuates with temperature by

-74.2 kHz/K [25, 26]). NV fluorescence light is imaged with an optical microscope

onto a digital focal-plane array (DFPA) camera, which allows for the combination of

high sensitivity, large dynamic range, large pixel count, on-chip processing, and fast

data rates required for this work [27]. The laser, microwaves, test structure current,

and camera trigger pulses are programmed with a 1.2 GS/s arbitrary waveform gen-

erator (AWG), see Appendix B.4 for details. The camera is triggered to acquire an

NV fluorescence readout image, which is converted to a magnetic field image.

3.3 Experimental Ramsey Pulse Sequence

We first demonstrate our imaging capabilities for sensing static magnetic fields. We

apply a DC current to the test structure and perform Ramsey magnetometry. This
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helps us validate our AC imaging technique by ensuring that the test structure is

centered in the camera field of view and confirming that the test structure is flat on

the diamond surface. It also provides us with a DC magnetic image to compare with

subsequent AC QFM magnetic images.

For our Ramsey measurements, we used slope detection to convert the measured

phase into magnetic field as shown in Fig. 3-2. At the point of maximum slope, a si-

nusoid is approximately linear. In this range, a change in fluorescence can be mapped

linearly to a change in phase and consequently magnetic field. Using slope detection

enables us to achieve higher sensitivity with our sensor; however, the dynamic range

(the range of magnetic field amplitudes that can be detected) when using slope de-

tection is limited by phase wrapping. If the signal is strong enough to accumulate

phase greater than a 𝜋/2 period of the oscillation, then it will be outside this linear

region [1].

Fl
u
o
re
sc
en

ce

Phase
Figure 3-2: Visual demonstration of linear detection. At the point of maximum slope,
the change in fluorescence is approximately linear to the change in phase, so collecting
the change in fluorescence in this region can be mapped to a change in phase, which
can be converted to magnetic field values.

From Eq. 2.15, the accumulated phase is proportional to both the magnetic field to

be sensed and the precession time 𝜏Ramsey, which means that increasing the precession

time increases the sensitivity of magnetic fields that can be measured. However, this

must be balanced with the dephasing time 𝑇2*, which is caused by inhomogeneities

across the ensemble of NV centers (i.e. variations in the local spin environment). The
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optimal time for a measurement 𝜏Ramsey is when the fluorescence has decayed to 1/e

of its initial value [20].

Figure 3-3 depicts the experimental steps we used to perform a DC magnetometry

experiment. We first start by performing a conventional Rabi magnetometry mea-

surement. To do this, we initialize the NV centers to the 𝑚𝑠 = 0 magnetic sub-level

with a laser pulse, apply a uniform MW field across the diamond with our estimate

of 𝜔0 for a variable duration 𝜏Rabi, and read out the NV final state with a second

laser pulse. The camera exposes for the length of the readout pulse. Fitting the

NV fluorescence intensity as a function of 𝜏Rabi for each pixel and sweeping the MW

frequency until we have the largest contrast and slowest Rabi frequency on average

over the field of view ensures we are on-resonance (from Eq. 2.9). The Rabi frequency

also determines how long to turn on the MW drive field to create a 𝜋/2 pulse, i.e.

satisfy Ω𝜏Rabi = 𝜋/2.

We then perform a precession time sweep as shown in Fig 3-3a. A precession

time sweep involves successive pulse sequences where we fix the start of one 𝜋/2 pulse

and vary the start of the other 𝜋/2 pulse, sweeping the length of the precession time

𝜏Ramsey. Mapping the Ramsey Free Induction Decay allows us to find the dephasing

time 𝑇2*. We then perform a phase sweep, where we fix the precession time 𝜏Ramsey

as shown in Fig. 3-3b. Using digital phase shifters, we fix the phase of one microwave

pulse and perform successive measurements where we sweep the phase of the other

microwave pulse. This acts as an artificial magnetic field applied equally across the

entire diamond, allowing us to see how the fluorescence changes with each phase for

each pixel. This is important for wide-field imaging, since inhomogeneities across

the diamond cause the NV centers in each region to precess slightly differently, so

performing this phase sweep allows us to know how each region changes in response

to a magnetic field. We save this information as a matrix containing the slope and

intercept values for each pixel to map change in fluorescence to a change in the

magnetic field. Finally, we perform a magnetometry sequence as shown in fig 3-3c.

We fix both the free precession time 𝜏Ramsey and the phase 𝜑 of the first and second

microwave pulses so that for as many pixels as possible are within the linear regime.
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In a simplified version, we perform two sequences. In the first sequence, we apply

a signal current to the device under test, creating a magnetic field to be sensed, and a

second where the signal current is turned off. We subtract the fluorescence collected

during the "off" sequence from the "on" sequence to determine the difference in

fluorescence caused by the signal magnetic field. We then apply the calibration matrix

to convert the change in fluorescence to a change in phase, which we can convert to

a magnetic field value. In practice, we apply a noise subtraction protocol where we

modulate the signal amplitude with positive/negative DC current between alternate

camera exposures to improve the long-term stability and pixel-to-pixel noise floor of

our apparatus. For details, see Appendix A.1. We also implement the double quantum

four-Ramsey protocol, which involves applying two microwave frequencies to address

both the 𝑚𝑠 = +1 and 𝑚𝑠 = −1 levels at the same time to avoid frequency shifts due

to temperature and strain inhomogeneity, as well as a sequence subtraction protocol

to cancel out residual single-quantum coherence from pulse imperfections [28]. The

double quantum technique is described at length in [28, 29].
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Figure 3-3: Pulse Sequence steps for a Ramsey magnetometry experiment. (a) The
first step is a series of successive pulse sequences that sweeps the duration of the free
precession time 𝜏Ramsey. (b) The second step is a series of successive pulse sequences
where 𝜏Ramsey is fixed, but the phase of the second MW pulse is swept. This gives the
calibration matrix to convert fluorescence to magnetic field. (c) The last step is the
magnetometry sequence, where 𝜏Ramsey and 𝜑 are fixed on a point of maximum slope
(see 3-2). At least two sequences are performed, one where the signal to be detected
is on and one where it is off. The difference in fluorescence can then be converted
using the calibration matrix for each pixel to find the magnetic field value at a given
point.
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3.4 Through-Silicon Via Test Chip at DC

We performed imaging on an integrated circuit fabricated in the microelectronics fa-

cility at MIT Lincoln Laboratory. We achieved <20 𝜇m spatial resolution over an

approximately 1.5 × 1.5 mm2 field of view. The integrated circuit originally was

designed and fabricated to test a 3D integration technique for scaling up supercon-

ducting technology, whereby an interposer tier containing through-silicon vias (TSVs)

connects a pristine high-fidelity qubit layer to a layer designated for signal routing and

control. The test chip contains arrays conducting traces in separated layers bridged

by TSVs, all daisy-chained in series so that current flows from one end of the chip

to the other through higher and lower layers and also across alternating rows (see

Fig. 3-4).

The test chip is placed in close proximity to the diamond surface. We apply

a 5V DC signal across the measured ≈ 17 kΩ resistance. Figure 3-5 shows the

magnetic field projection along the 𝑧-axis. Due to a calibration error, the values

are in approximate magnetic field units within a factor of two of µT. The image

clearly shows the structure expected from the daisy-chained chip. The image has

regions of higher field magnitude separated by regions of lower field magnitude. The

spacing between these regions is consistent with the spacing between regions with

conductive traces residing in shallow and deeper layers. Moreover, the sign of the

field is consistent with the alternating current direction in adjacent rows and the

pattern is consistent with the known row spacing.

We also used the TSV structure to demonstrate the temporal dynamics of the

magnetic imager. Figure 3-6 shows a frame from a magnetic movie showing the field

created by the TSV chip change over a 0.3 s time period. We sent a signal current

through the TSV chip that varies temporally as a heart-beat signal. The magnetic

field strength changes over time and spikes with each beat at these two locations on

the chip. 3-6b shows the initial signal current through the chip as a function of time.

3-6c-d show the average magnetic field value of the pixels in the upper and lower box

respectively as a function of time. Since the current is going in opposite directions at
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those points, they have opposite positive and negative values.

a) b)

c)

Figure 3-4: (a) Optical image of through-silicon via (TSV) test chip. White scale
bar in the bottom left denotes 1 mm. (b) Diagram depicting the daisy-chained TSV
test structure. Arrows show the current path though adjacent rows, traveling in
alternating directions. The purple rectangles refer to conductive traces, which are
spaced by 100 𝜇m in the vertical direction and 200 𝜇m horizontally. The small
ovals represent TSVs through which current can flow to a deeper layer, which has
conductive traces spanning the insulating gaps shown in the layer displayed. (c)
Schematic depicting a side view of a single row of the TSV chip. The colored regions
conduct current while the gray regions are insulating. Current must flow between the
higher and lower layers in order to travel from one side of the row to the other.
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Figure 3-5: Magnetic field image of the through-silicon via test structure measured
along the 𝑧-axis. The image shows regions of higher magnetic field values and lower
magnetic field values corresponding to the movement of the trace in and out of the
plane. As the current moves back and forth across the chip, the magnetic field values
alternate from positive to negative. The values are in approximate magnetic field
units within a factor of two of µT.
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Figure 3-6: Screen shot of magnetic movie (a) A magnetic image near the end of
the movie. (b) the amplitude of the signal current at each point in time, creating
a heartbeat waveform. The circle shows the current applied to the signal in the
magnetic image in a. (c) The measured magnetic field value average of the lower box
of pixels. (d) The measured magnetic field value average of the upper box of pixels.
Since the upper and lower boxes are in regions where the current is going in opposite
directions, the magnetic field value has opposing positive and negative signs in these
boxes.
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Chapter 4

Quantum Frequency Mixing on an

Imager

4.1 Experimental Quantum Frequency Mixing Pulse

Sequence

To experimentally execute a Rabi-based QFM pulse sequence, we once again start

with a conventional Rabi sequence by applying a uniform MW field across the dia-

mond to find the resonance with no signal applied to the test structure. This pro-

vides the resonant 𝜔0 frequency needed to find the correct frequency for 𝜔𝑏. The

on-resonance Rabi frequencies also provide the amplitude Ω𝑏 needed to convert the

detected Rabi frequencies ΩQFM to a magnetic field value.

We then apply an AC current with frequency 𝜔𝑠 and increase the uniform MW

field frequency to 𝜔𝑏 = 𝜔0 + 𝜔𝑠 and measure the resulting QFM Rabi oscillations.

Figure 4-1 visually demonstrates the full QFM protocol on an imager. The QFM

experiment is nearly identical to the on-resonance Rabi oscillation experiment, with

the main difference being that we address the NV centers with frequency 𝜔𝑏 instead

of 𝜔0. Fitting the fluorescence time-trace data to extract ΩQFM, we can then use

Eq. 2.23 to extract the AC signal field amplitude for each pixel. Figure 4-2 provides

a summary comparing all of the different pulse sequences used to implement and
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Figure 4-1: (a) Schematic diagram of QFM on a magnetic imager. Different regions
of the diamond sensor film (highlighted by blue and red cartoon spins) respond to
spatially-varying magnetic fields and produce magnetic-field-dependent fluorescence,
which is imaged onto a sensor array using a set of imaging optics. (b) The spins
act as both quantum mixers and quantum sensors. In the presence of a signal field
(yellow) at 𝜔𝑠 and a control or bias field (teal) at 𝜔𝑏, a target field (green) at the sum
or difference frequency 𝜔𝑇 is generated. (b) When 𝜔𝑏 is chosen so that the field at
the sum or difference frequency is resonant with the spin transition at 𝜔0, population
oscillations occur between the two spin states. The frequency of oscillations, called
the QFM Rabi frequency ΩQFM, provides a measure of the amplitude of the signal
field, for a known bias field amplitude, given by Eq. 2.23. Spatial variations in field
amplitude result in variations in ΩQFM at arbitrary 𝜔𝑠.

validate the QFM technique for magnetic imaging.

As with the DC images, we modulate the signal, turning it on and off and sub-

tracting alternate frames to improve the long-term stability and pixel-to-pixel noise

floor. See Appendix A.1.

4.2 Test Structures

To demonstrate the QFM technique on our imager, we fabricated two conducting

test structures on a glass microscope slide using photolithography and electron-beam
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Figure 4-2: (a) Conventional Rabi pulse sequence used to determine the resonance
of the diamond. No current is applied to the device under test (DUT). We initialize
the NV centers to the 𝑚𝑠 = 0 state with an optical laser pulse, apply an on-resonance
microwave field of frequency 𝜔0 for a variable duration and read out the state with
a final laser pulse. (b) Ramsey pulse sequence. We apply a DC signal to the DUT.
Instead of varying the duration of the on-resonance pulse, we apply a 𝜋/2 microwave
pulse to create a superposition of the 𝑚𝑠 = 0,𝑚𝑠 = 1 states and allow the system
to evolve for a fixed time 𝜏Ramsey. We then apply another 𝜋/2 pulse, followed by
an optical pulse to read out the state. (c) Quantum frequency mixed (QFM) Rabi
pulse sequence used to measure an AC magnetic field. We apply a signal current with
frequency 𝜔𝑠 to the DUT. We then apply an adapted Rabi sequence where instead of
resonant MW pulses, we apply MW pulse sequences with bias frequency 𝜔𝑏. We then
read out the state with a final optical pulse.

evaporation (10 nm Ti, 2 µm Al, 10 nm Ti, 150 nm Pt, 200 nm Au), a straight wire

and an Archimedes spiral (both with 50 µm trace thickness), as shown in Fig. 4-3a

and Fig. 5-1a. The space between turns for the Archimedes spiral is 200 µm. We

attached wire leads to the test structures using silver paint (yielding few-Ω total

resistances), after which they were placed on the diamond sample. When applying

DC and AC currents using a function generator, we included a 50 Ω load resistor in

series and measured the voltage across across it to validate the DC and AC current

amplitudes through the test structures.
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4.3 Results

4.3.1 Initial Validation

Figure 4-3a shows a photo of the straight wire structure we imaged. We applied an 80

mA peak-amplitude AC current through this structure and measured the projection

of the created magnetic field along the 𝑧-axis. The acquisition times for each images

was ∼5 minutes, ∼2 minutes of which was dead time due to camera transfer lag.

The Rabi frequency is extracted from the time-averaged Rabi oscillations using the

fit function 𝐶(𝜏Rabi) = 𝐴 cos (ΩQFM𝜏Rabi + 𝜑) 𝑒−𝜏Rabi/𝑇 +𝑓 where 𝐶 is the fluorescence

intensity, 𝐴 is the Rabi amplitude, 𝜑 is a phase offset, 𝑇 is the Rabi lifetime, and 𝑓 is

an offset. See Appendix A.1 for details on the acquisition times and the normalized

fluorescence intensity. Figure 4-3b maps the ΩQFM values for 𝜔𝑠 = 2𝜋×4 MHz and

2𝜋×35 MHz, including the Rabi oscillations for an example pixel. As expected, at

higher signal frequencies, the detected Rabi frequency decreases. There is a black

stripe that corresponds to a Rabi frequency near 0, which matches where the field is

perpendicular to the 𝑧 direction.

Figure 4-3d plots ΩQFM as a function of 𝜔𝑠 for two pixels. As expected, ΩQFM

decreases as 𝜔𝑠 increases. These data are fitted with the fit function ΩQFM = 𝑎/𝜔𝑠

(where 𝑎 is a free parameter), and are consistent with Eq. 2.23. For both pixels, Ω𝑏

was experimentally determined to be ∼ 2𝜋×1.0 MHz. Ω𝑠𝑧 is roughly estimated to be

∼ 2𝜋×2 MHz and ∼ 2𝜋×4 MHz for the center and right pixels respectively, based on

the simulated magnetic field of a 50 µm ribbon at ∼50 µm standoff distance. The

fitted 𝑎 coefficients are (2𝜋)2 ×{1.3, 2.3} MHz2 for the center and right pixels. Given

Ω𝑏 ∼ 2𝜋×1.0 MHz for both pixels and the simulated Ω𝑠𝑧 are ∼ 2𝜋 × {2, 4} MHz, the

extracted fit parameters are within a factor of two of the estimated values and are

thus reasonably consistent with the Floquet theory prediction.

Previously, quantum frequency mixing was demonstrated for a bulk NV ensem-

ble (equivalent to a single-pixel measurement). The above straight-wire demonstra-

tion shows that this technique works for an NV imager, confirming the anticipated

frequency-scaling law.
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Figure 4-3: (a) Rabi frequencies ΩQFM for the center and right pixels in the magnetic
images shown in b-c at different input signal frequencies 𝜔𝑠 fit to an 𝑎/𝜔𝑠 curve,
demonstrating their inverse relationship as described in Eq. 2.23. A photo of the
straight wire structure is shown in the upper corner. (b-c) Two example images
demonstrating quantum frequency mixing for an AC current through a straight wire
at 𝜔𝑠 = 2𝜋×4 MHz and 2𝜋×35 MHz respectively. The Rabi oscillations and the
extracted Rabi frequency for the specified center pixel are shown below the images.
As expected, the detected Rabi frequency ΩQFM at a specified pixel decreases at higher
input signal frequencies 𝜔𝑠. The green pixel will be discussed in Sec. 4.3.3.
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4.3.2 Strong-Drive, Low Signal Frequency Regimes

In Fig. 4-3 we used Eq. 2.23 to confirm that the measured QFM Rabi frequencies

ΩQFM were behaving as expected. However, this expression is validated by the Floquet

theory prediction when

Ω𝑏, Ω𝑠𝑧 ≪ 𝜔𝑠, (4.1)

which is not necessarily true for all experimental conditions.

Figure 4-4a shows the ΩQFM vs. 𝜔𝑠 behavior for the pixel on the left in the straight

wire validation image, marked with a green × symbol, which has a stronger amplitude

Ωsz. Here, the value for Ω𝑏 is 2𝜋×1.0 MHz, Ω𝑠𝑧 is ∼ 2𝜋×2.5 MHz, and the lowest

value for 𝜔𝑠 is 2𝜋×2 MHz. As 𝜔𝑠 decreases towards Ω𝑠𝑧, ΩQFM reaches a maximum

around 𝜔𝑠 = 2𝜋×5 MHz and then decreases, violating Eq. 2.23. We estimate Ω𝑠𝑧 for

this pixel by excluding the lower 𝜔𝑠 values where the assumptions are violated and

fitting the higher values to the 𝑎/𝜔𝑠 curve to extract Ω𝑠𝑧. To confirm this behavior,

we perform a computational simulation of the experiment by inputting the labora-

tory frame Hamiltonian and the time evolution operator and numerically solving for

the population over a discrete set of time points, then taking a Fourier transform

of the population oscillations to find the effective Rabi frequency. As we plot the

effective Rabi frequency across different input signal frequencies, we see that this be-

havior is accurately reproduced. Note that Ω𝑏 was extracted using an on-resonance

Rabi measurement, and Ω𝑠𝑧 was extracted by fitting the high-frequency tail of the

measurements in Fig. 4-4a (where the assumption is valid). Figure 4-4b shows the

simulation for the center pixel, demonstrating that both the simulation and experi-

mental data shown in 4-3 match Eq. 2.23.

In order to determine where the Floquet theory prediction breaks down, we

repeated the experiment and simulation, this time fixing the signal frequency at

𝜔𝑠 = 2𝜋×5 MHz and calculating the effective Rabi frequencies for the center pixel

in Fig. 4-3 across different amplitudes of the signal Ω𝑠𝑧 as demonstrated in Fig. 4-

5. The experimental data and the simulation match the Floquet theory prediction

reasonably well at lower values of Ω𝑠𝑧 but veer away significantly as Ω𝑠𝑧 approaches
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𝜔𝑠.

This analysis shows a potential weakness of the QFM AC magnetometry and

imaging method, which is that the conversion from ΩQFM to Ω𝑠𝑧 (which is nominally

straightforward if using Eq. 2.23) may be nontrivial if Eq. 4.1 is invalid. This may

complicate the QFM AC magnetometry method when attempting to apply it to more

general experimental situations. For example, one may be tempted to increase Ω𝑏 to

compensate for a small Ω𝑠𝑧 (implying a slow ΩQFM, which could be difficult to measure

if its period is slow compared to 𝑇Rabi). However, such a strategy could violate Eq. 4.1,

requiring more complicated calibration needed to extract Ω𝑠𝑧.

4.3.3 Weak-Drive Regimes

In experimental conditions where Ω𝑠𝑧 is too small to extract a Rabi frequency ΩQFM,

one could apply an on-resonance 𝜋/2-pulse at frequency 𝜔0 before the Rabi pulse at

frequency 𝜔𝑏, making the NV fluorescence intensity proportional to

sin (ΩQFM𝜏 + 𝜑) 𝑒−𝜏/𝑇Rabi instead of cos (ΩQFM𝜏 + 𝜑) 𝑒−𝜏/𝑇Rabi [14]. Similar to the

slope detection scheme for the Ramsey sequence described in Sec. 3.3, for small

ΩQFM, the fluorescence change would be proportional to ΩQFM𝜏 for improved sen-

sitivity and minimum-detectable ΩQFM. However, implementing this also requires

careful calibration to map the change in fluorescence back to a magnetic field value

[1]. Note that if the phases between the initial 𝜋/2-pulse and the QFM pulse are

uncontrolled, this may become more nontrivial to implement and interpret.
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Figure 4-4: (a) Numerical simulation of Rabi frequencies ΩQFM for the left (green)
pixel in Fig. 4-3c-d at different signal frequencies 𝜔𝑠. The red line represents Eq.
2.23, the dashed lines are the Fourier spectrum from the numerical simulation, and
the green dots are the experimental data. At lower signal frequencies, the Floquet
theory fails as Eq. 4.1 is violated, and ΩQFM reaches a maximum before decreasing
for both the simulation and experimental data. (b) The simulation comparison for
the center pixel, which is plotted in Fig. 4-3d. For this pixel, the simulated data
reasonably matches the Floquet prediction and experimental data, demonstrating
that the assumptions hold for the Ω𝑏,Ω𝑠𝑧, and 𝜔𝑠 values used in Fig 4-3.
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Figure 4-5: Numerical simulation of Rabi frequencies ΩQFM for different signal ampli-
tude values Ω𝑠𝑧 compared to experimental data and theoretical prediction Eq. 2.23
for the center pixel in Fig. 4-3c-d. This demonstrates where the Floquet theory fails
as Ω𝑠𝑧 approaches 𝜔𝑠 and the assumption Ω𝑠𝑧 ≪ 𝜔𝑠 is broken.
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Chapter 5

Imaging AC fields in Fabricated

Devices

5.1 Archimedes Spiral Structure

In addition to a straight wire, we created a spiral structure using conductive materials

on a glass microscope slide. We chose this test structure for its relative simplicity,

allowing us to validate our results. However, unlike the simple straight wire structure,

a spiral test structure has currents (magnetic fields) pointing in a wide range of di-

rections, leading to a highly nontrivial magnetic field map. While not intended to be

used as a planar spiral inductor, its layout is similar, and generalizing to measuring

spiral inductors and other similar passive RF circuit elements is straightforward. Fur-

thermore, since it is a passive circuit element, we have full control over the frequency

and amplitude of current passing through the spiral. This is ideal for achieving a

first proof-of-principle demonstration of QFM imaging. By contrast, when measur-

ing the magnetic fields from a more sophisticated IC, these parameters are likely

uncontrollable (and are often unknown).

Figure 5-1a shows a photo of the spiral structure. Figure 5-1b depicts the spi-

ral structure with a 1 mA DC signal current measured using our Ramsey protocol.

Figure 5-1c demonstrate the same spiral structure using the quantum frequency mix-

ing technique. We once again applied an 80 mA peak-amplitude current through
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this structure and measured the projection of the created magnetic field along the 𝑧

axis. The images show the amplitude of the detected Rabi frequencies ΩQFM at each

pixel, with the Rabi oscillations at a specified pixel shown below. As expected, the

Rabi frequencies for the pixel shown decrease by a factor 1/𝜔𝑠 as the input signal

frequency increases from 𝜔𝑠 = 2𝜋×5 MHz to 2𝜋×50 MHz. Note that the DC image

measures both positive and negative magnetic field values while the AC images mea-

sure amplitudes, though the absolute value of the DC image is consistent with the

AC images.
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Figure 5-1: (a) Photo of the imaged spiral structure. (b) DC magnetic image of
spiral structure with 1 mA signal current measured using a Ramsey sequence. (c-d)
Two examples of AC magnetic imaging technique on a nontrivial spiral structure and
the Rabi oscillations and extracted Rabi frequency for a specified pixel. The Rabi
frequencies for a specified pixel decrease by a factor 1/𝜔𝑠 as the input signal frequency
increases from 5 MHz to 50 MHz.
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5.2 Through-Silicon Via Test Chip at AC Frequen-

cies

We applied the QFM technique on the same TSV circuit chip described in Chapter

3 and measured the magnetic fields from the TSV structure after applying AC signal

currents to it. Even at low AC input signal frequencies, we could not detect the same

magnetic field structure as we could at DC fields. The structure we could see was

even less discernible at higher frequencies. Figure 5-2b shows the absolute value of

the magnetic field for a DC signal. In comparison, fig. 5-2c shows the detected Rabi

frequencies when an 𝜔𝑠 = 2𝜋×1 MHz AC signal is applied to the TSV structure.

Figure 5-2d shows the Rabi oscillations for two different pixels.

We measured the impedance on a network analyzer and noted that it drops rapidly

as the signal frequency increases, dropping from 17 kΩ at DC to an effective impedance

of 2 kΩ at 𝜔𝑠 = 2𝜋×1 MHz. We assume that the chip likely had some capacitive or

inductive characteristic preventing us from seeing the structure, which we believe to

be a capacitive short that caused the input signal to traverse a different path through

the TSV chip. If the TSV image results are correct, this could enable us to discover

the location of the capacitive short. Further analysis is needed to confirm that the

chip’s impedance is causing the change in what we detect as the AC magnetic signal,

such as a simulation of the expected magnetic field at different frequencies. If the

magnetic field matches the simulation, then this could demonstrate the potential to

use quantum frequency magnetic imaging as a technique for characterizing impedance

changes in devices.
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Figure 5-2: (a) The measured magnetic field projection along the diamond NV axis
from the TSV test circuit when 5V DC is applied across its ≈ 17 kΩ resistance.
(b) Absolute value of the magnetic image shown in a. (c) Rabi oscillations for two
pixels in the 𝜔𝑠 = 2𝜋×1 MHz AC magnetic image. (d) Detected Rabi frequencies
using quantum frequency mixing for 𝜔𝑠 = 2𝜋×1 MHz. The "hot spot" in the image
indicates that a capacitive short is causing current to flow through a different section
of the TSV structure than at DC signals.
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Chapter 6

Conclusion and Outlook

In this thesis, we described the principles and methods for utilizing nitrogen-vacancy

centers in a diamond lattice with appropriate quantum sensing protocols for high-

resolution, wide field-of-view magnetic imaging across a range of signal frequencies.

We then demonstrated an NV widefield magnetic imaging apparatus capable of mea-

suring DC and AC magnetic fields up to 70 MHz over a 1.5 × 1.5 mm2 field of view for

various test structures. The imager itself overcomes several of the common challenges

for NV pulsed magnetic imaging. After validating that the technique works with a

simple straight-wire device, we then imaged an Archimedes spiral test structure and

a fabricated through silicon via test chip.

We used a Rabi based magnetometry scheme with a linearly polarized signal and

bias field to measure a signal field oscillating in the direction of the NV axis. Wang,

et al. outlines additional protocols, including measuring with circularly polarized sig-

nal and bias fields or measuring in the transverse direction. Additional extensions

could include applying spin-locking and pulsed dynamical decoupling methods such

as CPMG [23].

Potential test devices to measure in the future include fractal antennas, and other

passive RF components like a doubler or classical mixer. For example, QFM imaging

could be used on a mixer to create a map of where exactly the current is going

through the traces based on frequency. It could be potentially useful in analyzing

abnormalities in RF devices or product inspection for mass produced circuits by
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comparing the magnetic field map of a model circuit with a test device.

Future extensions of this work also include implementing a spectrum-analyzer

imager (a form of hyperspectral imaging [30]), comparable to a scanning antenna

measuring an electromagnetic power spectrum across a field of view [31]. Rather

than raster-scanning an antenna to collect the spectrum from each pixel (which also

requires frequency scanning from the spectrum analyzer), an NV-based QFM imager

would instead scan 𝜔𝑏 (frequency scanning) and 𝜏Rabi, though we could avoid scanning

𝜏Rabi if using the 𝜋/2-pulse idea from Sec. 4.3.3. The resulting hyperspectral data cube

could then be analyzed for PSA applications, such as counterfeit detection, component

aging, and fabrication process variation over time or across a wafer [32, 33]. We

note that previous works have also combined NV magnetic imaging with a spectrum

analyzer [34, 35], but in these cases the imager itself is also the spectrum analyzer.

This could be useful for validating how internal current paths within a device change

as a function of frequency and impedance (for example, capacitive shorting). In

addition, this apparatus and technique are well-suited for time-dependent imaging

(i.e. magnetic movies), which can yield information of unintended frequency and

amplitude variation over time.

This QFM imaging approach could be adapted for space-domain reflectometry for

open-circuit fault localization. This was previously demonstrated with a scanning

RF SQUID sensor [33], but could potentially achieve improved spatial resolution and

sensitivity with an NV magnetic microscopy apparatus. Finally, this technique could

be used to evaluate the RF and microwave images of hardware used for quantum

computing, such as ion trap chips and superconducting qubits.
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Appendix A

Magnetic Imager Noise and

Resolution

A.1 Spatial Magnetic Noise Floor and Noise Sub-

traction Protocol

The spatial magnetic noise floor refers to the detected magnetic field difference be-

tween pixels when no signal is applied to the imager. The spatial magnetic noise floor

and the per-pixel magnetic sensitivity determine whether a spatially varying signal

can be resolved into an image [22]. We quantify the spatial magnetic noise floor as

the standard deviation of magnetic-field measurements across a time-averaged image

without external signals present. Uncorrelated spatial noise can be time averaged

while correlated spatial magnetic noise limits the resolvable magnetic field. For ex-

ample, fluctuations in laser power, vibration, and temperature induce changes in

illumination intensity, the bias magnetic field, and the detuning of the system, all of

which affect the NV precession rate [22, 36]. In order to mitigate the impact of spa-

tially correlated noise varying slowly on the timescale between acquisitions of frame

sets, we applied a noise subtraction protocol similar to one described in [22].

Figure A-1a demonstrates the background subtraction used for both on-resonance

and QFM Rabi experiments. The MW drive is turned off every other pulse sequence.
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MW pulse duration increases each frame. AC signal
modulated on/off each frame. Subtract alternating
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Sequence 1:
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Figure A-1: (a) Visual depiction of how we perform the background subtraction for
Rabi measurements. A pulse sequence repeats 32 times for each MW pulse duration.
The MW drive is turned off every other sequence and the detected signal is subtracted
from the previous sequence to provide the change in fluorescence caused by the MW
drive. This removes non-magnetic noise from the system (b) Modulation of the QFM
signal 𝜔𝑠 to remove magnetic noise. To create a magnetic image, we take a series of
200 frames where the signal is modulated on and off for alternating frames, with the
"off" frame subtracted from the "on" frame. For each pixel, there is now a time trace
of 100 points of background subtracted fluorescence caused by the QFM signal that
can be plotted against the MW pulse duration length, from which the effective Rabi
frequency can be extracted.

The DFPA has an in-pixel computational feature with an up-down counter for back-

ground subtraction [27]. In alternating exposures, the collected fluorescence from the

"off" exposure is subtracted from the previous "on" exposure count, so only the change

in fluorescence caused by the MW drive is counted. This removes non-magnetic back-

ground noise. The counts from 32 exposures are summed together and off-loaded onto

the FPGA and to the computer via cameralink cables and a frame grabber as one

"frame." We then repeat this process 200 times, increasing the MW pulse duration in

each frame. For a QFM Rabi sequence, the QFM signal at frequency 𝜔𝑠 is modulated

on and off in alternating frames with "off" frames subtracted from the "on" frames

count in the post-acquisition analysis. (Technically, the subtracted background image

should have the same MW pulse duration length, but since there is no applied signal,

the bias is far off the QFM resonance for this background image, so in practice it does
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not make a significant difference). This removes magnetic background noise. For each

pixel, there is now a time trace of 100 points of background subtracted fluorescence

counts caused by the QFM signal that can be plotted against the MW pulse duration

length, from which the effective target Rabi frequency can be extracted. This entire

process is repeated for a given amount of time and the fluorescence count values for

each pulse duration time are averaged over the total number of iterations, giving the

time-averaged Rabi oscillation. For the Rabi oscillations in Figs. 4-3 and 5-1, the

fluorescence counts are normalized to each other for easy comparison.

For Ramsey DC measurements, we use a digital phase shifter to add a 𝜋 phase

shift on the second 𝜋/2 pulse of every other pulse sequence. This inverts the measured

population difference of alternate exposures. We subtract alternating exposure counts

and average the difference, then repeat this process for 32 total exposures and sum

the fluorescence count, removing the non-magnetic background noise for a frame. We

then repeat this process with a modulated current, taking the difference of alternating

frames, with one frame having a positively applied current and another frame having

a negatively applied current to remove magnetic background noise.

We calculate the spatial magnetic noise floor 𝜎spatial for different acquisition times

with a method similar to calculating an Allan deviation [36]. We start with a set of

𝑚 images collected over a period of time 𝜏 = 𝜏1 for each image with a total collection

time 𝑇 = 𝑚𝜏1 for the entire set of images. Then, we take the standard deviation

of the pixel values in each image. Finally, we take the mean and standard error of

this set of 𝑚 standard deviations (the mean is the spatial magnetic noise floor value

𝜎spatial and the standard error gives error bars for 𝜎spatial). This 𝜎spatial tells us how

much the pixel-to-pixel variation changes across time 𝑇 for an image captured over

time 𝜏1. To see how time averaging affects this pixel-to-pixel variation, we average

the pixel values in images 1 and 2 and call that a new image 1 averaged over 𝜏2 = 2𝜏1,

average the pixel values in images 3 and 4 and call that image 2, and repeat this for

all neighboring pairs in the set of 𝑚 images. We then find the pixel-to-pixel standard

deviations for this set of 𝑚/2 images and the mean and standard error for the set

of standard deviations (which is 𝜎spatial and its error bars for 𝜏2). We repeat this for
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integer multiples of 𝜏1 and then plot the 𝜎spatial values as a function of 𝜏 . This shows

how long time averaging improves the pixel-to-pixel sensitivity. To see how time

averaging affects the per-pixel sensitivity, we can perform a normal Allan deviation

for each pixel [22].

Figure A-2 demonstrates the spatial magnetic noise floor for DC measurements

as a function of acquisition time 𝜏 . The blue line shows the magnetic noise floor

when no background frames are subtracted. The green line shows the magnetic noise

floor when a single averaged background image is subtracted from each image. Both

level out quickly with acquisition time, demonstrating where it is no longer beneficial

to continue averaging the collected signal due to correlated noise. The black points

represent the magnetic noise floor when alternate frames are subtracted. In signal

processing, averaging 𝑛 samples of uncorrelated noise reduces the noise level by
√
𝑛.

Since our acquisition time is proportional to the number of images collected and

averaged, this translates to reduced noise ∝
√
𝜏 for uncorrelated noise measurements.

When we use our background subtraction scheme, 𝜎spatial as a function of acquisition

time 𝜏 follows this expected power law scaling behavior ∝ 𝜏−
1
2 shown in red [22, 36].

This indicates that our background subtraction scheme has removed correlated noise

for at least 30 minutes of acquisition time, meaning we can continually average for

at least 30 minutes to improve the magnetic noise floor for DC measurements. The

magnetic noise floor could also be improved by binning the pixels (or increasing the

pixel size) at the cost of spatial resolution [22]. Due to a calibration error, the images

used were in approximate magnetic field units, within a factor of two of µT. A future

extension of this work will include finding the spatial magnetic noise floor for AC

measurements.
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Figure A-2: Spatial magnetic noise floor 𝜎spatial as a function of acquisition time.
The spatial magnetic noise floor represents the spread of magnetic field values across
an image when no signal is present. The blue line shows the magnetic noise floor as a
function of acquisition time when no background is subtracted. The green line shows
when a single averaged background image is subtracted from each image. The black
points show subtracted alternating images, which continually improves the magnetic
noise floor by 𝜏−

1
2 . Due to a calibration error, the values are in approximate magnetic

units within a factor of two of µT. The error bars have been removed to simplify the
image, but the standard errors for 𝜎spatial when subtracting alternating images are
relatively small (∼ 10−4 in the same units).

A.2 Resolution

A.2.1 Spatial Resolution

Spatial resolution refers to the smallest distinguishable unit that can be discerned

with the magnetic imager. We have not yet characterized the spatial resolution of
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the magnetic imager. This could be done by creating a meander line like that in A-3

and measuring the magnetic field to see which lines are individually discernible. The

limit for the spatial resolution is primarily determined by the following as outlined in

[5]:

∙ The stand-off distance, which refers to how far away the magnetic field created

by the sample is from the NV centers.

∙ The NV layer thickness, which for our diamond is ∼20µm.

∙ The optical diffraction limit, which is set by the numerical aperture (NA) of the

objective (𝜆/(2NA)). For our objective, the NA is 0.57.

Figure A-3: Test structure that could be used to characterize the spatial resolution
of the imager. Structure fabricated on sapphire printed circuit board with transmis-
sion line created by gold deposition process. The meander lines have a decreasing
separation distance in intervals of 10 µm in order to demonstrate spatial resolution.

A.2.2 Temporal Resolution

The temporal resolution is the amount of time required between each measurement of

a sample magnetic field. The physical limit for a magnetic imager using NV centers

in diamond is on the order of ∼MHz, which is the time it takes NV centers to react

to a change in the test field and is limited by the 1E metastable state lifetime [5]. In
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practice, the limit is set by the signal-to-noise ratio, since a faster resolution means

a limited amount of time to collect the signal. For example, for the TSV magnetic

movie, for a temporal resolution of 1.5 ms, the SNR is sufficient to see the alternating

current of the daisy chained structure, but the vertical movement of the trace in and

out of the plane is not as clearly discernible.
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Appendix B

Magnetic Imager Experimental Setup

B.1 Magnetic Imager Optical Path

The experimental setup begins with an 18 W 532 nm laser (Lighthouse photonics:

Sprout-H). The laser beam passes through a reversed beam expander (Thorlabs) to

reduce the beam size to 1/5 its original size, and is then focused into an acousto-optic

modulator (AOMO 3250-220). The zeroth order beam is directed to a thermal heat

sink by a D mirror (BBE02), and the first-order diffracted beam passes through a

half-wave plate and a polarizing beam splitter (VAS-532), which are used to control

the intensity and polarization axes of the light. Approximately 1 W passes through a

collimating lens and reflects off two broadband dielectric mirrors while the remaining

power is directed to a second heat sink. It passes through a 3× beam expander,

after which it is passed through a holographic grating beam shaper (TH-248-Q-Y-A),

which shapes the beam to provide uniformity across the diamond. The beam then

passes through a focusing lens (750 mm) after which it is reflected off two additional

broadband dielectric mirrors. It traverses through another half-wave plate to rotate

the polarization vector appropriately onto the diamond. The beam then reflects off

another broadband dielectric mirror and into the side of the diamond. Fluorescence

from the diamond is collected by a low-magnification Zeiss objective with a focal

length of 35.8 mm and numerical aperture of 0.57. The fluorescence then passes

through a 100 mm tube lens (Spherical singlet B coated) 2 in. Any green light is then
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filtered by a green laser light blocker (Semrock Edgefilter ∼635 nm) before being

captured by the 256x256 pixel silicon digital focal plane array.
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Figure B-1: Block diagram showing the excitation optical path.
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B.2 Static Bias Magnetic Field

In order to create a Zeeman splitting sufficient to resolve the 𝑚𝑠 = −1 and 𝑚𝑠 = +1

states, a static bias field composed of two groups of eight magnetized cylindrical

samarium cobalt permanent magnets arranged in an octagonal pattern equidistant

on opposite sides of the diamond to create a homogeneous static magnetic field of

approximately 1 mT aligned along one of the NV center axes.

Figure B-2: Image of Bias Magnets. Eight circular ferromagnets are placed in an
octagonal shape in a "Ferris Wheel" to create a homogeneous magnetic field centered
along the [1,1,1] direction.
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B.3 Experiment Pulse Sequences

A signal generator provides the triggering for the arbitrary waveform generator, with

the repetition rate for the Ramsey experiments being 32 kHz (31.25 µs). The AWG

controls the timing off the trigger and pulses for the laser, microwaves, digital phase

shifters, and DC signal applied to the device. The on-resonance Rabi sequence used

to check the Ramsey experiment has an initialization time of 2 µs, microwave pulse

durations ranging from 50 ns to 9 µs, and a readout time of 8 µs, with the total

sequence length lasting 20 µs. Although the initialization pulse for this sequence is

short, the readout and initialization pulses occur in rapid succession, so the readout

from the previous pulse ensures the state is already mostly in the 𝑚𝑠 = 0 state when

the sequence begins.

For the Ramsey experiment, the pulse sequence has an initialization time of 8µs,

MW pulse durations of 𝜋/2 determined from the Rabi frequency (with a maximum

alloted time of 500 ns), precession times up to 2 µs, and a readout time of 6 µs, with

the total sequence lasting 20 µs. The initialization and readout times were chosen to

improve the temporal resolution of the magnetic movie at the expense of fluorescence

intensity. The sequence repeats for 32 exposures, after which there is 500 µs of dead

time while the collected signal is off-loaded onto the FPGA and then to the computer

via camera link cables and a frame grabber. This process repeats for 200 times,

leading to a total experiment length of 0.3 s. We observe variable variable dead time

after each experiment for data to be read from the frame grabber into the computer’s

acquisition software. The total acquisition time per image is ∼ 0.8s.

For the quantum frequency mixing Rabi experiment, the repetition rate for the

experiment is 8 kHz (125 µs). The pulse sequence has an initialization time of 25 µs,

MW pulse durations ranging from 50 ns to 31 µs, readout time of 8 µs, with the total

sequence length lasting 65 µs. This sequence was used for both the on-resonance Rabi

check and the actual QFM measurement. The initialization and readout times were

chosen to maximize the fluorescence intensity. The sequence repeats for 32 exposures

at each MW pulse duration, with 500 µs of dead time after each frame. This repeats
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for each of the 200 steps of varying MW pulse durations, leading to a total experiment

length of 0.9 s, with variable dead time in between each sequence making a total of

∼1.5 s per image. The total acquisition time for the time-averaged images in Fig. 4-3

and Fig. 5-1 is ∼5 minutes.

B.4 Electronics

B.4.1 Acousto-Optic Modulator Electronics

Figure B-3: Schematic of the electronics needed to control the AOM, which gates the
laser and enables pulse sequencing.

Figure B-3 shows the electronics for controlling the acousto-optic modulator. A

signal generator synthesizes the initial 250 MHz RF signal and passes it to a switch,

which gates it by a transistor-transistor-logic (TTL) signal from the AWG according

to the pulse sequence needed for the experiment. It then passes to an amplifier

before being sent to a piezoelectric transducer in the AOM, which oscillates a crystal,

generating sound waves that diffract the laser beam [37]. After 200 frames, data

is transferred to the computer for a variable amount of dead time, during which a

National Instruments DAQ interrupts the master trigger signal to the AWG, and it

does not output waveforms. Since we want the AOM to continue running during

this interruption to reduce thermal fluctuations and keep a consistent temperature

between image acquisitions, we also have the DAQ send a TTL signal to switch the

signal from the AWG to a separate signal generator, which continues applying gated

pulses to the AOM.
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B.4.2 Microwave Electronics

Figure B-4: Schematic of the electronics used to deliver microwaves to the diamond.

Figure B-4 shows the MW delivery electronics for both Rabi and Ramsey mea-

surements. For a Ramsey measurement, the AWG outputs the Ramsey 𝜋/2 pulse

triggers to two signal generators, which generate the pulse gate signals for the MW

𝜋/2 pulses. This configuration allows for the pulse durations to be controlled without

modifying the AWG waveforms. These are combined using an RF power combiner.

A switch, controlled by the DAQ, determines whether these Ramsey control signals

pass through to the MW generators, or whether Rabi pulses generated by the AWG

for Rabi sequences pass through. The signals are then split with another RF power

splitter and are used to modulate two MW generators. The MW generators output

a resonant frequency signal for the 𝑚𝑠 = +1 and 𝑚𝑠 = −1 states respectively for

a double quantum Ramsey sequence. For a single quantum sequence, only one MW

generator is used. Each MW generator passes the signals through a digital phase

shifter and isolator to control the phase and reduce noise for the signal. The signals

are then combined and amplified before being passed to the MW delivery structure,

which creates a uniform MW field across the diamond. For a Rabi measurement, the

AWG outputs a pulse gate signal directly to the switch and only utilizes one of the

MW generators (which outputs a resonant frequency signal for normal Rabi and 𝜔𝑏

74



frequency signal for QFM Rabi experiments). For a QFM experiment with a 𝜋/2

pulse for the slope detection scheme described in Sec. 4.3.3, the AWG could send

a 𝜋/2 pulse trigger to another signal generator (not depicted) to generate the pulse

gate signal for the QFM 𝜋/2 pulse. It would then pass through the switch controlled

by the DAQ and modulate the other MW generator. The MW generator would out-

put the resonant frequency signal, which would follow the same steps as the other

experiments to reach the diamond.

B.4.3 Signal Electronics

Figure B-5: Schematic of the electronics used to deliver the sensing signal to the
device under test (DUT).

Figure B-5 shows the electronics for delivering the signals to be sensed to the

DUT for both Rabi and Ramsey measurements. For a QFM Rabi measurement, the

AWG provides the external trigger for a signal generator to synchronize it with the

repetition rate of the experiment. Channel one of the signal generator outputs the

modulating sequence for background subtraction. It provides TTL to a switch to gate

the AC signal. For our experiment, the modulating signal has a period of 9 ms with

a 50% duty cycle to synchronize with alternating frames, with a ∼150 cycle burst to

keep a constant MW power delivered to the diamond even during the 500 µs dead

time periods when frames are being read out to keep a constant temperature without

75



missing the next trigger. Channel 2 outputs the desired signal at frequency 𝜔𝑠 to be

sensed, which is gated by the switch, amplified, and sent to the DUT. For Ramsey

signals, the modulated signal is passed directly to the DUT. For our DC experiments,

the signal has a 3 ms period with a 50% duty cycle and a 255 burst cycle count. The

high and low levels for the applied signal were the desired positive and negative values

to create the desired current. For a 1 mA DC current, we applied ±25 mV across a

∼ 50Ω load.

B.4.4 Arbitrary Waveform Generator Setup Summary

Channel 1 Marker 1 AOM Pulse Gate
Channel 1 Marker 2 1st Ramsey 𝜋/2 Pulse Trigger
Channel 2 Marker 1 Rabi Trigger
Channel 2 Marker 2 Digital Phase Shifter Trigger
Channel 3 Marker 1 Sequence Start Trigger
Channel 3 Marker 2 Signal to DUT Trigger
Channel 4 Marker 1 2nd Ramsey 𝜋/2 Pulse Trigger
Channel 4 Marker 2 DFPA Trigger

Trigger Input DAQ

Table B.1: Table summarizing each channel of the arbitrary waveform generator and
the section of the experiment it controls. For a QFM experiment, Channel 1 Marker
2 can be re-purposed to provide the QFM 𝜋/2 pulse trigger.
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B.4.5 Electronics Components List

AWG AWG 5014 C TekTronix
Signal Generator Keysight 33600A

Power Supply Rigol DP 832, DP 811
MW Delivery Stanford Research Systems SG384, SG396

AOM Amplifier Minicircuits ZHL-20 W-13+
RF Amplifier Minicircuits LZY-22+
MW Amplifier Minicircuits ZHL-16W-43-S+

Switch Minicircuits ZASWA-2-50DR+
Isolator Aerotek E60-1FFF

Digital Phase Shifter Analog Devices HMC647ALP6E
DAQ National Instruments DAQ USB-6363

Table B.2: List of electronics components used for this experiment
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