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We investigate the fundamental timescales that characterise the statistics of fragmentation7
under homogeneous isotropic turbulence (HIT) for air-water bubbly flows at moderate to8
large bubble Weber numbers, We. We elucidate three timescales: 𝜏𝑟 , the characteristic age9
of bubbles when their subsequent statistics become stationary; 𝜏ℓ , the expected lifetime of10
a bubble before further fragmentation; and 𝜏𝑐, the expected time for the air within a bubble11
to reach the Hinze scale, radius 𝑎𝐻 , through the fragmentation cascade. The timescale12
𝜏ℓ is important to the population balance equation (PBE), 𝜏𝑟 is critical to evaluating the13
applicability of the PBE no-hysteresis assumption, and 𝜏𝑐 provides the characteristic time for14
fragmentation cascades to equilibrate. By identifying a non-dimensionalized average speed15
𝑠 at which air moves through the cascade, we derive 𝜏𝑐 = 𝐶𝜏𝜀

−1/3𝑎2/3(1− (𝑎𝑚𝑎𝑥/𝑎𝐻 )−2/3),16
where 𝐶𝜏 = 1/𝑠 and 𝑎𝑚𝑎𝑥 is the largest bubble radius in the cascade. While 𝑠 is a function17
of PBE fragmentation statistics, which depend on the measurement interval 𝑇 , 𝑠 itself is18
independent of 𝑇 for 𝜏𝑟 ≪ 𝑇 ≪ 𝜏𝑐. We verify the 𝑇-independence of 𝑠 and its direct19
relationship to 𝜏𝑐 using Monte Carlo. We perform direct numerical simulations (DNS) at20
moderate to large bubble Weber numbers, We, to measure fragmentation statistics over a21
range of 𝑇 . We establish that non-stationary effects decay exponentially with 𝑇 , independent22
of We, and provide 𝜏𝑟 = 𝐶𝑟𝜀

−1/3𝑎2/3 with 𝐶𝑟 ≈ 0.11. This gives 𝜏𝑟 ≪ 𝜏ℓ , validating the23
PBE no-hysteresis assumption. From DNS, we measure 𝑠 and find that for large Weber24
numbers (We > 30), 𝐶𝜏 ≈ 9. In addition to providing 𝜏𝑐, this obtains a new constraint on25
fragmentation models for PBE.26

Key words:27

1. Introduction28

Fragmentation of bubbles by turbulence resulting in transfer of volume from large to small29
scales through a fragmentation cascade is relevant to a variety of natural and engineering30
applications. We consider air-water turbulent bubbly flows where the density ratio between31
that of the bubble (𝜌𝑎) and the surrounding fluid (𝜌𝑤) is 𝜌𝑤/𝜌𝑎 ∼ 1000. While these32
flows often exhibit multiple physical processes that affect the number of bubbles of a given33
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size (e.g., entrainment, degassing, dissolution, coalescence), fragmentation is critical to34
understanding the size-distribution of bubbles. For typical bubbly flows with macroscopic35
timescales large compared to those of the underlying turbulence, the distribution of large36
bubbles often matches an equilibrium fragmentation cascade (Garrett et al. 2000; Deane37
& Stokes 2002; Deike 2022), suggesting that fragmentation dominates and rapidly reaches38
equilibrium. Applicable to flows with large Reynolds numbers where the length scale of39
the bubbles is much larger than the Kolmogorov scale but much smaller than the geometric40
length scales of the flow, fragmentation of bubbles within the Kolmogorov inertial sub-range41
of homogeneous isotropic turbulence (HIT) is often studied. Recent work has shown that42
HIT is observed at the bubble scale even in close proximity to a free surface (Yu et al. 2019).43

In HIT, fragmentation is primarily governed by the disturbing effect of turbulent fluctua-44
tions and the restoring effect of surface tension. The ratio between the two is given by the45
bubble Weber number46

We =
2𝜀2/3(2𝑎)5/3

(𝜎/𝜌𝑤)
, (1.1)47

where 𝜀 is the turbulent dissipation rate, 𝑎 is the parent-bubble radius, and 𝜎 is the surface-48
tension coefficient. As bubbles are not generally spherical, radius, 𝑎, of a bubble here is49
defined in terms of the volume, 𝑣, of the bubble by 𝑎 = (3𝑣/4𝜋)1/3. The Hinze scale is defined50
as the Weber number We𝐻 (and corresponding radius 𝑎𝐻 ) below which surface tension51
largely prevents fragmentation (Hinze 1955). Thus, our focus is moderate (We ≳ We𝐻 ) to52
large (We ≫ We𝐻 ) Weber numbers where fragmentation is present.53

For We ∼ ∞, the daughter bubbles of a previous fragmentation will themselves fragment,54
leading to an equilibrium fragmentation cascade with bubble-size distribution 𝑁 (𝑎) ∝ 𝑎−10/355
(Garrett et al. 2000). Here, 𝑁 (𝑎)𝛿𝑎 is defined to be the number of bubbles of radius 𝑎 ⩽56
𝑎′ < 𝑎 + 𝛿𝑎. Using location as an analogy for bubble size, for finite We the flux of air due57
to fragmentation can be either local, corresponding to daughter bubbles of similar size as58
the parent bubble and likely to further fragment, or non-local, corresponding to daughters59
much smaller than the parent and likely smaller than 𝑎𝐻 (Chan et al. 2021b). Chan et al.60
(2021c) measure bubbles We ∼ 20 and demonstrate the locality of the majority of the flux,61
confirming the applicability of the fragmentation cascade and associated−10/3 power law for62
moderate and large We, where surface tension is present but does not prevent fragmentation.63
This −10/3 power law is observed in a variety of flows including emulsions (Skartlien64
et al. 2013), breaking waves (Deane & Stokes 2002), and turbulent free-surface entrainment65
(Yu et al. 2020). This prevalence illustrates that fragmentation cascades are ubiquitous to66
turbulent bubbly flows for We > We𝐻 , and that, despite these flows being transient, an67
equilibrium fragmentation cascade is often obtained.68

For We > We𝐻 where a cascade is formed, our interest here is the evolution of the69
bubble statistics, in particular the bubble-size distribution 𝑁 (𝑎), due to fragmentation. In70
principle, this evolution can be derived from a (more) complete mechanistic description71
of fragmentation, which is a subject of active investigation (e.g., Liao & Lucas 2009; Qi72
et al. 2022; Rivière et al. 2021, 2022). In addition to the challenge of disparate mechanistic73
descriptions, another challenge is that these often describe the behaviour of a bubble as74
dependent on its history (for example, the two-step process presented by Rivière et al.75
(2022)). Contrarily, statistical modelling of bubble-size distributions, particularly through76
population balance equations (PBE) often used to model large-scale bubbly flows (e.g.,77
Castro & Carrica 2013), assumes that the statistical behaviour of a bubble is independent78
of its history, i.e., no hysteresis. The present work complements mechanistic studies by79
focusing on the fundamental statistics of turbulent fragmentation, quantified through their80
characteristic timescales. While individual physical mechanisms can also be characterised by81
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timescales, such as the timescale for a sufficiently strong eddy to fragment a bubble (Qi et al.82
2022) or the timescale for capillary-driven production of sub-Hinze bubbles (Rivière et al.83
2021, 2022), our focus is on the timescales that characterise the fundamental statistics of84
fragmentation. Understanding these timescales will directly support the statistical modelling85
of bubble-size distributions through PBE. Additionally, the understanding provided by these86
statistical timescales will provide robust ways to compare disparate mechanistic models of87
fragmentation.88

In this work, we elucidate and quantify three fundamental timescales of fragmentation for89
moderate to large-We HIT. In order of magnitude from small to large, these are: the bubble90
relaxation time 𝜏𝑟 which characterises the time from when a bubble is formed to when its91
subsequent dynamics (e.g., the rate of fragmentation) become statistically stationary, the92
(well-established) bubble lifetime 𝜏ℓ which characterises the time from when a bubble is93
formed to when it undergoes fragmentation (Martı́nez-Bazán et al. 1999a; Garrett et al.94
2000), and the convergence time 𝜏𝑐 which characterises the time needed for the air to go95
from the scale of the largest bubble, radius 𝑎𝑚𝑎𝑥 , to the Hinze scale, 𝑎𝐻 . In §2 we examine96
how these timescales relate to statistical modelling of bubble-size distributions through PBE.97
In previous work, 𝜏𝑐 could not be described for realistic fragmentation statistics (Deike98
et al. 2016; Qi et al. 2020). In §3 we develop a Lagrangian mathematical description which99
provides the speed at which volume moves through the fragmentation cascade. This volume-100
propagation speed allows us to derive 𝜏𝑐 for realistic fragmentation statistics at large We.101
We prove that, unlike typical fragmentation statistics, the volume-propagation speed can102
be obtained independent of the time interval used for measurement. In §4 we perform103
direct numerical simulations (DNS) of moderate- to large-We bubble fragmentation in HIT104
to quantify the three fundamental timescales we address. In §5 we discuss new insights105
provided by the quantification of these timescales: 𝜏𝑟 shows hysteresis can be neglected in106
PBE, and 𝜏𝑐 provides a new constraint on large-We fragmentation models.107

2. Three fundamental timescales of fragmentation108

To define characteristic timescales of fragmentation, we start by examining the statistics109
typically used to describe fragmentation. To model the population of bubbles within a flow,110
the evolution (𝜕𝑁/𝜕𝑡) (𝑎, 𝑡) is often expressed as a Boltzmann-style population balance111
equation (PBE) with source terms 𝒮 describing the effect of each evolution mechanism:112
fragmentation, coalescence, entrainment, etc. (Sporleder et al. 2012). For fragmentation, this113
source term is114

𝒮𝑓 (𝑎, 𝑡) = −𝛺(𝑎)𝑁 (𝑎, 𝑡) +
∫ ∞

𝑎

𝑚̄(𝑎′)𝛽(𝑎; 𝑎′)𝛺(𝑎′)𝑁 (𝑎′, 𝑡) d𝑎′ , (2.1)115

which includes three fragmentation statistics: 𝛺(𝑎) is the fragmentation rate (units time−1),116
𝑚̄(𝑎′) is the average number of daughter bubbles created by fragmentation of a parent of117
radius 𝑎′, and 𝛽(𝑎; 𝑎′) is the daughter-size distribution, expressed as a probability distribution118
function of daughter radius 𝑎 for a given parent radius 𝑎′. As volume is conserved in an119
incompressible flow, it is useful to represent the daughter-size distribution in terms of a120
volume ratio 𝑣∗ = (𝑎/𝑎′)3, giving a daughter-size distribution 𝑓 ∗

𝑉
related to 𝛽 by121

𝑎′𝛽(𝑎; 𝑎′) = 3(𝑣∗)2/3 𝑓 ∗𝑉 (𝑣∗; 𝑎′) . (2.2)122

Applying volume conservation, the distribution must satisfy (Martı́nez-Bazán et al. 2010)123

𝑚̄(𝑎′)
∫ 1

0
𝑣∗ 𝑓 ∗𝑉 (𝑣∗; 𝑎′) d𝑣∗ = 1 . (2.3)124
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While there is great variety in models for 𝑚̄(𝑎′) and 𝛽(𝑎, 𝑎′) (Liao & Lucas 2009), models125
for 𝛺(𝑎) generally follow126

𝛺(𝑎) = 𝐶𝛺 (We)𝜀1/3𝑎−2/3 , (2.4)127

where 𝐶𝛺 (We) approaches a constant value 𝐶𝛺,∞ as We → ∞. Dimensional analysis128
shows 𝐶𝛺 may also depend on Reynolds number and an additional parameter, such as129
the ratio between parent-bubble radius and the Kolmogorov scale, 𝑎/𝜂, implied by Qi et al.130
(2022); however, the power-law scaling in (2.4) is robust at large We (Martı́nez-Bazán131
et al. 2010). Assuming We ∼ ∞ to neglect surface tension, this scaling can be arrived at132
mechanistically by dividing the characteristic velocity of the turbulent fluctuations on the133
scale of a bubble (𝜀1/3𝑎1/3) by the characteristic length a bubble must deform to fragment134
(𝑎) (Garrett et al. 2000). A model for moderate to large We based on the assumption that135
the rate of fragmentation is proportional to the difference between the deforming force of136
turbulent fluctuations and the restoring force of surface tension is137

𝐶𝛺 (We) = 𝐶𝛺,∞
√︁

1 − We𝐻/We , (2.5)138

with 𝐶𝛺,∞ ≈ 0.42 (Martı́nez-Bazán et al. 1999a; Martı́nez-Bazán et al. 2010). To relate139
𝛺(𝑎) to measured quantities, let 𝑝frag(𝑎;𝑇) be the probability of fragmentation over some140
measurement interval 𝑇 , i.e., the probability a bubble of radius 𝑎 present at time 𝑡 will141
fragment before the next measurement at time 𝑡 + 𝑇 . If we assume, as is done in PBE, that142
the fragmentation rate of a bubble is independent of the time since its formation, then143

𝑝frag(𝑎;𝑇) = 1 − exp [−𝑇𝛺(𝑎)] , (2.6)144

and the expected lifetime 𝜏ℓ = 1/𝛺(𝑎).145
Returning to (2.1), we examine this assumption that the statistics describing fragmentation146

are independent of bubble age, which we will refer to as the no-hysteresis assumption. This147
no-hysteresis assumption means that the (statistical) behaviour of a bubble after it is created148
by fragmentation should be indistinguishable from a bubble that has existed for a much149
longer time. Physically, this seems unlikely over short timescales, as the young bubble must150
be significantly deformed from equilibrium. Regardless of the mechanistic explanation for151
fragmentation (either the result of accumulation of surface oscillations (Risso & Fabre 1998)152
or a single-sufficiently strong eddy (Martı́nez-Bazán et al. 1999a)), we expect a young bubble153
to be more likely to fragment, violating no-hysteresis.154

For PBE modelling, it is desirable to assume the effect of hysteresis is negligible, as155
this allows fragmentation to be treated as statistically independent events; however, as156
expected, the validity of this no-hysteresis assumption depends on the timescale one uses to157
define fragmentation events (Solsvik et al. 2016). As infinitely small temporal resolution is158
unobtainable, a finite measurement interval𝑇 is inherent in the measurement of fragmentation159
events from both experiments and simulations (Vejražka et al. 2018; Chan et al. 2021a).160
To avoid making the no-hysteresis assumption, we will allow for measured fragmentation161
statistics to depend on 𝑇 . We rearrange (2.6) to define the 𝑇-dependent fragmentation rate162

𝛺(𝑎;𝑇) ≡ − ln
[
1 − 𝑝frag(𝑎;𝑇)

]
/𝑇 . (2.7)163

For large We where daughter bubbles will eventually fragment, it is clear that 𝑚̄ must also164
depend on 𝑇 , and therefore, by (2.3), so must 𝑓 ∗

𝑉
. Thus, let 𝑚̄(𝑎′;𝑇) be the expected number165

of daughters present at 𝑡 +𝑇 if the bubble fragments and 𝑓 ∗
𝑉
(𝑣∗; 𝑎′, 𝑇) be the size distribution166

of these daughters. The dependence of these statistics on 𝑇 makes them difficult to relate to167
the statistics in (2.1) (Solsvik et al. 2016). Although the physical mechanism for the decay168
of hysteresis is unclear, we posit that there exists a timescale 𝜏𝑟 characterising how long the169
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decay takes, such that 𝛺(𝑎;𝑇 ≫ 𝜏𝑟 ) = 𝛺(𝑎) is independent of 𝑇 . It follows that 𝜏ℓ ≫ 𝜏𝑟 is170
required for the no-hysteresis assumption to be valid in PBE.171

When modelling the bubble-size distribution, the equilibrium solution (𝜕𝑁/𝜕𝑡 = 0) may172
be available, such as for PBE with only a fragmentation source term (Garrett et al. 2000) or173
fragmentation with power-law entrainment, where the size distribution of the bubbles injected174
by entrainment follows a power law (Gaylo et al. 2021). The time, 𝜏𝑐, it takes to reach these175
equilibrium solutions is of interest: if 𝜏𝑐 is much less than the timescale over which the flow176
is transient, we expect an equilibrium fragmentation cascade (generally 𝑁 (𝑎) ∝ 𝑎−10/3) to177
be obtained. Gaylo et al. (2021) provide an expression for 𝜏𝑐 which allows for arbitrary 𝑓 ∗

𝑉
178

and 𝑚̄, but its derivation is specific to power-law entrainment. For general fragmentation179
cascades, 𝜏𝑐 is characterised by the time it takes for the volume of the largest bubble to180
reach the Hinze scale (Deike et al. 2016; Qi et al. 2020). This characterisation is useful181
because it allows 𝜏𝑐 to be measured independent of the evolution of 𝑁 (𝑎). Additionally,182
being directly related to fragmentation, it could provide a constraint on the fragmentation183
statistics in PBE (Qi et al. 2020). However, current derivations of 𝜏𝑐 from fragmentation184
statistics assume that bubbles break into identically-sized daughters, ignoring the effect of185
𝑓 ∗
𝑉

. Although Monte Carlo simulation can be used to determine what 𝜏𝑐 is predicted by given186
fragmentation statistics (Qi et al. 2020), the lack of a general analytic expression relating 𝜏𝑐187
to realistic fragmentation statistics precludes the reverse – it is unclear how a given value of188
𝜏𝑐 constrains fragmentation statistics.189

3. Describing 𝜏𝑐 using a Lagrangian description of fragmentation cascades190

In this section, we derive a general analytic expression that relates 𝜏𝑐 to realistic fragmentation191
statistics. Previous derivations of 𝜏𝑐 assume identical fragmentation and that the life of a192
bubble is exactly (rather than on the average) equal to 𝜏ℓ so that the cascade can be treated193
as a series of discrete deterministic fragmentation events (Deike et al. 2016). While this194
approach provides the general physical scaling of 𝜏𝑐, it is unable directly relate 𝜏𝑐 to realistic195
fragmentation statistics. In this section we use a Lagrangian air particle-based mathematical196
description of the speed at which volume moves through fragmentation cascades to derive197
𝜏𝑐. We note that this is a “speed” in the abstract sense as it measures how quickly air moves198
from large bubbles to small bubbles through the fragmentation cascade rather than through199
physical space. However, this description is useful as, through this speed, 𝜏𝑐 can be related to200
realistic fragmentation statistics and this speed is also directly accessible from volume-based201
bubble-tracking (Gaylo et al. 2022). Although𝑇-independence is obvious when 𝜏𝑐 is obtained202
through the evolution of 𝑁 (𝑎), it is less clear when 𝜏𝑐 is obtained through fragmentation203
statistics, which generally depend on 𝑇 . We show that our approach allows fragmentation204
statistics-based measurement of 𝜏𝑐 independent of 𝑇 .205

Throughout this section, we consider large We (We ≫ We𝐻 ) so that we can assume that206
fragmentation statistics are scale-invariant and simplify (2.5) to a Heaviside step function:207

𝐶𝛺 (We) = 𝐶𝛺,∞H (1 − We𝐻/We) . (3.1)208

In the following derivation, we also assume no-hysteresis, limiting applicability to timescales209
much larger than 𝜏𝑟 .210

3.1. A Lagrangian-based mathematical description of fragmentation211

Previous work on the movement of volume in fragmentation cascades applies Eulerian212
descriptions, focusing on volume flux. To find the equilibrium between entrainment and213
fragmentation, Gaylo et al. (2021) balance the flux of volume in and out of the set of214
bubbles of a given range of sizes. To evaluate locality, Chan et al. (2021b) study the flux215
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Figure 1: (a) Schematic of the Lagrangian description showing the path of a Lagrangian
air particle 𝑝 through a sequence of fragmentations from large to small radii, 𝑎0, 𝑎1 · · · 𝑎𝑛,

of the bubble containing 𝑝; and (b) the function 𝑎𝑝 (𝑡) describing the evolution of this
bubble radius. Describing the radius of the bubble containing 𝑝 as a function of time

allows a propagation speed of 𝑝 through the cascade to be defined.

of volume from bubbles larger than a given size to those smaller. Eulerian descriptions are216
useful to model the volume flow in and out of specified bubble sizes, but to derive 𝜏𝑐 we217
need to understand how any specific air volume flows through the entire cascade. For this, a218
Lagrangian description is more direct.219

Consider how a single Lagrangian particle of air 𝑝 moves through a fragmentation cascade,220
illustrated in figure 1. Let 𝑎𝑝 (𝑡) be the effective radius of the bubble that contains 𝑝 at time221
𝑡. Treating the interface between fluids as zero-thickness, one bubble breaks up into two222
instantaneously, thus 𝑎𝑝 (𝑡) is a step function. From this 𝑎𝑝 (𝑡), we have a simple expression223
for 𝜏𝑐: Defining time for a particle such that 𝑎𝑝 (0) = 𝑎𝑚𝑎𝑥 , our interest is the expected time224
for 𝑝 to reach the Hinze scale,225

𝜏𝑐 ≡ E
{
min

{
𝑡 : 𝑎𝑝 (𝑡) ⩽ 𝑎𝐻

}}
. (3.2)226

We now develop a relationship between this Lagrangian description and the previous227
fragmentation statistics. Incorporating the measurement interval 𝑇 , we define the volume228
ratio between the bubble containing 𝑝 at time 𝑡 and the bubble containing 𝑝 at time 𝑡 + 𝑇 :229

𝑣𝑅 (𝑡;𝑇) ≡
[
𝑎𝑝 (𝑡 + 𝑇)/𝑎𝑝 (𝑡)

]3 . (3.3)230

If the bubble containing 𝑝 at time 𝑡 does not fragment over the measurement interval 𝑇 , then231
𝑣𝑅 = 1. If the bubble does fragment, then 𝑣𝑅 depends on the size of the daughter bubble that232
𝑝 ends up in. Noting that the probability 𝑝 ends up in a given daughter is equivalent to 𝑣∗, the233
ratio of the volume of the daughter to that of the parent, the probability distribution function234
for 𝑣𝑅 given that fragmentation occurs, 𝑓𝑉𝑅 | frag, is related to the previous fragmentation235
statistics through236

𝑓𝑉𝑅 | frag(𝑣𝑅; 𝑡, 𝑇) = 𝑚̄(𝑎𝑝 (𝑡);𝑇) 𝑣𝑅 𝑓 ∗𝑉 (𝑣𝑅; 𝑎𝑝 (𝑡), 𝑇) . (3.4)237

We assume these statistics are scale invariant and introduce the non-dimensional parameter238
𝑇∗ = 𝑇𝜀1/3𝑎𝑝 (𝑡)−2/3. This gives239

𝑓𝑉𝑅 | frag(𝑣𝑅;𝑇∗) = 𝑚̄(𝑇∗) 𝑣𝑅 𝑓 ∗𝑉 (𝑣𝑅;𝑇∗) , (3.5)240

and any moment 𝑛 of the distribution is given by241

E
{
[𝑣𝑅 (𝑇∗)]𝑛

�� frag
}
= 𝑚̄(𝑇∗)

∫ 1

0
𝑣∗𝑛+1

𝑓 ∗𝑉 (𝑣∗;𝑇∗) d𝑣∗ . (3.6)242
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3.2. Defining the volume-propagation speed in a fragmentation cascade243

To obtain 𝜏𝑐, we derive a metric that measures the speed at which Lagrangian air particles244
move through fragmentation cascades. To derive a speed, we must first define the “location”,245
𝑥(𝑡), of a Lagrangian air particle 𝑝 within the cascade. In this case location refers to some246
scalar bubble-size metric within the cascade rather than a physical spatial coordinate. We247
define 𝑥(𝑡) to describe the location of 𝑝 within the fragmentation cascade such that the248
associated speed 𝑠(𝑡) ≡ ¤𝑥(𝑡) is constant for 𝑎𝑝 (𝑡) > 𝑎𝐻 . A constant speed is necessary for249
many of the properties that will follow and, as a result of the scaling in (2.4), is achieved250
only by 𝑥(𝑡) ∝ 𝑎𝑝 (𝑡)2/3. We choose251

𝑥(𝑡) ≡ −𝜀−1/3𝑎𝑝 (𝑡)2/3 , (3.7)252

which has dimensions of time, so that, in addition to being constant, the time-derivative of253
𝑥(𝑡),254

𝑠(𝑡) = −2
3
𝜀−1/3𝑎𝑝 (𝑡)−1/3 d

d𝑡
𝑎𝑝 (𝑡) , (3.8)255

is also positive and non-dimensional.256
Because 𝑎𝑝 (𝑡) is a step function, the derivative in (3.8) is ill-behaved. Thus, to evaluate257

𝑠(𝑡) we consider its time-averaged value over a measurement interval 𝑇 ,258

⟨𝑠(𝑡)⟩𝑇 ≡ 1
𝑇

∫ 𝑡+𝑇

𝑡

𝑠(𝑡′) d𝑡′ . (3.9)259

This gives260

⟨𝑠(𝑡)⟩𝑇 =
𝑥(𝑡 + 𝑇) − 𝑥(𝑡)

𝑇
=
𝜀−1/3𝑎𝑝 (𝑡)2/3

𝑇

(
1 − [𝑣𝑅 (𝑡;𝑇)]2/9

)
, (3.10)261

where (3.3) defines the volume ratio 𝑣𝑅 (𝑡;𝑇). Furthermore, we perform an ensemble average262
to get E {⟨𝑠(𝑡)⟩𝑇 }, the expected time-averaged speed for an ensemble of (independent)263
Lagrangian air particles. Noting that ⟨𝑠(𝑡)⟩𝑇 = 0 if no fragmentation occurs over the interval264
𝑇 ,265

E {⟨𝑠(𝑡)⟩𝑇 } =
𝑝frag(𝑎𝑝 (𝑡);𝑇)
𝜀1/3𝑎𝑝 (𝑡)−2/3𝑇

(
1 − E

{
[𝑣𝑅 (𝑡;𝑇)]2/9 �� frag

})
. (3.11)266

The no-hysteresis assumption, along with (2.4), gives267

E {⟨𝑠(𝑡)⟩𝑇 } = 𝐶𝛺 (We)
1 − exp[−𝛺(𝑎𝑝 (𝑡))𝑇]

𝛺(𝑎𝑝 (𝑡))𝑇

(
1 − E

{
[𝑣𝑅 (𝑡;𝑇)]2/9 �� frag

})
. (3.12)268

Recalling that, by assumption, these statistics are scale invariant, we introduce 𝑇∗ and apply269
(3.6) to obtain270

E {⟨𝑠(𝑡)⟩𝑇∗} = 𝐶𝛺,∞
1 − exp[−𝐶𝛺,∞ 𝑇∗]

𝐶𝛺,∞ 𝑇∗

[
1 − 𝑚̄(𝑇∗)

∫ 1

0
𝑣∗11/9

𝑓 ∗𝑉 (𝑣∗;𝑇∗) d𝑣∗
]

. (3.13)271

The limit 𝑇∗ → 0 gives the expected instantaneous speed,272

𝑠 ≡ lim
𝑇∗→0

E {⟨𝑠(𝑡)⟩𝑇∗} = 𝐶𝛺,∞

[
1 − 𝑚̄

∫ 1

0
𝑣∗11/9

𝑓 ∗𝑉 (𝑣∗) d𝑣∗
]

, (3.14)273

where 𝑚̄ and 𝑓 ∗
𝑉
(𝑣∗) describe the fragmentation statistics for 𝑇∗ → 0 and are equivalent to274

those in (2.1).275
Hereafter, we refer to 𝑠 as the volume-propagation speed of a fragmentation cascade.276

Although the size locations of individual Lagrangian air particles in the cascade follow step277
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Figure 2: The effect of We∗ on 𝜏∗𝑐 as modelled by (3.16) (——) compared to Monte Carlo
simulations of daughter distributions, •, A; +, B; ×, C; □, D; ◦, E; ◦, F (see table 1),

where (3.1) is used to model the Hinze scale. The 95% C.I. on all 𝜏∗𝑐 is < 1%.

functions, by commuting time averaging and ensemble averaging, we are able to obtain278
an average instantaneous speed for particles in the cascade. This speed 𝑠 can be related to279
fragmentation statistics measured over finite intervals 𝑇 (3.13), or the instantaneous statistics280
used by PBE (3.14). The relationship between the two is explored in §3.4. In §3.3 we use 𝑠281
to provide 𝜏𝑐.282

3.3. Describing convergence time, 𝜏𝑐283

As intended, our choice of the definition of location within the cascade, 𝑥(𝑡), makes 𝑠 constant284
for 𝑎𝑝 (𝑡) > 𝑎𝐻 . This constant speed means that, despite 𝑥(𝑡) being a step function, after a285
sufficient number of steps, we can treat fragmentation as a continuous process and apply the286
approximation 𝑥(𝑡) ≈ 𝑡𝑠 with reasonable (statistical) accuracy. Thus, we can approximate 𝜏𝑐287
as the distance in 𝑥 between 𝑎𝑚𝑎𝑥 and 𝑎𝐻 divided by this speed,288

𝜏𝑐 =

(
𝜀−1/3𝑎𝑚𝑎𝑥

2/3) − (
𝜀−1/3𝑎𝐻

2/3)
𝑠

. (3.15)289

Non-dimensionalizing 𝜏∗𝑐 = 𝜏𝑐 𝜀
1/3𝑎𝑚𝑎𝑥

−2/3 and defining We𝑚𝑎𝑥 to be the We associated290
with 𝑎𝑚𝑎𝑥 ,291

𝜏∗𝑐 = 𝐶𝜏

[
1 − (We𝑚𝑎𝑥/We𝐻 )−2/5

]
; 𝐶𝜏 ≡ 1

/
𝑠 . (3.16a, b)292

Despite the approximation used to derive (3.15) from 𝑠 in (3.14), (3.16) is expected293
to be valid for We∗ = We𝑚𝑎𝑥/We𝐻 not small (where multiple fragmentation events are294
generally necessary to reach 𝑎𝐻 ). This is confirmed by Monte Carlo simulations of prescribed295
fragmentation statistics (figure 2).296

For We ∼ ∞ we recover the same 𝜏𝑐 ∝ 𝜀−1/3𝑎𝑚𝑎𝑥
2/3 scaling as previous work which297

assumes identical fragmentation (Deike et al. 2016). This scaling of 𝜏𝑐 is like 𝜏ℓ , demon-298
strating that the fragmentation rate is a dominant factor in determining 𝜏𝑐. Our propagation299
speed-based analysis provides the scaling constant 𝐶𝜏 which quantifies the contribution of300
fragmentation rate, as well as fragmentation statistics 𝑚̄ and 𝑓 ∗

𝑉
(𝑣∗). For large-but-finite We,301

(3.16) captures the effect of the We-driven separation between 𝑎𝑚𝑎𝑥 and 𝑎𝐻 on the value302
of 𝜏𝑐; however, we note that the scaling or 𝜏𝑐 with We will be more complex for small We303
(We ∼ We𝐻 ) as we have not incorporated the effect of finite-We on fragmentation rate, such304
as modelled by (2.5), into our propagation speed-based analysis. In §4.5, DNS shows for305
what sufficiently-large We this effect is negligible.306

Although primarily driven by fragmentation rate, 𝜏𝑐 is also related to the fragmentation307
statistics 𝑚̄ and 𝑓 ∗

𝑉
(𝑣∗) (Qi et al. 2020), which is now quantified by the scaling constant 𝐶𝜏 .308

To describe these relationships, we follow Gaylo et al. (2021) and isolate the effect of 𝑓 ∗
𝑉

309
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Label Daughter Distribution 𝑚 𝑓 ∗

𝑉
(𝑣∗) 𝐶 𝑓 𝐶 𝑓

★

A Valentas et al. (1966) 2 𝛿(𝑣∗ − 1/2) 1 1
B Martı́nez-Bazán et al. (1999b) 2 (𝑣∗)2/9 (1 − 𝑣∗)2/9 1.348 1.314
C Tsouris & Tavlarides (1994) 2 21/3 − (𝑣∗)2/3 − (1 − 𝑣∗)2/3 2.432 2.255
D Martı́nez-Bazán et al. (2010) 2 (𝑣∗)−4/9 (1 − 𝑣∗)−4/9 1.782 1.712
E Diemer & Olson (2002) 3 (𝑣∗)1/4 (1 − 𝑣∗)3/2 1.269 1.253
F Diemer & Olson (2002) 4 (𝑣∗)1/2 (1 − 𝑣∗)7/2 1.190 1.185

Table 1: Daughter distributions used in Monte Carlo simulations and corresponding
daughter-distribution constants 𝐶 𝑓 defined by equation (3.17) versus 𝐶 𝑓

★ defined by
Gaylo et al. (2021, eq. (4.3)). Note, a constant to ensure

∫
𝑓 ∗
𝑉
(𝑣∗)d𝑣∗ = 1 is omitted for

brevity.

from 𝑚̄ through a daughter-distribution constant 𝐶 𝑓 , defined as the ratio between 𝐶𝜏 and a310
𝐶𝜏 found using the same 𝑚̄ but identical fragmentation, 𝑓 ∗

𝑉
(𝑣∗) = 𝛿(𝑣∗ − 1/𝑚̄), where 𝛿 is311

the Dirac delta function. This gives312

𝐶𝜏 =
𝐶 𝑓 /𝐶𝛺,∞

1 − 𝑚̄−2/9 ; 𝐶 𝑓 =
1 − 𝑚̄−2/9

1 − 𝑚̄
∫ 1

0 𝑣∗11/9 𝑓 ∗
𝑉
(𝑣∗) d𝑣∗

. (3.17a, b)313

In table 1 we compare this 𝐶 𝑓 for general fragmentation cascades to the similar constant314
(hereafter denoted as 𝐶 𝑓

★) derived by Gaylo et al. (2021) for the special case of power-315
law entrainment. The values are nearly equivalent, and, noting that (9/2) (ln 𝑚̄)−1 ≈ (1 −316
𝑚̄−2/9)−1, (3.17) predicts similar 𝜏𝑐 as Gaylo et al. (2021) for their special case.317

3.4. Measurement-interval independence of volume-propagation speed318

A consequence of 𝑠 being constant for 𝑎𝑝 (𝑡) > 𝑎𝐻 is that the time-averaged value and the319
instantaneous speed are equal, E {⟨𝑠(𝑡)⟩𝑇 } = 𝑠, so long as 𝑎𝑝 (𝑡 + 𝑇) > 𝑎𝐻 . Thus, to obtain320
𝑠 we must choose a 𝑇 such that Pr{𝑎(𝑡 + 𝑇) > 𝑎𝐻 } ≈ 1. For measurements of an initial321
parent-bubble radius 𝑎 = 𝑎𝑝 (𝑡), we define an upper bound 𝑇𝑈 as the interval we expect322
𝑎𝑝 (𝑡 + 𝑇𝑈) ∼ 𝑎𝐻 and require 𝑇 ≪ 𝑇𝑈 . Through the same arguments used to derive 𝜏𝑐, this323
upper bound is324

𝑇 ≪ 𝜀−1/3𝑎2/3𝐶𝜏

[
1 − (We/We𝐻 )−2/5

]
, (3.18)325

or simply 𝑇 ≪ 𝜏𝑐 for 𝑎 = 𝑎𝑚𝑎𝑥 . From Monte Carlo simulations of prescribed fragmentation326
statistics measuring initial bubbles 𝑎 = 𝑎𝑚𝑎𝑥 , figure 3 confirms that E {⟨𝑠⟩𝑇 } gives an327
exact, 𝑇-independent measurement of 𝑠 for 𝑇 ≪ 𝜏𝑐. 𝑇𝑈 provides an upper bound on 𝑇 for328
experiments or simulations, although we point out that it is an a posteriori measure because329
𝐶𝜏 is derived from 𝑠.330

Finally, 𝑇-independence means dE {⟨𝑠(𝑡)⟩𝑇 } /d𝑇 = 0. As can been seen by taking the331
derivative of (3.13) with 𝑇∗, this bounds how scale-invariant fragmentation statistics 𝑚̄(𝑇∗)332
and 𝑓 ∗

𝑉
(𝑣∗;𝑇∗) can depend on 𝑇∗ and provides insight into the relationship between 𝑚̄(𝑇∗)333

and 𝑓 ∗
𝑉
(𝑣∗;𝑇∗) measured at large𝑇∗ versus the theoretical𝑇∗ → 0 limiting case used in PBE.334

This is useful because a finite relaxation time 𝜏𝑟 implies a lower bound (𝑇 > 𝜏𝑟 ) for measuring335
fragmentation statistics that are compatible with the PBE no-hysteresis assumption.336
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Figure 3: Measurements of E{⟨𝑠⟩𝑇 } from Monte Carlo simulations of daughter
distributions A-F (see table 1) at a range of 𝑇/𝜏𝑐 , normalised by 𝑠 calculated using (3.14).
Colours based on We∗: green, 2; red, 50; blue, 100; magenta, 200, where (3.1) is used to

model the Hinze scale. The 95% C.I. on E{⟨𝑠⟩𝑇 } for 𝑇/𝜏𝑐 < 1 is < 3%.

We𝑇 We Δ/𝜂 WeΔ Δ/𝑎𝐻 𝑁sims 𝑁frag 𝐶𝛺 𝐶𝜏

400 101 – 142 1.1 0.66 0.71 7 213 1.64 ± 0.42 8.9 ± 1.9

200 50 – 71

2.2 0.66 0.93 7 106 0.60 ± 0.13 16.1 ± 2.9
1.5 0.44 0.62 7 189 1.21 ± 0.34 10.2 ± 2.5
1.1 0.33 0.47 7 208 1.64 ± 0.44 9.8 ± 2.8
0.7 0.22 0.31 5 187 1.77 ± 0.26 10.3 ± 2.1

100 25 – 36 1.1 0.16 0.31 7 218 1.50 ± 0.27 10.0 ± 2.3

50 13 – 18 1.1 0.08 0.20 7 174 0.93 ± 0.13 15.2 ± 2.9

25 6.3 – 8.9 1.1 0.04 0.13 7 113 0.44 ± 0.12 27.1 ± 5.5

Table 2: Summary of HIT simulations performed and values measured using 𝑇/𝑡ℓ = 0.4,
including 95% C.I.. 𝑁sims is the number of simulations (each with different initial bubble
populations) and 𝑁frag is the total number of fragmentation events. 𝑎𝐻 is calculated using

We𝐻 ≈ 7 from §4.4.

4. Quantification of fundamental timescales using DNS337

We perform direct numerical simulation (DNS) of populations of bubbles fragmenting in338
HIT to measure the relaxation time 𝜏𝑟 and bubble lifetime 𝜏ℓ , validate the 𝑇-independence339
of measurements of 𝑠, and provide a value of 𝐶𝜏 along with the minimum We above which340
this value is valid. A summary of the DNS performed is provided in table 2.341

4.1. Methodology342

For DNS, we solve the three-dimensional, incompressible, immiscible, two-phase, Navier-343
Stokes equations using a second-order finite-volume scheme on a uniform Cartesian grid.344
Phases are captured by the conservative volume-of-fluid method (cVOF) (Weymouth & Yue345
2010), and surface tension is calculated using a height-function based continuous-surface-346
force method (Popinet 2009). More detail on the DNS solver is provided by Campbell (2014)347
and Yu et al. (2019). During the simulation, normals-based Informed Component Labeling348
(ICL) (Hendrickson et al. 2020) identifies bubbles, the air volumes of which are then tracked349
using Eulerian Label Advection (ELA) (Gaylo et al. 2022).350

To develop the initial turbulent velocity field for the simulation, we use a linear forcing351

Rapids articles must not exceed this page length
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Figure 4: Volume-of-fluid 𝑓 = 0.5 iso-surface for one of the We𝑇 = 100 simulations at: (a)
𝑡/𝑡ℓ = 0; (b) 𝑡/𝑡ℓ = 1; (c) 𝑡/𝑡ℓ = 3.
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Figure 5: Average bubble-size distribution 𝑁 (𝑎) for We𝑇 = 100 simulations at times: red,
𝑡/𝑡ℓ = 0; blue, 𝑡/𝑡ℓ = 1; green, 𝑡/𝑡ℓ = 3. 𝑁 (𝑎) ∝ 𝑎−10/3 is provided for reference over the
range of initialised spherical bubbles (– – –) and the range of measured parent bubbles,

𝑎0 < 𝑎 < 1.2𝑎0 (——).

method (Lundgren 2003; Rosales & Meneveau 2005) on a triply periodic cubic domain, length352
𝐿 = 5.28, to develop single-phase HIT with a (non-dimensionalized) characteristic turbulent353
dissipation rate 𝜀 = 1, velocity fluctuation 𝑢rms = 1, and Reynolds number Re𝑇 = 𝑢4

rms/𝜀𝜈𝑤 =354
200. Using the single-phase HIT as the initial velocity field, we perform simulations with355
an ensemble of different initial air-water bubble populations (density ratio 𝜌𝑤/𝜌𝑎 = 1000,356
viscosity ratio 𝜇𝑤/𝜇𝑎 = 100, void fraction 1%) at a range of turbulent Weber numbers,357
We𝑇 = 𝜌𝑤𝑢

5
rms/𝜀𝜎. Although the abrupt introduction of bubbles to single-phase HIT is358

non-physical, numerical simulations rapidly adjust (Yu et al. 2019; Rivière et al. 2021).359
Populations are created by randomly distributing (without overlap) spherical bubbles with360
radii between 3𝐿/256 and 15𝐿/256 following 𝑁 (𝑎) ∝ 𝑎−10/3. By repeating the random361
generation and distribution of bubble populations in the initial HIT velocity field, unique but362
statistically similar initial bubble populations are generated to provide statistical variation363
between our ensemble simulations.364

During the evolution, linear forcing is applied to regions of water to maintain 𝜀 ≈ 1365
(Rivière et al. 2021). Figure 4 shows the evolution of a sample simulation and figure 5 shows366
the evolution of the ensemble bubble-size distribution both for We𝑇 = 100. We note that, with367
our focus on bubbles 𝑎 > 𝑎𝐻 , the transition to a distinct a power-law regime for 𝑁 (𝑎 < 𝑎𝐻 )368
is not captured (Deane & Stokes 2002). Over a measurement interval 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛+𝑇 , ELA369
provides the unique, volume-conservative volume-tracking matrix, where each element 𝑎𝑖 𝑗370
describes the volume that moved from a parent bubble 𝑗 that is identified at 𝑡𝑛 to a bubble 𝑖371
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identified at 𝑡𝑛+1 (Gaylo et al. 2022). From volume-tracking matrices, fragmentation statistics372
E {⟨𝑠⟩𝑇 } and 𝑝frag(𝑎;𝑇) can easily be computed.373

We study fragmentation statistics for parent bubbles of radii 𝑎0 < 𝑎 < 1.2𝑎0, where374
𝑎0 = 7𝐿/256 provides a balance between the number of observed fragmentation events375
per simulation and resolution of the daughter bubbles. While this simulation is inherently376
transient, figure 5 illustrates that for this range of bubbles a quasi-steady period exists.377
By initialising the bubbles to follow an equilibrium fragmentation cascade 𝑁 (𝑎) ∝ 𝑎−10/3378
(Garrett et al. 2000), the fragmentation of bubbles 𝑎 > 𝑎0 maintains the population of bubbles379
𝑎 ∼ 𝑎0 for 𝑡/𝑡ℓ < 3, where 𝑡ℓ = (0.42)−1𝜀−1/3𝑎0

2/3 is an a priori estimate of 𝜏ℓ (Martı́nez-380
Bazán et al. 1999a). To exclude the fragmentation of the initial set of spherical bubbles381
(see figure 4), we study fragmentation over 1 < 𝑡/𝑡ℓ . Thus, by measuring fragmentation382
statistics over 1 < 𝑡/𝑡ℓ < 3, we measure a quasi-steady population of parent bubbles that are383
realistically formed by a fragmentation cascade.384

4.2. Grid independence385

The choice of cell size, Δ, is driven by resolving the relevant scales of turbulence and surface386
tension. For turbulence, we compare the grid to the Kolmogorov micro scale, 𝜂 ∼ 𝜀−1/4𝜈𝑤

3/4,387
whereΔ/𝜂 ≲ 1 ensures turbulence is resolved. For surface tension, we consider the cell Weber388
number WeΔ = 𝜌𝑤𝑢

2
rmsΔ/4π𝜎, which estimates the ratio between the grid and the minimum389

characteristic radius of curvature of an interface deformed by inertial turbulence. WeΔ < 1390
ensures surface tension forces are resolved by the grid (Popinet 2018). We also consider391
Δ/𝑎𝐻 , comparing the grid to the Hinze scale: with 𝜀 and 𝑢rms fixed WeΔ3/5 ∝ Δ/𝑎𝐻 . Based392
on these metrics we find 𝐿/Δ = 256 resolves turbulence and surface tension for our entire393
range of We𝑇 (see table 2).394

With no clear lower limit to the ratio between the daughter-bubble and parent-bubble395
volume (𝑣∗), grid resolution limitations require us to filter out daughter bubbles of radius396
𝑎 < 2Δ. Figure 7 shows that the bubble-size distribution of filtered bubbles, 𝑁 (𝑎 > 2Δ), is397
grid-independent. For 𝐿/Δ = 256 and parent bubbles 𝑎0 = 7𝐿/256, 𝑎 < 2Δ corresponds to398
𝑣∗ < 0.02. While this filter prevents us from measuring the full range of possible daughter399
bubbles, especially sub-Hinze daughters, we expect this to have little effect on the statistics400
of interest for two reasons. First, sub-Hinze bubble production by fragmentation happens401
concurrently with the production of large daughter bubbles (Rivière et al. 2022), so excluding402
small daughters should not affect the measured rate of fragmentation used to obtain 𝜏𝑟 and403
𝜏ℓ . Second, for 𝜏𝑐, the integral of the daughter-size distribution in (3.17) weights local404
daughter production (𝑣∗ ∼ 1/𝑚̄) over non-local daughter production (𝑣∗ ≪ 1), making the405
contribution of the excluded small daughters small. This is related conceptually to locality,406
which suggests 𝑣∗ ≪ 1 can be neglected when modelling the cascade (Chan et al. 2021b,c).407

To confirm that we resolve turbulence and surface tension, that the filter has a negligible408
effect, and (more broadly) that the statistics we measure are independent of the grid, we409
perform a convergence study for We𝑇 = 200 using three additional grids, 𝐿/Δ = 128, 192,410
and 384. The results of this convergence study (see figure 6) show that our measurements411
of fragmentation statistics E {⟨𝑠⟩𝑇 } and 𝑝frag(𝑎;𝑇) (from which the timescales will be412
calculated) are grid independent for 𝐿/Δ ⩾ 256.413

4.3. Estimating relaxation time, 𝜏𝑟414

For each simulation, we use 6 instances of ELA with different measurement intervals 𝑇 .415
Using (2.4) and (2.7), we calculate 𝐶𝛺 (We;𝑇) from each 𝑝frag(𝑎;𝑇). Figure 8a shows how416
𝑇 affects the measured value of 𝐶𝛺 , where we use 𝑇/𝑡ℓ = 0.4 as a reference value for each417
We. If the no-hysteresis assumption were valid for all 𝑇 , 𝐶𝛺 would be a constant for each We.418



13
(a)

64 128 192 256 320 384 448
0

0.5

1

1.5

2

2.5 (b)

64 128 192 256 320 384 448
0

5

10

15

20

Figure 6: Grid-convergence study for (a) fragmentation rate constant 𝐶𝛺 and (b)
convergence constant 𝐶𝜏 based on simulations of We𝑇 = 200 (parent bubbles

We = 50 – 71) with different grids, measured using 𝑇/𝑡ℓ = 0.4. Error bars indicate 95%
C.I..
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Figure 7: Average bubble-size distribution 𝑁 (𝑎 > 2Δ) for We𝑇 = 200 at time 𝑡/𝑡ℓ = 3
from simulations with girds: magenta, 𝐿/Δ = 128; green, 𝐿/Δ = 192; black, 𝐿/Δ = 256;

blue, 𝐿/Δ = 384; Horizontal axis is normalised by Δ = 𝐿/256 and 𝑁 (𝑎) ∝ 𝑎−10/3 is
provided for reference over the range of initialised spherical bubbles (– – –) and the range

of measured parent bubbles, 𝑎0 < 𝑎 < 1.2𝑎0 (——).

Figure 8a however shows a strong dependence on small 𝑇 . We observe that this dependence419
is approximately exponential, which provides an empirical definition of the relaxation time420
𝜏𝑟 as well as the hysteresis strength 𝐴:421

𝐶𝛺 (We;𝑇)/𝐶𝛺 (We;𝑇 ∼ ∞) = 1 + 𝐴 exp[−𝑇/𝜏𝑟 ] . (4.1)422

We observe that 𝜏𝑟 scales like 𝜏ℓ rather than, say, bubble natural period, We−1/2𝜀−1/3𝑎2/3.423
Thus, we define the scaling constant 𝐶𝑟 and write 𝜏𝑟 = 𝐶𝑟𝜀

−1/3𝑎2/3. This scaling suggests424
that, for We > We𝐻 , the physical mechanisms for the decay of hysteresis are not related425
to surface tension. Future, more detailed, studies of the dynamics of individual bubbles426
are necessary to understand hysteresis and identify the mechanisms for its decay. For our427
statistical study, our concern is to determine when hysteresis can be neglected. Least-squares428
regression of the combined data for all We gives 𝐶𝑟 ≈ 0.11. Hereafter, we measure all results429
with 𝑇/𝑡ℓ = 0.4 (corresponding to 𝑇/𝜏𝑟 ≈ 8), which guarantees that effect of hysteresis on430
our estimation of 𝜏ℓ and 𝜏𝑐 is negligible.431

4.4. Estimating bubble lifetime, 𝜏ℓ432

We now seek the expected bubble lifetime, 𝜏ℓ . Figure 9a shows our measurements of𝐶𝛺 (We)433
and their fit to (2.5). We find the Hinze-scale We𝐻 = 6.9, similar to We𝐻 = 4.7 measured by434
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Figure 8: Measured (a) fragmentation-rate constant 𝐶𝛺 normalised by (𝐶𝛺 )𝑟𝑒 𝑓 , the value
measured using 𝑇/𝑡ℓ = 0.4 and (b) the convergence constant 𝐶𝜏 for We of (◦) 101 – 142;

(×) 50 – 71; (□) 25 – 36; (△) 13 – 18; (▽) 6.3 – 8.9. In (a), variance-weighted
least-squares fit of all data to (4.1) (– – –) gives 𝐶𝑟 = 0.11 and 𝐴 = 2.2 (𝑅2 = 0.954). In
(b), error bars indicate 95% C.I. and the estimated large-We value of 𝐶𝜏 = 9 (– – –) is

included for reference.
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Figure 9: (a) Fragmentation rate constant 𝐶𝛺 and (b) convergence constant 𝐶𝜏 as
functions of We, measured using 𝑇/𝑡ℓ = 0.4. Error bars indicate 95% C.I.. In (a),

variance-weighted least-squares fit to (2.5) (– – –) gives We𝐻 = 6.9 and 𝐶𝛺,∞ = 1.4
(𝑅2 = 0.890). In (b), the estimated large-We value of 𝐶𝜏 = 9 (– – –) is included for

reference.

Martı́nez-Bazán et al. (1999a) and We𝐻 = 2.7 − 7.8 by Risso & Fabre (1998). However, we435
obtain 𝐶𝛺,∞ = 1.4, greater than 𝐶𝛺,∞ = 0.42 measured by Martı́nez-Bazán et al. (1999a)436
and 𝐶𝛺,∞ = 0.95 from HIT simulations by Rivière et al. (2021). An important distinction437
between our fragmentation rate measurements and previous experimental and numerical438
measurements is that we measure bubbles that have been formed as the daughters of previous439
fragmentation, so the bubbles are already distorted by fragmentation. The effect of this440
distinction can be demonstrated by measuring the fragmentation statistics over an earlier441
time in our simulation, 0 < 𝑡/𝑡ℓ < 1, when (as opposed to the later time 1 < 𝑡/𝑡ℓ < 3)442
many parent bubbles which started spherical have not yet fragmented. When we measure this443
earlier time range (denoted by (·)𝑡<𝑡ℓ ), we obtain a similar (We𝐻 )𝑡<𝑡ℓ = 7.0 but an appreciably444
smaller (𝐶𝛺,∞)𝑡<𝑡ℓ = 0.88 (𝑅2 = 0.974). As our interest is bubbles within fragmentation445
cascades, our value of 𝐶𝛺,∞ ≈ 1.4 is more relevant for bubbles formed by fragmentation.446
Note that 1/𝐶𝛺,∞ is an order of magnitude larger than𝐶𝑟 (i.e., 𝜏ℓ ≫ 𝜏𝑟 ), which confirms that447
the PBE no-hysteresis assumption is reasonable when modelling fragmentation cascades.448

4.5. Estimating convergence time, 𝜏𝑐449

We now seek the convergence time, 𝜏𝑐. As shown in §3, the time-averaged speed E {⟨𝑠⟩𝑇 },450
available from ELA, gives a 𝑇-independent measurement of 𝐶𝜏 so long as (3.18) is satisfied.451
Figure 9b shows the value of 𝐶𝜏 we obtain over a range of We. We find that the model452
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developed in §3, which as a result of large-We assumptions predicts a constant𝐶𝜏 , is accurate453
for We ≫ We𝐻 , or more specifically We > 30, where we measure 𝐶𝜏 ≈ 9. To validate that454
our measurement is 𝑇-independent, we also measure 𝐶𝜏 using a range of 𝑇 for We = 50 – 71455
(figure 8b). As expected, for 𝑇 ≲ 𝜏𝑟 we see a dependence on 𝑇 due to hysteresis, but for456
𝑇 ≫ 𝜏𝑟 𝐶𝜏 is independent of 𝑇 . Using 𝐶𝜏 = 9, (3.18) gives 𝑇/𝑇𝑈 < 0.2 for We > 30, so we457
do not expect any effect of the Hinze scale driven upper bound on 𝑇-independence described458
in §3.4.459

5. Discussion460

We now examine how the relaxation time 𝜏𝑟 , bubble lifetime 𝜏ℓ , and convergence time 𝜏𝑐461
inform the study of fragmentation. For 𝜏𝑟 , our results suggest that the physical mechanism462
for the decay of hysteresis with bubble age is independent of surface tension for We >463
We𝐻 and that 𝜏𝑟 scales like 𝜏ℓ . The respective scaling constants we estimate from DNS464
of HIT differ by an order of magnitude (𝐶𝑟 ≪ 1/𝐶𝛺,∞), suggesting that 𝜏𝑟 ≪ 𝜏ℓ is465
always true for We > We𝐻 . Although the physical mechanism for the decay of hysteresis is466
unclear, this shows that hysteresis can be assumed negligible when modelling fragmentation,467
validating an essential assumption of PBE. More practically, knowledge of 𝜏𝑟 also informs468
the choice of measurement interval in experiments and simulations. 𝑇 ≫ 𝜏𝑟 makes the effect469
of hysteresis on measurements negligible, ensuring that the measured fragmentation statistics470
are compatible with PBE.471

The insight that the convergence time 𝜏𝑐 provides into the evolution of the bubble-size472
distribution in fragmentation-dominated bubbly flows has been discussed by Qi et al. (2020)473
and Deike et al. (2016), and we have now quantified 𝜏𝑐 directly. For large We where the effect474
of surface tension on fragmentation rates is negligible, we find475

𝜏𝑐 = 𝐶𝜏𝜀
−1/3𝑎𝑚𝑎𝑥

2/3
[
1 − (We𝑚𝑎𝑥/We𝐻 )−2/5

]
, (5.1)476

where We𝑚𝑎𝑥 is the Weber number of the largest bubble in the cascade (radius 𝑎𝑚𝑎𝑥) and we477
estimate 𝐶𝜏 ≈ 9 and We𝐻 ≈ 6.9 from DNS. In addition, as we can now express 𝜏𝑐 in terms478
of realistic fragmentation statistics for We > 30, 𝜏𝑐 also informs large-We fragmentation479
models. Inspired by (2.3), we rearrange (3.17) to provide a new bound on a moment of the480
daughter-size distribution 𝑓 ∗

𝑉
:481

𝑚̄

∫ 1

0
𝑣∗11/9

𝑓 ∗𝑉 (𝑣∗) d𝑣∗ = 1 −
(
𝐶𝜏𝐶𝛺,∞

)−1 , (5.2)482

where our estimations of 𝐶𝜏 ≈ 9 and 𝐶𝛺,∞ = 1.4 from DNS give 0.92 for the right-hand side483
of (5.2). For a physical interpretation, (2.3) bounds the relationship between daughter-size484
distributions and 𝑚̄ to guarantee volume conservation, while (for We > 30) (5.2) bounds the485
relationship to match the empirical value of 𝜏𝑐.486

Many existing fragmentation models assume binary breakup (𝑚̄ = 2). To evaluate how well487
these meet (5.2), we focus on the proposed daughter-size distributions through 𝐶 𝑓 , which488
includes the integral in (5.2). With 𝑚̄ = 2, 𝐶𝜏 ≈ 9, and 𝐶𝛺,∞ = 1.4, we obtain 𝐶 𝑓 ≈ 1.8.489
Because𝐶 𝑓 indicates how much longer 𝜏𝑐 is compared to the case of identical fragmentation,490
this shows that 𝜏𝑐 is 1.8 times longer for fragmentation in HIT than what would be predicted491
if one assumes identical binary-fragmentation. Comparing to more realistic binary daughter-492
distributions (B-D in table 1), we see good agreement with the distribution proposed by493
Martı́nez-Bazán et al. (2010). We also compare to the binary daughter-distribution model494
by Qi et al. (2020, eq. (7)), which uses an experimentally-constrained fitting parameter495
𝜔 = 0.3 designed to tune the value of 𝜏𝑐. For their daughter-distribution model, (3.17) gives496
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𝐶 𝑓 = 1.741, in good agreement with our value of 𝐶 𝑓 ≈ 1.8. Although we assume 𝑚̄ = 2 here497
for illustration, this analysis is applicable to any 𝑚̄. Rather than attempting to compare the498
details of disparate fragmentation models, relating 𝜏𝑐 to the fragmentation statistics specified499
by these models allows us to directly compare the physical predictions each model makes500
regarding the evolution of the bubble-size distribution through a simple scalar quantity.501

6. Conclusion502

For air-water bubbly flows under HIT at moderate to large Weber numbers, we describe503
three fundamental timescales characterising the statistics of the evolution of the bubble-size504
distribution by fragmentation and the resulting fragmentation cascade. The prevalence of the505
observation of −10/3 power-law in bubble-size distributions in bubbly flow for moderate506
and large We demonstrates the importance of fragmentation cascades to the bubble-size507
distribution, and these timescales directly support statistical modelling of fragmentation.508
Although our focus here is on statistical descriptions of fragmentation, the results here also509
help inform mechanistic study of fragmentation.510

One fundamental timescale is the relaxation time 𝜏𝑟 which characterises the time after511
fragmentation over which hysteresis cannot be neglected. From DNS measurements, we512
provide an empirical definition of 𝜏𝑟 based on when measured fragmentation rates become513
independent of the measurement interval 𝑇 . We find that 𝜏𝑟 = 𝐶𝑟𝜀

−1/3𝑎2/3, where 𝐶𝑟 ≈ 0.11514
independent of moderate/large We. This We-independence suggests the physical mechanism515
causing 𝜏𝑟 at these We is unrelated to surface tension. Although understanding hysteresis and516
its decay is an area of future work, by providing 𝜏𝑟 we identify the timescales over which517
hysteresis can be neglected.518

A second fundamental timescale is the expected lifetime 𝜏ℓ of a bubble from formation519
by fragmentation to further fragmentation. For 𝜏ℓ ≫ 𝜏𝑟 , 𝜏ℓ = [𝐶𝛺 (We)]−1𝜀−1/3𝑎2/3 is the520
inverse of the fragmentation rate. Fitting our DNS results for bubbles within the fragmentation521
cascade to the square-root model of We-dependence by Martı́nez-Bazán et al. (1999a)522
(eq. (2.5)), we find the Hinze-scale We𝐻 ≈ 6.9, in agreement with previous experiments, but523
measure a smaller 𝜏ℓ corresponding to a higher scaling constant (at large We) 𝐶𝛺,∞ ≈ 1.4524
(compared to 𝐶𝛺,∞ ≈ 0.42 reported by Martı́nez-Bazán et al. (1999a)). We show that this525
higher value of 𝐶𝛺,∞ is related to formation of the bubbles by a fragmentation cascade. For526
modelling fragmentation cascades, this higher 𝐶𝛺,∞ is likely more relevant. In either case,527
we find 𝜏𝑟 ≪ 𝜏ℓ for all We, validating the use of the no-hysteresis assumption in modelling528
fragmentation.529

Finally, we consider the fundamental timescale 𝜏𝑐 = 𝐶𝜏 [1−(We𝑚𝑎𝑥/We𝐻 )−2/5]𝜀−1/3𝑎
2/3
𝑚𝑎𝑥 ,530

which measures the time for a Lagrangian air particle to go from the largest bubble to531
the Hinze scale. This also characterises the time for fragmentation cascades to reach532
equilibrium. For large We, we derive 𝜏𝑐 based on the (constant) expected speed 𝑠 at which533
a Lagrangian air particle moves through the cascade. We show that, 𝐶𝜏 = 1/𝑠 and can534
thus be measured independent of 𝑇 . This result is valid for 𝜏𝑟 ≪ 𝑇 ≪ 𝜏𝑐, which provides535
a bound on the choice of 𝑇 in experiments and simulations. The 𝑇-independence of 𝐶𝜏536
is confirmed by DNS measurements, which give 𝐶𝜏 ≈ 9 for We > 30, which agrees well537
with the values obtained from the fragmentation model of Martı́nez-Bazán et al. (2010) and538
an experimentally-constrained fragmentation model of Qi et al. (2020). The relationship539
between 𝐶𝜏 and fragmentation statistics in PBE provides new constraints on these statistics,540
at large We, limiting the possible forms of fragmentation models. Further, by quantifying 𝐶𝜏 ,541
we obtain the convergence time of fragmentation cascades 𝜏𝑐, beyond which a quasi-steady542
model of fragmentation would be appropriate.543
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