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Abstract 
Boiling heat transfer is a complex phenomenon used for cooling and heat management 
purposes in various industrial applications, such as nuclear reactors. Accurate characterization 
and understanding of boiling dynamics are essential for the design and optimization of heat 
transfer systems. High-speed video (HSV) imaging is a powerful tool for capturing the intricate 
details of boiling processes. However, the manual analysis of HSV data is time-consuming 
and prone to subjective interpretation. This thesis presents a novel approach for the automated 
segmentation and analysis of HSV phase-detection images using U-Net Convolutional Neural 
Networks (CNNs) and uncertainty quantification techniques. The proposed methodology 
involves the development of specialized U-Net CNN models for segmenting HSV data of 
boiling phenomena in different fluids, including liquid nitrogen, argon, FC-72, and high-
pressure water, under various experimental conditions. The performance of the U-Net models 
is evaluated and compared with traditional adaptive thresholding techniques. The results 
demonstrate the superior accuracy and robustness of the U-Net models in identifying and 
delineating bubbles compared to manual segmentation, particularly in scenarios involving 
smaller bubbles and complex bubble topologies. To assess the reliability of the calculated 
boiling metrics, such as contact line density and dry area fraction, a comprehensive uncertainty 
quantification analysis is also conducted. The impact of discretization errors arising from the 
pixelation of bubbles is investigated using weighted average percentage relative errors and 
mean errors under both erosion and dilation conditions. The analysis reveals higher relative 
uncertainty in contact line density measurements than dry area fraction measurements across 
all fluids studied. The limitations of the U-Net models in generalizing to other HSV datasets 
are addressed, emphasizing the need for developing more sophisticated image segmentation 
models, such as foundation models, that are less sensitive to domain shifts. This is crucial for 
enabling autonomous experimentation and reducing the reliance on specialized models for 
each fluid and operating condition. Future research directions are outlined, including the 
investigation of advanced uncertainty quantification techniques, the development of real-time 
segmentation and analysis algorithms, the evaluation of uncertainty propagation in heat flux 
reconstruction, and the extension of the methodology to other multiphase flow phenomena. By 
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addressing these recommendations, the understanding, characterization, and modeling of 
boiling phenomena can be further enhanced, contributing to the advancement of boiling heat 
transfer research and the development of improved heat transfer models and correlations. 
Overall, this thesis presents a comprehensive approach for the automated segmentation and 
analysis of HSV phase-detection images using U-Net CNNs and uncertainty quantification 
techniques. The proposed methodology demonstrates significant potential for accurate and 
reliable characterization of boiling dynamics, paving the way for advanced boiling heat 
transfer research and the optimization of heat transfer systems in various industrial 
applications. 

Thesis Supervisor: Matteo Bucci 
Title: Associate Professor 
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Chapter 1 

Introduction 

Boiling heat transfer is a complex process integral to numerous engineering and industrial 

application, where it is used for cooling and heat management purposes. The efficiency of this 

process is often predicted using mechanistic models that partition total heat flux into discrete 

contributions. These contributions are mechanistically quantified through analytical 

descriptions of the heat transfer mechanisms involved in the boiling process, such as 

evaporation, quenching, and single-phase convection [1]. These partitioning terms are 

calculated based on fundamental boiling parameters, e.g., nucleation site density, bubble 

departure diameter and frequency, grow time and wait time, dry area fraction, and contact line 

density. Thus, the development and validation of these models rely on high resolution data 

obtained using advanced diagnostics and high-speed video imaging, e.g., infrared thermometry 

[2–4] and phase detection  [5,6]. However, while these diagnostics allow imaging the boiling 

process with high temporal and spatial resolution, the processing of these images to obtain 

tractable data of the boiling parameters of interest can be very challenging and tedious. To 

alleviate this issue, in this thesis, we develop ad-hoc machine-learning tools to swiftly segment 

and analyze phase-detection images of boiling obtained with different fluids and operating 

conditions, with a focus on dry area fraction and contact line density. 

 

1.1 Motivation 

Measuring boiling parameters such as dry area fraction, bubble footprint size distribution, 

contact line density, and contact line size distributions on boiling surfaces is key to enhancing 

understanding, modeling and optimization of boiling heat transfer processes. Such 

measurements can be done using phase detection, which allows identifying which parts of a 

boiling surface are covered by vapor, liquid, or liquid microlayers [5]. However, existing 
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methodologies for processing phase detection images, primarily manual or semi-automated, 

need to be improved to deal with the large amount of data that can obtained from boiling 

experiments using phase detection. These methodologies are time-consuming and may be user 

dependent. Such inefficiencies underscore the urgent need for automated, high-throughput 

post-processing tools to handle this critical task. 

1.2 Problem Statement 

Machine learning offers a possible solution to overcoming these challenges, especially given 

its success in segmenting two-phase flow images [7,8]. However, phase detection images of 

boiling heat transfer pose unique challenges. Unlike back-lit or front-lit shadowgraphy images 

used in two-phase flows, phase detection images detail the bubble footprints on boiling 

surfaces, which may feature more complex shapes compared to two-phase flows. Figure 1.1 

and Figure 1.2 show samples of two-phase flow shadowgraphy images and phase-detection 

images of the samples used in this study, respectively. In the phase-detection images, the 

grayscale can be used to distinguish between the liquid and vapor phases. Here, dark gray 

indicates liquid in contact with the surface, while light gray indicates vapor. Accurately 

detecting and measuring the footprint area and contact line of the vapor phase on the boiling 

surface remains a significant challenge.  
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Figure 1.1 Sample of Front-Lit Shadowgraphy images from two-phase flow. 
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Figure 1.2 Sample Phase-Detection Images Used in this Study. 

 

1.3 Contributions 

This thesis contributes to enhancing the processing and analysis of phase detection images of 

the boiling process through several key innovations: 

• The development of advanced U-Net Convolutional Neural Network (CNN) models 

capable of precisely segmenting phase detection images of various boiling fluids, 

including liquid nitrogen, liquid argon, FC-72, and high-pressure water. 

• The creation of an open-source repository with tools for segmenting bubbles in phase-

detection images that facilitates wider access and application of this technology. 

• A comprehensive quantification of uncertainties associated with the segmentation 

process and the impact of image resolution on measurement. 

 

1.4 Objectives 

The primary objectives of this research are twofold: 
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1. To develop processing tools that enable autonomous experimentation, significantly 

reducing the manual efforts required and improving the reliability of the 

measurements. 

2. To measure, with quantified uncertainties, critical parameters such as dry area fraction, 

bubble footprint size distribution, contact line density, and contact line size 

distributions. 

 

1.5 Path to Accomplishment 

The path to achieve these objectives involves the following steps: 

1. Understanding the State-of-the-Art: A thorough survey of existing image 

segmentation tools, focusing on two-phase flow analysis. This includes evaluating the 

advantages and limitations of these tools, with a particular emphasis on various CNN 

architectures and their adaptation to two-phase flow segmentation. 

2. Methodology: Detailed description of the steps involved in developing the U-Net 

CNN, including transfer learning and validation using established machine learning 

metrics and baseline comparisons with adaptive thresholding and manual annotation 

inspired by domain expertise.  

3. Case Studies: Presentation of examples where the developed models have been 

applied to process images in various fluids, including liquid nitrogen, liquid argon, FC-

72, and high-pressure water. This step will also cover the analysis of trends related to 

dry area fraction, contact line density, bubble footprint area distributions, and contact 

line distribution as functions of the operating heat flux. 

4. Quantification of Uncertainties: An in-depth examination of the uncertainties 

involved in image segmentation and the resolution capabilities of the optical setup. 

This includes revisiting the results from the case studies with a focus on these 

uncertainties. 

 

This chapter sets the stage for the comprehensive exploration of CNN model 

development for phase detection image segmentation in boiling surfaces, outlining the 
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motivation, objectives, and structured approach to achieving these goals. Subsequent chapters 

will delve deeper into this research's technical development, application, and implications. 
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Chapter 2 

Methodology 

This section systematically reviews the evolution of image segmentation techniques as applied 

to two-phase flow analysis, critically examining the historical progression from conventional 

image processing tools to the advent of sophisticated deep learning methods. It underscores 

the limitations of traditional algorithms when faced with complex flow patterns and varying 

fluid properties under different operating conditions. By comparing the effectiveness of these 

earlier tools, we illustrate the necessity for the high fidelity and adaptability that deep learning 

offers. Further, we delineate the role of transfer learning in refining the accuracy of 

convolutional neural networks to segment intricate two-phase flow structures, emphasizing 

the improved precision in identifying phase boundaries and characterizing flow features. This 

chapter culminates in a justification for the selected deep learning architecture tailored to the 

unique challenges of the specific fluids and thermal conditions pertinent to our investigation. 

2.1 Image Processing Tools 

Before incorporating deep learning methodologies, various image processing algorithms were 

utilized to track the phases in two-phase flow analysis [1,9–13]. As early as 2008, researchers, 

including Wenyin et al. [9], used enhanced Canny edge detection techniques for improved 

segmentation of gas-liquid interfaces in high-speed video (HSV) footage. Their method 

capitalized on a more comprehensive grasp of grayscale variations, incorporating Gaussian 

smoothing to refine edges and mitigate noise. Subsequent stages involving gradient non-

maximum suppression and dual thresholding facilitated the extraction of distinct bubble 

contours, significantly advancing the analysis and classification of complex multi-phase flow 

patterns. Despite the ability of the processing tool to analyze and identify various flow regimes, 

there were challenges associated with overlapping bubble images, paving the way for further 

algorithmic enhancements to augment segmentation accuracy in complex scenarios.  
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Building upon earlier work, Paz et al., [10] contributed further with machine vision 

algorithms tailored for recognizing bubbles in subcooled boiling phenomena. Their algorithm, 

encapsulating both side and front views, as seen in Figure 2.3, enhances adaptability across 

diverse boiling scenarios. They streamlined the process through dynamic thresholding and 

edge detection, culminating in bubble outline and trajectory analyses. Yet, challenges persist, 

notably in setup calibration and algorithm parameterization, underscoring the need for precise 

adjustments to optimize the application of these algorithms in different experimental 

frameworks. 
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Figure 2.3 Flowchart of the two image processing algorithms (A) Front Projection (B) Side 

Projection [10]. 

(A) (B) 
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Zhou and Niu [12] advanced bubble detection in two-phase flows with a multi-frame 

image processing algorithm. Their approach, leveraging binarization and predictor-corrector 

methods, adeptly handles overlapping bubble images, enhancing bubble size and velocity 

measurement accuracy. A flow map of the image processing algorithm is presented in Figure 

2.4. Particularly effective in densely bubbled plumes, their method significantly improves 

recognition rates, showcasing its utility in experimental settings with high overlap rates. 

Despite its benefits in statistical analysis of bubble dynamics, limitations exist, especially in 

scenarios where there are overlapping bubbles, the algorithm fails to successfully distinct such 

bubbles but rather consider them as one as shown in Figure 2.2, underscoring the need for 

further refinement in diverse flow conditions.  

 

 
Figure 2.4 Predictor-Corrector Image Processing Algorithm Flow map [12].  

Finally, Richenderfer et al., [1] developed an experimental methodology to measure 

key subcooled flow boiling parameters, including nucleation site density and bubble dynamics 

parameters, up to the critical heat flux (CHF) limit. Utilizing high-speed video and IR 

diagnostics alongside in-house image post-processing techniques comprising gray threshold 

filter and watershed segmentation, they provided detailed insights into wall heat flux 



 20 

partitioning crucial for validating mechanistic boiling heat transfer and CHF models. The 

flowchart describing the image processing algorithm in detail is depicted in Figure 2.5. Their 

findings, particularly on microlayer evaporation's contribution to total heat flux, offer valuable 

data for developing and validating advanced mechanistic models for two-phase heat transfer 

systems. The authors noted that in high heat flux conditions, conventional thresholding filters 

would not give optimal bubble segmentation results.  

This short review underscores the inherent challenges in employing standard image-

processing approaches, such as adaptive thresholding, for analyzing bubble dynamics under 

diverse phase-flow conditions and heat fluxes. Despite concerted efforts to leverage HSV 

imaging for in-depth studies of bubble behavior, the absence of a universally applicable, 

quantitative analysis framework for different surface materials and variable lighting conditions 

is apparent. This gap has prompted the exploration of deep learning models as a potential 

solution to these complex, variable-dependent challenges in boiling research. 
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Figure 2.5 Flowchart of the algorithm detecting dry area regions and evaporation in HSV 

images [1].  
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2.2 Deep Learning Methods 

Recent research has increasingly turned towards deep learning architectures to address the 

limitations inherent in traditional image-processing techniques for analyzing two-phase flow 

HSV images. This shift reflects a broader recognition of the need for more adaptable, 

sophisticated analytical methods to handle the complexities of flow visualization and 

dynamics across various conditions.  

In two-phase flow research, efforts to detect objects like bubbles, droplets, and particles 

have integrated deep learning models with traditional image processing tools. Studies have 

combined object detection frameworks and convolutional neural networks (CNNs) to 

approximate the shapes and positions of objects in two-phase flows [14–16]. However, 

accurately capturing the precise shape of the gas-liquid interface remains a challenge due to 

the limitations of these models in handling the varied geometry of bubbles under different flow 

conditions. This motivated several studies to look for a universal model that automatically 

recognizes and extracts the shapes of the bubbles based on learned information from the frames 

[7,8,17–22].  This inspired Kim and Park [17] to develop a comprehensive Mask R-CNN 

model (ResNet 101 as the backbone and transfer learning from COCO weights) [23] that can 

automatically detect and extract detailed interface shapes (instance segmentation), addressing 

gaps in previous research by focusing on a broader range of bubble geometries and validating 

the model against new, unseen bubbly flow data. It was concluded that the average precision 

of the model was 0.981, while mask extraction time was reduced compared to regular image 

processing algorithms. 

Soibam et al. [7] developed a bubble detection and segmentation deep learning model 

(YOLOv7) for tracking bubble dynamics within a heated vertical rectangular mini-channel in 

subcooled conditions, utilizing high-speed camera images as input. Faced with challenges such 

as noise and variable conditions in the raw images, the model employed transfer learning for 

efficient training on a limited dataset. Demonstrating 98% accuracy in bubble detection and 

robustness against various experimental setups, the model achieved a remarkable intersection 

over union (IoU) score of 88%, higher than that of traditional image processing algorithms 
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(71%), as seen in Figure 2.6. It successfully captures detailed bubble behaviors—coalescence, 

oscillation, collisions—enabling precise analysis of their spatial-temporal dynamics. 

 

 

 
Figure 2.6 Mask Comparisons between Classical Image Processing Algorithms and CNNs 

(YOLOv7 model). SVF: Surface Void Fraction of Normal Image [7] 

 

Seong et al., [18] introduced a data-driven methodology for analyzing bubble dynamics 

in subcooled flow conditions. They employed a U-Net-based CNN with transfer learning from 

biological cell images [24] for efficient bubble segmentation in HSV images. The U-Net CNN 

encoder-decoder architecture is depicted in Figure 2.7.  Validated against 100 ground-truth 

images, the model demonstrates over 90% accuracy and precision. Additionally, the study 

proposes a novel criterion for identifying condensing bubbles through bubble displacement 

divergence, enabling the quantification of key boiling parameters. This approach, validated 
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against IR thermometry, offers a promising avenue for advancing the understanding of two-

phase flow boiling heat transfer mechanisms. 

Similarly, Ravichandran et al., [19] utilized 3D deep U-Net-based CNNs and high-

resolution IR thermometry to identify and track dry patches on boiling surfaces. They achieved 

over 90% accuracy in mapping dry areas against ground-truth data up to 2 bars pressure, 

enabling automated detection for enhanced boiling heat transfer. The architecture of the 3D 

U-Net CNNs is portrayed in Figure 2.8. They leveraged transfer learning from models initially 

trained on biological cell images to enhance their segmentation process. They also compared 

the segmentation output of the U-Net CNN to that of other traditional architectures and found 

the predicted masks similar. 

 
Figure 2.7 U-Net CNN with Encoder-Decoder Architecture [18] 

 
Figure 2.8 3D U-Net CNN used by Ref. [19] for segmenting dry patches from IR counts. 
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In exploring bubble nucleation within two-phase flows, Suh et al., [20] recently 

introduced Vision-Inspired Online Nuclei Tracking System (VISION-iT), an integrated 

framework designed for the automated extraction of multiple physical parameters associated 

with nucleation events from pool-boiling high-speed video (HSV) data. This innovative 

system encompasses image capture stages, instance segmentation via a specially developed 

Mask R-CNN model, and sophisticated post-processing techniques. Figure 2.9 depicts the 

utilization of the VISION-iT in analyzing phase-change heat transfer dynamics. Despite its 

promising capabilities, VISION-iT encounters a significant challenge in versatility; adapting 

it to alternative experimental setups necessitates extensive fine-tuning to accommodate new 

datasets effectively. This requirement for customization underscores a critical consideration 

for broader application across diverse research contexts. 

 
Figure 2.9 The Role of VISION-iT in Phase-Change Heat Transfer Analysis [20]: (a) The 

intricate cycle of nucleation, growth, interaction, and departure in phase-change processes, 

featuring intense nucleation activity with potentially hundreds of instances each second. (b) 

The landscape of AI-driven approaches for tackling the complexities of two-phase image 

analysis varies across a spectrum of feature complexities. Advanced spatio-temporal analysis 
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tools, positioned at the upper echelons of this spectrum, often present a challenge in user 

accessibility due to their multi-modular architecture. (c) Through VISION-iT, imagery data 

captured (highlighted by the orange frame) undergoes a series of sophisticated processes 

including object detection, tracking, and analysis (denoted by the green frame), culminating in 

the extraction of detailed physical parameters that provide a comprehensive insight into the 

mechanisms of two-phase heat and mass transfer. 

Malakhov et al., [8] even compared the bubble detection and segmentation capabilities 

of the Mask R-CNN and U-Net CNN models on high-speed visualizations from the bottom 

side of a transparent heater while boiling water at diverse sub-atmospheric pressures. Their 

findings indicated that although the accuracy of bubble segmentation using the U-Net CNN 

was higher, the Mask R-CNN model provided better results, especially in high heat-flux 

scenarios where the bubbles tend to overlap and merge. A comparison between the 

segmentation provided by Mask R-CNN and U-Net CNN is provided in Figure 2.10. Despite 

the remarkable findings of this study, transfer learning was not used; instead, the models were 

trained from scratch, which might explain the reason for the lower accuracy provided by the 

U-Net compared to the actual results. If pre-trained information from similar domains was 

applied in the U-Net training to make it more efficient, better results would have been obtained 

in less training time.  

Similarly, Chen et al. [21] implemented a customized approach by developing 

BIMSNet, a modified U-Net Convolutional Neural Network (CNN) architecture specifically 

designed for the semantic segmentation of bubbles in experimental shadowgraph images under 

diverse flow and lighting conditions. The architecture of BIMSNet closely mirrors that of the 

original U-Net, as illustrated in Figure 2.11. Upon training, BIMSNet achieved remarkable 

dice coefficients of 99.3% and 99.73% on the validation and test datasets, respectively. This 

performance surpasses conventional adaptive thresholding techniques, obviating the need for 

empirical determination of thresholding limits for image binarization in post-processing, thus 

demonstrating superior bubble detection and segmentation capabilities. 
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Figure 2.10 Image Segmentation Results by the CNN models) at various heat fluxes [8]. 
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Figure 2.11 BIMSNet Architecture [21] 

 To ascertain critical boiling characteristics such as bubble departure diameter, 

departure frequency, and nucleation site density, Ahmed et al. [22] utilized Mask R-CNN 

models, initially trained on the COCO dataset, for the analysis of images derived from high-

speed camera captures in two-phase flows. The experiments were conducted with R-134a as 

the working fluid under a heat flux of 18 kW/m-2. While the segmentation of bubbles was 

effectively achieved, the precision in quantifying boiling parameters, including bubble 

departure diameters and nucleation site density, was compromised. This limitation was 

attributed to the challenges posed by the side-view experimental setup and the complexity of 

the applied machine learning algorithms. 

The extensive review of existing literature underscores significant progress in 

developing deep learning models for the precise segmentation of bubbles in two-phase flows, 

demonstrating a marked superiority over traditional image processing methodologies reliant 

on adaptive thresholding. These conventional methods suffer from a lack of generalizability, 
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necessitating manual adjustments of filters for each specific experimental condition or flow 

scenario. The literature further reveals the effective implementation of transfer learning 

strategies within deep learning frameworks, particularly within Mask R-CNN (MS COCO) 

and U-Net CNN (biological cells) architectures, for segmentation of bubbles in high-speed 

video (HSV) images of two-phase flows. It is also noted that the source of pre-training in 

transfer learning plays a critical role in segmentation accuracy, with biological cell imagery 

often preferred due to its analogous domain characteristics to bubble dynamics. 

 However, there remains a notable gap in the application of transfer learning from 

biological cell models to phase-detection HSV imaging across a spectrum of fluids exhibiting 

complex bubble distributions and varied heat flux or operating conditions. Existing models 

fall short in their ability to segment bubbles from these intricate distributions with pixel-level 

accuracy. This thesis pioneers the use of transfer learning techniques to achieve precise bubble 

segmentation at the pixel level within complex phase-detection HSV images, spanning a 

diverse array of working fluids (such as liquid argon, nitrogen, high-pressure water, and FC72) 

and operational conditions. Our research proposes to advance this domain through the 

application of transfer learning, drawing insights from a domain closely related to bubble 

dynamics—biological cells. This approach is anticipated to facilitate more precise and 

effortless segmentation of bubble contours. Furthermore, our method leverages HSV data 

obtained from phase-detection videos at various heat flux conditions, offering a clearer 

distinction between liquid and bubble phases, thereby enhancing the accuracy of our 

measurements. The validity of the models is corroborated by comparing them with both 

ground-truth images, meticulously curated by domain experts and results obtained via adaptive 

thresholding. In a move towards enhancing accessibility and fostering further research, the 

sophisticated analytical tools developed in this work are made available as open-source 

resources, facilitating their adaptation to other two-phase flow scenarios. 
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Chapter 3 

Methodology 

This section details the methodology behind developing and applying Convolutional Neural 

Network (CNN) models for segmenting bubble footprints on a boiling surface, obtained using 

phase-detection. It includes steps from initial model development, incorporating transfer 

learning, to rigorous validation across different fluids such as liquid nitrogen, argon, FC-72, 

and high-pressure water. Our approach leverages existing deep learning architectures, adapting 

them to our specific task to surpass traditional image processing techniques in accuracy and 

efficiency. We outline the process of training these models, including data preparation, model 

adjustment, and the selection of metrics for evaluating performance. This section is designed 

to be clear and straightforward, providing enough detail for reproducing the results. We also 

explain how to use the developed models, offering guidance on deploying them for new 

datasets and ensuring that anyone interested can follow our steps to achieve similar results or 

extend our work. In short, this methodology aims to contribute to the broader field by offering 

a replicable model of research that others can adapt and build upon. 

3.1Convolutional Neural Networks 

The problem we address in this thesis is the accurate segmentation of bubbles in HSV phase-

detection images, which is pivotal for extracting operating parameters like the bubble footprint 

size, contact line density, and dry area fraction on a boiling surface. Traditional image 

processing techniques, though widely used, often fall short when dealing with the complex 

and dynamic nature of bubble behavior, particularly under varying flow conditions and in 

different fluids [12,25,1]. These methods typically rely on fixed thresholding techniques, 

which lack the adaptability required to identify accurately and segment bubbles across a range 

of experimental settings, resulting in significant inaccuracies. The complexity of bubble 

segmentation is compounded by factors such as overlapping bubbles, variable lighting 
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conditions, and image noise, which traditional methods are ill-equipped to handle consistently. 

This leads to a gap in our ability to precisely analyze and understand the underlying physical 

processes in phase-detection images. 

3.1.1 Network Architecture 
The U-Net CNN architecture effectively segments complex images, such as those encountered 

in two-phase flow studies. Its design is tailored to capture intricate details and variations, 

making it exceptionally suited for bubble segmentation. The U-Net CNN was proposed in 

2015 by Ronneberger et al., [26] for biomedical image segmentation purposes. The 

architecture of the U-Net CNN, as depicted in Figure 3.12, is distinctive for its symmetric 

shape, resembling the letter “U”. It consists of two main pathways: the contraction 

(downsampling) path and the expansion (upsampling) path. The contraction path is a typical 

convolutional network that captures the context in the image, enabling the model to understand 

the features present. This path consists of repeated application of two 3x3 convolutions (each 

followed by a rectified linear unit (ReLU) activation function) and a 2x2 max pooling 

operation with stride 2 for downsampling. At each downsampling step, the network doubles 

the number of feature channels. 
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Figure 3.12 U-Net CNN Architecture [26].  

The expansion path, on the other hand, enables precise localization, a crucial factor for 

accurate segmentation. This path includes a series of upsampling and convolution operations 

that progressively increase the resolution of the output maps. Specifically, it involves the up-

convolution of the feature map followed by a 2×2 convolution (“up-convolution”) that halves 

the number of feature channels, a concatenation with the correspondingly cropped feature map 

from the contraction path, and two 3×3 convolutions, each followed by a ReLU activation. 

This concatenation process from the contraction path to the expansion path is crucial for the 

U-Net architecture, as it allows the network to propagate context information to higher 

resolution layers, enabling precise localization. 

The effectiveness of U-Net lies in its ability to learn spatial hierarchies of features through 

its deep, symmetrical architecture. At its core, U-Net leverages the concept of feature 

representation learning in deep convolutional networks, which can be mathematically 

described through the operations performed at each layer. The convolution operation applies 
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filters to input to create feature maps that summarize the presence of detected features. The 

operation can be mathematically represented as: 

 𝑓!"# = 𝜎'∑ 𝑤$%# ∙ 𝑥(!'$)("'%)
#)* + 𝑏#$,% .     (3.1) 

where: 

• 𝑓!"#  is the feature at position (𝑖, 𝑗) in the 𝑙,- layer, 

• 𝑤$%#  are the weights of the convolution filter in the 𝑙,- layer, 

• 𝑥(!'$)("'%)
#)*  is the input from the previous layer at position (𝑖 + 𝑚, 𝑗 + 𝑛	) 

• 𝑏# is the bias term for the 𝑙,- layer, 

• σ represents the activation function, typically ReLU for U-Net. 

ReLU (Rectified Linear Unit) is used as the activation function in U-Net for introducing non-

linearity: 

 𝜎(𝑥) = max(0, 𝑥)        (3.2) 

Pooling operations reduce the spatial dimensions of the feature maps, effectively increasing 

the network’s receptive field without increasing the computational cost. This is typically 

achieved through a max pooling operation defined as: 

 𝑝(𝑥) = max!," ∈ 𝑁(𝑥)𝑥!"       (3.3) 

where 𝑁(𝑥) represents the neighborhood of pixels in the input feature map, 𝑥, over which the 

maximum is taken. 

In the expansion path, the up-convolution operations use transposed convolution (or 

deconvolution) to increase the resolution of the feature maps. Mathematically, this can be 

described as the inverse of the convolution operation, aiming to distribute a single input value 

to multiple outputs to increase the spatial resolution of feature maps as follows: 

 𝑔!"# = ∑ 𝑤$%#$,% ∙ ℎ(!)$)(")%)
#)*        (3.4) 

where 𝑔!"#  is the output after applying the transposed convolution weights 𝑤$%#  to the input 

ℎ(!)$)(")%)
#)* . 

The concatenation steps combine features from the downsampling path with the 

upsampled features, enriching the feature maps with both high-level contextual and low-level 

spatial information, which is essential for detailed segmentation. 
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The U-Net model is trained end-to-end on a set of training images with known 

segmentations (annotated samples), using a pixel-wise classification loss function, the cross-

entropy loss for segmentation tasks. The cross-entropy loss is particularly effective for data 

with imbalanced classes, such as HSV phase-detection, where the region of interest occupies 

a small part of the image. The cross-entropy loss function is typically defined as: 

 𝐿./ = − *
0
∑ [𝑦! log(𝑦G!) + (1 − 𝑦!) log(1 − 𝑦G!)]0
!1*     (3.5) 

where N is the number of pixels, 𝑦! is the ground truth label, and 𝑦G! is the predicted probability 

that the given input belongs to class 1 (bubble).  

 For multi-class classification, where an instance can belong to one of many classes, the 

cross-entropy loss formula is extended to sum over all classes: 

𝐿./ = −∑ 𝑦2 log(𝑦G2).
21*         (3.6) 

where C is the number of classes, 𝑦2 is a binary indicator of whether class c is the correct 

classification for the observation, and 𝑦G2 is the predicted probability that the observation 

belongs to class c. 

The goal during training is to minimize this loss across all training examples, which 

effectively pushes the predicted probabilities closer to the actual labels, leading to a more 

accurate model. 

3.1.2 Transfer Learning 
Transfer learning is a powerful technique in deep learning that involves taking a pre-trained 

model and adapting it to a new, but related, problem. For U-Net CNNs, which are particularly 

adept at image segmentation tasks, transfer learning enables the model to leverage knowledge 

(weights and biases) learned from a vast amount of data on a different problem to enhance 

performance on specific tasks like bubble segmentation in two-phase flows. At its core, 

transfer learning modifies the U-Net architecture, which originally consists of a contracting 

path to capture context and a symmetric expanding path that enables precise localization. The 

process begins with a U-Net model pre-trained on a large dataset, potentially from a different 

domain. The essence of transfer learning lies in the ability of the CNN to retain and utilize the 

generic features (such as edges, shapes, and textures) learned during the pre-training phase and 

apply them to a new domain with minimal retraining.  

The phases of transfer learning are described as follows: 
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1. Feature Extraction Phase: In the initial layers of the U-Net model, the convolution 

operations extract basic features from the input images. The operation in each 

convolutional layer, 𝑙, can be mathematically represented as: 

𝐹# = 𝜎(𝑊# × 𝑋# + 𝐵#)       (3.7) 

where 𝐹# is the feature map produced by layer 𝑙, 𝑊# represents the weights, 𝑋# is the 

input to layer l, 𝐵# is the bias, and σ denotes the ReLU activation function.  

2. Adaptation Layer: During transfer learning, the deeper layers of the network, which 

are more task-specific, are fine-tuned for the new task. The adaptation can be 

represented as adjusting the weights 𝑊# and biases 𝐵# in these layers through 

backpropagation, minimizing a loss function 𝐿 specific to the new task:  

𝑊#
3, 𝐵#3 = 𝑎𝑟𝑔𝑚𝑖𝑛4!,5!𝐿(𝑌, 𝑌R)	      (3.8) 

where 𝑌 is the true label, 𝑌R  is the predicted label, and 𝐿 denotes the loss function, which 

is the cross-entropy loss for segmentation. 

3. Fine-Tuning Process: The fine-tuning adjusts the model to the specifics of the new 

task, optimizing the performance by updating the model parameters:  

𝛥𝑊# = −𝜂 67
64!

, 𝛥𝐵# = −𝜂 67
65!

	      (3.9) 

here, 𝜂 represents the learning rate, and the partial derivatives represent the gradient of 

the loss function with respect to the weights and biases. 

To implement transfer learning in U-Net, we follow these steps: 

1. Selection of a Pre-trained Model: A U-Net model pre-trained on a substantial and 

pertinent dataset is crucial for effective transfer learning. The dataset utilized for pre-

training plays a significant role in the success of this approach. For our project, we 

opted for a U-Net model initially trained on a comprehensive collection of biological 

cell imagery  [24,26]. This decision was motivated by the similarity between the 

cellular structures in the pre-training dataset and the bubble features present in our own 

datasets. 

2. Feature Adaptation: We froze the initial layers of the model to retain the generic 

features learned during pre-training. Only the deeper, task-specific layers are fine-

tuned to adapt to the new segmentation task. This fine-tuning involved adjusting the 

learning rate within a specified range of 10−3 to 10−4 while also varying the number of 
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learning iterations based on the complexity of the target dataset. In all cases, a few 

frames are required to finetune the U-Net model. Five images are used, of which three 

are used for training, and two are used for validation. The use of few annotated samples 

for finetuning the models is beneficial. It is why transfer learning is adopted, as 

procuring these annotated frames is expensive and time-consuming.  Additionally, our 

observations revealed that fewer iterations were sufficient in scenarios where the 

bubbles appeared significantly larger or smaller. This efficiency is attributed to the 

similarity between these bubble sizes and the cellular images on which the model was 

initially trained; hence, less learning was required. However, in cases where the dataset 

presented a mix of many small and large bubbles, achieving a higher accuracy level 

necessitated an increase in the number of iterations and a decrease in the learning rate 

since more learning is required for accurate segmentation. 

4. Loss Function Optimization: While finetuning, we used the cross-entropy loss to 

monitor the progress of the training process and ensured that the loss was decreasing 

with each increase of iterations; hence, learning was taking place. Furthermore, we 

used numerous performance metrics typical in computer vision tasks like accuracy, 

precision, recall, specificity, F1 score, intersection over union (IoU), and Matthews 

correlation coefficient (MCC), as defined in the next section.  

5. Iterative Fine-Tuning: Through iterative training sessions, we adjust the model 

parameters in the task-specific layers, refining the model's ability to segment images 

accurately for the new task. 

 

3.2 Data Acquisition 

Our analysis leverages experimental high-speed video (HSV) recordings from boiling 

experiments involving liquid nitrogen, argon, FC-72, and high-pressure water. Specifically, 

we examined 18 phase-detection videos for liquid nitrogen, each comprising 2000 frames, 

under heat fluxes ranging from 27 kW/m2 to 297 kW/m2. Additionally, we analyzed constant 

heat flux HSV data for liquid argon (120 kW/m2), nitrogen (120 kW/m2), and FC-72 (170 

kW/m2), allocating 6000 frames for each fluid under baseline conditions. Our dataset also 
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includes two videos with 7,501 frames each for high-pressure flow boiling of water, also 

collected under constant heat flux conditions of 3000 kW/m2 and 3400 kW/m2, respectively. 

The initial phase involves carefully selecting frames from this vast dataset for training, 

validation, and testing. We employ a random selection script in the project repository to ensure 

a representative sample across various boiling conditions and bubble distributions. This 

randomness ensures our training set comprehensively captures the diversity of bubble 

behavior. We train different specialized models for the various fluids to ensure a high level of 

segmentation accuracy. Given the raw state of these recordings, which include noise and 

irrelevant background details, preliminary data processing is essential. Utilizing "crop" scripts 

from our repository, we refine the frames, eliminating extraneous information to focus on the 

relevant phenomena. This preprocessing step is illustrated with an example from the high-

pressure water HSV dataset in Figure 3.13. We select at least 10 samples from the processed 

data to construct our training set. This selection is then divided into 4 samples for training, 1 

for validation, and 5 for testing the model post-training. Subsequent sections will delve into 

the detailed processing of these frames, including annotation and preparation for our transfer 

learning pipeline. 

 
 

Figure 3.13 Raw Image 

3.3 Data Annotation 

Creating annotated samples from HSV recordings of boiling data is a demanding task. Domain 

experts often need to meticulously identify and delineate regions of interest (ROIs) around 
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numerous bubbles within complex frames. We introduce a method that leverages feature 

transfer to streamline this process, significantly simplifying the annotation task as depicted 

pictorially in 

 
Figure 3.14.  

This method begins by utilizing a previously successful model in bubble segmentation under 

different conditions to perform zero-shot segmentation on new HSV frames. Given that these 

frames are novel to the model, initial segmentation results might not meet high standards. 

However, this preliminary step is invaluable as it provides a basic outline of potential ROIs. 

We then employ the “mask” Fiji macro in the repository to refine these outlines, extracting 

ROI features from the initial segmentation and transferring them to our target HSV frames as 
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preliminary annotations. This process benefits greatly from subsequent refinement by domain 

experts, who can adjust and improve the quality of these annotations, ensuring accuracy and 

relevance. In situations where a directly applicable U-Net model is unavailable for initial 

segmentation, we can resort to basic image processing techniques to establish a foundational 

guess. While this initial pass may lack precision, it is an effective starting point, accelerating 

the annotation process by providing a rough baseline for expert refinement. This streamlined 

approach to generating annotations is summarized in Table 3.1.  

Additionally, image normalization plays a crucial role in preparing the data for feature 

transfer. By employing the “process” script from our repository, we enhance the visibility of 

bubbles against the background. This preprocessing step involves subtracting the frame from 

a clear reference image and adjusting the contrast to accentuate relevant features, facilitating 

easier annotation and subsequent model training. With these annotated samples prepared, the 

next stage of our methodology focuses on finetuning the model through transfer learning. This 

approach speeds up the annotation process and offers substantial advantages over building a 

segmentation model from scratch, as detailed in the following section. Finally, to eliminate 

bias in the annotation phase, the effect of user experience on the data annotation was conducted 

by letting different domain experts independently annotate the same frames and compare them 

to the ground truth through visual inspection and quantitative boiling metrics.  Through this 

innovative pipeline, we significantly reduce the time and effort required to generate high-

quality training data for U-Net CNN models segmenting complex boiling phenomena. 

 

 

Table 3.1 Enhanced Annotation Process via Feature Transfer 

Step Action 

1 Initiate Zero-shot Segmentation: Load a pre-existing U-Net model trained on a 

different dataset for initial segmentation. 

2 Apply Model to New Data: Use the model to segment new HSV boiling frames, 

acknowledging initial results may be imprecise. 
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3 Extract Preliminary Annotations: Utilize the “mask” Fiji macro to extract ROI 

features from the predicted mask and transfer them to the target HSV frames as initial 

annotations. 

4 Expert Refinement: Domain experts review and refine the preliminary annotations, 

adjusting as necessary to ensure accuracy and completeness. 

5 Alternative Initial Guess (if needed): If a suitable pre-trained model is not 

available, apply basic image processing techniques to create an initial guess for 

ROIs. 

6 Preprocess for Feature Highlighting: Normalize images using the “process” script 

to enhance feature visibility, facilitating easier annotation. 

7 Finalize Annotations: With expert adjustments, finalize the annotations for use in 

training or fine-tuning the segmentation model. 

8 Proceed to Model Fine-Tuning: Utilize the annotated samples for fine-tuning the 

model via transfer learning, optimizing for the specific task of bubble segmentation 

in boiling data. 
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Figure 3.14 Feature Transfer to Facilitate Creating Annotations for Transfer Learning.  

 

3.4 Validation and Metrics 

Following the fine-tuning phase, assessing the machine learning model's efficacy is crucial by 

employing it to segment images it has not encountered during the training process. For this 

purpose, we selected 5 images outside the training dataset and subjected them to segmentation 

by the fine-tuned model. To establish accurate benchmarks, these validation images were 

accompanied by corresponding annotations crafted manually by experts within the relevant 
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field, providing the essential ground truths. These 5 validation images were chosen randomly 

to encompass the wide-ranging distributions observed within the HSV dataset. 

The evaluation began with a visual inspection to compare the segmented images against 

the original camera images, focusing particularly on the alignment of bubble features between 

the two. This comparison helped identifying any discrepancies in perimeter alignment. In 

instances of misalignment, the process necessitates a return to the fine-tuning stage for 

adjustments. Conversely, when the visual assessment indicates a satisfactory alignment, we 

proceed to quantify the model's performance by calculating key metrics related to boiling 

dynamics and machine learning efficacy, using the manually annotated ground truths and the 

segmented outputs as reference points. 

3.4.1 Boiling Performance Metrics 
To evaluate the precision of segmentation facilitated by the U-Net model for boiling 

phenomena, we calculate and contrast key performance metrics, specifically dry area fraction 

and contact line density, against those derived from the ground truth images. Here, we delve 

into the definitions and computational methods for these metrics from a thermal-hydraulic 

perspective: 

1. Dry Area Fraction (𝜽𝒅𝒓𝒚) This metric represents the ratio of the surface area within 

the image that remains unexposed to liquid, i.e., the "dry" area. It is a critical parameter 

for understanding heat transfer efficiency and phase change dynamics in boiling 

processes. To compute this fraction, we first identify the pixels corresponding to dry 

areas (non-wet pixels) within the binary mask representation of the image. The dry area 

fraction is then calculated by deducting the ratio of wet pixels from one, essentially 

reflecting the proportion of the surface where the liquid is not present. 𝜃;<= is 

calculated using Equation (3.10).  

𝜃;<= = 	1	 − 4>,	@!A>#B
CD,E#	@!A>#B

	       (3.10) 

2. Contact Line Density (𝝆𝒄𝒍): This metric assesses the extent of the contact line per unit 

area within the image, where the contact line is the interface between liquid-covered 

and dry surfaces. This interface is pivotal in boiling heat transfer as it delineates the 

zones of intense evaporation and significantly influences thermal transport 
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effectiveness. The calculation involves inverting the binary mask to focus on the 

interfaces, applying a Euclidean distance transform to identify the boundary lengths, 

and adjusting for pixel scale to ensure accurate measurement. The density of the 

contact line is thus a measure of the boundary length normalized by the image area, 

providing insight into the surface characteristics relevant to boiling and evaporation. 

Equation (3.11) shows how to calculate 𝜌2#.  

𝜌2# =
.D%,E2,	7!%>	7>%H,-

CD,E#	@!A>#B
       (3.11) 

 

We have provided the “bubblemetrics” function to handle this task in the repository [27]. 

Additionally, we have provided a detailed overview (Table 3.2) of how to compute these 

boiling metrics using the scripts in our repository. This algorithm assumes that the pixelization 

is perfect; however, we investigate the discretization error inherent in the pixelization due to 

the bubble radius and grid resolution using the “bubble_discretization” code in the repository 

[27]. This analysis is covered in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 44 

Table 3.2 Algorithm for Calculating Dry Area Fraction and Contact Line Density 

Step Action Description 

1 Input binary mask 

binaryMask. 

The binary mask represents the segmented image, 

where '1's denote dry pixels and '0's denote wet 

pixels. 

2 Calculate totalPixels. Count the total number of pixels in binaryMask 

using numel(binaryMask). 

3 Calculate dryPixels. Sum all pixels in binaryMask that are equal to 1, 

indicating dry areas. 

4 Calculate 

dryAreaFraction. 

Compute dryPixels / totalPixels to find the 

proportion of the image that is dry. 

5 Invert binaryMask to 

invertedBinaryMask. 

Create an inverted mask where '0's become '1's and 

vice versa, focusing on wet areas and their 

boundaries. 

6 Apply distance transform 

to invertedBinaryMask. 

Use bwdist(invertedBinaryMask) to calculate the 

Euclidean distance to the nearest non-zero (dry) 

pixel. 

7 Calculate 

contactLineLength. 

Sum pixels in the distance transform result that have 

a value of 1, identifying the immediate contact line. 

8 Calculate 

contactLineDensity. 

Divide contactLineLength by totalPixels to find 

the contact line's extent per unit area. 

9 Output dryAreaFraction 

and contactLineDensity. 

Package the results into a structure or output them 

directly as the algorithm's result. 

 

3.4.2 Machine Learning Metrics 
The machine learning performance metrics provide another layer of validation to the quality 

of the segmentation outputs predicted by the U-Net CNN. The confusion matrix needs to be 

calculated first to calculate these metrics. The confusion matrix (Table 3.3) is evaluated by 

calculating the following: 
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Table 3.3 Confusion Matrix 

TP FP 

FN TN 

 

• True Positive (TP): - This is the number of positive pixels (bubble pixels) in the 

segmented image that correctly match the positive pixels in the ground truth. 

• False Positive (FP): - This is the number of positive pixels in the segmented image 

that do not match the positive pixels in the ground truth (i.e., wrongly identified). 

• False Negative (FN): - This is the number of negative pixels (liquid pixels) in the 

segmented image that do not match the negative pixels in the ground truth. 

• True Negative (TN): - This is the number of negative pixels in the segmented image 

that correctly match the negative pixels in the ground truth. 

Then, the performance metrics are computed from the confusion matrix as: 

1. Accuracy (𝟎 ≤ 𝑨 ≤ 𝟏): This measures the proportion of the total number of correct 

predictions. It's computed as:  

𝐴 = (C@	'	C0)
(C@	'	C0	'	I@	'	I0)

       (3.11) 

 

2. Precision (𝟎 ≤ 𝑷 ≤ 𝟏): Precision measures the correct positive predictions made. It's 

computed as:  

𝑃 = C@
(C@'I@)

         (3.12) 

3. Recall (𝟎 ≤ 𝑹 ≤ 𝟏): Recall (or Sensitivity or True Positive Rate) measures the number 

of actual positives that were correctly identified.  

It's computed as:  

𝑅 = C@
(C@'I0)

         (3.13) 

4. Specificity (𝟎 ≤ 𝑺 ≤ 𝟏): (Specificity or True Negative rate) measures how well the 

model can correctly predict a true negative for each category.  

It is calculated as: 

𝑆 = C0
(C0'I@)

         (3.14) 
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5. F1 Score (𝟎 ≤ 𝑭𝟏 ≤ 𝟏): The F1 Score or Dice coefficient is the harmonic mean of 

Precision and Recall and gives a better measure when there are uneven class 

distributions (such as many negatives and fewer positives).  

It's computed as:  

𝐹* 	= 2 × @	×L
@'L

= M×C@
MC@'I@'I0

       (3.15) 

6. Intersection over Union (𝟎 ≤ 𝑰𝒐𝑼 ≤ 𝟏): IoU or Jaccard index measures the overlap 

between the segmented image and the ground truth. It's the area of overlap divided by 

the area of union of the two segments. It's computed as:  

𝐼𝑜𝑈 = C@
C@'I@'I0

        (3.16) 

7. Matthews Correlation Coefficient (−𝟏 ≤ 𝑴𝑪𝑪 ≤ 𝟏): MCC is a measure of the 

quality of binary classifications. It considers all four values of the confusion matrix 

and is a balanced measure even if the classes are of different sizes. It is computed as:  

𝑀𝐶𝐶 = (C@×C0))(I@×I0)
N(C@'I@)×(C@'I0)×(C0'I@)×(C0'I0)

     (3.17) 

3.5 Uncertainty Quantification 
In this subsection, we analyze binarized frames to address the precision of measuring key 

boiling dynamics, specifically contact line density and dry area fraction. Recognizing that 

pixel-based measurements inherently carry some degree of error, it's essential to quantify these 

uncertainties to enhance our understanding of the estimations made for the contact line and 

dry area. To systematically address potential errors, we utilize the "bubble_discretization" 

script, which employs "dilation" and "erosion" techniques to adjust for overestimations and 

underestimations, respectively. By varying the grid resolution and bubble radius across a set 

number of iterations, we compare the theoretical area and perimeter (assuming a perfect 

circular shape) against the discretized values calculated from the pixel data. The core of our 

analysis involves calculating the relative and mean errors between these theoretical and 

discretized measurements and correlating them with the bubble radius and grid resolution. 

Next, we extract real bubble dimensions (radius, area, and perimeter) from experimental data 

to further validate our approach. This validation allows us to adjust the error estimates based 

on actual measurements, ensuring a more accurate and reliable analysis. A distinctive aspect 

of our method is applying a weighted frequency analysis through a Python script 
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(“weighted_average”), which assesses errors across various bubble sizes according to their 

occurrence frequency obtained using the “bubble_distribution” code. This technique provides 

an accurate perspective on error distribution, facilitating more precise uncertainty estimations 

for contact line and dry area measurements.  

 

Table 3.4: Enhanced Bubble Discretization and Error Quantification 

Input: Domain length L, NumSimulations, 𝑁OE#P>B, 𝑅OE#P>B 

Output: Results with PRE and ME for area and perimeter 

1. Initialize simulation parameters 

2. for each N in 𝑁OE#P>B do 

a. for each R in 𝑅OE#P>B do 

i. Initialize 𝐴,->D<>,!2E#, 𝑃,->D<>,!2E# for R 

ii. for k=1 to NumSimulations do 

1. Randomly position bubble within domain 

2. Calculate Dis, define bub (Dis<R) 

3. Compute 𝐴QPQ, Perb using pixel count 

iii. end for 

iv. Compute PRE and ME for area, perimeter 

v. Store errors in Results 

b. end for 

3. end for 

4. Load and process Results for visualization 

5. Extract error matrices from Results 

6. Visualize errors (Histograms, Surface plots) 

7. Estimate errors for experimental data: 

a. Match experimental data with simulation parameters 

b. Read off errors for specific experimental conditions 

8. Perform weighted frequency analysis on errors 

9. Output refined error estimations 
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Table 3.4 provides a comprehensive algorithm detailing the steps in conducting the 

error quantification. The algorithm table outlines a process for simulating and analyzing the 

discretization of bubbles within a domain of length L. It involves running a specified number 

of simulations, given by “NumSimulations”, over a range of grid resolutions and bubble radii, 

represented by “N_values” and “R_values”, respectively. The aim is to calculate the area and 

perimeter of bubbles as they would appear on a discrete grid, comparing these results with 

their theoretical continuous counterparts. Within this context, “A_theoretical” and 

“P_theoretical” represent a bubble's expected area and perimeter with a known radius R, as 

determined by geometrical formulas. For each simulation iteration indexed by k, the algorithm 

places a bubble randomly within the domain. It calculates the distances from points on the grid 

to the bubble's center, referred to as “Dis”. This distance defines which grid cells, or “bub”, 

are inside the bubble. The algorithm then counts these cells to estimate the bubble's area 

(“Abub”) and perimeter (“Perb”).  

Figure 3.15 shows how the points which belong to the discretized bubble are 

determined. From the plot, we present the outcomes of the discretization process for a 

simulated bubble superimposed with its theoretical counterpart across different grid 

resolutions, denoted by N. As N increases, the numerical representation of the bubble, 

indicated by the filled purple area, converges towards the theoretical model, delineated by the 

blue outline. At lower resolutions (N = 10, 20), the pixelation is quite apparent, leading to a 

more polygonal shape rather than a smooth curve. This effect diminishes as N reaches 45, and 

further resolution improvement to N = 100 yields a discretized bubble that closely 

approximates the smooth, circular theoretical model. This progression illustrates the impact of 

grid resolution on the accuracy of numerical simulations in representing continuous shapes 

within a discrete spatial domain. To ensure robust statistical significance, we repeated this 

computation 500 times for each pair, thus mitigating any anomalies caused by the bubble's 

random positioning. 
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Figure 3.15 Theoretical and Discretized Bubble for a Fixed Bubble Radii (100 microns) and 

Varying Grid Resolution (N) 

After running the specified number of simulations, the algorithm computes the 

Percentage Relative Error (“PRE”) and Mean Error (“ME”) for both the area and the perimeter 

to evaluate the accuracy of the discretization. The “PRE” measures the error relative to the 

size of the measured value, while the “ME” gives an average of the errors across all 

simulations. The results from this rigorous procedure provide a refined estimation of errors 

that can be expected when representing continuous shapes in a discrete space, which is crucial 

for applications in computer vision and related fields. The subsequent sections present the 
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results obtained from the segmentation study for the diverse fluids at various operating 

conditions and the uncertainty quantification results.  
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Chapter 4 

Case Studies 

This chapter is focused on presenting the results of the segmentation of HSV frames in boiling 

experiments. The fluids considered are liquid nitrogen (at 16 distinct heat fluxes with 2000 

frames per heat flux), liquid argon, nitrogen, and FC-72 (at constant operating conditions with 

6000 frames per fluid). We also consider high-pressure water as a working fluid to demonstrate 

the model's efficacy on water bubbles. All these data were collected by The Red Lab members. 

The first results focus on the liquid nitrogen experimental data at various heat fluxes, offering 

insights on how the segmentation and thresholding methods perform on the data. After that, 

the effects of different user perspectives on selecting the ground truth images used to validate 

the U-Net segmentation masks is presented and discussed. Subsequently, we show the 

comparisons between the U-Net CNN segmentation and the adaptive thresholding techniques 

on other use cases.  

 

4.1Liquid Nitrogen at Varying Heat Fluxes 

This section discusses various aspects of the binarization of the liquid nitrogen HSV phase 

detection images using U-Net CNN and thresholding techniques. It starts with boiling metrics 

evaluation (e.g., contact line density and dry area fraction) for the various HSV images 

recorded at different heat fluxes. Thereafter, the data categorization which breaks down the 

HSV data into various categories based on bubble topology similarity as well as specialized 

models that accurately handle each data are presented. After that a 3D histogram analysis of 

the data is presented which shows the bivariate distribution of bubble size and the frequency 

of occurrence for the different videos from both techniques. Then, perimeter visualization as 

well as a bubble size distribution analysis are presented to further show the reason for the 

observed trends in the results obtained from both methods.  
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4.1.1 Boiling Metrics  
The liquid nitrogen HSV data was recorded in saturated (i.e., 93.5 K at 70 psia) pool boiling 

conditions. Figure 4.16 shows how the contact line density and dry area fraction of liquid 

nitrogen fluid changes as the mean heat flux increases. It compares two different methods: 

segmentation using the U-Net CNN and adaptive thresholding. The adaptive thresholding 

algorithm was implemented by Chavagnat et al. and was used in their work [28,29]. Both 

methods show that as the mean heat flux goes up, so does the contact line density and the dry 

area fraction. In simple terms, when we apply more heat, the density of the contact line—

which is the edge or boundary where a liquid might meet a surface— as well as the dry area 

fraction—which is the surface area covered by vapor gets higher.  

The blue line represents the U-Net CNN segmentation method, and the red line represents 

the thresholding method. Both lines follow a similar trend, but there are some differences. It 

is observed that the segmentation method gives a slightly higher density and dry fraction than 

the thresholding, especially as we apply more heat. Most importantly, at steps 8-9 

(corresponding to heat fluxes of 140.5 and 158 kW/m2, respectively), a significant deviation 

between methods is observed and after that, the changes keep getting more prominent. This 

may be because the segmentation technique is picking more bubbles than the thresholding 

method. Furthermore, it may be that there is an increase of smaller bubbles from video 8-9 in 

the plot and that the thresholding technique does not capture these small bubbles in video 9 

while the segmentation does well in capturing them due to its higher sensitivity during the 

tuning process. Subsequent results will seek to show these different regimes and investigate 

the reasons for these differences between the two techniques.  
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Figure 4.16 Variation of Dry Area Fraction and Contact Line Density with Increasing Mean 

Heat Flux: A Comparative Analysis of U-Net CNN Segmentation and Thresholding Methods 
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4.1.2 Data Categorization 
Figure 4.17 and Table 4.5 provide a comprehensive visual and quantitative analysis of the 

behavior of liquid nitrogen under various heat flux conditions, processed through U-Net CNN 

models and thresholding. In Figure 4.17, we see a series of images depicting the state of liquid 

nitrogen as captured by the camera and then processed using U-Net CNN and thresholding 

techniques. This visualization divides videos 3-18 into 5 major categories based on the similar 

bubble topology. Based on these categories, 5 specialized U-Net CNN models are created for 

the entire HSV data as illustrated in Table 4.5. The creation of these diverse models for 

different heat flux ranges are necessary because the characteristics of the bubbles change with 

heat flux, requiring tailored approaches for capturing as much bubble pixels as needed. The 

raw camera images, displayed in grayscale, reveal a transition from scattered bright spots 

indicating low vapor-covered surface at lower heat flux (1) to densely packed patterns at higher 

heat flux (5), suggesting a more vigorous boiling state.  

 As the heat flux increases, we observe a clear increase in bubble formation and 

density. The U-Net CNN processed images present these transformations with stark contrast, 

emphasizing the distinction between the liquid (dark) and vapor (bright) states of nitrogen. 

With rising heat flux, the bubbles, which represent the vapor phase, increase, suggesting an 

increase in the boiling intensity. The bottom row images, processed with thresholding, show 

vapor-covered area in yellow and the liquid background in blue.  

It is generally observed that the U-Net CNN is better at detecting small bubbles in the 

camera image than the adaptive thresholding technique. It is important to detect these small 

bubbles, especially at higher heat flux levels, to precisely quantify contact line density and dry 

area fraction which are key to correctly predict the boiling heat transfer coefficient. This 

observation is more pronounced at higher heat flux levels and subsequent visualizations will 

seek to further uncover these differences especially from videos 8-9. This visualization method 

makes the changes of the boiling process from gentle to vigorous starkly apparent. Table 4.5 

complements these visualizations with precise heat flux ranges, associating each HSV with a 

specialized U-Net CNN model and referencing specific applicable videos. 

A concise explanation as to how the thresholding technique works and why it seems to 

be less effective at capturing small bubbles compared to U-Net CNN is provided. The 
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thresholding technique is a simple, yet effective image processing method that converts 

grayscale images into binary by applying a specific threshold value. Any pixel intensity above 

the threshold is turned to one color (e.g., white), and anything below is turned to another color 

(e.g., black). This creates a binary image that highlights areas of interest, like the bubbles in 

the liquid nitrogen experiments, against the background. However, thresholding might be less 

effective at capturing small bubbles because it applies a varying intensity cutoff across the 

entire image which may not pick up smaller bubbles especially when the image contrast does 

not clearly differentiate the bubble from the background. This can cause it to miss subtleties, 

such as very small bubbles that do not contrast sharply with the background. If these bubbles 

are close in intensity to the liquid nitrogen background, they might be incorrectly classified as 

part of the background and thus not detected. In contrast, a U-Net CNN is a more advanced, 

machine learning-based approach that learns from the data how to identify features of interest, 

such as bubbles. It can recognize patterns and textures, adapting to variations in bubble size, 

shape, and intensity. This enables the U-Net CNN to detect smaller and less distinct bubbles 

that may be overlooked by thresholding, making it a more robust tool for detailed image 

analysis in complex visual datasets like ours. 

 

Table 4.5 Classification of the Liquid Nitrogen HSV Dataset at Various Heat Fluxes 

According to U-Net Models 

S/N Heat flux (kW/m2) U-Net model Videos 

(1) 45.6-66.6 Img_3 3,4 

(2) 84.7-103.7 Img_5 5,6 

(3) 121.8-140.5 Img_8 7-9 

(4) 158-216.4 Img_12 10-12 

(5) 234.3-305.7 Img_16 13-18 
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Figure 4.17 Visualization of Sample HSV Data Represented in the Classification Table 
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of the heat flux scale, which could correlate to a vigorous boiling phase where large bubbles 

are more common. The 3D representation of the histograms allows us to see the relation 

between bubble size and heat flux in a more tangible way, making it easier to perceive trends 

and variances in the data. 

What stands out in these histograms is the relationship between the heat applied and 

the bubble dynamics within the liquid nitrogen. Smaller bubbles are abundant at lower heat 

levels but give way to larger ones as the heat flux rises. The U-Net CNN seems to capture a 

finer granularity of this transition. The progression from a higher count of small to large 

bubbles could have implications for cooling efficiency and safety in systems that utilize liquid 

nitrogen. It is a precursor of a transition from nucleate to film boiling, which has different heat 

transfer characteristics [30]. Identifying this transition is important for the design and control 

of cooling systems in various industrial processes.  
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Figure 4.18 3D Histogram of Heat Flux vs. Bubble Sizes Distribution Using Segmentation 

(U-Net CNN) and Thresholding Technique 
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4.1.3 Perimeter Visualization 
To further understand the reason for the rapid change in the dry area fraction and contact line 

density as the heat flux increases from video 8-9, Figure 4.19 provides a side-by-side 

comparison of different bubble detection techniques on raw camera images from two selected 

video frames from videos 9 and 8. The figure aims to illustrate the effectiveness of U-Net, 

Thresholding, and a combination of both methods in identifying bubbles in a boiling liquid 

nitrogen environment. 

The top row shows the raw camera images, giving us the unprocessed visual data. 

These grayscale images capture the bubbles in various sizes and intensities but do not 

differentiate between bubble boundaries and the liquid background, making it challenging to 

quantify the boiling characteristics accurately. The second row depicts the results of the U-Net 

processing, where the detected bubble edges are outlined in red. U-Net demonstrates its 

precision in identifying bubble contours, even for those that are close to each other or vary 

significantly in size and shape. This ability to distinguish overlapping and adjacent bubbles is 

essential for an accurate count and size distribution analysis, which directly feeds into 

understanding the heat transfer properties of the boiling process. In the third row, we observe 

the outcomes of the Thresholding technique, with bubble detection highlighted in green. 

Thresholding offers a stark contrast between bubbles and the background, which can be helpful 

in quickly identifying areas of high bubble concentration. However, it may not delineate the 

exact boundaries of each bubble as effectively as U-Net, especially when bubbles are clustered 

together or when there is a subtle difference in grayscale intensity between the bubble and the 

background. The fourth row combines U-Net and Thresholding, aiming to leverage the 

strengths of both. This approach uses the robust boundary detection of U-Net and the clear 

contrast provided by Thresholding to enhance bubble identification. The combination method 

appears to capture most of the bubbles identified by both individual methods, with the outlines 

in yellow suggesting a consensus between the two. This may present a more comprehensive 

picture of bubble distribution, potentially improving the accuracy of subsequent quantitative 

analyses. 

Comparing video 9 and video 8, we can qualitatively assess the consistency and 

reliability of each technique across different frames. It seems that the U-Net model provides a 



 60 

consistent level of detail in both frames, whereas the Thresholding shows some variation, 

potentially missing smaller bubbles in denser areas. Specifically, in the fourth row where the 

U-Net + Thresholding is considered, it is observed that there is a prevalence of red (segmented 

pixels) in video 9 which show that the U-Net picks more smaller bubbles than the thresholding 

method. This explains why there is an observed rapid change in the contact line density and 

the dry area fraction as observed in Figure 4.16. This comparative analysis is significant 

because the chosen detection technique can substantially impact the interpretation of boiling 

dynamics and the design of related systems. The visualization of the combined U-Net and 

Thresholding offers a balanced visualization, capturing both the fine details and providing a 

clear overall picture of bubble activity. Future result would investigate the quantitative 

differences in bubble size distributions resulting from these techniques to identify the optimal 

approach for various practical applications. 
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Figure 4.19 Comparative Analysis of Bubble Detection Techniques in Selected Video 

Frames: Raw Camera Images and Post-Processed Results Using U-Net, Thresholding, and 

Combined Methods 
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4.1.4 Bubble Size Distribution 
Figure 4.20 showcases a compelling visualization of bubble size distribution in selected frames 

from videos 8 and 9, contrasting the raw camera output with the results obtained after applying 

segmentation and thresholding methods.  

The first column of the figure displays the raw camera images from video 9 and video 

8. These grayscale images provide the untreated visual data, capturing a range of bubbles in 

various shades of gray, which represent different sizes but do not offer a quantifiable 

distinction between them. In the middle column, the results of the segmentation method are 

shown, where the color map is representative of the bubble size group. Smaller bubbles are 

shaded blue, medium bubbles green, larger ones yellow, and the largest in orange. This color-

coding allows for a quick visual assessment of the bubble size distribution. In both frames 

from videos 9 and 8, the segmentation method illustrates a variety of bubble sizes with a clear 

predominance of medium to large bubbles, which could indicate vigorous boiling activity. The 

segmentation appears to delineate each bubble individually, regardless of the proximity to 

others, highlighting the method's precision in capturing the full spectrum of bubble sizes. The 

third column presents the results of the thresholding method, which also uses color-coding to 

differentiate bubble sizes. However, compared to the segmentation output, the thresholding 

seems to emphasize larger bubbles more prominently, which suggests that while it can identify 

bubbles effectively, it might overlook smaller ones or merge close-proximity bubbles into 

larger segments. 

Comparing video 9 to video 8, we can infer the consistency and capability of each 

technique across different frames, which is critical for ensuring reliable analyses across a series 

of experiments. The segmentation method, with its detailed size categorization, could be 

essential for precise applications where understanding the full range of bubble dynamics is 

necessary for optimizing thermal processes. Thresholding, offering a more general view, could 

be suited for applications where the primary interest is in larger bubbles or where 

computational resources are limited. Generally, both methods can be combined such that the 

annotated samples used to finetune the U-Net CNN models can be obtained from the 

thresholding technique. Thereafter, the first results from the thresholding can be improved 

upon by humans to manually add smaller features missed by the technique. Subsequently, the 
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finalized annotated samples can be used to finetune the U-Net CNN model for improved 

segmentation accuracy. The visualization of bubble size distribution through these methods 

enhances the qualitative understanding of boiling patterns and can guide quantitative analysis. 

Future results will seek to combine these methods to other use cases.  

 

 
Figure 4.20 Visualization of Colored Bubble Size Distribution in Video 8 & 9 Frames: Raw 

Camera Output vs. Post-Processing with Segmentation and Thresholding Methods 
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their judgment. After that, the masks obtained from this analysis were compared in terms of 
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Figure 4.21 compares how different users and image processing techniques measure 

dry area fraction and contact line density in the same selected frames from videos 8 and 9. 

This comparison is crucial to understand how subjective human analysis affects the selection 

of the ground-truth used to evaluate the performance of the computational methods in the 

context of image processing tasks. The bar chart is divided into two sections, one for each 

target frame from the two videos. Each section has a set of bars representing the values 

obtained by the five different users (User 1 to User 5) and two computational methods 

(Segmentation and Thresholding, the latter done by Chavagnat et al. [28,29]) for the dry area 

fraction and contact line density measurements. It is noticeable that the values obtained by the 

five users show a low degree of variation. This spread illustrates the inherent subjectivity and 

potential inconsistencies in human interpretation, which can arise from individual perceptual 

differences or varying levels of expertise. However, there is little effect of the user perspective 

on the contact line density and dry area fraction as all the bars for users 1-5 average around 

0.17 for the dry area and 0.05 for the contact line density.  

On the other hand, the segmentation method seems to produce a higher value 

consistently across both videos for dry area fraction. This could imply that segmentation is 

more sensitive in detecting smaller areas of dryness that the basic thresholding methods might 

miss. The thresholding method, while objective, may yield lower values compared to 

segmentation, suggesting it might be less sensitive or it could be more conservative in its 

estimation, possibly overlooking subtle variations in the image. These results further support 

the previous findings earlier discussed.  
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Figure 4.21 Comparison of Dry Area Fraction and Contact Line Density Across Different 

Analysts and Image Processing Techniques for Target Frames in Videos 8&9.  

The percentage difference in dry area fraction and contact line density between the 

image processing techniques and the ground-truth closes to the camera image is depicted in 

Figure 4.22. For the selected samples, it is observed that the error by the thresholding method 

reaches -20% on the contact line and -10% on the dry area for the selected frames. This 

indicates that thresholding misses certain bubbles which makes it underestimate the contact 

line and dry area fraction. It is also observed that the segmentation provides a much lower 

error of less than 2% for the dry area fraction and less than 8% for the contact line density.   

To further compare the mean value and standard deviation of the user annotations to 

the values measured by the algorithms and show that segmentation is within the error bar, we 

examine results from the contact line in Video 9, Image 1901 which shows the highest 

discrepancy with the thresholding. The mean of user measurements for the contact line in is 

0.05649, with a standard deviation of 0.00171. The segmentation result for the same case is 

0.05537, which falls within one standard deviation from the mean of the user measurements. 

This indicates that the segmentation algorithm performs well and aligns closely with human 

observers, demonstrating that the segmentation results are within the acceptable range of 

variation among user annotations. These results quantify the errors in the segmentation and 
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thresholding methods. Future results will seek to quantify the uncertainties in the actual 

pixelization in calculating the dry area and the contact line density.  

 

 
Figure 4.22 Quantitative Comparison of Dry Area Fraction and Contact Line Density 

Variances: Segmentation vs. Thresholding Techniques Across Images from Videos 8 and 9 
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using statistical plots like the probability density function (PDF) and the cumulative 

distribution function (CDF) plots.  

 

4.2.1 Perimeter Visuals  
Figure 4.23 displays the comparative outcomes of the perimeter visualization using U-Net and 

binarization algorithms against the original camera images for three different fluids: argon, 

nitrogen, and FC-72. The binarization algorithm was developed by Marco at the MIT Red Lab 

and it is a variant of the thresholding algorithm involving edge detection and post-processing 

steps. The perimeters identified by the U-Net algorithm are marked in red, and those identified 

by the thresholding algorithm are in green. A close examination reveals a resemblance between 

the bubble patterns in argon and nitrogen, which informed the decision to enhance the U-Net 

model with mixed data from these two fluids. In contrast, the distinct bubble pattern in FC-72 

necessitated the development of a tailored U-Net model for its precise segmentation. As 

explained in Chapter 3, five annotated images were used to fine-tune the U-Net model. The 

performance of both the U-Net and binarization methods appears robust for argon and 

nitrogen, as evidenced by the congruence between the identified perimeters and the raw 

imagery. This is attributed to the lower incidence of small bubbles in these images, aligning 

with prior findings where small bubbles were less prevalent. Moreover, such observations are 

consistent with past studies indicating that threshold-based algorithms rival the performance 

of U-Net in scenarios with fewer small bubbles. However, the FC-72 images present a different 

scenario, with a higher presence of small bubbles leading to an increased rate of false positives, 

particularly noticeable in the top left corner of the thresholding results in Figure 4.8. This 

disparity may have significant implications for subsequent analyses, including the 

measurement of contact line density and dry area fraction, which will be further examined in 

following sections. 
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Figure 4.23 Perimeter Visualization in Nitrogen, Argon, and FC-72: Raw Camera Images 

and Results from U-Net and Binarization Processing 
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previously unseen images from the varied fluids. Given the model fine-tuning did not require 

extensive data and considering the high cost of generating annotated samples, the U-Net CNN 

model emerged as the most suitable approach for our analysis. 

Figure 4.24 details the results of these boiling metric calculations. It is noted that the 

metrics for argon and nitrogen exhibit similarities in both the dry area fraction and contact line 

density, which aligns with the analogous bubble distributions noted in the raw camera images. 

Moreover, the congruence of metrics derived from segmented, binarized, and ground-truth 

images for these two fluids underscores the efficacy of the segmentation and binarization 

algorithms when applied to raw camera data. Conversely, in the case of FC-72, there is a 

notable divergence; while the metrics from the ground-truth and segmented images bear 

resemblance, the binarized algorithm’s results significantly deviate, particularly concerning 

the elevated contact line density. This deviation is likely a consequence of the greater incidence 

of false positives associated with the binarization algorithm, which tends to over-respond to 

the abundance of smaller bubbles present in the FC-72 distribution. 
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Figure 4.24 Comparative Boiling Metrics of Dry Area Fraction and Contact Line Density in 

Argon, Nitrogen, and FC-72 Environments: Segmented vs. Ground Truth Analysis 
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4.2.3 Machine Learning Metrics  
After calculating the boiling metrics and establishing the superior performance of the U-Net 

CNN segmentation, the next step involves quantifying the typical image segmentation 

performance metrics to further ascertain the quality of the U-Net segmentation. The typical 

segmentation performance metrics considered range from the accuracy to the intersection over 

union (IoU), and the Mathew’s correlation coefficient (MCC).  

The graphs in Figure 4.25 showcase the individual and average values for accuracy, 

precision, recall, F1-score, IoU, and MCC across images of argon, nitrogen, and FC-72. For 

argon and nitrogen, the performance metrics exhibit a generally high level of accuracy, 

precision, and recall, with a notably consistent F1-score, which suggests a balanced 

segmentation performance between precision and recall. The mean IoU and MCC metrics, 

while slightly more variable, still maintain high values, indicating a strong overlap between 

the segmented images and the ground truth. The FC-72 data shows greater variability across 

the metrics, which might be due to the complexity of bubble segmentation in this fluid as 

indicated by the presence of smaller bubbles and the subsequent higher false positive rates and 

negative rates identified previously. Despite the fluctuations, the overall high scores across all 

metrics indicate that the U-Net CNN segmentation performs robustly, even in more 

challenging scenarios. On average, across all images and fluids, the scatter plots reveal that 

the U-Net CNN model maintains a consistently high performance, particularly in terms of 

accuracy and F1-score. This underpins the model’s effectiveness not just in accurately 

identifying true positives but also in balancing the precision and recall, crucial for reliable 

segmentation in varied imaging conditions. 
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Figure 4.25 Evaluation of Image Segmentation Performance Metrics Across Different 

Fluids: Detailed and Aggregate Analysis 
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datasets for argon, nitrogen, and FC-72 fluids. The segmentation outcomes are represented 

through statistical methods including probability density functions (PDF), cumulative 

distribution functions (CDF), and box plots, as illustrated in Figure 4.26.  

The analysis of PDFs, CDFs, and box plots reveals a degree of consistency between the 

argon and nitrogen fluids concerning dry area fraction and contact line density metrics. For 

the nitrogen dataset, the metrics derived from segmentation and binarization algorithms are 

notably close, with dry area fractions ranging from 0.46 to 0.48 and contact line densities from 

0.06 to 0.07. The differences become more apparent in the probability density and cumulative 

distribution yet remain within a narrow band. In contrast, the argon dataset shows slightly 

wider variances, with segmented dry area fractions spanning 0.48 to 0.53 and binarization 

results ranging from 0.51 to 0.56. Observations from the box plots suggest a modest degree of 

agreement between the mean values of segmented and binarized dry areas, as well as contact 

line densities, with discrepancies within ±5%.  

However, for the FC-72 data, despite some concurrence in the range of values on the x-

axis of the PDF and CDF plots, differences in probability densities and cumulative 

probabilities are evident, particularly for contact line density. This observation aligns with 

earlier results indicating a tendency for the binarization method to generate a higher number 

of false positives. The box plots further substantiate this, displaying similar median values but 

divergent minimum and maximum values for both the contact line and dry area fractions. 
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4.3 High Pressure Water 

This section explains how we used U-Net CNNs to segment videos of high-pressure flow 

boiling of water. We looked at two different sets of conditions. In Case 1, the operating 

conditions were 10 bar pressure and 3000 kW/m2 heat flux. For Case 2, the conditions were a 

pressure of 40 bar and a heat flux of 3400 kW/m2. Both cases were obtained from the same 

imaging setup; however, the cropping of the images are different due to the nature of the 

images. The cropping is done to extract only the clear parts of the images not covered by noise. 

We can see from the camera images, in Figure 4.27, that the two cases have different numbers 

and sizes of bubbles, with Case 2 showing more bubbles due to its higher pressure and heat 

flux conditions. 

After preparing the data, we used U-Net CNN models that were originally made for liquid 

nitrogen to segment the high-pressure water videos. The results are shown in Figure 4.28. The 

model, which was trained on different data, did not segment the high-pressure water videos 

perfectly. It was better at identifying smaller bubbles than larger ones. For larger bubbles, the 

model sometimes missed the center, creating a hole in the middle of bubbles. This issue, along 

with some incorrect bubble identifications (false positives), suggests the model's training didn't 

include enough high-pressure water boiling features. 

Despite these issues, the initial segmentation results are useful. They provide a starting 

point to create training data for improving the model. We do this by taking the bubble outlines 

from the initial segmentation and manually correcting them on the images. We use five 

samples of the annotated images to finetune the U-Net model. This shows how we can use the 

model trained on different data as a starting point to get good results on new types of data 

eventually. 

After we improved the U-Net CNN model, we compared its perimeter results with the 

original images that experts had carefully checked (ground-truth). These comparisons are 

shown in Figure 4.28. The updated U-Net model does a good job of finding and outlining the 

bubbles in the videos, almost as well as the expert-prepared images. We also put the outlines 

from the U-Net model and the expert images together in one picture, using a yellow line to 

show where they overlap (where the model's green and the experts' red outlines mix). 
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Even though the U-Net model works well on these images, when we look closely at the 

combined picture, we notice some small differences. A few very tiny bubbles marked by the 

experts are missing in the U-Net's outlines. Next, we'll measure how well the U-Net model, 

and the expert images match up, looking at different aspects of boiling across several video 

frames. 

 

 
Figure 4.27 Bubble Edges Visualization: Raw Camera Capture, Ground-Truth, Segmentation 

and Combined Overlay 
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Figure 4.28 Comparison Between High-Pressure Water Camera Image and Segmentation 

Mask Obtained from Previous U-Net CNN Trained on Liquid Nitrogen Data 

Figure 4.29 shows how the contact line density and dry area fraction differ across 

various frames in the two high-pressure water experiments (Cases 1 and 2). We also provide 

plots that measure the errors by showing the absolute difference (segmentation - ground truth) 

and the percentage difference ((segmentation - ground truth) / ground truth) * 100) between 

the U-Net's segmentation and the expert-checked ground truth. 

For this comparison, the first five frames of the video were used to train and check the 

U-Net model, and the last five frames were used to test it. This ensures that the model is 

learning the general pattern of bubble distribution, not just memorizing specific frames. We 

noticed differences in the dry area fraction and contact line density between Cases 1 and 2, 

which highlights the variability in the experimental conditions. 

When comparing the segmentation from the U-Net model to the ground-truth images 

across both cases, the results are quite similar. However, when we look closer at the plots, the 

data from the ground-truth images are slightly higher than the segmentation results. This 

difference likely comes from the segmentation model missing a few bubble pixels, which is a 

common challenge since no model is perfectly accurate. 

 

 

 

Camera Segmentation Mask 
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Figure 4.29 Boiling Dynamics Performance Metrics and Error Quantification for Diverse 

Frames in the High-Pressure Water Videos.  

The error quantification plots reveal how the absolute and percentage errors evolve 

across the video frames for Cases 1 and 2. Notably, all errors recorded are negative, indicating 

missed pixels during the segmentation process. Across all frames, the dry area errors are 

generally in the range of 10-3, suggesting a close match between the segmentation outputs and 

the ground truth. The smallest observed absolute error is 10-4 px/px2 in the contact line 

measurements for both cases. 

However, when looking at the percentage errors, the maximum errors recorded are 

between 5-6% on the contact line in certain frames for both cases. Figure 4.30 further details 

these errors through statistical analysis, including the mean, maximum, minimum, and 

standard deviations. The plot shows the standard deviation with a black line at the center of 

each bar, with the ends of the line marking the minimum and maximum error values. The green 
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bars represent the magnitude of the absolute/percentage relative errors on either the contact 

line or the dry area.  

For the dry area fraction, the average percentage errors are 2% for Case 1 and 3.5% for 

Case 2. Case 1 displays a wider spread of errors (higher standard deviation), indicating more 

variability in errors across frames. Conversely, the average percentage error for contact line 

density is 3.5% for Case 1, which also has a higher variability in errors. Case 2 shows a slightly 

higher mean error of 5% but with less variability, as indicated by a lower standard deviation. 

 

 
Figure 4.30 Statistical Analysis of the Absolute Error (𝜀) and Percentage Relative Error 

(PRE) on the Dry Area Fraction (𝑥) and Contact Line Density (𝜌) for Various Cases.  
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recall, and the IoU. The comparative results for Cases 1 and 2 are detailed in Error! Reference 

source not found.. 
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Figure 4.31 Machine Learning Performance Metrics for the Various High-Pressure Water 

Cases 

The analysis reveals exceptionally high specificity and accuracy rates, exceeding 99% 

for both cases across multiple frames. This high performance indicates that our segmentation 

model is very effective at correctly identifying true negatives (areas without bubbles) and true 

positives (areas with bubbles), thus making accurate predictions in most cases. 

However, when we examine other metrics like precision, F1 score, MCC, and recall, we 

notice a slight dip in performance. For Case 1, these metrics hover around 95%, while for Case 

2, they range between 87-90%. The precision metric, which evaluates the model's ability to 

identify only relevant objects as positives, along with recall, which assesses the model's 

success in identifying all actual positives, slightly decrease. This discrepancy can be attributed 

to a few factors: 

1. Variability in Experimental Conditions: Case 2's more challenging conditions might 

have introduced more complexity in the segmentation task, affecting these metrics. 

2. Model Sensitivity: The segmentation model may be slightly less sensitive to 

identifying all true positives in the more complex scenarios of Case 2, affecting recall 

and consequently precision and F1 scores. 

The IoU metric, known for its comprehensive evaluation of segmentation accuracy by 

considering both true positive and false positive rates, shows the lowest values among the 

metrics: 90% for Case 1 and 80% for Case 2. These lower IoU values, compared to other 

metrics, are expected because IoU provides a more stringent assessment by simultaneously 

considering the area of overlap and the area of union between the predicted and actual 

segmentations. The lower IoU for Case 2 can be specifically attributed to the increased 

experimental complexity, leading to more segmentation challenges and hence a slightly 

reduced overlap accuracy. 

Although the segmentation model demonstrates exceptional specificity and accuracy, we 

observe a modest decline in precision, F1 score, Matthew's Correlation Coefficient (MCC), 

recall, and notably the Intersection over Union (IoU) for Case 2. This reduction emphasizes 

how the complexity of experimental conditions can present additional challenges for 

segmentation accuracy. Consequently, the forthcoming section of this thesis will delve into 
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the issue of discretization error, which arises during the pixelation of bubbles. This is a crucial 

step in computing performance metrics such as contact line density and dry area fraction from 

the experimental data.  
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Chapter 5 

Uncertainty Quantification 

This section examines how uncertainties in discretizing binarized bubbles may impact the 

measurement of boiling parameters, such as the dry area fraction and contact line densities, 

during post-processing. To address this, we conducted numerical experiments to explore the 

influence of grid resolution and bubble size (represented by the bubble's radius) on the 

measurement of bubble perimeter and area. These parameters are crucial for calculating the 

dry area fraction (the ratio of the area covered by bubbles to the total area) and contact line 

density (the ratio of the total bubbles' perimeter to the total area). 

As a reference point, we consider a theoretical circular bubble. We calculate its 

perimeter and area as functions of the bubble's radius. These theoretical values are then 

compared with the discretized values of perimeter and area, which depend on both the bubble's 

radius and the grid cell size. To quantify the discrepancies, we introduce two error metrics: the 

Percentage Relative Error (PRE) and the Mean Error (ME), defined mathematically by 

Equations (5.1) and (5.2) respectively: 

𝑃𝑅𝐸 = R"#$%)RS&'()
R"#$%

× 100        (5.1) 

𝑀𝐸 = (𝜓,->D − 𝜓s;!B2)        (5.2) 

Here, the subscript "disc" denotes discretized values, and "theo" refers to theoretical 

values, i.e., 2πR for the perimeter and 2πR2 for the area, where R is the bubble radius. The 

symbol ψ represents the computed values, which is unique, where 𝜓s denotes the mean value 

measured in the numerical experiment.  

The initial phase of this study involved deriving key parameters such as the bubble's 

radius, perimeter, and area from a representative experiment showcasing a range of bubble 

sizes. For this purpose, we chose a specific frame from the liquid argon experimental data, 

collected through HSV at a resolution of 12.6 𝜇/px during saturated pool boiling experiments. 

These experiments were conducted under conditions of 1 bar pressure, a heat flux of 120 
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kW/m2, and a wall superheat of 9.5 K. The images were processed to differentiate between the 

liquid background and the bubbles (0 representing the liquid and 1 for the bubbles) using U-

Net CNN models. The processed, or segmented, image is illustrated in Figure 5.32. Following 

segmentation, we computed and then plotted the bubbles area, perimeter, and radius 

distributions. The radius is calculated as the radius of the circle with the same area. This 

calculated radius values are then used to define the radii range in conducting the error analysis 

(developing the error surface plots). These were reported through both logarithmic and linear 

representations to offer a comprehensive view.  

The histogram plotting the perimeter on a linear scale reveals a higher probability 

density for smaller perimeters, with a notable decrease for larger sizes. This pattern suggests 

a predominance of smaller bubbles, alongside a swift decrease in larger bubble occurrences. 

In contrast, when displayed on a logarithmic scale, the tail of the distribution is elongated, 

unveiling the existence of larger perimeters that seem less significant on the linear scale. This 

logarithmic representation facilitates a clearer view of the distribution's shape. However, it 

still highlights a skew towards smaller perimeters over a wide range. 

Similarly, for bubble areas, the linear scale histogram shows a pronounced density for 

smaller areas, diminishing as the area increases. The logarithmic scale once again brings to 

light the larger areas, indicating that, despite the dominance of smaller bubbles, larger bubbles 

are also notably present. This distribution pattern on both scales suggests a general trend of 

bubbles occupying smaller areas, with a gradual decrease in frequency as the area increases. 

Regarding the radius, the linear scale histogram illustrates a distribution that leans 

towards lower radii, confirming that smaller bubbles are more frequently observed. The 

decreasing probability density for larger radii points to a scarcity of large bubbles. However, 

the logarithmic scale portrays a more evenly spread distribution across various bubble sizes, 

hinting at a diverse array of bubble dynamics. This diversity could reflect different phenomena 

affecting bubble formation and stability, like coalescence or fragmentation. The observed 

prevalence of smaller bubbles might be attributed to high nucleation rates or the splitting of 

larger bubbles, while the occasional larger bubbles could result from processes like 

coalescence or slower growth dynamics. 
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Figure 5.32 Probability and Count Distributions of the Perimeter, Area, and Radius 

Distributions of a Segmented Experimental Data (Liquid argon @ 1 bar, 120 kW/m2, 9.5 K) 
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Following the determination of bubble parameters from the experimental data, we 

conducted a discretization error analysis. This analysis was based on a domain of 0.001m (L) 

with varying grid cell sizes (N) from 5-50 microns and bubble radii (R) from 0-200 microns. 

This radii range selected aligns with the observation in Figure 5.32 where a higher bubble 

count and probability density is observed in this range. In the simulation, we randomly placed 

a bubble within the domain L and computed the discretized area and perimeter values for each 

N and R pairing.  

 Figure 5.33 illustrates the convergence behavior of the simulation through the PRE of 

both the perimeter and area as a function of iteration count. The convergence test is conducted 

at four different iteration milestones: 5,000 (5K), 10,000 (10K), 15,000 (15K), and 20,000 

(20K) iterations. 

Observing the plots, we notice that the perimeter PRE (in black) and area PRE (in red) exhibit 

distinct patterns as iterations progress: 

1. 5K Iterations: The perimeter PRE fluctuates within a tight range, suggesting relative 

stability. In contrast, the area PRE displays more significant fluctuations. This disparity 

implies that while the estimation of the perimeter has reached a quasi-stable state by 

5,000 iterations, the area calculation is subject to higher variability at this stage. 

2. 10K Iterations: With doubled iteration count, both the perimeter and area PREs 

demonstrate reduced fluctuations. This reduction in variability is indicative of 

increasing stability in the simulation's numerical solution as it converges towards the 

true values. 

3. 15K Iterations: As iterations increase further, the fluctuations in both perimeter and 

area PRE continue to decrease. The convergence appears to be improving, as evidenced 

by the tighter oscillation amplitude, especially for the area PRE, which is now closer 

to zero percent error. 

4. 20K Iterations: At the final milestone, the simulation shows further stabilization with 

even smaller oscillations in PRE for both the perimeter and area. The area PRE, in 

particular, seems to have reached a level of minimal variability, oscillating very close 

to zero, indicating strong convergence. 
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Overall, the results suggest that as the number of iterations increases, the simulation becomes 

more stable, evidenced by the decreasing amplitude of the PRE for both the perimeter and 

area. This trend is consistent with the expected behavior of a converging numerical solution, 

where increased iterations generally lead to reduced errors as the solution approaches the 

theoretical model. It's noteworthy that the perimeter converges more rapidly than the area, 

which could be attributed to the inherent differences in sensitivity to discretization between 

linear (perimeter) and areal measurements. Therefore, 20 K iterations are selected for the 

simulation resulting in a total run time of 987.74 seconds (16.46 minutes).  

 

 
Figure 5.33 Convergence Test Results 

The visual investigation of the three-dimensional effects of the bubble radii and the 

grid cell size on the ME and PRE for the perimeter and area measurements are reported under 

dilation conditions of the bubble’s boundary. Thereafter, the effects of dilation and erosion on 
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the uncertainty estimation are quantified. This analysis provides information on the effects of 

the bubble radii and the grid cell size on the error metrics. 

Figure 5.34 depicts the mean error and percentage error plots for bubble perimeter and 

area as functions of bubble radius and grid cell size. The plots reveal key trends in 

measurement accuracy, which are indicative of the challenges associated with digital image 

analysis, particularly in the context of bubble characterization. In the ME plot for the 

perimeter, we observe a distinctive valley-shaped trend. The error is distributed symmetrically 

around a central point, with negative errors (overestimation of perimeter) at lower grid cell 

sizes transitioning to positive errors (underestimation of perimeter) at larger grid cell sizes. 

Interestingly, the error magnitude increases with both decreasing and increasing bubble radius, 

suggesting an optimal range of bubble sizes for which the perimeter estimation is most 

accurate. This behavior can be attributed to the digital discretization of the bubble edges: finer 

grids resolve the edge more accurately, leading to smaller errors, whereas coarser grids tend 

to either omit boundary pixels or include additional pixels, resulting in under- or 

overestimation. 

 Furthermore, the ME plot for the area shows a complex landscape. The errors vary 

drastically with grid cell size and bubble radius, indicating non-linear and non-monotonic 

relationships. The transition from negative to positive error may be more abrupt for area 

measurements compared to perimeter measurements due to the squared nature of area 

calculation, which amplifies the effect of each miscounted pixel.  

The magnitude of errors for the area is notably lower than for the perimeter, which is 

evident from the different scales of the ME used in the plots. This discrepancy could arise 

because the perimeter is more sensitive to grid resolution given that it is a linear measure 

directly affected by the grid boundary, whereas area is a bulk measure and may be less affected 

by the periphery pixels. Both plots exhibit a decrease in error magnitude as the bubble radius 

increases, up to a certain point, beyond which the error begins to increase again. This trend 

suggests that there is an intermediate bubble size where the measurement method achieves 

optimal accuracy. For very small or very large bubbles, the ME increases, highlighting the 

limitations of the grid-based measurement approach for objects that are much smaller or larger 

than the grid resolution. 
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Furthermore, the PRE plots for the perimeter and area which provide insightful 

observations into the fidelity of discretized measurements against theoretical expectations as 

a function of bubble radius and grid cell size. In the PRE plot for the perimeter, the plot reveals 

a divergence of errors: negative PRE values at smaller bubble radii transitioning to positive 

PRE values at larger radii. Given the definition of the PRE, negative values indicate an 

overestimation of the perimeter, while positive values indicate underestimation. The negative 

PRE for finer grid sizes suggests that the discretization process is adding excess perimeter 

length for smaller bubbles, possibly due to the inclusion of diagonal pixels that are not part of 

the actual perimeter. As the grid becomes coarser, the perimeter is underestimated, likely 

because the increased cell size fails to capture the curvature of the bubbles, leading to a 

simplified, stepped approximation of the boundary. 

For larger bubbles, the positive PRE values across grid cell sizes could be attributed to 

the increasing influence of curvature. A larger bubble has a perimeter that is less affected by 

the inclusion of individual diagonal pixels, and the curvature is underestimated by the stair-

stepping effect 1, resulting in a shorter perimeter measurement than the actual smooth curve. 

The transition from overestimation to underestimation with increasing bubble size suggests a 

non-linear relationship between the measurement error and the object’s size relative to the 

pixel resolution. 

The PRE plot for the area shows a different trend. The errors are generally smaller in 

magnitude, which is expected since area measurements are less sensitive to the pixelation 

effect along the object’s boundary compared to perimeter measurements. Negative PRE values 

across most of the plot indicate a consistent overestimation of the area for all grid sizes and 

bubble radii, except for a few instances where it dips into positive values at larger bubble radii 

and coarser grid sizes. This might occur because of the area calculation being more resilient 

to the loss of edge pixels, with overestimation prevailing due to the inclusion of partial pixels.  

 
1 When a curved edge, such as the perimeter of a bubble, is mapped onto a grid with a resolution that is too low 
to capture the curve smoothly, the result is a jagged or stepped boundary that resembles a staircase, hence the 
term "stair-stepping". This effect leads to inaccuracies in the measurement of the perimeter because the 
pixelated boundary can either extend beyond the true boundary (overestimation) or fall short of it 
(underestimation), depending on the grid cell size relative to the curvature of the object. 
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Furthermore, the area plot does not exhibit the same clear transition from negative to 

positive PRE with increasing bubble size as seen in the perimeter plot. This could imply that 

the method of area calculation is less affected by the grid size relative to the bubble size, 

maintaining a consistent pattern of overestimation. However, the slight increase in positive 

PRE at larger bubble sizes and coarser grids might suggest a threshold where the pixelation 

effect becomes significant enough to lead to underestimation of the area. 

 

 
Figure 5.34 Mean Error and Percentage Relative Error of Perimeter and Area Variations with 

Bubble Radius and Grid cell size  

After obtaining the error metrics, the final step is to apply these results to quantify the 

uncertainties in the experimental HSV data. From the experimental data in Figure 5.32, the 

calculated dry area fraction and contact line density are 0.48283 and 0.005363 1/µm Using 
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the resolution size of 12.6 µm obtained from the experiment, we read off the corresponding 

errors (PRE and ME) in the contact line density (from the perimeter) and dry area fraction 

(from the area) measurements at the corresponding bubble radii values from Error! Reference 

source not found. and Figure 5.34, respectively. The bubble radii values used to read off these 

errors are obtained from the experimental data and are sorted in terms of their occurring 

frequency. This is done so that the most frequent bubbles exert more impact on the uncertainty 

quantification. The summary of the results obtained is presented in the uncertainty table 

illustrated in Table 5.6. Thereafter, the weighted average formula expressed in Eq. (5.3) is 

used to quantify the uncertainty.  

𝑊 = ∑ (O'∙V')
*
'+,
∑ (V')*
'+,

         (5.3) 

where 𝑣! is a value from the set (in this case, PRE or ME for contact line density or dry 

area fraction in Table 5.6), 𝑤! is the weight corresponding to 𝑣! (in this case, the frequency of 

the radius bin), 𝑘 is the total number of values. 

Table 5.6 Uncertainty Table 

S/N Frequency Area PRE (%) Area ME 

× 𝟏𝟎)𝟏𝟐 

Perimeter 

PRE (%) 

Perimeter ME 

× 𝟏𝟎)𝟓 

1 184 -0.5 -1.6 -16.3 -1.0 

2 110 0.2 5.6 -1.6 -0.3 

3 59 0.03 2.4 2.8 0.9 

4 31 0.01 1.8 4.8 2.2 

5 11 -0.01 -2.2 5.9 3.5 

6 7 0.003 1.6 7.1 6.1 

7 3 0.003 1.6 8.0 6.1 

8 2 0.006 8.1 8.0 10.1 

 

Therefore, the weighted average values for the PRE and ME for both the area and the 

perimeter, weighted by frequency, are calculated under erosion and dilation conditions. In the 

erosion condition, the bubble’s boundary is eroded by 1 pixel on all sides. Figure 5.35 
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pictorially explains the difference between erosion and dilation on the bubble’s boundary. The 

uncertainty results are presented in Table 5.7. 

 
Figure 5.35 Difference Between Erosion and Dilation 

 

Table 5.7 Effects of Dilation on the Uncertainty Quantification 
 

Case 

Type 

Weighted Avg 

PRE Area (%) 

Weighted Avg 

PRE Perimeter 

(%) 

Weighted Avg 

ME Area (µm²) 

Weighted Avg ME 

Perimeter (µm) 

Erosion -0.4 13.8 -1.2e-12 1.2e-4 

Dilation -0.4 6.6 -1.2e-12 7.1e-5 

 

The comparative analysis of uncertainties under erosion and dilation conditions, as 

presented in Table 5.2, provides valuable insights into the differential effects of these two 

techniques on uncertainty quantification in dry area and contact line measurements. The results 

indicate that while the weighted average PRE in area remains constant between erosion and 

dilation, there is a noticeable reduction in the PRE for perimeter and ME for perimeter when 

Original and Eroded Bubble

Black dashed: Original, Red: Eroded

Original and Dilated Bubble

Black dashed: Original, Green: Dilated

Domain Size: 0.001 m
Grid Resolution: 150 µm
Bubble Radius: 75 µm
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dilation is applied instead of erosion. A possible explanation for these observations is that 

dilation tends to smooth out the object boundaries, thus reducing edge features that can lead 

to perimeter overestimation in erosion. This smoothing effect helps in maintaining a closer 

representation of the original boundary, which is crucial for accurate perimeter estimation. The 

reduced PRE perimeter in dilation suggests a more accurate capture of boundary lines without 

the loss of critical boundary details that often occurs in erosion due to pixel removal. 

Subsequently, the same analysis have been extended to other use cases encompassing 

fluids and operating conditions for liquid nitrogen, argon, FC-72 and high pressure water and 

the results of this analysis are summarized in Table 5.8. 

 

Table 5.8 Uncertainty Quantification for Each Fluid 

Fluid Weighted Avg 

PRE Area (%) 

Weighted Avg 

PRE Perimeter 

(%) 

Weighted Avg 

ME Area (µm²) 

Weighted Avg ME 

Perimeter (µm) 

FC72 -0.05 -6.8 -5.7e-13 2.5e-06 

LAr -0.05 -6.5 -4.8e-13 1.2e-06 

LN2 -0.06 -8.4 -3.2e-13 -2.4e-06 

Water -0.03 -1.0 -1.1e-12 1.9e-05 

 

Table 5.8 presents the uncertainty quantification for various fluids (FC72, LAr, LN2, 

and Water) in terms of weighted average values for PRE (Percentage Relative Error) area 

percentage, perimeter percentage, area in μm², and perimeter in μm. For the PRE area 

percentage, the values range from -0.03% for Water to -0.06% for LN2. These negative values 

indicate that the measured areas are slightly smaller than the true values. The PRE perimeter 

percentage shows a larger range, from -1% for Water to -8.4% for LN2, suggesting that the 

perimeter measurements have higher uncertainty compared to the area measurements. The 

weighted average ME (Mean Error) for area in μm² ranges from -1.1e-12 for Water to -5.7e-

13 for FC72. These values represent the absolute errors in the area measurements and are 

relatively small, indicating that the area measurements are precise. Similarly, the weighted 

average ME for perimeter in μm ranges from 1.9e-05 for Water to -2.4e-06 for LN2, showing 
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that the absolute errors in perimeter measurements are also small. It is further observed that 

the PRE perimeter percentage values are significantly larger than the PRE area percentage 

values for all fluids. This suggests that the perimeter measurements have higher relative 

uncertainty compared to the area measurements. This could be because perimeter 

measurements are more sensitive to the resolution and accuracy of the measurement technique. 

When comparing the uncertainties across different fluids, LN2 appears to have the 

highest PRE perimeter percentage at -8.4%, while Water has the lowest at -1 %. This indicates 

that the perimeter measurements for LN2 have the highest relative uncertainty among the 

fluids studied. The PRE area percentage values are more consistent across the fluids, with LN2 

having the highest uncertainty at -0.06% and Water having the lowest at -0.03%. 

These uncertainties in fluid property measurements can have implications for the 

accuracy of heat flux reconstruction methods that rely on these properties. The propagation of 

these uncertainties through the heat flux calculation process should be carefully evaluated to 

understand their impact on the results. Additionally, the relative importance of these 

uncertainties can be related to sources of uncertainty, such as those arising from the 

segmentation process. It is noticed that the pixelization errors are comparable to the 

segmentation errors. For instance, for FC-72, the mean segmentation error is about 6.5% which 

approximately agrees with the 6.8% from the pixelization uncertainty quantification. These 

can be identified as the most critical factors affecting the overall accuracy of the heat flux 

reconstruction. 
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Chapter 6 

Conclusions 

In this thesis, we have successfully developed and applied a robust methodology for 

segmenting and analyzing high-speed video (HSV) data of boiling phenomena using U-Net 

Convolutional Neural Networks (CNNs). Under different experimental conditions, the 

proposed approach has been validated across various fluids, including liquid nitrogen, argon, 

FC-72, and high-pressure water. 

The comparative analysis of the U-Net CNN segmentation and adaptive thresholding 

techniques has demonstrated the superior performance of the U-Net model in accurately 

identifying and delineating bubbles, particularly in challenging scenarios involving smaller 

bubbles and complex bubble topologies. The U-Net model has shown consistently high 

accuracy, precision, and recall across different fluids and heat flux conditions. 

Furthermore, we have conducted a comprehensive uncertainty quantification analysis 

to assess the impact of discretization errors arising from the pixelation of bubbles on the 

calculated boiling metrics, such as contact line density and dry area fraction. The weighted 

average PREs and MEs for these metrics have been determined under both erosion and dilation 

conditions, providing valuable insights into the robustness and reliability of the measurements. 

The uncertainty analysis has revealed that the contact line density measurements 

exhibit higher relative uncertainty compared to the dry area fraction measurements across all 

fluids studied. Additionally, the comparative analysis of uncertainties under erosion and 

dilation conditions has highlighted the potential benefits of using dilation techniques to reduce 

perimeter overestimation and maintain accurate boundary representation. 

Overall, the proposed U-Net CNN-based segmentation approach, coupled with the 

comprehensive uncertainty quantification analysis, provides a powerful tool for the accurate 

and reliable characterization of boiling phenomena from HSV data. This methodology can 



 96 

significantly contribute to the advancement of boiling heat transfer research and the 

development of improved heat transfer models and correlations. 

Recommendations for Future Work: 

1. Address the limitations of CNNs in generalizing to other HSV data: The current study 

has highlighted the need for creating specialized U-Net models for different fluids and 

operating conditions due to the limited generalizability of the trained models. To 

overcome this limitation and enable autonomous experimentation, future research 

should focus on developing more sophisticated image segmentation models, such as 

foundation models, that are less sensitive to domain shifts. These models should be 

capable of adapting to new HSV datasets with minimal fine-tuning, thus reducing the 

need for specialized models for each fluid and operating condition. 

2. Investigate advanced uncertainty quantification techniques: While the current study 

has focused on the impact of discretization errors, it has only addressed isolated 

bubbles scenarios. Future work could explore more advanced uncertainty 

quantification techniques, such as Monte Carlo simulations or Bayesian inference, to 

provide a more comprehensive assessment of the uncertainties associated with the 

boiling metrics and their propagation through the heat flux reconstruction process. 

3. Develop real-time segmentation and analysis: To enable the real-time monitoring and 

control of boiling processes, it would be beneficial to develop efficient algorithms for 

real-time segmentation and analysis of HSV data using the trained image segmentation 

models. This could involve optimizing the model architecture, implementing parallel 

processing techniques, and integrating the segmentation pipeline with data acquisition 

systems. 

4. Investigate the impact of uncertainties on heat flux reconstruction: Future studies could 

focus on evaluating the propagation of uncertainties in fluid property measurements 

through the heat flux reconstruction process. This would provide valuable insights into 

the sensitivity of heat flux calculations to various sources of uncertainty and help 

identify the most critical factors affecting the overall accuracy of the reconstruction. 

5. Extend the methodology to other multiphase flow phenomena: The proposed image 

segmentation approach could be adapted and applied to other multiphase flow 
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phenomena, such as droplet formation, spray characterization, or bubble dynamics in 

microchannels. This would broaden the applicability of the methodology and 

contribute to the advancement of multiphase flow research in various fields. 

By addressing these recommendations, future research can build upon the findings of 

this thesis and further enhance the understanding, characterization, and modeling of boiling 

phenomena using advanced image segmentation and uncertainty quantification techniques. 

The development of more generalizable and robust image segmentation models, such as 

foundation models, will be crucial in enabling autonomous experimentation and reducing the 

need for specialized models for each fluid and operating condition. 

 

Code Availability 

The codes used in this thesis as well as tutorials are available at this repository link:  

https://github.com/chikap421/cvboil 
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