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ABSTRACT

This research examines pantograph-catenary systems to evaluate
dynamic performance. A pantograph-catenary time-domain simulation and a
pantograph frequency response computer simulation are developed to study
different catenary materials, to investigate the influence of pantograph
parameters on dynamic performance, and to evaluate different pantograph
configurations. An all-aluminum catenary is compared with a catenary con-
sisting of a copper contact wire, aluminum messenger wire, and stainless
steel droppers. All-aluminum catenaries are shown to yield smaller con-
tact force variations and may be more suitable for two pantograph op-
erations. Pantograph parameter studies have evaluated head mass, frame
mass, and head spring rate and damping on dynamic performance. A com-
parison of pantographs using spring-cam suspensions with those using
air cylinder suspensions shows the latter performs significantly better.
The parameter and suspension studies are used to form an optimum set of
pantograph parameters. The optimum pantographs contact force variation
is 44% lower at 170 km/hr than a typical high-speed design. A frame-
actuated, actively controlled pantograph is designed using modern con~
trol techniques. For the 170 km/hr case, the active design contact force
variation is 58% lower than the typical high-speed pantograph and 257% lower
than the optimum pantograph. The case where two pantographs are run
under the same catenary is also discussed.

Thesis Supervisor: David N. Wormley
Title: Professor of Mechanical Engineering
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CHAPTER 1

INTRODUCTION

1.1 Background

Electrification of rail systems offers increased efficiency of power
conversion in comparison to petroleum-based systems. With increases in
fossil fuel prices likely to continue, the economic advantage that elec-
tric rail éystems offer will increase. Electric locomotives also offer
increased reliability over non-electric locomotives. In both Europe and
Japan, major sections of track are already electrified with more extensive

electrification planned.

Proﬁiding power to an electrified train is usually done in one of two
ways. The first is with a live "third rail" which is positioned somewhere
on the railbed. The other uses a live overhead wire called a catenary.
The safety hazard posed by an exposed third rail causes the majority of
intercity systems to use catenaries. Japan's Shinkansen and France's TGV

both have catenary systems.

The major disadvantage to electrification is the high capital cost, over
half of which is associated with overhead wire installation. Thus any
developments that result in a lower-cost catenary may have a significant

impact on the future of electrification.

The current in the catenary jis transferred to the train through a
mechanical arm known as a pantograph. The pantograph must exert enough

force on the catenary to ensure good electrical contact. Excessive force

-12-



however, introduces wear and dynamic problems. The pantograph must also be
able to operate over a wide range of wire heights, typically 0.5 to 2.0 m,1
to accomodate the drop in catenary height when a tunnel is approached. Most

pantographs have two stages: a frame to accomodate gross motion and a head

to follow small fluctuations in wire height.

The dynamic interaction between the pantograph and catenary has a
significant effect on performance. Ideally the pantograph should touch the
wire hard enough to ensure good electrical contact, but lightly enough so
the catenary is never significantly displaced. Increasing uplift force
does not always ensure better electrical contact. Catenaries are relatively
stiff at the support towers and comparatively soft in between; increasing
uplift force causes larger variations in catenary displacement which leads
to greater dynamic excitation. These excitations may cause the pantograph
to lose contact in the stiffest regions of the catenary; indicating that
the ideal catenary has a uniform stiffmess. If too little uplift force is
used, small disturbances cause losses in contact. When loss of contact
happens, not only is power to the train interrupted, but also an arc occurs.
Arcing can severely damage a catenary and greatly decrease its operating

life.

Many catenary designs exist.. The simplest, a single tensioned wire

supported by towers, is called a trolley wire (Figure l.la). It is the

1Some systems specifically designed for high-speed operation have smaller
height variations. France's SNCF high-speed line has a height variation
under 40 cm (16 in) and Japan's Shinkansen has even less [1].

-13-
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least expensive type of catenary to build and is commonly used for low
speed, intracity travel. Extreme variation in spring rate and large sag

make its use inappropriate for speeds over 50 km/hr (30 mi/hr).

More complex designs have two goals: One is to make the stiffness
uniform and the other is to reduce sag. Figure 1.1b shows a '"simple
catenary". It consists of two wires: the messenger wire, supported by
the towers and the contaét wire, suspended from the messenger wire by
droppers. The droppers are of varying length to reduce sag. Since the

contact wire is not directly attached to the towers, the stiffness is more

uniform.

The stitched catenary shown in Figure l.lc is similar to the simple
catenary but has an additional wire hung from the messenger wire bypassing
each support tower. The stitch reduces the stiffness of the catenary at
the towers giving the catenary a more uniform stiffness. Stitched

catenaries are used by the French on the SNCF line.

Figure 1.1d shows a compound catenary. It features a third auxillary
wire between the messenger and the contact wire. The addition of an
auxillary wire helps isolate the contact wire from the droppers as well
as the towers yielding a catenary with an even more uniform stiffness.
Compound catenaries are used on Japan's Tokiado line. Japan's newest
catenary system, the Sanyo line, uses a combination of the compound and

stitched configurations.

-15-



1.2 Literature Review

Over the past 20 years, much research has been performed in the area
of pantograph-catenary dynamics. in this chapter, some of the more impor-

tant works will be discussed.

1.2.1 Pantograph Studies

Much of the research has concentrated on improving pantograph per-
formance. A better-performing pantograph makes possible the construction
of less expensive catenaries and allows higher-speed operation under ex-
isting systems. The most frequently made suggestion for improving per-
formance is to reduce head mass [2,3,4,5,6]. To maintain contact with
the wire, the head must be able to respond to all wire motions. A lighter
head, having less inertia, is able to react to high-frequency vibrations
more quickly. Gostling and Hobbs [4] support this recommendation and also
recommend the head suspension be kept soft. Belyaev, et al. [7] tested
two Soviet pantographs. The lighter of the two performed better at higher
speeds, although the authors were concerned with its sturdiness. They also

found that the addition of viscous head damping resulted in more uniform

contact force for both pantographs.

Boissonade and Pierre [2], who tested the Faiveley high speed panto-
graph on the French SNCF line, recommended reducing head mass. He also
recommends increasing frame damping on all pantographs (they use 30 §$§).
Further he suggests that "one-way" damping, resistance only to downward

motion of the pantograph head, could decrease loss of contact between
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pantograph and catenary. Boissonnade, Pierre, and Dupoint [1] have done
over 200 tests on pantograph-catenary systems at speeds up to 308 km/hr.
All tests were run under a 40 year old catenary with 90 m Spaﬁs. Only
minor modifications were made to the catenary for thest tests. The
Faiveley (AM) pantograph was shown to perform well up to 230 km/hr. It
is felt that this pantograph could be modified for speeds as high as

300 km/hr under existing catenéry systems.

Peters [8] tested both single and dual stage Faiveley pantographs.
Loss of contact duration was used as the performance criteria. He reports
that short separations, less than 5ms, result in small, low-temperature
electric arcs that cause no damage to the pantograph head or contact wire.
Medium duration separations, 5ms to 20ms, are the most damaging to the
catenary and pantograph head. For durations greater than 20 ms, the
forward velocity of the train extinguishes the arc; this causes loss of
power to the train, but no additional damage. These tests were made with
an uplift force of 90N and a pantograph head mass of 15 kg. Significant
performance improvements were achieved by increasing the uplift force to
125N and reducing head mass from 15 kg to 13 kg. Peters reported that
45% of the total separation time was spent during separations of 2 ms to
5 ms. The more prominent separations tended to occur at the support towers.
He showed that unacceptable contact behavior occurred when the standard

deviation in contact force equaled one-third the uplift force.

Coxen, et al [9] have reported on the development of a simple, high

performance pantograph by British Rail and Brecknell-Willis. The panto-
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graph features a torsional spring suspension for a set of light collectors,
airfoils to overcome aerodynamic asymmetries, and a pneumatic cylinder as
part of the frame suspension. Flow to and from the cylinder is through a
small orifice, so there is a constaﬁt uplift force only for low-frequency
motions. To high-frequency excitation, the cylinder acts as a spring in

series with a damper to ground, improving frame response.

Vesely [10] did frequency response testing on an August-Stemman
pantograph. The results were compared with a general pantograph model
that incorporates geometric nonlinearities as well as head stops and
Coulomb friction. The model correlated well with experimental data up
to a 13 h. excitation frequency. After this unmodelled structural effects
of the links became important. The two-mass model was shown to be a very

accurate description of the actual system for displacements under 20 cm.

Several researchers have considered the use of active elements to
improve pantograph performance. Hydraulic actuators were incorporated by
Sikorsky Aircraft [11] into the frame of an August-Stemman pantograph.
Two configurations were tested. The first was frame actuated and
responded to the difference between head and frame displacement. The
second used the same measurement but had an additional actuator between
the head and frame. A stable control system was not achieved for either

design.

Behjaev, et al. [7], discusses a TS-IM type pantograph with an active
pneumatic cylinder designed to stabilize contact pressure on the catenary.

The system also provided a means for raising the pantograph from its

-18-



lowered position. Wann [12], compared passive and several classically
designed active pantographs. Simulations showed that active elements

have the potential to significantly improve pantograph performance.
Vinayalinyam [13] simulated two active pantograph designs. One frame
actuated design'and his own "panhead inertia compensated" design. Neither

design showed any significant reduction in contact force variation.

1.2.2 Catenary Studies

The other elements in an overhead current collection system is the
catenary. Several studies stress wave speed as an important parameter.
The wave speed dictates the speed of propagation of a displacement or a

force through the catenary. It is defined as [2,14]:

LT

Vwave = Ip

where:

T 1is the sum of the tensions in the contact wire, messenger
wire, and auxillary wires.

fp 1is the sum of the linear densities of the contact wire,
messenger wire, and auxillary wires.

Critical speed, the maximum speed before serious degradation of performance
or loss of contact occurs, is gener:lly defined as a fraction of wave
speed.

Thomet [14] claims that a catenary resonance is excited when the
train velocity is 45% of the wave speed. He feels that this is the

critical speed and recommends keeping the train velocity at least 10%
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below this value. Thomet also recommends that wire tension be made as
large as possible. Higher tension increases the wave speed and makes

the catenary's stiffness more uniform.

Some authors feel that catenary sag should not be eliminated en-
tirely. As the pantograph moves from a tower to midspan the catenary
becomes more compliant and displaces more. If the catenary sags, the
pantograph must overcome the sag by lifting the wire. Since this inertial
resistance has the greatest effect where the catenary stiffness is
smallest, displacements are reduced. Estimations of how much sag is
useful varies. Some proposed ratios of sag to span length are 0.6/1000

[3], 1.0/1000 [15], and 1.3/1000 [16].

Recently there has been an increased interest in aluminum catenaries.
The primary motivation has been increasing copper prices. However, there
are some other advantages. For an equivalent current carrying capability,
an aluminum cable is approximately one-half the weight and can hold the same
tension as a copper one [17]. Since tensions are the same but weight is
less, aluminum has higher wave speeds. Problems include greater sensi-
tivity to solar heating, less resistance to wind loading and questionable

wear characterstics.

Several authors have addressed the wear issue. Thomas [18] in 1966
examined a French composite contact wire used in Bordeaux with an aluminum
rcable and a steel core. He claimed that after 500,000 pantograph passes,
the life of a copper catenary, the wire showed little wear and had the

possibility of 100,000 more passes. Recently, Carlson and Griggs [19]
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did wear testing of aluminum and copper conductors. They reported that wear
rates were about the same for aluminum and copper after an initial break-in

period during which aluminum wore faster.

1.2.3 Pantograph-Catenary Models

To better understand the dynamic interactions between pantographs and
catenaries, many attempts to develop system models have beenmade. The panto-
graph portion of the model generally uses the two-mass representation where
the first mass represents the head mass and the second mass represents the
frame structure. Most of the effort is usually spent developing a good

catenary model.

In 1964 Morris [20] developed an analog computer simulation for a
model including a simple two-mass pantograph and a catenary consisting of
lumped masses connected by a tensioned wire and suspended from a spring-
damper system. The simplified catenary representation was necessary to
reduce the problem to a size that an analog computer could handle. The
simplifications were severe enough to make this model of limited value.
Gilbert and Davis [21] developed an analytic solution for catenary motion.
The catenary was modeled as a massless tensioned spring embedded in an

elastic medium whose stiffness was varied sinusoidally.

Abbot [22] modeled a trolley wire and replaced the differential
equations of motion by finite difference equations. The equations were
solved using numerical methods. Leﬁy, et al. [23] developed a model of a
simple catenary which considers wire tension, wire mass, bending stiffuess,

tower stiffness, dropper stiffness and wire sag. The catenary was modeled
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using modal analysis and incorporated the first 45 models of vibration.
The pantograph was represented with the standard two-mass model. More
recently, Armbruster [17] used a similar modal analysis approach to model

the catenary. His pantograph model also incorporated nonlinear damping

elements.

Scott and Rothman [24] developed several computer programs to evaluate
various catenary systems. Their critical speed predictions agreed well
with experiments conducted by Willets and Edwards [25]. Percent separation

time predictions, however, did not agree closely.

Hobbs [26] developed a finite-element model and conducted experimeats
to verify it. He showed that wire bending stiffness can be neglected but
wire mass must be considered. The test catenary was shaken by a hydraulic
ram and accelerometers mounted on the wire were monitored. The model

compared well with the experiment up to 10 Hz.

1.3 Scope of Study

The objectives of this study are the following:

Evaluate the effect of constructing catenaries from lower cost
materials

. Examine the effect of catenary sag on performance

. Study tHe effect of pantograph parameters on performance and form
a set of optimum parameters

+ Examine new passive and actiﬁe pantograph configurations

. Study the performance of two pantographs traveling under the
same catenary
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To complete the above studies, two analytical models are developed.
The first is a pantograph-catenary system model. For the catenary portion
of the model a simple-style catenary is modeled using modal analysis. The
effects of tension in the wires, wire mass, wire sag, bending stiffness,
wire damping, tower stiffness and dropper stiffness are considered. The
pantograph portion of the model is a linear two-mass representation: omne
mass for the head and the other for the .frame. A pantograph frequency
response model is also developed. It too uses the two-mass representation

of the pantograph.

In recent years, copper has become increasingly expensive. After
copper, aluminum is the next best feasible electrical conductor and is con-
siderably cheaper. Already some catenaries are using aluminum messenger
wires. An all-aluminum catenary will be compared with a standard catenary

to evaluate its dynamic performance.

The cost of a pantograph when compared to a catenary system is small.
An improved pantograph would allow the use of a cheaper catenary or
possibly an existing catenary and still achieﬁe good performance. Panto-
graph parameters are examined in this study to determine their effect on
performance. Alternate suspension configurations are also investigated.
The results are used tc form a set of best possible parameters. A frame
actuated actively-controlled pantograph is also designed and simulated.
The best passive and active designs are then compared with a typical high-
speed pantograph currently in use. The case where two pantographs are

mounted on the same train 1s also considered.
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CHAPTER 2

MODEL DEVELOPMENT

In this chapter, the modeling and solution technique for a pantograph-
catenary system time domain simulation is described. The pantograph and
catenary models are first considered separately; then the coupling between
the two is investigated. The methods used to model the system and the
solution technique are only outlined here. A detailed derivation of the model

is presented in Appendices A and B.

A frequency response program for the pantograph is also developed here.
The two-mass model is used to describe the pantograph. One mass represents
the head structure and the other mass represents the frame structure. The
simulation outputs the magnitude and phase of the contact force, head dis-

placement, on frame displacement to a sinusoidal catenary input.

2.1 Pantograph-Catenary Model Description

The catenary simulated is a simple-style catenary. It was chosen
because it has all the characteristic dynamic effects present in advanced
catenary designs without the additional complexities involved in modeling
stitched and compound catenary designs. A diagram of the model is given
in Figure 2.1, the catenary is of finite length and has the following
features:

® A simple style ca:enary containing a contact wire and
messenger wire.

e The spacing between droppers and towers can be assigned
arbitrarily.
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Tower Stiffness: S

Dropper Stiffness: K

Distance to the jth Tower: Wj

Distance to the ith Dropper: Xi
Stiffness of the Two Wires: EIA,
Density of the Two Wires: pA, pB
Tension in the Two Wires: TA, TB

EI

FIGURE 2.1:
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e Contact and messenger wires are each modeled with a
bending stiffness, constant tension, and a uniform
density.

® Damping is distributed proportionally to the mass __
of the wires to ensure orthogonality of the natural
modes.

e The two wires are connected by droppers modeled as
massless linear springs.

® The messenger wire is supported by towers which are
also modeled as massless springs. .

Figure 2.2 shows a typical "symmetric' pantograph design. It con-
sists of two main elements, a head structure and a two-sided frame
structure. The head is mounted to the frame through a spring suspension.
The frame's suspension uses springs in combination with a system of links

to apply a constant uplift force to the frame over the operating range.

Figure 2.3 illustrates an "asymmetric'" pantograph. It also consists
of a head and frame structure. The head is mounted to the frame through a
torsional rather than a translation spring suspension and the frame uses a

pneumatic air cylinder for its suspension.

For both pantographs, the links of the head structure move together
and the links of the frame structure move together. However, the two
elements can move independently of each other. When operating under a level
catenary, pantograph displacements are small. So it is felt that nonlinear
pantograph equations of motion can be linearized to a two-mass, two-
degree-of-freedom model where one mass represents the head and the other
represents the frame. Vesely [10], using both experimental and analytical

pantograph tests, showed that the linear two-mass model is a valid repre-
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FIGURE 2.2: TYPICAL SYMMETRIC PANTOGRAPH
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TYPICAL HIGH SPEED PANTOGRAPH

FIGURE 2.3:
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sentation as long as displacements are under 20 cm and the head non-
linearities are not too severe. These nonlinearities include Coulomb
friction and limited operating range of the head. The pantograph motion
in the simulations presented in Chapter 3 never exceed 10 cm. In most
high performance pantograph designs, Coulomb friction‘is minimized [9].

The range of head motion is often limited in some pantograph designs; so
mechanical stops must be included in the model. They are easily in-
corporated into the two-mass model and will be used here. The simulation's

two-mass pantograph model has the following features.

e The motion of the pantograph is modeled with two masses. The
first represents the pantograph head and the second the panto-
graph frame.

e The stiffness of the contact strips and pantograph shoe are
modeled by a linear spring, KS.

¢ The stiffness between the head and the frame is modeled by a
linear spring, KH.

e Mechanical stops are included to limit the motion between head
and frame.

e The uplift force is modeled by a constant force, Fo'

e Two types of damping elements between the head and the frame
are modeled: 1linear and one-way damping.

e There are two suspension choices: the first is a linear
spring, linear damper, and a one-way damper in parallel
(Figure 2.4). The second is a linear spring and damper
in series (Figure 2.5).

e The model contains a full-state feedback, frame-~actuated,
active controller.
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The two models are coupled through the spring that represents the
stiffness of the carbons on flexure of the head, ks (Figure 2.6). The
pantograph's uplift force presses it against the catenary compressing
ks. The force through the compressed spring is the contact force. Since
the head is not attached to the catenary, ks can be compressed but never
tensioned. If at any point in the simulation the spring becomes tensioned,
the contact force is set to zero. A tensioned spring represents a loss
of contact. The dynamics of the two systems are considered separately
until the pantograph head and catenary move close enough together to

compress ks, thus re-establishing contact.

2.2 Pantograph-Catenary Equation Development

The equations governing the response of the catenary are obtained
in three basi; steps. First, the displacement of the contact wire and
messenger wire are expressed as Fourier sine series expansions. Second,
the kinetic energy of the wires and the potential enecgy of the wires,
dropper, and towers are expressed in terms of these series expansions.
Lagrange's equation is then used to obtain the homogeneous, undamped
equations of motion. From these equations, the natural mode shapes are
found. Tbird, with knowledge of the natural frequencies and displacement
amplitudes, modal analysis techniques can be used to find the response
of each catenary mode to a forcing function. The response of the in-
dividual modes can be summed to obtain the total response. A brief
description of this method follows here and is developed in greater de-

tail in Appendix A.
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The displacement shapes of the contact wire and messenger wire from
equilibrium are each expressed as Fourier sine-series expansions. A
~ result from Fourier analysis states that any shape with fixed ends can
be mathematically described by a superposition of an infinite set of sine
functions if their amplitudes are correctly chosen. A good approximation
of the shape is possible if enough terms are used. Approximating the
shape with a finite series reduces the problem from one with an infirite
number of degrees of freedom to one with a finite number of degrees of

freedom. Thke series expansions are given below:

mirx
S

yA(x,t) = ZAm(t) sin (messenger wire)

(2.1)

yg(x,t) = IB_(t) sin( ‘“}J”‘ ) (contact wire)

where:
y = the wire displacement
A = the amplitude of the mth sine term for the messenger wire
B = the amplitude of the mth sine term for the contact wire
x = the displacement along the catenary
L = the total length of the catenary

m = an integer, designates the harmonic number.

The kinetic energy of the wires and the potential energy of the
catenary due to temsion, bending, dropper stiffness, and tower stiffness
are then expressed in terms of these series expansions. Using Lagrange's

method, these energy terms are transformed into the unforced homogeneous
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equations of motion for the catenary. Since the shape of the wire is ex-
pressed as a function of amplitude terms and the time variation of the
wire is a function of the amplitude terms' time variation only; it is
felt that they are a good choice of generalized coordinates and will be
used here. Because this part of the analysis is only concerned with
finding natural frequencies and the mode shape amplitudes, forcing func-
tions and damping terms have been neglected. Therefore, the equations

of motion will contain only displacement and acceleration terms (A, K,

B, and E). The equation are arranged with the second derivative terms

on the left and the amplitude terms on the right.

The catenary equations of motion are linear, so they will always
vibrate in some combination of the natural modes of the catenary. Then,
when the system is excited, the catenary's response must be harmonic so

the acceleration terms can be written as:

K = —wa
m m

(2.2)
B = -sz
m m

where:

w = the natural frequency of vibration

To find the natural frequencies and mode shape amplitudes, the
acceleration terms are replaced with Equation (2.2). The substitution
leaves the equations as a function of amplitude terms and the frequency

of vibration.
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For convenience, the catenary equations are arranged in matrix-
vector form. The amplitudes of the messenger wire, Am, and the amplitudes

of the contact wire, Bm’ are written as a single vector, [.

we IT = Hr (2.3)

where:
& = the frequency of vibration
I = the identity matrix
' = vector of amplitude terms

H = the dynamic matrix

With the equations of motion in this form, the natural frequencies
and mode shape amplitudes are easily found. The eigenvalue of the H matrix
are the squares of the natural frequencies and the eigenvectors contain the
mode shape amplitudes. Each natural mode shape is determined by using

Equation (2.1) and inserting the amplitude terms from each eigenvector.

The natural modes of the catenary are orthogonal and can be considered
separately. A result from modal analysis technique gives the equation for

each mode as:

M.z

121 + 28, WMz, + wiMiZi = Qi (2.4)

iiidi

where:
zi(t) = the ith model response
m, = the ith modal mass
Ei = the damping ratio
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w, = the ith natural frequency

Qi = the ith modal forcing function

The influence of the pantograph and the gravitational forces which
cause sag on the catenary equations of motion are represented in the modal

forcing function:

[}
Q = ff(x,t)¢i(x)dx (2.5)
where: °
f(x,t) = the applied force distribution
¢i = the ith natural mode shape

The above equation must be evaluited for each mode. It can accomodate

more than one pantograph.

The catenary's dynamic response can be found by superimposing the

individual modal responses using the following result from modal analysis:

y(x,t) = Zzi(t)cbi(t) (2.6)

z, = the ith modal response function

¢i = the ith natural mode shape.

The modal catenary equations of motion and the pantograph equations
are solved simultaneously on a digital computer using a 4th-order Runge-

Kutta routine.
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2.3 Pantograph Frequency Response Model

A frequency domain model has been developed to study the response of
the pantograph to different catenary inputs. The pantograph model used
is the same two-mass model described on page 29 and shown in Figure 2.2
and 2.3. However, since frequency response methods are fo; linear
systems only, the head stops and one-way dampers have been removed. All

other features of the model are the same.

To find the frequency response, the equations of motion for the
pantograph are written in state space form. The displacements and
velocities of the pantograph head and frame masses are used as state

variables. The catenary height is the input.
X = Ax + Bycat 2.7)

where: -
x = the state variable ﬁector
A = the system matrix
B = the input vector

Yeat = the catenary height

Taking the Laplace transform of equation 2.7 and putting the state

variables on the same side of the equation yields:

[SI - Alx = Bycat (2.8)

For a purely sinusoidal response. the Laplace operator can be re-

placed by jm, where w is the frequency of the input and j indicates an
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imaginary number. Making the substitution for S and solving for the state

variable vector results in:

Cxo= er - A1 By (2.9)

With the use of a digital computer, w is varied over the range of
interest. For each value of w, the matrix inversion in equation 2.9 is
made using the Gaussian elimination technique. The result is multiplied
by the B matrix to find the response of each state variable to the input
for the frequency in question. The program will produce magnitude and
phase plots of any of the state variables. By using the head response

yH/yCat and Equation (2.10) the contact force response can also be plotted.

F y.
contact _ ks( H - 1) (2.10)
Ycat Ycat ’
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CHAPTER 3
RESULTS
The time simulation and frequency response programs discussed in

Chapter 2, have been used for several different investigations: evaluating
the effect of sag on performance, determining if an all aluminum catenary
has acceptable dynamics, investigating the effects of pantograph parameters
on performance, determining what pantograph parameters yield the best
passive pantograph, evaluating actively controlled pantographs, comparing
the best passive and active configurations with an existing high speed
pantograph, studying the interaction between two pantographs under the

same catenary, and determining critical speed.

The baseline pantograph was chosen so its parameters are typical of a
well-designed, high-speed pantograph. All simulations were done under
the baseline catenary. This catenary is similar to those used on the
British Rail and ISCOR systems [27]. The parameters for the baseline
pantograph and catenary are summarized in Tables 3.1 and 3.2. Simulation

results for the baseline system are presented in the following section.

3.1 Baseline Performance

The time response for the baseline pantograph and catenary is pre-
sented in this section. A three span catenary is used. The velocity of
the train is 170 km/hr. Figures 3.1 through 3.6 show the time history of
the contact wire shape plotted at 0.1 second intervals. Each plot contains
only five shapes for clarity, and the six figures span a total of 3 seconds.

The position of the pantograph at each response time is indicated by the
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Head Mass:
Frame Mass:

Stiffness of the
Pantograph Shoe:

Stiffness Between the
Head and Frame:

Stiffness Between the
Frame and Base:

Damping Between the
Head and Frame:

Damping Between the
Frame and Base:

Uplift Force:

TABLE 3.1

BASELINE PANTOGRAPH PARAMETERS

9.1 kg
17.2 kg
82.3 kN/m

7.0 kN/m
0.0 kN/m
130 Ns/m
30 Ns/m

90 N

20 1bm

38 1bm

470 1b/in

40 1b/in

0.0 1b/in

.743 1b sec/in

«171 1b sec/in

20.2 1b

o Data represents a Faively Pantograph, See Reference
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TABLE 3.2

BASELINE CATENARY PARAMETERS

Material:

Contact Wire. - Copper, 4/0 Hard Drawn

Messenger Wire - Aluminum/Steel re-inforced

Droppers - Stainless Steel
Length: 196.6 m
Tower Spacing: 3 Spans

65.5 m
Dropper Spacing: 6 per Span
10.92 m

Tower Stiffness: 12.51 x 106 N/m
Dropper Stiffness: 1.75 x 106 N/m
Tension:

Upper Wire 9,340 N

Lower Wire 12,000 N
Density:

Upper Wire 0.2722 kg/m

Lower Wire 0.955 kg/m
Rigidity:

Upper Wire 81.53 Nm2

Lower Wire 121.62 Nm2
Catenary Damping Ratio 0.02

Voltage 25 kV

Current 600 amp

42~

645 ft
215 ft
35.8 ft
71.43 x 10° 1P
in
1.0 x 10% 1
in
2,100 1b
2,700 1b

0.183 1b/ft
0.642 1b/ft

28,410 1b-in?
42,380 1b-in’
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vertical lines.

In the early stages of the simulation (0.0 - 0.8 sec), the contact
wire displaces upward as the pantograph moves along the wire. The displace-
ment grows because the catenary's spring rate becomes much smaller as the
contact point moves from the towers to midspan. Figure 3.7 shows the
catenary's static spring rate over one span. Between 0.8 and 0.9 seconds,
the catenary displacement reaches its maximum, and then begins to descend.
Because the catenary is much stiffer at the support towers than at midspan,
the contact wire's displacement must lessen as the support tower is ap-
proached.

The pantograph approaches the first tower from 0.9 to 1.3 sec. The
wire slope is very steep. Since the wire is constrained to move downward,
the pantograph must also move downward; this briefly raises the contact
force.

The pantograph passes the first tower at 1.36 sec and the catenary
begins to rise again. The contact wire changes shape at the towers from a
steep descent to a moderate incline. Downward inertia developed by the
pantograph as a tower is approached makes this change difficult to track,

especially at higher speeds.

When the pantograph passes through a span, it displaces the catenary
which causes the wire to vibrate after the pantograph has passed. Between
1.6 and 2.6 sec the first span makes an excursion from full negati?e
displacement to positiﬁe and back to negative (+ 4 cm), vibrating in the

first natural mode, 1 Hz. The dissipati&e term in the catenary equations
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of motions, 2§ wné, indicates the lower modes will dissipate less energy
over the same time period. This vibration may present problems for trains

using multiple pantographs.

The catenary's response in the second span is the same as it is in
the first span. After the pantograph passes the first tower, the dis-
placement of the wire increases linearly as the pantograph moves into a
"softer" region of the catenary. When the pantograph has passed the
second span, the catenary vibrates freely and is dominated by the first
mode. The consistent behavior between consecutive spans justifies con-

sidering a finite length of catenary.

The displacements of the catenary, pantograph head, and pantograph
frame at the instantaneous contact point for the above system are shown
in Figure 3.8. The plots are of the displacement from the datum at the
contact point versus time. Displacements of the catenary and pantograph
increase nearly linearly until a peak 1s reached, and then decrease
rapidly as a support tower is approached. The maximum catenary displace-
ment occurs at 0.79 sec., well past the middle of the span. The peak
occurs further from the center of the span as train speed increases and
catenary wave speed decreases. This shift, coupled with the constraint
igposed by the stiff support towers, causes the wire to descend steeply
as a tower is approached. The further the peak displacement occurs past

center, the steeper the descent.

The change in catenary shape at the towers, from a steep descent

to an incline has a great effect on pantograph performance. At higher
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speeds, loss of contact often occurs. At 170 kph the pantograph head is
able to maintain contact, but the pantograph frame, which is heavier and
cannot respond as quickly, undershoots when the pantograph passes a tower.
The head suspension is able to accomodate the larger displacement between
the head and frame, but the slow response of the frame mass results in a

lower contact force.

The céntact force ﬁersus time plot is shown in Figure 3.9. There are
two peaks in contact force in each span. The first is found at 0.79 sec,
which corresponds to the change from a rising to a falling catenary on
the displacement plot. The second peak at 1.07 sec. occurs during the
steepest part of the catenary's descent, where the pantograph inertia re-
sists the downward motion imposed by the catenary. A minimum in contact
force appears just after the pantograph passes a tower. The momentum
developed by the pantograph during the tower approach keeps the frame moving
downward even though the head has begun displacing the catenary upward.

This pattern is repeated in the next span.

The baseline system was run at several other speeds. The contact
force and displacement plots for 135 km/hr are found in Figures 3.10 and
3.11, and for 150 km/hr in Figures 3.12 and 3.13. For each train speed,
Table 3.3 shows the time when maximum catenary displacement is reached,
the corresponding distance from the last tower passed, the value of maxi-

mum displacement, and the contact force variation.
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TABLE 3.3

CATENARY DISPLACEMENT CHARACTERISTIC vs. VELOCITY

Time of Location of Max imum Contact

Maximum ~ Maximum Displacement Force
Speed Displacement”™ ~ Displacement Variation
135 km/hr 0.864 sec 32.4 m 9.0 cm 54.7 N
150 km/hr 0.839 sec 35.0 m 9.4 cm 87.5 N
170 km/hr 0.788 sec 37.2 m 10 cm 130 N

As train velocity increases, the maximum catenary displacement occurs
closer to the tower and is larger in magnitude. The shift in maximum dis-
placement is caused by the train traveling closer to the wave speed. Until
the disturbance caused by the pantograph reaches the tower, the catenary
cannot react to the towers' increased stiffness and decrease its displace-
ment. Since the catenary reacts to the tower later, it has more time to

displace upward, which is why maximum displacement increases with speed.

Contact force variation also increases with speed. Higher peak
forces occur as speed increases because the pantograph is forced down a
larger distance oﬁer a shorter period of time. Since the pantograph moves
down with increased velocity, it develops greater downward momentum that
causes larger drops in contact force. At 175 km/hr this downward momentum
causes the pantograph to lose contact with the catenary. The amount of
time the pantograph is separated from the catenary increases as the train

velocity increases beyond this speed.

3.2 Aluminum Catenary Performance

Because of the high cost of copper, there recently has been an increased
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interest in all-aluminum catenaries. In this section, the typical response
of an aluminum catenary is studied and compared to the baseline system. The
contact wire parameters of the aluminum system were chosen so that it could
carry the same ﬁoltage and current as the baseline catenary. Dropper
spacing, tower spacing and wire tensions were chosen to ensure structural
integrity, not to exceed material limitations, and to minimize cost [27].
The aluminum catenary parameters are given in Table 3.4. As with the
baseline typical response, the simulation was made at 170 km/hr with the

same pantograph.

The time history of the aluminum catenary shape is shown in Figures
3.14 through 3.19. The lower wire displaces linearly at first (0.0 - 0.6
sec), and peaks between 0.6 and 0.7 sec. As the pantograph approaches the
first tower (0.7 to 1.4 sec) the catenary's displacement declines. This

pattern is repeated in the second span.

The instantaneous displacements at the point of contact of the
catenary, pantograph head, and pantograph frame are shown in Figure 3.20.
The maximum displacement occurs at t = 0.73 sec, closer to midspan. The
contact force versus time plot is shown in Figure 3.21. Peak forces occur
as a tower is approached aﬁd minimum forces occur at tower locations, just
like the baseline response. While minimums and maximums in contact force
occur in roughly the same locations, they are of lesser magnitude. The

contact force variation is 63 N, 517 less than the copper case.

The descent of the aluminum catenary is not as steep when a tower is

approached. Since its' wa&e speed is higher than the baselines, the effect
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TABLE 3.4

ALUMINUM CATENARY PARAMETERS

Materials:
Contact Wire - Aluminum, 6201-T81
Messenger Wire’ - Aluminum, Steel Re-inforced
Droppers ’ - Aluminum
Length: 194.77 m 639 ft.
Tower Spacing: 3 Spans
64.92 m 213 ft.
Dropper Spacing: 4 per Span
16.23 53.3 ft.
6 3 1b
Tower Stiffness: 12.51 x 10" N/m 71.43 x 10 In
Dropper Stiffness: 1.75 x 10° ¥/m 1.0 x 10% 2
Tension:
Upper Wire 8,000 N 1,800 1b
Lower Wire 16,400 N 3,700 1b
Density:
Upper Wire 0.216 kg/m 0.145 1b/ft
Lower Wire 0.537 kg/m 0.361 1b/ft
Rigidity:
Upper Wire 51.31 Nm® 17.88 x 10° 1b-in’
Lower Wire 214.93 Nn’ 74.9 x 10° 1b-in’
Wave Speed: 180.2 m/s
Catenary Damping Ratio
Voltage 25 kV
Current 600 amps
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of the approaching towers is felt soomer, With the wire descent more
gradual, the contact forces developed before a tower passing are smaller.
Since less force is applied to the pantograph during descent, it has less
downward momentum when it passes a tower, thus attenuzting the sudden drop
in contact force that occurs at a tower. The pantograph is able to main-
tain contact with the catenary at speeds up to 260 km/hr; 85 km/hr faster

than the baseline separation speed.

The catenary's vibrations, caused by the pantograph are of smaller
amplitude and damp out faster for the aluminum case than for the baseline
case. The reduction in vibration can be seen by comparing the catenary's
shape in the first span when the pantograph is in the second span (Figures
3.6 and 3.19). The dissipative term from the catenary equation of motion
is 2&&151. The aluminum catenary, being lighter, has higher natural fre-
quencies. So, with the damping ratio the same for both cases, the aluminum
catenary dissipates more energy in a given amount of time. Since vibrations
are smaller, aluminum catenaries should improve performance for multiple

pantograph system.

3.3 1Influence of Sag

The time simulation was run for values of maximum sag ranging from
0 to 16 cm. The train speed was 170 km/hr, and the baseline catenary and
pantograph parameters were used. Contact force variation versus maximum

sag is summarized in Table 3.5.

A small amount of sag improves performance. Displacement versus
time and contact force versus time plots for the 6 cm sag case are found

in Figures 3.22 and 3.23. The peaks and troughs in contact force occur in
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TABLE 3.5

CONTACT FORCE VARIATION VS. MAXIMUM SAG

Sag in Centimeters Contact Force Variation in Newtons

0 130

2 106

4 . 85.9

6 66.1

8 64.8
10 72.7
12 95.3

14 123

16 153
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the same locations as the zero sag case, only they are of smaller magnitude.
As mentioned abo?e, the center of the span is the most compliant area. As
an approaching pantograph attempts to overcome the sag by moving the wire
up, it encounters inertial resistance which increases the apparent stiff-
ness of the catenary. Since catenary's stiffness appears more uniform,
fluctuations in contact force are smaller. Performance improves with sag

up to 8 cm, after which performance degrades with increasing sag.

When the maximum sag becomes larger than the maximum positive dis-
placement for the zero sag case, the contact force characteristics change.
Figures 3.24 and 3.25 show the displacement and contact force plots for the
14 cm sag case. Minimums in contact force occur just before a tower is
reached. The catenary sags so much that the wire rises as the tower is
approached, and it reaches its highest point at the towers. The pantograph,
after rising to this point, must suddently change direction. Since its

momentum is still in he upward direction large peak forces occur.

The results show that some sag should be allowed in catenary design.
Based on the data presented here, a desirable amount of sag is 807 of the

maximum catenary displacement for the zero sag case.
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3.4 Parameter Study

The pantograph-catenary model has been used to investigate the effects
of pantograph parameters on performance. All pantograph parameters in the
simulations that follow are baseline parameters except for those being
investigated. The catenary is the baseline catenary and the train speed

is 170 km/hr unless otherwise noted.

A frequency response model is also used to aid in the analysis. By
examining the displacement plots in the typical response section, the im-
portant frequencies and corresponding amplitudes were estimeted. The
most significant frequencies occur around 1 Hz and 4 Hz. The 1 Hz effect
has an amplitude of approximately 10 cm and is associated with the tower-
passing frequency. The 4 Hz effect is associated with the sudden change
in catenary shape that occurs at the towers. It is referred to as the

cusp frequency and has an amplitude of about 2 cm.

3.4.1 Mass Parameter Study

Many studies have suggested reducing the pantograph head mass to
improve performance. A ligher head, having less inertia, should be able
to react to changes in catenary shape faster. The frequency response
program was run with the standard baseline pantograph and with the same
pantograph having a 20% reduced head mass. Table 3.6 shows how the
variation in contact force diﬁided by displacement input varies with

frequency.
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TABLE 3.6

CONTACT FORCE VARIATION PER UNIT DISPLACEMENT VS. FREQUENCY

REDUCED MASS
1 Hz 2 Hz 3 Hz 4 Mz
Base 1,549 N/m 20,270 N/m 6,004 N/m 4,615 N/m

20% Reduced Head 1,424 N/m 18,820 N/m 5,969 N/m 4,494 N/m

20% Reduced Frame 1,271 N/m 19,810 N/m 7,236 N/m 5,145 N/m

It can be seen that the reduced head mass pantograph responds better
at all frequencies in the range of interest. The reduced head mass panto-
graph was also run under the baseline catenary at 170 km/hr. The contact

force and displacement versus time plots are found in Figures 3.26 and 3.27.

A comparison of contact force fluctuation for the baseline pantograph

and the reduced head mass pantograph is given below:

CONTACT FORCE FLUCTUATION

Baseline 20% Reduced Head

170 km/hr 130 N 118 N

The reduced head mass pantograph lowers contact force fluctuations
by 12N. The performance improﬁements were not concentrated in any particu-
lar region of the catenary, but rather small improvements occur all along
the catenary. Since the frequency respond data show improvement oﬁer the

entire range of interest, this was expected.

The effects of reducing frame mass were also investigated. Both the

-66—



200 T

150

Contact Force (N)

Displacement (cm)

100

0 [l

1 | 1 |

0.0 0.5

FIGURE 3.26:

1.0 1.9 2.0 2.9

Time (sec)

CONTACT FORCE vs. TIME, 20% REDUCED
HEAD MASS, 170 km/hr

3.0

12 T

10

Q vV O+~ O
T

Catenary
Head
‘ Frame

0.9 0.5

FIGURE 3.27:

1.0 1.5 2.0 2.9

Time (sec)

DISPLACEMENT OF CATENARY, HEAD, AND
FRAME vs. TIME,20% REDUCED HEAD MASS,
170 km/hr

—-67-

3.0



frequency and time simulations were run with a baseline pantograph having a
20% frame mass reduction. The frequency response, summarized in Table 3.6,
shows a large improvement in the 1 Hz range but reduces performance at the

cusp frequency.

When comparing frequency response one is comparing the ratio of con-
tact force amplitude to input displacement amplitude. The 1 Hz effect
associated with the tower passing frequency has approximately 5 times the
amplitude of the 4 Hz cusp effect at the towers, so the improvement is

significant.

The time simulation also showed performance improvements. The con-

tact force variation is given below:

CONTACT FORCE VARIATION
Baseline 20% Reduced Frame

170 km/hr 130 N 109 N

Much of the improﬁement occurs in reducing the suddén drops in contact
force just after a tower is passed. Between spans the catenary is very
soft and the pantograph causes a displacement of 10 ecm. The towers, being
very stiff, do not displace significantly. As the pantograph approaches a
tower, the catenary's displacement decreases quickly causing a large down-
ward force on the pantograph. Comparing the displacement and contact force
versus time plots in Figures 3.28 and 3.29 one can see that the peak con-
tact forces occur during this descent. When the pantograph reaches a

tower, the catenary can no longer displace downward. However, the frame,
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which has developed a large downward momentum during its descent, continues
to fall. By looking at the displacement plot, one can see that the frame
undershoots the tower more than the head does. The contact force plot

shows a sudden drop in this region.

Peters [8] did testing of pantograph-catenary systems at the D.O.T.
facility in Pueblo, Colorado. He reported that loss of contact generally
occurred at the towers. The simulation indicates that this is largely due

to frame inertia.

3.4.2 Head Spring Study

The stiffness of the pantograph head spring was varied. The results

of the frequency response runs are summarized in Table 3.7.

TABLE 3.7

CONTACT FORCE PER UNIT INPUT VS. FREQUENCY
HEAD SPRING RATE

1 Hz 2 Hz 3 Hz 4 Hz
Head Spring Rate
1750 N/m 1,550 N/m 4,120 N/m 5,400 N/m 7,870 N/m
3,500 N/m 1,500 N/m 7,500 N/m 4,700 N/m 5,400 N/m
*7,000 N/m 1,400 N/m 16,750 N/m 5,570 N/m 4,330 N/m
15,000 N/m 1,400 N/m 29,700 N/m 8,460 N/q 6,050 N/m

*Baseline

It can be seen from the frequency response data that increasing spring
rate degrades performance. However, decreasing the spring rate a bit ap-

pears to impro#e performance. The time simulation was run with the head
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spring rate at 3500 N/m. A comparison of the reduced spring rate and

standard pantograph contact force fluctuations is given below.

TABLE 3.8

CONTACT FORCE VARIATION vs. HEAD SPRING RATE

Baseline Reduced Spring Rate
135 km/hr 54.7 N 44.5 N
15C km/hr 87.5 N 73.4 N
170 km/hr 130 N 113 N

A contact force comparison of the baseline and reduced head stiffness

pantograph is found in Figure 3.30.

As the pantograph approaches a tower it must move down because the
catenary becomes stiffer. If the head spring is also stiff it does not
compress much and the frame is forced to moﬁe down immediately. A soft
spring, however, compresses as the head is forced down causing more relative
motion between the head and frame and less pure frame motion. The force
through a softer spring causes much of the frame downward motion to occur
closer to the tower. By comparing displacement Figures 3.8 and 3.31, one
can see that the relative distance between the head and frame as a tower is
approached is less for the 3500 N/m head spring case. When the tower is
passed the spring has not fully unloaded; so it apolies a force on the
heavy frame and a light head which is pressing against a now softening
catenary. Since there is more motion in the light head, and less frame
motion, not as much downward momentum is developed which reduces the drop

in contact force at the towers.
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There is a limit to how soft the frame spring can be made. As the
spring becomes softer, the relative motion between the head and frame
becomes greater. The pantograph must be designed to accomodate the

greater range of motion.

3.4.3 Damping Parameter Study

The effect of head damping on performance is evaluated here. The
frequency response data are summarized in Table 3.9. It shows that as damping is
is increased from 50 Eéﬁ to 1000 Eég the response improves in the low-
frequency range and worsens in the high-frequency range. Increased damping
slows the rate at which the head can respond but reduces oscillations, which
makes it easier for the head to follow low frequency inputs. The time
simulation was also run with damping values ranging from 50 Eéi to
1000 Eéi; the results are summarized in Table 3.10. Performance improves
significantly as damping is increased from 50 Eéi‘to 250 Eéi. Very small

N.s

improvements in performance occur until damping reaches 500 - Further

increases cause performance to degrade.

The sume test was performed with the frame damper. In this case,
as damping was increased, low-frequency respond was degraded and high-
frequency response was improﬁed. The results are summarized in Table
3.11. Higher damping restricts frame motion which makes it harder for
the pantograph to follow low-frequency, high-amplitude inputs. However,
it is not as rasily excited by low-amplitude, high-frequency inputs. The
results of the time simulation are found in Table 3.12. Increasing

damping to 60 Eéﬁ causes performance to improve, but after 60 §$§ per-
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Head Damping

50 N-s
m

100 X8
m

130 Y&
m

250 X8
s00 X8
m

1000 Y8
m

TABLE 3.9

HEAD DAMPING

-7~

1 Hz 2 Hz 3 Hz
1560 & 23,600 X 5,600
m m
1560 X 21,300 ¥ 5,800
m m
1550 X 20,270 ¥ 600
m m
1550 X 17,300 X 6,840
m m
1510 X 16,910 X 8,440
m m
1470 X 19,630 X 9,805
m m
TABLE 3.10
CONTACT FORCE VARIATION
VS. HEAD DAMPING RATE
AF
N-s 138
m
N-s 130
m
N-s 123
m
N-s 120
m
N:s 124
m

CONTACT FORCE PER DISPLACEMENT INPUT VS. FREQUENCY
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Bl|=

4 Hz

3,770

4,280

4,615

5,640

6,470

6,790
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TABLE 3.11

CONTACT FORCE PER DISPLACEMENT INPUT VS. FREQUENCY
FRAME DAMPING

1 Hz

Frame Damping
0 1,540 &
m
30 18 1,550 &
m m
60 -8 1,580 ¥
m m
100 X8 1,671 3
m
200 X8 1,946 X
m m
300 X8 2,180 X
m m
400 X8 2,353 X
m m
500 XS 2,469 X
m m

2 Hz

48,700

8l=

20,270

Bl=

12,200

B|=

8,540

gl=

5,216

gl|=

4,070

8=

3,549

8=

3,270

Bl|=

TABLE 3.12

3 Hz

6,025

6,004

5,911

5,700

5,005

4,370

3,907

3,580

g2z 8l 8Bl2 Bl2 8|2 8|2 Bl|=

gi=

4 Hz

4,560
4,615
4,660
4,700
4,700
4,590
4,430

4,255
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formance degrades. Like the head, the baseline frame has too little damping.

Since both the head and frame are underdamped, a third damping study
was done where both head and frame elements are varied. The frame damping
was varied from 30 Eéi to 200 Eiﬁ and the head from 75 Eéi to 500 E;E_ Data
from the frequency and time simulations are summarized in Tables 3.13 and
3.14. The best response was obtained with a frame damping.of 60 Héi and

a head damping of 500 Egi.

One-Way Damping

One-way Jdamping, or damping that acts in the downward direction only,
has been suggested as a way to improve performance [2]. Damping of this
type would move easily toward the catenary but would resist moving away
from it. A time simulation was run to see how the addition of one-way
frame damping would affect performance. Two-way frame damping was set

N.s ' N-s N-s
30 —Er-while one-vay frame damping was varied from 30 - to 100 - The

time simulation results are summarized in Table 3.15. The best one-way

damper was only Table to equal the best two-way damper.

Since one-way damping resists downward motion more than upward motion,
it lessens the drop in contact force that occurs at the towers. However,
if more two-way damping is used instead, it does not let the catenary dis-
place as much in the middle of the span. If the catenary is displaced
less, it forces the pantograph down a smaller distance as the tower is
approached. Since the pantograph has less downward inertia, the drop in
contact will be small. Figure 3.32 shows the displacement plot for a panto-

graph with 100>§é§ frame damping and Figure 3.33 shows the same plot for
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75
130
250
500

130
250
500

130
250
500

130
250
500

= 30 .N'_S
m
1 Hz
N-s/m 1,554
Nes/m 1,560
Nes/m 1,550
Nes/m 1,510
= 60 y_:_s-'-
m
1 Hz
Nes/m 1,595
N.s/m 1,587
N.s/m 1,568
Nes/m 1,531
= 100 N-s/m
1l Hz
N.s/m 1,684
N-s/m 1,671
N.s/m 1,645
N.s/m 1,601
= 200 N-s/m
1 Hz
Nes/m 1,965
Nes/m 1,945
N.s/m 1,906
N-s/m 1,854

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

TABLE 3.13

2 Hz

22,570 N/m
21,300 N/m
17,300 N/m
16,910 N/m

2 Hz

13,380
12,570
11,650
12,440

2 Hz

8,737
8,543
8,444
8,971

2 Hz

5,236
5,216
5,321
5,850

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

=77~

COMBINED DAMPING STUDY,
FREQUENCY RESPONSE

3 Hz

5,715
5,800
6,840
8,440

3 Hz

5,662
5,911
6,761
8,323

3 Hz

5,415
5,703
6,525
8,007

3 Hz

4,729
5,005
5,750
7,026

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

4 Hz

4,022
9,280
5,640
6,470

4 Hz

4,053
4,660
5,684
6,498

4 Hz

4,074
4,698
5,718
6,506

4 Hz

4,033
4,694
5,704
6,433

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m

N/m
N/m
N/m
N/m



130
250
500

130
250
500

75
130
250

30 —

AF

N-s/m 130 N
Nes/m 123 N
Nes/m 120 N

AF

Nes/m 120 N
119 N
118 N

= 100 N-s/m
AF

Nes/m 123 N
N-s/m 124 N
N.s/m 125 N

= 200 N-s/m
AF

N*s/m 123 N
Nes/m 123 N
Nes/m 127 N

TABLE 3.14

COMBINED DAMPING STUDY,
TIME RESPONSE
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30 §;§ frame damping plus 60 Eéi one-way frame damping. It can be seen

that the catenary displacement is 1 cm smaller for the two-way case.

One-way damping offers no advantages over two-way damping for the

cased considered.

3.4.4 Stiffness to Ground

Stiffness to ground was varied on the baseline pantograph from 0
to 2500 N/m. The time response date is summarized in Table 3.16. A small
amount of frame stiffness, 500 N/m, reduces contact force variation by 647
(see Figure 3.34). With a frame spring, the pantograph cannot displace
the catenary as much as it did in the zero stiffness case. Since dis-
placements are smaller, the vertical inertial forces developed are less

and dynamic excitation is attenuated.

As stiffness to ground is increased beyond 500 N/m, performance de-
grades. The catenary's spring rate is #ery high at the towers and de-
creases as midspan is approached, so the pantograph must displace the
catenary more between towers to maintain nominal pressure with the wire.
Since frame stiffness restrictes pantograph motion, the contact force be-
comes unacceptably small between spang. Choosing the best stiffness is
a compromise between allowing enough catenary displacement to maintain

adequate contact force and not introducing excessive dynamic excitation.

Dynamic excitation becomes worse with increasing train velocity. The
compromise between reducing dynamic excitation and allowing enough

catenary displacement to maintain adequate contact force results in larger
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TABLE 3.15

ONE-WAY FRAME DAMPING (2-way damping = 30 —NI;—S)

Contact Force Variation vs. One-Way Damping

One-Way Frame Damper AF
30 N-s/m 123 N
60 N.s/m 120 N
100 N.s/m 123 N
TABLE 3.16:

CONTACT FORCE VARIATION
VS. FRAME SPRING RATE

Kf AF
250 N/m | 72.7 N
500 N/m 46.1 N
1,000 N/m 58.6 N
2,500 N/m 56.3 N
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frame stiffnesses for optimum performance as velocity increases. The best

performance at 225 km/hr is with a spring rate of 1000 N/m, and at 275 km/hr

it is 1500 N/m.

Unfortunately, stiffness to ground cannot be implemented on most all
existing systems. When a tunnel is approached, the catenary height may
drop as much as 1.5m. If the pantograph had a 500 N/m frame stiffness
and had to compress 1.5 m, a 760 N force would be applied to the frame.
This is clearly unacceptable. Stiffness to ground may have some applications
on lines specifically designed for high speed, as in the Japanese system,

where great effort has been made to keep the wire height constant.

3.4.5 Suspension Comparison

Because of the tunnel pronlem, pantograph frame suspensions must be
designed to operate over a wide range of heights, typically 0.5 to 2.0 m.
A nominal contact force must be sustained with the wire, so the suspension
must be able to provide a constant uplift force o#er this range. Zero
stiffness to ground must be maintained because of the high forces that a

finite stiffness value would apply to the frame over a large excursion.

There are two suspension types that currently dominate pantograph
design. One uses springs in combination with a cam or link system to
provide a constant uplift force. When modelled, the spring suspension
looks like a constant uplift force and a damper (see Figure 3.35a). In
the other design, a pneumatic cylinder is used to pro?ide constant uplift
force. The model of this suspension, shown in Figure 3.35b, is a constant

uplift force with a spring and damper in series.
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As the value of damping on the airspring suspension becomes very
large, the system begins to resemble an uplift force in parallel with a
frame spring. 3Since a finite stiffness to ground is unacceptable, an
upper limit on damping must be set. Wire height gradients can have an
amplitude as large as 1.5 m and a gradient as steep as 0.5% during a tunnel
approach [11]. To pick a limit on damping, a train traveling at 150 km/hr
will not be allowed to apply more.than 50 N across the damper. A 150 km/hr
under a 0.5% gradient yields a Qertical velocity of ".20 m/s. Dividing
the maximum damper force by the vertical velocity gives a maximum damper

value of 250 Eéi.

The frequency vresponse program was run to evaluate different suspen-
sion spring and damping rates. The better values were run in the time
simulation and 1t was found that a spring rate of 1000 N/m and a damping
of 250 Eéﬁ gave the smallest contact force variation. At 170 km/hr the
airspring suspension's contact force variation was 427 lower than the best
spring suspension (Figure 3.36). A comparison of the contact force
variations for each suspension is given below. As explained in the last
section, stiffness to ground reduces high velocity dynamic excitation.
Since thre dumper develops high forces when vertical velocities are high,

the spring has the greatest effect when needed most.

TABLE 3.17

JONTACT FORCS VARIATION FOR SPRING AND AIR CYLINDER SUSPENSION

Speed AF, Spring Suspension AF, Air Cylinder Suspension
135 km/hr ) 39.1 N 50.0 N
17G km/hr 120 N 84.4 N
225 km/hr Loss of Contact 146 N
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3.5 Optimized Pantograph

With the results of the parameter studies, an optimized set of panto-
graph parameters has been formed. It was shown that reducing both head and
frame mass was important to impro#e pantograph performance. A lightweight
pantugraph using graphite or an other lightweight material would probably
perform very well. However, this would introduce many questions about the
sturdiness of the structure. It was finally decided to use the masses of
the baseline system since they represent the masses of a well-designed
pantograph. This also shows what kind of improvements are possible on

existing pantographs.

The airspring suspension showed a large performance improvement over
the spring suspension. It is used here with the parameters that were
chosen in the last section. A softer head suspension was also found to
improve performance. A value of 3500 N/m is used here. With a reduced
head spring it is also necessary to adjust the head damping. Several
values were run in both the time and frequency simulations and the best
one was found to be 100 Eéi. The parameters for the ideal pantograph are

found in Table 3.18.

TABLE 3.19

CONTACT FORCE VARTATION VS. SPEED FOR BASELINE AND IDEAL PANTOGRAPH

Speed AF, Baseline LF, Ideal
135 km/hr ‘ 54.7 N 48.4 N
170 km/hr 130 N 72.6 N
225 km/hr Loss of Contact 119 N
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TABLE 3.18

IDEAL PANTOGRAPH PARAMETERS

Head Mass: 91 kg 20-1b

Frame Mass: 17.2 kg 38 1b
Stiffness of the

Pantograph Shoe: 82.3 kN/m 470 1b/in
Stiffness Between the

Head and Frame: 3,500 N/m * 20 1b/in
Stiffness of series

suspension spring: 1,000 N/m 5.71 1b/in

Damp Between Head Nes

and Frame: 100 e 0.572 lb-sec/in
Dz "ping of series N-s

suspension Damper: 250 - 1.43 1b-sec/in
Uplift Force: 90 N 20.2 1b
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Table 3.19 shows the Contact Force Variation vs. speed for the base-
line and ideal pantographs. The ideal pantograph performed glightly
better at low speeds and significantly better at high speeds. Figure 3.37
compares the contact force for the baseline and ideal systems at 170 kph.

The optimized pantograph performed much better than the baseline systen.

3.6 Active Control

In this section a frame-actuated c~ntroller is designed using optimal
control techniques. A frame-actuated design was chosen for several
reasons. Frame dynamics are largely responsible for most losses of con-
tact. Many pantographs, including the Brecknell-Villis, already have a
pneumatic cylinder on the frame to provide uplift force and could be
modified for active control. A head-actuated design would require the
actuator to move with the pantograph, increasing the overall mass and

thus degrading performance.

The pantograph model used for the control design is the same two-mass
model developed in Section 2. The equations for the model using full
state feedback control are also deﬁeloped there. The model is shown in
Figure 3.38a. The wire height, Yoat? cannof. be realistically measured.
For design purposes the catenary is modelled as a constant spring whose
value is the average catenary stiffness, kave' Figure 3.38b shows this

scheme.

A diagram of the proposed controller is shown in Figure 3.39. The
control ihput is a linear combination of the states plus the desired up-

1ift force:
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F = C 2yH + C3yF + C4yF

in lyH +C

+ F
up
where:

Cl’ CZ’ C,, and C, are the controller gains

3 4

F _ is the uplift force
up

Yy» §H’ Yp» §F are the pantograph states as defined in Figure 3.38.

The controller gains are selected by minimizing the quadratic cost function:

t
J =/ (ZTQX+F§nRFin)dt)

o

where:
y state variable vector
F control force
in
Q state weighting matrix

~

via the Matrix Riccati Equation [28]. When the pantograph approaches a
speed where loss of contact occurs, it experiences high head and frame
velocities. So the 9 weighting matrix is chosen to penalize high vel-
ocities. Because of the tunnel problem, the pantograph must be able to
make large excursions. So there are no penalties associated with dis-

placements. The chosen Q matrix is:
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0 0 0 0

¢ = |0 —t 0 0
(0.13 m/s) :

1T 0 0 0 0

0 0 0 L

i 0.14 m/s)? _

The R weighting factor is chosen to keep the control force from becoming
unreasonably large. A value of 13-5 was used for design purposes. The

pantograph parameters used are the baseline values.

The Matrix Riccati Equation is solved using the COPT software package

at M.I.T.'s Joint Computer Facility. The resulting gains are given below:

Cl = "279500 N/m
N-s
C2 897 ——
C3 = 27,500 N/m
N.s
C4 = 2,392‘15—

The contact force and displacement plots for an actively-controlled
pantograph using these gains are given in Figures 3.40 and 3.41. The con-
troller increases the overall contact force fluctuation but does reduce the

drop in contact force at the towers.

In order to improve active-pantograph performance: some modifications
must be made. Since a simpler controller is more desirable, the number of
measurements made will be reduced. Feeding back frame velocity effectively

adds a damper from the frame to ground. Since the gain on §F is simonly a
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damper, its effect can be included passively by increasing the value of
frame damping. Head velocity is the most difficult measurement to make.
Feeding it back only adds more damping to the frame. Since this measure-
ment is the hardest to obtain accurately and contributes little to improved
performance, it will be neglected. This leaves only two states that are
measured, head and frame displacements. The schematic diagram of the con-
trolled pantograph (Figure 3.39) is still valid. However, the ‘control law

is now simplified to:

F, =¢C + C

in = “1%H +F

3yF P

Frame damping and control gains are varied and their resulting fre-
quency responses studied. The more promising values are tested In the
time simulation. To comply with the tunnel requirement, it was determined
in section 3.4.5 that frame damping must not exceed 250 Eéi. The restric-
tion is obser&ed here. The Riccati equation also recommends the position
gains be equal in magnitude and opposite in sign to ensure that there is
no static stiffness to ground. This condition is also adhered to. Since
the gains are restricted to being of equal magnitude, only two parameters

are varied, gain magnitude and frame damping. The smallest variation in

contact force is achieved with gains of:

Cl = -70,000 N/m

C2 = 0.0 (no head velocity feedback)

C3 = 70,000 N/m

C4 = 0.0 (frame velocity feedback replaced

with damper)
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and a frame damping value of 250 E;E. All other parameters are baseline

values; the parameters are summarized in Table 3.20.

Even though the gain on frame displacement, C3, is effectively a
stiffness to ground, it cannot be replaced by a spring because of the
tunnel problem. To accomodate a one meter frame motion the actuator would
have to overcome a 70,000 N/m spring force; control forces of this mag-
nitude are unacceptably high. The controller gains are restricted to being

equal and opposite so the control law can be written as:

Fin = KOp v #+ Fup

where:

Both the head and frame are forced to move wiien a tunnel is ap-
proached. Since their difference is much smaller in magnitude than the
motion of either one, the control force will be kept at acceptable levels

if both displacements are fed back through equal and opposite gains.

Figure 3.42 comparés the contact force for the active pantograph and
the baseline pantograph at 170 kph. Active control reduces contact force
fluctuations by 58%. Figure 3.43 shows the control force versus time.

The control force fluctuation is 132 N and its magnitude never exceeds

140 N. These forces are small and are well within the range of available
actuators. Table 3.21 gives the contact force fluctuations for the active
and baseline pantographs at several speeds. Minimum and maximum control

forces are also given for the active case.
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Head Mass:
Frame Mass:

Stiffness of
Pantograph Shoe:

Stiffness Between
Head and Frame:

Damping Between
Head and Frame:

Damping Between
Frame and Ground:

Uplift Force:

Control Gains:

TABLE 3.20

ACTIVE PANTOGRAPH PARAMETERS

9.1 kg

17.2 kg

82.3 kN/m

7,000 N/m

130 X:8
m

250 M-S
m

90 N

-70,000 =
0.0

70,000

gl=

0.0
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20 1b

38 1b

470 1b/in

40 1b/in

0.743 1b sec/in

1.43 1b sec/in

20.2 1b

=400 1h/in
0.0
400 1b/in
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TABLE 3.21

CONTACT FORCE VARIATION FOR ACTIVE AND BASELINE PANTOGRAPHS

Speed AF, Passive AF, Active Maximum Control Minimum Control
System System Force - Force

135 km/hr 54,7 N 25.9 N 127.5 N 40.0 N

170 km/hr 130 N 54.7 N 140' N 8.75 N

225 km/hr  Loss of Contact 128 N 203 N -110 N

Active control performs better at all speeds.

Active simulations were also made under the baseline catenary with
8 cm of sag. Runs were made at velocities of 220 km/hr and 250 km/hr.

The contact force variations are 64.8 N and 110 N respectively.

In section 3.4.2 it was shown that a reduced head spring rate improved
performance. Table 3.22 gives the parameters for an active pantograph
with ;he best heat suspension parameters. Figure 3.44 compares the contact
force variation for the active pantograph with the best head suspension
with the optimum passive pantograph from section 3.5 at 170 km/hr. The

active system has 25% smaller contact force variation. Table 3.23 com-

pares the best active and passive systems at different speeds.

TABLE 3.23
CONTACT FORCE VARIATION FOR ACTIVE AND OPTIMUM PANTOGRAPH

Speed AF, Passive AF, Active Maximum Control Minimum Control
System System Force Force

135 km/hr 48.4 N 25.0 N 131 N 40.0 N

170 km/hr 72.6 N 54.7 N 146 N 2.50 N

225 km/hr' 119 N 120 N 221 N -119 N
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TABLE 3.22

ACTIVE PANTOGRAPH WITH IMPROVED HEAD SUSPENSION

Head Mass: 91 Kg 20 1b

Frame Mass: 17.2 Kg 38 1b

Stiffness of
Pantograph Shoe: 82.3 KN/m 470 1b/in

Stiffness Between

Head and Frame: 3,500 N/m 20 1b/in
Damping Between N-s
Head and Frame: 100 — 0.572 1b sec/in
Damping Between N-s
Frame and Ground: 250 — 1.42 1b sec/in
Uplift Force: 90 N 20.2 1b
Control Gains

C1 ~-70,000 N/m

C2 0.0

C3 70,000 N/m

C4 0.0
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The active pantograph performs nuch better at low and intermediate
speeds. At higher speeds, however, performance for the optimized-passive

pantograph and the active pantograph are about the sane.

‘3.7 Two Pantograph Simulation

The system model is capable of running t&o arbitrarily spaced panto-
gtaph under the same catenary to test the case where two pantographs are
mounted on the same train. In this section two baseline pantographs are
run under the baseline catenary at 150 km/hr. They are spaced five

passenger car lengths apart (130 m).

Figures 3.45 through 3.51 show the time history of the contact wire
shape at 0.1 second intervals. The first shape given is at t = 2.6 sec,
0.5 sec before the second pantograph comes on line; it shows that the
catenary is vibrating with a peak to peak amplitude of 3.5 cm. Figure
3.47 shows both the first and second pantogfaphs moving toward the
center of their respective spans. The catenary's displacement by the
first pantograph is nearly linear. However, the second pantograph dis-
places the catenary in a more uneven manner. The less uniform response
is due to the catenéry's vibrations caused by the first pantograph.
Figure 3.48 shows both pantographs as each approaches the end of their
spans; the catenary's descent is much less uniform for the second panto-
graph.

Figures 3.52 and 3.53 show the displacement plots for the first and
second pantographs respectively. The displacement plot for the first

pantograph rises and descends fairly smoothly. However, for the second
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pantograph, displacements do not change as uniformly. Catenary vibrations
have a noticeable effect on the head trajectory. The maximum displacement
for the second pantograph is nearly one centimeter less than for the first.

The smaller displacement is due to the catenary vibrating in the downward

direction when the pantograph reaches its peak displacement.

Contact force plots for both pantographs are given in Figures 3.54
and 3.55. Peaks and troughs in contact force occur in the same locations
along the catenary. However, the magnitude of these fluctuations are
larger for the second pantograph. Contact force fluctuation is 27%
higher for the second pantogréph. The increase in size of fluctuations
is due to the difficulty the pantograph has in tracking the catenary's

vibrations.
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CHAPTER 4

CONCLUSION

In this research, two analféic;l”models were developed to describe
the dynamics of pantograph-catenary systems. The first was a time-domain
simulation of one or two pantographs traveling under a catenary. The
second was a frequen:y-response simulation for the pantograph. These
models were used to evaluate the dynamic effects of alternate catenary
materials, to investigate the influence of pantograph parameters on per-

formance, and to evaluate new pantograph configuration.

Rising copper costa have increased interest in all-aluminum catenaries.
Besides reducing material costs, results showed aluminum catenaries offer
substantial performance improvement. Contact force variation at 170 km/hr
for the aluminum catenary was 517 lower than the copper contact wire
catenary. Loss of contact occurred at 260 km/hr for aluminum as opposed
to 175 km/hr for the baseline case. Catenary vibrations that occur after
the pantograph has passed were much smaller for the aluminum case. An
aluminum catenary's ability to dissipate energy at a fascer rate may
make it more suitable for applications where two pantographs are run under
the same catenary. The wear rate for aluminum, however, is higher than
coppers.

A small amount of catenary sag was found to improve performance.

The catenary is most compliant at the center of a span. As the panto-
graph moves toward midspan it attempts to overcome the sag by moving

the cable up, it encounters inertial resistance which increases the
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apparent stiffness of the catenary. Proper sag reduces the pantograph
vertical gross motion and the vertical momentum developed. Smaller
vertical momentum yields smaller contact force fluctuations. A desirable
value of sag was found to be 80% of the maximum catenary displacement

for the zero sag case.

In this study the influence of pantograph parameters on performance
was investigated. It is generally agreed that reducing pantograph head
mass improves performance. Keeping the frame mass small also was shown
to be equally important. A soft head suspension was also found to improve
performance. Halfing the head spring rate to 3500 N/m reduced the
contact force variation by 13%. Increased damping also yielded performance
improvements. When head damping was increased from 130 N.s/m to 500 N.s/m
contact force fluctuation dropped 8.3%. Doubling frame damping to 60 N-s/m

resulted in a 8.3% performance improvement.

There are two suspension types that currently dominant pantograph
design. One uses springs in combination with a cam or link system to
provide a constant uplift force. The other uses a pneumatic cylinder
to provide uplifi force. The suspension parameters that yielded the
best performance for each design‘were found and then compared with each
other. At 170 km/hr the pneumatic suspension's contact force variation

was 302 lower than the spring suspension's.

Using results from the parameter and suspension studies, an optimal
set of pantograph parameters was formed. At 170 km/hr the optimum pantc-

graph contact force variation was 447 lower than the baseline case. Most
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of the improvement was due to differences in the frame suspensions.

Using modern control techniques, a frame-actuated, active controller
was designed. The control force is a function of the head and frame
displacement. Tle active pantograph contact force variation was 587% lower
than the baseline case and 257 less than the optimum passive pantograph
at 170 km/hr. However, as speed increases performance for the optimum

passive pantograph and the active pantograph became similar.

Several references give the maximum speed a train should travel as
30%7 to 40% of the catenary wave speed. With an improved pantograph
this design speed can be raised. Simulations have been made as high as
53% of the catenary wave speed with an active pantograph under a sagging
catenary. At this speed the pantograph maintained an acceptable contact
force at all times. It was found that pantographs could be successfully

run at 50% of the wave speed.

Simulations were made with two pantographs running under the same
catenary. Catenary vibrations caused by the first pantogréph make it
more difficult for the second pantograph to maintain contact. The second
pantograph experiences higher frequency inputs than the first pantographs.
Since the second pantograph received different frequency inputs, charac-
teristics of a good first pantograph may not necessarily describe best
second pantograph. Parameter and configuration studies should be done

on the second pantograph to determine the optimum design.
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APPENDIX A

CATENARY MODEL DEVELOPMENT1

This appendix develops the equations of motion and the natural modes

for a simple style, two wire catenary.

A.1 Modai Analysis Review

A system of n degrees of freedom has n natural modes. Associated with
each mode is a natural frequency, W, and a natural mode shape, ¢. The mode
shapes of a dynamic linear system are orthogonal and therefore system dis-
placements can be expressed as a sum of the natural modes multiplied by
appropriate, time-varying modal amplitudes, or modal response functions, a

technique known as modal decomposition. [Ref. 29, 30]

y(x,t) = L ¢, (x) z,(t) (A.1)
where
y(x,t) = the time varying displacement of the system
¢i(x) = the ith natural mode shape
zi(t) = the modal amplitude of the ith mode
i = the mode number

The mode shape, ¢, depends only upon position; aﬁd the modal amplitude,
z, depends only upon time. When a system is excited in a natural mode,
the system and all the system elements, maintain the same relat’ .ve

displacements to each other, and the mode shape describes this relation.

1The pantograph-catenary model derivation presented here first appeared
in Armbruster [17]. The derivation has been modified to include the
following new effects: catenary sag, a full state feedback controller
for the pantograph, the ability to run two pantographs under the same
catenary, and a choice of two frame suspensions: a spring and damper in
parallel or a spring and damper in series. Some changes have also been
made to the text to correct errors and make the presentation clearer.

~-114~



Once the mode shapes are known, the dynamics of the system are determined

by the amplitudes, z(t).

The benefit of separating the motion into modal components is the
modes may be considered independently and the equations reduce to simple,

linear, second order, differential equations of the form:

Mz (£) +Cyz, (8) + Kz, = Q (A.2)
where
z, = the ith modal amplitude
Mi = the modal mass of the ith mode
Ci = the modal damping of the ith mode
Ki = the modal stiffness of the ith mode
Qi = the forcing function of the ith mode

The modal mass, Mi’ is defined by

2
M, = f 0 ¢12 dx (A.3)

o

where p is the lineal density.
The modal damping is defined by equation (A.4) and must be distributed
proportional to the mass to ensure orthogonality of the modes.

'3
Ci = f c(x) ¢12 dx (A.4)

o

where c(x) is the damping (distributed proportional to mass)

The modal stiffness, Ki’ is given by

% 2
K, = f k(x) ¢,° dx (A.5)

0
where k(x) represents the spring constants and effective stiffnesses

along the length.
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The forcing functionm, Qi is:

L
o = [ o) ¢ & (4.6)

[+

where f(x,t) is the applied force (time and position varying). The
natural frequency of the system whem vibrating in the ith mode is
given by equation and follows from the natural frequency of a simple

system as:

w, = VK /M (A.7)

An efficient way to express equation (A.2) is in terms of the natural

frequency, the damping ratio and the modal mass as:

ME (6) + M Ew, 51(“)”‘1‘*’12 2, (£)=Q, (A.8)

Once the mode shapes and frequencies are known, the time response of
each mode is determined by equation (A.8) and the total system response
is determined by applying equation (A.l) and summing up the individual

responses.

A.2 Catenary Model Description

The response of the catenary is determined by writing the dis-
placement of each wire as a Fourier sine-series expansion. The
equations of motion are derived using the amplitudes of the sine
terms and Lagrange's method, and are used to obtain the natural
frequencies and natural mode shapes of the catenary. Using these
modes the equations for the catenary are written in modal form along

with the equation for a pantograph model. These equatidns are solved
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using a fourth-order Runge-Kutta numerical integration routine.

The model of the catenary is shown in Figure A.l, and incorporates

the following features:

o Simple Catenary with a contact wire and a messenger wire.

e Variable spacing allowed between the towers and between the
droppers.

e Contact and support wires are each modeled with a bending
stiffness, constant tension, and a uniform density.

e Damping distributed proportional to the mass of the wires
to ensure orthogonality of the modes.

e The two wires are connected by droppers. These are modeled
as massless springs, K1 through Kp.

e The mass of the droppers is not directly included but is
modeled by distributing it evenly along, and equally be-
tween the two wires.

e The top wire is connected to flexible towers modeled as
springs S1 through SQ‘

e The ends of both wires must have zero displacement but are
allowed to have any angle

® A constant gravitational force can be applied to the catenary
to induce a desired amount of sag.

@ The ability for more than one pantograph to travel under the
catenary.

A.3 Catenary Equation Development

Using Fourier analysis the shaPe of a finite length, L, can be
represented in terms of a sum of both sine and cosine terms, each
term with an appropriate amplitude. For the catenary, let y(x,t)
describe the displacement of the catenary wire, both as a function of -
position, x, and of time, t. The boundary conditions require zero

displacements of the two ends (x=0 and x=L); therefore, no cosine terms
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k
= W

Tower Stiffness: S
Dropper Stiffness: K
Distance to the jth Tower: W

3
Distance to the ith Dropper: X:L

Stiffness of the Two Wires: EIA’ EIB
Density of the Two Wires: o K pB
Tension in the Two Wires: TA, 'I.'B

FIGUR% A.1l: CATENARY MODEL
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may exist. The two wires, the contact and the support wire, are written

separately and as functions of sine terms only as:

yA(x,t) = I A (t) sinGJEELQ Upper Wire (A.9a)
m 0 L
yB(x,t) = ¥ B (t) sin( onx ) Lower Wire (A.9b)
m 0 L
where
Yy, = the displacement of the upper wire
g = the displacement of the lower wire
Am = the amplitude of the mth sine term for the upper

wire

B = the amplitude of the mth sine term for the lower
wire

X = the distance along the catenary

L = the total length of the catenary

m = an integer. Designates the harmonic number.
The shape of these wires is time varying, therefore, the amplitudes Am
and Bm are time varying and can be written Am(t) and Bm(t). Since they
describe the shape of the whole catenary at all times the amplitudes can
be used to write the equations of motion for the catenary, and obtain the

natural modes of the catenary.

The catenary equations are developed using a Lagrange formulation.
Each sine wave is an admissable motion, and the amplitudes provide a

sufficient and convenient set of generalized coordinates.

To use Lagrange's method the expression for the kinetic coenergy+
and the potential energy are written in terms of the generalized

*
coordinates. The kinetic coenergy, T , for a lumped system is:

+
For a linear system the kinetic coenergy equals the kinetic energy.
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*
T =1/2 Mv2 (A.10)

Or, for a continuous system

£
* .
T =1/2 f P y2 dx (A.11)

x=0
and for the two wires of the catenary:
* ﬁ, e 2 e 2
T -1/2/ N + Pg¥y dx (A.12)
o

Differentiating equation (A.9) with respect to time yields:

. M mirx
Y g Am sin( I ) _ (A.13a)
. . mrx

= _mix A.13b
Vg ﬁ B sin( L) (A.13b)

Inserting these equations into Equation (A.12):

’ 2 2
* - N miTx o mTx
T 1/2 f pA[El Am sin(——L )] + pB[ﬁ Bm sin(—-——-L )] dx (A.14)
o

Evaluating the integral gives the final result for the kinetic co-

energy:

L B (A.15)

The potential energy of the system equals the sum of all the potential
energies. They are: the tension in the wires, the bending of the

wires, the displacement of the dropper springs, and the displacement
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of the tower springs:

V= Veen * Veewp * Voror T Vrow (A.16)

where
V = the total potential energy

V&ENa the potential energy due to the tension in wires

VBENthhe potential energy due to the bending stiffness

\'} he potential energy due to the dropper springs

DROP ©

V,row =the potential energy due to the tower springs

In general the potential energy is the integral of force, f, and dis-

placement, r. 't

v o= f £.dr (A.17)

o

For the potential energy due to tension, VTEN is the integral

along the length of the cable of the incremental potential energy,
Ve %

V'I'EN - va (A.18)

where

VTEN = T(dS - dx) (A.19)

dx = free length of wire
ds = length of displaced wire

T = tension in wire
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A diagram of an elemept of a displaced wire is given below:

Displaced Wire

ds —_>T
dy

o

T

e— dx —3 Free Length of Wire

FIGURE A.2: TENSIONED WIRE ELEMENT

Using the Pathagarian theorem, dS can be approximated as:

ds? = dx? + dy? (A.20)
Letting
-3
dy T dx (A.21)
and substituting into (A.20) yields
2 2 dy 2 . 2
ds® = dx“ + ('ny—) dx (A.22)
or
gy 2
ds =Y 1+ (—de) dx (A.23)

Using the binomial expansion and neglected higher orger terms by

assuning -%%— small:

2
as = (1 + 1/2 (—g{;—) Jdx (A.24)
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by substituting (A.24) into (A.19) the expression for SVTEN becomes:

2
. dy :
Vppy T T 1/2 () dx (A.25)

Substituting the above expression into (A.18) gives the equations

for VTEN:

L d 2
VTEN =1/2T f (——de ) dx (A.26)
o

The potential energy may now be evaluated using equation (A.9) for the

displacement. Evaluating —g—xL and substituting for the top wire gives:

% 2
v =1/2 T f ¥ BT A cos(BIE ax  (A.27)
TEN,A A [m L “m L

Evaluating this integral

v =—2 1 oA  (A.28)

Adding in the effect of the lower wire B, the final expression for the

potential energy due to tension effects is obtained:
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A 2 2 T3 2 2
= T PO A.29
VrEN L L om At Iwy (4.29)

77" An expression for the potential energy due to the bending stiffness of

the cable may be derived as:

2 2

= " ' A.30
VBEND 2EL 9% . ( )

where

Mb is the bending moment

=1

Young's Modular

1 Area moment of inertia

From the mechanics of solids

W= Y gy (A.31)

Plugging into equation (A.30) yields:
2

2
2
_ er_ [ %
VeEND f 2 (axz) dx (A.32)

o

The second derivative of displacement is obtained.from equation (A.9)
as:
2 2 2

-d—lzl-- L o-a, 22 ein( m}"") (A.33)

Substituting equation (A.30) yields (for upper wire)
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2 2
= - mT R mhx
Ve A f I-a, ” sin(-ZE)  ax (A.34)

Evaluating the integral gives

4
EIAF

<3
™

m Am (A.35)

Adding in the effect of the other wire, the final expression for the
potential energy due to bending effects is obtained:

4 4

EL T EL_7

Vop = ——3— 5 waAZ+—2—1 n'p? (A.36)
4L° m n 4.° m n

The potential energy in the droppers and the towers must be
evaluated. These elements are both modeled as linear springs. The
potential energy for a linear spring is

2
VSPR 1/2 K A : (A.37)

For the dropper springs A represents the difference between the upper

and lower wires.
A = Yy = Vg (A.38)

The potential energy for the droppers must be evaluated at each dropper

lqcatian X = Xl, Xz, « o o Xp

P
2
Voror = Y2 E; By 0 - vp) Ix“x (A.39)

3
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Using equation (A.9) for the displacement, the potential energy for the

dropper springs is

P mrX
= - _ 1
VDROP 1/2 jgl KjL? (A.111 Bm)sin( L {] (A.40)

The potential energy for the support springs is now evaluated, and must

be done at each tower location x = Wl, W2, eee W

Q

Q 2
Vooy =1/2 I S,y (A.41)
TOW jap 47 =i,

where Sj = the stiffness of the jth tower

Substituting equation (A.9) for the displacement the potential energy

of the support tower springs may be derived

'

Q oW
VTOW 1/2 jfl Sj [ﬁ Amsin( T )] (A.42)

Substituting equation (A.29), (A.36), (A.40), and (A.42) into equation

(A.16) yields an expression for the total potential energy:

2 2
Tw T m
. 2 2 B 2 2
VeoraL * "L L %A *TaL L™ Pa
EIs m 4 2 Elg ™ 4 2
+ 3 I mA ™ + 3 Z mB
4L m n 4L° m m

j=1 3 | m L
Q i mTW 2
+ 1/2 & s8,]Z j
4=1 ] | m AmSin( T )] - (A.43)



With the expres-ion for the kinetic coenergy and the potential
energy determined, writtem above in equation (A.1l5) and (A.43),
Lagrange's method can be used to develop the equations of motion
fof the catenary. In order to determine the natural modes, it is
only necessary to investigate the unforced homogeneous case (no input,
no damping). For any admissable motion of the catenary Lagrange's

equation must be satisifed:

d oL oL
—_— =) - — = (A.44)
d (ae:) 9t
where
*
L = T =V -

¢ = generalized coordinate

The generalized coordinate are A.m and Bm’ the amplitude of the sine
terms. Each sine wave (or combinaticn of waves) is an admissable

motion, therefore for each m Lagrange's equations must be satisfied.

4 (2 ) B (Av452)
t \‘aA m

m
a (ax ) __x _, (A.46b)
de \3% 9B

Using equation (A.15). The first part of equation (A.45) can be

evaluated
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oL .
. = 1/2 (Y L A (A. 463.)
3A A m
m
. B m
SBm

Taking the time derivative gives

d ( dL ) =1/2p LA (A.47a)
dt 3& A m
m
4 (oL ) _ by
T (aﬁ ) 1/2 pBL Bm ) €A.47b)
m

The second half of equation (A.45) is evaluated using equation (A.44):

2 4
o, A" 2 . P T 4,
~ %A oL DAy 30 A
m 2L
P X X
+ I K.sin( ) £ (A - B_) sin(——i) (A.48)
jop 3 T v B =By L
Q mmW rmW
4+ I S sin(—-—-j—) L A sin(-—'i—)
j=1 3 L "o L

where r sums over the same range as m, i.e., Ar = Am forr=m

Similarly:
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p

=1

Lagrange's equation, equation (A.45),

mmX rmX
- 1. -
T stin( =) E (Ar Br)sin(—L'L)

d oL 9L
(—) - 0
dt A BAm
m
can be written for each m as:
p.L " T ﬂzmz EI Tnm

5 A& + 2 + —4

2 m 2L

) A

(A.49)

(A.45a)

P mrX. X
+ I K sin(——I:—J—) £ (A - B )sin(—1)
r r T L

=1

:
+ S
j=1 3

With a similar expression for Bm

This equation is a function of the amplitudes

derivative and is of the form:

aAm + BAm +y=0
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where Y is a function of Am and Bm.

Because the catenary model is a linear system it is free to
vibraCe in its natural mode(s). And, true for all linear systems,
it has as many modes as degrees of freedom. In a natural mode the
motion of the system will be harmonic (sinusoidal). Therefore, the

amplitudes term Am and Bm must also be harmonic, and:

A = -w A (A.42)

where
w = the natural frequency of the mode
m = the number of the sine term

-

Substitution equation (A.52) into equation (A.50) yields:

T m°n’ EL m'n’
2 A A
w Am B 0 L2 + 0 L4 m
A A
P I X X,
+ =2 1 |k.sin(— £ (Ao - B )sin(—) (A.53)
P,L j=1 bj L r F r L

Q mW W
+ -2 X Sjsin(——f—l—) L Ar sin(——i—J—%]
T
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P roX 4X
2 5 |k .sin(—49 £ (A - B ) sin(—d
j=1 h| L r T r L

(A.54)
DBL
A double sum such as
I J
z [Ri x L Sj] (A.55)
i=]1 j=1
can be rewritten as
J I
z [Sj x L Ri] (A.56)
j=1 i=]l
Therefore we can rewrite equation (A.53) as:
T nzmz EI ﬂ4m4
2 A A
wA = ( + YA
T L2 0 L4 m
Pa A
B P omX X, |
+ Ija .bLL- I Kjsia( —s1n(—1)
rl A" j=1
i , P mmX, X, il
- Z|B_ * — I K,sin( Ysin( )
~ Q mTW W, ]
+zfa L 5 sstacoadstac—L (A.57)
r . o,L j=1 -




which can be reduced further to:

2
w Am a(m) Am + E ArOAA(m,r) + E BrOAB(m,r)

where:

.TAnsz EIAm4
a(m) = — 3 t
L p,L
Pa A
P 111194 X
- -2 _ 3 1
GAA(m,r) pAL z stin( I Ysin I )
j=1
Q mmW W
+ L S sin(——j—)sin(———'L)
. i L L
j=1
P X X
=4 T J 3
GBB(m,r) pAP jfl sin( I )sin( I )

Similarly equation (A.54) can be written as:

2
w Bm B(m)Bm + 5 ArOBA(m,r) + E BrGBB(m,r)

where:
T, Tom EL_ma®
B B
B(m) = 3 + A
2 P mﬂ%j ran
OBA(m,r) =-5T E Kj sin( T ) sin( T )
B~ j=1
P mmX X
Oyp (m,1) = 2§ g, sin(——l)sin(——i)
Pol juy 1 L L
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Equations (A.58) and (A.59) can be written in matrix form

- pus - PR pn - - - —— r g
A a(l) & A
E .'. S o] g .
AA AB .
W27 2a o.(m) Al N A
B B(1) B B
A . A %a | BB 1
| By L B(w] | By i i B
S— - A e s ~— \"-‘N L m
T C r 0 r
(A.60)
Or as
WwI] T = [=+0O]T (A.61)
Letting
H = [E+ 0] (A.62)

The final form of the catenary equations is obtained:

w- ¢ = HI (A.63)

The eigenvalues of the matrix H give the natural frequencies squared.
The eigenvalues are the same as finding the roots of the character-

istic equation:

DET(AI - H) = 0 (A.64)

The elgenvector for each eigenvalue gives the set of amplitudes for

each mode.
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Denoting Ai as the ith eigenvalue of the matrix, and Fij as the

jth element of the ith eigenvector we obtain

w, = /Ai (A.U5)
The amplitudes are:
_ (A.66)
Aim B 1“:I.m
(A.67)
B Fi@n+M)

The natural mode shapes are:

M mx M mﬁxB
) + I B, sin(——>) (A.67)
im L
m=1 m=1

M = the maximum number of sine terms considered in
the sum

There are 2M natural modes resulting from this technique. Inspec-
tion of the modes shows approximately half in the lower frequency range
and the other half in a much higher frequency range. The half in the
high frequency range are not indicative of the true natural modes, but
are a consequence of the soiution technique using a finite number of
sine terms. These higher modes should not be considered in the system

response.

The above method determines the natural mode shapes. With the
natural modes known, the response of the system is most effectively

calculated using modal analysis. The response of each mode can be
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found using.equation (A.8)

(1] '. 2 =
Mizi(t)‘fvznigiwi zi(c) + Miwi zi(t) Qi (A.8)

zi(t) = the ith modal response function or modal amplitude

Qi = the ith modal forcing function
wy - = the i;h natural frequency

Mi = the ith modal mass (a scalar)
51 = the ith damping ratio

There will be N modal response equations, where N in the number of

modes considered.

The displacement of the catenary as a function of time is given

by the sum of the individual modal responses:

N

y(x,t) = I

¢, (x) z (t) (A.1)
=] i i

Sag "is incorporated into the model through the model forcing
function: 2

qQ = £(x,t) ¢i(x)dx (A.6)

where
f(x,t) = the applied force distribution

¢i = the ith mode shape
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Since sag is induced by gravity, a force which is time invariant
and distributed proportionally to wire mass, the applied force distribu-

tion is a constant. So the modal forcing function becomes:

L
Qi,sag = f G ¢i(x)dx (A.68)
o)
where
G = the gravitational force distribution, a constant.

To determine G the modal catenary equations of motion are solved
for the static case. G's value is determined such that the sag at

midspan corresponds to a desired value.

The coupling between the pantograph and the catenary also comes
from the modal forcing function, Qi' The forcing function due to panto-
graph interaction depends only upon the mode shape and the contact force.
Since the pantograph equations are developed independently of the
catenary equations, any pantograph model can be used to obtain the contact
force. There is also no limit as to how many pantograph can be run

under a given catenary.

To get the total modal forcing function for a given mode, the modal

forcing function due to sag and each pantograph are summed:

Qi N Qi,sag + Qi,pantl + Qi,pantZ (4.69)
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APPENDIX B

PANTOGRAPH-CATENARY INTERACTION

This appendix develops the equations of motion for the pantograph,
shows the coupling of the pantograph equations with the natural modes of
the catenary, and discusses the simulation technique for the response of

the total system.

B.1 Pantograph Model

The pantograph model is a two mass model with nonlinear suspension
elements. It makes no attempt to model geometric nonlinearities or
vibration of the pantograph's links. The model does, however, include

the following features.

e The motion of the pantograph is modeled with two masses.
The first represents the pantograph head and the second
the pantograph frame.

e The stiffness of the contact strips and pantograph shoe
are modeled by a linear spring, Ks'

e The stiffness between the head and frame is modeled by a
linear spring, KH.

® Mechanical stops are included to limit the relative motion
between head and frame.

e The uplift force is modeled by a constant force, Fo.

e Two types of damping elements between the head and the
frame are modeled: 1linear and one-way damping.

e There are two suspension choices: the first is a linear
spring, linear damper, and a one-way damper in parallel.
(Figure B.1). The second is a linear spring and damper
in series (Figure B.2).
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FIGURE B.l: PANTOGRAPH MODEL, FIRST SUSPENSION OPTION
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FIGURE B.2: PANTOGRAPH MODEL, SECOND SUSPENSION OPTION
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e The model contains a full-state feedback, frame-actuated,
active controller.

The pantograph equation of motion will first be developed for the
linear case; nonlinearities will be added later. The equations of
motion for the linear pantograph are easily derived by summing forces
on its two was=3es. The equations of motion for the parallel spring,

damper suspension case (Figure B.1l) are:

..

M T + B Oy - Y + Ky - ) = F (8.1)

MeFe + BpOg — ) ¥ Be¥g + Ky =) + Ky = 0
(8.2)

where

o]
(]

the dynamic contact force

the displacement of the head mass

Ve = the displacement of the frame mass

Mh = the head mass
Mf = the frame mass
Bh =  the damping between the head and frame
Bf = the damping between the frame and base

Kh = the stiffness between the head and frame

K = the stiffness between he frame and base

The contact force, Fc, is determined from the interaction of the panto-
graph and catenary. The interaction is modeled by a spring with
stiffness typical of the flexure of the contact strips. Therefore, the

contact force is:
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Fc = Ks(ycat - yh) (B.3)

where
Yeat = the displacement of the lower
Yy =  the displacement of the pantograph head
Ks = the stiffness of the contact strip
Fo = the static applied uplift force

When the pantograph loses coatact with the catenary the contact
force is set to zero and the two systems are considered separately until

the pantograph regains contact.

The pantograph model can also be implemented with a full-state
feedback controller. The control force is applied to the frame (see

Figure B.1) and is a linear function of all the pantograph state

variables:
Face = ~(CqTp * Cp¥y + Ca¥p * C,3p)

where

Fact = the active control input

Cl =  the gain on head position

C2 = the gain on head velocity

C3 = the gain on frame position

04 = the gain on frame velocity

The pantograph equations of motion with the active control force

are:
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M T+ By Oy = V) Ky - v = F

Meye + B (ye = ¥p) + By + K(yp - yp) + Keye = F

Some pantographs have suspensions that are more accurately modeled
by a spring and damper in series (Figure B.2). The equations of motion
are found by summing forces on the masses and the point between the frame
suspension spring and damper. In addition to the position and velocity
of the two masses, the position between the suspension spring and damper

is also a state-variable. The equations of motion are:

MYy + By, +ye) F KRGy -y = F

Meye + Bh(yf - yh) + K (yg - v t st(yf -y =0

Bsfys + st(ys - yf) =0

where
Yy = the position between the frame suspension's spring
and damper
Bsf = the series suspension's damping rate
st = the series suspension's spring rate

The above provides the linear equations for the simulation's
pantograph models. The nonlinear effects included in the models are
now developed. To simulate these nonlinear elements the set of linear

equations are augmented with the nonlinearities.
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To limit the motion between the head and the frame, a mechanical
stop is included in the model. At each time step the distance between
the head and frame is checked to ensure the stops have not been hit.
If they have been the head and frame are constrained to move together

until motion is reversed and the stops are freed.

One-way or unidirectional damping is also included in the full
nonlinear model. This is not an eleme;t of any current pantograph,
but it is included to assess its benefit for future pantographs.
A one-way damper is a damper which resists motion in only one direction.
In the simulation, extra damping was added to the model whenever the
velocity between the head and frame was negative (the head moving away
from the wire). If the velocity was positive, no extra damping was
applied. The same relationship held for the one-way damper attached

between the frame and base.

B.2 Coupling Between the Models

The coupling between the pantograph and catenary comes exclusively
through the contact force. When the pantograph is in contact with the
catenary the motion of the pantograph head (more precisely, the top of
the spring KS) and the lower catenary wire are identical, and the con-
tact force has a non-zero value which is determined from their mutual
interaction. When the pantograph loses contact, the contact force be-
comes zero and the position of the pantograph and catenary are indepen-
dent until the pantograph regains contact. Only during momentary losses

of contact are the pantograph and catenary two separate systems. At all
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other times, they are directly coupled: they share the same position and

they share the same force.

The contact force enters the pantograph equations in equation (B.1)
as the variable Fc' It enters the catenary model equations as part of
the modal forcing function. The relationship for the modal forcing func-

tion is given in Appendix A as equation (A.6)

L
Qi(t) =[ £(x,t) ¢, dx (Eqn A.6)
)
where
Qi(t) = the forcing function of the ith mode
¢i = the mode shape of the ith mode
f(x,t) = the applied force distribution (units of force/length)

There is a forcing function equation for each mode. Therefore, at every
time step the forcing function is calculated for each mode, and then
using this forcing function each individual modal response is calculated

from the secoud order differential equation in equation (A.8).

Since the contact force is applied to the lower wire only the B

terms of each mode need be considered. Equation (A.6) therefore becomes:

L
mmx
Qi / f(x’t) % Bim Sin( L

(¢}

) dx (B.4)

If the force is applied at a single point and moves with a velocity, V the

position of the applied force is Vt.
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m T Vt
Fc(t) g Bim sin (———ET———O (B.5)

O
]

where
Fc(t) = the applied contact force (units of force)
This is easily generalized for multiple pantographs. For two pantographs

the forcing function is:

mT (Ve - X))
L

TV
sin (-BL-L—-C—) + F

= z
Qi F1 g Bim 2 m Bim sin ( ) (B.6)

where Fl = the contact force of the first pantograph

e ]
1]

the contact force of the second pantograph

>
(]

the distance between the first and second pantograph

B.3 Simulation Technique

To simulate the dynamic response of the pantograph and catenary the
equations of motion for both were solved simultaneously using a fourth order
Runge Kutta integration technique. The catenary equations (N equations, where
N equals the number of modes), the two pantograph equations (equations B.1l
and B.2) and the nonlinear elements were written into Forﬁran code. The
response of each modal amplitude, z, and the response of the pant.graph is
calculated at each time step. The peosition of the catenary wire at each
instant is given by equation A.l1 and summing up the individual modes. The
time is then incremented and the process repeated until the final time of
the simﬁlation is reached. Figure B.2 summarizes the technique used in the

dynamic simulation.
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READ IN THE EIGENVALUES AND
EIGENVECTORS: I.E. THE FREQUENCIES
AND SINE AMPLITUDES FOR

' THE NATURAL MODES

CALCULATE THE MODAL MASSES

CALCULATE MODAL
FORCING FUNCTION
Qi’ DUE TO SAG

-t

CALCULATE THE N MODAL
FORCING FUNCTIONS, Qy,
AND THE CONTACT FORCE
FOR THIS TIME STEP

FORM THE N CATENARY
EQUATIONS AND THE 2
PANTOGRAPH EQUATIONS

CALCULATE THE RESPONSE OF
THE N MODAL AMPLITUDES
AND THE DISPLACEMENT OF
THE PANTOGRAPH VARIABLES
FOR THIS TIME STEP

INCREMENT THE TIME

No

l—f FINISHED: ?

Yes

OUTPUT THE TIME
HISTORY OF THE
VARIABLES OF
INTEREST

FIGURE B.3: FLOW CHART FOR THE DYNAMIC SIMULATIONS
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