
TEXterity: Tactile Extrinsic deXterity

by

Sangwoon Kim

B.S. Mechanical and Aerospace Engineering, Seoul National University, 2018
M.S. Mechanical Engineering, MIT, 2020

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Sangwoon Kim. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Sangwoon Kim
Department of Mechanical Engineering
May xx, 2024

Certified by: Alberto Rodriguez
Visiting Scientist, Thesis Supervisor

Accepted by: Nicolas Hadjiconstantinou
Professor of Mechanical Engineering
Graduate Officer, Department of Mechanical Engineering

https://creativecommons.org/licenses/by-nc-nd/4.0/


2



TEXterity: Tactile Extrinsic deXterity
by

Sangwoon Kim

Submitted to the Department of Mechanical Engineering
on May xx, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING

ABSTRACT

This thesis introduces the concept of TEXterity (Tactile Extrinsic deX terity) to address
challenges in robotic manipulation. Focusing on tactile sensing, TEXterity aims to enhance
dexterity by enabling robots to perceive and act upon extrinsic contact between the grasped
object and the environment.

Identifying interpretability, observability, and uncertainty as key challenges in tactile
sensing, this thesis sets out to answer four pivotal questions:

• Is tactile sensing actually useful? : Chapter 2 explores the practical utility of tactile
sensing through an examination of its application in a peg-in-hole insertion task. It
demonstrates the advantages of tactile sensing over conventional force-torque sensing.

• How can we exploit tactile sensing efficiently? : Chapter 3 proposes an efficient ap-
proach to exploit tactile sensing by introducing extrinsic contact as an interpretable
representation. This method offers scalability and effectiveness in utilizing tactile data.

• How can we reason about extrinsic contact with tactile sensing? : Chapter 4 develops a
novel method for simultaneous estimation and control of extrinsic contact states, ad-
dressing uncertainties introduced by physical interactions. It enables robots to reason
effectively about extrinsic contact using tactile sensing in a controlled manner.

• How can we achieve extrinsic dexterity with tactile sensing? : Chapter 5 extends the
simultaneous estimation and control method to achieve extrinsic dexterity, showcasing
precise in-hand sliding regrasps facilitated by pushing the object against the external
environment.

The conclusion summarizes the key findings, emphasizing the significance of tactile sens-
ing and TEXterity in addressing challenges and advancing robotic manipulation. Strategies
to tackle major challenges are outlined, focusing on interpretability, observability, and un-
certainty.

In essence, this thesis lays the groundwork for unlocking the potential of tactile sensing in
robotic manipulation, offering insights, solutions, and avenues for future research to propel
the field toward achieving TEXterity and further toward human-level dexterity.

Please see real-world demonstration videos at this url.

Thesis supervisor: Alberto Rodriguez
Title: Visiting Scientist
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Chapter 1

Introduction

1.1 Motivation:

What is TEXterity and Why We Need It?

With only several years since the monumental milestone of AlphaGo [1] in the history of

artificial intelligence (AI), AI has rapidly progressed, manifesting breakthroughs that extend

beyond virtual realms to impact the physical world. For example, legged robots trained

primarily in simulation can ascend a real mountain [2] and perform parkour [3], and AI-

driven pilots outperform human champions in drone racing [4]. These examples exemplify

the tangible strides made in the field of autonomy and robotics. That said, within the broader

scope of robotics, the domain of robotic manipulation appears to lag behind compared to

advancements in locomotion and perception, particularly in tasks that require reasoning and

controlling physical contact interactions.

Until very recently, mainstream research in robotic manipulation focused on pick-and-

place types of tasks, which require a relatively less meticulous understanding of physical

contact interactions. For example, the recent emergence of large language model (LLM) or

large multimodal model (LMM)-based methods in robotic manipulation has shown promise

in achieving unprecedented levels of generalization [5]–[7]. However, these methods still have

17



inherent limitations in performing more intricate physical interactions – such as screwing a

bolt, spreading jam on bread, or peeling potatoes – since their models primarily rely only

on vision and language information, lacking information on embodied physical interactions

like force-torque sensing or tactile sensing.

Addressing the challenges of robotic manipulation to go beyond the pick-and-place tasks

necessitates a deeper understanding and integration of physical contact interactions. Several

approaches have been pursued, such as modeling complex physical interactions in simulation

and training robot behavior within the simulated environment [8], [9]. Another approach

involves employing model-based optimization for motion planning [10]. Recently gaining

attention is the approach of teaching robots behaviors through human demonstrations [11]–

[13]. While these approaches show promise, they have yet to achieve human-level dexterity.

This thesis contends that, regardless of the chosen approach, a fundamental requirement

for advancements in robotic manipulation is a comprehensive understanding and strategic

utilization of physical contact interactions. The need to bridge the gap between current

capabilities and the complexity of real-world physical interaction is evident. The central

question emerges: How can we empower robots to better sense, understand, and act upon

physical contact?

To make robots embrace physical contact interaction, we focus on tactile sensing. Humans

rely on tactile feedback in daily activities like playing guitar, writing with a pencil, and

lighting a match, just to name a few. This highlights the importance of imparting this

ability to leverage tactile sensing to robots for human-level dexterity. In this thesis, we

assert that embracing physical contact involves not only sensing but also comprehending and

acting in response to tactile stimuli. In this context, we introduce the concept of TEXterity,

denoting Tactile Extrinsic deX terity, as a novel direction to propel advancements in robotic

manipulation.

When manipulating an object with fingers, contact interaction can be primarily classified

into two categories, as depicted in Figure 1.1. First, there is intrinsic contact between the

18



Figure 1.1: Intrinsic and Extrinsic Contact

finger and the grasped object. There is also extrinsic contact between the grasped object

and an extrinsic environment. While it is integral in many object manipulation tasks to

understand and control the extrinsic contact interaction, it is challenging since extrinsic

contacts cannot be directly sensed. Instead, it has to be indirectly inferred through the chain

of contacts that connects the finger to the object and to the extrinsic environment. TEXterity

aims to harness tactile sensing to interact with the extrinsic environment through extrinsic

contact, subsequently leveraging this interaction to enhance dexterous manipulation.

1.2 Challenges

Being a relatively new sensing modality compared to vision or other various encoders, there

are major challenges to be solved in order to fully leverage tactile sensing and further achieve

TEXterity:

• Interpretability : Unlike other conventional sensing modalities, there is no unified

protocol for interpreting tactile sensing. There are many different form factors, and

even within the similar form factor, there is no standard practice on how to efficiently
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process and utilize tactile information. For example, vision-based tactile sensors like

GelSight [14], observe deformation on its finger as a high-resolution image. However,

it remains unclear how to efficiently interpret and leverage this high-dimensional in-

formation as input to the robots.

• Observability : Tactile sensors provide local information on where they are touching,

but not elsewhere. This poses challenges in reasoning the state of the system globally.

Specifically, this makes it challenging to reason about the contact interaction occurring

at the location where the finger is not directly touching, i.e., extrinsic contact.

• Uncertainty : Tactile sensing is inherently linked with physical contact, exerting a

tangible impact on the system and introducing added uncertainty. When a tactile sen-

sor makes contact with an object, it not only provides information about the system

but also, concurrently, influences the system due to the physical interaction with the

finger, introducing a unique challenge of uncertainty. This inherent challenge sets tac-

tile sensing apart from vision sensing using an external camera, which merely observes

the system without exerting any physical influence. The effective resolution of this

augmented uncertainty becomes pivotal for ensuring the reliable utilization of tactile

feedback.

1.3 Contributions

This thesis compiles previous publications1 aimed at addressing challenges in tactile sensing

and achieving TEXterity. We tackle these challenges by exploring consecutive questions:

• Is tactile sensing actually useful? (Chapter 2 [18])

• How can we exploit tactile sensing more efficiently? (Chapter 3 [15])
1The author of this thesis is listed as the first or co-first author in [15]–[17], and as a co-author in [18]
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• How can we reason about extrinsic contact interaction with tactile sensing? (Chapter

4 [16])

• How can we achieve extrinsic dexterity with tactile sensing (Chapter 5 [17])

In Chapter 2 [18], we justify our use of tactile sensing over other sensing modalities like

force-torque (F/T) sensing by investigating its utility. We train an end-to-end reinforcement

learning (RL) policy for a peg-in-hole insertion task, where the robot takes input as raw

tactile sensing and outputs a motion to correct the misalignment between the peg and

the hole. Our results demonstrate that the policy trained with tactile sensing outperforms

the one trained with F/T sensing. Additionally, we provide a detailed discussion on the

advantages of using tactile sensing.

While we show in Chapter 2 [18] that tactile sensing is useful, we discover that the train-

ing process is tedious, requiring 8 hours of real robot experiments, hindering the scalability

of the approach. In essence, the end-to-end approach utilizing tactile sensing proves inef-

ficient for scalability. Therefore, in Chapter 3 [15], we delve into a more efficient strategy

for leveraging tactile sensing. Adopting interpretable abstractions, such as extrinsic contact

location, as an intermediate representation, allows us to train the peg-in-hole insertion pol-

icy without any real experiments and still outperform the end-to-end approach. In other

words, our exploration highlights that extrinsic contact sensing provides an efficient means

of representing contact interaction, paving the way for a more efficient, interpretable, and

scalable method for utilizing tactile sensing.

However, the preliminary extrinsic contact sensing introduced in Chapter 3 [15] lacks

generalizability across various contact configurations. Thus, in Chapter 4 [16], we devise a

method to comprehend the extrinsic contact state across diverse configurations. A critical

challenge in this endeavor involves addressing uncertainty introduced by physical interactions

due to contacts. While exploratory robot motion provides information to reason about

the contact state, it concurrently affects and alters the contact state, adding uncertainty;

for instance, the extrinsic contact might slip on a slippery surface during the exploratory
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gauging motion. To overcome this hurdle, we develop a method capable of simultaneously

estimating and controlling the contact state. By employing this simultaneous estimation and

control method, we achieve sub-millimeter accuracy in estimating the contact location while

effectively maintaining control over the contact state.

While Chapter 4 [16] serves as a framework for estimating and controlling the extrinsic

contact state, it lacks an understanding of the grasped object’s shape and pose. Conse-

quently, it possesses limited capability to reason about the global reconfiguration of the

object, i.e., in-hand manipulation - an essential aspect in tasks like assembly or tool use. In

Chapter 5 [17], we address this limitation by integrating the Tac2Pose [19] estimator, capable

of estimating the relative gripper/pose grasp pose for known but arbitrary objects. This in-

tegration enables the development of a method that not only estimates the object’s pose and

associated contact configurations but also simultaneously controls them. With these capa-

bilities, we successfully address the problem of precisely controlling in-hand sliding regrasps

by pushing against an external environment, achieving extrinsic dexterity.
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Chapter 2

Tactile-RL for Insertion:
Is Tactile Sensing Actually Useful?

Object insertion is a classic contact-rich manipulation task. The task remains challenging,

especially when considering general objects of unknown geometry, which significantly limits

the ability to understand the contact configuration between the object and the environment.

We study the problem of aligning the object and environment with a tactile-based feedback

insertion policy. The insertion process is modeled as an episodic policy that iterates between

insertion attempts followed by pose corrections. We explore different mechanisms to learn

such a policy based on Reinforcement Learning. The key contribution of this chapter is

to demonstrate that it is possible to learn a tactile insertion policy that generalizes across

different object geometries, and an ablation study of the key design choices for the learning

agent: 1) the type of learning scheme: supervised vs. reinforcement learning; 2) the type

of learning schedule: unguided vs. curriculum learning; 3) the type of sensing modality:

force/torque vs. tactile; and 4) the type of tactile representation: tactile RGB vs. tactile flow.

We show that the optimal configuration of the learning agent (RL + curriculum + tactile

flow) exposed to 4 training objects yields a closed-loop insertion policy that inserts 4 novel

objects with over 85.0% success rate and within 3 ∼ 4 consecutive attempts. Comparisons

between F/T and tactile sensing show that while an F/T-based policy learns more efficiently,
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Figure 2.1: Insertion task with the proposed Tactile RL policy.

a tactile-based policy provides better generalization. See supplementary video and results

at https://sites.google.com/view/tactileinsertion.

2.1 Introduction

Localizing contacts between objects and their environment is central to many contact-rich

robotic manipulation tasks [20]. Consider for example the classical tasks of inserting a peg

in a hole or packing an object in a box. A mismatch between the real and modeled object’s

shape or between the real and target object’s pose generates unexpected contacts between the

object and the hole, potentially leading to complex contact interlocking configurations [21].

The location of contacts during insertion depends on the geometrical attributes of the

object and hole. Techniques to explicitly recover the location of those contacts, usually

require knowledge of object geometries and/or are only applicable to limited types of con-

tact configurations [21]–[24]. The estimation of those contacts without knowledge of object

geometry is also possible in some cases by aggregating tactile information over time [25].

In this chapter, alternatively, we are interested in feedback-based mechanisms to in-
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teractively correct the miss-alignment between object and hole without making use of the

geometry of the shapes that generated it and without making explicit inferences of the con-

tact location. Tactile sensors co-located at the gripper fingers (see Figure 2.1) are better

positioned to capture contact events than vision sensors, which suffer from occlusions and

limited accuracy. Force/Torque (F/T) sensors can also be co-located at fingers or wrists. In

this work, we investigate the use of F/T and high-resolution tactile sensors to guide peg-in-

hole insertion policies and to generalize to different objects while accounting for variations

in contact formations, in grasps, and in environments, i.e., a general tactile insertion agent.

The key challenge to a general insertion policy is that, in the absence of geometric models,

the contact state is not fully observable from a single time instant, neither for force nor

tactile sensing. The insertion agent, then, needs to consider policies beyond greedily trying

to estimate and correct the miss-alignment between part and hole, as was shown in previous

schemes based on self-supervised learning, which showed limited generalization to objects and

contact configurations [21], [26]. In recent work [26], we demonstrated that high-resolution

tactile sensors such as GelSlim [27] allow feedback correction for novel objects. However, the

simplified insertion environment (a slot with constrain in one axis) only covers a very small

set of possible contact formations in an object insertion problem.

In this chapter, we explore the more complex and general problem of inserting multiple

objects into multiple environments with a single policy, and we ablate several important

design choices for an RL tactile-based insertion agent. In particular, we evaluate:

• Supervised vs. Reinforced We study the importance of the sequential nature of

the learning process in rewarding successful insertions, and learn an episodic RL agent

that iterates between insertion attempts and estimating alignment corrections (see

Figure 2.1). While the supervised agent suffers in the more constrained insertion envi-

ronments, the RL agent shows significantly better performance. The RL formulation,

with the ability to consider delayed rewards, opens the possibility of searching through

non-greedy policies.
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• Curriculum training. We show that modest guidance of the learned policy to pro-

gressively tackle more complex environments (wall → corner → U → hole) is effective

at increasing the data efficiency.

• Tactile representation. We show that learning an insertion agent from tactile flow

(represented with a marker array) yields much better generalization to variations in

object and grasp geometry than directly learning from raw tactile RGB images. Tactile

flow is effective at preventing overfitting to object surface texture.

Since the dynamics of insertion and the dynamics of tactile sensing are both guided

by complex and difficult-to-simulate contact mechanics, the use of real experiments and

the need for data efficiency are key drivers of this work. We also compare our tactile-RL

agent with a policy trained using F/T sensors and show that the tactile-RL agent provides

better generalization to objects of different geometry. These experiments also demonstrate

the limitations of F/T measurements that can be alleviated using tactile sensors. All the

experiments in this chapter are done in a real system, with real data, and in real-time. The

insertion RL agent is learned in 500 episodes (8 hours of robot time). For this purpose, we

developed an experimental setup (Figure 2.3) that allows running tactile-based automated

insertion experiments under controlled variations on the initial grasp on different objects,

and with an automatic resetting mechanism based on object-specific alignment features.

2.2 Related Work

Peg insertion tasks have been studied for a long time, due to their importance in manu-

facturing. Early work on peg-in-hole insertion algorithms was based on developing passive

compliance devices, [28], [29]. These devices, as well as similarly operating linear impedance

controllers, can successfully complete insertions with chamfered holes, as long as the initial

contact point is on the chamfer. Other methods use model-based approaches to directly es-

timate the pose of the peg relative to the hole with force feedback [30], [31]. However, these
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require knowledge of object models and/or are constrained to a single object type. Fur-

thermore, there is a fundamental ambiguity in the mapping from alignment errors to sensed

forces — in many contact situations, it is many-to-one, so it cannot be inverted directly [32].

An early RL approach to the actual insertion phase was proposed in [33], similarly based

on an episodic RL setting from observations of position and forces from an F/T sensor. Since

then, several RL approaches have been proposed, mainly based on sensing and acting on the

positional state and force-torques of the robotic manipulators. In [34], time-varying linear-

Gaussian controllers combined together via a guided policy search component are presented.

[35] studies the insertion of a rigid peg into a deformable hole, where the position of the hole

relative to the robot is known, possibly with minor uncertainty. This chapter combines robot-

state information and filtered force/torque readings as the input of the controller. Vision-

based RL approaches have also been studied. For example, [36] proposes using residual RL,

to correct a nominal policy produced by state-of-the-art off-policy algorithms to perform

connector insertions. Finally, we also find multi-modal sensing approaches. In [37] authors

study the importance of each modality (vision, F/T, and positional sensing) for peg insertion

tasks in simulation which then transfer the policy into the real system. The authors of [38]

proposed empirical studies on the effects of the three different modalities for insertion tasks

in a real robotic set-up using behavioral cloning.

Most RL approaches above do not use force/torque or tactile signals to extract geomet-

ric information of contacts, but rather for detecting in/out of contact. In [26] the authors

demonstrate the potential use of vision-based tactile sensors by explicitly estimating the con-

tact error with supervised learning, and driving the insertion with a proportional controller.

In this work, we directly train an RL policy to guide the insertion with tactile feedback from

2 vision-based tactile sensors in a more challenging insertion scenario with different objects

and environments.
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Figure 2.2: Tactile signals for four contact configurations. In the first 2 cases, the object
contacts an edge in the environment that is perpendicular to the plane of the sensors, and
consequently, the object rotates in the plane of the sensors. Note that the rotation directions
are opposite in cases 1 and 2. In the last 2 cases, the object contacts an edge parallel to
the plane of the sensor and consequently rotates out from the sensor plane. Note that the
relative vertical displacements in the two sensors are different for cases 3 and 4.

2.3 Methodology

In this section we introduce the method by addressing the following 4 questions: 1) Why is

tactile sensing essential for capturing contact with the environment? 2) Why is RL a good

fit for the insertion task? 3) Why is curriculum learning needed in the RL training? 4) How

do different representations of the tactile signal affect the learning agent?

2.3.1 Tactile Sensing for Contact Localization

Humans routinely do blind insertions by feeling the interaction between an object and the

environment through the grasp on the object. Contact with the environment generates small
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forces and small object displacements which are captured by force and tactile sensors in the

fingers and hands. Similarly, we use two high-resolution tactile sensors to capture the subtle

rotation signals of the object during contact in the insertion task. In [26], we have shown

that it is possible in some configurations to recover explicit external contacts from those

subtle rotation signals. These sensors capture a depth image during contact as well as the

in-plane displacement of an array of markers on the sensor surface.

Figure 2.2 illustrates the signals generated on the sensors under different contact configu-

rations. In the example, the tactile images are captured during the contact phase between a

cylindrical object and an edge in the environment, while the gripper moves down vertically.

To visualize the flow of the tactile imprint during that phase, we use yellow arrows to draw

the relative displacement of the marker field during that contact phase for Sensor1 (black)

and Sensor2 (silver).

The key observation is that some different contact locations generate different patterns of

tactile flow. In the first two configurations, the object contacts an edge that is perpendicular

to the surface of the tactile sensors. In this case, the object rotates in the plane of the sensors.

The captured patterns of rotation contain information about the external contact point.

Similarly, in the last two configurations, the object contacts an edge in the environment that

is parallel to the surface of the tactile sensors. In this case, the object rotates out from the

plane of the sensors. These capture the vertical displacements of the contacts. For simple

contact configurations as in Figure 2.2, and if the geometry of the object and environment

are known, it is not difficult to directly describe how the tactile flow should look. In general,

however, the relationship becomes more involved for complex contact formations. In any

case, the tactile image sequence during the contact period from two tactile sensors contains

key information about the location of external contacts.
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2.3.2 Deep RL Controller

In previous work, Dong and Rodriguez [26] used a supervised learning (SL) model to directly

estimate the misalignment error between object and hole from GelSlim [27] tactile feedback

in the form of image sequences. While this approach might work well in simple scenarios, due

to the partial observability, the SL model may fall apart and make the controller diverge. We

will show in Sec. 2.4 that this approach does not work well in more complex environments

such as a rectangular hole.

A more general solution is to model the insertion problem as a sequential decision problem

and use a reinforcement learning (RL) algorithm to find the optimal policy. The input to

the RL framework is the tactile image sequence during contact. The action is the robot

motion in operational space. The reward is related not only to the pose error corrected

in each step but the success or failure of the insertion. The optimal RL policy tries to

achieve the maximum reward by inserting the object inside the hole within a sequence of

actions, instead of greedily correcting the pose error in each step. In this way, the policy can

potentially perform better under some partially observable states, where it is not possible

to estimate the full pose error with the tactile signals. This is the key advantage of the RL

policy over an SL policy detailed in Section 2.4.

2.3.3 Curriculum Learning

Due to the challenges of simulating the tactile signal with accuracy during contact, we train

the insertion policy on a real robot. In order to improve the data efficiency of RL and make

the problem feasible to solve in a reasonable training time, we explore the use of curriculum

learning.

We design the learning curriculum by scaling the complexity of the insertion environ-

ment. In Figure 2.3, we introduce 4 insertion environments shown in red: line wall → corner

wall → U wall → hole. Note that each environment adds one more constraint to the pre-
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vious environment, and forces the insertion policy to learn to handle that new constraint.

Intuitively, the curriculum is asking the RL policy to incrementally learn to: 1) distinguish

the contact direction in one axis in the line wall environment; 2) reason about the contact

directions in 2 axes in the corner environment; 3) control the step size to avoid overshoot

in one axis and rotation in the U environment; and 4) control step size in both axis and

rotation in the hole environment.

In order to generalize the RL policy to different objects, we train the policy with 4 objects

with different shapes (cylinder, hexagonal cylinder, elliptical cylinder, and cuboid) shown in

Figure 2.3. We also use curriculum learning by gradually increasing the number of objects

to insert in the line environment. Generally, the cylinder, hexagonal cylinder, and elliptical

cylinder are easier to insert, since they are less sensitive to rotational error. The cuboid is

the most difficult to insert because a small misalignment in the yaw will block the insertion.

2.3.4 Tactile representation

The choice of the tactile signal representation affects the generalization of the policy to new

objects since the combination of a high-dimensional space, and a small number of training

objects can easily lead to overfitting. High-resolution tactile images encode rich information

on the contact surface. Some information content such as texture might not be relevant

to the insertion task, while some other information might be more closely related to the

location of external contacts, such as force distribution and tactile flow. Here we study the

effect of data representation of the tactile signal on the RL policy using 2 different types of

data input: 1) the raw RGB image, and 2) the marker flow image.
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Figure 2.3: Left: the experimental setup including a Mitsubishi Electric RV-4FL model robot
arm, a WSG-32 parallel-jaw gripper, 2 revised GelSlim sensors, 4 sets of insertion environ-
ments, 4 training objects (cylinder and elliptical cylinder on the left, hexagonal cylinder
on the right, cuboid held), and 4 novel everyday objects (phone charger, small bottle, big
bottle, and box). Right: The Actor Neural Network model in TD3. The CNN includes 4
convolutional layers with 5, 3, 3, 3 kernel sizes and extracts 1× 512 features. The RNN are
2 layers of LSTM with 512 memory units and output .1× 512 features. The MLP includes 2
fully connected layers with 512 and 256 hidden units. The marker flow is for visualization,
not included in the training.

2.4 Experimental Details

2.4.1 Experimental Setup

Figure 2.3 shows the experimental setup, including a 6-DoF Mitsubishi Electric RV-4FL

robot arm, a WSG-32 parallel-jaw gripper, two GelSlim sensors [27], one Mitsubishi F/T

sensor 1F-FS001-W200 (only used to train the F/T RL policy training), four training objects

and their resetting fixtures, and four environments for insertion, including line walls, corner

walls, U walls and holes. Note that the fixtures on the sides of the experimental setup are

used for automatic object pose resetting for the training objects. Note also that the clearance

of the U wall and the hole environments is 3mm, while the average width of the objects is

35mm.

32



2.4.2 Insertion Experiment

Similar to [26], we assume that during actual operation, a noisy position of the hole would

be estimated by a vision system, and the objective of the tactile-RL policy is to correct for

the remaining relative pose error. To emulate this scenario, we introduce random translation

error ranging from -6 ∼ 6 mm in the x and y axis (17% of the object’s width) and rotation

error in the yaw angle (θ) ranging from -10 ∼ 10 degrees. The resetting mechanism for

objects, allows to pick them with controlled noise, different grasping forces and different

heights. This is helpful to avoid overfitting to the height of the object or certain local tactile

image features.

Experimental process For every episode, the robot randomly chooses and grasps an

object and moves it to the top of the insertion environment with additional translational

and rotational errors. Subsequently, the robot moves down vertically to attempt an insertion,

while monitoring collisions with slip detection [39]. If the slip detector is not triggered while

moving down, that indicates a successful insertion. Otherwise, the insertion is blocked by

the environment. We capture the tactile image sequences (or the F/T data when using the

F/T policy) from the two tactile sensors during the contact and feed them to the controller.

The robot moves the object to the next position according to the output of the controller

and starts another trial until either the object has been inserted or the insertion has failed.

The robot resets the pose of the object by returning the object to its fixture after every 10

trials during the training process.

2.4.3 Deep RL Policy

We choose an off-policy RL algorithm, the Twin Delayed DDPG (TD3) [40], to train the

tactile-RL policy for better sample efficiency. The underlying RL framework is represented

by a tuple of (S,A, p, R, γ). Here we use 12 images (downsampled from 30 images within 0.5

seconds of contact to avoid the gradient vanishing problem in the RNN model, with 640×480
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pixel resolution) captured by each tactile sensor (24 in total) during the contact period as the

state st ∈ S. The terminal states are either the successful insertion state, or the state that

has an error larger than a threshold in any axis, or the state when the attempted number of

insertions is over a limit. We set the max error Emax in the x and y axis to be 12mm, and

15 in θ. The maximum number of attempts is 15. The action at ∈ A is the continuous robot

displacement in (∆x,∆y,∆θ) in the current gripper frame. The reward function R, shown in

(1), is calculated with the difference between the current contact error (et) and the previous

contact error (et−1). A constant penalty term is given for each insertion attempt (P ), and

an additional reward (Rs) is given to a successful insertion (α = 1, otherwise α = 0).

Rt = et−1 − et − P + αRs (2.1)

We use a discount factor γ = 0.99 for computing the Q function. As mentioned in

Sec. 2.3, we use curriculum learning for RL training, and we stop training when the mean of

the rewards crosses a threshold and the standard deviation is lower than a threshold in the

last 30 episodes.

Model architecture TD3 is an actor-critic method [40]. We use a CNN+RNN+MLP

model for the actor network with the 2 tactile image sequences used as input shown on

the right-hand side of Figure 2.3. Since the true state (the contact errors) of the task is

known and thanks to precise initial grasps and careful resetting mechanisms during training,

we directly use the current contact error in (x, y, θ) axis and the action at from the actor

model as the input to the critic model, instead of the tactile images. For the critic model,

we use a small MLP model to estimate the Q−function. This can potentially speed up the

convergence of the RL policy.

Training details To further accelerate training of the RL policy, we bootstrap the actor

network with a supervised learning policy trained with 300 data points collected under a
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random policy in the first environment. In the first 50 episodes of RL training, we freeze the

actor network to avoid updates by the untrained critic network. This helps to accumulate

positive examples into the replay buffer.

2.4.4 Supervised Learning Policy

To compare with previous work [26], we train a supervised learning (SL) policy with the data

(tactile image sequence) and labels (object-hole misalignment) saved during the RL policy

training as a baseline. The SL policy takes the marker flow image sequence as the input and

outputs the estimated contact error in the x, y, and θ axis. For a fair comparison, we use

the same architecture for the SL policy as the RL actor model. The SL policy is trained to

estimate the contact error with an MSE loss. During execution, we use the action which is

the opposite of the output of the SL policy to minimize the contact error iteratively. The

maximum number of attempts is also 15.

2.4.5 RL policy with F/T sensor

We train an RL policy with F/T sensing feedback as another baseline. We collect a stream

of F/T signals (32 samples for each of the 6 dimensions of F/T, downsampled from 120)

during each contact (0.5 s) as the input to the RL policy. The downsampling is used to

avoid the gradient vanishing problem for the RNN model, but still keep the original force

profile. We remove the torque about the vertical axis Tz from the input since it only changes

minimally during contact. We keep the general RL framework and only modify the neural

network architecture of the actor network to a smaller RNN + MLP model to adapt to

the data format of the F/T sensor. Since the model size is much smaller, we can train the

policy directly in the hole environment with an SL policy initial bootstrap until the policy

converges.
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Table 2.1: Performance of different policies tested with 4 training objects and 4 novel objects

Cylinder Hexagonal
cylinder

Elliptical
cylinder

Cuboid Big
bottle

Small
bottle

Phone
charger

Paper
box

RL*
Success 97.1% 97.1 % 98.0% 89.6% 80.8% 96.7% 96.8% 70.1%

Attempt 2.96 3.83 2.34 5.42 3.53 2.10 2.55 7.91

SL
Success 84.7% 70.0% 93.7% 15.2% 27.0% 76.3% 42.46% 18.3%

Attempt 3.04 3.34 2.60 3.83 4.23 2.02 5.10 3.58

RL w/o Curr
Success 99.1% 89.5% 98.0% 57.1% 30.3% 36.23% 71.2% 9.01%

Attempt 2.97 5.41 4.15 11.3 8.79 11.8 6.69 7.32

RL RGB
Success 98.8% 93.1% 99.15% 88.0% 37.8% 95.7% 74.1% 13.4%

Attempt 2.26 2.65 2.42 5.35 5.49 3.16 4.92 8.35

RL
F/T

Success 100.0% 89.3% 99.15% 61.2% 99.5% 95.2% 53.5% 54.1%

Attempt 1.82 3.26 2.52 5.35 2.48 3.82 6.53 8.35

2.5 Results

We evaluate the performance of the policies by conducting 250 insertion experiments under

different initial pose errors, with each of the 4 training objects and each of the 4 novel objects

shown in Figure 2.3. The initial pose errors are uniformly sampled in the error space, where

the errors in x and y axis range from -5mm to 5mm, and the error in θ is from −10◦ to

10◦. The performance metric includes the success rate and the average number of attempts,

which is averaged only over the successful cases.

2.5.1 RL Policy with Curriculum and Tactile Flow (RL* policy)

Convergence of the RL* policy is surprisingly fast. Due to the warm start of the actor net-

work, the policy can already insert the cylinder most of the time in the line-wall environment

at the start. Since some object-specific features (texture and shape) of individual objects

are removed in the marker flow, the policy trained with 1 object can quickly adapt to the

other three objects. Because the policy from the first environment can already perform well

in the corner-wall environment, we stop training after 25 episodes (50 data points, which

means 2 attempts for each episode). The U-shaped environment is much harder compared to

the previous 2 environments, and the policy needs around 150 episodes (500 data points) to
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adapt. The policy converges after 300 episodes (2000 data points) in the hole environment,

with the warm start from the previous environment. From our observation, the policy can

quickly learn how to insert the first three objects but spends most of the time learning how

to correct the rotation error for the cuboid object. The whole training process takes around

8 hours, with 3000 insertion attempts in total.

The performance of the RL* policy in the test experiments is illustrated in Table 2.1.

For the 4 training objects, the RL* policy achieves a 90% success rate with the cuboid and

over 97% success rate for the remaining 3 objects. The cuboid object needs around 5 ∼ 6

attempts to be inserted, whereas the other three objects only need 2 ∼ 3 attempts. This

result agrees with the respective difficulty of the tasks. As we described earlier, whereas the

policy needs to correct the rotation error of the cuboid to complete insertion, the other three

objects are not sensitive to rotational error. Misalignment in the rotation is hard to observe,

especially when accompanied by errors in the x and y axis. This is because the tactile signal

is generated by a complex combination of the object’s rotation into and rotation parallel

to the sensor surface. The policy can also generalize well to 4 novel objects. It achieves

over 96% success rate with the small bottle and the phone charger. Both of them are either

round or have round corners, which makes the insertion easier. The success rate of the big

bottle drops to 80% because the chamfer on the bottom edge changes the way the object

rotates. The box can be inserted in over 70% of the tests, which has the lowest success rate

but is also the most difficult task. Compared to the training object cuboid, the success rate

is lower but the RL* policy still achieves good performance. The novel object and training

objects require a similar number of attempts.

Most of the failure cases happen when both the translational (in x and/or y) and rota-

tional components (in θ) of the initial pose error are large. Since the rotation of the object

is too little to be captured by the tactile sensors in these cases, the RL policy can output an

action in the opposite direction, resulting in an even bigger error, until it finally diverges.
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2.5.2 Baseline Comparison

SL policy According to Table 2.1, the SL policy performs a bit worse in the first 3 training

objects, compared to the RL* policy, but can barely insert the cuboid during the test. In

the test cases with 4 novel objects, only the small bottle is inserted with over 70% success

rate, and the others have significantly lower success rate. The RL* policy is also more

efficient as to the number of attempts. We find that the cuboid objects are particularly

challenging for the SL policy, due to the fact that the tactile signals are similar in many

contact configurations, and it’s very difficult for the SL policy to make the right move. In

addition, considering the SL policy is trained with MSE loss, a safe choice for the controller

is to output 0 when the signal is not distinctive, which makes the SL policy get stuck. This

comparison demonstrates that the RL policy learns a better strategy to insert objects even

with some partially observable states.

RL policy without curriculum To evaluate the improvement of the curriculum training

on the convergence speed, we train another RL policy directly in the hole environment with

all 4 training objects. To keep it consistent with the RL* policy, we also bootstrap the

RL policy with the same SL policy and use maker flow as the input. We stop the training

when it reaches the same amount of data used for RL* policy training. The performance

of this policy is shown in the 4th row of Table 2.1. The policy achieves a similar success

rate for the first three objects but uses nearly twice the number of attempts compared to

RL*. The policy fails in almost all of the cuboid insertions with large rotational error, and

only gets a 57% success rate, using 11 attempts on an average. Based on the comparison,

we can interpret that 1) localizing the contact direction in the x and y axes is easy to learn,

2) optimizing the number of attempts, relating to precisely localizing the amplitude of the

contact error and a high-level insertion strategy to quickly gather information, is harder, 3)

estimating the rotational error is also difficult and data-intensive. This RL policy does not

generalize to the new objects well and only achieves a 30% average success rate.
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RL policy with RGB input The raw RGB tactile image contains task-relevant as well

as detailed object-specific features. It is much easier for the RL policy to use RGB images to

overfit the training objects. This hypothesis agrees well with the result shown in Table 2.1,

5th row. The performance of the policy with training objects is as good as that of the RL*

policy. However, the success rate drops dramatically in the test of novel objects, especially

with the big bottle and paper box. The policy keeps outputting the same action during

the testing of these two objects, which reveals that the policy is likely overfitted. Using a

proper tactile representation is important for generalization. Marker flow may not be the

best representation, and we leave the problem of learning a good representation for future

work.

RL policy with F/T sensing achieves almost 100% success rate with cylindrical objects

with round edges in both the training (cylinder and elliptical cylinder) and novel objects

(2 bottles), shown in Table 2.1, 6th row. In some of the objects, it uses even fewer at-

tempts compared to the RL* policy. However, its success rate drops to 89% for hexagonal

ellipse and further drops to around 55% for the three cuboid shaped objects (cuboid, phone

charger, paper box). According to our observation, the policy with the F/T sensor is good

at localizing contact errors in x and y directions but has trouble distinguishing the rotation

error. Compared to the F/T sensor, the tactile sensor observes not only the force information

but also the object motion in the contact phase, which may contain useful information to

differentiate the rotation error.

2.6 Conclusion

In this chapter, we proposed an RL insertion policy with tactile feedback from 2 GelSlim [27]

tactile sensors without prior knowledge of the object’s geometry. We show that our proposed

RL policy with designed curriculum training and tactile flow representation, provides several

advantages over other tactile-based baseline policies, including: 1) supervised learning policy,
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2) RL policy without curriculum, 3) RL policy with RGB input. Furthermore, we also showed

the advantage of using tactile over F/T sensors in terms of generalization, which are the most

widely used sensors for these kinds of applications.
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Chapter 3

Active Extrinsic Contact Sensing:
How Can We Exploit Tactile Sensing More Efficiently?

We propose a method that actively estimates contact location between a grasped rigid object

and its environment and uses this as input to a peg-in-hole insertion policy. An estimation

model and an active tactile feedback controller work collaboratively to estimate the exter-

nal contacts accurately. The controller helps the estimation model get a better estimate

by regulating a consistent contact mode. The better estimation makes it easier for the

controller to regulate the contact. We then train an object-agnostic insertion policy that

learns to use the series of contact estimates to guide the insertion of an unseen peg into

a hole. In contrast with previous works that learn a policy directly from tactile signals,

since this policy is in contact configuration space, it can be learned directly in simulation.

Lastly, we demonstrate and evaluate the active extrinsic contact line estimation and the

trained insertion policy together in a real experiment. We show that the proposed method

inserts various-shaped test objects with higher success rates and fewer insertion attempts

than previous work with end-to-end approaches. See supplementary video and results at

https://sites.google.com/view/active-extrinsic-contact.
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3.1 Introduction

Sensing and utilizing tactile feedback between fingers and grasped objects is key to dexterous

manipulation skills [41]. Tactile sensing can be used as a feedback signal to regulate desired

contact configurations [42]. One major problem in tactile feedback control is localizing

and controlling an external contact between the grasped object and its environment. For

example, consider pivoting an unknown object resting on a surface while avoiding slipping

at the contact between the object and the surface. It requires an ability to regulate the

external contact using indirect observations, possibly through tactile sensing.

In the peg-in-hole insertion task, the external contact matters. During the insertion

attempt, a misalignment between the peg and the hole leads to unintended contact. The

contact triggers a tactile signal, which can be used to localize the contact or plan the next

insertion attempt. Key challenges in this task are as follows:

• The tactile signal is a partial observation of the contact state; many different contact

configurations can cause the same tactile signal [32].

• The frictional contact mechanics that govern the alignment and insertion dynamics are

sensitive to switching contact modes.

This work tackles both the extrinsic contact localization problem and the peg-in-hole

insertion task in a combined framework. For the extrinsic contact localization, we use a factor

graph solved with incremental smoothing and mapping (iSAM) [43] to fuse the information

of robot proprioception and tactile measurements. The factor graph works collaboratively

with an active tactile feedback controller that attempts to pivot the object about a regulated

external contact to generate sufficient observations to estimate the contact line between an

unknown object and an unknown environment. The contact line estimation is then used as

an input to the insertion policy, as opposed to the end-to-end approach where the policy

takes directly as input the raw tactile feedback. Since the input to the policy is a low
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Gripper and GelSlim
Wall
Edge

Figure 3.1: Experimental setup: Gripper with GelSlim [27], different objects (blue), and
different environments (red)

dimensional representation (a contact line), the policy training can be done in a simple 2D

geometric simulation, so there is no need to collect training data in a real experiment. Lastly,

we demonstrate and evaluate the extrinsic contact line estimation and the trained insertion

policy in a set of real experiments.

3.2 Related Work

3.2.1 Tactile Sensing and Feedback

Prior work showed that tactile measurements could be used for state estimation. Bicchi, et

al. [22] used force measurements to estimate a contact location when the force is exerted on

the robot with known geometry. Yu and Rodriguez [44] combined force and visual sensing

to estimate the pose of a known planar object in planar manipulation. They also used a
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similar framework to estimate the SE(3) pose of a known object in touch with an external

environment [21].

Vision-based tactile sensors like GelSight [14] and GelSlim [27], [45] enabled accurate

estimation of contact states. These sensors capture the physical interaction between the

robot fingers and the grasped object as high-resolution images. Bauza, et al. [46], [47] used

tactile images to map and localize the relative pose of a known grasped object. Ma, et

al. [48] conducted inverse finite element method (iFEM) on tactile images to reconstruct

a dense tactile force distribution. Sodhi, et al. [49] developed a factor graph model that

finds a maximum a posteriori (MAP) estimate of an end-effector and an object pose in

planar manipulation with a vision-based tactile sensor [50]. While the work above focused

on estimating the states of an object or an interface in direct touch with a tactile sensor,

Ma, et al. [25] focused on localizing extrinsic contacts. They accumulated a sequence of

tactile images and used least-squares fitting [51] to estimate the location of the extrinsic

contact. However, all these estimation methods are passive, so they are limited to using the

information they are presented with.

The tactile sensing can be used as a feedback signal to regulate the desired contact

configuration. Dong, et al. [52] introduced a module that monitors incipient slip on the

tactile sensor and uses it to maintain a stable grasp. Hogan, et al. [53] developed a closed-

loop tactile controller for dexterous manipulation primitives. She, et al. [54] showed tactile

sensing for manipulating a cable. They learned a linear model for the cable sliding dynamics

and implemented a linear quadratic regulator (LQR) to keep the cable near the sensor center

while sliding through the cable.

3.2.2 Peg-in-Hole Insertion

Early studies on peg-in-hole insertion relied on passive compliance of the gripper [28]. Other

works assume a known object-hole model [30], [31]. These methods are object-specific and

difficult to apply to unknown objects. More recently, model-free, end-to-end, learning-based
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Tactile
Module

Controller

iSAM

Robot
Proprioception
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SE(3)
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Contact LineRobot Command RL

Policy

(a) robot and tactile sensors (b) gripper-object relative SE(3)

(c) extrinsic contact line estimation

(d) actor output

Misalignment Correction

(e) previous actions

Figure 3.2: Approach Overview. Estimation module (red) and active tactile feedback con-
troller (blue) run collaboratively to estimate extrinsic contact line. RL policy (green) takes
the estimated extrinsic contact line as input and computes the next action. (a) Insertion
attempt and tactile images captured by GelSlim fingers. (b) Gripper-Object relative dis-
placement computed by a learned tactile module. (c) 3D and top view of the extrinsic
contact line estimation. The bold red line is the current estimate. (d) RL Actor output.
The blue rectangle is the current pose and the green rectangles are the candidate poses for
the next insertion attempt. (e) History of previous attempts that feed into the recurrent RL
architecture.

approaches have been proposed [18], [26], [55], [56]. [55] used deep reinforcement learning

(RL) for a high precision peg-in-hole task. They used a force/torque (F/T) sensor measure-

ment and a robot position as input to a discrete action policy. [56] fused force and vision to

address the peg-in-hole insertion task. [26] used supervised learning to map a tactile image

sequence to a misalignment between peg and hole. However, since the tactile image does not

fully observe the state, their approach showed sub-optimal performance. The same group

of researchers used end-to-end RL to overcome this limitation and showed a performance

improvement [18]. Simulating raw images is difficult in these end-to-end approaches, so the

training data was collected in real experiments.
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3.3 Methodology

The task we solve is a typical peg-in-hole problem. We make several assumptions to imple-

ment our framework:

• Object bottom surfaces and hole top surfaces are flat.

• The misalignment between object and hole is an SE(2) displacement in the plane of

contact.

• Objects and holes are un-chamfered.

The approach comprises two parts: the active extrinsic contact sensing and the insertion

policy. In the active extrinsic contact sensing, a factor graph estimator works collaboratively

with an active tactile feedback controller to estimate the extrinsic contact line. The controller

helps the factor graph improve the estimation by regulating a consistent extrinsic contact

mode. The improved estimation from the factor graph helps the controller better regulate

the extrinsic contact. Then, the insertion policy learned in simulation with reinforcement

learning (RL) takes the estimated contact line as input and computes the next action for

the insertion.

3.3.1 Tactile Module and Factor Graph

We use GelSlim 3.0 [27], a vision-based tactile sensor, to capture the deformation image on

the robot finger during the insertion (Figure 3.2a). The image is passed to a convolutional

neural network (CNN) architecture, the tactile module, trained with supervised learning

to estimate the relative SE(3) displacement between the gripper and the object due to the

compliance of the finger (Figure 3.2b). The gripper-object relative displacement and the

robot proprioception data are then used in the factor graph to infer the extrinsic contact

line (Figure 3.2c).
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Figure 3.3: Estimation factor graph

Figure 3.3 shows the factor graph. Each color of small circles represents different types

of factors. gi, oi, and ci are the SE(3) gripper pose, object pose, and contact line as shown

in Figure 3.4 ; xy surface of oi represents the bottom surface of the object and x-axis of ci

represents the estimated contact line. iSAM solver computes a maximum a posteriori (MAP)

estimate for trajectories of the gripper pose G, the object pose O, and the contact line C,

given the gripper pose measurements based on robot proprioception R, the gripper-object

relative displacement D, and the initial object pose prior bo:

G∗, O∗, C∗ = argmax
G,O,C

P (G,O,C,R,D, bo) (3.1)

Assuming Gaussian noise, solving for the MAP estimate becomes a nonlinear least-squares
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Figure 3.4: Left: An object in contact with an edge. Right: Gripper (green) and object
(blue) trajectories and an estimated contact line (red).

problem:

G∗,O∗, C∗ = argmin
G,O,C

{
T∑
t=1

{||Fgp(gt, rt)||2∑
gp

+ ||Fdef (gt−1, gt, ot−1, ot, dt)||2∑
def

+ ||Fct(ot, ct)||2∑
ct

+ ||Ftic(ot−1, ot, ct−1, ct)||2∑
tic

+ ||Fstat(ct−1, ct)||2∑
stat

}

+ ||Fop(o1, bo)||2∑
op
}, (3.2)

where F (·) are cost functions for each factor. || · ||∑ is the Mahalanobis distance with covari-

ance
∑

. iSAM enables to add new measurements incrementally and update the estimation

in real-time rather than solving it from scratch at every step.

Gripper prior (Fgp) and Object prior (Fop): We use unary factors to model the

uncertainty of the gripper pose and initial object pose:

||Fgp(gt, rt)||2∑
gp

:=||g−1
t rt||2∑

gp
(3.3)

||Fop(o1, bo)||2∑
op
:=||o−1

1 bo||2∑
op
, (3.4)
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Figure 3.5: An object in touch with an environment. The sticking factor enables the factor
graph to distinguish red from green points.

where rt is the measured gripper pose based on robot proprioception and bo is the prior

knowledge about the initial object pose.

GelSlim deformation factor (Fdef): Relative SE(3) displacement between gripper and

object computed by the tactile module is incorporated as the GelSlim deformation factor:

||Fdef (gt−1,gt, ot−1, ot, dt)||2∑
def

:= ||((g−1
t−1ot−1)

−1(g−1
t ot))

−1dt||2∑
def

, (3.5)

where dt is the change in the relative displacement from t− 1 to t.

Contact factor (Fct): To constrain the estimated contact line to lie on the object

bottom surface, we use a binary factor:

||Fct(ot, ct)||2∑
ct
:= ||(o−1

t ct)zc,Rxc ,Ryc
||2∑

ct
, (3.6)

where the subscript zc, Rxc , Ryc indicates that we only constrain the components that move

out of the object’s bottom surface.

Sticking factor (Ftic): Figure 3.5 shows an example of an object touching an environ-

ment and tilting at a small angle. In such a case, it is difficult to infer the actual contact point
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with only geometric constraints. All the green points in the figure will seem to satisfy the

geometric constraints for a certain object height. Therefore, while we can get a reasonable

estimate in the horizontal direction, the estimated height of the contact will be uncertain.

However, if we use a controller to regulate the external contact to be sticking, only the red

dot in Figure 3.5 is now compatible with the constraints. We incorporate it in the factor

graph and get a better estimate in the vertical direction. We use a binary factor to impose

the sticking constraint:

||Ftic(ot−1, ot, ct−1, ct)||2∑
tic

:= ||((o−1
t−1ct−1)

−1(o−1
t ct))yc ||2∑

tic
, (3.7)

where the subscript yc is the direction on the object’s bottom surface perpendicular to the

contact line.

Stationary factor (Fstat): We assume contact configuration does not change during

the motion and the contact line is stationary. This is incorporated by using a binary factor

between consecutive timesteps:

||Fstat(ct−1, ct)||2∑
stat

:= ||(c−1
t−1ct)yc,zc,Ryc ,Rzc

||2∑
stat

(3.8)

3.3.2 Active tactile feedback Controller

Figure 3.6 shows the flowchart of the active tactile feedback controller. It comprises a push-

down phase where the robot moves down until detecting contact, and an active exploration

phase where the robot tries to rock and pivot the object about the external contact without

sliding. During the push-down phase, it executes a proportional control on the gripper-object

relative pose estimated by the tactile module:
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Figure 3.6: Active tactile feedback controller

vgz = −Kp,z(∆zgd −∆zg) (vertical) (3.9)

ωg
x = −Kp,ϕ(∆ϕg

d −∆ϕg) (roll) (3.10)

ωg
y = −Kp,θ(∆θgd −∆θg) (pitch), (3.11)

where [ωg
x, ω

g
y , ω

g
z , v

g
x, v

g
y , v

g
z ]

T = [ωg,vg]T is the body twist of the gripper frame and the ∆’s

are the relative displacement from when the object was not in contact with the environment.

The subscript d is for the desired relative displacement. ∆zgd is set to a non-zero value to

ensure the object contacts the environment with sufficient normal force. ∆ϕg
d and ∆θgd are

set to zero.

If the object does not tilt enough so the factor graph fails to estimate a contact line with

enough confidence, it enters the rocking phase. In the rocking phase, the robot follows a

cone-like trajectory by setting the desired relative displacement as below:

(∆ϕg
d,∆θgd)(t) = ∆ϕg

0(cosωt, sinωt)

If the factor graph fails to find a contact line even after the rocking, the controller stops and

the estimator returns a failure signal.

If the factor graph succeeds in estimating an extrinsic contact line either in push-down

or rocking, the controller enters the pivoting phase to help the factor graph to get more
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accurate estimate. The controller tries to pivot the object around the extrinsic contact line

while avoiding slipping and maintaining a constant tactile deformation. It is assumed that

the tactile deformation will remain constant during the pivoting if the object pivots without

slipping and maintains a constant contact force. Proportional control is used to maintain

the deformation as constant as possible:

ωg = ±ω0x̂
gc −Kp,β(∆βg

d −∆βg)ŷgc, (3.12)

vg = pgc × ωg −Kp,α(∆αg
d −∆αg)ŷgc

−Kp,z(∆zgd −∆zg)ẑg, (3.13)

where x̂gc and ŷgc are the x̂c and x̂c in the gripper coordinate. ∆αg and ∆βg are the

components of the relative rotation change in the x̂c and ŷc direction. ω0 is the rotational

speed of the pivoting. pgc is the origin of the contact line from the gripper coordinate. The

desired relative displacement (∆d) is updated to a current relative displacement whenever

the pivoting direction changes. The first terms of Eq.3.12 and Eq.3.13 rotate the gripper

around the current contact line estimate and alter direction (+ω0 and −ω0) as it pivots the

object back and forth. The second term of Eq.3.12 and the third term of Eq.3.13 ensure the

object is being pushed down while maintaining the same line contact. The second term of

Eq.3.13 translates the gripper to the direction it reduces slipping.

A key idea in the above method is the synergistic interaction between the controller and

the estimator. A better contact line estimation helps the controller pivot the object with less

slipping. On the other hand, better pivoting around a consistent axis allows the estimator

to get a more accurate contact line estimate.
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3.3.3 RL Policy

The RL policy takes the estimated extrinsic contact line from the estimation graph as the

input and computes the SE(2) pose correction for the next insertion attempt (Figure 3.2d).

Since the input to the policy is a low dimensional representation (a single contact line), it

is computationally trivial to simulate the policy; given two random shape polygons, each

representing the object and the hole, and an SE(2) misalignment between the two, it is easy

to find a contact line that the object can pivot around as can be seen in Figure 3.2c(right).

Further details are discussed in Section 3.4.

3.4 Experimental Details

3.4.1 Experimental Setup

Figure 3.1 shows the experimental setup. We use a 6-DoF ABB 120 robot arm and a WSG-

50 parallel jaw gripper. GelSlim 3.0 [27] sensors are mounted on each side of the jaw gripper.

Four types of 3-D printed testing objects are used on seven types of holes and one single

wall environment. The average width of the objects is 35mm and the clearance between the

objects and the holes is 2.25mm. The top view of each object-hole pair is shown in Table 3.2.

We use Pytorch [57] for training the tactile module and the RL policy, and iSAM2 solver

[58] implemented in the GTSAM library [59] for the factor graph optimization.

3.4.2 Tactile Module Training

The tactile module is trained with supervised learning to estimate the gripper-object relative

displacement. It takes a pair of reference tactile images from each side of the sensors at

one time and a pair of query tactile images at another time then computes the relative

displacement change between the two times. We fix the four objects then grasp them with

random pose and force. Then we randomly wiggle the gripper with Ornstein-Uhlenbeck

53



process [60] to collect a training sequence of tactile images. The wiggling motion is clipped

with a max limit of (0.25mm, 0.5mm, 0.5mm, 1.2◦, 0.6◦ 0.2◦) in the (x, y, z, roll, pitch, yaw)

direction. We regrasp the object after every 10 seconds. 100 sequences for each object are

collected and combined in one large training set. The trained module estimates the relative

displacement in the (y, z, roll, pitch, yaw) direction with reasonable accuracy: RMSE of

(0.07mm, 0.06mm, 0.2◦, 0.1◦, 0.05◦). However, it showed less accuracy in the x direction,

the direction perpendicular to the sensor surface: RMSE of 0.12mm. This is expected since

it is the direction where the finger gel skin affords less deformation.

3.4.3 Active Extrinsic Contact Sensing Experiment

Before testing the entire framework in the insertion task, we decouple only the active ex-

trinsic contact sensing part and test the estimation accuracy on the single wall environment.

For every grasp, we randomize the grasping height and force. We also vary the horizontal

translation and horizontal rotation misalignment between the object and the wall. We say

the misalignment is zero when the wall’s edge and the object’s x-axis match when seen from

the top view. Translational error is uniformly sampled from −12 ∼ 12 mm and rotational

error is sampled from −90◦ ∼ 90◦.

We compare the performance with some ablation models as seen in Table 3.1. Note that

‘w/o Deformation Factor’ means that we do not incorporate deformation information into

the factor graph but we still use it as the feedback signal. ‘w/o Control’ means that there is

no feedback so the gripper pushes down with no tilting and the contact line estimation will

only rely on the passive compliance of the GelSlim, as in the case of the earlier work that

studied extrinsic contact sensing [25].

3.4.4 RL Policy Training

RL Policy Training is done in simulation. In every episode, to make the policy generalizable

to various shapes, we randomize the object polygon by randomly scattering points and
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Figure 3.7: Random polygonal object-holes

drawing their convex hull (blue polygon in Figure 3.7). An offset polygon with 2.25mm

clearance is used as the hole polygon (black polygon in Figure 3.7). The initial misalignment

is sampled from ±(12mm, 12mm, 15◦). The simulator takes the object-hole polygon and the

misalignment as input. Small Gaussian noise (0.2mm, 0.4◦) is added to the misalignment to

make the policy more robust. The simulator then computes a valid contact line by connecting

intersecting points, if one exists, then a Gaussian noise (4mm, 4◦) is added to it and returned

as an output. If the object polygon intersects with the hole polygon but there is no valid

contact line, the simulator returns no line. Lastly, if the object polygon lies inside the hole

polygon without intersecting, the simulator returns an insertion success signal.

As a training algorithm, we use twin delayed deep deterministic policy gradient (TD3

[40]) with a recurrent actor. We formulate the task as a partially observed Markov decision

process (POMDP). The observation is the estimated contact line and on which side the

object tilts around the contact line. The action is the SE(2) robot displacement from the

initial pose. We use the same reward function as in [18]:

Rt = et−1 − et − P + χRs, (3.14)

where (et−1− et) is a decrease in misalignment from the previous step, P is a small constant

penalty term, Rs is a success reward, and χ is the success signal (1 if inserted, 0 otherwise).

The maximum sequence length for each episode is set to 15. We train the policy for 15,000

episodes, which takes approximately 15 minutes on GeForce RTX 2080, while it is equivalent
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to about 1,000 hours of uninterrupted robot experiments.

We use 3 layers of long short-term memory (LSTM, [61]) with 64 nodes for the actor

network to deal with partial observability. The LSTM alleviates the partial observability by

considering the observations and actions of the current and previous steps when computing

the following action. We use a multi-layer perceptron (MLP) with 64, 64, and 32 nodes in

each layer for the critic. The critic takes the ground truth misalignment and the subsequent

action as input and outputs the Q value estimate.

3.4.5 Insertion Experiment

We test the entire framework (Contact Sensing + RL Insertion) with the real test objects

and holes. For every episode, we vary grasping height and force. Initial misalignment is

sampled from ±(12mm, 12mm, 15◦). We evaluate the success rate and the average attempt

number. The performance is compared with the same ablation models as in Section 3.4.3.

3.5 Results

3.5.1 Active Extrinsic Contact Sensing Experiment

Table 3.1 shows the performance of the contact sensing experiment on the wall environment

in 100 trials per object. Accuracy is the rate at which the method estimates the contact line

with horizontal translation error less than 7mm and rotational error less than 25◦. We show

accuracy separately for easy cases and difficult cases. The easy cases are when the gripper

center seen from the top view lies on the same side of the tilting side and the horizontal

distance between the gripper center and the contact line is larger than 5mm.

Our method showed an accuracy of 95% for easy cases and 76% for difficult cases. As ex-

plained in Section 3.3.1, a model without the sticking factor showed reasonable performance

in the horizontal direction but the vertical error was about 3.4 times larger than the original
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Table 3.1: Accuracy and average error of the active extrinsic contact sensing

Accuracy (%) Average Error

Easy Difficult
Horizontal
Translation

(mm)

Horizontal
Rotation

(deg)

Vertical
Translation

(mm)

Active iSAM 95 76 1.80 5.40 3.31

w/o Sticking Factor 91 79 2.13 5.00 11.2

w/o Deformation Factor 92 74 1.74 5.81 3.08
w/o Deformation Factor
and w/o Pivoting Motion 79 55 2.58 6.96 5.50

w/o Pivoting Motion 90 75 2.97 6.57 6.50
w/o Active Motion

(rocking & pivoting) 88 34 2.37 6.89 5.36

w/o Control
(straight push-down) 28 14 3.70 13.1 5.73

version.

‘w/o Deformation Factor’ shows similar performance as the original. This is because

the deformation is kept almost constant during the pivoting motion so the deformation

factor becomes less important. However, ‘w/o Deformation Factor and w/o Pivoting Motion’

showed poorer performance than ‘w/o Pivoting Motion’ because the deformation fluctuates

significantly during the push-down and the rocking motion.

For ‘w/o Active Motion’, the accuracy drops, especially for the difficult cases. In difficult

cases, the gripper center seen from the top view lies on the wall so it is difficult to tilt with

only the push-down motion. In such a case, the active rocking motion is necessary to get a

significant tilting angle and estimate a contact line. ‘w/o Control’ shows the poorest perfor-

mance meaning that the GelSlim compliance solely does not provide sufficient information

to estimate a contact line.
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Table 3.2: Success Rate and average number of insertion attempts (in parentheses) for various
object-hole pairs.

Object (blue) &
Hole (black) Shape

Active
iSAM-RL

100%
(1.94)

97%
(1.98)

99%
(2.40)

100%
(2.94)

95%
(2.61)

95%
(3.04)

97%
(4.13)

w/o Sticking
Factor

100%
(1.92)

100%
(2.02)

100%
(2.82)

100%
(2.70)

96%
(3.15)

94%
(2.47)

94%
(3.64)

w/o Deformation
Factor

100%
(2.50)

94%
(2.32)

98%
(2.75)

96%
(3.25)

92%
(2.83)

96%
(2.77)

90%
(4.76)

w/o Active
Motion

96%
(2.15)

94%
(2.00)

94%
(2.70)

94%
(3.51)

90%
(3.02)

90%
(2.73)

86%
(4.77)

w/o Control
(straight push-down)

46%
(4.17)

46%
(5.87)

54%
(5.52)

34%
(4.82)

58%
(4.62)

54%
(4.19)

30%
(5.60)

RL-end2end
(Dong [18])

97%
(2.96) - 97%

(3.83) - 98%
(2.34) - 90%

(5.42)

SL-end2end
(Dong [26])

85%
(3.04) - 70%

(3.34) - 94%
(2.60) - 15%

(3.83)

3.5.2 Insertion Experiments

Table 3.2 shows the insertion performance of the proposed method, ablation models, and

previous work [18], [26], in 100 episodes per case. The performance is evaluated in success

rate and the average number of attempts until the insertion succeeds. Note that [18], [26]

used the shown cases as training cases, while ours used them as testing cases. Also, they

used smaller misalignment (6mm, 6mm, 10◦) than ours (12mm, 12mm, 15◦).

Our method showed a higher than 95% success rate in all the test cases. Especially for

the rectangle object-hole, where it requires an accurate rotation error correction, the success

rate was 7% higher, and the attempt number was 24% lower than the previous work. This is

because the proposed method takes informative measurement through the controlled motion

and efficiently represents it as the explicit contact line estimates. It also has a recurrent

structure, which is influenced by estimates of previous steps.
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‘w/o Sticking Factor’ shows similar performance as the original since it has a similar

contact line estimation performance in the horizontal direction as seen in Section 3.5.1. The

performance decreases slightly for ‘w/o Deformation Factor’. ‘w/o Active Motion’ shows

poorer performance, especially for the rectangle object-hole case.

3.6 Conclusion and Future Work

We propose a framework for active extrinsic contact sensing and apply it to an insertion

policy by using the estimated contact line as an input to an insertion policy trained in

simulation with RL. The factor graph-based estimation model and the active tactile feedback

controller work collaboratively to localize the contact line between a grasped object and an

environment. We then formulate the insertion task as an RL problem where the input is

the series of estimated contacts with the hole. This enables us to train the RL agent in

simulation and ease the burden of collecting training data with real experiments. In future

work, we would like to extend this framework to more general manipulation scenarios: point

contacts, non-stationary contacts, and non-flat object/environment surfaces.
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Chapter 4

Simultaneous Tactile Estimation and Control:
How Can We Reason About Extrinsic Contact Interaction

With Tactile Sensing?

We propose a method that simultaneously estimates and controls extrinsic contact with

tactile feedback. The method enables challenging manipulation tasks that require control-

ling light forces and accurate motions in contact, such as balancing an unknown object

on a thin rod standing upright. A factor graph-based framework fuses a sequence of tactile

and kinematic measurements to estimate and control the interaction between gripper-object-

environment, including the location and wrench at the extrinsic contact between the grasped

object and the environment and the grasp wrench transferred from the gripper to the ob-

ject. The same framework simultaneously plans the gripper motions that make it possible to

estimate the state while satisfying regularizing control objectives to prevent slip, such as min-

imizing the grasp wrench and minimizing frictional force at the extrinsic contact. We show re-

sults with sub-millimeter contact localization error and good slip prevention even on slippery

environments, for multiple contact formations (point, line, patch contact) and transitions be-

tween them. See supplementary video and results at https://sites.google.com/view/sim-tact.
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Figure 4.1: Simultaneous tactile estimator-controller used to stably place an unknown object
on an unsupported thin rod standing upright.

4.1 Introduction

Tactile feedback is specially useful in manipulation tasks where visual information is limited,

or tasks that involve contact with an unknown or uncertain object and environment [42].

We are specially interested in tasks where precise contact regulation is important, but at the

same time difficult to observe.

Figure 4.1 shows an illustrative–maybe extreme–example. A gripper is holding an un-

known object and is attempting to balance a corner of that object on a free-standing rod.

Forces that are transmitted directly vertically at the contact between the object and the

rod (extrinsic contact) will excite the internal forces of the grasp (intrinsic contact) and

generate informative signals for estimating the location of that contact. But forces in any

other direction are to be avoided, they will make the rod pivot and quickly tumble. When

the rod is thin, this is a very difficult–close to impossible–task for a person to control, even
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with direct line of sight, requiring both compliance and kinematic precision.

In this work we show that, by integrating tactile and kinematic measurements, and with a

simultaneous estimation and control framework, it is possible for a robot to do it blind, with

arbitrary objects, and with poor prior information of where the external contact is located.

Realizing this simultaneous estimation-control behavior with tactile feedback involves the

following challenges:

• A single snapshot from tactile sensors does not fully describe the contact configuration

or the kinematic state of the system [32]. We need to fuse measurements over time

along informative motions to estimate it with some certainty.

• The extrinsic contact between the grasped object and the environment is un-sensed,

and to reason about it we need to infer through the chain of contacts that connects the

end-effector to the object and to the environment. The tactile sensors we use allow to

directly observe the compliance between the object and the end-effector, and tracking

that compliance makes it possible to reason about the behavior of the extrinsic contact

(as in [25]).

This paper proposes a framework that uses a factor graph-based simultaneous tactile

estimator-controller framework to: 1) estimate the contact state: object’s relative displace-

ment, extrinsic contact location and formation, and the wrench exerted at the intrinsic and

extrinsic contacts; and simultaneously, 2) control the contact state to the desired configu-

ration. We especially focus on localizing the contact with active motion while maintaining

sticking contact between object and environment in multiple contact formations, importantly,

doing this while minimizing the forces exerted on the environment.
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4.2 Related Work

4.2.1 Contact State Estimation and Control

There has been prior work on contact state estimation and control using tactile sensors

[14], [27], [45], [50], [62]. One line of the work is about avoiding slipping and maintaining

sticking contact at the intrinsic contact between the sensor finger and the grasped object

[52], [63], [64]. While maintaining the sticking contact, other researchers use tactile sensing

to control the pose of the manipulated objects when executing manipulation primitives [53],

[65]. There also has been research that studies sliding dynamics at the gripper finger [54].

Lastly, researchers have used tactile sensing for planning and decision-making [18], [66].

However, most of these methods focus only on the intrinsic contact state and do not reason

carefully about the extrinsic contact state.

Doshi et al. [67] developed a contact configuration estimator and controller to manipulate

unknown objects. Their task and approach are similar to ours in that they do both estimation

and control. They used force-torque sensing instead of tactile sensing, which eased a challenge

mentioned in Sec.4.1. Kim and Rodriguez [68] used tactile sensors to localize the extrinsic

contact and solved the peg-in-hole insertion using the estimated contact location. They used

a proportional controller to maintain the constant intrinsic finger wrench in order to avoid

slippage at extrinsic contact. While both above methods estimate and control the extrinsic

contact, they do them separately in independent architectures rather than simultaneously in

an integrated architecture.

4.2.2 Factor Graph for Estimation and Control

A factor graph is a bipartite graphical model composed of variables and factors where each

factor represents a function on a subset of the variables. One application recently gaining

attention is using factor graphs for planning and control [69]. For example, one can construct
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a linear quadratic regulator (LQR) by representing the state and control input as variables

and system dynamics as factors [70]. Dong et al. [71] formulate the Gaussian Process

trajectory prior as a chain of variables and factors to do motion planning that results in a

smooth trajectory. The same researchers demonstrate simultaneous motion planning (future)

and trajectory estimation (past) in the same factor graph [72]. This is especially relevant to

our work, where our framework also tries to control (future) and estimate (past) the contact

state simultaneously.

4.3 Problem Formulation

The problem we solve is to estimate and control the contact state in multiple contact forma-

tions and to detect the transition between the different contact formations. The conditions

of the problem are:

• The object is unknown and rigid. The bottom of the object has appropriate shape to

make it possible to be placed stably (e.g., corners, edges, flat bottom).

• The environment is flat at the contact with known normal direction.

• At the first contact, the object and the environment meet at a point contact.

• We do not make use of visual feedback.

Specifically, we would like to localize and control the contact between object and environment

with minimal slip by minimizing the tangential force at extrinsic contact. To do so, we

estimate and control the contact state shown in Figure 4.1:

• gripper-object relative displacement from resting pose to equilibrium pose (tactile dis-

placement)

• location and formation of extrinsic contact
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• intrinsic wrench exerted from the gripper to object, and a resultant extrinsic contact

force

The state is composed by five quantities:

• g ∈ SE(3) - gripper pose

• o = {ro, eqo} ∈ SE(3) - object pose

• w = {Mx,My,Mz, Fx, Fy, Fz} ∈ R6 - intrinsic wrench

• c ∈ SE(3) - contact pose

• K = {κx, κy, κz, kx, ky, kz, ηx, ηy, ηz} ∈ R9 - grasp parameters

ro and eqo are the resting and equilibrium object poses. w is the wrench the gripper exerts

on the object. κ and k are the rotational and translational stiffness of the grasp due to

the elasticity of the gripper finger. η is the offset of the center of compliance from the

gripper center point. The center of compliance is the point where there is no translational

displacement when pure torque is exerted on the object, and also it is where we define the

intrinsic wrench (w). κ, k, and η are combined as K, which we call “grasp parameters". The

grasp parameters vary depending on the local geometry of the object and the grasping force.

For a point contact, we only need translational components of the contact pose, which

makes the rotation of c redundant. To handle this redundancy, we fix the rotation to be

aligned with the environment frame. Similarly, we only need one rotational dimension for line

contact since we already have that the contact line is on the environment surface. Therefore,

we constrain the z-axis of c to be perpendicular to the environment surface, while the x-axis

represents the contact line.

65



Figure 4.2: Factor graph architecture for the simultaneous tactile estimator-controller

4.4 Simultaneous Tactile Estimator-Controller

We use a factor graph to simultaneously estimate and control the contact state with tactile

feedback, shown in Figure 4.2. Each circle represents a variable, and each dot represents

a factor. Factors with the red labels take input as measurements, prior, or commands.

The left part of the architecture, from timestep 1 to t (past), is responsible for aggregating

measurements and estimating the past/current contact states. The part from timestep t+1

to t + T (future) is accountable for turning the desired rotation of the object into planned

gripper motion (blue circles) and predict the future contact states. T is the length of the

control horizon. Both parts can be solved simultaneously by minimizing the total factor

costs, which breaks down to a nonlinear least-squares problem:

x̂ = argmin
x

∑
f

||Ff (x1:t, xt+1:t+T ; z1:t, zt+1:t+T )||2∑
f

(4.1)

where x1:t and xt+1:t+T are past and future states, z1:t is input from measurements and

priors, and zt+1:t+T is input from commands. Ff represents factors in Figure 4.2.
∑

f is the

covariance of the factors’ noise model.

When the new measurement arrives, the factors at timestep t + 1 are modified, and the

new measurement is added, so the border between the estimation and control part is pushed
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one step forward. Also, one control step is added at t + T + 1, so the length of the control

horizon remains constant at T . Then, we solve this modified least-squares problem to update

the solution. We use an incremental solver [58], which allows fast computation. After each

update, the gripper motion plan is sent to the robot, and the robot follows that trajectory

until the next update. The update is asynchronous from the robot control; therefore, the

robot does not have to wait until the next update unless it reaches the end of the previous

motion plan trajectory.

4.4.1 Contact State Estimation

We describe the terms in Eq.5.4 that are responsible for contact state estimation (x̂1:t).

These terms take inputs from priors and measurements and impose costs for constraints.

Priors: Unary factors impose priors on the variables.

Fkp(K;K∗) := K −K∗ (4.2)

Fop(o1; o
∗) := o∗−1(ro1) (4.3)

K∗ and o∗ are the priors for grasp parameters and initial object pose. We obtain grasp

parameters prior by fitting it to one randomly selected grasp on the rectangular test object.

Then, the same unmodified prior is used for other grasps/objects. A weak initial object pose

prior is selected to have a bottom surface parallel to the environment because we do not

know object shape and orientation.

Gripper Pose Measurement: The gripper pose measurement from forward kinematics (g∗i )

is imposed as a unary factor:

Fgp(gi; g
∗
i ) := g∗−1

i gi (4.4)
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Tactile Displacement Measurement: To measure the displacement of the object from

resting to equilibrium pose under contact, we use GelSlim 3.0, a vision-based tactile sensor

that observes the deformation of the sensor finger due to contact as a high-resolution tactile

image. We feed the tactile image to the tactile module adopted from [68] to get the object

displacement (δi). The tactile module is a convolutional neural network that takes the

tactile image as input and outputs the tactile displacement. We use two types of factors to

impose the measurement: one for total displacement (Ftac) and the other for incremental

displacement (Ftac_inc):

Ftac(gi, oi; δi) = δ−1
i ((ro−1

i gi)
−1(eqo−1

i gi)) (4.5)

Ftac_inc(gi−1, oi−1, gi, oi; δi−1, δi)

= (δ−1
i−1δi)

−1((eqo−1
i−1gi−1)

−1(eqo−1
i gi)) (4.6)

Extrinsic Contact Geometric Constraints:

Foc(oi−1, ci−1oi, ci) = (eqo−1
i−1ci−1)

−1(eqo−1
i ci) (4.7)

Fcc(ci−1, ci) = c−1
i−1ci (4.8)

Foc: Unless there is a transition in the contact formation, the location of contact in the object

frame should remain constant. We impose it as a strong factor between adjacent timesteps.

Fcc: Since we assume a flat environment, the location of contact on the environment should

not change in the direction perpendicular to the environment surface. Also, the change in

the tangential direction should be small if the control objective of minimizing slip is met

properly. We impose this by formulating a binary factor and setting a strong cost in the

perpendicular direction and less strong in the tangential direction.
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Extrinsic Contact Torque Constraints: During point contact, there should not be torque

exerted about the contact, and during line contact, there should not be torque component

in the direction parallel to the contact line.

pFtorq(gi, wi, ci, K) = M⃗ − r⃗(gi, ci, η)× F⃗

= M⃗ − ((g−1
i ci)trn − η)× F⃗ (point contact)

lFtorq(gi, wi, ci, K) = pFtorq · a⃗x(gi, ci) (line contact) (4.9)

where (g−1
i ci)trn is the translational location of the contact with respect to the gripper, and

a⃗x(gi, ci) is the unit vector parallel to the estimated contact line.

Wrench Regression Constraints: To estimate the intrinsic wrench from the measurements,

we approximate the grasp as decoupled linear springs in each rotational and translational

direction, with an additional nonlinear term ∆:

wi = [ M⃗, F⃗ ] = [ κ, k ]⊙ (ro−1
i gi)

−1(eqo−1
i gi) + ∆ (4.10)

where ⊙ is element-wise multiplication. (ro−1
i gi)

−1(eqo−1
i gi) is the tactile displacement in

a canonical coordinate [Rx, Ry, Rz, x, y, z], which we dropped the coordinate notation for

simplicity. We regress the wrench close to the linear relation by imposing two types of

factors:

Fwr(gi, oi, wi, K) = wi − [κ,k]⊙ (ro−1
i gi)

−1(eqo−1
i gi) (4.11)

Fwr_inc(gi−1, oi−1, wi−1, gi, oi, wi, K)

= (wi − wi−1)− [ κ, k ]⊙ (eqo−1
i−1gi−1)

−1(eqo−1
i gi) (4.12)
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Fwr penalize the additional nonlinear term. Fwr_inc tries to regress the incremental change

in the intrinsic wrench to be parallel to the linear relation.

4.4.2 Contact State Control

We describe the terms in Eq.5.4 that are responsible for contact state control and prediction

(x̂t+1:t+T ). In a nutshell, the system achieves the behavior of pivoting about an unknown

contact point or line as the combination of these objectives: 1) A desired rotation of the

object; 2) Minimizing motion effort and tactile deformation; 3) Maintaining a minimum

contact with the environment.

Desired Rotation: While the factor graph computes the fine motion, we still need a input

command in which direction we want to rotate (tilt) the object:

Frot(gi−1, gi;Ri) = R−1
i (g−1

i−1gi)rot (4.13)

where Ri is the desired rotation. This factor is tuned to be weaker than other control

objectives, so the actual rotation can deviate from the desired rotation if this factor conflicts

with other control objective factors (e.g., tactile energy). For example, in Figure 4.4d, the

actual rotation (solid line) deviates from the desired rotation (dashed line).

Motion Effort: We impose a cost on the local motion at the estimated contact point:

Fmotion(gi−1, gi, ci−1) = c−1
i−1gig

−1
i−1ci−1 (4.14)

Tactile Energy: As we regress the intrinsic wrench to the decoupled linear relation, we

approximate the elastic potential energy on the sensor finger as the quadratic sum of wrench

components and impose it as a factor:
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}
(4.15)

⇒ FE(wi, K) = wi ⊘ [
√
κ,

√
k ] (4.16)

where ⊘ is element-wise division.

This factor plays two important roles. First, it enables the prediction of future tactile

displacement. This is because, given the extrinsic contact as a constraint, the intrinsic

contact will be at a stable state where it minimizes the potential energy. Also, this factor

helps to achieve control objectives while having minimal deformation on the sensor finger.

Contact Maintenance: None of the above control objective factors force the robot to push

the object against the environment. In fact, minimizing tactile energy encourages moving

away from the environment. Therefore, we impose a factor that encourages the robot to

push the object to the environment by setting the target contact an offset distance inside

the environment (ϵi). We use a hinge function that penalizes when the estimated offset

distance is less than the desired distance:

Fcm(oi, ci; ϵi) = max(0, ζi(oi, ci)− ϵi)

= max(0,−((ro−1
i c)−1(eqo−1

i c))trn,z − ϵi) (4.17)

where ζi is the estimated offset distance.

When this factor is combined with the tactile energy factor, it enables minimizing the

tangential force at the extrinsic contact. Imagine the contact state with no tangential force

at the extrinsic contact. If we move the gripper parallel to the environment surface by

applying tangential force in any direction, it will do positive work, which adds to the tactile

energy while maintaining the constant offset distance. In other words, if the offset distance
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Figure 4.3: An object making point (left) and line (right) contact with the horizontal envi-
ronment

is fixed, minimizing the tactile energy is equivalent to minimizing the tangential force.

4.4.3 Detection of Contact Formation Transition

When the contact formation transitions from one to another, the extrinsic contact torque

constraints are violated. Therefore, the transition can be detected by simply measuring

an increase in the residual in Eq.4.9. Figure 4.4e shows an example of detecting transitions

from point-to-line and line-to-patch, where the horizontal line at 0.1 is the threshold for the

detection. After the transition, we can continue to use the estimator-controller by modifying

the noise model of the factors accordingly.

4.5 Experiments and Results

Figure 4.5 shows the hardware setup for experiments. We use 6-DoF ABB’s IRB120 robot

arm and a WSG-50 gripper mounted with GelSlim 3.0 [27] on each side of the finger. ATI’s

Net Force-Torque sensor is mounted beneath the environment to collect the extrinsic contact

force. We use eight 3D printed test objects, including rectangular and hexagonal cylinders

and six others with irregular shapes (Figure 4.7), to evaluate the generalization to various

grasps and geometries. Pytorch [73] is used for the tactile module computation, and iSAM2

[58] with GTSAM library [59] is used to solve the least-squares problem incrementally.
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Figure 4.4: Time series plots for the case in Figure 4.3

4.5.1 Point Contact Formation

We test our method in a point contact formation to evaluate localization accuracy and

capability to minimize the tangential contact force and slippage. We first grasp and orient

the test objects with a random pose. Then we start a desired rotation command that draws

a small conical spiral-like trajectory with a maximum of 5 degrees angle deviation from the

initial orientation. Then we continue with a large cone-like desired rotation command with

a maximum of 15 degrees from the initial orientation. We change the environment surface

material between a higher friction paper, where we can evaluate the tangential force, and
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Figure 4.5: Experimental setup

a lower friction acrylic, where we can evaluate the slippage. The result with 20 trials per

each object is shown in Table.4.1 and Figure 4.6. We show localization error and mean/max

tangential to normal force ratio during the motion for the higher friction surface. For the

lower friction surface, we show localization error with total slipped distance from the initial

contact location. We report the result from two ablation models: the ’constant tactile’ and

the ’w/o tactile E.’ The ’constant tactile’ is the model in [68]. It uses a proportional controller

to keep the tactile displacement constant throughout the motion. In other words, it tries to

maintain a constant intrinsic wrench. The ’w/o tactile E’ is similar to our proposed method,

but we make the weight of the tactile energy factor close to zero, so it will not prioritize

minimizing the tactile energy.

On the higher friction surface, the proposed method showed approximately 25% and

40% reduction in localization error than the ’constant tactile’ and ’w/o tactile E,’ respec-
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Table 4.1: Evaluation of Simultaneous Tactile Estimator-Controller on Point Contact For-
mation

(a) Higher Friction (Paper)

Rectangle Hexagon

loc.
error
(mm)

tan./norm.
(mean)

tan./norm.
(max)

loc.
error
(mm)

tan./norm.
(mean)

tan./norm.
(max)

small
motion

large
motion

small
motion

large
motion

small
motion

large
motion

small
motion

large
motion

proposed 0.89 0.105 0.096 0.201 0.193 0.81 0.060 0.091 0.134 0.188

constant tactile 0.94 0.172 0.176 0.252 0.278 1.30 0.056 0.132 0.102 0.282

w/o tactile E 1.42 0.180 0.216 0.249 0.330 1.38 0.047 0.156 0.103 0.303

(b) Lower Friction (Acrylic)

Rectangle Hexagon

loc.
error
(mm)

slipped
distance (mm)

loc.
error
(mm)

slipped
distance (mm)

small
motion

large
motion

small
motion

large
motion

proposed 0.90 0.19 0.35 0.78 0.06 0.16

constant tactile 1.93 0.84 12.90 1.43 0.06 4.27

tively. The difference is more significant in tangential to normal force ratio that the error

bar of the proposed method does not overlap with those of ablation methods (Figure 4.6)

Hence, the proposed method is better at reducing the tangential forces required for pivoting,

and less likely to slip.

On the lower friction surface, the proposed method is compared with the ’constant

tactile’ to evaluate the slip minimization capability. The ’constant tactile’ showed small

slippage with small motion but showed about two orders of magnitude higher slippage with

large motion. This is because maintaining the constant intrinsic wrench will not be sufficient

to keep the extrinsic contact force inside the friction cone if the motion is large. As a result

of the large slip, the accuracy of localization also decreases. The ’constant tactile’ shows

about two times larger localization error than the proposed method.

Contact Force Estimation: From the estimated intrinsic wrench (w), we estimate the
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Figure 4.6: (left) Localization error, (right) maximum tangential to normal force ratio during
the point contact motion on the higher friction surface

extrinsic contact force (e.g., dashed line in Figure 4.4b) and evaluate the accuracy of the

force estimation by comparing it with the F/T sensor measurement on the environment.

However, the estimated force does not have a physical unit specified, so we only compare the

mean difference in angle between the estimated force and the sensor measurement over all

the data collected. To study the effect of incorporating the nonlinear term (∆) in Eq.4.10, we

evaluate the accuracy without adding the nonlinear term. To study the effect of estimating

the grasp parameters (K) rather than using initial prior, we use the initial prior values

instead of estimated values and also remove the nonlinear term in Eq.4.10, then evaluate

the accuracy. The result is shown in Table.4.2. The performance gets better as we use the

estimated grasp parameters instead of the initial prior values and also as the nonlinear term

is considered. This implies that considering the nonlinear term and estimating the grasp

parameters effectively improves the force estimation.

4.5.2 Multiple Contact Formations

We test the proposed method on multiple contact formations, which requires the ability

to detect the transition between different contact formations. Working in multiple contact
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Figure 4.7: CAD model of the test objects

Table 4.2: Contact Force Estimation Accuracy

Mean Misalignment (deg)

Rectangle Hexagon

proposed 6.2 5.0

w/o nonlinear term 9.3 13.0

w/o nonlinear term &
grasp parameters estimation

13.9 14.5

formations is important in many manipulation tasks. Figure 4.3 and Figure 4.4 show an

example of placing the rectangular object on a flat surface. It first makes initial point contact

with the surface, executes motion to localize the point contact, detects the transition to the

line contact, localizes the line contact, then finally detects the transition to the patch contact

before releasing the grasp.

We run a similar experiments on the lower friction surface with all eight 3D printed

objects. We focus on point and line contact because patch contact transition is trivial as it

does not require or allow any motion after the transition. We first execute the same small

desired rotation command as in Sec.4.5.1, then command the desired rotation to tilt roughly

towards the direction where the object edge is. We assume we have a weak prior knowledge

of the object edge’s direction by adding a maximum error of 20 degrees to the true direction.
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Table 4.3: Evaluation of Simultaneous Tactile Estimator-Controller on Multiple Contact
Formation

Point Contact Successful

Transition

Rate

Line Contact

loc.
err.

(mm)

slip
(mm)

loc.
err.

(deg)

slip

trans.
(mm)

rot.
(deg)

rectangle 0.80 0.77 10 / 10 0.81 1.31 1.85

hexagon 0.76 0.48 8 / 10 4.54 0.84 1.16

object 1 0.99 0.63 8 / 10 2.66 1.73 1.75

object 2 1.19 0.87 6 / 10 4.24 3.41 1.98

object 3 0.96 0.94 10 / 10 1.58 1.18 1.48

object 4 0.93 1.08 9 / 10 0.82 1.12 1.39

object 5 0.86 0.47 8 / 10 2.03 1.25 1.70

object 6 0.93 0.75 10 / 10 1.84 0.83 1.00

After detecting the point-to-line contact transition, we modify the desired command rotation

to draw a sinusoidal-like shape, where the sinusoid amplitude is perpendicular to the direction

of tilt before the transition (dashed line in Figure 4.4d). We estimate the line localization

accuracy when the amount of rotation from the pose at the transition reaches 5 degrees.

Table.4.3 shows the localization error, amount of slippage, and successful transition rate

of the point-to-line contact transition. The failed transition includes the case where the

transition is detected too early or late, so it loses the line contact, which leads to poor line

estimation accuracy or causes the least-squares solver to throw an indeterminant error. The

line contact evaluation metrics are calculated with only the successful cases.

Most test objects showed reasonably good localization errors, a small amount of slippage,

and a high successful transition rate, while hexagon and object 2 showed relatively higher

line localization errors. Object 2 also showed a lower successful transition rate and higher

slippage amount than others. One main reason the hexagonal object showed higher line

localization error is that it has a shorter edge than other objects. The hexagon edge is 17.5
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mm, which is significantly shorter than other object edges; for example, the shortest edge

of the rectangle is 35 mm. A short edge will make it harder for our method to detect the

point-to-line contact transition, and it is more likely that the object loses the line contact

with the surface during motion. Object 2’s worse performance is likely due to the different

local grasp geometry. It has a high curvature and sharp cut at the grasped part, which leads

to a smaller contact patch with the fingers. This might makes the grasp parameters (K)

deviate much from that of other objects and lead to worse performance.

4.6 Conclusion and Future Work

We demonstrate simultaneous estimation and control for contact state of unknown objects

using tactile sensing. We show that we can localize the extrinsic contact by fusing the

gripper pose and tactile measurements in a factor graph. Regressing the grasp mechanics to

a decoupled stiffness model of the grasp enables the estimation of the grasp wrench and the

contact force. Also, we impose control objectives as factors in the same graph to execute the

pivoting motion with minimal tangential force and slip. Lastly, we implement the method

on multiple contact formations and are able to successfully detect the transition between

them.

While the proposed work focuses only on minimizing the tangential forces on the envi-

ronment surface, one possible follow-up is reasoning about normal force. A trade-off is that

a larger normal force will enhance observability but possibly stress the environment and ob-

ject. Extending the proposed work to not only the sticking contact but other contact modes

is also an important direction of research. Lastly, we plan to develop an automated desired

command rotation policy instead of manually commanding it.
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Chapter 5

TEXterity - Tactile Extrinsic deXterity:
How Can We Achieve Extrinsic Dexterity With Tactile Sensing?

We introduce a novel approach that combines tactile estimation and control for in-hand

object manipulation. By integrating measurements from robot kinematics and an image-

based tactile sensor, our framework estimates and tracks object pose while simultaneously

generating motion plans to control the pose of a grasped object. This approach consists of

a discrete pose estimator that tracks the most likely sequence of object poses in a coarsely

discretized grid, and a continuous pose estimator-controller to refine the pose estimate and

accurately manipulate the pose of the grasped object. Our method is tested on diverse

objects and configurations, achieving desired manipulation objectives and outperforming

single-shot methods in estimation accuracy. The proposed approach holds potential for tasks

requiring precise manipulation and limited intrinsic in-hand dexterity under visual occlusion,

laying the foundation for closed-loop behavior in applications such as regrasping, insertion,

and tool use. Please see https://sites.google.com/view/texterity for videos of real-world

demonstrations.
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Figure 5.1: An example task that requires tactile extrinsic dexterity. A proper grasp is
essential when using an Allen key to apply sufficient torque while fastening a hex bolt.
The proposed method utilizes tactile sensing on the robot’s finger to localize and track the
grasped object’s pose and also regrasp the object in hand by pushing it against the floor -
effectively leveraging extrinsic dexterity.

5.1 Introduction

The ability to manipulate objects within the hand is a long-standing objective in robotics for

its potential to increase the workspace, speed, and capability of robotic systems. For example,

the ability to change the grasp on an object can improve grasp stability and functionality, or

prevent collisions and kinematic singularities. In-hand manipulation is challenging from the

perspectives of state estimation, planning, and control: first, once the object is enveloped by

the grasp, it becomes difficult to perceive with external vision systems; second, the hybrid

dynamics of contact-rich tasks are difficult to predict [74] and optimize over [75].

Existing work on in-hand manipulation emphasizes the problem of sequencing contact

modes, and can be broken down into two prevailing methodologies. One line of work relies

on simple object geometries and exact models of contact dynamics to plan using traditional

optimization-based approaches [75]–[79], while the other leverages model-free reinforcement

learning to learn policies directly that only consider or exploit contact modes implicitly [80]–

[85]. Much less consideration has been given to the challenge of precisely controlling such

behaviors, despite the fact that prominent tasks like connector insertion or screwing in a
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small bolt require high precision.

Tactile feedback is a promising modality to enable precise control of in-hand manipula-

tion. Image-based tactile sensing [14], [27], [50] has gained traction in recent years for its

ability to provide high-resolution information directly at the contact interface. Image-based

tactile sensors have been used for pose estimation [19], object retrieval [86], and texture

recognition [87]. They have also been used to estimate the location of contacts with the

environment [15], [25], [88], to supervise insertion [18], and to guide the manipulation of

objects like boxes [53], tools [89], cable [90], and cloth [91].

We study the problem of precisely controlling in-hand sliding regrasps by pushing against

an external surface, i.e. extrinsic dexterity [92], supervised only by robot proprioception and

tactile sensing. Our framework is compatible with arbitrary, but known, object geometries

and succeeds even when the contact parameters are known only approximately.

This work builds upon previous research efforts. First, Tac2Pose [19] estimates the

relative gripper/object pose using tactile sensing, but lacks control capabilities. Second,

Simultaneous Tactile Estimation and Control of Extrinsic Contact [16] estimates and controls

extrinsic contact states between the object and its environment, but has no understanding

of the object’s pose and therefore has limited ability to reason over global re-configuration.

Our approach combines the strengths of these two frameworks into a single system. As a

result, our method estimates the object’s pose and its associated contact configurations and

simultaneously controls them. By merging these methodologies, we aim to provide a holistic

solution for precisely controlling general planar in-hand manipulation.

This paper is an extension of our work on tactile extrinsic dexterity [17] in these ways:

• In Section 5.4.2, we evaluate our method against five ablations for four distinct types

of goal configurations. These new results illuminate key features of our approach. In

particular, we evaluate the effectiveness of leveraging prior knowledge of the external

environment to collapse ambiguity in individual tactile images. In addition, we com-

pare our results against those derived from idealized simulations and using privileged
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information, to showcase the capability of our approach in bridging the sim-to-real gap.

• In Section 5.4.3, we provide qualitative results for three household objects in realis-

tic scenarios. These results motivate the work concretely, and demonstrate that our

method generalizes to real objects, which have a variety of material, inertial, and fric-

tional properties.

• Finally, we provide a more complete review of prior work in Section 5.2, and more

thorough explanation of our method in Sections 5.3.3 and 5.3.4.

5.2 Related Work

5.2.1 Tactile Estimation and Control.

Image-based tactile sensors are particularly useful for high-accuracy pose estimation, because

they provide high-resolution information about the object geometry throughout manipula-

tion. They have been successfully used to track object drift from a known initial pose [49],

[93], build a tactile map and localize the object within it [46], [94], [95], and estimate the

pose of small parts from a single tactile image [96]. Because touch provides only local infor-

mation about the object geometry, most tactile images are inherently ambiguous [19]. Some

work has combined touch with vision [97]–[100] to resolve such ambiguity. Our approach is

most similar to a line of work that estimates distributions over possible object pose from a

single tactile image [19], [101], [102], then fuses information over streams of tactile images

using particle [101] or histogram [102] filters. [101] tackles the estimation, but not control,

problem, assuming that the object is rigidly fixed in place while a human operator slides

a tactile sensor along the object surface. Similarly, [102] also assumes the object is fixed

in place, while the robot plans and executes a series of grasp and release maneuvers to lo-

calize the object. Our work, on the other hand, tackles the more challenging problem of

estimating and controlling the pose of an object sliding within the grasp while not rigidly
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attached to a fixture. The mechanics of sliding on a deformable sensor surface are difficult

to predict, which places more stringent requirements on the quality of the observation model

and controller.

5.2.2 In-Hand Manipulation.

In-hand manipulation is most commonly achieved with dexterous hands or by leveraging

the surrounding environment (extrinsic dexterity [92]). One line of prior work formulates

the problem as an optimization over exact models of the hand/object dynamics [75]–[79],

[103], but only for simple objects and generally only in simulation [75], [76], or by relying

on accurate knowledge of physical parameters to execute plans precisely in open loop [77].

Another line of prior work focuses on modeling the mechanics of contact itself in a way that

is useful for planning and control, either analytically [104]–[106] or with neural networks

[107], [108].

Some work has avoided the challenges of modeling contact altogether, instead relying

on model-free reinforcement learning with vision to directly learn a policy for arbitrary

geometries. Some policies have been tested on simulated vision data only [80], [81], while

others operate on real images [82]–[85]. They, however, suffer from a lack of precision. As an

example, [82] reports 45% success on held out objects, and 81% success on training objects,

where success is defined as a reorientation attempt with less than 0.4 rad (22.9) of error,

underscoring the challenge of precise reorientation for arbitrary objects.

There have also been a number of works leveraging tactile sensing for in-hand manipula-

tion. [90], [91], and [65] use image-based tactile sensors to supervise sliding on cables, cloth,

and marbles, respectively. [89] detects and corrects for undesired slip during tool manipu-

lation, while [109] learns a policy that trades off between tactile exploration and execution

to succeed at insertion tasks. Some works rely on proprioception [110] or pressure sensors

[111] to coarsely reorient objects within the hand. State estimation from such sensors is

challenging and imprecise, leading to policies that accrue large errors. Another line of work
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uses tactile sensing to reorient objects within the hand continuously [112]–[116], without

considering the challenge of stopping at goal poses precisely.

We consider the complementary problem of planning and controlling over a known contact

mode (in-hand sliding by pushing the object against an external surface), where the object

geometry is arbitrary but known. We leverage a simple model of the mechanics of sliding

and supervise the behavior with high-resolution tactile sensing, in order to achieve precise in-

hand manipulation. By emphasizing the simultaneous estimation and control for a realistic

in-hand manipulation scenario, this work addresses a gap in the existing literature and paves

the way for executing precise dexterous manipulation on real systems.

5.2.3 Extrinsic Contact Estimation and Control.

Extrinsic contacts, or contacts between a grasped object and the surrounding environment,

are fundamental to a range of contact-rich tasks including insertion, tool use, and in-hand

manipulation via extrinsic dexterity. A variety of work has explored the ability to estimate

[25], [88], [117] and control [15], [16], [67], [118] such contacts using intrinsic (on the robot)

sensing.

[67] manipulates unknown objects by estimating and controlling extrinsic contacts with

force-torque feedback. [25] uses image-based tactile feedback with a small exploratory motion

to localize an extrinsic point contact that is fixed on the environment. [15], [16] estimates

and controls extrinsic contacts represented as points, lines, and patches with feedback from

image-based tactile sensors.

Another line of prior work instead represents and estimates extrinsic contacts using neural

implicit functions with tactile [88], [118] or visuo-tactile [117] sensing. Finally, [119] estimates

extrinsic contacts from a scene-level RGB-D images of the robot workspace. These methods

are complementary to our approach, which explicitly represents the extrinsic contacts using a

kinematic model, rather than using implicit neural representations of the extrinsic contacts.
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Figure 5.2: Overview of the Simultaneous Tactile Estimation and Control Framework.

Figure 5.3: Graph Architecture of the Simultaneous Tactile Estimator-Controller.

5.3 Method

5.3.1 Problem Formulation

We address the task of manipulating objects in-hand from unknown initial grasps to achieve

desired configurations by pushing against the environment. The target configurations en-

compass a range of potentially simultaneous manipulation objectives:

• Changing the grasp pose (i.e., relative rotation/translation between the gripper and

the object)

• Changing the orientation of the object in the world frame (i.e., pivoting against the

environment)
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• Changing the location of the extrinsic contact point (i.e., sliding against the environ-

ment)

A wide variety of regrasping tasks can be specified via a combination of the above objectives.

We make several assumptions to model this problem:

• Grasped objects are rigid with known 3D models.

• The part of the environment that the object interacts with is flat, with a known

orientation and height.

• Contact between the grasped objects and the environment occurs at a single point.

• Grasp reorientation is constrained to the plane of the gripper finger surface.

5.3.2 Overview

Figure 5.1 illustrates our approach through an example task: using an Allen key to apply

sufficient torque while fastening a hex bolt. Adjusting the grasp through in-hand manipula-

tion is necessary to increase the torque arm and prevent the robot from hitting its motion

limit during the screwing.

Figure 5.2 provides an overview of the framework of our approach. The system gathers

measurements from both the robot and the sensor (Figure 5.2a). Robot proprioception

provides the gripper’s pose, while the GelSlim 3.0 sensor [27] provides observation of the

contact interface between the gripper finger and the object in the form of an RGB tactile

image. The Apriltag attached to the gripper is solely employed for calibration purposes

during the quantitative evaluation in Section 5.4.2 and is not utilized as input to the system.

The framework also takes as input the desired goal configuration and estimation priors

(Figure 5.2b):

• Desired Goal Configuration: A combination of the manipulation objectives dis-

cussed in Section 5.3.1.
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Figure 5.4: Sample set of allowable transitions on Allen key. The object relative to the
gripper finger at the current timestep is shown at left. Possible transitions to new poses at
the next timestep are shown at right and center. Transitions favored by the first transition
likelihoods (neighboring poses) are shown at center, while those favored by the second tran-
sition likelihoods (same distance from the ground) are shown at right.

• Physics Parameter Priors: The friction parameters at both the intrinsic contact

(gripper/object) and the extrinsic contact (object/environment). These priors do not

need to be accurate and are manually specified based on physical intuition.

• Environment Priors: The orientation and height of the environment in the world

frame.

Utilizing these inputs, our simultaneous tactile estimator-controller (Figure 5.2c)

calculates pose estimates for the object, along with a motion plan to achieve the manipu-

lation objectives (Figure 5.2d). This updated motion plan guides the robot’s motion. The

framework comprises two main components: discrete pose estimator and continuous

pose estimator-controller, which are described in the next subsections.
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5.3.3 Discrete Pose Estimator

The discrete pose estimator computes a probability distribution within a discretized grid of

relative gripper/object poses. We first describe the process to create pose distributions from

single tactile images, and then how to filter through streams of theses distribution estimates.

The individual tactile images are processed as in Tac2Pose [19]. We first reconstruct a

binary mask over the region of contact from raw RGB tactile images using a pixel-to-pixel

convolutional neural network (CNN) model as described in [19]. Subsequently, the binary

mask is channeled into the Tac2Pose estimator [19], which generates a distribution over

possible object poses from a single contact mask.

The Tac2Pose estimator is trained per-object in simulation with rendered contact masks,

then transferred directly to the real world. The process for rendering contact masks given

an object CAD model is described in detail in [19]. We design a domain randomization

procedure tailored for tactile images to ease sim-to-real transfer. These include randomly

removing border pixels, tilting the object into and out of the plane of the sensor, randomizing

the penetration depth, and randomly removing a fraction of the bottom portion of the

sensor (to simulate finger flexing that often occurs during grasping). Once trained, Tac2Pose

estimator can run at approximately 50Hz.

We then merge the stream of tactile information with the environment prior via discrete

filtering, yielding a filtered probability distribution of the relative object pose. We imple-

ment the discrete filter with PGMax [120], running parallel belief propagation for a number

of iterations corresponding to the number of variable nodes in the discrete graph. This pro-

cedure includes (with some redundant computation) the same belief propagation steps as the

Viterbi algorithm [121], a standard algorithm for discrete filtering. Since the computation

time is driven by the number of discrete nodes, we marginalize out previous variables each

time we incorporate a new observation, maintaining a graph that contains only two nodes.

We discretize the pose space by specifying a set of grasp approach directions (normal direc-

89



tion of the grasp surface) relative to the object, then sampling grasps on the object with

5mm of translational resolution, and 10of rotational resolution. The discretized state space

consists of 5k-9k poses, depending on the object size. The inference step takes 2-6 seconds

per iteration, yielding a slow and coarse but global object pose signal.

Figure 5.3a provides insight into the architecture of the Viterbi algorithm. The variable

X ∈ SE(2) represents the relative pose between the gripper and the grasped object. At

the initial timestep, the environment prior is introduced. Given our prior knowledge of the

environment’s orientation and height, we can, for each discrete relative object pose within the

grid, ascertain which point of the object would be in closest proximity to the environment

and compute the corresponding distance. To do so, we transform the object pointcloud

(obtained by sampling the object CAD model) by each of the poses in the grid, then save

the distance of the closest point in the posed pointcloud to the ground plane in the contact

normal direction. The integration of the environment prior involves the multiplication of a

Gaussian function over these distances:

µ(X0) = PTac2Pose(X0|I0, w0)Penv(X0|g0, c∗) (5.1)

Penv(X0|g0, c∗) = N (p∗closest(X0, g0, c
∗) · n̂c∗ ; 0, σenv) (5.2)

where µ(X0) is the probability of the relative gripper/object pose X0, PTac2Pose(X0|I0, w0) is

the single-shot estimate of probability distribution given the tactile image observation I0, and

the gripper width w0. Penv(X0|g0) is the Gaussian function given the gripper pose g0 ∈ SE(2)

and the environment prior c∗ ∈ SE(2) - the x-axis of c∗ represents the environment surface.

p∗closest represents the closest point on the object’s point cloud to the environment surface,

given the relative pose X , gripper pose g0, and environment prior c∗, and n̂c∗ represents

the unit vector normal to the environment surface. σenv determines the strength of the

environment prior. In essence, the environment prior assigns higher probabilities to the
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relative poses that are predicted to be closer to the environment.

Subsequently, we incorporate the single-shot tactile pose estimation distribution at every

nth step of the continuous pose estimator-controller, where n is approximately five (see Fig-

ure 5.3a), since the discrete pose estimator runs slower than the continuous pose estimator-

controller. Instead of integrating tactile observations at a fixed frequency, we add the next

tactile observation as soon as the discrete filter is ready, once the marginalization step to

incorporate the previous tactile observation has been completed.

The transition probabilities impose constraints on tactile observations between consecu-

tive time steps in the discrete graph, including:

• Continuity : The pose can transition only to neighboring poses on the pose grid to

encourage continuity. (Figure 5.4-1)

• Persistent Contact : The height of the closest point to the environment remains con-

sistent across time steps due to the flat nature of the environment. This consistency is

enforced through the multiplication of a Gaussian function that factors in the height

difference. (Figure 5.4-2)

The first transition probability zeros out the likelihood of any transition to a non-

neighboring grid point. Because the discretization of pose space is coarse, we assume the

object cannot traverse more than one grid point in a single timestep. A set of allowable

transitions corresponding to the first transition probability is visualized in Figure 5.4-1.

The second transition probabilities can be mathematically expressed as follows:

P (Xi|Xi−1) =

N ((p∗closest(Xi, gi, c
∗)− p∗closest(Xi−1, gi−1, c

∗)) · n̂c∗ ; 0, σtrs) (5.3)

where σtrs determines the strength of this constraint. A set of transitions that are highly

likely given the second transition probabilities are visualized in Figure 5.4-2.
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Together, they encode the assumption that the object slides continuously within the

grasp. This enables the discrete pose estimator to compute and filter the distribution of

relative gripper/object poses, taking into account tactile information, robot proprioception,

and environmental priors.

5.3.4 Continuous Pose Estimator-Controller

The continuous pose estimator-controller serves a dual purpose: it takes as input the filtered

discrete probability distribution of relative gripper/object poses and outputs a continuous

pose estimate and an iteratively updated motion plan in a receding horizon fashion. The

Incremental Smoothing and Mapping (iSAM) algorithm [58], which is based on the factor

graph model [59], [122], serves as the computational backbone of our estimator-controller.

We leverage its graph-based flexible formulation to combine estimation and control objectives

as part of one single optimization problem.

The factor graph architecture of the continuous pose estimator-controller is illuminated in

Figure 5.3b. Noteworthy variables include gt, ot, and ct, each frames in SE(2), representing

the gripper pose, object pose, and contact position, respectively. The orientation of ct is

fixed and aligned with the normal direction of the environment. Additionally, V represents

the set of physics parameters:

• Translational-to-rotational friction ratio at the grasp: Fmax/Mmax, where Fmax and

Mmax are the maximum pure force and torque that it can endure before sliding.

• Friction coefficient at the extrinsic contact between the object and the environment:

µmax.

A key advantage of using the factor graph to represent the problem is that we can

fuse various sources of information by formulating each piece of information as a factor.

Subsequently, we can find the state that best explains the information by jointly minimizing

the sum of the factor potentials, i.e. energy function. In other words, priors, measurements,

92



kinematic constraints, physics models, and even control objectives can be represented as

factors. This allows us to address both estimation and control problems simultaneously by

minimizing a single energy function:

E(x) =
∑

||Fprior(xprior)||2︸ ︷︷ ︸
priors

+
∑

||Fmeas(xmeas)||2︸ ︷︷ ︸
measurements

+
∑

||Fcons(xcons)||2︸ ︷︷ ︸
constraints

+
∑

||Fmodel(xmodel)||2︸ ︷︷ ︸
models

+
∑

||Fobj(xobj)||2︸ ︷︷ ︸
control objectives

(5.4)

where Fprior, Fmeas, Fcons, Fmodel, and Fobjective are the factor potentials associated with

priors, measurements, constraints, models, and control objectives, respectively. It is also

noteworthy that each of the square terms is normalized by its corresponding noise model,

but it is omitted for brevity. The subsets of state variables related to each factor are denoted

as xprior, xmeas, xcons, xmodel, and xobj. In Figure 5.3b, each circle represents a state variable,

and each dot represents a factor. The connections between variables and factors illustrate

their relationships. Notably, factors labeled in red accept input from priors, measurements,

or objectives, while those in grey stipulate relations between associated variables without

taking any inputs.

The continuous estimator-controller comprises two main sections: the left segment, span-

ning from the initial time to the current moment t, is dedicated to the estimation of the

object’s pose. This estimation component considers priors, measurements, constraints, and

physics models to estimate a smooth trajectory for the object’s pose. The right segment,

covering the time from t to the control horizon t + T , is responsible for devising a motion

plan to control the system and achieving the manipulation objectives. The control compo-

nent takes into account constraints, physics models, and control objectives to formulate the
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motion plan.

In the following sections, we define each factor. The arguments of each factor definition

are the variables, priors, and measurements that the factor depends on. The right-hand side

specifies the quantity we are trying to optimize.

Priors First, the environment (contact) prior is established at the initial time step:

Fcp(c1; c
∗) = c∗−1c1, (5.5)

Here, c∗ ∈ SE(2) contains prior information about the environment’s orientation and height.

In essence, this factor penalizes the difference between the prior and the estimation. While we

employ the logarithm map from the SE(2) Lie Group representation to the se(2) Lie Algebra

representation to formulate the output as a three-dimensional vector, we omit the notation

for brevity. This abbreviation also applies to other factors where the SE(2) transformation

serves as the output.

Additionally, physics priors are imposed by formulating the factor that penalizes the

difference between the prior and the estimation:

Fvp(V ;V∗) = V − V∗. (5.6)

where V∗ is the prior for the physics parameters.

Measurements The gripper pose measurement from forward kinematics (g∗i ) is imposed

by formulating factor as difference between the measured and the estimated gripper pose:

Fgp(gi; g
∗
i ) := g∗−1

i gi (5.7)

94



The factor graph also takes filtered pose estimations from the discrete pose estimator:

Ftac(gi, oi;Xi,MAP) = X−1
i,MAP(g

−1
i oi), (5.8)

where Xi,MAP denotes the filtered maximum a posteriori (MAP) discrete relative pose, and

(g−1
i oi) denotes the continuous estimate of the gripper/object relative pose. Given the higher

operating speed of the continuous pose estimator-controller (0.1∼0.2 seconds per iteration)

compared to the discrete pose estimator (2∼6 seconds per iteration), the discrete pose esti-

mation factor is integrated when an update is available every few steps within the continuous

estimator-controller. This is why we see, in Figure 5.3, that this factor is not imposed at

every time step.

Kinematic Constraints Since we assume a flat environment, the location of contact on

the environment should not change in the direction perpendicular to the environment surface.

Additionally, the change in the tangential direction should be small, given our assumption

of quasistatic motion and the absence of abrupt sliding on the environmental surface. We

enforce this constraint by formulating a factor and assigning a strong noise model in the

perpendicular direction and a relatively weaker noise model in the tangential direction:

Fcc(ci−1, ci) = c−1
i−1ci (5.9)

Furthermore, we assume we have 3D shape models of the objects and a prior knowledge

of the normal direction of the environment. Therefore, as in the discrete filtering step, we can

anticipate which part of the object would be in contact with the environment — specifically,

the closest point to the environment. Consequently, we introduce a factor that incorporates

the distance between the current estimated location of the contact and the closest point of

the object to the environment:
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Foc(oi, ci) = pclosest(oi, ci) (5.10)

where pclosest(oi, ci) represents the point in the object’s point cloud that is closest to the

environment direction, expressed in the contact frame ci.

Physics Model We impose a friction model based on the limit-surface model [105], [123] as

a transition model to capture the dynamics of sliding (Ffric). This model provides a relation

between the kinetic friction wrench and the direction of sliding at the grasp. In essence,

it serves as a guide for predicting how the object will slide in response to a given gripper

motion and extrinsic contact location. The relation is formally represented as follows:

[ω, vx, vy] ∝ [
M

M2
max

,
Fx

F 2
max

,
Fy

F 2
max

]. (5.11)

Here, [ω, vx, vy] denotes the relative object twist in the gripper’s frame, i.e. sliding direction,

while [M,Fx, Fy] signifies the friction wrench at the grasp. To fully capture the friction

dynamics, additional kinematic and mechanical constraints at the extrinsic contact are also

considered. These constraints are formulated as follows:

Mẑ − l⃗gc × F⃗ = 0, (5.12)

vc,N(gi−1, oi−1, ci−1, gi, oi) = 0, (5.13)

vc,T (gi−1, oi−1, ci−1, gi, oi) = 0 (5.14)

⊥ (FT = −µmaxFN OR FT = µmaxFN), (5.15)

In these equations, l⃗gc is the vector from the gripper to the contact point, and vc,N and vc,T

represent the local velocities of the object at the point of contact in the directions that are

normal and tangential to the environment, respectively. FN and FT denote the normal and
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tangential components of the force. Eq. 5.12 specifies that no net torque should be present

at the point of extrinsic contact since we are assuming point contact. Eq. 5.13 dictates that

the normal component of the local velocity at the point of extrinsic contact must be zero as

long as contact is maintained. Eq. 5.14 and Eq. 5.15 work complementarily to stipulate that

the tangential component of the local velocity at the contact point must be zero (Eq. 5.14),

except in cases where the contact is sliding. In such instances, the contact force must lie on

the boundary of the friction cone (Eq. 5.15). By combining Eq. 5.11∼5.15, we establish a

fully determined forward model for the contact and object poses, which allows the object

pose at step i to be expressed as a function of its previous poses, the current gripper pose,

and the physics parameters:

o∗i = f(gi−1, oi−1, ci−1, gi,V) (5.16)

This relationship can thus be encapsulated as a friction factor:

Ffric(gi−1, oi−1, ci−1, gi, oi,V) = o∗−1
i oi. (5.17)

With all the previously introduced factors combined, the estimation component formu-

lates a smooth object pose trajectory that takes into account priors, tactile measurements,

robot kinematics, and physics model.

Control Objective The control segment incorporates multiple auxiliary factors to fa-

cilitate the specification of regrasping objectives. First, the desired goal configuration is

imposed at the end of the control horizon (Fgoal). This comprises three distinct sub-factors,

corresponding to the three manipulation objectives described in Section 5.3.1, which can be

turned on or off, depending on the desired configuration:

1. Fgoal,go regulates the desired gripper/object relative pose at ot+T and gt+T .

2. Fgoal,o enforces the object’s orientation within the world frame at ot+T .
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3. Fgoal,c dictates the desired contact point at ct+T , thereby facilitating controlled sliding

interactions with the environment.

These sub-factors are mathematically expressed as follows:

Fgoal,go(gt+T , ot+T ) = pg −1
o,goal(g

−1
t+Tot+T ), (5.18)

Fgoal,o(ot+T ) = o−1
goalot+T , (5.19)

Fgoal,c(ct+T ) = c−1
goalct+T . (5.20)

Here, pgo,goal signifies the target relative gripper/object pose, ogoal represents the desired

object orientation in the world frame, and cgoal is the intended contact point.

Additionally, the Fmotion factor minimizes the gripper motion across consecutive time

steps to reduce redundant motion and optimize for a smooth gripper trajectory.

Fmotion(gi−1, gi) = g−1
i−1gi (5.21)

Concurrently, a contact maintenance factor, Fcm, serves as a soft constraint to direct the

gripper’s motion in a way that prevents it from losing contact with the environment:

Fcm(gi−1,ci−1, gi; ϵi) = max(0, ζi(gi−1, ci−1, gi) + ϵi), (5.22)

where ζi represents the normal component of the virtual local displacement from step i− 1

to i at the contact point, assuming the grasp is fixed. The term ϵi is a small positive scalar,

encouraging ζi to be negative, thus fostering a motion that pushes against the environment.

Taken together, these factors cohesively formulate a motion plan from gt+1 to gt+T , which

is then communicated to the robot. The robot continues to follow the interpolated trajectory

of this motion plan until it receives the next update, akin to model predictive control.
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5.3.5 Ablation Models

We implemented five ablation models to investigate the contribution of specific components

to estimation accuracy:

• Environment priors (height/orientation)

• Multi-shot filtering (v.s. single-shot estimate)

• Continuous estimation (v.s. discrete estimate)

• Quality of contact patch reconstruction

• Accuracy of the physics prior

SS (w/o Env.): This model, equivalent to the previous Tac2Pose algorithm [19], uses a

single tactile image and the gripper width to compute the probability distribution of relative

poses between the gripper and the grasped object (’Single-shot Tactile Pose Estimate’ in

Figure 5.2).

SS (w/ Env.): In addition to the tactile image and gripper width, this model incorporates

priors on the height and orientation of the environment floor. Comparing this model with ’SS

(w/o Env.)’ provides insights into the contribution of the environment priors to estimation

accuracy. All subsequent ablation models incorporate environment priors.

Filtered (Discrete): This model utilizes the discrete filter to fuse a stream of multiple

tactile images (’Filtered Tactile Pose’ in Figure 5.2). Comparing with ’SS (w/ Env.)’ helps

assess the impact of fusing multiple tactile images on accuracy compared to using just a

single tactile image.

Discrete+Continuous (Ours): Our proposed model. The following two ablation models

leverage privileged information to evaluate potential improvements in estimation accuracy.
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Discrete+Continuous (Privileged): This model uses privileged information to synthe-

size the binary contact patch. From the Apriltag attached to the grasped object, it computes

the ground truth relative pose between the gripper and the object. Based on the relative

pose, it synthesizes the anticipated binary contact patch rather than inferring it from actual

tactile images. Since the same contact patch synthesis method was used during the training

of the Tac2Pose model, this model shows how the system would perform if the binary contact

patch reconstruction were the same as the ground truth.

Discrete+Continuous (Simulation): This model provides insights into the system’s

performance under the assumption of an exact physics prior. The methodology involves

simulating the object trajectory based on the identical gripper trajectory used in other

models. The object trajectory simulation employs a modified factor graph. By imposing only

the priors, kinematic constraints, gripper motion, and the physics model, we can find the

object trajectory that exactly aligns with the physics model. Consequently, using the same

physics parameters for this simulation factor graph as those in our prior and synthesizing

the contact patch corresponding to the simulated object trajectory allows us to evaluate how

effectively our system would perform with both the exact physics model and contact patch

reconstruction.

5.4 Experiments and Results

We conducted a series of experiments on four distinct 3D-printed objects and three household

items (illustrated in Figure 5.5) to validate the efficacy of our algorithm. The experiments

were designed to:

1. Quantitatively evaluate the algorithm’s performance across a variety of target config-

urations.

2. Qualitatively demonstrate the utility of the algorithm with household items in various
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Figure 5.5: Test objects with example tactile images and contact patch reconstruction.

scenarios.

3. Assess the algorithm’s applicability to specific real-world tasks, such as object insertion.

5.4.1 Experimental Setup

Figure 5.6 shows the hardware setup, which includes a 6-DoF ABB IRB 120 robot arm,

Weiss WSG-50 parallel gripper, and a GelSlim 3.0 sensor [27]. On the table, there is a stage

that serves as a flat environment, as well as objects and holes for the insertion experiment.

Additionally, there is an Intel RealSense camera used to track the object’s pose through

101



Figure 5.6: Hardware setup

Apriltags attached to the objects to obtain the ground truth pose. The Apriltag attached

to the gripper serves the purpose of calibration.

5.4.2 Performance Across Various Goal Configurations

We assessed our algorithm’s performance using a total of 18 diverse goal configurations. Our

framework allows for specifying goals relative to the gripper (regrasping) and relative to the

world frame (reorienting), facilitating different downstream tasks. For example, regrasping

can improve grasp stability, enable tactile exploration, and establish a grasp optimized for

both force execution and the avoidance of collisions or kinematic singularities in downstream

tasks. On the other hand, reorienting the object can enable mating with target objects in

the environment or prevent collisions with obstacles. The configurations we evaluate fall into

four distinct categories:
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Table 5.1: Median Normalized Estimation Errors

AUX
(6 traj.)

Pin
(5 traj.)

Stud
(3 traj.)

USB
(4 traj.)

Overall
(18 traj.)

SS (w/o Env.) 0.92 2.00 1.47 1.12 1.41
SS (w/ Env.) 0.21 0.12 0.30 0.25 0.20
Filtered (Discrete) 0.17 0.10 0.18 0.17 0.15
Discrete+Continuous (Ours) 0.10 0.07 0.07 0.07 0.07

Discrete+Continuous (Privileged) 0.06 0.09 0.08 0.07 0.07
Discrete+Continuous (Simulation) 0.03 0.05 0.10 0.06 0.05

• Relative Orientation + Stationary Extrinsic Contact

• Relative Orientation/Translation + Stationary Extrinsic Contact

• Relative Orientation + Global Orientation + Stationary Extrinsic Contact

• Relative Orientation + Sliding Extrinsic Contact

Examples of these four goal configuration types are illustrated in Figure 5.7, along with

corresponding plots showcasing estimation accuracy. The red silhouettes that move along

with the gripper represent the desired relative pose between the gripper and the object.

Conversely, the grey silhouettes depict object poses as measured by Apriltags, which we use

as the ground truth object pose. The red dots mark the desired extrinsic contact location.

In Figure 5.7c, the other red silhouette signifies the desired object orientation in the global

frame. The time series plots on the right column indicate the performance of the proposed

and ablation models. These results attest to the algorithm’s adeptness in attaining de-

sired goal configurations while showing better estimation performance compared to ablation

models.

A summary of each algorithm’s estimation performance is presented in Figure 5.8; the

error per-object is broken out in Table 5.1. The error values denote the normalized estimation

error, computed as follows:
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Figure 5.7: Demonstrations of four types of goal configurations: (a) Relative Orientation +
Stationary Extrinsic Contact, (b) Relative Orientation/Translation + Stationary Extrinsic
Contact, (c) Relative Orientation + Global Orientation + Stationary Extrinsic Contact, and
(d) Relative Orientation + Sliding Extrinsic Contact. The right column depicts normalized
estimation accuracy for the proposed method and ablation models.

ϵnorm = ||(ϵrot, ϵtrn/(lobj/2)||1 (5.23)

Here, || · ||1 signifies the L1-norm, ϵrot indicates rotation error in radians, ϵtrn denotes

translation error, and lobj represents the object’s length. In essence, this value signifies the

overall amount of estimation error normalized by objects’ size. This analysis reveals how

much each system component contributes to the estimation accuracy.
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Figure 5.8: Normalized Estimation Errors.

Effect of Environment Priors

Firstly, there is a substantial decrease in normalized error from 1.41 to 0.20 when transition-

ing from ’SS (w/o Env.)’ to ’SS (w/ Env.)’. Without environment priors – no information

about the height and orientation of the environment – the estimator suffers due to ambi-

guity in tactile images, as thoroughly explored in [19]. For most grasps of the objects we

experiment with, a single tactile imprint is not sufficient to uniquely localize the object. For

instance, the local shape of the pin and the stud exhibits symmetry, making it challenging to

distinguish if the object is held upside-down, resulting in a very high estimation error with

the ’SS (w/o Env.)’ model. In contrast, the ’SS (w/ Env.)’ model was able to significantly

resolve this ambiguity by incorporating information about the environment.

This suggests that knowing when object is in contact with a known environment can

be used effectively to collapse the ambiguity in a single tactile imprint. Although this

105



knowledge, on its own, is a weak signal of pose, it provides global context that, when paired

with a tactile imprint, can yield accurate pose estimation. Much prior work prefers vision as

a modality to provide global pose context; this analysis demonstrates that prior knowledge

of the object and environment (when available) can be leveraged to provide global context

instead of introducing additional sensors and algorithms.

Effect of Multi-shot Filtering

Between the ’SS (w/ Env.)’ and the ’Filtered (Discrete)’ models, the normalized error sig-

nificantly decreases from 0.20 to 0.15. This shows that fusing a stream of multiple tactile

images is effective in improving the estimation accuracy. The discrete filter is able to reduce

ambiguity by fusing information over a sequence of tactile images, obtained by traversing

the object surface and therefore exposing the estimator to a more complete view of the ob-

ject geometry. Fusing information over multiple tactile images also robustifies the estimate

against noise in the reconstruction of any individual contact mask. The difference is dis-

tinctive in the time plots of the normalized error in Figure 5.7. While the ’SS (w/ Env.)’

and the ’Filtered (Discrete)’ model have an overlapping error profile for the majority of the

time, there is a significant amount of portion where the errors of the ’SS (w/ Env.)’ model

suddenly surges. This is because the ’SS (w/ Env.)’ model only depends on a single tactile

image snapshot, and therefore does not consider the smoothness of the object pose trajectory

over time. In contrast, the error profile of the ’Filtered (Discrete)’ model is smoother since

it considers consistency in the object pose.

Effect of Continuous Estimation

The median normalized error also decreases from 0.15 of the ’Filtered (Discrete)’ model to

0.07 of the ’Discrete+Continuous (Ours)’ model. This improvement is attributed to the

continuous factor graph refining the discrete filtered estimation with more information in

both spatial and temporal resolution. While the discrete filter runs at a lower frequency, the
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continuous factor graph operates at a higher frequency. This means that it takes in gripper

pose measurements even when the discrete estimate from the tactile image is not ready.

Additionally, it considers the physics model when computing the estimate. Consequently,

the ’Discrete+Continuous (Ours)’ model results in a smoother and more physically realistic

trajectory estimate, as evident in the error time plots in Figure 5.7.

Potential Effect of Ground Truth Contact Patch Reconstruction

Figure 5.8 suggests that the difference between ’Discrete+Continuous (Ours)’ and ’Dis-

crete+Continuous (Privileged)’ is not significant. This implies that having the ground truth

contact patch reconstruction would not significantly improve the accuracy of the estimation.

It suggests that the contact patch reconstruction has sufficiently good quality, retaining sig-

nificant information compared to the ground truth contact patch. This is attributed to the

significant domain randomization incorporated into the contact patch reconstruction during

Tac2Pose model training.

When training the Tac2Pose model, the input is the binary contact patch, and the output

is the probability distribution of contact poses. The training data for the binary contact

patch are synthesized using the local 3D shape of the object model. To overcome the sim-to-

real gap in contact patch reconstruction, random errors are intentionally introduced to the

synthesized contact patch as discussed in Section 5.3.3. This result indicates that, thanks to

effective domain randomization, the model does not suffer significantly from the sim-to-real

gap in contact patch reconstruction.

Potential Effect of the Exact Physics Model

Figure 5.8 shows a significant decrease in normalized error when using the simulated physics

that exactly aligns with our physics prior. A noteworthy observation is that it does not

reduce the normalized error to zero, indicating that our estimation would still not be perfect

even with the exact physics model. This aligns with intuition, as tactile observation is a local
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Figure 5.9: Demonstrations with household items in various scenarios: (a) Adjusting the
grasp of the Allen key to exert a sufficient amount of torque when screwing a bolt, (b)
Adjusting the grasp of the screwdriver to prevent hitting the robot’s motion limit while
screwing a bolt, (c) Adjusting the grasp of the pencil to ensure the robot does not collide
with obstacles when placing the pencil in the pencil holder.

observation and cannot guarantee full observability even when we know the physics exactly.

5.4.3 Demonstration with Household Items in Various Scenarios

We additionally demonstrate our algorithm with real objects in realistic scenarios that we

would face in daily life (Figure 5.9):

• Allen Key : Adjusting the grasp of the Allen key to exert a sufficient amount of torque

when screwing a bolt.

• Screwdriver : Adjusting the grasp of the screwdriver to prevent hitting the robot’s

motion limit or singularity while screwing a bolt.
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• Pencil : Adjusting the grasp of the pencil to ensure the robot does not collide with

obstacles when placing the pencil in the pencil holder.

The left four columns of Figure 5.9 are the snapshots of the motions over time. The

rightmost column of the figure illustrates the downstream tasks after the regrasp is done.

In the figure, the red silhouettes illustrate the relative goal grasp, manually selected based

on the downstream task we want to achieve. The orange silhouettes represent the current

estimate of the object pose. The white superimposed rectangles illustrate the planned motion

trajectories of the gripper to achieve the desired configurations.

Allen Key (Figure 5.9a)

In the Allen Key example, the initial grasp is on the corner part of the object, making

it challenging to exert a sufficient amount of torque. Therefore, we adjusted the grasp

by imposing the goal grasp pose on the longer side of the Allen Key. This allows for a

longer torque arm length, ensuring the robot can exert a sufficient amount of torque. The

orientation of the goal grasp was also set to keep the robot’s motion within the feasible range

during the screwing process.

A notable observation is that the algorithm first attempts to pivot the object before

pushing it down against the floor to slide the grasp. This suggests that the algorithm

effectively considers the physics model both on the finger and the floor to plan for a reasonable

and intuitive motion. Without incorporating such a physics model, the motion could result

in counterintuitive movements, potentially causing the object to slip on the floor.

Screwdriver (Figure 5.9b)

In the Screwdriver example, the initial grasp is configured such that the screwing axis and

the robot wrist axis are not aligned. This configuration could lead to issues when attempting

to screw at a large angle, as it requires a more extensive motion of the robot arm compared

to when the screwing axis and the wrist axis are aligned. Additionally, it may cause the
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Table 5.2: Insertion Experiment Results (Success/Attempt)

Clearance AUX Pin Stud USB

1 mm 10 / 10 6 / 10 7 / 10 7 / 10
0.5 mm 9 / 10 3 / 10 5 / 10 6 / 10

robot arm to reach its motion limit. Conversely, by regrasping the screwdriver and aligning

the screwing axis with the wrist axis, the robot can easily screw the bolt with primarily wrist

axis rotation. Therefore, we set the goal grasp pose to align the screwing axis and the wrist

axis.

While the algorithm was able to get close to the goal grasp, the estimation error was

significantly larger than in the other two cases. This is because the screwdriver has less

distinctive tactile features than the other items. In Figure 5.5, we can see that the screwdriver

has an oval-shaped contact patch without straight lines or sharp corners. In contrast, the

Allen key and the pencil exhibit more distinctive straight lines and sharp corners. Since

these distinctive features are crucial for resolving estimation uncertainty, the screwdriver

shows less estimation accuracy than the other two.

Pencil (Figure 5.9c)

In the pencil example, the robot wrist axis and the pencil are not aligned in the initial

grasp. Given the obstacles next to the pencil holder, the robot would likely collide with the

obstacles without adjusting the grasp. Therefore, we set the goal grasp to enable the robot

to avoid collisions with the obstacles. Consequently, the robot achieved an appropriate grasp

while keeping track of the object pose estimate, and then successfully placing the pencil in

the holder without colliding with obstacles.

5.4.4 Practical Application: Insertion Task

To validate our algorithm’s practical utility, we applied it to a specific downstream task

— object insertion with small clearance (1∼0.5 mm). For these experiments, we sampled
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random goal configurations from the first category (adjusting relative orientation) described

in Section 5.4.2. Following this, we aimed to insert the grasped object into holes with 1 mm

and 0.5 mm total clearance in diameter.

Table 5.2 summarizes the outcomes of these insertion attempts. The AUX connector,

which features a tapered profile at the tip, had a success rate exceeding 90%. On the other

hand, the success rate dropped considerably for objects with untapered profiles, especially

when the clearance was narrowed from 1 mm to 0.5 mm. The varying performance is con-

sistent with our expectations, given that the algorithm’s median normalized pose estimation

error is 0.07, which corresponds to approximately 2∼3 mm of translation error as quantified

in Section 5.4.2.

These findings indicate that our algorithm is useful in tasks that necessitate regrasping

and reorienting objects to fulfill downstream objectives by meeting the goal configuration.

However, for applications requiring sub-millimeter accuracy, the algorithm’s performance

would benefit from integration with a compliant controlled insertion policy (e.g., [15], [18],

[55], [124]).

5.5 Conclusion

This paper introduces a novel simultaneous tactile estimator-controller tailored for in-hand

object manipulation. The framework harnesses extrinsic dexterity to regrasp a grasped ob-

ject while simultaneously estimating object poses. This innovation holds particular promise

in scenarios necessitating object or grasp reorientation for tasks like insertion or tool use,

particularly in cases where the precise visual perception of the object’s global pose is difficult

due to occlusions.

We show the capability of our algorithm to autonomously generate motion plans for

diverse goal configurations that encompass a range of manipulation objectives, then execute

them precisely via high-accuracy tactile pose estimation (approximately 2∼3mm of error
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in median) and closed-loop control. We further demonstrate the practical utility of our

approach in solving high-tolerance insertion tasks, as well as showcase our method’s ability

to generalize to household objects in realistic scenarios, encompassing a variety of material,

inertial, and frictional properties.

In future research, our focus will extend to investigating methodologies for autonomously

determining optimal target configurations for task execution, eliminating the need for man-

ual specification. Additionally, we are keen on exploring the potential of inferring physics

parameters online or integrating a more advanced physics model capable of reasoning about

the intricacies of real-world physics.
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Chapter 6

Conclusion

6.1 Key Findings

At the beginning of this thesis, we highlighted three major challenges (Interpretability, Ob-

servability, and Uncertainty). We formulated four consecutive questions, one in each previous

publication, in pursuit of addressing these challenges. In this section, we summarize our re-

sponses to these questions and discuss their relevance to the challenges we mentioned.

• Is Tactile Sensing Actually Useful? → Yes!

Tactile sensing proves more useful than other modalities, such as F/T sensing, espe-

cially in tasks involving subtle contact interactions. For example, in the peg-in-hole

insertion task, tactile sensing provides intuition on aggregate force and torque on the

wrist, as well as subtle variation in relative pose between the gripper and the grasped

object, resulting in superior performance compared to F/T sensing.

• How Can We Exploit Tactile Sensing More Efficiently? → Use Extrinsic

Contact!

Extrinsic contact serves as a more efficient, interpretable, and scalable representation

of the contact state than raw tactile measurements. It preserves essential information

about the contact state with a simple representation, facilitating easier and faster
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training for manipulation policies. Additionally, the simpler and more interpretable

representation makes simulation more straightforward than raw tactile measurements,

alleviating the challenge of collecting data through real experiments.

• How Can We Reason About Extrinsic Contact Interaction With Tactile

Sensing? → Simultaneously Estimate and Control Contact State!

To address the challenges of reasoning about extrinsic contact interaction, we developed

a method that simultaneously estimates and controls the contact state. This approach

involves incorporating tactile feedback, kinematics, and physical models to navigate

the uncertainty introduced by physical interactions, providing an accurate estimation

of the contact states and enhancing the robot’s ability to interact with its environment.

• How Can We Achieve Extrinsic Dexterity With Tactile Sensing? → Inte-

grate Object/Physics Model!

In pursuit of achieving extrinsic dexterity, we incorporated an object model and a

physics model of friction dynamics, addressing intrinsic and extrinsic contacts, into

our framework. This integration enables the robot to estimate the object’s pose and

associated contact configurations. By simultaneously controlling these elements, the

robot gains the capability to perform precise in-hand sliding regrasps by pushing the

object against the environment, showcasing extrinsic dexterity. This effective utiliza-

tion of tactile sensing enhances the robot’s overall dexterity.

Based on the insights gained from addressing the questions above, we outline strategies

to tackle the major challenges in tactile sensing and achieve extrinsic dexterity:

• Interpretability: Leveraging interpretable abstractions, such as extrinsic contact in-

formation, provides a pathway to enhance understanding and efficient utilization of

tactile feedback. By focusing on key features like contact location, contact forces, and

direction/magnitude of sensor deformation, we establish a more interpretable repre-

sentation, facilitating effective integration into robotic systems.
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• Observability: The fusion of tactile feedback, kinematics, and physical models over

time enhances observability, allowing for a more comprehensive understanding of the

system’s state. Integrating additional information, such as vision or force/torque sens-

ing, may further contribute to improved system observability, enabling robots to reason

about contact interactions occurring beyond the direct tactile sensing locations.

• Uncertainty: Simultaneous estimation and control of the contact state offers a robust

approach to address uncertainty introduced by physical interactions. By actively man-

aging uncertainty during exploratory robot motions, the system can maintain accurate

estimates of contact states, providing a foundation for reliable tactile feedback utiliza-

tion. Additionally, integrating object models and friction dynamics models contributes

to uncertainty reduction by providing a contextual understanding of the grasped object

and its interaction with the environment when leveraging extrinsic dexterity.

6.2 Limitation and Future Work

6.2.1 Manipulating Through Unstructured Environment

While the current research excels in controlled and structured environments, particularly

showcasing its capabilities in scenarios like flat floors with minimal clutter, it does not

directly address the intricacies of manipulating through unstructured environments, such as

deformable or cluttered surroundings. The challenges posed by unpredictable and dynamic

settings remain open questions within the scope of this work. Future investigations should

explore learning-based methods or adaptive strategies to enable robotic manipulation in

unstructured environments, paving the way for real-world applicability and versatility.
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6.2.2 Generalizing Over Different Tactile Sensors

While the proposed methods showcase the efficacy of specific tactile sensing modalities, the

challenge lies in creating a unified protocol for interpreting tactile data across various sensor

types. Future research should explore methodologies to establish a standardized approach

for interpreting tactile information, enabling seamless integration and generalization across

different tactile sensors.

6.2.3 Speeding Up the Motion

The current study prioritizes the successful execution of tasks with a focus on precision and

control. However, the speed of robotic motion during manipulation emerges as a crucial

aspect warranting further exploration. Notably, the demo videos within this thesis are accel-

erated between 5 to 10 times the actual speed. Our unpublished preliminary investigation

suggests that sensor latency may be a bottleneck affecting the speed. In this initial explo-

ration, we measured an approximate latency of 50 milliseconds from sensor stimulation to

the computer receiving the tactile image. This latency introduces a gap of about 5 millime-

ters when aiming for motions at a speed of 1 m/s, a factor that can be critical for tasks

demanding sub-millimeter accuracy.

While latency can vary based on hardware specifications or signal processing protocols,

the present study does not specifically address minimizing latency or precisely compensating

for it by introducing additional latency in other sensing modalities like robot proprioception.

Future research endeavors should explore techniques, particularly those aimed at reducing or

managing tactile sensor latency, to enhance the optimization and speed of robotic motions

without compromising precision.
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6.2.4 Automating the Goal Specification

While the current research contributes to enhancing tactile sensing for specific tasks, it

does not explicitly address the challenge of automating the goal specification process. In the

current framework, defining goals for robotic manipulation is typically a manual or predefined

process. Future work should explore avenues for automating this aspect, integrating planning

algorithms that enable robots to autonomously infer and adapt to task objectives. This would

mark a significant step toward making robotic manipulation systems more autonomous and

adaptable to various scenarios.
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