
MIT Open Access Articles

Self-Improvement for Circuit-Analysis Problems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Williams, R. Ryan. 2024. "Self-Improvement for Circuit-Analysis Problems."

As Published: 10.1145/3618260.3649723

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/155669

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/155669

Self-Improvement for Circuit-Analysis Problems∗

R. Ryan Williams
†

Massachusetts Institute of Technology

Cambridge, USA

rrw@mit.edu

ABSTRACT
Many results in fine-grained complexity reveal intriguing conse-

quences from solving various SAT problems even slightly faster

than exhaustive search. We prove a self-improving (or “bootstrap-

ping”) theorem for Circuit-SAT, #Circuit-SAT, and its fully-quantified

version: solving one of these problems faster for “large” circuit sizes

implies a significant speed-up for “smaller” circuit sizes. Our gen-

eral arguments work for a variety of models solving circuit-analysis

problems, including non-uniform circuits and randomized models

of computation.

We derive striking consequences for the complexities of these

problems, in both the fine-grained and parameterized setting. For

example, we show that certain fine-grained improvements on the

runtime exponents of polynomial-time versions of Circuit-SAT

would imply subexponential-time algorithms for Circuit-SAT on

2
𝑜 (𝑛)

-size circuits, refuting the Exponential Time Hypothesis. We

also show that any algorithm for Circuit-SAT with 𝑘 inputs and 𝑛

gates running in 1000000
𝑘 + 𝑛1+𝜀 time (for all 𝜀 > 0) would imply

algorithms running in time (1 + 𝜀)𝑘 + 𝑛1+𝜀 time (for all 𝜀 > 0),

also refuting the Exponential Time Hypothesis. Applying our ideas

in the #Circuit-SAT setting, we prove new unconditional lower

bounds against uniform circuits with symmetric gates for functions

in deterministic linear time.

CCS CONCEPTS
• Theory of computation→ Parameterized complexity and
exact algorithms; Circuit complexity; Complexity classes.

KEYWORDS
bootstrapping, circuit lower bounds, circuit satisfiability, counting

complexity, fine-grained complexity, quantified satisfiability

ACM Reference Format:
R. Ryan Williams. 2024. Self-Improvement for Circuit-Analysis Problems.

In Proceedings of the 56th Annual ACM Symposium on Theory of Computing
(STOC ’24), June 24–28, 2024, Vancouver, BC, Canada. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3618260.3649723

∗
The full version of this paper is available at https://eccc.weizmann.ac.il/report/2023/

082/.

†
Workwas supported in part by the Simons Institute at UC Berkeley, NSF CCF-2127597,

and a Frank Quick Faculty Research Innovation Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649723

1 INTRODUCTION
Fine-grained complexity relates a wide array of computational

problems through intricate reductions that allow us to infer tight

time complexity lower bounds, based on a few hardness hypotheses.

Broadly speaking, two kinds of fine-grained hypotheses have been

studied, which we classify as follows.

Weak exponent lower bounds: These bounds assert that the
optimal algorithm for a problem with a known runtime of 𝑇 (𝑛)
requires time at least Ω(𝑇 (𝑛)𝜀), for some 𝜀 > 0. A canonical weak

exponent lower bound is the Exponential Time Hypothesis:

ETH: There is an 𝛼 > 0 such that 3-SAT on 𝑛 variables
needs 2𝛼𝑛 time.

Such hypotheses are often employed to argue for a conditional time

lower bound in which the precise exponent is not considered as

important as the form of the exponent; this is particularly significant

for FPT algorithmics. To give two striking examples, [26] prove that

the Edge Cliqe Cover problem, which has a simple 2
2
𝑘 · poly(𝑛)

time algorithm [34], cannot be in 2
2
𝑜 (𝑘) · poly(𝑛) time unless ETH

is false. While it is known that approximate Nash Equilibria can be

found in 𝑛𝑂 (log𝑛)
time [45], it is also known [14] that an 𝑛𝑜 (log𝑛) -

time approximation algorithm (with “good social welfare”) would

contradict ETH (see also [55]).

Strong exponent lower bounds: These bounds assert that the
optimal algorithm for a problem with a runtime of 𝑇 (𝑛) requires
time at least Ω(𝑇 (𝑛)1−𝑜 (1)). A canonical example of a strong expo-

nent lower bound is the Strong Exponential Time Hypothesis:

SETH: For all 𝜀 ∈ (0, 1), there is a 𝑘 such that 𝑘-SAT
on 𝑛 variables needs 2𝑛 (1−𝜀) time.

Such hypotheses are generally used to argue that the best-known

running time for a problem is optimal up to low-order terms (see

[64] for a large sample of reductions and problems).

It is intuitively obvious that a strong exponent lower bound is

indeed a stronger assumption than a weak exponent lower bound:

for example, SETH implies ETH [18, 36]. Conversely, the question of

whether ETH implies SETH is a major open problem (already raised

explicitly in [35]). It is entirely uncertain how such an implication

might be proved. In this paper, we ask a more general question:

Question: Can weak exponent lower bounds be “am-
plified” into strong exponent lower bounds?

A positive answer to the question amounts to a situation where

improving slightly on the running time exponent of one problem

leads to an arbitrary polynomial improvement in the best-known

time exponent of another problem. We will prove a result of this

form for a “large” variant of the Circuit SAT problem, as well as

its counting and quantified variants.
1

1
See the end of the Introduction for an alternative viewpoint.

1374

https://orcid.org/0000-0003-2326-2233
https://doi.org/10.1145/3618260.3649723
https://eccc.weizmann.ac.il/report/2023/082/
https://eccc.weizmann.ac.il/report/2023/082/
https://doi.org/10.1145/3618260.3649723

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada R. Ryan Williams

We begin with the following version of Circuit SAT, where the

input circuit is set to be so large that the problem is polynomial-time

solvable. Let 𝜀 ∈ (0, 1] be a (small) constant parameter.

Problem: Large Circuit SAT

Given: A circuit 𝐶 with at most 𝑛 = 𝜀 log(𝑁) inputs and 𝑁
gates (a.k.a. 𝑁 size).

2

Decide: Is there an 𝑎 ∈ {0, 1}𝑛 such that 𝐶 (𝑎) = 1?

For 𝜀 ≤ 1, the circuit instances of Large Circuit SAT are so large

that they cannot possibly be minimal: recall that the maximum cir-

cuit complexity of any 𝜀 log(𝑁)-input function is 𝑜 (𝑁 𝜀) [37]. Such
a large circuit must therefore have enormously redundant parts

that could potentially be simplified, in a satisfiability algorithm.

Intuitively, Circuit SAT can only get easier to solve as the circuit

size increases (this corresponds to decreasing 𝜀).

Observe the brute-force algorithm for Large Circuit SAT takes

𝑂̃ (𝑁 1+𝜀) steps. Can we improve upon the brute-force algorithm

for Large Circuit SAT? Can the obvious 𝑁 1+𝜀
time algorithm for

Large Circuit SAT be reduced to 𝑁 1+𝑜 (1)
for some constant 𝜀 > 0?

A corollary of our main result is that such an algorithm would

already imply that the Exponential Time Hypothesis is false: in fact,

the existence of such an algorithm implies that Circuit SAT on

2
𝑜 (𝑛)

-size circuits can be solved in 2
𝜀𝑛

time for every 𝜀 > 0. The

most general form of our connection is the following.

Theorem 1.1 (Circuit-SAT “Self-Improvement”, Section 3).

Let 𝛼, 𝛽 > 0, with 𝛼 ≤ 𝛽 . Suppose Circuit SAT on 2
𝛼𝑛+𝑜 (𝑛) -size

circuits can be solved in 2
𝛽𝑛+𝑜 (𝑛) time. Then Circuit SAT on 2

𝑜 (𝑛) -
size circuits can be solved in 2

(𝛽−𝛼)𝑛+𝑜 (𝑛) time.

We call such a result self-improving, as it proceeds by an induction
where in each stage of induction, the running time of the SAT algo-

rithm for 2
𝑜 (𝑛)

-size circuits is improved by combining the assumed

algorithm for Large Circuit SAT with the SAT algorithm derived

in the previous stage. Theorem 1.1 holds for any computational

model such that 𝑇 -time algorithms can be simulated by circuits of

size 𝑇 1+𝑜 (1)
(for example, multitape Turing machines [54]).

3
Theo-

rem 1.1 also holds for randomized algorithms (see the full version of

the paper [68]) as well as for non-uniform models of computation:

given 2
𝛽𝑛+𝑜 (𝑛)

-size circuits solving Circuit SAT on 2
𝛼𝑛+𝑜 (𝑛)

-size

inputs, we can construct 2
𝛽−𝛼+𝑜 (𝑛)

-size circuits for Circuit SAT

on 2
𝑜 (𝑛)

-size inputs. The following is an immediate corollary of

Theorem 1.1.

Corollary 1.2 (ETH Versus Large Circuit SAT). ETH implies
that, for every 𝜀 > 0, Large Circuit SAT with 𝜀 log(𝑁) inputs is
not solvable in 𝑁 1+𝑜 (1) time.

In fact, we only have to assume there is an 𝜀 > 0 such that

Circuit-SAT on 2
𝑜 (𝑛)

-size circuits cannot be solved in 2
𝜀𝑛+𝑜 (𝑛)

time, which is (presumably) a significantly weaker hypothesis than

ETH itself, which is only concerned with the complexity of 𝑘-SAT.

The upshot is that, from a weak-exponent lower bound hypothesis

2
The circuits can be over any universal basis of constant fan-in, e.g., AND/OR/NOT.

3
We discuss in the full version [68] how to obtain results for more powerful models

of computation, like random access machines. Intuitively, we just have to change

Circuit SAT to a satisfiability problem with a suitable predicate, e.g., Ram Sat for

random access machines.

like ETH, we obtain a lower bound of a strong-exponential char-

acter for a polynomial-time solvable problem: if the brute-force

𝑂̃ (𝑁 1+𝜀)-time algorithm for Large Circuit SAT can be improved

to 𝑁 1+𝑜 (1)
time, for any 𝜀 > 0, then we obtain an arbitrary poly-

nomial improvement over exhaustive search for Circuit SAT on

“small” circuits.

It is also instructive to compare Corollary 1.2 with the implica-

tions obtained by assuming a Circuit SAT form of SETH, rather

than ETH:

Corollary 1.3 (SETHVersus Large Circuit SAT). Assume that
for every 𝜀 > 0, Circuit SAT on 2

𝑜 (𝑛) -size circuits cannot be solved
in 2

(1−𝜀)𝑛 time. Then for every 𝛼 ≥ 0 and every 𝜀 > 0, Circuit SAT

on 2
𝛼𝑛+𝑜 (𝑛) -size circuits cannot be solved in time 2𝛼𝑛+(1−𝜀)𝑛+𝑜 (𝑛) .

That is, if brute-force search is essentially optimal for solving

Circuit SAT on subexponential-size circuits, then brute-force is

also optimal for solving Circuit SAT on arbitrarily large 2
𝑂 (𝑛)

-

size circuits, in spite of the fact that the “large” circuit-size case

can easily be reduced to the “small” case by adding extra (non-

functional) inputs (see Theorem 1.4). Phrasing Corollary 1.3 another

way, we can say that if there is an 𝜀 > 0 and a 𝛿 ∈ (0, 1) such
that Circuit SAT on 𝑁 -size circuits with 𝜀 log(𝑁) inputs can be

solved in𝑁 1+𝛿𝜀
time (for example), then Circuit SAT on 2

𝑜 (𝑛)
-size

circuits can be solved in 2
𝛿𝑛+𝑜 (𝑛)

time.

An Equivalence. The ideas of theorem 1.1 lead to a surprising

equivalence for solving Large Circuit SAT efficiently. For simplic-

ity, we state the result in terms of algorithms solving Circuit SAT,

but it also applies to non-uniform and randomized algorithms (see

the full version for details [68]). Let 𝜀-Large Circuit SAT be the

problem of checking satisfiability for circuits of size𝑁 with 𝜀 log(𝑁)
inputs.

Theorem 1.4 (Section 3). The following are equivalent:

(1) There is some 𝜀 ∈ (0, 1) such that 𝜀-Large Circuit SAT is
in 𝑁 1+𝑜 (1) time.

(2) For every 𝛼 > 0 (including arbitrarily large 𝛼), 𝛼-Large
Circuit SAT is in 𝑁 1+𝑜 (1) time.

Theorem 1.4 shows an existentially-quantified statement is equiv-
alent to its corresponding universally-quantified statement: if we

can solve Circuit SAT on 𝑛-input 2𝐾𝑛-size in 2
𝐾𝑛+𝑜 (𝑛)

time, for

some constant 𝐾 > 0, then an analogous algorithm exists for ev-
ery 𝐾 > 0. As a consequence, the hypothesis would imply that

Circuit SAT on 2
𝜀𝑛
-size circuits (for any tiny 𝜀 > 0) can also be

solved in 2
𝜀𝑛+𝑜 (𝑛)

, refuting the (circuit version of) ETH. Therefore,

Theorem 1.4 can be seen as a strengthening of Corollary 1.2. In fact,

an even stronger equivalence holds, between nearly-linear-time

algorithms for Circuit SAT on 𝜀 log(𝑁) inputs for arbitrarily small

𝜀 > 0, and extensions of Circuit SAT that correspond to levels of

the polynomial hierarchy (see Theorem 3.4).

Self-Improvement for #SAT and QBF.. The proofs of Theorem 1.1

and Theorem 1.4 are quite general. We show that analogous self-

improvement results hold for #Circuit SAT, where we wish to

count the number of SAT assignments to a given circuit, as well as

Q-Circuit SAT, the quantified version of Circuit SAT, where we

1375

Self-Improvement for Circuit-Analysis Problems STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

are given a fully-quantified sentence of the form

(𝑄1 𝑥1) · · · (𝑄𝑛 𝑥𝑛) [𝐶 (𝑥1, . . . , 𝑥𝑛)],
where each 𝑄𝑖 ∈ {∃,∀}, 𝐶 is a circuit, and we wish to decide if the

sentence is true or false.

Theorem 1.5. Theorem 1.1 holds for the #Circuit SAT problem
and Q-Circuit SAT, in place of Circuit SAT.

In fact, all consequences stated for Circuit SAT carry over for

#Circuit SAT and Q-Circuit SAT.

An FFT for Circuits Would Refute Exponential-Time Hypotheses. A
major application of the Fast Fourier Transform (FFT) [24] is that

univariate degree-𝑛 polynomials over a field can be evaluated on any

𝑛 points in 𝑛 · poly(log𝑛) operations [13, 30], a great improvement

over the obvious Θ(𝑛2) algorithm. Recent work has extended this

fundamental result to the multivariate setting [10, 11, 33, 40].

Should we expect fast multipoint evaluation for more complex

computational models, such as Boolean circuits? On the one hand,

an old result of W. J. Paul ([53], Lemma 2) gives an efficient circuit𝐶

for multipoint evaluation of Boolean functions: given 𝑥1, . . . , 𝑥𝑘 ∈
{0, 1}𝑛 and the truth table 𝑇 ∈ {0, 1}2𝑛 of a function 𝑓 : {0, 1}𝑛 →
{0, 1}, we have 𝐶 (𝑥1, . . . , 𝑥𝑘 ,𝑇) = (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑘)), for a circuit
𝐶 of size only poly(𝑛) · (2𝑛 + 𝑘). Thus, for very hard functions

(that cannot be represented much smaller than their 2
𝑛
truth table),

there are circuits for multipoint evaluation with size about 𝑘 + 2
𝑛
,

improving over the obvious 𝑘2𝑛 bound. On the other hand, standard

results in fine-grained complexity show that if the truth tables of

size-𝑠 (unrestricted) circuits could be computed in time poly(𝑛) ·
(𝑠 + 2

𝑛) (for example), then SETH and the 3SUM conjecture are

false.
4
An immediate corollary of Theorem 1.1 and Theorem 1.5 is

that significantly weaker hypotheses suffice:

Corollary 1.6. If 𝑛-input circuits of size 𝑠 can be evaluated on all
inputs in 2𝑛+𝑜 (𝑛) +𝑠1+𝑜 (1) time, then the circuit versions of #ETH [27]
and the quantified version of ETH [23] are false: #Circuit SAT and
Q-Circuit SAT on 𝑛-input 2𝑜 (𝑛) -size circuits are both in 2

𝜀𝑛 time,
for all 𝜀 > 0.

That is, the difficulty of finding an FFT-like algorithm for fast

multipoint circuit evaluation can be based on much weaker hy-

potheses than SETH, weaker than even circuit versions of SETH

(used to argue for the hardness of problems like Edit Distance [1]).

A Parameterized Complexity Counterpart. Another version of

Theorem 1.4 can be stated in the framework of parameterized com-

plexity, yielding another type of surprising equivalence. Letting

𝑘 be the number of variables as a parameter, and letting 𝑛 be the

circuit size, brute force yields a 2
𝑘 ·𝑛 poly log(𝑛) time algorithm for

Circuit SAT. A standard trick in parameterized complexity [25, 29]

implies that for every 𝜀 > 0, there is some constant 𝑐 > 1 such that

Circuit SAT can be solved in 𝑂 (𝑐𝑘 + 𝑛1+𝜀) time.
5

Could one reverse the order of the quantifiers in this state-

ment? Could there be a universal 𝑐 > 1 such that for all 𝜀 > 0,

Circuit SAT can be solved in 𝑂 (𝑐𝑘 + 𝑛1+𝜀) time? (Another way of

4
For example, see footnote 7 in [66].

5
Let 𝜀 > 0 be given and let 𝑛 be sufficiently large. If 2

𝑘 < 𝑛𝜀/2 then 2
𝑘 · 𝑛1+𝑜 (1) <

𝑛1+𝜀 . Otherwise, 2𝑘 ≥ 𝑛𝜀/2 , i.e., log(𝑛) ≤ 2𝑘/𝜀 . Setting 𝑐 = 2
1+(2+𝜀)/𝜀

, we have

2
𝑘 · 𝑛1+𝑜 (1) < 2

𝑘 · 𝑛1+𝜀/2 = 2
𝑘 · 2(1+𝜀/2) log𝑛 ≤ 2

𝑘+(1+𝜀/2) ·2𝑘/𝜀 = 𝑐𝑘 .

phrasing the question: could we replace 2
𝑘 ·𝑛1+𝜀 time, with 𝑐𝑘 +𝑛1+𝜀

time for a large 𝑐?) We show that such an algorithm would in fact

disprove the Exponential Time Hypothesis:

Theorem 1.7 (Section 4). There is a 𝑐 > 1 such that for all 𝜀 > 0,
Circuit SAT is in 𝑂 (𝑐𝑘 + 𝑛1+𝜀) time if and only if for every 𝑐 > 1

and 𝜀 > 0, Circuit SAT is in 𝑂 (𝑐𝑘 + 𝑛1+𝜀) time.

For example, from an algorithm running in𝑂 (10000000𝑘 +𝑛1+𝜀)
time for Circuit SAT, for all 𝜀 > 0, we could derive a Circuit SAT

algorithm running in (1 + 𝜀)𝑘 + 𝑛1+𝜀 time, for all 𝜀 > 0. Philo-

sophically, Theorem 1.7 may be viewed as more of a “true self-

improvement” than other results, as we really are improving the

running time of Circuit SAT to an arbitrarily small exponential

bound, starting from a certain type of exponential-time algorithm

for the same Circuit SAT problem.

A Uniform Circuit Lower Bound for Linear Time. Studying the

consequences of faster #Circuit SAT algorithms for large circuits

further, we prove new unconditional lower bounds against uniform

circuit classes, where fast multipoint evaluation algorithms exist

(and thereby small improvements over exhaustive search are also

possible). Let SYM◦SYM denote the class of Boolean circuits which

are depth-two circuits comprised of arbitrary Boolean symmetric

functions (with unbounded fan-in). SYM ◦ SYM is one of those

natural “weak-looking” circuit classes for which the known lower

bounds are surprisingly meager. In terms of non-uniform lower

bounds against SYM◦SYM, it is only known that there are functions

in ENP which do not have non-uniform SYM◦SYM circuits of 𝑛2−𝜀

gates, for all 𝜀 > 0 [8, 59]. Since SYM ◦ SYM can be simulated in

depth-3 TC0
with a polynomial blowup in size, one can deduce

from known results on TC0
([5]) that the Permanent does not have

polynomial-size highly-uniform SYM ◦ SYM circuits. It also follows

from the literature that, for some 𝛼 > 0, SAT does not have highly-

uniform SYM ◦ SYM circuits with 𝑛1+𝛼 gates [6].
6

In the full version of the paper, we prove a super-linear gate

lower bound for computing problems in linear time with uniform

SYM ◦ SYM circuits.

Theorem 1.8 ([68]). There are linear-time decision problemswhich
do not have POLYLOGTIME-uniform SYM ◦ SYM circuits of 𝑛𝑐 gates,
for all 𝑐 < 1.199.

(For an explicit problem exhibiting the lower bound, one could

take the P-complete Circuit Eval decision problem.) The proof of

Theorem 1.8 has the form of an indirect diagonalization: assuming

the opposite, we derive a simulation of time-bounded computation

contradicting hierarchy theorem. However, for all prior such lower

bounds that we are aware of, across a variety of models (such

as [5, 7, 32, 39, 48, 61–63]), the proofs require that the hard function

is much harder than linear-time computable. For example, the time-

space tradeoffs for 𝑆𝐴𝑇 [16, 32, 61] crucially require that the hard

function is NP-hard under highly local reductions.

6
Note that, although it is also known [38] that there are functions in P that require

Ω (𝑛1.5−𝑜 (1)) gates to be computed by non-uniform depth-3 TC0
circuits, the trans-

lation of SYM ◦ SYM into depth-3 TC0
can increase the total number of gates by a

factor of 𝑛, so the methods of [38] do not directly yield linear gate lower bounds for

SYM ◦ SYM circuits. Certainly the random restriction lemmas of [38] do not directly

apply either, since PARITY is a type of symmetric gate, and is immune to restrictions.

1376

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada R. Ryan Williams

We deduce a contradiction by exploiting circuit-analysis algo-
rithms for SYM◦SYM. That is, we establish a version of the “algorith-

mic method” for circuit lower bounds (initiated byWilliams [66, 67])

that applies to uniform circuits, and allows the hard function to be

contained in P.7 We apply the assumption-to-be-contradicted in two

different ways: once on an initial 2
𝑛
-time computation (that wewish

to speed up), and again on a circuit that counts the number of SYM
gates that are true on the bottom layer, using the POLYLOGTIME-

uniform algorithm for generating the gates on the bottom layer. In

the end, our contradictory simulation is achieved by applying fast

rectangular matrix multiplication [44] appropriately to “speed-up”

the evaluation of a SYM ◦ SYM circuit. If the matrix multiplication

exponent 𝜔 happens to be 2, our gate lower bound would improve

to 𝑛1.36.

Indeed, matrix multiplication allows us to compute truth tables

of SYM ◦ SYM circuits faster than the obvious algorithm, and our

proof demonstrates how such an algorithm can be used to establish

new lower bounds for linear-time computation. This addresses a

question of Williams [69], who gave a faster truth-table evaluation

algorithm for THR ◦ THR circuits, and asked if such algorithms

suffice for deriving lower bounds. (However, super-linear gate lower

bounds against THR ◦ THR are already known; see [38]. Thus we

instead state our results in terms of SYM ◦ SYM.) One can think of

our approach as trading non-uniformity in the circuit lower bound

for a significant reduction in the complexity of the hard function

(from ENP orQuasiNP, down to linear time).

On the Difficulty of Further Improving Self-Improvement. We have

shown that self-improvement of Circuit SAT is possible for de-

terministic, randomized, and non-uniform algorithms; what about

other computational models, such as nondeterministic machines

and those in the polynomial hierarchy? We show that such ques-

tions have an intimate connection to the NP versus NC1
problem.

We already mentioned (Theorem 1.5) that self-improvement holds

for the Q-Circuit SAT (Quantified Circuit SAT) problem, for de-

terministic and randomized algorithms. Observe that, if we allow

our algorithms to call an oracle in the polynomial hierarchy, then

Q-Circuit SAT can be decided efficiently.

Proposition 1. For all positive real 𝛼 > 0, Q-Circuit SAT on
2
𝛼𝑛-size circuits can be decided in poly(𝑛) · (2𝛼𝑛 + 2

𝑛) time with a
Σ2𝑆𝐴𝑇 oracle.

Indeed, with a Σ2 machine, one can simply guess the 2
𝑛
-bit

truth table of the given circuit, universally verify the truth table

is correct on all inputs, and verify that the QBF defined on the

truth table is true, in 𝑂 (2𝛼𝑛 + 2
𝑛) time. (We can use Σ2𝑆𝐴𝑇 as an

oracle specifically, because of tight reductions from Σ2 time𝑇 (𝑛) to
Σ2𝑆𝐴𝑇 ; see for example [32].) This observation naturally begs the

question of whether Q-Circuit SAT self-improvement is possible

on algorithms with an oracle in Σ2P. In the full version, we show

that such a result would separate NP from NC1
, even if we could

only obtain non-uniform circuits as a consequence.

Theorem 1.9 ([68]). Suppose a self-improvement result holds for
Q-Circuit SAT with Σ2P-oracle algorithms, i.e., assume:
7
See [57] for another proposal, which would apply to uniform lower bounds for NP
and PSPACE if it can be realized. Santhanam’s approach looks significantly more

general than ours, but does not seem to extend down to functions in P.

There is some 𝑘 > 0 such that Q-Circuit SAT on
2
𝑘𝑛+𝑜 (𝑛) -size circuits in 2

𝑘𝑛+𝑜 (𝑛) time (with a Σ2𝑆𝐴𝑇
oracle) implies that for all 𝜀 > 0, Q-Circuit SAT on
2
𝑜 (𝑛) -size circuits has 2𝜀𝑛+𝑜 (𝑛) -size non-uniform Σ2𝑆𝐴𝑇 -
oracle circuits.

Then NP ≠ NC1.

(Here, we use the LOGTIME-uniform definition of NC1
[65].)

The choice of “Σ2” in the theorem statement is somewhat arbitrary:

using “Σ𝑐 ” for any 𝑐 ≥ 2 would suffice. To prove this theorem,

we show that NP = NC1
implies a strong circuit lower bound on

Q-Circuit SAT, even for circuits with an oracle in the polynomial

hierarchy.

In the full version [68], we also prove as a consequence of self-

improvement that, if there is any𝑘 > 0 such that Q-Circuit SAT on

2
𝑘𝑛

-size circuit predicates has non-uniform circuits of size 2
𝑘𝑛+𝑜 (𝑛)

,

then NP ≠ NC1
. We should stress that we do not (yet) consider

these theorems as a viable approach to separating NP from NC1
,

but they do elevate the question of why self-improvement only

seems to work for deterministic and randomized algorithms, but

not for stronger models of computation.

On the Meaning of This Work. Does this paper prove a connection
between “weak exponential” lower bounds for one problem Π and

“strong exponential” lower bounds for another problem Ψ? It is the
opinion of the author that the answer is yes, and that Theorem 1.4

is the most striking example of the connection: an 𝑁 1+𝑜 (1)
-time

algorithm for Circuit SAT on 𝜀 log(𝑁) inputs (for any 𝜀 > 0) is

equivalent to having an 𝑁 1+𝑜 (1)
-time algorithm for Circuit SAT

on𝐾 log(𝑁) inputs, for every𝐾 , nomatter how large. However, oth-

ers may disagree, and argue that what is actually being proved here

is an equivalence between different exponential-time hypotheses: one
is showing that the “exponential-time hypothesis for Circuit SAT

on 2
𝐾𝑛

-size circuits” for arbitrarily large 𝐾 ≥ 1 (defined in the

appropriate way) is equivalent to the “exponential-time hypothesis

for Circuit SAT on 2
𝜀𝑛
-size circuits” for arbitrarily small 𝜀 > 0.

The author believes this is also a perfectly valid interpretation of the

results; the difference boils down to what one counts as “weak expo-

nential” versus what is “strong exponential”. (Both interpretations

are interesting, in the opinion of the author.) The parameterized ver-

sion of our self-improvement result (Theorem 1.7) also shows what

may be considered a “truer” self-improvement: one time bound

for Circuit SAT directly implies a strictly stronger time bound for

Circuit SAT.

2 PRELIMINARIES
We assume familiarity with computational complexity, especially

circuit complexity [9, 37, 65]. We are often interested in LOGTIME-

uniform (and POLYLOGTIME-uniform circuits, respectively), where

local information about the gates of poly(𝑛)-size circuits can be

determined in time linear (respectively, polynomial) in the names

of the gates, each of which take 𝑂 (log𝑛) bits to describe. We will

give technical details on such uniformity conditions as needed in

our proofs; see [65] for full technical definitions.

Notation and Defaults. Unless otherwise specified, our Boolean
circuits are over the basis of all possible gates of fan-in two (the

1377

Self-Improvement for Circuit-Analysis Problems STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

particular gate basis will not matter for our results, as long as the

basis is universal and each gate has constant fan-in.)

As is standard for bounded fan-in circuits, the size of a circuit is
defined to be the number of gates. For a given circuit 𝐶 , we let ⟨𝐶⟩
denote the description of 𝐶 in binary.

Recall that Circuit Eval is the P-complete problem of Circuit

Evaluation, in which we are given the description ⟨𝐶⟩ of a circuit𝐶 ,
and an assignment 𝑎 to the inputs of𝐶 , and wish to output𝐶 (𝑎) = 1.

For notational convenience, in this paper we redefine Circuit Eval

to be the following multi-output problem:

Circuit Eval: Given the description ⟨𝐶⟩ of a circuit𝐶 ,
and a partial assignment 𝑎 to the inputs of 𝐶 , output
the description of the circuit 𝐶′ (𝑥) := 𝐶 (𝑎, 𝑥), where 𝑥
denotes the remaining unassigned inputs of 𝐶 .

The following basic fact about circuit evaluation will be very

useful.

Lemma 2.1 (Valiant [60], Pippenger-Fischer [54]). The problem
Circuit Eval has circuits of size 𝑂̃ (𝑛), constructible in 𝑂̃ (𝑛) time
(even on a multitape Turing machine). In particular, for every 𝑛,
there is a circuit 𝐷𝑛 of 𝑂̃ (𝑛) size such that, given the description ⟨𝐶⟩
of a circuit 𝐶 of size 𝑛 and a partial assignment 𝑎 to some of 𝐶’s
inputs, 𝐷𝑛 (⟨𝐶⟩ , 𝑎) outputs a description of 𝐶 restricted to the partial
assignment 𝑎.

2.1 Related Work
The most directly relevant prior result is that of Salamon and We-

har [56], who show if Circuit SAT with 2
𝑛
gates and 𝑛 inputs is

solvable in 2
𝑛+𝑜 (𝑛)

time, then Circuit SAT with𝑚 gates is solvable

in 2
𝜀𝑚

time for every 𝜀 > 0. Our results can be seen as substan-

tial generalizations, weakening the hypotheses and strengthen-

ing the resulting conclusions. More precisely, they require that an

𝑂̃ (𝑁 2)-time solvable version of Circuit SAT can be improved to

𝑁 1+𝑜 (1)
time, in order to get a subexponential-time algorithm for

satisfiability of 𝑂 (𝑛)-size circuits. In contrast, one corollary of our

main result (Corollary 1.2) states that improving an 𝑂̃ (𝑁 1+𝜀)-time

solvable version of Circuit SAT to 𝑁 1+𝑜 (1)
time, for any 𝜀 > 0,

implies a subexponential-time algorithm for satisfiability of subex-
ponential-size circuits. (Indeed, following Theorem 3.4, we obtain a

subexponential-time algorithm for Σ𝑘Circuit SAT, for every con-

stant 𝑘 .) At a high level, the approach of Salamon and Wehar looks

similar: they partition the variables of their input circuit, and call an

algorithm on restrictions of the input circuit based on the variable

partition. However, their approach appears to require the use of a

specialized computational model (which they call “DTIWI”) that

hampers the generality of what they can prove.

Other works have demonstrated phenomena which are similar

to our self-improvement results, but differ in various critical ways.

Williams [66] studied the consequences of speeding-up exhaustive

search in limited scenarios. Along with showing that slightly faster

Circuit SAT algorithms imply non-uniform circuit lower bounds,

he also showed that if every problem Π solvable with log𝑛 bits of

nondeterminism in 𝑛𝑐 time and (log𝑛)𝑑 space can be simulated

in 𝑂 (𝑛𝑐+0.99) time and poly(log𝑛)𝑑 space for all 𝑐, 𝑑 ≥ 1, then a

dramatic speed-up is possible: every such Π can be solved nondeter-

ministically in 𝑂 (𝑛3) time, which would imply LOGSPACE ≠ NP

among other consequences. Thus, by imposing a space restriction

on the verifier and the assumed simulation, a more dramatic simu-

lation is possible from assuming a minor speed-up. Williams also

observes that a Circuit SAT algorithm running in 4
(1−𝜀)𝑛

time

on circuits of size 2
𝑛
with 𝑛 inputs, for some 𝜀 > 0, implies that

the 3SUM conjecture is false.
8
It is also easy to see that the same

hypothesis implies that SETH and thereby the Orthogonal Vec-

tors Conjecture is false (this also follows from the base case of

Theorem 1.1).

Paturi and Pudlák [52] study OPP algorithms, which are proba-

bilistic polynomial time algorithms with 1/𝑝 (𝑛) success probability,
where 𝑝 (𝑛) can be exponential. They show if Circuit SAT has an

OPP algorithm with success probability 1.999−𝑛 , then Circuit SAT

on poly(𝑛)-size circuits has deterministic circuits of size 2
𝑛1−𝜀

for

some 𝜀 > 0. Their argument involves applying the polynomial-

size circuit for Circuit SAT to itself in an interesting way. While

their Circuit SAT conclusion seems stronger than the ones we

derive (we derive 2
𝜀𝑛
-time algorithms for 2

𝑜 (𝑛)
-size circuits), their

Circuit SAT hypothesis looks stronger than the hypotheses that

we consider, especially for our extensions to randomized algorithms

for Circuit SAT (found in the full version of the paper).

The results in this paper show how “minor-looking” algorith-

mic improvements would imply major algorithmic improvements,

in which the minor algorithm is repeatedly applied to achieve

faster algorithms on smaller input lengths. These results can be

seen as converses of hardness magnification phenomena [6, 20–

22, 46, 47, 49, 50, 58], in which “minor-looking” computational lower

bounds would imply major lower bounds. The contrapositives of

hardness magnification results can also be viewed in a similar light.

For example, Allender-Koucky [6] show that if Boolean Formula

Evaluation has constant-depth MAJORITY/NOT (TC0
) circuits of

any polynomial size, then the problem also has 𝑂 (1/𝜀)-depth MA-

JORITY/NOT circuits of 𝑛1+𝜀 size, for all 𝜀 > 0. This is proved by ex-

ploiting the nice downward self-reducibility of Formula Evaluation.

Our setting appears to be very different from that of hardness mag-

nification.We study versions ofNP-hard problems in a “polynomial-

time solvable” regime, and show that sufficiently strong algorithms

in this setting would imply exponentially-faster algorithms in the

“super-polynomial-time solvable” regime. In our self-improvement

results for Circuit SAT, #Circuit SAT, and Q-Circuit SAT, the

main property required is that the problem is “embarrassingly par-

allel”, in that the space of variable assignments can be partitioned

in a simple way so that the overall answer can be easily obtained

from the answers on the parts.

In general, when one considers Circuit SAT on circuits which

are large relative to the number of input variables, one is studying

a problem with “bounded nondeterminism” or “limited nondeter-

minism”, where the amount of nondeterminism is significantly less

than the input length 𝑛 (in our case, the amount of nondetermin-

ism is 𝑂 (log𝑛)). The theory of complexity classes with limited

nondeterminism was initiated in [41]; further related references

include [12, 15, 17, 31, 66].

8
Recall the 3SUM problem asks: given a set 𝑆 of 𝑛 numbers, are there three which sum
to zero? The 3SUM conjecture is that there is no 𝑛2−𝜀 time algorithm for 3SUM, where

𝜀 > 0.

1378

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada R. Ryan Williams

Finally, we note that a type of self-improvement was known in

algebraic complexity. In particular, there are bootstrapping results

are known for derandomizing the Polynomial Identity Testing (PIT)

problem [3, 42, 43]. Roughly speaking, these results show that

“minor” improvements over the obvious deterministic black-box

PIT algorithm for circuits with a constant number of variables

would yield a nearly-polynomial-time deterministic algorithm for

the full PIT problem. The proofs of these results also work in stages,

where in each successive stage, the algorithm from the previous

stage is used to build a faster algorithm.

3 SELF-IMPROVEMENT FOR CIRCUIT
ANALYSIS PROBLEMS

Here, we prove the main self-improvement result, showing how

non-trivial algorithms for Large Circuit SAT would imply faster

algorithms for Circuit SAT on subexponential-size circuits.

Reminder of Theorem 1.1. Let 𝛼, 𝛽 be positive reals, with 𝛼 ≤
𝛽 . Suppose Circuit SAT on 2

𝛼𝑛+𝑜 (𝑛) -size circuits can be solved in
2
𝛽𝑛+𝑜 (𝑛) time. ThenCircuit SAT on 2𝑜 (𝑛) -size circuits can be solved
in 2

(𝛽−𝛼)𝑛+𝑜 (𝑛) time.

Before we begin the proof, the following intuition may be helpful.

Suppose we have a circuit𝐶 of size 2
𝑜 (𝑛)

and 𝑛 inputs, and we want

to solve Circuit-SAT on 𝐶 , as fast as possible. Furthermore, assume

we have in our hands an algorithm for Circuit-SAT that runs on

circuits of size 2
𝑛′+𝑜 (𝑛)

with 𝑛′ inputs, and this algorithm runs in

2
𝑛′+𝑜 (𝑛)

time.

To get a faster SAT algorithm for𝐶 using the assumed algorithm,

we may start by offloading some of the work of satisfiability onto

the circuit itself, with the following “OR trick” used in several fine-

grained algorithms [2, 19, 67]. WLOG suppose 𝑛 is even. Take the

first 𝑛/2 inputs of 𝐶 , and consider the circuit 𝐶′
on 𝑛/2 inputs,

defined as follows:

𝐶′ (𝑥1, . . . , 𝑥𝑛/2) =
∨

(𝑎1,...,𝑎𝑛/2) ∈{0,1}2𝑛/2
𝐶 (𝑎1, . . . , 𝑎𝑛/2, 𝑥1, . . . , 𝑥𝑛/2) .

That is, 𝐶′
takes an OR over all possible assignments to the first

𝑛′ := 𝑛/2 variables of 𝐶 , plugging each assignment into a separate

copy of 𝐶 . Observe that 𝐶′
has 2

𝑛′+𝑜 (𝑛′)
size, and 𝐶′

is satisfiable

if and only if 𝐶 is satisfiable. Now, if we apply our assumed SAT

algorithm to 𝐶′
, we get a new SAT algorithm for 2

𝑜 (𝑛)
-size 𝐶 that

runs in only 2
𝑛′+𝑜 (𝑛′) = 2

𝑛/2+𝑜 (𝑛)
time, beating the brute-force

algorithm which runs in 2
𝑛+𝑜 (𝑛)

time.

Our key observation is that the new SAT algorithm just derived

can be combined with the assumed SAT algorithm, to “improve

upon itself”. After we split the variables into two parts, instead of

taking an OR over all possible assignments, we can run the new

2
𝑛/2+𝑜 (𝑛)

-time SAT algorithm for 2
𝑜 (𝑛)

-size circuits. For example,

suppose we split the 𝑛 variables into an “outer” set of 𝑛/3 and an

“inner” set of 2𝑛/3. After any assignment to the outer variables

is made, the remaining SAT instance on 𝑛′ = 2𝑛/3 variables can
be solved in 2

𝑛′/2+𝑜 (𝑛′) = 2
𝑛/3+𝑜 (𝑛)

time, using our new SAT al-

gorithm. Therefore, by calling our assumed SAT algorithm on a
2
𝑛/3+𝑜 (𝑛) -size circuit that encodes the new SAT algorithm, with the
𝑛/3 outer variables as input, we can derive an even faster SAT algo-

rithm, running in 2
𝑛/3+𝑜 (𝑛)

time on 2
𝑜 (𝑛)

-size circuits. Repeating

the argument, we can achieve 2
𝑛/𝑘+𝑜 (𝑛)

time for any constant𝑘 ≥ 1.

The following proof is a very general form of this intuition.

Proof. We will inductively show that for every 𝜀 > 0, there is

an algorithm which can decide satisfiability for 2
𝑜 (𝑛)

-size circuits

in 2
𝜀𝑛

time.

Start with a Circuit SAT instance 𝐶 of 2
𝑜 (𝑛)

size and 𝑛 inputs.

Let 𝑆 be an algorithm running in 2
𝛽𝑛+𝑜 (𝑛)

time that takes as input

the description ⟨𝐶′⟩ of a 2𝛼𝑛+𝑜 (𝑛) -size circuit 𝐶′
, and determines

satisfiability for 𝐶′
.

Our first improved algorithm F1 can be described as follows.

Given ⟨𝐶⟩, the algorithm constructs a circuit 𝐷 on𝑚 = 𝑛/(1 + 𝛼)
inputs with the following behavior. First, given an assignment 𝑥 of

𝑚 = 𝑛/(1+𝛼) bits,𝐷 feeds the bits of 𝑥 into the first𝑛/(1+𝛼) inputs
of𝐶 . Formally, this is implemented by calling Circuit Eval(⟨𝐶⟩ , 𝑥).
(The circuit 𝐷 has the description of 𝐶 hard-coded.) By Lemma 2.1,

Circuit Eval(⟨𝐶⟩ , 𝑥) outputs the description ⟨𝐶′⟩ of a circuit 𝐶′

with 𝑚′ = 𝛼𝑛/(1 + 𝛼) inputs and 2
𝑜 (𝑛) ≤ 2

𝑜 (𝑚)
size. Next, 𝐷

enumerates all possible 2
𝑚′

assignments to the𝑚′
inputs of𝐶′

, and

takes the OR over all such assignments. Thus, 𝐷 has size

2
𝑚′+𝑜 (𝑚) ≤ 2

𝛼𝑛/(1+𝛼)+𝑜 (𝑛) ≤ 2
𝛼𝑚+𝑜 (𝑚) ,

and has 𝑚 inputs. Note that a description ⟨𝐷⟩ of 𝐷 can be con-

structed in 2
𝛼𝑚+𝑜 (𝑚)

time: we only have to write down a descrip-

tion of the OR of 2
𝑚′

circuits of the form Circuit Eval(⟨𝐶′⟩ , 𝑎),
over all possible 𝑎 ∈ {0, 1}𝑚′

. Furthermore, observe that 𝐷 has

𝑚 = 𝑛/(1 + 𝛼) inputs.
Finally, the algorithm feeds the description ⟨𝐷⟩ of size 2𝛼𝑚+𝑜 (𝑚)

to the assumed algorithm 𝑆 , which runs in time

2
𝛽𝑚+𝑜 (𝑚) ≤ 2

𝛽𝑛/(1+𝛼)+𝑜 (𝑛) ,

and outputs a yes/no answer. Observe that 𝐶 is satisfiable if and

only if 𝑆 (⟨𝐷⟩) outputs yes: there is a satisfying assignment to 𝐶

if and only if there is a partial assignment 𝑎 ∈ {0, 1}𝑚′
such that

Circuit Eval(⟨𝐶′⟩ , 𝑎) is satisfiable, which is true if and only if

𝑆 (⟨𝐷⟩) outputs yes.
From the above, we conclude that satisfiability of circuits of

2
𝑜 (𝑛)

size can be determined in 2
𝛽𝑛/(1+𝛼)+𝑜 (𝑛)

time. Denote this

algorithm by F1.
We can repeat the above argument, but instead of enumerating

all possible assignments (simulating brute-force search), we call

the algorithm F1 instead. Suppose inductively that satisfiability of

circuits of𝑛 inputs and 2𝑜 (𝑛) size can be determined by an algorithm

F𝑘 running in 2
𝑓𝑘𝑛+𝑜 (𝑛)

time. (For instance, in the base case, we

know we can set 𝑓0 := 𝛽 , by our hypothesis.)

In particular, let 𝛿 ∈ (0, 1) be a parameter, and let 𝐶 be a 2
𝑜 (𝑛)

-

size circuit on 𝑛 inputs as before. We make a circuit 𝐷 on 𝑚 =

(1 − 𝛿)𝑛 inputs with the following behavior: Given an assignment

𝑥 of𝑚 bits, 𝐷 plugs 𝑥 into the first (1 − 𝛿)𝑛 inputs of 𝐶 , yielding a

circuit 𝐶′
with 𝛿𝑛 inputs and 2

𝑜 (𝑛)
size, by calling Circuit Eval

appropriately as before. Next,𝐷 calls the algorithm F𝑘 to determine

the satisfiability of 𝐶′
(instead of computing a large OR), which

takes 2
𝛿 𝑓𝑘𝑛+𝑜 (𝑛)

time; converting this call into a circuit, the size is

2
𝛿 𝑓𝑘𝑛+𝑜 (𝑛)

. Now we have a circuit 𝐷 on𝑚 = (1− 𝛿)𝑛 inputs of size

2
𝛿 𝑓𝑘𝑛+𝑜 (𝑛)

which is equi-satisfiable to our original circuit 𝐶 .

1379

Self-Improvement for Circuit-Analysis Problems STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Setting 𝛿 such that 𝛿 𝑓𝑘𝑛 = 𝛼𝑚, our circuit 𝐷 will have 𝑚 in-

puts and 2
𝛼𝑚+𝑜 (𝑚)

size, so its satisfiability can be determined in

2
𝛽𝑚+𝑜 (𝑚)

time, by our original assumption. Note that

𝛿 𝑓𝑘𝑛 = 𝛼𝑚 ⇐⇒ 𝛿 𝑓𝑘 = 𝛼 (1 − 𝛿),

so setting 𝛿 = 𝛼/(𝑓𝑘 + 𝛼) accomplishes this. We can therefore

determine satisfiability of 𝐶 in time

2
𝛽𝑚+𝑜 (𝑚) ≤ 2

𝛽 (1−𝛼/(𝑓𝑘+𝛼))𝑛+𝑜 (𝑛) .

Let this new SAT algorithm be F𝑘 .
Define the sequence

𝑓0 := 𝛽, 𝑓𝑘+1 := 𝛽 (1 − 𝛼/(𝑓𝑘 + 𝛼)).

The above argument shows that we can construct a sequence of

algorithms F𝑘 for computing satisfiability of 2
𝑜 (𝑛)

-size circuits,

where the 𝑘th algorithm runs in time 2
𝑓𝑘𝑛+𝑜 (𝑛)

. For all 𝛼 > 0, we

claim that the sequence {𝑓𝑘 } is monotone decreasing, and {𝑓𝑘 }
converges to

𝑓∞ = 𝛽 − 𝛼.
First, we note that the sequence {𝑓𝑘 } is monotone increasing, by

an easy induction proof.

Base Case: Showing 𝑓0 > 𝑓1 is equivalent to showing 1 >

1 − 𝛼/(1 + 𝛼), i.e., 𝛼/(1 + 𝛼) > 0, which is true since 𝛼 > 0.

Inductive Step: Suppose 𝑓𝑘−1 > 𝑓𝑘 . Recall 𝛽 > 𝛼 > 0. We derive

𝑓𝑘+1 = 𝛽 (1 − 𝛼/(𝑓𝑘 + 𝛼)) < 𝛽 (1 − 𝛼/(𝑓𝑘−1 + 𝛼)) = 𝑓𝑘
⇔ 1 − 𝛼/(𝑓𝑘 + 𝛼) < 1 − 𝛼/(𝑓𝑘−1 + 𝛼)

⇔ 𝛼/(𝑓𝑘 + 𝛼) > 𝛼/(𝑓𝑘−1 + 𝛼)
⇔ 𝑓𝑘 + 𝛼 < 𝑓𝑘−1 + 𝛼

⇔ 𝑓𝑘 < 𝑓𝑘−1,which we assumed true.

This completes the induction.

Since every 𝑓𝑘 ≥ 0 and {𝑓𝑘 } is monotone decreasing, the se-

quence has a limit point satisfying the equation

𝑓∞ = 𝛽 (1 − 𝛼/(𝑓∞ + 𝛼)),

which has the two solutions 𝑓∞ ∈ {0, 𝛽 − 𝛼}.
The entire construction above is highly uniform, in that a de-

scription of the 𝑘-th algorithm can be constructed in 𝑂 (𝑔(𝑘)) time

for a computable function 𝑔, given that the description length of 𝑆

is 𝑂 (1). To ensure that the final running time of our algorithm is

indeed 2
(𝛽−𝛼)𝑛+𝑜 (𝑛)

, we can repeat the above construction for a

slightly unbounded value 𝑘 = 𝑘 (𝑛), and note that the sequence {𝑓𝑘 }
converges rapidly. We consider two cases. First, for the case where

𝛼 = 𝛽 , one can prove by induction that 𝑓𝑘 = 𝛼/(𝑘 + 𝛼). Therefore
in this case, for any function 𝑘 (𝑛) ≥ 𝜔 (1), we have 𝑓𝑘 (𝑛) ≤ 𝑜 (1).
For the case where 𝛼 < 𝛽 , we have 𝑓0 − 𝑓1 = 𝛽𝛼/(1 + 𝛼), and

𝑓𝑘 − 𝑓𝑘+1 = 𝛽
(
1 − 𝛼

𝑓𝑘−1 + 𝛼

)
− 𝛽

(
1 − 𝛼

𝑓𝑘 + 𝛼

)
= 𝛽𝛼

(
1

𝑓𝑘 + 𝛼
− 1

𝑓𝑘−1 + 𝛼

)
= 𝛽𝛼

(
𝑓𝑘−1 − 𝑓𝑘

(𝑓𝑘 + 𝛼) (𝑓𝑘−1 + 𝛼)

)
≤ 𝛼

𝛽
· (𝑓𝑘−1 − 𝑓𝑘),

where the last inequality follows since 𝑓𝑘 +𝛼 and 𝑓𝑘−1+𝛼 are both at

least 𝛽 (the sequence {𝑓𝑘 } is monotone non-decreasing). Therefore

for 𝛽 > 𝛼 and any function 𝑘 (𝑛) ≥ 𝜔 (1), 𝑓𝑘 (𝑛) is within 𝑜 (1) of
𝛽 − 𝛼 . This completes the proof. □

By tracking the dependence of the circuit size throughout the

proof, one can prove a slightly stronger result than Theorem 1.1, in

which the resulting algorithm can solve Circuit SAT rapidly on

circuits that are mildly exponential in size.

Theorem 3.1 ([68]). Suppose there are 𝛽 ≥ 𝛼 > 0 such that
Circuit SAT on 2

𝛼𝑛+𝑜 (𝑛) -size circuits can be solved in 2
𝛽𝑛+𝜀𝑛 time,

for all 𝜀 > 0. Then for every 𝜀 > 0, there is a 𝛾 > 0 such that
Circuit SAT on 2

𝛾𝑛-size circuits can be solved in 2
(𝛽−𝛼)𝑛+𝜀𝑛 time.

3.1 Discussion on the Proof
To illustrate the generality of Theorem 1.1, let us discuss various

modifications and extensions that can be made. First, note the

construction in the proof of Theorem 1.1 works equally well for

relating the circuit complexity of Circuit SAT and Large Circuit

SAT. Replacing every occurrence of “algorithm in time 𝑇 ” with

“circuit of size 𝑇 ” in the proof, every step goes through. We have:

Theorem 3.2. Let 𝛼, 𝛽 > 0 with 𝛼 ≤ 𝛽 . Suppose Circuit SAT on
2
𝛼𝑛+𝑜 (𝑛) -size circuits can be decided with a circuit family of 2𝛽𝑛+𝑜 (𝑛)

size. Then Circuit SAT on 2
𝑜 (𝑛) -size circuits can be decided with a

family of 2(𝛽−𝛼)𝑛+𝑜 (𝑛) size.

Note that the construction in the proof of Theorem 1.1 is highly

non-black-box: to solve Circuit SAT on smaller circuits, we use the

descriptions of circuits solving Circuit SAT in order to form the in-

puts to other Circuit SAT circuits, and achieve a faster algorithm in

each inductive stage. At the same time, there is a sense in which the

above proof relativizes. Let 𝐴 : {0, 1}★ → {0, 1} be an arbitrary ora-

cle, and recall that an 𝐴-oracle circuit is a Boolean circuit equipped

with the usual gates, along with copies of 𝐴𝑘 : {0, 1}𝑘 → {0, 1},
where 𝐴𝑘 is the restriction of 𝐴 to 𝑘-bit inputs. (Note that because

of the unbounded fan-in of the 𝐴𝑘 gates, the size of an 𝐴-oracle

circuit is defined to be the number of wires, instead of gates.) Given
a nontrivially-sized 𝐴-oracle circuit family for solving Large Cir-

cuit SAT on 𝐴-oracle circuits, the same argument above can be

used to derive a smaller 𝐴-oracle circuit family for Circuit SAT on

𝐴-oracle circuits of subexponential size.

Theorem 3.3. Let 𝛼, 𝛽 > 0 with 𝛼 ≤ 𝛽 . Suppose Circuit SAT

on 2
𝛼𝑛+𝑜 (𝑛) -size 𝐴-oracle circuits can be decided by an 𝐴-oracle

circuit family of 2𝛽𝑛+𝑜 (𝑛) size (respectively, an 𝐴-oracle multitape
TM running in 2

𝛽𝑛+𝑜 (𝑛) time). Then Circuit SAT on 2
𝑜 (𝑛) -size 𝐴-

oracle circuits can be decided by an 𝐴-oracle family of 2(𝛽−𝛼)𝑛+𝑜 (𝑛)

size (respectively, an𝐴-oracle multitape TM running in 2(𝛽−𝛼)𝑛+𝑜 (𝑛)

time).

It is crucial in our proof that the same oracle 𝐴 appears in both

the instances of Circuit SAT and the algorithmic model solving

Circuit SAT: Theorem 1.9 shows that lower bounds such as NP ≠

NC1
would follow if we could strengthen self-improvement so

that the algorithm can use a stronger oracle than the Circuit SAT

instance.

Furthermore, the proof of Theorem 1.1 works with minor mod-

ifications for #Circuit SAT, where we wish to count the number

1380

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada R. Ryan Williams

of SAT assignments to a given circuit, as well as Q-Circuit SAT,

the quantified version of Circuit SAT, where we are given a fully-

quantified sentence of the form

(𝑄1 𝑥1) · · · (𝑄𝑛 𝑥𝑛) [𝐶 (𝑥1, . . . , 𝑥𝑛)],
where each 𝑄𝑖 ∈ {∃,∀}, 𝐶 is a circuit, and we wish to decide if the

sentence is true or false.

Reminder of Theorem 1.5. Theorem 1.1 holds for #Circuit SAT

and Q-Circuit SAT in place of Circuit SAT.

Proof. (Sketch) We describe how to modify the proof of Theo-

rem 1.1 to accommodate #Circuit SAT and Q-Circuit SAT.

For Q-Circuit SAT, instead of computing an OR of 2
𝑚′

copies

in the base case over all𝑚′
-bit partial assignments, we compute

an appropriate Boolean formula of 2
𝑚′

copies, according to the

quantifier types of the 𝑚′
variables (existential variables get an

OR, universal variables get an AND). The remainder of the proof is

essentially unchanged: as long as our variable splitting and subse-

quent calls respect the quantifier order of the variables, the rest of

the argument goes through.

For #Circuit SAT, instead of computing an OR of 2
𝑚′

copies in

the base case, we instead use a circuit Count which takes 𝑁 = 2
𝑚′

bits of input (one for each of the𝑚′
-bit partial assignments), and

outputs the 𝑂 (log𝑁)-bit count of the number of ones in the input.

It is well-known that such a circuit Count can be implemented in

𝑂 (𝑁) size, and the construction is uniform (see for example [28]).

This yields a circuit 𝐷 which has 𝑚 inputs, 2
𝑚′+𝑜 (𝑚′)

size, and

𝑡 = 𝑂 (𝑚′) outputs. Let the 𝑡 output bits be numbered𝑂𝑡−1, . . . ,𝑂0,

so that 𝑂𝑡−1 is the high-order bit of Count, 𝑂0 is the low-order

bit, and so on. Define 𝐷𝑖 to be the subcircuit of 𝐷 with only one

output gate 𝑂𝑖 . Then the overall #SAT count of 𝐶 can be recovered

by computing the sum

𝑡−1∑︁
𝑖=0

2
𝑖 · #Circuit SAT(𝐷𝑖), (1)

which can be done in poly(𝑚′) ≤ poly(𝑛) time, given the vari-

ous #Circuit SAT(𝐷𝑖). This extra calculation only multiplies the

overall running time by poly(𝑛) ≤ 2
𝑜 (𝑛)

.

To see why (1) is correct, think of the 𝑡-bit output of the circuit

𝐷 as an integer in {0, 1, . . . , 2𝑡 − 1}, where 𝐷𝑖 outputs the 𝑖-th bit

of this integer. We observe:

#Circuit SAT(𝐶) =
∑︁

𝑎∈{0,1}𝑚
𝐷 (𝑎) (by definition of 𝐷)

=
∑︁

𝑎∈{0,1}𝑚

(
𝑡−1∑︁
𝑖=0

2
𝑖 · 𝐷𝑖 (𝑎)

)
(by definition of the circuits 𝐷𝑖)

=

𝑡−1∑︁
𝑖=0

2
𝑖 · ©­«

∑︁
𝑎∈{0,1}𝑚

𝐷𝑖 (𝑎)ª®¬
=

𝑡−1∑︁
𝑖=0

2
𝑖 · #Circuit SAT(𝐷𝑖) .

In the inductive step, the circuit 𝐷 takes in a partial assignment

𝑥 of𝑚 bits, plugs 𝑥 into the circuit 𝐶 , then calls an algorithm for

#Circuit SAT on the reduced circuit, which then outputs a binary

count of the number of satisfying assignments. As in the previous

paragraph, we can break 𝐷 into 𝑡 = 𝑂 (𝑛) subcircuits 𝐷𝑡−1, . . . , 𝐷0

where 𝐷𝑖 outputs the 𝑖-th bit of the binary count. Calling the origi-

nal assumed #Circuit SAT algorithm on each 𝐷𝑖 (𝑥) which has𝑚

inputs, we can determine the overall #SAT count using the formula

(1). Again, this only multiplies the overall running time by poly(𝑛)
overhead, and computes the exact number of SAT assignments. □

An Equivalence. We now turn to proving an equivalence between

solving 𝜀-Large Circuit SAT for some 𝜀 > 0 and solving 𝑐-Large

Circuit SAT for every 𝑐 ≥ 0, as mentioned in the Introduction.

Reminder of Theorem 1.4. The following are equivalent:
(1) There is an 𝜀 ∈ (0, 1) such that 𝜀-Large Circuit SAT is in

𝑁 1+𝑜 (1) time.
(2) For every 𝛼 > 0 (including arbitrarily large 𝛼), 𝛼-Large

Circuit SAT is in 𝑁 1+𝑜 (1) time.

Proof. Clearly (2) implies (1). We prove that (1) implies (2).

Assume Circuit SAT on 𝑁 size and 𝜀 log(𝑁) inputs is in 𝑁 1+𝑜 (1)

time for some 𝜀 > 0. For every parameter 𝛼 > 0, we want to solve

Circuit SAT on 𝑁 size with 𝛼 log(𝑁) inputs. There are two cases:

Suppose 𝛼 ≤ 𝜀. Then given a circuit 𝐶 of 𝑁 size and 𝛼 log(𝑁)
inputs, simply add (𝜀 −𝛼) log(𝑁) extra “dummy” inputs that do not

connect to the rest of 𝐶 . We obtain a circuit 𝐶′
of size 𝑂 (𝑁) with

𝜀 log(𝑁) inputs, and Circuit SAT for 𝐶′
can be solved in 𝑁 1+𝑜 (1)

time.

If 𝛼 > 𝜀, then let 𝑡 be the smallest integer such that 𝛼 ≤ 𝑡𝜀. Add
“dummy” inputs to the circuit 𝐶 so that 𝐶 has exactly 𝑡𝜀 log(𝑁)
inputs, and split the inputs of 𝐶 into 𝑡 parts of 𝜀 log(𝑁) variables
each.

Set 𝐶0 := 𝐶 . We will show that for all 𝑖 = 0, . . . , 𝑡 − 1, we can

replace our given circuit 𝐶𝑖 of size 𝑁
1+𝑜 (1)

and (𝑡 − 𝑖)𝜀 log(𝑁)
inputs with an equi-satisfiable circuit 𝐶𝑖+1 that has size 𝑁 1+𝑜 (1)

and (𝑡 − (𝑖 + 1))𝜀 log(𝑁) inputs. Given the circuit 𝐶𝑖 with (𝑡 −
𝑖)𝜀 log(𝑁) inputs, the circuit 𝐶𝑖+1 will first evaluate 𝐶𝑖 on its first

(𝑡 − (𝑖 + 1))𝜀 log(𝑁) inputs, leaving the last 𝜀 log(𝑁) inputs free.
The resulting circuit description of size 𝑁 1+𝑜 (1)

is then fed to the

Circuit SAT algorithm for size 𝑁 and 𝜀 log(𝑁) inputs, which runs

in𝑁 1+𝑜 (1)
time. Converting all the above to circuitry yields a circuit

𝐶𝑖+1 of (𝑡 − (𝑖 + 1))𝜀 log(𝑁) inputs and (𝑁 1+𝑜 (1))1+𝑜 (1) = 𝑁 1+𝑜 (1)

size which is equi-satisfiable with 𝐶𝑖 .

As the final circuit 𝐶𝑡 has no inputs and is equi-satisfiable to

𝐶0 = 𝐶 , we obtain an 𝑁 1+𝑜 (1)
time algorithm for determining

satisfiability of 𝐶 . □

In fact, the equivalence can be strengthened even further, to

extensions of satisifability that correspond to constant levels of

the polynomial hierarchy. We naturally define Σ𝑘 𝜀-Large Circuit
SAT to be the restriction of Q-Circuit SAT to circuits with 𝑁 size,

𝜀 log(𝑁) variables (all quantified), such that it is a “Σ𝑘 -SAT” in-
stance: namely, the variables can be partitioned into 𝑘 contiguous

blocks, where the first block contains only existentially quantified

variables, and for 𝑖 = 2, . . . , 𝑘 , block 𝑖 contains only universally

quantified variables if 𝑖 is even, and existentially quantified vari-

ables if 𝑖 is odd. Observe that Σ1 𝜀-Large Circuit SAT is equivalent

to 𝜀-Large Circuit SAT, and Σ𝑘 𝛼-Large Circuit SAT corresponds

1381

Self-Improvement for Circuit-Analysis Problems STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

to a polynomial-time solvable version of the Σ𝑘P-complete problem

Σ𝑘 -SAT [9].

Theorem 3.4 (Extension of Theorem 1.4). The following are
equivalent:

(1) There is an 𝜀 ∈ (0, 1) such that 𝜀-Large Circuit SAT is in
𝑁 1+𝑜 (1) time.

(2) For every 𝛼 > 0 (including arbitrarily large 𝛼), 𝛼-Large
Circuit SAT is in 𝑁 1+𝑜 (1) time.

(3) For every 𝑘 ≥ 1 and every 𝛼 > 0, Σ𝑘 𝛼-Large Circuit SAT

is in 𝑁 1+𝑜 (1) time.

Proof. (1) ⇐⇒ (2) follows from Theorem 1.4. (3) implies (2)

by setting 𝑘 = 1.

We prove that (2) implies (3). Given an instance𝐶 of the problem

Σ𝑘Circuit SAT with 𝛼 log(𝑁) variables and a circuit predicate of

size 𝑁 , first split the variables into ⌈𝑐/𝛼⌉ parts of at most 𝛼 log(𝑁)
variables each. Next, split every 𝛼 log(𝑁)-variable part that con-
tains both existential and universal variables (“straddling” multiple

quantifier blocks) into smaller parts which only contain variables of

the same quantifier type (either all-existential, or all-universal). As

there are only 𝑘 total quantifier blocks, this extra splitting creates

at most 𝑘 − 1 more parts. Thus the total number of parts ℓ is at most

𝑘 + ⌈𝑐/𝛼⌉, each part has variables of exactly one quantifier type,

and each part has at most 𝛼 log(𝑁) variables.
Let 𝐶0 := 𝐶 . Applying an analogous argument as in the proof of

Theorem 1.4, given a circuit 𝐶𝑖 of size 𝑁
1+𝑜 (1)

with ℓ − 𝑖 variable
parts, in 𝑁 1+𝑜 (1)

time we can obtain an equivalent circuit 𝐶𝑖+1 of
size 𝑁 1+𝑜 (1)

with ℓ − (𝑖 + 1) variable parts, starting by removing

the part that is last in quantification order, and ending with the part

that is first in quantification order. Repeating for ℓ − 1 times, we

reduce the Σ𝑘Circuit SAT problem to satisfiability on a circuit of

size 𝑁 1+𝑜 (1)
with 𝛼 log(𝑁) variables, which can be determined in

𝑁 1+𝑜 (1)
time by assumption. The only remaining issue is how to

handle those parts with universally quantified variables. Recalling

that

(∀𝑥1, . . . , 𝑥𝑡) [𝐶 (𝑥1, . . . , 𝑥𝑡)] ⇐⇒ ¬(∃𝑥1, . . . , 𝑥𝑡) [¬𝐶 (𝑥1, . . . , 𝑥𝑡)],
we can decide (∀𝑥1, . . . , 𝑥𝑡) [𝐶 (𝑥1, . . . , 𝑥𝑡)] by calling

Circuit SAT(¬𝐶)
and flipping the bit of the answer. This amounts to feeding the

description of¬𝐶𝑖 (rather than𝐶𝑖) into our circuit𝐶𝑖+1, and flipping
the output of the Circuit SAT algorithm implemented in𝐶𝑖+1. This
completes the proof. □

To conclude the discussion, we establish some simple conse-

quences of Theorem 1.1.

Reminder of Corollary 1.2. ETH implies that, for every 𝜀 > 0,
𝜀-Large Circuit SAT is not solvable in 𝑁 1+𝑜 (1) time.

Proof. We prove the contrapositive. Given an instance of Large

Circuit SAT with 𝜀 log(𝑁) inputs and 𝑁 size, let 𝑛 = 𝜀 log(𝑁), so
that the circuit size is 𝑁 = 2

𝜀𝑛
. Assuming there is an algorithm

running in 𝑁 1+𝑜 (1) = 2
𝜀𝑛+𝑜 (𝑛)

time, setting 𝛼 = 𝛽 = 𝜀, Theorem 1.1

implies that for every 𝜀′ > 0, Circuit SAT on 2
𝑜 (𝑛)

-size circuits

can be solved in 2
𝜀′𝑛

time. This contradicts (a very weak form of)

ETH. □

Reminder of Corollary 1.3. Assume for all 𝜀 > 0, Circuit SAT

on 2𝑜 (𝑛) -size circuits cannot be solved in 2(1−𝜀)𝑛 time. Then for every
𝛼 ≥ 0 and every 𝜀 > 0, Circuit SAT on 2𝛼𝑛+𝑜 (𝑛) -size circuits cannot
be solved in time 2𝛼𝑛+(1−𝜀)𝑛+𝑜 (𝑛) .

Proof. Again we prove the contrapositive. Suppose there is an

𝛼, 𝜀 > 0 such that Circuit SAT on 2
𝛼𝑛+𝑜 (𝑛)

-size circuits has an

2
𝛼𝑛+(1−𝜀)𝑛+𝑜 (𝑛)

-time algorithm. Setting 𝛽 := 𝛼 +1−𝜀, Theorem 1.1

implies that for every 𝜀′ > 0, Circuit SAT on 2
𝑜 (𝑛)

-size circuits

has an 2
(1−𝜀)𝑛+𝜀′𝑛+𝑜 (𝑛)

time algorithm. □

4 A PARAMETERIZED COMPLEXITY
COUNTERPART

Here, we prove Theorem 1.7 from the Introduction. Although the

high-level idea of the circuit constructions in this section is similar

to that for other self-improvement results in the paper, the analysis

and parameter settings turn out to be quite different. For simplicity,

we will phrase the results in terms of circuits for Circuit SAT, but

(as in other sections) the results hold for any algorithmic model for

which time 𝑇 algorithms can be simulated by size 𝑇 1+𝑜 (1)
circuits.

Following the notation of parameterized complexity, in the follow-

ing we let 𝑘 be the number of input variables to a circuit, and let 𝑛

be the circuit size.

We start with a lemma showing how to compose two param-

eterized circuit families for Circuit SAT to obtain a new circuit

family:

Lemma 4.1. Suppose there are 𝑎, 𝑐 > 0 and𝑏, 𝑑 > 1 such that for all
𝑛, 𝑘 ∈ N, there is a𝑂 (2𝑎𝑘+𝑛𝑏)-size circuit𝐴𝑛,𝑘 and a𝑂 (2𝑐𝑘+𝑛𝑑)-size
circuit 𝐵𝑛,𝑘 , both solving Circuit SAT on instances with 𝑛 size and
𝑘 variables. Then there is a circuit family 𝐴′

𝑛,𝑘
solving Circuit SAT

(with 𝑛 size and 𝑘 variables) having size𝑂 (2𝑎′ ·𝑘 +𝑛𝑏′) for 𝑎′ = 𝑎𝑑𝑐
𝑎𝑑+𝑐

and 𝑏′ = 𝑏𝑑 .

Proof. Our overall approach is similar to the proof of Theo-

rem 1.1: split the set of 𝑘 inputs into two parts, call the Circuit SAT

circuit 𝐴𝑛,𝑘 on one part forming a new circuit, and call the circuit

𝐵𝑛,𝑘 for Circuit SAT on the new circuit obtained.

Let 𝜌 ∈ (0, 1) be a parameter to be set later. Given a circuit

𝐶 (𝑥,𝑦) of size 𝑛 (represented in 𝑂 (𝑛 log𝑛) bits) with 𝜌𝑘 inputs 𝑥

and (1 − 𝜌)𝑘 inputs 𝑦, we construct a new circuit 𝐶′
defined as

follows:

𝐶′ (𝑦) := 𝐴𝑛,𝜌𝑘 (𝐶 (𝑥,𝑦)).
That is,𝐶′

has (1− 𝜌)𝑘 free inputs of𝐶 ; for any such assignment to

those inputs, 𝐶′
calls 𝐴𝑛,𝜌𝑘 on the resulting circuit of size at most

𝑛 with 𝜌𝑘 inputs. By assumption, the size of the new circuit 𝐶′
is

|𝐶′ | ≤ 𝑂 (𝑛 log𝑛 + 2
𝑎𝜌𝑘 + 𝑛𝑏) .

Note that 𝐶′
is satisfiable if and only if 𝐶 is satisfiable. To solve

satisfiability for 𝐶′
, we can call 𝐵𝑛′,(1−𝜌)𝑘 on 𝐶′

, where 𝑛′ is the
size of𝐶′

. The resulting composition of𝐴𝑛,𝜌𝑘 and 𝐵𝑛′,(1−𝜌)𝑘 yields

a circuit for satisfiability of 𝑛-size 𝑘-input circuits, which has size

𝑂 (2𝑐 (1−𝜌)𝑘 + (𝑛 · poly(log𝑛) + 2
𝑎𝜌𝑘 + 𝑛𝑏)𝑑)

≤ 𝑂 (2𝑐 (1−𝜌)𝑘 + 2
𝑎𝑑𝜌𝑘 + 𝑛𝑏𝑑).

1382

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada R. Ryan Williams

To minimize the dependence on 𝑘 , we set 𝜌 = 𝑐
𝑎𝑑+𝑐 . The size is then

𝑂 (2𝑎′𝑘 + 𝑛𝑏′), where 𝑎′ = 𝑎𝑑𝑐
𝑎𝑑+𝑐 and 𝑏′ = 𝑏𝑑 . □

A key observation is that, when 𝑎 = 𝑐 in the above, the new

exponent 𝑎′ = 𝑎 · 𝑑
𝑑+1 < 𝑎. Indeed, this (strict) inequality is true for

any 𝑎 ≥ 𝑐 . Therefore, applying a Circuit SAT circuit family of size

2
𝑎𝑘 + 𝑛𝑏 to itself in lemma 4.1 yields a decrease in the exponent

with respect to 𝑘 . We will exploit this fact.

Let us begin with a simpler statement which is easier to prove,

but still conveys the main idea:

Theorem 4.2 (Theorem 1.7, Simplified). There is a 𝑐 > 1 such
that Circuit SAT has circuits of size 𝑂 (𝑐𝑘) + 𝑛1+𝑜 (1) , if and only if
for every 𝑐 > 1, Circuit SAT has circuits of size 𝑂 (𝑐𝑘) + 𝑛1+𝑜 (1) .

Proof. One direction is immediate: the statement with a univer-

sal quantifier on 𝑐 clearly implies the statement with an existential

quantifier on 𝑐 . For the other direction, assume we start with cir-

cuits of 𝑂 (2𝑎𝑘) + 𝑛1+𝑜 (1) size for Circuit SAT for some constant

𝑎 ≥ 1. For a large constant 𝑡 , we will apply Lemma 4.1 for 𝑡 times to

these circuits. In particular, we start by using the assumed circuits

in place of 𝐴𝑛,𝜌𝑘 , and in place of 𝐵𝑛′,(1−𝜌)𝑘 in Lemma 4.1. In each

subsequent application of Lemma 4.1, we take the Circuit SAT

circuits obtained from the previous application, and again apply

those circuits twice in Lemma 4.1 to form new circuits (we use

the ciircuits from the previous application as circuit 𝐴𝑛,𝜌𝑘 , and as

circuit 𝐵𝑛′,(1−𝜌)𝑘). Since in our case we always have 𝑏 = 1 + 𝑜 (1)
and 𝑑 = 1 + 𝑜 (1), when we apply circuits of size 𝑂 (2𝑐𝑘) + 𝑛1+𝑜 (1)
to circuits of size𝑂 (2𝑎𝑘) +𝑛1+𝑜 (1) in Lemma 4.1, we obtain circuits

of size

2
𝑎′𝑘+𝑜 (𝑘) + 𝑛1+𝑜 (1) ,

where 𝑎′ = 𝑎𝑐/(𝑎 +𝑐). (Here we are using the fact that 𝑛 (1+𝑜 (1))2 ≤
𝑛1+𝑜 (1) .) Since we are always applying the same Circuit SAT cir-

cuit twice to obtain the next circuit, we also have 𝑎 = 𝑐 . Therefore

after one application of Lemma 4.1, we have

𝑎′ = 𝑎2/(2𝑎) = 𝑎/2,
square-rooting the exponential dependence on the number of vari-

ables 𝑘 . After 𝑡 applications, it follows by induction that the circuit

size is at most 2
𝑎𝑘/2𝑡+𝑜 (𝑘) + 𝑛1+𝑜 (1) . Therefore we can set 𝑡 to be

an arbitrarily large constant, and obtain circuits of 2
𝛼𝑘 + 𝑛1+𝑜 (1)

size for Circuit SAT, for any desired 𝛼 > 0. □

Now we move to the version of Theorem 1.7 presented in the

introduction, in which a slightly super-linear dependence on 𝑛 is

allowed; the proof turns out to be more delicate.

Theorem 4.3 (Theorem 1.7, Rephrased in terms of circuits).

There is a 𝑐 > 1 such that for all 𝜀 > 0,Circuit SAT has𝑂 (𝑐𝑘+𝑛1+𝜀)-
size circuits, if and only if for every 𝑐 > 1 and 𝜀 > 0, Circuit SAT

has 𝑂 (𝑐𝑘 + 𝑛1+𝜀)-size circuits.

Proof. One direction is immediate: the statement with a univer-

sal quantifier on 𝑐 clearly implies the statement with an existential

quantifier on 𝑐 . For the other direction, we show:

If there is an 𝑎 ≥ 1 so that for all 𝑘, 𝑛 there are circuits

𝐴𝑛,𝑘 solving Circuit SAT (on instances with 𝑘 inputs

and 𝑛 size) of size𝑂 (2𝑎𝑘 +𝑛1+𝜀) for all 𝜀 > 0, then for

all 𝛼, 𝛽 > 0 there are𝑂 (2𝛼𝑘 + 𝑛1+𝛽)-size circuits 𝐴′
𝑛,𝑘

solving Circuit SAT (on 𝑘 inputs and 𝑛 size).

Let 𝛼, 𝛽 > 0 be arbitrarily small, and let 𝑎 ≥ 1 be given. Let 𝑏 = 1+𝜀
for an arbitrarily small 𝜀 > 0 that we will set later, so that our

assumed Circuit SAT circuits have size 𝑂 (2𝛼𝑘 + 𝑛𝑏).
Let 𝑡 ≥ 1 be an integer parameter. Following the proof of

Theorem 4.2, we apply Lemma 4.1 for 𝑡 times to our assumed

Circuit SAT circuit, where each time we use the Circuit SAT

circuits previously obtained twice: as the circuit 𝐴𝑛,𝑘 and as the

circuit 𝐵𝑛,𝑘 .

Let us analyze the effect of these Lemma 4.1 applications on the

exponent pairs 𝑎, 𝑏. At the start, we have 𝑎1 = 𝑎 and 𝑏1 = 𝑏. After

the (𝑖 + 1)-th application of Lemma 4.1, we obtain circuits of size

𝑂 (2𝑎𝑖+1 ·𝑘 + 𝑛𝑏𝑖+1), where

𝑎𝑖+1 =
(𝑎𝑖)2 · 𝑏𝑖
𝑎𝑖 · 𝑏𝑖 + 𝑎𝑖

= 𝑎𝑖 ·
𝑏𝑖

1 + 𝑏𝑖
,

and

𝑏𝑖+1 = (𝑏𝑖)2 .
Inductively, we obtain 𝑏𝑖+1 = 𝑏2

𝑖
and

𝑎𝑖+1 = 𝑎 ·
𝑖−1∏
𝑗=0

(
𝑏2

𝑗

1 + 𝑏2𝑗

)
.

Recall that 𝑏 = 1 + 𝜀. We want to show that 𝜀 > 0 and 𝑡 ≥ 1 can be

set in such a way that two inequalities hold simultaneously:

𝑏𝑡+1 = (1 + 𝜀)2
𝑡

≤ 1 + 𝛽, (2)

and

𝑎𝑡+1 = 𝑎 ·
𝑡−1∏
𝑗=0

(
𝑏2

𝑗

1 + 𝑏2𝑗

)
≤ 𝛼. (3)

For now, let us suppose that after the parameter 𝑡 is determined,

𝜀 > 0 is always set small enough that (1 + 𝜀)2𝑡 = 1 + 𝛽 , satisfying
inequality (2). That is, we think of 𝜀 as a function of 𝑡 : whatever 𝑡

is set to, 𝜀 will be set accordingly. Now we can focus on satisfying

inequality (3). First, we rewrite (3) so that it reads:

𝑎𝑡+1 = 𝑎 ·
𝑡−1∏
𝑗=0

(
1 − 1

1 + 𝑏2𝑗
)
≤ 𝛼.

Consider applying the inequality 1 − 𝑥 ≤ 𝑒−𝑥 (for 𝑥 ≥ 0) to each

term of the above product. Inequality (3) would then be satisfied, if

the following inequality is true:

𝑎 · 𝑒
−∑𝑡−1

𝑗=0
1

1+𝑏2𝑗 ≤ 𝛼. (4)

Focusing on the exponent in inequality (4), we see that

𝑡−1∑︁
𝑗=0

1

1 + 𝑏2𝑗
≥ 𝑡

1 + 𝑏2𝑡
=

𝑡

1 + (1 + 𝜀)2𝑡
,

since each of the 𝑡 terms is lower bounded by 1/(1 + (1 + 𝜀)2𝑡).
Recall that we have resolved to set 𝜀 > 0 so that (1 + 𝜀)2𝑡 = 1 + 𝛽 .
Therefore, if 𝑡 is set so that

𝑎 · 𝑒−
𝑡

2+𝛽 ≤ 𝛼, (5)

1383

Self-Improvement for Circuit-Analysis Problems STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

we would satisfy inequality (4), and thereby inequality (3). But

inequality (5) is true as long as

𝑡 ≥ (2 + 𝛽) ln(𝑎/𝛼).

Recall that 𝑎, 𝛼, 𝛽 were all fixed constants. Therefore, by setting 𝑡

large enough, and then setting 𝜀 > 0 small enough that (1 + 𝜀)2𝑡 =

1 + 𝛽 , we have obtained a circuit family of size 𝑂 (2𝛼𝑘 + 𝑛1+𝛽). □

One can also derive analogous “parameterized self-improvement”

theorems for #Circuit SAT and Q-Circuit SAT; we omit the de-

tails, but they can be interpolated from the other proofs in this

paper.

5 OPEN PROBLEMS
We conclude with a few intriguing open problems.

Could self-improvement go all the way down to P = NP? Is
it possible that (say) linear-time SAT algorithms for exponential-size

circuits might imply polynomial-time algorithms for polynomial-

size circuits, concluding P = NP? There seem to be bottlenecks in

the current argument that prevent us from going significantly below

subexponential time, but they could possibly be circumvented with

a little cleverness. Could self-improvement be strengthened in the

non-uniform case to conclude NP ⊂ P/poly?
Could self-improvement-style results hold for other com-

binatorial problems, besides just circuit-based ones? On the

face of it, it seems crucial in our self-improvement results that the

algorithm solving the problem can be modeled extremely efficiently,

within an instance of the problem. But given the ubiquity of com-

plete problems for NP, PSPACE, and so on, it seems possible that

self-improvement phenomena could arise in many domains. To give

one example of where something like self-improvement may arise

in graph algorithms, an insightful paper of Or Zamir [70] uses the

container method to show (among other results) that if maximum

independent set (MIS) can be solved in 𝑐𝑛 time on 𝑛-node graphs for

some 𝑐 > 1, then it can be solved even faster on 𝑑-regular graphs, in

𝑐𝑛/2+𝑜𝑑 (𝑛) time. It follows from this reduction that, if there were a

fine-grained reduction (running in subexponential time, preserving

the parameter 𝑛) from the general case of MIS to the 𝑑-regular case

for large enough constant 𝑑 , then ETH would be false: we could

repeatedly alternate between the hypothetical fine-grained reduc-

tion and Zamir’s reduction, reducing the running time exponent

for MIS to be as small as we liked.

Can the uniform SYM◦SYM circuit lower bounds be further
improved? In principle, some fast matrix multiplication algorithms

can be implemented in TC0
[51] so one might hope to reduce the

complexity of the hard function further in our lower bound. There

may also be a way to improve the degree of the polynomial in

the lower bound, by applying self-improvement. Finally, it seems

plausible that our lower bound might be extended to prove that,

for every 𝑑 , there is a 𝑐𝑑 > 1 such that Circuit Eval does not have

depth-𝑑 SYM circuits of 𝑂 (𝑛𝑐𝑑) gates.

Acknowledgements. I am grateful to Lijie Chen, Russell Impagli-

azzo, Valentine Kabanets, Mohan Paturi, Rahul Santhanam, and

Michael Wehar for interesting and useful discussions. I also thank

Shyan Akmal and the STOC’24 reviewers for comments and correc-

tions on an earlier version of the manuscript. Some results in the

parameterized complexity setting were originally obtained in col-

laboration with Nikhil Vyas, but he (sadly) declined co-authorship

on this paper. Many thanks to the Simons Institute for providing a

stimulating environment during the Meta-Complexity and Satisfia-

bility Extended Reunion programs in Spring 2023.

This paper is dedicated to the memory of my undergraduate

mentor Juris Hartmanis, who posed research questions of the form

that are addressed in this paper (see also [4]). Namely, Prof. Hartma-

nis often asked me: “If P = NP, then can SAT be solved in 𝑛10 time?”

(One may substitute “10” with any specific constant.) The present

paper is my current best attempt to prove that some “fine-grained”

version of his question can be answered positively.

REFERENCES
[1] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and

Ryan Williams. 2016. Simulating branching programs with edit distance and

friends: or: a polylog shaved is a lower bound made. In STOC. ACM, 375–388.

https://doi.org/10.1145/2897518.2897653

[2] Amir Abboud, Ryan Williams, and Huacheng Yu. 2015. More applications of the

polynomial method to algorithm design. In SODA. 218–230.
[3] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. 2018. Bootstrapping

variables in algebraic circuits. In STOC. ACM, 1166–1179. https://doi.org/10.

1145/3188745.3188762

[4] Eric Allender, Jin-Yi Cai, Lance Fortnow,William Gasarch, Neil Immerman, Stuart

Kurtz, James Royer, and Ryan Williams. 2022. Open Problems Column: Open

Problems by or Inspired by Juris Hartmanis. SIGACT News 53, 4 (2022), 26.
[5] Eric Allender and Vivek Gore. 1994. A Uniform Circuit Lower Bound for the

Permanent. SIAM J. Comput. 23, 5 (1994), 1026–1049. https://doi.org/10.1137/

S0097539792233907

[6] Eric Allender and Michal Koucký. 2010. Amplifying lower bounds by means of

self-reducibility. J. ACM 57, 3 (2010), 14:1–14:36.

[7] Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, and V. Vinay.

2001. Time-Space Tradeoffs in the Counting Hierarchy. In CCC. 295–302. https:

//doi.org/10.1109/CCC.2001.933896

[8] Josh Alman, Timothy M. Chan, and R. Ryan Williams. 2016. Polynomial Rep-

resentations of Threshold Functions and Algorithmic Applications. In FOCS.
467–476.

[9] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern
Approach. Cambridge University Press.

[10] Vishwas Bhargava, Sumanta Ghosh, Zeyu Guo, Mrinal Kumar, and Chris Umans.

2022. Fast Multivariate Multipoint Evaluation Over All Finite Fields. In FOCS.
IEEE, 221–232.

[11] Vishwas Bhargava, Sumanta Ghosh, Mrinal Kumar, and Chandra Kanta Mohapa-

tra. 2022. Fast, algebraic multivariate multipoint evaluation in small characteristic

and applications. In STOC. ACM, 403–415.

[12] Stephen A. Bloch, Jonathan F. Buss, and Judy Goldsmith. 1998. Sharply Bounded

Alternation and Quasilinear Time. Theory Comput. Syst. 31, 2 (1998), 187–214.
https://doi.org/10.1007/s002240000085

[13] Allan Borodin and R. Moenck. 1974. Fast Modular Transforms. J. Comput. Syst.
Sci. 8, 3 (1974), 366–386. https://doi.org/10.1016/S0022-0000(74)80029-2

[14] Mark Braverman, Young Kun-Ko, and Omri Weinstein. 2015. Approximating the

best Nash Equilibrium in no(log n)
-time breaks the Exponential Time Hypothesis.

In SODA. 970–982. https://doi.org/10.1137/1.9781611973730.66

[15] Jonathan F. Buss and Judy Goldsmith. 1993. Nondeterminism Within P. SIAM J.
Comput. 22, 3 (1993), 560–572. https://doi.org/10.1137/0222038

[16] Samuel R. Buss and Ryan Williams. 2015. Limits on Alternation Trading Proofs

for Time-Space Lower Bounds. Comput. Complex. 24, 3 (2015), 533–600. https:

//doi.org/10.1007/s00037-015-0104-9

[17] Liming Cai and Jianer Chen. 1997. On the Amount of Nondeterminism and the

Power of Verifying. SIAM J. Comput. 26, 3 (1997), 733–750. https://doi.org/10.

1137/S0097539793258295

[18] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2006. A Duality

between Clause Width and Clause Density for SAT. In CCC. 252–260.
[19] Timothy M. Chan and R. Ryan Williams. 2021. Deterministic APSP, Orthogonal

Vectors, and More: Quickly Derandomizing Razborov-Smolensky. ACM Trans.
Algorithms 17, 1 (2021), 2:1–2:14. https://doi.org/10.1145/3402926

[20] Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal,

and Rahul Santhanam. 2020. Beyond Natural Proofs: Hardness Magnification

and Locality. In ITCS. 70:1–70:48. https://doi.org/10.4230/LIPIcs.ITCS.2020.70

[21] Lijie Chen, Ce Jin, and R. Ryan Williams. 2019. Hardness Magnification for all

Sparse NP Languages. In FOCS. 1240–1255.

1384

https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1145/3188745.3188762
https://doi.org/10.1145/3188745.3188762
https://doi.org/10.1137/S0097539792233907
https://doi.org/10.1137/S0097539792233907
https://doi.org/10.1109/CCC.2001.933896
https://doi.org/10.1109/CCC.2001.933896
https://doi.org/10.1007/s002240000085
https://doi.org/10.1016/S0022-0000(74)80029-2
https://doi.org/10.1137/1.9781611973730.66
https://doi.org/10.1137/0222038
https://doi.org/10.1007/s00037-015-0104-9
https://doi.org/10.1007/s00037-015-0104-9
https://doi.org/10.1137/S0097539793258295
https://doi.org/10.1137/S0097539793258295
https://doi.org/10.1145/3402926
https://doi.org/10.4230/LIPIcs.ITCS.2020.70

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada R. Ryan Williams

[22] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. 2019.

Relations and Equivalences Between Circuit Lower Bounds and Karp-Lipton

Theorems. In CCC. 30:1–30:21. https://doi.org/10.4230/LIPIcs.CCC.2019.30

[23] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. 2020. On Exponential-

Time Hypotheses, Derandomization, and Circuit Lower Bounds: Extended Ab-

stract. In FOCS. IEEE, 13–23.
[24] James W Cooley and John W Tukey. 1965. An algorithm for the machine cal-

culation of complex Fourier series. Mathematics of computation 19, 90 (1965),

297–301.

[25] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized
Algorithms. Springer. https://doi.org/10.1007/978-3-319-21275-3

[26] Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Known Algorithms

for Edge Clique Cover are Probably Optimal. SIAM J. Comput. 45, 1 (2016), 67–83.
https://doi.org/10.1137/130947076

[27] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen.

2014. Exponential Time Complexity of the Permanent and the Tutte Polynomial.

ACM Trans. Algorithms 10, 4 (2014), 21:1–21:32. https://doi.org/10.1145/2635812

[28] Evgeny Demenkov, Arist Kojevnikov, Alexander S. Kulikov, and Grigory

Yaroslavtsev. 2010. New upper bounds on the Boolean circuit complexity

of symmetric functions. Inf. Process. Lett. 110, 7 (2010), 264–267. https:

//doi.org/10.1016/j.ipl.2010.01.007

[29] Rodney G. Downey and Michael R. Fellows. 1999. Parameterized Complexity.
Springer. https://doi.org/10.1007/978-1-4612-0515-9

[30] Charles M. Fiduccia. 1972. Polynomial Evaluation via the Division Algorithm:

The Fast Fourier Transform Revisited. In STOC. 88–93.
[31] Jörg Flum, Martin Grohe, and Mark Weyer. 2006. Bounded fixed-parameter

tractability and log
2n nondeterministic bits. J. Comput. Syst. Sci. 72, 1 (2006),

34–71. https://doi.org/10.1016/j.jcss.2005.06.003

[32] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas.

2005. Time-space lower bounds for satisfiability. J. ACM 52, 6 (2005), 835–865.

[33] Sumanta Ghosh, Prahladh Harsha, Simao Herdade, Mrinal Kumar, and Ramprasad

Saptharishi. 2023. Fast Numerical Multivariate Multipoint Evaluation. Electronic
Colloquium on Computational Complexity TR23-033 (2023).

[34] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. 2008. Data reduction

and exact algorithms for clique cover. ACM J. Exp. Algorithmics 13 (2008). https:

//doi.org/10.1145/1412228.1412236

[35] Russell Impagliazzo and Ramamohan Paturi. 1999. Complexity of 𝑘-SAT. In CCC.
237–240. https://doi.org/10.1109/CCC.1999.766282

[36] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which Problems

Have Strongly Exponential Complexity? J. Comput. Syst. Sci. 63, 4 (2001), 512–530.
https://doi.org/10.1006/jcss.2001.1774

[37] Stasys Jukna. 2012. Boolean function complexity: advances and frontiers. Vol. 27.
Springer Science & Business Media.

[38] Daniel M. Kane and Ryan Williams. 2016. Super-linear gate and super-quadratic

wire lower bounds for depth-two and depth-three threshold circuits. In STOC.
633–643.

[39] Ravi Kannan. 1983. Alternation and the Power of Nondeterminism. In STOC.
ACM, 344–346.

[40] Kiran S. Kedlaya and Christopher Umans. 2011. Fast Polynomial Factorization

and Modular Composition. SIAM J. Comput. 40, 6 (2011), 1767–1802.
[41] Chandra M. R. Kintala and Patrick C. Fischer. 1977. Computations with a Re-

stricted Number of Nondeterministic Steps (Extended Abstract). In STOC. ACM,

178–185. https://doi.org/10.1145/800105.803407

[42] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. 2019. Near-optimal

Bootstrapping of Hitting Sets for Algebraic Circuits. In SODA. SIAM, 639–646.

https://doi.org/10.1137/1.9781611975482.40

[43] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. 2023. Near-Optimal

Bootstrapping of Hitting Sets for Algebraic Models. Theory of Computing 19, 12

(2023), 1–30. https://doi.org/10.4086/toc.2023.v019a012

[44] Francois Le Gall and Florent Urrutia. 2018. Improved Rectangular Matrix Multi-

plication using Powers of the Coppersmith-Winograd Tensor. In SODA. SIAM,

1029–1046.

[45] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. 2003. Playing large

games using simple strategies. In Proceedings 4th ACM Conference on Electronic
Commerce (EC). ACM, 36–41. https://doi.org/10.1145/779928.779933

[46] Richard J. Lipton and Ryan Williams. 2013. Amplifying circuit lower bounds

against polynomial time, with applications. Computational Complexity 22, 2

(2013), 311–343. https://doi.org/10.1007/s00037-013-0069-5

[47] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. 2019. Weak lower

bounds on resource-bounded compression imply strong separations of complexity

classes. In STOC. ACM, 1215–1225.

[48] Abhijit Mudigonda and R. Ryan Williams. 2021. Time-Space Lower Bounds for

Simulating Proof Systems with Quantum and Randomized Verifiers. In ITCS
(LIPIcs, Vol. 185). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 50:1–50:20.

[49] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. 2019. Hardness Magnifi-

cation near State-Of-The-Art Lower Bounds. In 34th Computational Complexity
Conference, CCC 2019. 27:1–27:29. https://doi.org/10.4230/LIPIcs.CCC.2019.27

[50] Igor Carboni Oliveira and Rahul Santhanam. 2018. Hardness Magnification for

Natural Problems. In FOCS. 65–76.
[51] Ojas Parekh, Cynthia A. Phillips, Conrad D. James, and James B. Aimone. 2018.

Constant-Depth and Subcubic-Size Threshold Circuits for Matrix Multiplication.

In SPAA. ACM, 67–76. https://doi.org/10.1145/3210377.3210410

[52] Ramamohan Paturi and Pavel Pudlák. 2010. On the complexity of circuit satisfia-

bility. In STOC. ACM, 241–250.

[53] Wolfgang J. Paul. 1976. Realizing Boolean Functions on Disjoint sets of Variables.

Theor. Comput. Sci. 2, 3 (1976), 383–396. https://doi.org/10.1016/0304-3975(76)

90089-X

[54] Nicholas Pippenger and Michael J. Fischer. 1979. Relations among complexity

measures. J. ACM 26, 2 (1979), 361–381.

[55] Aviad Rubinstein. 2016. Settling the Complexity of Computing Approximate

Two-Player Nash Equilibria. In FOCS. 258–265.
[56] András Z. Salamon and Michael Wehar. 2022. Superlinear Lower Bounds Based

on ETH. In STACS (LIPIcs, Vol. 219). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 55:1–55:16. https://doi.org/10.4230/LIPIcs.STACS.2022.55

[57] Rahul Santhanam. 2023. An Algorithmic Approach to Uniform Lower Bounds.

Electronic Colloquium on Computational Complexity (ECCC) TR23-028 (2023),

100.

[58] Aravind Srinivasan. 2003. On the approximability of clique and related maxi-

mization problems. J. Comput. Syst. Sci. 67, 3 (2003), 633–651. https://doi.org/10.

1016/S0022-0000(03)00110-7

[59] Suguru Tamaki. 2016. A Satisfiability Algorithm for Depth Two Circuits with a

Sub-Quadratic Number of Symmetric and Threshold Gates. Electronic Colloquium
on Computational Complexity (ECCC) TR16-100 (2016). http://eccc.hpi-web.de/

report/2016/100

[60] Leslie G. Valiant. 1976. Universal Circuits (Preliminary Report). In STOC. ACM,

196–203.

[61] Dieter van Melkebeek. 2006. A Survey of Lower Bounds for Satisfiability and

Related Problems. Found. Trends Theor. Comput. Sci. 2, 3 (2006), 197–303. https:

//doi.org/10.1561/0400000012

[62] Dieter van Melkebeek and Ran Raz. 2005. A time lower bound for satisfiability.

Theor. Comput. Sci. 348, 2-3 (2005), 311–320. https://doi.org/10.1016/j.tcs.2005.09.

020

[63] Dieter van Melkebeek and Thomas Watson. 2012. Time-Space Efficient Simu-

lations of Quantum Computations. Theory Comput. 8, 1 (2012), 1–51. https:

//doi.org/10.4086/toc.2012.v008a001

[64] Virginia Vassilevska Williams. 2018. On some fine-grained questions in algo-

rithms and complexity. In Proceedings of the International Congress of Mathemati-
cians (ICM). World Scientific, 3447–3487.

[65] Heribert Vollmer. 1999. Introduction to Circuit Complexity - A Uniform Approach.
Springer. https://doi.org/10.1007/978-3-662-03927-4

[66] Ryan Williams. 2013. Improving Exhaustive Search Implies Superpolynomial

Lower Bounds. SIAM J. Comput. 42, 3 (2013), 1218–1244. https://doi.org/10.1137/

10080703X

[67] RyanWilliams. 2014. Nonuniform ACC circuit lower bounds. J. ACM 61, 1 (2014),

2.

[68] Ryan Williams. 2023. Self-Improvement for Circuit-Analysis Problems. Electron.
Colloquium Comput. Complex. TR23-082 (2023). ECCC:TR23-082 https://eccc.

weizmann.ac.il/report/2023/082

[69] R. Ryan Williams. 2018. New Algorithms and Lower Bounds for Circuits With

Linear Threshold Gates. Theory of Computing 14, 1 (2018), 1–25.

[70] Or Zamir. 2023. Algorithmic Applications of Hypergraph and Partition Contain-

ers. In STOC. ACM, 985–998. https://doi.org/10.1145/3564246.3585163

Received 12-NOV-2023; accepted 2024-02-11

1385

https://doi.org/10.4230/LIPIcs.CCC.2019.30
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/130947076
https://doi.org/10.1145/2635812
https://doi.org/10.1016/j.ipl.2010.01.007
https://doi.org/10.1016/j.ipl.2010.01.007
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1016/j.jcss.2005.06.003
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/800105.803407
https://doi.org/10.1137/1.9781611975482.40
https://doi.org/10.4086/toc.2023.v019a012
https://doi.org/10.1145/779928.779933
https://doi.org/10.1007/s00037-013-0069-5
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.1145/3210377.3210410
https://doi.org/10.1016/0304-3975(76)90089-X
https://doi.org/10.1016/0304-3975(76)90089-X
https://doi.org/10.4230/LIPIcs.STACS.2022.55
https://doi.org/10.1016/S0022-0000(03)00110-7
https://doi.org/10.1016/S0022-0000(03)00110-7
http://eccc.hpi-web.de/report/2016/100
http://eccc.hpi-web.de/report/2016/100
https://doi.org/10.1561/0400000012
https://doi.org/10.1561/0400000012
https://doi.org/10.1016/j.tcs.2005.09.020
https://doi.org/10.1016/j.tcs.2005.09.020
https://doi.org/10.4086/toc.2012.v008a001
https://doi.org/10.4086/toc.2012.v008a001
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1137/10080703X
https://doi.org/10.1137/10080703X
https://eccc.weizmann.ac.il/report/2023/082
https://eccc.weizmann.ac.il/report/2023/082
https://doi.org/10.1145/3564246.3585163

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Related Work

	3 Self-Improvement for Circuit Analysis Problems
	3.1 Discussion on the Proof

	4 A Parameterized Complexity Counterpart
	5 Open Problems
	References

