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A B S T R A C T

We develop a robust volume-conservative framework for tracking blob evolution in complex
two-phase flow that accurately and uniquely obtains the volume transfer among bubbles/droplets
(blobs). This new framework is built on a volume-tracking matrix (VTM) that quantifies the
volume transfer between any two blobs in two separated instances (snapshots) during the
evolution, and an efficient Eulerian label advection (ELA) algorithm that explicitly provides
the unique, consistent, volume-conservative VTM. Given a set of blobs defined at a snapshot
by, say, a connected-component labeling (CCL) method and the grid-level volume-fraction flux
from the conservative Volume of Fluid (cVOF) method [1], ELA gives the VTM by solving
the Eulerian flow of each blob’s fluid through time. Due to its grid-level Eulerian nature, ELA
is independent of the complexity of the blob-level evolution, including high-arity (tertiary,
quaternary, etc.) events and cycles which prevent previous methods from obtaining the VTM. We
prove theoretically that ELA is volume-conservative to machine precision, with the same Courant
restriction as cVOF. Furthermore, we show that, by allowing a diffusive error, multiplying
the VTM obtains volume-conservative tracking over longer intervals without increasing the
computational cost of ELA. We verify all these results using extensive simulations of evolving
blob populations in flows with prescribed velocity and isotropic homogeneous turbulence (IHT).

1. Introduction
Bubbles and droplets, hereafter both referred to generally as blobs, in two-phase flows are important in a wide

variety of natural and engineering applications. Examples include blobs formed by breaking waves [2, 3, 4], ship wakes
[5], ocean spray [6], and combustion [7]. For all these applications, a key parameter of interest is the size distribution
of the blobs and the transfer of volume between sizes. To develop accurate predictions of blob sizes and the transfer
of volume, a detailed understanding of the mechanisms that evolve the blob population is necessary. To study these
evolution mechanisms in experiments or simulations, accurate quantification of evolution events is required; however,
even in simulations where all resolved properties of the flow are available, there remains a challenge in relating the
available grid-level Eulerian description of the flow to the Lagrangian evolution of blobs. While a blob is defined as
a volume enclosed by a continuous material interface, numerical methods, such as volume of fluid or level set, do not
explicitly define this interface, making blob tracking a challenge despite the availability of information compared to
experiments. This challenge has two separate parts: identification of blobs at an individual instant in time (snapshot)
based on grid-level descriptions and tracking how these identified blobs evolve between two adjacent snapshots. The
first part is, more broadly, the process of connected-component labeling (CCL) [8]. Recent CCL methods have been
proposed with connectivity criteria designed specifically for two-phase fluid simulations [9, 10, 11]. In this paper, to
avoid entangling these two parts, we take the blob identification provided by CCL as a given and address the second
part of the challenge.

Previously, two Lagrangian blob-tracking methods for numerical simulations have been proposed [11, 12]. Their
inputs from the simulation are Lagrangian integral quantities of blobs, e.g., volume, centroid, and total momentum.
From such information about a population of blobs at two successive snapshots, the methods seek to find a possible
evolutionary path between the two populations, either by physical and numerical constraints [11] or by minimizing a
prescribed error function [12]. A limitation of both these methods is that they assume that all events are binary, meaning
events involve at most two blobs from one snapshot and one blob from the other snapshot. Applied to entrainment of
bubbles by a free surface, the Lagrangian methods have had some success describing fragmentation away from the
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free surface [12, 13]. In a region away from an air-entraining free surface, the flow can be approximated as isotropic
homogeneous turbulence (IHT) [14], where the majority of fragmentation events are indeed binary [15, 16]. However,
when near an entraining free surface, non-binary events are important. In the case of plunging breaking waves, large,
roughly cylindrical, air cavities are often observed [17]. Gao et al. [18] show that these unstable structures rapidly
undergo high-arity fragmentation, which Lagrangian methods are unable to track [11, 12]. In general, Lagrangian
methods are unable to accurately describe the high-arity evolution of large complex air structures near the free surface.
Application of the binary assumption to non-binary events introduces erroneous creation/extinction events [11]. Near
the free surface, such error is inseparable from entrainment and degassing statistics. While high-arity events are
theoretically avoidable by choosing a sufficiently small time interval Δ𝑡𝑠 between adjacent snapshots, the effects of
resolution limitations on CCL methods mean that small Δ𝑡𝑠 will create erroneous fragmentation and coalescence
events [11, 12]. Although a Lagrangian method could theoretically be extended to capture higher-arity events, the
complexity would increase significantly [12].

A different approach to blob tracking is an Eulerian approach. Unlike Lagrangian methods, the available velocity
field 𝐮(𝐱, 𝑡) is used to determine the evolution of blobs. Because an Eulerian approach focuses on grid-level detail to
describe blob evolution, the complexity of the formulation can be independent of the arity of the blob-level events. A
few methods are available which leverage the velocity field [19, 20]; however, like Lagrangian methods, they attempt to
describe the evolution of blobs in terms of individual Lagrangian events. We will refer to these as event-based Eulerian
descriptions. We will prove that, while such a description can provide which blobs contribute volume to a blob at a
later time, such a description is insufficient to ascertain how much volume is contributed by each blob to a blob at a
later time.

In this work we provide a new volume-based Eulerian tracking framework capable of describing any blob evolution.
Unlike previous event-based methods, we describe the evolution of the blob population by first providing a complete
description for the movement of volume between blobs. This Eulerian volume-based tracking approach uniquely
describes the evolution of the blob population through a volume-tracking matrix (VTM), which can describe evolution
regardless of the complexity. From this more general description of blob evolution, individual events can be extracted.
To uniquely provide the VTM, we build upon the volume-fraction fluxes provided by the conservative Volume of
Fluid method (cVOF) [1] to create the Eulerian Label Advection method (ELA), a volume-conservative numerical
implementation of volume-based tracking. By leveraging fluxes already calculated by cVOF, ELA minimizes additional
computational cost and the only overhead associated is the memory cost, which scales with Δ𝑡𝑠. Using the VTM, we
show that long snapshot intervals can be approximated from shorter, less memory-intensive snapshot intervals. These
results are validated using simple prescribed velocity simulation and the canonical problem of bubbles fragmenting in
IHT.

2. Eulerian volume-based tracking
In immiscible two-phase flow, the composition of fluid at a given location in space 𝐱 at time 𝑡 can be described by

a fluid color function defined at any time by

𝑐(𝐱, 𝑡) =
{

1 if 𝐱 ∈ ‘dark’ fluid
0 if 𝐱 ∈ ‘light’ fluid

. (1)

Without loss of generality, let the dark fluid make up the blobs of interest. For incompressible flows, the evolution of
𝑐 must satisfy

𝜕𝑐
𝜕𝑡

+ 𝐮 ⋅ ∇𝑐 = 0 . (2)

We now extend this color function description to incorporate the information given by a CCL method [8].
We assume that, from an approximation of 𝑐 at time 𝑡𝑛, a CCL method provides a set of non-overlapping blobs
ℬ𝑛 = {1…𝑀𝑛}, where 𝑀𝑛 is the number of blobs, and labels the dark volume within with a corresponding label
𝑙 ∈ 0…𝑀𝑛. Here 𝑙 = 0 is reserved for dark fluid not identified as being part of a blob by the chosen CCL method.
From these labels, we define a vector color function 𝐜𝑛(𝐱, 𝑡) with elements initially defined at time 𝑡𝑛 by

𝑐𝑛𝑙 (𝐱, 𝑡
𝑛) =

{

1 if 𝐱 ∈ blob 𝑙
0 else

for 𝑙 ∈ 0…𝑀𝑛 . (3)
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Non-periodic boundary conditions can be implemented by adding a blob (or blobs) toℬ𝑛 and setting the corresponding
element(s) of 𝐜𝑛 at the boundaries. Equivalent to (2), the evolution of 𝐜𝑛 must satisfy

𝜕𝐜𝑛
𝜕𝑡

+ 𝐮 ⋅ ∇𝐜𝑛 = 𝟎 . (4)

For a dark fluid particle located at any 𝐱 at any time 𝑡, 𝐜𝑛(𝐱, 𝑡) provides the blob 𝑙 ∈ ℬ𝑛 that contained the particle at
time 𝑡𝑛. Thus, 𝐜𝑛 provides a complete description of the flow of dark fluid.

For 𝐜𝑛 to also provide an accurate description of the flow of dark fluid, the advection of 𝑐 and 𝐜𝑛 must be identical,
i.e., the velocity 𝐮 must be the same in (2) and (4). From this, we develop two core requirements that a numerical
implementation of (4) must satisfy to provide accurate tracking of dark fluid. As blobs are defined to be non-overlapping
at 𝑡𝑛, the following consistency requirement must be true at all times and locations:

𝑀𝑛
∑

𝑙=0
𝑐𝑛𝑙 (𝐱, 𝑡) = 𝑐(𝐱, 𝑡) . (5)

Based on incompressibility, (2) requires that 𝑐 is conserved, thus each component 𝑐𝑛𝑙 of 𝐜𝑛 must also be conserved, the
second core requirement. If the advection of 𝑐 is not strictly conservative, a weaker form of this volume-conservation
requirement is necessary: that the erroneous addition/loss of 𝑐 must be reflected in an addition/loss in

∑

𝑙 𝑐𝑙.
We note in passing that while the color function based formulation we have used here lends itself well to a

VOF-based numerical implementation, (4) could be implemented using a variety of two-phase advection methods.
For example, splitting the color function into a vector color function and applying (4) has been used to address
numerical coalescence using a variety of two-phase methods [21, 22, 23]. For this section we assume that the solution
𝐜𝑛 which satisfies (4) is known, as Eulerian volume-based tracking could be performed by any consistent and volume
conservative numerical implementation of (4).

2.1. A volume-tracking matrix (VTM) description of blob evolution
Integrating (4) over time, the vector color function 𝐜𝑛(𝐱, 𝑡) originally defined by (3) at time 𝑡𝑛, i.e., 𝐜𝑛(𝐱, 𝑡𝑛), can be

advanced in time to the next snapshot 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑠 to give 𝐜𝑛(𝐱, 𝑡𝑛+1). For a dark fluid particle located at 𝐱 at time
𝑡𝑛+1, 𝐜𝑛(𝐱, 𝑡𝑛+1) provides the blob 𝑙 ∈ ℬ𝑛 that contained the particle at time 𝑡𝑛. At 𝑡𝑛+1, we assume CCL provides a
new set ℬ𝑛+1 = {1…𝑀𝑛+1} of blobs, from which we use (3) again to define a new vector color function 𝐜𝑛+1(𝐱, 𝑡),
with the initial value defined at 𝑡𝑛+1. Based on 𝐜𝑛 and 𝐜𝑛+1, both available at time 𝑡𝑛+1, the volume of dark fluid from
a blob 𝑙 ∈ ℬ𝑛 that ends up in a blob 𝑚 ∈ ℬ𝑛+1 is

𝑞𝑚𝑙 = ∫∀
𝑐𝑛+1𝑚

(

𝐱, 𝑡𝑛+1
)

𝑐𝑛𝑙
(

𝐱, 𝑡𝑛+1
)

d𝑉 , (6)

where ∀ is the whole domain. Applying (3) for 𝑐𝑛+1𝑚
(

𝐱, 𝑡𝑛+1
)

gives

𝑞𝑚𝑙 = ∫𝐱∈blob 𝑚
𝑐𝑛𝑙

(

𝐱, 𝑡𝑛+1
)

d𝑉 . (7)

For 𝑙 = 0…𝑀𝑛 and 𝑚 = 0…𝑀𝑛+1, we define the matrix 𝐐(𝑛→𝑛+1) = {𝑞𝑚𝑙}, which provides a complete description
of the flow of dark fluid from blobs ℬ𝑛 to blobs ℬ𝑛+1. Each element 𝑞𝑚𝑙 in the matrix 𝐐(𝑛→𝑛+1) provides the (absolute)
volume of dark fluid that transfers from blob 𝑙 to blob 𝑚 over the interval 𝑡𝑛 to 𝑡𝑛+1.

We note that based on 𝐜𝑛 we can express the volume of all the blobs at time 𝑡𝑛 as a vector 𝐯𝑛 of length 𝑀𝑛,

𝐯𝑛 = ∫∀
𝐜𝑛(𝐱, 𝑡) d𝑉 . (8)

Recalling (5), the column and row sums of 𝐐(𝑛→𝑛+1) give the blob volumes at 𝑡𝑛 and 𝑡𝑛+1 respectively:
∑

𝑚
𝑞𝑚𝑙 = 𝑣𝑛𝑙 , (9a)

∑

𝑙
𝑞𝑚𝑙 = 𝑣𝑛+1𝑚 . (9b)
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Normalizing the columns of 𝐐(𝑛→𝑛+1) by 𝐯𝑛,

𝑎𝑚𝑙 = 𝑞𝑚𝑙
/

𝑣𝑛𝑙 , (10)

we define the volume-tracking matrix (VTM), 𝐀(𝑛→𝑛+1) = {𝑎𝑚𝑙}. The VTM is a left stochastic matrix,
∑

𝑚
𝑎𝑚𝑙 = 1 , (11)

which describes the evolution of volume from blobs ℬ𝑛 to blobs ℬ𝑛+1 as

𝐯𝑛+1 = 𝐀(𝑛→𝑛+1)𝐯𝑛 . (12)

We note that if instead the rows of 𝐐(𝑛→𝑛+1) are normalized by 𝐯𝑛+1, one gets a functionally equivalent right stochastic
matrix description of the reverse evolution.

It Because the VTM provides only a summary of 𝐜𝑛(𝐱, 𝑡𝑛+1), on the particle level, each entry 𝑎𝑚𝑙 of the VTM can
be interpreted as the probability a particle of dark fluid is in blob 𝑚 ∈ ℬ𝑛+1 at 𝑡𝑛+1 given that it was in blob 𝑙 ∈ ℬ𝑛

at 𝑡𝑛. However, on the blob level, each entry 𝑎𝑚𝑙 provides the (deterministic) proportion of the volume of blob 𝑙 ∈ ℬ𝑛

that ends up in blob 𝑚 ∈ ℬ𝑛+1. Thus, the VTM 𝐀(𝑛→𝑛+1) provides a complete Lagrangian description of the evolution
of blobs. From the VTM, individual events of arbitrary arity are available. For example, fragmentation of one parent
blob into 𝑑 child blobs within a larger simulation will create a subset of 𝐀(𝑛→𝑛+1) that has 𝑑 non-zero entries in a single
column, and coalescence of 𝑑 blobs into one will create a subset that has 𝑑 entries of 1 in a single row.

2.2. Limitations of existing blob-tracking approaches providing the VTM
We first consider how the VTM could be obtained from information provided by existing methods. Lagrangian

methods of blob tracking [11, 12] seek to identify a solution to which blobs at 𝑡𝑛 contributed to a blob at 𝑡𝑛+1. In terms
of our VTM description, they seek to identify which entries of 𝐐(𝑛→𝑛+1) are non-zero. Similarly, event-based Eulerian
methods [19, 20] directly provide which entries are non-zero, but not the values. Based on conservation, (9) provides
an equation to which an implicit solution for the values of 𝐐(𝑛→𝑛+1) could be sought given the knowledge of which
entries of 𝐐(𝑛→𝑛+1) are non-zero, as provided by previous tracking methods. However, (9) will not always provide a
unique solution. Therefore, the unique VTM is not always obtainable using previous tracking methods.

For example, consider the case where two large blobs of volume 𝑣𝑛1 = 𝑣𝑛2 exchange two smaller blobs of volume
0.05𝑣𝑛1 each over a time 𝑇 , as shown in figure 1. For this given flow, we examine the performance of tracking methods
if only snapshots at time 𝑡𝑛 = 0 and 𝑡𝑛+1 = Δ𝑡𝑠 > 𝑇 , are available. Two blobs will be identified at 𝑡𝑛 and two
blobs identified at 𝑡𝑛+1, representing a 2 × 2 tracking matrix with four non-zero entries. The resulting set of (column
normalized) equations from (9),

{

𝑣𝑛+11
𝑣𝑛+12

}

=
[

𝑎11 (1 − 𝑎22)
(1 − 𝑎11) 𝑎22

]{

𝑣𝑛1
𝑣𝑛2

}

, (13)

does not have a unique solution. We note that this problem is equivalent to solving for the currents in a graph given
the net current into each node. Here, the nodes are {ℬ𝑛,ℬ𝑛+1}, the edges are the non-zero entries of 𝐐(𝑛→𝑛+1), and
the currents are the respective element values. Any cycle in the graph allows a loop current, introducing a null space
in the solution for the currents. It is possible that a Lagrangian method, where the non-zeros are not explicitly known,
may pick the solution 𝑎11 = 𝑎22 = 1 (or 0) suggesting no cycles, but there is still a physical exchange of volume and
the uniqueness problem remains. In §4.1 we show that a test case similar to figure 1 generates such cycles for Δ𝑡𝑠 > 𝑇 .
While choosing a small enough Δ𝑡𝑠 could theoretically eliminate this issue, in §4.2.2 we show that for a realistic Δ𝑡𝑠,
cycle generation is common.

Figure 1 illustrates that by splitting the dark fluid at 𝑡𝑛 using the vector color function 𝐜𝑛 and then advecting it with
(4), the values for the flow of volume (𝐐(𝑛→𝑛+1)) are explicitly available at time 𝑡𝑛+1 through (6). Given connectedness
provided by CCL, Eulerian volume-based tracking, unlike previous methods, provides the unique and correct solution
to the VTM. For this example:

{

𝑣𝑛+11
𝑣𝑛+12

}

=
[

0.95 0.05
0.05 0.95

]{

𝑣𝑛1
𝑣𝑛2

}

. (14)

As volume-based Eulerian tracking provides the non-zero entries in the VTM directly from the underlying advection
of dark fluid, all resulting cycles represent real exchange of volume between the blobs identified by CCL.
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1

2 2
1+

1
1+

0
Figure 1: Illustration of two blobs of equal volume exchanging 5% of their volume over a time 𝑇 less than the snapshot
interval, Δ𝑡𝑠. This creates a 2 × 2 VTM with 4 non-zero entries, meaning a unique solution to the values of the non-zero
entries is not obtainable from conservation laws. By marking the volume of the blobs with a split color function, illustrated
here using green and blue, the values of the non-zero entries are available explicitly.

3. Eulerian label advection (ELA)
We describe here the Eulerian label advection (ELA) method which is a volume-conservative numerical advection

scheme for the vector color function in (4) which allows direct calculation of the VTM 𝐀(𝑛→𝑛+1). The numerical
representation of the vector color function is based on the Volume-of-Fluid (VOF) representation of the scalar color
function. The advection scheme itself is based on and consistent with the conservative Volume-of-Fluid (cVOF) method
of Weymouth and Yue [1], while ELA maintains the volume-conservative nature of that approach.

3.1. Defining the vector source fraction field
For a three-dimensional domain size 𝑁𝑖 × 𝑁𝑗 × 𝑁𝑘, let 𝛺𝑖𝑗𝑘 be the region of each cell with volume Δ𝛺𝑖𝑗𝑘 =

∫𝛺𝑖𝑗𝑘
d𝑉 . The volume fraction field 𝑓𝑖𝑗𝑘 is defined as

𝑓𝑖𝑗𝑘(𝑡) =
∫𝛺𝑖𝑗𝑘

𝑐(𝐱, 𝑡) d𝑉

Δ𝛺𝑖𝑗𝑘
. (15)

A vector source fraction field 𝐬 is defined analogously using the vector color function:

𝐬𝑛𝑖𝑗𝑘(𝑡) =
∫𝛺𝑖𝑗𝑘

𝐜𝑛(𝐱, 𝑡) d𝑉

Δ𝛺𝑖𝑗𝑘
. (16)

Therefore, given the results of a CCL method run at time 𝑡𝑛, 𝐬𝑛𝑖𝑗𝑘(𝑡
𝑛) describes which blobs 𝑙 ∈ ℬ𝑛 make up the dark

fluid in the cell, including (unlike previous Eulerian methods) the relative volume contribution of each. Typical CCL
algorithms assign all of the dark fluid in a cell to a single blob, so at 𝑡𝑛, 𝐬𝑛(𝑡𝑛) can be initialized using

(𝑠𝑛𝑙 )𝑖𝑗𝑘(𝑡
𝑛) =

{

𝑓𝑖𝑗𝑘(𝑡𝑛) if 𝛺𝑖𝑗𝑘 ∈ blob 𝑙
0 otherwise

for 𝑙 ∈ 0…𝑀𝑛 . (17)

3.2. Derivation of the ELA algorithm
Inspired by the approach of Weymouth and Yue [1], we seek a volume-conservative numerical advection scheme

to model (4). For conciseness, we consider a single cell and drop the 𝑖𝑗𝑘 subscript. First, we integrate (4) over the cell
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to avoid the discontinuities in 𝐜𝑛(𝐱), then integrate by parts and apply the divergence theorem to obtain

𝜕
𝜕𝑡 ∫𝛺

𝐜𝑛 d𝑉 + ∮𝜕𝛺
𝐜𝑛𝑢𝑛 d𝑆 = ∫𝛺

𝐜𝑛∇ ⋅ 𝐮 d𝑉 . (18)

Writing in terms of 𝐬𝑛 using (16) and rearranging,

𝜕𝐬𝑛
𝜕𝑡

Δ𝛺 = −𝐅𝑛𝑒𝑡 + ∫𝛺
𝐜𝑛∇ ⋅ 𝐮 d𝑉 , (19)

where the vector 𝐅𝑛𝑒𝑡 describes the net flux of 𝐬𝑛 out of 𝛺. As we discretize (19) in time, to avoid confusion of the
snapshot index 𝑛 based on Δ𝑡𝑠 and the fluid-solver time index 𝑘 based on Δ𝑡, we will omit 𝑛 for the rest of §3.2 and
§3.3, e.g., 𝐬𝑘 = 𝐬𝑛(𝑡𝑘).

Weymouth and Yue [1] provide an operator-split method to solve (2) using the volume fraction field 𝑓 on Cartesian-
grids which ensures volume conservation. To go from 𝑓𝑘 to 𝑓𝑘+1 at 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 in an 𝒩 dimensional domain,

Δ𝛺
Δ𝑡

(

𝑓 (𝑑) − 𝑓 (𝑑−1)) = 𝐹𝑑+1∕2 − 𝐹𝑑−1∕2 + 𝑐
𝜕𝑢𝑑
𝜕𝑥𝑑

Δ𝛺 for 𝑑 ∈ 1…𝒩 , (20)

where 𝑓 (0) = 𝑓𝑘 and 𝑓 (𝒩 ) = 𝑓𝑘+1. Note that the superscript 𝑑 references the operator split step and takes values 0 to𝒩
and the subscript 𝑑 in the dilation term indicates the vector component in the associated direction. For each direction,
the scalar flux on the positive face (𝐹𝑑+1∕2) and negative face (𝐹𝑑−1∕2) are calculated using a second-order interface
reconstruction based on 𝑓 (𝑑−1), which ensures the flux terms are conservative. Weymouth and Yue [1] approximate
the dilation term using the cell center value of the color function at 𝑡(0),

𝑐 =

{

1 if 𝑓 (0) > 1∕2
0 otherwise

. (21)

For volume conservation, it is critically important that 𝑐 remains the same throughout the operator-split steps [1].
We now solve (19) using a similar operator-split equation,

Δ𝛺
Δ𝑡

(

𝐬(𝑑) − 𝐬(𝑑−1)
)

= 𝐅𝑑+1∕2 − 𝐅𝑑−1∕2 + 𝐜̃
𝜕𝑢𝑑
𝜕𝑥𝑑

Δ𝛺 for 𝑑 ∈ 1…𝒩 , (22)

where 𝐅𝑑+1∕2 and 𝐅𝑑−1∕2 are vector flux terms on the positive and negative faces and 𝐜̃ is a vector dilation term. As
the consistency requirement states (5) is always true, we require

∑

𝑙
(𝑠𝑙)(𝑑) = 𝑓 (𝑑) . (23)

Summing (22) over its vector components and comparing to (20), (23) is always satisfied if 𝐅 and 𝐜̃ are defined such
that they sum to the scalar equivalents, i.e.,

∑

𝑙(𝐹𝑙) = 𝐹 and
∑

𝑙(𝑐𝑙) = 𝑐. For convenience, we define the normalized
vector source fraction 𝐬̂ as

𝑠̂𝑙 =
𝑠𝑙

∑

𝑖 𝑠𝑖
for 𝑙 ∈ 0…𝑀 , (24)

which has the property
∑

𝑙(𝑠̂𝑙) = 1. An explicit conservative upwind scheme is used to determine the composition of
the dark-fluid flux based on the previous operator-split step’s 𝐬(𝑑−1) and the scalar flux 𝐹 from cVOF:

𝐅𝑑+1∕2 = 𝐹𝑑+1∕2 ⋅

{

𝐬̂(𝑑−1)𝑑+1 if 𝐹𝑑+1∕2 > 0
𝐬̂(𝑑−1)𝑑 if 𝐹𝑑+1∕2 < 0

, (25a)

𝐅𝑑−1∕2 = 𝐹𝑑−1∕2 ⋅

{

𝐬̂(𝑑−1)𝑑 if 𝐹𝑑−1∕2 > 0
𝐬̂(𝑑−1)𝑑−1 if 𝐹𝑑−1∕2 < 0

. (25b)

D.B. Gaylo et al.: Preprint submitted to Elsevier Page 6 of 21



An Eulerian label advection method for conservative volume-based tracking of bubbles/droplets

To describe the vector dilation term based on the scalar dilation term 𝑐 from cVOF,

𝐜̃ = 𝑐 𝐬̂(0) . (26)

For volume conservation, as well as now consistency, it is similarly critical that 𝐜̃ be based on the initial 𝐬(0) and remain
the same throughout the operator-split steps.

For implementation of (22), the flux calculations can be performed such that 𝐬̂(𝑑−1) is calculated as needed one grid
cell at a time as 𝐬(𝑑) overwrites 𝐬(𝑑−1). The dilation 𝐜̃ must be stored throughout the operator-split steps, which comes
with an additional memory requirement no larger than storing 𝐬(0). We highlight that, from the scalar terms already
required by cVOF in (20), only a normalization and a multiplication operation is needed to create the vector terms
required by ELA in (22).

3.3. ELA volume conservation
The requirements for a volume-conservative (to machine precision) operator-split advection scheme are [1]:

1. flux terms are conservative,
2. the dilation terms sum to zero, and
3. there is no over or under filling.

The consistent extension of the scalar cVOF equation (20) to a vector ELA equation (22) using (25) and (26) maintains
satisfaction of requirements 1 and 2.

For requirement 3, cVOF with the Courant restriction

𝐶 = Δ𝑡
𝒩
∑

𝑑=1

|

|

|

|

𝑢𝑑
Δ𝑥𝑑

|

|

|

|

≤ 1
2

(27)

guarantees 0 ≤ 𝑓 (𝑑) ≤ 1 [1]. Because (23) is always satisfied by (22), this Courant restriction guarantees

0 ≤
∑

𝑙
(𝑠𝑙)(𝑑) ≤ 1 . (28)

This only establishes that the sum of 𝐬(𝑑) cannot over or under fill. To guarantee the same for the individual components
(𝑠𝑙)(𝑑), we must establish a Courant restriction for our vector advection equation, using the work of Weymouth and Yue
[1] as a baseline. First, (28) shows that by proving 0 ≤ (𝑠𝑙)(𝑑) for all 𝑙, we prove 0 ≤ (𝑠𝑙)(𝑑) ≤ 1, satisfying requirement
3. In appendix A, by considering all possible combinations of the sign of the velocity on either face, we prove that
0 ≤ (𝑠𝑙)(𝑑) for all 𝑙 provided the Courant restriction (27) is true. As this is the same Courant restriction needed by
cVOF, no change in Δ𝑡 is needed to use ELA with cVOF versus cVOF alone.

We note that after using a VOF advection scheme, it is sometimes useful to filter very small volume fractions of
dark/light fluid, artifacts of precision limitations in the flux calculations [24]. This filter is expressed in terms of a
chosen (very small) zero-threshold value 𝜖 as

𝑓 ′
𝑖𝑗𝑘 =

⎧

⎪

⎨

⎪

⎩

1 if 1 − 𝑓𝑖𝑗𝑘 < 𝜖
0 if 𝑓𝑖𝑗𝑘 < 𝜖
𝑓𝑖𝑗𝑘 otherwise

. (29)

Here, 𝜖 larger than machine precision ensures approximate symmetry between floating point operations on 𝑓 versus
1 − 𝑓 . To ensure (23) is always true, as required for ELA volume conservation, if the filter (29) is used 𝐬 must be
similarly adjusted by the same 𝜖:

𝐬′𝑖𝑗𝑘 =

⎧

⎪

⎨

⎪

⎩

𝐬̂𝑖𝑗𝑘 if 1 − 𝑓𝑖𝑗𝑘 < 𝜖
𝟎 if 𝑓𝑖𝑗𝑘 < 𝜖
𝐬𝑖𝑗𝑘 otherwise

. (30)

While neither VOF nor ELA are strictly conservative if 𝜖 ≠ 0, the total volume addition/loss in 𝐬𝑖𝑗𝑘 is equal to that in
𝑓𝑖𝑗𝑘. Therefore, by applying (30), ELA continues to satisfy the consistency requirement and satisfies the necessarily
weakened volume-conservation requirement in the sense that it tracks all the dark fluid, including that artificially
added/subtracted by (29).
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(a) 𝑡𝑛∕𝑡𝑏 = 0.88

5

1

2

3

4

(b) 𝑡𝑛+1∕𝑡𝑏 = 0.95

𝟏 𝟐 𝟑
⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝟏 0 0.31 0
𝟐 0 0.03 0
𝟑 0.01 0.66 0
𝟒 0.94 0 0
𝟓 0 0 1.00

(c) Subset of 𝐀(𝑛→𝑛+1)

Figure 2: ELA tracking from a simulation (see §4.2 for details). The 𝑓 = 0.5 iso-surface is shown and grid cells are
highlighted corresponding to the label assigned by the CCL method. Note that an iso-surface is itself a CCL method, which
does not necessarily align with the chosen method. 3 resolved parent bubbles (a) have their volume distributed among 5
resolved child bubbles (b). ELA gives the associated VTM (c).

3.4. Extracting the VTM
We start by rewriting (6) as a summation over all cells in the domain,

𝑞𝑚𝑙 =
∑

𝛺𝑖𝑗𝑘∈∀
∫𝛺𝑖𝑗𝑘

𝑐𝑛+1𝑚 (𝐱, 𝑡𝑛+1) 𝑐𝑛𝑙 (𝐱, 𝑡
𝑛+1) d𝑉 . (31)

As done for (17), we assume that a CCL algorithm assigns all of the dark fluid in a cell to a single blob, giving

𝑞𝑚𝑙 =
∑

𝛺𝑖𝑗𝑘∈ blob m
∫𝛺𝑖𝑗𝑘

𝑐𝑛𝑙 (𝐱, 𝑡
𝑛+1) d𝑉 . (32)

Recall that 𝑛 is the snapshot interval index, i.e., 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡𝑠. Choosing an integer 𝐾 based on the desired snapshot
interval, Δ𝑡𝑠 = 𝐾Δ𝑡, (22) is performed every simulation time step to advance 𝐬𝑛(𝑡𝑛) in time to 𝐬𝑛(𝑡𝑛+1), which provides

𝐬𝑛𝑖𝑗𝑘(𝑡
𝑛+1) =

∫𝛺𝑖𝑗𝑘
𝐜𝑛(𝐱, 𝑡𝑛+1) d𝑉

Δ𝛺𝑖𝑗𝑘
, (33)

which gives

𝑞𝑚𝑙 =
∑

𝛺𝑖𝑗𝑘∈ blob m
Δ𝛺𝑖𝑗𝑘 (𝑠𝑛𝑙 )𝑖𝑗𝑘(𝑡

𝑛+1) . (34)

After normalizing using (10), we obtain the VTM 𝐀𝑛→𝑛+1.
Figure 2 shows an example from the simulation in §4.2 of a VTM extracted using ELA. Based on the first column

of 𝐀(𝑛→𝑛+1), we see that the majority of the volume from the parent with label 1 at time 𝑡𝑛 went to the child with label
4 at time 𝑡𝑛+1, apart from a small portion that went to child 3. For clarity, under-resolved bubbles have been excluded,
causing the first column not sum to 1, cf. (11). Based on the second column, the volume from parent 2 went to three
different children, 1, 2, and 3. Based on the third column, all of the volume from parent 3 went to child 5. The events
described by this VTM are complex in two ways: there is a non-binary fragmentation event, and both fragmentation
and coalescence occurred to form child 3.
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Eq. (37)

Eq. (34)
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)2+→1+(A )3+→2+(A)1+→(A

)3+→(Ã

Figure 3: Illustration of the flow of information using ELA and matrix multiplication with 𝐾 = 8 and 𝑁 = 3. After using
ELA over 𝐾 simulation time steps, the information in 𝐬𝑛 is summarized in a VTM using (34). The information in 𝑁 of
these VTMs is summarized in an effective VTM using (37).

3.5. Approximating long snapshot intervals through matrix multiplication
While there is limited additional computational effort required for ELA (see §3.2), there is a memory cost related

to storing the source vector 𝐬𝑛. Here, we provide an upper bound for how this memory cost scales with 𝐾 . Although
in practice the cost is substantially less than this upper bound, the memory cost of ELA is still non-trivial. Should this
cost be prohibitive, we present a matrix-multiplication method that employs small, inexpensive 𝐾 to approximate a
larger 𝐾 . It is important to note that using matrix multiplication with ELA represents a trade-off between accuracy and
cost, as matrix multiplication is only an approximation of Eulerian volume-based tracking.

To provide the upper bound on ELA memory cost, we begin with how 𝐬𝑛 is stored. The number of bubbles 𝑀𝑛

is generally only known a posteriori, so the length of 𝐬𝑛 cannot be bounded a priori. Rather than attempt to store the
entire length for each cell, we store the index and value of each non-zero entry of 𝐬𝑛 in a cell. The same approach
applies to storing 𝐜̃. Assuming the CCL method used will not generate more than one label per cell, and noting that the
Courant restriction limits advection of 𝐬𝑛, the maximum number of entries of 𝐬𝑛 needed to be stored to run ELA over
a given snapshot interval Δ𝑡𝑠 = 𝐾Δ𝑡 is

nnz(𝐬𝑛𝑖𝑗𝑘) ≤ min
{

(1 + 2𝐾)𝒩 , 𝑀𝑛
}

, (35)

where nnz(𝐬𝑛𝑖𝑗𝑘) is the maximum number of non-zero entries in any 𝐬𝑛𝑖𝑗𝑘. By (35), the smallest memory requirement for
ELA comes with a small 𝐾; however, the resulting small Δ𝑡𝑠 introduces significant noise due to resolution limits
inherent in CCL algorithms [11]. For simulations in §4.2, 𝐾 ∼ (100) when following published guidance on
selectingΔ𝑡𝑠 [11]. Although the upper bound suggests that memory requirements scale with𝐾3 for a three-dimensional
simulation, in §4.2.3 we will show that in practice the scaling is much lower than 𝐾3.

To approximate a desired Δ𝑡𝑠 with a smaller 𝐾 , we introduce the matrix-multiplication method. Recalling that the
VTM in (12) acts like a left stochastic matrix, we can write

𝐯𝑛+𝑁 =

[ 𝑛
∏

𝑚=𝑛+𝑁−1
𝐀(𝑚→𝑚+1)

]

𝐯𝑛 , (36)

for 𝑁 snapshot intervals. This defines an effective VTM

𝐀̃(𝑛→𝑛+𝑁) =
𝑛
∏

𝑚=𝑛+𝑁−1
𝐀(𝑚→𝑚+1) , (37)

with an effective snapshot interval Δ𝑡𝑠,eff. = 𝑁Δ𝑡𝑠. Therefore,

Δ𝑡𝑠,eff. = 𝑁𝐾Δ𝑡 . (38)

WithΔ𝑡 constrained by the flow solver, the effective snapshot interval can be adjusted through the true snapshot interval
during the simulation (𝐾) or through multiplying the matrices in post-processing (𝑁), as illustrated in figure 3.
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1
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Figure 4: Illustration of two blobs at 𝑡 = 0 whose dark fluid briefly coalesces into one blob at 𝑡 = 𝑇 but then fragments
along the boundary between the two original blobs such that at 𝑡 = 𝑇 all of the volume from one original blob is in only
one of the final blobs.

Although the effective VTM describes the same transition from 𝐯𝑛 to 𝐯𝑛+𝑁 , we note that there is a loss of
information when using matrix multiplication versus a larger 𝐾 . Through the vector color function 𝐜𝑛, the source
of each particle of air is known. However, when 𝐀 is calculated using (6), we integrate 𝐜𝑛 over the volume of each
blob, losing the spatial distribution of 𝐜𝑛 within the blob. In effect, matrix multiplication assumes that after each true
snapshot interval Δ𝑡𝑠, 𝐜𝑛 is homogeneous within a blob, increasing the apparent entropy. This is consistent with the
stochastic interpretation of the VTM: it provides a probability given only that a particle is within a blob, not the specific
location of the particle within the blob. However, this implied diffusion is inconsistent with (4), which comes from the
VTM providing less information than 𝐬𝑛. A result of this loss of information is that effective VTMs depend on 𝑁 , and
are thus not unique.

As an example, consider the case illustrated in figure 4. Two blobs of equal volumes 𝑣𝑛2 = 𝑣𝑛1 briefly coalesce at
𝑡 = 𝑇 to form a single blob of volume 𝑣𝑛+11 = 𝑣𝑛1+𝑣𝑛2. At 𝑡 = 2𝑇 the single blob fragments along the original boundary
such that no dark fluid was mixed. Here we consider connectedness provided by CCL a given, but note that such an
event could be either physical or spurious, as the connectedness accuracy for closely passing blobs depends on the
CCL method and its parameters [11]. First, consider the case where Δ𝑡𝑠 = 2𝑇 . Eulerian volume tracking produces the
correct VTM:

𝐀(0→2𝑇 ) =
[

1 0
0 1

]

. (39)

Even if this were a spurious event, ELA with Δ𝑡𝑠 ≥ 2𝑇 would correctly identify no exchange of volume and no cycles.
Second, consider the case where Δ𝑡𝑠 = 𝑇 , with 𝑁 = 2 to get Δ𝑡𝑠,eff. = 2𝑇 :

𝐀̃(0→2𝑇 ) =
[

0.5
0.5

]

[

1 1
]

=
[

0.5 0.5
0.5 0.5

]

. (40)

While 𝐀̃(0→2𝑇 ) still satisfies (12), the loss of spatial information when the vector color function is collapsed into a VTM
at 𝑡 = 𝑇 creates a more diffuse tracking matrix. This loss of information means that there is no reliable way to decrease
the diffusive error apart from decreasing 𝑁 or introducing more information. Keeping 𝑁 constant, one would have to
make assumptions about the underlying flow to determine a likely evolutionary path from the possible events present
in the diffuse effective VTM. This is equivalent to a (only slightly more constrained) Lagrangian tracking approach,
and would have the same challenges. We note that, based on the interpretation of the VTM as a graph (see §2.2), it can
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(a) 𝑡∕𝑇 = 0 (b) 𝑡∕𝑇 = 1.5 (c) 𝑡∕𝑇 = 3 (d) 𝑡∕𝑇 = 4.5 (e) 𝑡∕𝑇 = 6

Figure 5: Evolution of volume fraction 𝑓 = 0.5 iso-surface in the two-dimensional vortical exchange simulation.

be shown that for the special case where 𝐀̃ (or a connected component of it) found using 𝑁 > 1 has no cycles, it must
be equal to the tracking matrix 𝐀′ (or a corresponding connected component of it) found using a larger true snapshot
interval and no multiplication over the same time period (𝐾 ′ = 𝑁𝐾).

4. Numerical verification and demonstration of ELA using VTM
To verify and demonstrate the properties of ELA, we perform two types of simulations. In section §4.1 we

perform two-phase prescribed-velocity simulations of a vortical flow and in §4.2 we perform two-phase Navier-Stokes
simulations of the canonical problem of bubbles fragmenting in IHT. Both simulations are performed on a staggered
Cartesian grids using the cVOF method with 𝜖 = 10−12 used for (29) and (30).

For these simulations we choose the Informed Component Labeling (ICL) algorithm developed by Hendrickson
et al. [10] as the CCL method to provide ELA with contiguous blobs because it is volume conservative, i.e., all
dark fluid is marked as part of a blob. This allows us to validate that ELA is volume conservative. In addition to
computational cells being adjacent and having 𝑓 > 0 for them to be considered part of a connected blob, ICL requires
that the calculated interface normals (available from cVOF interface reconstruction) must not oppose. This additional
connectivity criteria creates a bias towards representing unresolved structures as many separate blobs as opposed to a
thin liquid bridge. However, as discussed by Chan et al. [11], differentiating between separate blobs and a thin liquid
bridge is an unresolved computational issue for CCL.

4.1. Example involving two-dimensional vortical exchange
To illustrate the challenge of blob tracking when complex interactions are present, we consider a flow similar to

the conceptual one shown in figure 5. Consider two circular blobs of radius 𝑎 whose centers are both a distance 𝐿 from
the center of a forced vortex of radius 𝑅 and rotation Ω, giving an angular velocity field 𝑣𝜃(𝑟) as a function of the radial
distance 𝑟 from the vortex center,

𝑣𝜃(𝑟) = Ω𝜋𝑟(𝑅 − 𝑟) , (41)

where  is the Heaviside step function. The vortex rips volume from one blob, creating smaller blobs which are then
transferred to the other blob. The time it takes for this exchange of volume gives the characteristic time 𝑇 = 1∕Ω. As
discussed in §2.2, if Δ𝑡𝑠 > 𝑇 , cycles are formed which prevent a unique solution using previous methods. Here, we
perform a two-dimensional simulation of 𝐿∕𝑅 = 6∕5 and 𝑎∕𝑅 = 1∕2 with resolution Δ𝑥 = 𝑅∕32 over 0 < 𝑡∕𝑇 < 8
and study the effect of Δ𝑡𝑠∕𝑇 on cycle production. Figure (1) shows the evolution of the 𝑓 = 0.5 isosurface.

To quantify cycle production, we generate a matrix 𝐁(𝑛→𝑛+1) by removing all elements of the VTM 𝐀(𝑛→𝑛+1) that
are not involved in a cycle. This is achieved by iteratively setting any element to zero if it is the only non-zero entry in
a row or column until no such cases exist. To avoid inflating the count of cycles by including under-resolved events,
we remove columns of 𝐀(𝑛→𝑛+1) relating to under-resolved parent blobs, 𝑣𝑛𝑖 < 𝑣res, 2D, as well as rows relating to
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Figure 6: Statistics for 𝐶𝑛, the proportion of total volume involved in cycles, using different snapshot intervals for the
vortical exchange simulation over 0 < 𝑡∕𝑇 < 6.

under-resolved child blobs, 𝑣𝑛+1𝑗 < 𝑣res, 2D, where 𝑣res, 2D = π(2Δ𝑥)2. The proportion of the (resolved) volume of dark
fluid involved in cycles can then be written

𝐶𝑛 =
∑

[

𝐁(𝑛→𝑛+1)𝐯𝑛
]

∑
[

𝐀(𝑛→𝑛+1)𝐯𝑛
] . (42)

Figure 6 shows there is no cycle production for Δ𝑡𝑠 ≪ 𝑇 , a jump in cycle production at Δ𝑡𝑠 ∼ 𝑇 , and all volume is
involved in a cycle for Δ𝑡𝑠 > 𝑇 . Thus, unless Δ𝑡𝑠 ≪ 𝑇 , previous tracking methods would be unable to provide unique
solutions to the flow of volume between blobs.

4.2. Example involving three-dimensional bubble fragmentation in IHT
As a practical demonstration of ELA, we consider the canonical problem of a low void-fraction distribution of

air-bubbles in water (density ratio 𝜌𝑎∕𝜌𝑤 = 1000) fragmented by strong IHT (Weber number We = ∞). We choose
IHT as it is spatially homogeneous, quasi-steady, and well understood, allowing simple measurement of averaged
turbulence properties, particularly the turbulent dissipation rate 𝜀. Additionally, multi-phase IHT has been well studied
experimentally (e.g., [16, 25, 26]), and serves as a building block for understanding bubbly-flow near an air-entraining
free surface, such as in ship wakes [14]. Using this canonical problem, we verify that ELA is volume conservative,
quantify the abundance of loop currents, and demonstrate the use of matrix multiplication and the associated trade-off
between cost and accuracy.

We perform three-dimensional direct numerical simulations on a triply periodic grid of 2563. IHT is created and
maintained using a linear forcing method [27, 28] resulting in a turbulent Reynolds number Re = 𝑢4rms∕𝜀𝜈 = 200 and
Kolmogorov scale 𝜂 ≈ Δ𝑥. After turbulence is initialized for one phase, a population of spherical bubbles with radii
between 𝑟𝑚𝑖𝑛 = 3Δ𝑥 and 𝑟𝑚𝑎𝑥 = 15Δ𝑥 following a 𝑟−10∕3 power law is randomly distributed without overlap at 𝑡 = 0
such that the void fraction is 1%. The details of this canonical problem and the description and validation of the flow
solver are provided by Yu et al. [14].

For fragmentation of bubbles in IHT, a characteristic time is 𝑡𝑏 = 0.42 𝜀−1∕3𝑟𝑚𝑖𝑛2∕3, corresponding to the typical
lifetime of the smallest bubbles [4, 25]. We run our simulations over 0 < 𝑡∕𝑡𝑏 < 2, over which we observe an
increase from 215 to 588 resolved bubbles (defined as bubbles with a volume larger than 𝑣res, 3D = 4∕3π(1.5Δ𝑥)3).
The evolution of the bubble field is shown in figure 7 and the bubble-size distribution is shown in figure 8. We perform
a series of otherwise identical runs using different Δ𝑡𝑠 (see table 1), then using (37) we extract tracking matrices
describing the same effective snapshot interval 𝜏eff. = Δ𝑡𝑠,eff.∕𝑡𝑏 = 0.07, consistent with recommendations by Chan
et al. [11]. Figure 2 provides an event observed by ELA over this snapshot interval and the corresponding tracking
matrix from a subset of the domain. To evaluate the effect of the number of bubbles and events, two different time
periods are considered: an early period 0 < 𝑡∕𝑡𝑏 < 1 covering 15 effective snapshot intervals with fewer bubbles and
events, and a late period 1 < 𝑡∕𝑡𝑏 < 2 covering 15 effective snapshot intervals with more bubbles and events. Noting
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(a) 𝑡∕𝑡𝑏 = 0 (b) 𝑡∕𝑡𝑏 = 1 (c) 𝑡∕𝑡𝑏 = 2

Figure 7: Evolution of volume fraction 𝑓 = 0.5 iso-surface in the three-dimensional IHT simulation.
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Figure 8: Evolution of the bubble-size distribution 𝑁(𝑟) in the IHT simulation versus the expected −10∕3 power law. Note,
only resolved bubbles (𝑟∕Δ𝑥 ≥ 1.5) are considered.

that we track all bubbles, not just those that are resolved, the largest value of 𝑀𝑛 is 9 × 104 for the early and 2 × 105
for the late period.

4.2.1. Validating ELA volume conservation
Using case La and Lb (𝑁 = 1), we first seek to verify the conservative nature of ELA. Following Weymouth and

Yue [1], a measure of the typical change in the volume of dark fluid per simulation time step Δ𝑡 is

(

𝐿1
)

cVOF = 1
𝑇𝐾

𝑇−1
∑

𝑛=0
|𝑉 𝑛+1 − 𝑉 𝑛

| , (43)

where 𝑉 𝑛 is the sum of all the blob volumes 𝐯𝑛. Here, 𝑇𝐾 is the total number of simulation time steps. The total
relative change over the entire simulation is

(Change)cVOF = 𝑉 0 − 𝑉 𝑇

𝑉 0
. (44)

We define equivalent metrics for ELA based on the tracking matrices:

(

𝐿1
)

ELA = 1
𝑇𝐾

𝑇−1
∑

𝑛=0

‖

‖

‖

𝐯𝑛+1 − 𝐀(𝑛→𝑛+1)𝐯𝑛‖‖
‖1

, (45)
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Table 1
Summary of different runs performed using the same flow but different ELA settings. Note, the Δ𝑡 was chosen
dynamically based on the flow solver’s restrictions, so the average value based on all Δ𝑡𝑠 intervals is reported
for 𝐾.

𝑁 = Δ𝑡𝑠,eff.∕Δ𝑡𝑠 𝐾 = ⟨Δ𝑡𝑠∕Δ𝑡⟩ Normalized with (47)?

Case La 1 109.9 no
Case Lb 1 109.9 yes
Case S1 2 54.96 yes
Case S2 4 27.50 yes
Case S3 8 13.75 yes
Case S4 16 6.870 yes
Case S5 32 3.434 yes
Case S6 64 1.717 yes

(Change)ELA =
∑

[

𝐯𝑇 − 𝐀̃(0→𝑇 )𝐯0
]

∑
[

𝐯𝑇
] . (46)

By comparing the new volume predicted by the VTM to the new volume calculated from the void fraction field, we
measure any volume error in ELA separate from that related to cVOF.

Table 2
The 𝐿1 and relative change metrics for volume conservation error separated into ELA contribution and cVOF
contribution for IHT simulations over 0 < 𝑡∕𝑡𝑏 < 2 corresponding to 𝑇 = 30 snapshot intervals. Note that the
𝐿1 errors are per fluid solver step while relative change errors are over the entire simulation (∼ 3000 steps).

(

𝐿1
)

ELA ∕𝑉 0 (Change)ELA
(

𝐿1
)

cVOF ∕𝑉
0 (Change)cVOF

Case La 8.2 × 10−16 −1.9 × 10−12 5.7 × 10−13 1.9 × 10−9
Case Lb 2.2 × 10−17 4.8 × 10−14 " "

The results for the IHT simulations are shown in table 2. We first run the normal ELA method described in §3.2
(case La). As expected,

(

𝐿1
)

cVOF ∕𝑉
0 ∼ (𝜖), indicating the growth in cVOF volume error is due to 𝜖 in (29).

Therefore, if 𝜖 is changed we expect
(

𝐿1
)

cVOF and (Change)cVOF to change proportionally. As 𝐬 remains consistent
with 𝑓 through (30), 𝜖 does not affect the ELA metrics in table 2. The growth of the ELA volume conservation error
per step,

(

𝐿1
)

ELA ∕𝑉 0, is approximately machine precision, validating that the ELA method is volume conservative
to machine precision. To minimize the effect of machine precision, we run a second simulation (case Lb) where, after
every operator-split step (22), we normalize by

𝐬′(𝑑) = 𝑓 (𝑑)𝐬̂(𝑑) (47)

to limit the accumulation of error related to machine precision. This achieves a 1∕40 reduction in the (already near
machine precision) error. For the rest of the IHT simulations, we use this normalization.

4.2.2. Relationship between cycle generation and snapshot interval
We now evaluate cycle production in the IHT simulation using the same analysis as in §4.1. Again, to avoid inflating

the count of cycles by including under-resolved events, we remove columns of 𝐀(𝑛→𝑛+1) relating to under-resolved
parent bubbles, 𝑣𝑛𝑖 < 𝑣res, 3D, and rows relating to under-resolved child bubbles, 𝑣𝑛+1𝑗 < 𝑣res, 3D. We use VTM from the
true snapshot intervals of each run and do not use matrix multiplication, providing a range of 𝜏 = Δ𝑡𝑠∕𝑡𝑏. The results
are shown in figure 9.

Previous work on numerical tracking [11, 12, 19] has identified that over small time intervals, CCL causes chains of
spurious fragmentation and coalescence, as CCL methods struggle to consistently identify distinct regions of dark fluid
separated by lengths on the order of the grid. Generally, interfaces can be arbitrarily close, making this a fundamental
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Figure 9: The average proportion of the volume of resolved bubbles involved in cycles 𝐶𝑛 (a), and the average rate of
change 𝐶𝑛∕𝜏 (b), for IHT simulations with different true snapshot intervals 𝜏 = Δ𝑡𝑠∕𝑡𝑏 (see table 1) compared to a linear
relationship.

limitation of CCL [9]. When tracking blobs identified by CCL, imposing a minimum Δ𝑡𝑠 typically mitigates the
inclusion of spurious events [11, 12]. As this strategy is adopted to improve the CCL information provided to tracking,
it applies to all tracking methods, including ELA. Treating figure 4 as an idealized example of a spurious event caused
by CCL in a given flow, we see that Δ𝑡𝑠 ≥ 2𝑇 eliminates the spurious event from the VTM. Note that the characteristic
time period of spurious events, e.g., 𝑇 , is likely sensitive to the fluid solver and the CCL method.

Cycle production depends on the number of events and number of blobs, as illustrated by the difference between
the early and late time periods; however over both time periods an approximately linear scaling 𝐶𝑛 ∝ 𝜏 is observed.
Considering the magnitude of 𝐶𝑛, we observe that, for 𝜏 = (0.1) proposed by Chan et al. [11], 5% of the resolved
volume is involved in cycles for the early period and 20% of the resolved volume is involved in cycles for the late
period. This means previous tracking methods would be unable to provide unique solutions to the tracking matrix, and
the differences between solutions could be significant. In § 2.2, we establish that volume-based Eulerian tracking does
not introduce cycles, thus these cycles are the result of either physical exchanges of volume or spurious events caused
by CCL. Because tracking considers CCL given, ELA cannot directly quantify what portion of these cycles fall into
each category; however, the results in figure 9 show that physical cycles are abundant in this simulation. As 𝐶𝑛 provides
a measures of the total cycle production over an interval 𝜏, 𝐶𝑛∕𝜏 provides a measure of the rate of cycle production.
For small 𝜏 ≲ 10−2, 𝐶𝑛∕𝜏 decreases with increasing 𝜏, consistent with the decreasing probability of spurious events.
For the late interval and 𝜏 > 10−2, 𝐶𝑛∕𝜏 increases with increasing 𝜏, consistent with the increasing probability of
physical cycles (see §4.1). This suggests that physical cycles dominate at large 𝜏 in the late interval of this simulation .

On selecting Δ𝑡𝑠 in practice, Lagrangian tracking methods also apply an upper bound on Δ𝑡𝑠 because their binary
assumption precludes identifying events over long time periods [11] and their identification of advection is inaccurate
over large displacements [12]. Due to its Eulerian volume-tracking nature, ELA does not suffer these limitations and
is accurate for large Δ𝑡𝑠. With accurate large Δ𝑡𝑠 now possible, ELA reduces the effect of spurious events caused by
CCL. Separately, a physical motivation for selecting Δ𝑡𝑠 is that it defines the distinction between a single event and
multiple events, and thus directly affects measured event statistics [26]. The proper choice of Δ𝑡𝑠 for this purpose is an
area of ongoing investigation [29].

4.2.3. Effect of matrix multiplication on accuracy and memory cost
To study the effects of approximating long snapshot intervals through matrix multiplication, we perform seven

otherwise identical simulations with different Δ𝑡𝑠, then multiply the resulting VTMs to achieve the same Δ𝑡𝑠,eff.∕𝑡𝑏 =
0.07 (see table 1). Defining 𝑛′ to index the effective snapshot interval, i.e., 𝑡𝑛′+1 = 𝑡𝑛′ + Δ𝑡𝑠,eff., each simulation and
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Figure 10: The average normalized 𝐸1 error for two intervals of the IHT simulations using different true snapshot intervals
(see table 1).

subsequent matrix multiplication generates VTMs describing

𝐯𝑛′+1 = 𝐀̃(𝑛′→𝑛′+1)𝐯𝑛′ . (48)

For case Lb, (Δ𝑡𝑠)Lb = (Δ𝑡𝑠,eff.)Lb, so no matrix multiplication is necessary and (𝐀̃)Lb = (𝐀)Lb. Using this case as a
reference, the difference for each shorter true snapshot interval case (Case S1, Case S2, etc.) is defined

(

𝐃𝑛′
)

SX
=
(

𝐀̃(𝑛′→𝑛′+1)
)

SX
−
(

𝐀(𝑛′→𝑛′+1)
)

Lb
. (49)

We remove columns of 𝐃𝑛′ and entries of 𝐯𝑛′ relating to under-resolved parent bubbles, 𝑣𝑛′𝑖 < 𝑣res, 3D.
We first validate that matrix multiplication is a volume conservative description of the transition shown in (48). We

expect 𝐃𝑛′𝐯𝑛′ = 𝟎, so the normalized error in 𝐀̃(𝑛′→𝑛′+1)’s prediction of the volume 𝐯𝑛′+1 due to matrix multiplication
is

(𝐸1)
𝑛′ = ‖

‖

‖

𝐃𝑛′𝐯𝑛′‖‖
‖1

/

‖

‖

‖

𝐯𝑛′+1‖‖
‖1

. (50)

Figure 10 shows the average 𝐸1 error for the early and late time period normalized by 𝑁 , the number of matrix
multiplications required to calculate 𝐀̃(𝑛′→𝑛′+1). The (10−15) normalized error for all simulations shows that matrix
multiplication is volume conservative to machine precision.

To quantify the loss of accuracy due to matrix multiplication (see discussion in §3.5), we examine how individual
columns of the VTM differ. Based on 𝐃𝑛′ = {(𝑑𝑖𝑗)𝑛

′}, we define the average difference per column for each matrix

(𝐸2)
𝑛′ = 1

2

⟨

∑

𝑖
|(𝑑𝑖𝑗)𝑛

′
|

⟩

𝑗

. (51)

The factor of 1∕2 guarantees 0 ≤ 𝐸2 ≤ 1. Figure 11 shows that the trend of the growth of the average 𝐸2 error for both
the early and late time periods behaves similarly with changing 𝑁 , apart from a scaling coefficient. This scaling factor
is likely dependent on the number of bubbles and number of events. Additionally, although we do not examine these
here, it could also potentially depend on the type of CCL method used, the Δ𝑡𝑠,eff. chosen, and the general properties
of a flow. For 𝑁 ≫ 1, 𝐸2 exhibits approximately logarithmic growth. We highlight that large 𝑁s, and therefore small
𝐾s, can be used with only moderate loss of accuracy, but representing a significant reduction in memory needed to
store 𝐬 without decreasing Δ𝑡𝑠,eff..

We now examine the scaling of the memory requirement to store 𝐬𝑛. Each non-zero entry of 𝐬𝑛 within a grid cell is
recorded in terms of its index (4-byte integer) and value (8-byte double). In our implementation memory is pre-allocated

D.B. Gaylo et al.: Preprint submitted to Elsevier Page 16 of 21



An Eulerian label advection method for conservative volume-based tracking of bubbles/droplets

10
0

10
1

10
2

0

0.5

1

1.5

2

Figure 11: The growth of the average 𝐸2 error with 𝑁 for two intervals of the IHT simulations normalized by the value
for 𝑁 = 16 (case S4):

(

⟨𝐸2⟩𝑛′
)

S4 = 0.029 for the early and
(
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)

S4 = 0.079 for the late interval.
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Figure 12: The growth of largest number of non-zeros in the source vector field 𝐬𝑛 with 𝐾 for two intervals of the IHT
simulations.

equally among grid cells, so the memory requirement per grid cell is 12×max{nnz(𝐬𝑛)} bytes. Noting that 𝐜̃ must also
be stored during advection, approximately twice this memory is needed in total for ELA. Figure 12 shows that the actual
scaling of max{nnz(𝐬𝑛)} is well less than the 𝐾3 scaling predicted by the upper-bound (35). While the upper-bound
is based only on the number of bubbles and 𝐾 , like 𝐸2, the actual value of max{nnz(𝐬𝑛)} likely depends on a variety
of factors. Comparing the early and late intervals in figure 12, the consistent increase in magnitude corresponding to
an increase in the number of bubbles and the otherwise similar scaling with 𝐾 demonstrate number of bubbles and 𝐾
are important factors. For the late interval of Case Lb, the largest 𝐾 considered, (35) gives max{nnz(𝐬𝑛)} < 2 × 105,
but we find max{nnz(𝐬𝑛)} = 342, corresponding to a (theoretical) total ELA memory requirement of only 140 GB for
the entire grid. This shows that, in practice, ELA can be significantly less memory intensive than (35) would suggest,
making ELA feasible with large 𝐾 and no matrix multiplication. Still, as max{nnz(𝐬𝑛)} is only known a posteriori,
some trial and error may be necessary to determine a sufficient memory allocation for a given application. Alternatively,
dynamic storage of the non-zero entries of 𝐬𝑛 could be used, e.g., a linked list. While not implemented here, this would
remove the need to estimate max{nnz(𝐬𝑛)} a priori, and allow the memory usage of a grid cell to be set by its own
nnz(𝐬𝑛) rather than the global maximum.

Finally, we show that the total computational costs of ELA are reasonable, even for large Δ𝑡𝑠 without matrix
multiplication (𝑁 = 1). For example, our simulations are run on two nodes of an HPE SGI 8600 cluster, where each
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node has 48 cores at 2.7 GHz and 170 GB of usable memory. Without ELA, the memory usage is 33 GB and the total
wall time required is 9 hours. For Case Lb, we allocate space for 448 non-zero entries of 𝐬𝑛 per grid cell, slightly larger
than the actual maximum of 342. The memory usage is 268 GB and the total wall time required is 19 hours. We note
that ELA is quite computationally efficient considering that it is solving up to 𝑀𝑛 = 2×105 advection equations in (4).
Given an appropriately selected Δ𝑡𝑠 (see discussion in §4.2.2), one should select the smallest 𝑁 (and thus the largest
𝐾) that is possible given one’s computational resources. Using 𝑁 = 1 with an appropriate Δ𝑡𝑠 is often feasible on
scientific computing cluster. On the other hand, if using matrix multiplication (𝑁 > 1), the effect of diffusive error on
the VTM must be evaluated (e.g., figure 11).

5. Conclusions
We develop a new volume-based tracking framework that can completely describe the flow of volume between blobs

during their evolution. The description is in the form of a volume-tracking matrix (VTM) that provides the volume
flow between any two blobs at adjacent snapshots in time. To calculate this VTM, we develop ELA. Unlike previous
blob-tracking methods [11, 12, 19, 20], ELA explicitly provides the unique VTM and requires no assumptions about
the arity of the events. Even without arity assumptions, we demonstrate that previous Lagrangian and event-based
Eulerian methods could only reliably provide which pairs of blobs had volume flow between them, not how much
volume had flowed. The VTM provided by ELA always provides the unique flow of volume between blobs, creating a
more complete description of their evolution, from which individual events can later be extracted.

To develop ELA, we extend the cVOF method [1] from a scalar equation for advecting a volume fraction 𝑓 to a
vector equation for advecting a source fraction 𝐬𝑛, which describes which previous blobs contributed to the volume in
a cell. To remain consistent and minimize additional computational operations, the vector flux and dilation terms for
ELA are based directly on the equivalent scalar terms calculated for cVOF. Additionally, this reuse of the terms allows
ELA to be volume conservative to machine precision given the same Courant condition required by cVOF. We prove
the conservation theoretically and verify this using the canonical problem of bubbles fragmenting in IHT simulations
[14].

Although ELA requires limited computational operations, there is a memory cost related to storing 𝐬𝑛 over
long intervals, even when only non-zero entries are stored for each cell. We show how a long-interval VTM can
be approximated by multiplying the VTMs from consecutive shorter intervals. While still conservative, this matrix
multiplication introduces a diffusive error into the approximated long-interval VTM when cycles are present. From
IHT simulations, we demonstrate this tradeoff between memory requirements and diffusive error, and find that, while
theoretical bounds suggest long intervals are impractical, in practice the actual memory requirements are reasonable.
Understanding the practical performance for additional cases, particularly free-surface entrainment, is an area of future
work.

The volume-based description of blob evolution generated uniquely by ELA provides a complete description of
the flow of volume among blobs in two-phase simulations through a VTM, a matrix form that is convenient for post
analysis. ELA will allow detailed analysis of blob evolution mechanisms (e.g., as fragmentation and entrainment)
in complex flows with many blobs and interacting evolution mechanisms, with no necessary assumptions about the
evolution mechanisms, i.e., arity. Because ELA is capable of capturing arbitrarily-high arity, it is well suited for
evaluating and improving existing models of these evolution mechanisms. Large ELA data sets of these inherently
stochastic mechanisms will pave the way for elucidating and quantifying the underlying physics of these mechanisms
and their interactions.
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A. Proof of ELA volume Conservation
Following the proof of volume conservation of cVOF by Weymouth and Yue [1], we prove the same for ELA by

showing that there will be no over or under filling, i.e., 0 ≤ (𝑠𝑙)(𝑑) ≤ 1 for all 𝑙. We will prove that, with an appropriate
Courant restriction, if 0 ≤ (𝑠𝑙)(𝑑−1) ≤ 1 for all 𝑙 then ELA cannot under fill, i.e., (𝑠𝑙)(𝑑) ≥ 0 for all 𝑙. Because the sum
of the components of 𝐬(𝑑) is bounded by (28), this single inequality is sufficient to prove 0 ≤ (𝑠𝑙)(𝑑) ≤ 1 for all 𝑙.

For each operator-split step, we consider four general cases based on the velocity on the positive (𝑢𝑟) and negative
side (𝑢𝑙) side of the cell:

a. 𝑢𝑟, 𝑢𝑙 > 0
b. 𝑢𝑟 > 0, 𝑢𝑙 < 0
c. 𝑢𝑟 < 0, 𝑢𝑙 > 0
d. 𝑢𝑟, 𝑢𝑙 < 0.

Case (d) is symmetric with case (a), so proving case (a) cannot under fill also proves case (d) cannot under fill. Further,
two sub-cases of case (a) are considered: (a1) 𝑢𝑟 ≥ 𝑢𝑙 and (a2) 𝑢𝑟 < 𝑢𝑙. For convenience we scale the velocities and
fluxes to local Courant numbers,

𝑢̄ = 𝑢Δ𝑡
Δ𝑥𝑑

, (52a)

𝐅̄ = 𝐅 Δ𝑡
Δ𝛺

. (52b)

Thus, (22) becomes

𝐬(𝑑) − 𝐬(𝑑−1) = 𝐅̄𝑑+1∕2 − 𝐅̄𝑑−1∕2 + 𝐜̃Δ𝑢̄𝑑 for 𝑑 ∈ 1…𝒩 , (53)

where Δ𝑢̄𝑑 = 𝑢̄𝑟 − 𝑢̄𝑙. Substituting in (25) and (26) and introducing absolute values to illustrate the sign of each term,

case (a1) 𝐬(𝑑)𝑑 − 𝐬(𝑑−1)𝑑 = − 𝐬̂(𝑑−1)𝑑
|

|

|

𝐹𝑑+1∕2
|

|

|

+ 𝐬̂(𝑑−1)𝑑−1
|

|

|

𝐹𝑑−1∕2
|

|

|

+ 𝐬̂(0)𝑑 𝑐 |
|

Δ𝑢̄𝑑|| , (54a)

case (a2) 𝐬(𝑑)𝑑 − 𝐬(𝑑−1)𝑑 = − 𝐬̂(𝑑−1)𝑑
|

|

|

𝐹𝑑+1∕2
|

|

|

+ 𝐬̂(𝑑−1)𝑑−1
|

|

|

𝐹𝑑−1∕2
|

|

|

− 𝐬̂(0)𝑑 𝑐 |
|

Δ𝑢̄𝑑|| , (54b)

case (b) 𝐬(𝑑)𝑑 − 𝐬(𝑑−1)𝑑 = − 𝐬̂(𝑑−1)𝑑
|

|

|

𝐹𝑑+1∕2
|

|

|

− 𝐬̂(𝑑−1)𝑑
|

|

|

𝐹𝑑−1∕2
|

|

|

+ 𝐬̂(0)𝑑 𝑐 |
|

Δ𝑢̄𝑑|| , (54c)

case (c) 𝐬(𝑑)𝑑 − 𝐬(𝑑−1)𝑑 = + 𝐬̂(𝑑−1)𝑑+1
|

|

|

𝐹𝑑+1∕2
|

|

|

+ 𝐬̂(𝑑−1)𝑑−1
|

|

|

𝐹𝑑−1∕2
|

|

|

− 𝐬̂(0)𝑑 𝑐 |
|

Δ𝑢̄𝑑|| . (54d)

Dropping the positive terms gives the bounds,

case (a1) 𝐬(𝑑) − 𝐬(𝑑−1) ≥ 𝐬̂(𝑑−1)𝐹𝑑+1∕2 , (55a)

case (a2) 𝐬(𝑑) − 𝐬(𝑑−1) ≥ 𝐬̂(𝑑−1)𝐹𝑑+1∕2 + 𝐬̂(0)𝑐 Δ𝑢̄𝑑 , (55b)

case (b) 𝐬(𝑑) − 𝐬(𝑑−1) ≥ 𝐬̂(𝑑−1)Δ𝐹𝑑 , (55c)
case (c) 𝐬(𝑑) − 𝐬(𝑑−1) ≥ 𝐬̂(0)𝑐 Δ𝑢̄𝑑 , (55d)

where Δ𝐹𝑑 = 𝐹𝑑+1∕2 − 𝐹𝑑−1∕2. As all values of 𝐬 and 𝐬̂ are for the cell of interest, not its neighbors, we have dropped
the subscript index. We note that by (23), the normalization (24) is equivalent to

𝐬̂(𝑑) = 𝐬(𝑑)
𝑓 (𝑑)

(56)

We start with case (a1) and case (b). For case (a) and case (b), cVOF ensures [1]

𝐹𝑑+1∕2,Δ𝐹𝑑 ≥ −𝑓 (𝑑−1) . (57)

Substituting into the respective bound and simplifying using (56) obtains

case (a1) 𝐬(𝑑) ≥ 0 , (58a)
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case (b) 𝐬(𝑑) ≥ 0 . (58b)

This demonstrates that (57), guaranteed by cVOF, is sufficient to guarantee case (a1) and case (b) cannot under fill.
For case (a2) and case (c), it is straightforward to show that if 𝑐 = 0, then 𝐬(𝑑) ≥ 0. We consider 𝑓 (0) > 1∕2 giving

𝑐 = 1, 𝑓 (0) > 1∕2. For case (a), in addition to (57), cVOF ensures [1]

𝐹𝑑+1∕2,Δ𝐹𝑑 ≥ −𝑢̄𝑟 . (59)

Writing the bounds from (55) in terms of scaled velocities,

case (a2) 𝐬(𝑑) − 𝐬(𝑑−1) ≥ −𝐬̂(𝑑−1)𝑢̄𝑟 + 𝐬̂(0)
(

𝑢̄𝑟 − 𝑢̄𝑙
)

, (60a)
case (c) 𝐬(𝑑) − 𝐬(𝑑−1) ≥ 𝐬̂(0)

(

𝑢̄𝑟 − 𝑢̄𝑙
)

. (60b)

We now further split case (a2) into case (a2.i), 𝐬̂(0) < 𝐬̂(𝑑−1) and case (a2.ii), 𝐬̂(0) ≥ 𝐬̂(𝑑−1). As we are only considering
𝑓 (0) > 1∕2, (56) gives 𝐬̂(0) ≤ 2𝐬(0). Thus,

case (a2.i) 𝐬(𝑑) − 𝐬(𝑑−1) ≥ −𝐬̂(𝑑−1)𝑢̄𝑙 , (61a)
case (a2.ii) 𝐬(𝑑) − 𝐬(𝑑−1) ≥ −2𝐬(0)𝑢̄𝑙 , (61b)

case (c) 𝐬(𝑑) − 𝐬(𝑑−1) ≥ 2𝐬(0)
(

𝑢̄𝑟 − 𝑢̄𝑙
)

. (61c)

We first consider case (a2.ii) and case (c), where a bound is necessary to ensure successive operations cannot under
fill. After summing over 𝑑 ≤ 𝒩 operations,

case (a2.ii) 𝐬(𝑑) ≥ 𝐬(0)
[

1 − 2
𝑑
∑

𝑑′=1

|

|

𝑢̄𝑑′ ||

]

, (62a)

case (c) 𝐬𝑑 ≥ 𝐬(0)
[

1 + 2
𝑑
∑

𝑑′=1
min(Δ𝑢̄𝑑′ , 0)

]

, (62b)

where, to ensure the symmetric case (d) is also captured, |
|

𝑢̄𝑑|| = max
(

|

|

𝑢̄𝑙|| , ||𝑢̄𝑟||
)

. For a divergence-free flow, (62a) and
(62b) guarantee 𝐬𝑑 ≥ 0 given the Courant condition

𝐶 =
𝒩
∑

𝑑=1

|

|

𝑢̄𝑑|| ≤
1
2
, (63)

for case (a2.ii) and case (c).
Finally, we consider case (a2.i). (61a) can be rewritten

case (a2.i) 𝐬(𝑑) ≥ 𝐬(𝑑−1)
[

1 −
𝑢̄𝑙

𝑓 (𝑑−1)

]

. (64)

Therefore, 𝑓 (𝑑−1) ≥ |

|

𝑢𝑑|| guarantees 𝐬(𝑑) ≥ 0. Rewriting (20) for 𝑐 = 1 in terms of the scaled velocities and fluxes
gives

𝑓 (𝑑) = 𝑓 (𝑑−1) + Δ𝐹𝑑 +
(

𝑢̄𝑟 − 𝑢̄𝑙
)

. (65)

Using (59), 𝑓 (𝑑) ≥ 𝑓 (𝑑−1) − 𝑢̄𝑙. Summing (65) over 𝑑 − 1 ≤ 𝒩 − 1 operations and recalling we are interested in
𝑓 (0) > 1∕2, it can be shown cVOF guarantees the bound

𝑓 (𝑑−1) ≥ 1∕2 − 𝐶 + |

|

𝑢𝑑|| . (66)

Thus 𝑓 (𝑑−1) ≥ |

|

𝑢𝑑|| and therefore 𝐬(𝑑) ≥ 0 is true if 𝐶 ≤ 1∕2, the same condition as (63).
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