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Abstract: This paper determines by how much alternative electricity generation sources—natural
gas, nuclear, hydro, and renewables—displace electricity generation from coal and oil. It does so
by employing a first-difference model and a mean-group estimator applied to a panel that spans
1985–2019 for 27 high- and 13 middle-income countries. As such, our approach avoids/addresses
several statistical issues common in long-macro panel analyses—heterogeneity, nonstationarity, and
cross-sectional dependence—that have largely been ignored/unaddressed in previous displacement
studies. Ultimately, we find that the displacement effect is small and only marginally significant for
nuclear, and is significant though less than unity for natural gas and hydro, whereas intermittent
renewables (solar and wind) have unitary displacement effect. These results suggest a substantially
greater displacement potential for alternative generation sources than typically found by the previous
literature. In other words, increasing hydro and wind and solar are all impactful ways to decarbonize
the electricity system.

Keywords: electricity generation; displacement; energy transition; renewables; carbon mitigation;
nonfossil fuels

1. Introduction

One of the clearest routes to lower carbon emissions is to reduce the carbon intensity of
electricity generation. Electricity generated from natural gas emits considerably less carbon
than does electricity generated from coal and oil. (Energy security is another motivation to
reduce electricity generation from oil.) Electricity generation sources like nuclear, hydro,
solar, wind, and geothermal are essentially carbon-free at the margins. Yet, empirical
analyses on the displacement impact of low- and zero-carbon energy sources often have
yielded disappointing results (e.g., [1–6]); other analyses have calculated only a modest
displacement effect that was less than one-to-one/unitary (e.g., [7,8]). The current paper
revisits this displacement question and finds a substantial and much larger impact than
did those previous papers for nonfossil fuels—particularly solar and wind—in displacing
coal and oil used in electricity generation.

The displacement literature comes in two flavors: (1) the dependent variable is in
energy consumption terms (e.g., [1,3–6] and the present paper), and (2) the dependent
variable is in carbon emissions terms (e.g., [2,7–9]). It is important to note that when dis-
placement papers consider carbon emissions, the focus is necessarily on carbon emissions
from electricity generation since these are the emissions that electricity from nuclear or
renewable sources would displace. (Energy from nuclear or renewable sources is almost
never directly consumed; rather, such sources are used to generate electricity.) Hence,
the displacement literature is distinct from the larger literature that analyzes general,
economy-wide carbon emissions.

York [1] determined that increasing nonfossil fuels used to generate electricity by
one unit resulted in a lowering of fossil fuels used in such generation by less than one-
tenth of the same unit. Greiner et al. [3] estimated that an increase in kWh per capita
generated from nonhydro renewable sources lowered fossil-fuel-generated electricity by
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only 0.2 kWh per capita. However, renewable-generated electricity offset nuclear-generated
electricity by a factor greater than one. Sikirica [4] determined that core nations—primarily
the same countries considered here—would need 2.6 megawatts per capita of alternative
fuel generation to displace one megawatt per capita of fossil fuel generation. Rather
et al. [5] found nearly identical results for a panel of seven (of the 20) Asia Pacific Economic
Cooperation economies (for slightly different energy aggregations, i.e., renewable electricity
displacing non-renewables). Considering 73 economies, Rather and Mahalik [6] estimated
an even lower displacement coefficient, suggesting that six units of renewable energy are
necessary to displace one unit of fossil fuel energy.

Liddle and Sadorsky [9] found that merely increasing the consumption of nonfos-
sil fuels has only a moderate impact on reducing carbon emissions, i.e., a displacement
elasticity around 0.4. However, increasing the share of nonfossil fuels used in electricity
generation—and thereby ensuring that at least some of the increase in nonfossil fuels comes
at the expense of fossil fuels—had a near unitary impact on lowering carbon emissions.
Greiner et al. [2] found that increased CO2 emissions from natural-gas-generated electricity
did not suppress CO2 emissions from coal-generated electricity—the emissions displace-
ment coefficient for natural gas was always statistically insignificant. Lastly, Sovacool
et al. [7] estimated that the share of electricity from nuclear production had a statistically
insignificant impact on per capita carbon emissions from electricity, heat, and industry,
whereas the share of electricity from renewable (including hydro) production had a nega-
tive, statistically significant coefficient of between −0.3 to −0.4. By contrast, Fell et al. [8],
considering the Sovacool et al. [7] data but using fixed effects to measure a cotemporane-
ous effect rather than the lagged effect that [7] measured, estimated (particularly) large,
statistically significant offset impacts for both nuclear and renewables of around −1.0 and
−1.6, respectively.

All these papers used models with the variables in levels and they included on the
right-hand side (RHS) GDP per capita along with either additional aggregations of energy
consumption or additional aggregations of carbon emissions from fossil fuels, which are
necessarily defined by the same aggregation of energy consumption. (In addition, some
models included other variables that are often used to determine energy demand such as
urbanization and manufacturing share of GDP.) Since energy consumption/demand is a
function of GDP per capita (or income) and energy prices (see, e.g., [10]), these models have
substantial RHS endogeneity; and it is not clear that the models actually are measuring
displacement. Hence, we think a displacement model should be focused on change and
have variables in first differences rather than in levels (unlike most other papers, Liddle and
Sadorsky [9] included a lagged dependent variable and so an element of a difference-based
model). Also, it seems best not to include GDP per capita in order to not confound a
displacement model with a demand one.

Further, even though the variables analyzed can have different units, some papers
did not log-transform or otherwise center the variables (e.g., [1–4]). Further still, despite
considering datasets containing many time and country observations, most/several of
these analyses (e.g., [1,2,4,7,8]) ignored statistical issues that are important for long-macro
panels—nonstationarity, cross-sectional dependence, and heterogeneity (i.e., coefficients
are not the same for each country).

Our contributions to the displacement literature are several: (1) we consider data that
allow renewable energy to be disaggregated into solar, wind, and geothermal—unlike the
previously discussed papers; (2) we use an improved model with the variables in first
differences and with GDP excluded, and we demonstrate that the first-differencing and
GDP exclusion produce stationary and weakly cross-sectionally dependent residuals; and
(3) we employ a mean-group estimator that allows the country coefficients to differ. As a
result of these innovations, and in contrast to much of the earlier displacement literature,
we find coal and oil displacement effects that are significant for natural gas and hydro (but
less than unitary) and that are unitary for renewables (solar, wind, and geothermal) and for
intermittent renewables (solar and wind).
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2. Materials and Methods

We wanted to use data sources that are available without cost, are subject to review,
and allow for the disaggregation of renewable energy. So, the main source was the BP
Statistical Review of World Energy (July 2021). We collected data on electricity generation
in terawatt-hours for coal, oil, natural gas, nuclear, hydro, solar, wind, and geothermal.
Observations ran from 1985 to 2019 for 23 countries. The data were balanced, but the entries
for some countries in some years for some generation sources were zero. We collected data
for an additional 17 European countries from Eurostat. These data ran from 1990 to 2019.
The panel consisted of 27 high- and 13 middle-income countries. Appendix A Table A1
lists the panel countries by income-group classification and indicates their data source.

Figure 1 shows how the panel average for each of five electricity generation technology
shares has changed over 1990–2019. Hydro and nuclear have been effectively constant at
around 20–17% each. The share of coal and oil has been cut nearly in half, having been
displaced by increases in natural gas and, more recently, renewables (solar, wind, and
geothermal).
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Figure 1. Yearly panel average shares of electricity generation technologies over 1990–2019. Natgas =
natural gas; renew = wind + solar + geothermal.

Table 1 indicates the substantial variance within the 40-country panel of those tech-
nology shares. Over time and across countries, the average share for renewables was
low. Denmark was the country that (recently) reached 75% of electricity generation from
renewables (predominately from wind).

Table 1. Summary statistics for shares of electricity generation sources, 40 countries, 1985–2019.

Variable Obs Mean Std. Dev. Min Max

Share coal and oil 1315 0.41 0.26 0.00 0.99
Share natural gas 1315 0.19 0.18 0.00 0.79

Share nuclear 1315 0.16 0.20 0.00 0.80
Share hydro 1315 0.20 0.24 0.00 1.00

Share renewables 1315 0.04 0.07 0.00 0.75
Note: renewables = wind + solar + geothermal.

Figure 2 demonstrates in another way the diversity among the countries in generation
technologies. The figure displays the average share over the sample for each country.
All countries but Norway used coal and oil in electricity generation, but those fossil
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fuels’ prominence varied substantially. All countries used some renewables, but their
average share was small. Nearly all countries employed both natural gas and hydro, but
those technologies’ relative importance differed considerably. Lastly, many countries used
nuclear, but its share too had a large variance.
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Figure 2. Average shares of electricity generation for each country (over the sample). Natgas =
natural gas; renew = wind + solar + geothermal.

Since we wanted to know by how much coal and oil use in electricity generation
declines when the use of an alternative source increases, and since all the generation-based
variables were in the same units, we used a first difference in levels model. In addition, first-
differencing in levels rather than in logs meant that we did not have to adjust observations
that were zero. Table 2 displays the correlation matrix for the first-differenced indepen-
dent variables. The nonfossil-fuel-based sources were more (positively) correlated in the
all-country panel than in the high-income-only panel, perhaps because all forms of elec-
tricity continued to increase in middle-income countries, whereas electricity consumption
had mostly leveled in high-income countries (see, e.g., [11]). The main concern for multi-
collinearity was between wind and solar; however, first-differencing substantially reduced
the correlations among the variables (e.g., compare Table 2 to Appendix A Table A2).

Table 2. Independent variable correlation matrix.

All Countries (40)
∆Natural Gas ∆Nuclear ∆Hydro ∆Wind ∆Solar

∆natural gas 1
∆nuclear −0.0659 1
∆hydro −0.0952 0.0643 1
∆wind 0.2007 0.1959 0.317 1
∆solar 0.1232 0.2334 0.2124 0.7694 1
∆geo 0.0488 0.2244 0.2961 0.5747 0.6196

High-Income Countries (27)

∆natural gas 1
∆nuclear −0.0989 1
∆hydro −0.1809 −0.0954 1
∆wind 0.2483 −0.039 0.0792 1
∆solar 0.1732 −0.0172 0.0171 0.5564 1
∆geo −0.017 0.0415 0.0203 0.1243 0.165



Sustainability 2024, 16, 5319 5 of 11

Because we had sufficient observations for each country and because we believed that
countries would have different coefficients, we used a mean-group estimator (MG) that
first estimated country-specific regressions and then averaged those individual-country
coefficients to arrive at panel coefficients. When averaging those individual coefficients,
we followed the standard practice of robust regressions (see [12]), in which outliers are
weighted down in the calculation of the panel coefficient. For each regression, we confirmed
that the country-specific coefficients were not homogenous via a test based on [13]. This
test compares the difference between coefficients obtained from a fixed-effects regression
and the (averaged) coefficients obtained from an MG-based regression. So, while we were
interested in and reported coefficients drawn from a group of countries (as opposed to
being interested in a particular country’s coefficients), a fixed-effects-based estimator would
be biased.

Again, the dependent variable was based on the amount of electricity generated from
coal and oil. We included the amount of electricity generated from natural gas as an
independent variable, even though switching to natural gas cannot lead to decarbonization
per se, but because natural gas is the least carbon-intensive fossil fuel, its use marks an
improvement over coal-generated electricity. We implemented a nested modeling approach,
whereby the first equation considers the impact of natural gas and all nonfossil fuels
taken together:

∆CoalOilit = αi + β1
i ∆natgasit + β2

i ∆nonFossil f uelsit + εit (1)

where t represents the time dimension and i the country dimension; ∆ is the first-difference
operator; α is a cross-sectional specific constant; the βs are cross-sectional specific coef-
ficients to be estimated; CoalOil is the amount of electricity generated from coal and oil;
natgas is the amount of electricity generated from natural gas; nonFossilfuels is the amount
of electricity generated from the sum of nuclear, hydro, solar, wind, and geothermal; and
εit is the error term. The second equation further breaks down nonfossil fuel sources:

∆CoalOilit = αi + β1
i ∆natgasit + β2

i ∆nuclearitβ
3
i ∆hydroit + β4

i ∆renewablesit + εit (2)

where nuclear is the amount of electricity generated from nuclear; hydro is the amount of
electricity generated from hydro; and renewables is the amount of electricity generated from
the sum of wind, solar, and geothermal. The last equation explicitly separates solar, wind,
and geothermal (geo):

∆CoalOilit = αi + β1
i ∆natgasit + β2

i ∆nuclearit + β3
i ∆hydroit + β4

i ∆solarit + β5
i ∆windit + β6

i ∆geoit + εit (3)

Since we first-difference the variables, nonstationarity should not be an issue; however,
for each regression, we demonstrated via the Pesaran panel unit root (CIPS) test [14] that
the residuals were stationary. Cross-sectional dependence is another concern common
to macro panels; so, we performed another diagnostic test—a version of the Pesaran
cross-sectional dependence (CDw) test [15]—to show that a null hypothesis of weak cross-
sectional dependence cannot be rejected for the residuals. (Appendix B contains a detailed
discussion of these issues: heterogeneity, nonstationarity, and cross-sectional dependence.)

3. Results and Discussion

Table 3 contains the regression results for the various equations for both the all-country
and high-income-only country panels. As expected for first-difference models, the CIPS
test confirmed that all regression residuals were stationary. The CDw test could not
reject weak cross-sectional dependence in all the residuals, likely, at least in part, because
GDP was excluded from the models. (GDP is a particularly cross-sectionally correlated
variable among high-income countries, and its inclusion in models can make avoiding
cross-sectionally dependent residuals challenging; see, e.g., [10].) Lastly, the Pesaran and
Yamagata [13] test demonstrated that the country-specific coefficients were not homogenous
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for each regression (at the highest levels of significance); thus, fixed-effects estimators would
be biased and inconsistent. (Appendix B Table A3 contains a demonstration of the extent of
this bias in using fixed effects on Equation (4).)

Table 3. Regression results. Dependent variable change in electricity generated from coal and oil. All
variables are in level first differences. 1985–2019 (unbalanced).

High-Income 27 Countries High- and Middle-Income 40 Countries

Equation (1) Equation (2) Equation (3) Equation (4) Equation (1) Equation (2) Equation (3) Equation (4)

∆natgas −0.344 ****
(0.0870)

−0.341 ****
(0.0875)

−0.315 ****
(0.0796)

−0.341 ****
(0.0879)

−0.358 ****
(0.0749)

−0.336 ****
(0.0765)

−0.296 ****
(0.0723)

−0.342 ****
(0.0761)

∆nonFossilfuels −0.556 ****
(0.0918)

−0.509 ****
(0.0674)

∆nuclear −0.0771
(0.0472)

−0.0700 **
(0.0304)

−0.0757 *
(0.0409)

−0.0678 *
(0.0380)

−0.0495
(0.0324)

−0.0666 *
(0.0378)

∆hydro −0.527 ****
(0.130)

−0.559 ****
(0.1435)

−0.553 ****
(0.142)

−0.470 ****
(0.0843)

−0.512 ****
(0.0874)

−0.505 ****
(0.0897)

∆renewables −1.027 ****
(0.176)

−0.945 ****
(0.194)

∆solar −1.725 ***
(0.609)

−1.624 ***
(0.573)

∆wind −0.808 ***
(0.288)

−0.801 *
(0.411)

∆geo −0.180
(0.366)

−0.230
(0.446)

−0.0447
(0.324)

−0.154
(0.346)

∆(solar + wind) −0.854 ****
(0.152)

−1.126 ****
(0.245)

Obs 843 843 843 843 1275 1275 1275 1275
RMSE 18.04 15.94 14.93 15.2 24.9 22.8 22.1 22.5
CDw −0.9 −0.2 −0.5 −0.1 1.5 −0.3 1.2 0.5
CIPS I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)

P-Y adj. delta 12.7 **** 6.5 **** 4.4 **** 5.3 **** 20.4 **** 9.9 **** 5.5 **** 6.4 ****

Notes: ****, ***, **, and * indicate statistical significance at the 0.001, 0.01, 0.05, and 0.1 levels, respectively.
Standard errors are in parentheses (constructed nonparametrically as described in [16]). Diagnostics: RMSE = root
mean squared error. CDw = Juodis and Reese weighted CD test [17] on residuals. The null hypothesis is weak
cross-sectional dependence. CIPS = Pesaran CIPS test [14] on residuals. The null hypothesis is nonstationary.
I(0) = stationary. P-Y adj. delta = Pesaran and Yamagata test [13] for slope homogeneity. The null hypothesis is
mean-group average coefficients are the same as fixed-effects coefficients.

For Equation (1), the two variables (change in natural gas and change in nonfossil fuels)
were significant and had the expected signs. The fact that the coefficients were less than one
suggested that to some extent increases in natural gas or nonfossil fuel use accommodate
higher electricity demand (rather than just offset coal and oil use). For Equation (2), natural
gas, hydro, and renewables were all significant and negative. The coefficient for natural
gas was similar to that for Equation (1); the coefficient for hydro was similar to that for
nonfossil fuel in the previous regression. The coefficient for renewables was negative one
(or nearly so for the larger panel); so, renewables offset coal and oil entirely at the margin.
The coefficient for nuclear was small and marginally significant; but many countries did
not use nuclear, and Germany and Japan reduced their use substantially after the March
2011 earthquake and tsunami in Tohoku, Japan.

Equation (3) breaks out other renewables. The coefficients for natural gas, nuclear, and
hydro were similar to Equation (2)’s results. The coefficients for solar and wind were large—
near unity or higher in the case of solar—and negative, suggesting that these technologies
have potential to substantially offset the use of coal and oil, and similarly, to lower carbon
emissions. The coefficient for geothermal was small and insignificant (while negative), but
its use is mostly limited to countries near the Pacific Ring of Fire.

As discussed earlier, there was substantial correlation among solar, wind, and geother-
mal (for the high-income panel, only solar and wind were very correlated). So, there was a
multicollinearity concern for the Equation (3) regressions. But there was no clear way to
deal with this collinearity between solar and wind. Centering the variables did not appear
to help, and neither did logging and then differencing them. Ultimately, since we had no
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strong a priori reason to believe that solar and wind would be much different, we summed
the two intermittent renewables to create a combined variable and Equation (4):

∆CoalOilit = αi + β1
i ∆natgasit + β2

i ∆nuclearit + β3
i ∆hydroit + β4

i ∆(solar + wind)it + β5
i ∆geoit + εit (4)

The other variables (natural gas, nuclear, hydro, and geothermal) had very similar
coefficients in Equation (4) as in Equation (3), suggesting that the multicollinearity primarily
manifested itself between solar and wind. The coefficient for the intermittent renewable
variables (solar plus wind) was highly significant, negative and, depending on the panel, a
little larger than one or slightly below one (but unity was well within the 95% confidence
interval for that regression).

While the displacement factor was well under unity, the coefficients for natural gas
and hydro were robustly statistically significant, negative, and not negligible (i.e., they were
between −0.3 and −0.5). A significant displacement effect for natural gas runs in contrast
to Greiner et al. [2], which focused on carbon emissions. Of course, increasing natural gas at
the expense of coal-generated electricity only reduces carbon emissions relatively—it is not
a course for zero emissions. A small and only sometimes significant effect for nuclear is in
concert with Sovacool et al. [7], who found an insignificant impact for nuclear in mitigating
carbon emissions.

The most substantial finding here was the roughly one-to-one coal and oil displace-
ment effect for renewables (solar, wind, and geothermal) and for intermittent renewables
(solar and wind). Sovacool et al. [7] determined that renewables lowered carbon emissions,
but it is not clear that the impact they measured was as large as the one measured here.
A unitary displacement impact for renewables and a significant (but less than a unitary
impact) for hydro is in strong contrast to the early paper of York [1] that calculated an
effect of an order of magnitude smaller than unity. Greiner et al. [3] did find a fossil fuel
displacement effect for renewables when they restricted their sample to nuclear producing
nations. Greiner et al. [3] argued that the existence of several (e.g., nuclear plus renewables)
possible electricity-generation-displacement sources was important. However, they also
demonstrated that nuclear-producing nations had disproportionately higher incomes than
their whole sample.

While our all-country sample contained only 13 middle-income countries, it did
include many of the most important ones (e.g., Brazil, China, India, Indonesia, South
Africa). Our results were effectively the same for the 27-country high-income panel and
the 40-country panel. Yet, it is possible that adding more non-high-income countries could
impact the results. Indeed, the previous papers that uncovered little displacement effect
considered panels with many more middle- and low-income countries (likely because they
used sources that did not disaggregate renewables).

As mentioned before, electricity consumption has stagnated in most high-income
countries; thus, measuring displacement is more likely there than in countries for which
electricity consumption is still increasing. For countries with increasing electricity con-
sumption, different generation sources are more likely to be positively correlated (because
they are all increasing). But that does not mean there is no displacement outside high-
income countries. The displacement effect could be occurring in future growth—new
renewables are displacing the growth of fossil fuel generation rather than leading to the
decommissioning of still-viable plants.

There is one caveat for the finding of unitary displacement from intermittent renew-
ables (i.e., wind and solar). It is well understood that having a particularly high percentage
(e.g., over 50%) of intermittent renewables in an electricity system poses substantial chal-
lenges (see, e.g., [18,19]); but, except for Denmark, no country in our panel had a share of
wind and solar in their generation mix above 40%. So, were intermittent renewables to
become the primary generation source, their displacement coefficient might be expected to
decline at the margin.
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4. Summary and Conclusions

Again, in contrast to much of the earlier displacement literature (e.g., [1,3–6]), we
find electricity-generation coal- and oil-displacement effects that are unitary for solar and
wind, and that are significant but less than unitary for hydro. It would be useful for future
research to focus on the policies that encourage this substitution of nonfossil fuels for fossil
fuels in electricity generation.

Further, we argue that the model and methods used here mark an important improve-
ment over (most) previous displacement papers. First-differencing the variables and not
including GDP (on the RHS) is a better strategy for several reasons. A first-difference or
change model more closely approximates the displacement question than does a levels
model; if the (RHS) generation sources change, how does the generation source of interest
(LHS) change? And, first-differencing variables that are (likely) trending reduces the risk
that regression residuals will be nonstationary (i.e., that the regression will be spurious).
Including GDP along with various aggregations of energy consumption/generation creates
an obvious RHS endogeneity issue since GDP/income is the most important explainer of all
energy sources (services). In addition to avoiding RHS endogeneity, excluding GDP makes
it more probable that regression residuals will be only weakly cross-sectionally dependent
(and discards another highly trending/possibly nonstationary RHS variable). Lastly, when
one has sufficient time observations (say 25 or more for five or so independent variables),
allowing the country coefficients to be different (i.e., using a mean-group estimator) elim-
inates the homogeneity bias of the fixed-effects estimator. Again, these statistical issues,
common in long-macro panel analyses—heterogeneity, nonstationarity, and cross-sectional
dependence—have largely been ignored/unaddressed in previous displacement studies.
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Appendix A. Additional Tables

Table A1. Countries in the dataset by income classification and data source.

High-Income Middle-Income

Australia Japan Argentina
Austria a Netherlands Brazil
Belgium a Norway a Bulgaria a

Canada Poland China
Croatia a Portugal a India
Czechia a Slovakia a Indonesia

Denmark a Slovenia a Malaysia
Finland a South Korea Mexico
France a Spain Romania a

Germany Sweden a South Africa
Greece a Taiwan Thailand

Hungary a United Kingdom Turkey
Ireland a US Vietnam

Italy
Note: data are from the BP Statistical Review of World Energy except for those countries indicated with a, for
which the data are from Eurostat.

http://www.bp.com/statisticalreview
https://ec.europa.eu/eurostat/data/database
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Table A2. Correlation matrix for the independent variables in level terms.

All Countries (40)

natural gas nuclear hydro wind solar
natural gas 1

nuclear 0.7831 1
hydro 0.3026 0.3588 1
wind 0.5614 0.4179 0.5747 1
solar 0.3892 0.2518 0.4535 0.8487 1
geo 0.7931 0.7117 0.597 0.6873 0.5681

High-Income Countries (27)

natural gas 1
nuclear 0.7962 1
hydro 0.49 0.5645 1
wind 0.7314 0.4883 0.2812 1
solar 0.5516 0.2725 0.1612 0.7647 1
geo 0.8794 0.7844 0.5484 0.6445 0.5305

Appendix B. Nonstationarity, Cross-Sectional Dependence, and Heterogeneity in
Long-Macro Panel Data Models

Highly trending variables may have nonconstant means, i.e., be nonstationary. Such
variables are often made stationary by taking first differences; in such a case, they are I(1)
variables. Socio-economic variables (e.g., GDP, population) often have I(1) properties, or at
least they have nonconstant means. If these trending, possibly I(1) variables are included
in regressions without being treated (e.g., first-differenced), the resulting residuals likely
will/may have nonconstant means, too. When regression residuals are not stationary or
not I(0), the regression is referred to as spurious [20].

Dependence among units/countries violates a basic OLS assumption. Cross sectional
dependence (CSD) occurs in panel variables because of phenomena like international trade
and shared institutions (e.g., EU, IEA membership). CSD is measured by calculating the
correlation between units/countries. High cross-correlation is particularly prominent in
variables like GDP.

While adding time dummies to a regression can pick up global shocks, the country-
level dependence of variables like GDP is more pervasive, e.g., OECD country GDP growth
rates tend to be highly similar. CSD can be addressed/mitigated by adding cross-sectional
averages of the dependent and independent variables (see, e.g., [21]). CSD in the regression
residuals suggests omitted variable bias and endogeneity, and thus can indicate biased and
inconsistent estimates. In other words, merely adjusting the standard errors (via, e.g., the
Driscoll–Kraay method) is not sufficient.

Fixed-effects (FEs) estimators remove the unit/country means from the variables, and
so, like mean-group (MG) estimators, analyze over-time variance (as opposed to cross-
country variance). However, FEs estimators assume that the coefficients are the same for all
units/countries. On the other hand, MG estimators relax the homogeneity assumption by
calculating coefficients for each country and then averaging those heterogeneous/country-
specific coefficients to arrive at the panel coefficients. The assumption of homogeneous
coefficients is testable, and when such tests are administered, the typical results are rejection
in favor of heterogenous coefficients—for example, the present analysis and [11,22]. When
coefficient homogeneity is rejected, FEs estimators will be biased and inconsistent (if
homogeneity is not rejected, heterogenous/MG estimators would still be unbiased and
consistent, but they would be inefficient).

Appendix B Table A3 compares the previous results (Table 3) for Equation (4) (when
wind and solar are combined) to results from a two-way (country and time) fixed-effects
regression. Again, the assumption of homogenous coefficients was rejected. Because all
variables have been first-differenced, the fixed-effects residuals are stationary; however,
weak cross-sectional dependence in the residuals could be rejected (in favor of strong
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dependence). For most variables (the exception being hydro), the fixed-effects coefficients
are substantially different from the MG coefficients for both panels. For solar plus wind
and geothermal, the fixed-effects coefficients resulted in an even greater difference from
the mean-group coefficients and are, arguably, implausible.

Table A3. Regression results from two-way fixed effects compared to original (mean group) results.
Dependent variable change in electricity generated from coal and oil. All variables are in level first
differences. 1985–2019 (unbalanced). Equation (4) variables considered.

Estimator Mean Group (Table 3) Country and Time Fixed Effects

All Countries High-Income All Countries High-Income

∆natgas −0.342 ****
(0.0761)

−0.341 ****
(0.0879)

−0.60 ***
(0.18)

−0.74 ****
(0.17)

∆nuclear −0.0666 *
(0.0378)

−0.0757 *
(0.0409)

−0.24
(0.20)

−0.51 ****
(0.12)

∆hydro −0.505 ****
(0.0897)

−0.553 ****
(0.142)

−0.41 *
(0.22)

−0.55 **
(0.23)

∆(solar + wind) −1.126 ****
(0.245)

−0.854 ****
(0.152)

−0.10
(0.50)

−2.52 ****
(0.45)

∆geo −0.154
(0.346)

−0.230
(0.446)

6.33 ***
(1.82)

2.49
(1.70)

Obs 1275 843 1275 843
RMSE 22.5 15.2 26.5 16.5
CIPS I(0) I(0) I(0) I(0)
CDw 0.5 −0.1 −2.1 ** −2.3 **

Notes: ****, ***, **, and * indicate statistical significance at the 0.001, 0.01, 0.05, and 0.1 levels, respectively. Standard
errors are in parentheses. Diagnostics: RMSE = root mean squared error. CDw = Juodis and Reese weighted CD
test [17] on residuals. The null hypothesis is weak cross-sectional dependence. CIPS = Pesaran CIPS test [14] on
residuals. The null hypothesis is nonstationary. I(0) = stationary.

Thus, the table demonstrates the extent of the bias (or assumption of homogenous
coefficients) from using fixed-effects estimators on long-macro panel data. (The coefficients
could have been biased because of residual cross-sectional dependence, too.) Because the
variables were first-differenced, nonstationary residuals were not a problem. However,
when similar variables (i.e., energy consumption, carbon emissions, GDP) enter an FEs
regression in level terms—as many of the previously discussed papers appear to have
done (e.g., [1–3,8])—nonstationary residuals or a spurious regression are additional perils
along with allowing insufficient heterogeneity and residual cross-sectional dependence
(see [10,22,23]).
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