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Abstract— Given an object, an environment, and a goal pose,
how should a robot make contact to move it? Solving this
problem requires reasoning about rigid-body dynamics, object and
environment geometries, and hybrid contact mechanics. This paper
proposes a hierarchical framework that solves this problem in 2D
worlds, with polygonal objects and point fingers. To achieve this, we
decouple the problem in three stages: 1) a high-level graph search
over regions of free-space, 2) a medium-level randomized motion
planner for the object motion, and 3) a low-level contact-trajectory
optimization for the robot and environment contacts. In contrast
to the state of the art, this approach does not rely on handcrafted
primitives and can still be solved efficiently. This algorithm does not
require seeding and can be applied to complex object shapes and
environments. We validate this framework with extensive simulated
experiments showcasing long-horizon and contact-rich interactions.
We demonstrate how our algorithm can reliably solve complex
planar manipulation problems in the order of seconds.

I. INTRODUCTION

Dexterous manipulation is a versatile skill to solve robotic
tasks in varied environments. Enabling it, however, requires our
algorithms to reason about dynamics, geometry and, perhaps most
challenging, contact mechanics. Contact-rich interaction is a key
enabler to deploy robots for manipulation tasks. Unfortunately,
the addition of contacts leads to discrete events within decision
making (e.g. push from the side of the object or pull from the top).
This makes the manipulation problem very challenging without
any kind of guidance. These challenges have divided the state-of-
the-art into two main approaches: 1) prescribing a set of primitives
(e.g. grasping, pushing, or pivoting) and concatenating them to
manipulate the object [1], [2], [3], [4], which restricts the set of
solvable tasks, or 2) formulating a non-differentiable and non
convex optimization problem that can solve the task implictly [5],
[6], which is computationally intractable without careful seeding.

In this work, we explore the problem of efficiently planning ob-
ject trajectories with robot contact interaction to solve a manipula-
tion task. We refer to this problem as Object-Contact Trajectory
planning. In contrast to using pre-designed primitives, we design
a hierarchical algorithm that reasons about the object motion and
the robot contact interaction as part of the plan. Our goal is to
incorporate multi-contact interaction between the object, the robot,
and the environment, without sacrificing efficiency in long-horizon
trajectories. Solving this problem has three key challenges: 1)
dynamics, which determine the motion of the object, 2) geometry,
which constrains the set of actions and configurations, 3) and non-
smoothness, which is required to describe rich contact interactions.

Start Goal

Fig. 1: Given an object, an environment, a start and a goal, our
framework finds a manipulation plan to complete the task.

Our approach is to decompose the problem into three stages,
which can be evaluated hierarchically and solved efficiently: 1) A
dynamic-programming search over regions of the object config-
uration space, 2) A sampling-based motion planner for the object
trajectory between connected regions, and 3) A contact-trajectory
optimization to find a manipulator contact-trajectory (finger trajec-
tory + forces) to execute the sampled object trajectory. These three
stages can be solved iteratively in a hierarchy with backtracking,
where the result of each stage informs the previous one. We name
this approach VI-MIQP, acronym for Value Iteration (VI) with
Mixed Integer Quadratic Programming (MIQP). We restrict our im-
plementation in this paper to 2D scenes, over which it is simpler to
reason about geometry. While this is a limitation, 2D manipulation
problems encompass a wide range of skills that can be composed
to solve practical tasks. The main contributions of this paper are:

• Framework to solve manipulation tasks with alternating
sticking contact interactions using dynamic programming,
sampling-based planning, and mixed-integer optimization.

• Validation of this approach applied to manipulation tasks
in challenging environments without a prescribed object
motion, contact schedule or primitives.

The remainder of this paper is organized as follows: Sec. II
reviews concepts and literature relevant to this work. Sec. III
provides an overview of our framework, its assumptions and
properties. Sec. IV describes the proposed algorithm in detail,
while Sec. V discusses its implementation. Sec. VI demonstrates
the algorithm with simulated experiments, and we conclude in Sec.
VII summarizing the contributions and limitations of the work.
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Fig. 2: Our proposed framework receives an object with a start and goal pose. We discretize the free-space in slices and decompose them into polygonal
regions. Our algorithm performs a high-level search over the graph of regions, building a roadmap. At each new edge of the roadmap, we sample
an object trajectory that connects the two regions. For each object trajectory, we optimize a manipulator contact-trajectory that executes the motion.

II. BACKGROUND

In this section we review previous research relevant to this
work and introduce concepts that we reference through the paper.

A. Motion Planning

Motion planning is a well studied problem within robotics.
There are two main approaches relevant to this work. First,
Sampling-based motion planning algorithms, such as RRT [7],
which have been a successful approach to solving problems
with plenty of local minima. On the other hand, optimization-
based techniques, such as CHOMP or GPMP [8], [9], have also
seen success at getting high-quality solutions in high-dimensional
setups, although local in nature. In contrast to these two approaches,
Dynamic Programming (DP) [10] can solve optimal control
problems to optimality with the caveat of high-computational com-
plexity, which restricts this approach to short horizon problems.

B. Manipulation Planning

The most common approach to manipulation is planning
motions with primitives, such as grasping [11], pushing or
pivoting. Many models can accurately optimize motions with
these primitives [12]. Different primitives can be concatenated to
manipulate a simple object [4]. A key limitation, however, is that
primitives are specific to an object and an environment, which
makes them hard to generalize to different tasks. Another line of
research has focused on optimizing the contact interaction as part
of the task [5], [6], [13], without assuming a primitive. However,
optimizing contact interaction requires scheduling contact modes
along the motion, which leads to combinatorial complexity, or
modeling contacts implicitly through complementarity conditions,
which are not differentiable. This makes it very challenging to
optimize a manipulation plan without making assumptions on the
contact interaction or providing significant seeding [14].

C. Manipulation on Long-Horizons

Recent work has tried to alleviate these issues through sampling-
based motion planning [15], which removes assumptions on
the contact schedule and object motion. However, this approach
is unable to guarantee the quality of its solution. Morever, as
with RRT, this approach will struggle to reason globally on
long-horizons, leading to slow computation. Other recent work has
shown that the robot Contact-Trajectory can be globally optimized
efficiently [16], [17], with the caveat that the object trajectory

must be prescribed. Our work draws inspiration from these two
philosophies and will aim to find object motions using a sampling-
based approach, guided by a high-level search, and optimize the
robot contact-trajectory using mixed-integer optimization.

III. PROBLEM SETUP

In this section we provide an overview of our framework
inputs and discuss its assumptions. Given a polygonal object, our
algorithm will find a sequence of contact interactions that move
it toward a goal pose.

A. Inputs and Notation

Our algorithm receives as inputs the initial and final pose of
the object and the geometries of the object and environment. We
introduce the following notation and variables:

1) Object: A polygonal rigid body O with Nv vertices and Nf

facets in a workspace W. Each facet Ff has 2 vertices, with
nominal positions vf

v , with a corresponding friction cone
FCf , represented with 2 rays.

2) Trajectory: A set of object poses over discrete time steps,
the length of the plan T is not known a-priori. We describe
each pose, at a time step t, as q(t) ∈ C, where C is the
configuration space of the object. C corresponds to the x,y,θ
coordinates of SE(2). The starting configuration is q0 and
the goal configuration is qg.

3) Manipulator: A set of Nc contacts points. We describe the
cth contact-point, at time-step t, as pc(t)∈W, where W is
the workspace.The workspace corresponds to each position
(x,y) that can be reached by the robot. We describe the force
applied by the manipulator to the object, at time step t, as
λc(t)∈R2.

4) Environment: A polygonal environment E with Ne facets,
described as planes with friction conesFCe. Additionally, we
segment the free-space between the object and environment
intoNR convex polytopic regionsRr={x∈W |Arx<br}.
We label the force between the environment and vertex v
of the object as λev and the force applied by the vertex ve

of the environment into the object facet f as λfve .
Then, we operate our planning on the following spaces:

1) Configuration Space: A set C of x, y, θ coordinates in
SE(2) where the object can move. The set of configurations
where the object penetrates the environment is called
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Fig. 3: Elements of our problem: a polygonal object O, a point-finger
manipulator pc and an environment E. The contact between object and
environment leads to a reaction force.

C-obstacles or Cobs and is defined by the Minkowski sum
between the object geometry (across all orientation of the
configuration space) and the environment edges.

2) Free-Space: a set of configurations Cfree where O does
not penetrate the environment, defined as Cfree=C−Cobs,
which is a subset of SE(2). For practical purposes, we will
discretize this space over the orientation component with
a sample S C−slices.

A diagram describing these elements, at a fixed time-step, can
be seen in Fig. 3.

B. Modeling Assumptions

In order to build the manipulation planning problem, we make
the following assumptions:

1) Objects are rigid, with uniform contact surfaces (such that
line contacts can be approximated by contact with two
vertices), and approximated as combinations of “simple”
polygons.

2) Object motions occur at low speeds, such that high-order
inertial effects are negligible.

3) Robot fingers have small masses, such that there are no
impacts between the robot and the object.

4) Interactions between the object and robot are a sequence of
alternating sticking contacts, at which friction is captured
by a cone represented by two rays.

The upcoming sections will describe how these modeling
decisions translate into our planning framework.

IV. HIERARCHICAL FRAMEWORK

In this section, we present our hierarchical approach to
long-horizon manipulation planning. Each subsection describes a
stage of the hierarchy and provides technical and implementation
details. Our framework has three stages, which help alleviate
some of the key issues of contact-rich manipulation:

1) High-Level: The first stage constructs a roadmap over a
decomposition of the free-space into convex regions. We
represent this roadmap as a graph G with edges E. We
search over this roadmap to find a path from the start to goal
configuration.

2) Motion Level: The second stage finds object trajectories
that connect edges of the roadmap. These trajectories are
concatenated while searching on the graph. If there is not a
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Fig. 4: Free-space decomposition for high-level planning. Top:
Workspace W and free-space slice at Cfree(θ). Bottom: convex
decomposition of the slice Cfree(θ).

feasible trajectory corresponding to an edge, then we remove
the edge from the roadmap.

3) Contact Level: This stage verifies that the motion-level
trajectory can be executed with the manipulator. This
problem is known as Contact-Trajectory Optimization. If
the optimization has no solution then we reject the object
trajectory as infeasible.

These three stages are evaluated in a hierarchy where stage
informs the previous one. Our approach leverages dynamic pro-
gramming, sampling-based motion planning, and mixed-integer
optimization to construct the full pipeline, illustrated in Fig. 2.

A. High-Level Search

An effective approach to guide a long-horizon planning
problem is to build a high-level roadmap that outlines a coarse
plan for a low-level finer planning stage. This outline ensures
a certain level of optimality on the resulting trajectory. Without
a roadmap, sampling-based planning tools, such as RRT, take
a long time to solve long-horizons problems, and the resulting
solution often has poor quality.

1) Roadmap construction: To construct our roadmap we
operate under the following decomposition of the free-space:

• Slicing: we discretize the free-space of the object, which
lies in SE(2), into slices of constant orientation. We refer to
Cfree-slice of orientation θ as Cfree(θ). Each slice is a 2D
region of coordinates in R2. We showcase some examples
in Fig. 4 (left).

• Segmentation: we further decompose each Cfree-slice into
convex regions, as demonstrated in Fig. 4 (right).

We use each of the convex regions as a node in our graph
G, where edges E are the overlapping side or area with regions
in the same slice or in adjacents slices1. We label the node of
the ith region as Ni, where Ei,j is the edge between Ni and
Nj. This graph is the roadmap used to plan our high-level
path. In practice, we compute Cfree(θ) as the Minkowski sum
Cfree(θ) = E⊕R(θ)O, where R(·) is a rotation matrix, and
perform the convex decomposition using Delaunay triangulation.

1The separation between slices can cause two regions not to overlap, which
can lead to path non-existence. Hence, this makes the resulting plan dependent
on the resolution of the slicing



2) Dynamic programming: Once we construct the roadmap
G,E we need to search over the nodes to find the best path to
the goal and determine the distance from each node to the goal.
Since we need to find an object motion as we search through the
graph, as part of the motion-level planning, it is more reasonable
to pre-compute a value function for each edge V (Ei,j) using a
heuristic. With this value function, we iteratively explore different
paths in subsequent stages.

We start by finding start and goal nodes such that:

q0∈N0, qg∈Ng,

and set
V (Ei,j)=∞, V (Ei,g)=d(i,g),

where d(i,j) is the normalized SE(2) distance between the center
of Ni and Nj

2. Finally, we determine the value of each node by
running value iteration on the graph, using the Bellman equation
[10]:

V (Ei,j)=d(i,j)+min
k

V (Ej,k) , k≠j

This relation is evaluated at each node iteratively until convergence.
If V (E0,k)=∞ then there is no path from the start to the goal
under the current slicing.

3) Forward pass: Finally, after computing the value of each
node, we proceed to explore the tree in a forward pass. We create
a list of nodes N = [N0], including the start node, and a list of
configurations q=[q0], including the start configuration. We then
proceed to explore the graph. We set Nt=N0 and choose:

Nt+1=argmin
k

V (Et,k)

Then, we verify with the motion-level plan if there is a
trajectory from node Nt to Nt+1. We then follow the logic:

1) If the motion-level planner finds a feasible motion qnew and
contact-trajectory for the entire motion pc,λc: we push the
solution q=[q,qnew], N=[N,Nt+1], and set Nt=Nt+1.

2) If the motion-level planner cannot find a trajectory, then we
remove the edge from the graph by setting V (Et,t+1)=∞.

If all the edges of node Nt have V (Et,t+1) = ∞, then we
remove Nt from the list of nodes and pop the latest qnew from
the list of configurations. We continue this process until Nt=Ng,
at which point we run the motion-level planner to find a motion
to the goal.

B. Motion-Level Planning

While running the forward pass through the optimal graph, at
each edge with nodes Nt and Nt+1, we need to verify if there
is a motion for the robot to move the object. This requires finding
a feasible contact-trajectory for the given path, which results in
a non-smooth and nonlinear optimization problem, such as in [5].
This problem is hard to solve and usually requires a warm-start
and depends heavily on numerical conditioning, which often
makes it impractical.

In our case, we decouple the problem by randomly sampling ob-
ject motions between Nt and Nt+1, since each node is associated

2We normalize this distance to avoid over-emphasis on the rotation component.

with a convex polygon, using the function Sample(·), which ran-
domly samples an SE(2) configuration within a convex polygon.
For each sample we solve an optimization problem CTO() to find
a contact-trajectory, discarding the sample if CTO() is infeasible.
We sample up to NMAX trajectories before deciding an edge is
not feasible. We summarize this procedure in algorithm 1.

Algorithm 1 RRTCTO

Require: O, E, Nt, Nt+1, NMAX

trial = 0
while trial<NMAX do

qnew=[q0,Sample(Nt),Sample(Nt∩Nt+1)
pnew,λnew=CTO([q,qnew])
if Success then

return qnew,pnew,λnew
else

trial = trial + 1
end if

end while
return Failure

Note that CTO(·) is called over the entire object trajectory,
including previous nodes. We remark that the Sample(·) function
needs to account for vertices and edges to have completeness,
since each node is tied to a convex polygon. For this reason, we
sample: 1) uniformly inside the polygon with probability p1, 2)
uniformly inside of a random polygon facet with probability p2,
and 3) in a random polygon vertex with probability 1−p1−p2.
This guarantees that the sampler will consider trajectories where
the object traverses across facets or vertices of the node. We note
that this is particularly important since environmental interaction
will occur only at facets of vertices of each node. In practice, we
always sample along a straight line during the first trial, to bias
towards a smooth motion, and sample freely in subsequent trials.

C. Contact-Trajectory Optimization

Once we sample an object trajectory, we need to verify that the
manipulator can execute it. To do this, we need to solve an opti-
mization problem that verifies that contact dynamics allow for such
execution, under the components depicted in Fig. 5. One effective
method to solve this problem is to apply Mixed-Integer Program-
ming (MIP) once the object trajectory is prescribed, as in our case.

The mixed-integer programming formulation receives the
object-trajectory as an input and returns the contact-trajectory of
the manipulator. Note that once we sample a trajectory we also
obtain the contact schedule of the environmental contacts, encoded
by FCe, and the manipulator free-space regions Rr. To achieve
this, we apply the following modeling assumptions, based on [16],
which models constraints using the following convex relations:

a) Quasi-Dynamics: We model the linear object dynamics,
at each time-step t, under the quasi-dynamic relation3:

3we distinguish between λe
v(t) and λe

v(t) because environmental forces have
pre-fixed friction cones while robot friction-cones need to be found by the model.



g

pc(t)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pc(t)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FCe
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FCe
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FCc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FCc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fig. 5: Once the object trajectory is sampled, we optimize a set of finger
motions and contact forces that execute the trajectory. This problem
involves the finger trajectories, applied forces, reaction forces, and the
object facets and friction cones.

m[q̈x(t),q̈y(t)]
T =

∑
c

λc(t)+
∑
v

λev(t)+
∑
ve

λfve(t)−mg,

(CT1)
where g is the gravity vector, note that this equation disregards

Coriolis effects. Here, we compute time derivatives using
second-order finite differences. For rotational dynamics, since
torques require a non-convex bilinear cross product, we use the
following approximate model:

Iq̈θ(t)=
∑
c

τc(t)+
∑
v

R(qθ(t))vv×λev(t)+
∑
ve

ve
v×λfve(t),

(CT2)
where τc≈(pc−[qx,qy]

T )×λc and R(·) is a rotation matrix.
We approximate the bilinear cross product (×) in τc using the
McCormick Envelopes technique [18]. McCormick Envelopes are
a piecewise outer approximation of the bilinear product w=x·y.
Finally, we determine the value of environmental forces via the
friction cone:

λev(t)∈FCv
e(t),λ

f
ve(t)∈FCf(t), (CT3)

where the value of FCe(t) is determined once the trajectory is
sampled.

b) Geometry: We need to constrain the manipulator
fingers to only lie in the free-space between the object and the
environment. To achieve this, we introduce a binary decision
matrix H ∈ {0,1}Nc,NR,T that maps each contact pc(t) to a
convex region Rr(t), at each time-step t. This is encoded by the
mixed-integer linear constraint

H(c,r,t)=1⇒pc(t)∈Rr(t), (CT4)

where the ⇒ operator is encoded using the big-M formulation
[19] .

c) Contact mechanics: We encode the hybrid mechanics
of applied contact by introducing a binary decision matrix
T ∈{0,1}Nc,Nf ,T . This matrix map each manipulator contact to
a facet of the object and a friction cone as:

T(c,f,t)=1⇒
{
pc(t)∈Ff(t),

λc(t)∈FCf(t),
(CT5)

and ∑
f

T(c,f,t)=0⇒λc(t)=0, (CT6)

which are all linear constraints with big-M formulation.

We aggregate these sets of constraints into a single optimization
problem. This results in the following mixed-integer optimization
problem:

CTO : minimize
T ,H,p,λ

J=
[
T H p λ

]
Q


T
H
p
λ

+qT


T
H
p
λ


subject to:

1) For time-step t=1 to t=T :
a) Quasi-Dynamics (CT1)-(CT2).
b) Environmental Contact (CT3).
c) For fingers c=1 to c=Nc

• Non-Penetration (CT4).
• Contact-Trajectory Assignment (CT5)-(CT6).

This optimization problem has the following properties: 1)
Given a convex cost function, we will always find the optimal
solution, and 2) The model only reports infeasibility if the
original non-convex problem is also infeasible, thanks to the
McCormick envelope approximation used in (CT2). This is comes
with the drawback of combinatorial complexity, which grows
exponentially with the number of binary variables. However, we
find that this optimization problem can be solved very quickly
in practice, on the order of tens of milliseconds.

Moreover, this formulation also allows for the inclusion of
additional constraints, such as kinematics or robustness margins
[20], provided that these can be formulated in a mixed-integer
linear fashion. In the final CTO(·) call of the algorithm, when
reaching the goal pose, we add a quadratic cost function that
minimizes the applied force, smooths the finger trajectories, and
maximizes contact robustness:

J=

T∑
t=1

Nc∑
c=1

||λc(t)||2+||p̈c(t)||2−βc(t)

The term β is a lower-bound convex-approximation of the
distance between each contact-force and the border of its friction
cone, computed as in [14], [4], this term has to be linear in order
for the cost-function to be convex. We depict this β term in Fig. 6.

V. VI-MIQP

Putting all the previous stages together, we formulate our
planning framework under the stages outlined in the previous
section. This algorithm receives an object shape, initial pose,
goal pose, and free-space Cfree sliced over orientations. We
summarize our proposed framework in algorithm 2.

This formulation has a few benefits and theoretical properties:
• First, the dynamic programming over a roadmap yields an

optimal solution to the high-level plan, conditioned on the



Fig. 6: Contact robustness margin: we compute a convex inner
approximation of the stability margin of our motion.

Algorithm 2 VI-MIQP

Require: O, E, q0, qg

G,E = Delaunay(Cfree) ▷ Roadmap construction
V (Ei,j)=∞, ∀ i,j
V (Ei,g)=0, ∀ i
while V not converged do

V (Ei,j)=d(i,j)+minkV (Ej,k) ▷ Value iteration
end while
Nt=N0 ▷ Starting node
N=[Nt] ▷ Starting list
while Nt≠Ng do ▷ Forward pass

for Nt+1=argmin V (Et,t+1) do
qnew,pnew,λnew=RRTCTO(q,Nt,Nt+1)
if Success then

q=push(q,qnew), p=pnew, λ=λnew
N=[N,Nt+1] ▷ Adds edge to plan
Nt=Nt+1

break for
else

V (Et,t+1)=∞ ▷ Remove edge
end if
if V (Et,t+1)=∞∀Nt+1∈Neigh(Nt) then

Nt=Nt−1 ▷ Removes node
pop(q), pop(N)

end if
end for

end while

resolution of the slicing of the free-space and in the limit
of sampling of the motion planner.

• Thanks to the mixed-integer optimization formulation, we
can guarantee that the contact-trajectory found by CTO(·)
is globally optimal, conditioned to the object trajectory
found in the motion-level.

These properties are very useful to understand the feasibility
of a task and the quality of the solution.

VI. VALIDATION AND RESULTS

To demonstrate the capabilities of our framework, we
implement algorithm 2 and asses its application to a set of
long-horizon manipulation problems. First, we aim to validate
the model’s ability to find solutions to complex manipulation

tasks and detect infeasible ones. We then show how the algorithm
performance scales over problems with varying complexity.

We generate all the trajectories in MATLAB R2021b, running
on an Intel Core i9 laptop with Mac OS X Big Sur. We use
Gurobi 9.1.0 [21], an off-the-shelf optimization software, as our
MIP solver. All of our tests are done with a Cfree sampled in 7
slices between −90◦ and 90◦4. We use piecewise McCormick
envelopes of 12 segments. We segment the free space of each task
into convex regions R using Delaunay triangulation. We compute
second derivatives within the mixed-integer model with the
backwards-Euler scheme for simplicity and numerical stability.

A. Simulated Validation
We start by validating the functionality of the algorithm in

several manipulation problems. In particular, we show its ability
to solve problems that demand long horizon and multi-contact
reasoning. These tasks require alternating contact switching with
the robot and the environment. All the tasks are solved with a
2-finger manipulator with kinematic constraints based on an ABB
YuMi robot, encoded in CTO(·). For this, we use three objects: 1)
a block, 2) a rectangle, a 3) a non-convex T object. The contacts
between all surfaces have a friction coefficient of µ= 0.1. We
solve the following manipulation problems:

Block Pivoting: we ask the planner to rotate a block −90◦ in
the sagittal plane and slide it 200mm in the −X direction (Fig.
7a). Due to the low friction with the surface, our algorithm finds
a trajectory that: 1) grasps the block with two fingers, slowly
rotating in the process, 2) pivots the object with one finger, while
pushing it to the goal, and 3) uses the two fingers to immobilize in
the final goal pose. This trajectory demonstrates the contact-rich
nature of our approach, since the solution to a problem can choose
to grasp an object and then proceed to use a single finger to
complete the task. This trajectory is found in 0.2s.

Rectangle across Narrow Corridor: we ask the planner to
grasp a rectangle and move to the other side of a region with
a very narrow corridor in the moddle (Fig. 7b). The algorithm
performs a strategy of: 1) grasping the object, 2) rotating the
object −90◦, 3) sliding the object through the corridor with one
finger, 4) grasp the object the two fingers, and 5) pivot it back
for 0◦. This trajectory demonstrates the long-horizon reasoning
that our planner can achieve, considering contact switches and
global path. This type of trajectory would likely require a very
large amount of exploration from randomized sampling-based
planner. This trajectory is found in 7.2s.

Rectangle Peg-in-wall: we ask the planner to pick a rectangle
from the ground and insert it into a tight hole in a wall, rotated by
−90◦ (Fig. 7c). The algorithm performs a strategy of: 1) grasping
the object, rotating it while grasped, 2) pushing it to the wall
with one finger, 3) sliding it up to the ”ceilng”, and 4) pushing
it with the two fingers, against the ceiling contact, to insert the
object in the wall. This trajectory demonstrates multi-contact
interaction with the robot and the environment. Here, the wall and
ceiling contacts are used to enable more stability and to make the
trajectory geometrically feasible. This trajectory is found in 2.5s.

4This choice is made to leave a gap of 30◦ between slices, which is enough
to find paths in the shapes used. Environments with narrower paths or more
non-convex shapes may require further slicing.



(a) Pivoting a block and sliding (b) Moving in a narrow corridor (c) Peg-in-wall for a rectangle (d) Unpegging a T from a hole

Fig. 7: Long-horizon manipulation tasks solved with our algorithm. Green dots correspond to the point-fingers of our manipulator. Doted object
contour corresponds to the initial pose q0 and bold object contour corresponds to goal pose qg.

(a) Sagittal unpeg-from-hole (b) Traversal unpeg-from-hole

Fig. 8: Comparison between the same task solved in a sagittal and
traversal environment

T Unpeg: we ask the planner to pick a T object from a hole
and rotate it by 90◦ into the floor (Fig. 7d). The algorithm finds
a strategy of: 1) grasping the object from the hole, 2) pivoting
it while grasped, 3) switching the grasp configuration, and 4)
placing the T in the goal location. This tasks demonstrates the
ability of our algorithm to reason over non-convex geometry in
the objects and environment. This trajectory is found in 6.3s.

As a reference, all trajectories are optimized in the range of
0.2 s to 7.2 s. We stress the ability of CTO(·) to report when a
task is infeasible, either because it requires an additional contact
force or because it is geometrically infeasible, which can help the
planner quickly discard edges and find a path. We note that all
these tasks are performed in the sagittal plane.

B. Application to Sagittal and Traversal tasks

A key question is how this algorithm performs across the
sagittal –XZ– plane and one problem in the traversal –XY – plane.
The traversal plane adds the presence of Coulomb friction forces
in the object surface, following the maximum discipation principle.
We can easily model this patch contact in our CTO(·) problem by
transforming the friction cone at each object vertex to the vector:

FCv
e(t)=

−µe√
v̇2x(t)+v̇2x(t)

[v̇x(t),v̇y(t)],

where v(t)= [vx(t),vy(t)] is the position of the object vertex
v at time-step t. We then contrast how our model performs in both
traversal and sagittal scenarios with the following tasks:

Saggital Unpeg: we ask the planner to pick a rectangle from
a hole and rotate it by 90◦ into the floor (Fig. 8a). The algorithm
finds a strategy of: 1) pushing the object to one side of the hole
to create some clearance, grasping it up from the hole, 2) pivoting

Fig. 9: Complexity analysis for our model

it with respect to one of the vertices of the hole, 3) grasping it
outside of the hole, and 4) dropping it into the goal location in the
floor. Similar to before, this trajectory demonstrates multi-contact
interaction and dynamics with the robot and the environment.
Here, the planner effectively finds a space clearance to pivot the
object against the environment and then use gravity to drop it to
the goal. This trajectory is found in 3.2s.

Traversal Unpeg: we ask the planne to pick a rectangle from
a hole and rotate it by 90◦ into the floor (Fig. 8b). The algorithm
finds a similar strategy of: 1) pushing the object to one side of
the hole to create some clearance, grasping it up from the hole,
2) pivoting it with respect to one of the vertices of the hole, 3)
grasping it outside of the hole, and 4) pushing it into the goal
location in the floor. This trajectory shows how the presence of
traversal contact, dictated by the maximum dissipation principle,
forces the planner to find a different contact schedule for the
trajectory. This trajectory is found in 9.6s.

These trajectories are optimized in the range of 3.2 s to 9.6 s.
This demonstrates the versatility of our model when accounting
for new constraints and dynamic effects.

C. Complexity Analysis

One natural question is understanding the computational
complexity of this algorithm and how efficient it can be at solving
problems of different scale. Assessing the speed of a mixed-integer
optimization problem can be very challenging, since off-the-
shelf tools will use different techniques to solve the problem.
Nevertheless, we can analyze other metrics that relate to the
complexity of the problem, such as number of nodes of explored
NN , CTO(·) calls NMIP , and value iteration steps NV I .

We come back to the task of ”rectangle across a corridor”
and sample several intermediary goals. We measure the SE(2)



distance between qs and each of these goals and then run our
algorithm, recording: number of value iteration steps, number
of nodes explored, and number of MIP calls. We report the
results in Fig. 9. We find the complexity our framework to grow
approximately linearly with the distance to the goal. This comes
with the caveat that MIP calls can often take up to a second,
becoming the main source of delays. However, this also suggests
that our approach can scale well to very long-horizon tasks.

VII. DISCUSSION

In this paper, we have presented a hierarchical framework to
solve long-horizon object-contact trajectories for manipulation
tasks in 2D polygonal environments. We decouple the problem
into three stages by searching over a high-level roadmap of
a discretized configuration space, planning motion over local
free-space regions, and optimizing contact interactions over
sampled trajectories. This provides us with a resolution complete
algorithm with optimality bounds on high-level search and
contact-trajectory. Our framework accounts for object shape,
environment contacts, and allows for the inclusion of additional
constraints within the contact-trajectory optimization.

We implement this framework using off-the-shelf optimization
software and MATLAB. We validate its application on a variety of
manipulation tasks with varying time horizons, physics constraints,
and geometries. Our planner returns a solution between 0.2 s to
9.6 s, varying with the horizon of the task and complexity of the
problem. Our long-term vision is that the execution of these plans
will be robust to uncertainty using geometry and certification, as
proposed in [22], and supported by a low-level tactile controller,
as demonstrated in [4].

a) Algorithm limitations: This algorithm has a few
limitations that constrain its scope. First, the use of mixed-integer
programming leads to combinatorial complexity in the contact-
trajectory optimization step. Second, we constrain our manipulator
to perform alternated sticking, which eliminates the possibility of
in-hand sliding as part of our plans. Finally, the sampling nature of
this approach will usually lead to non-smooth object trajectories,
with jerky motion. Moreover, extending this approach to 3D tasks
is not straightforward. Since we rely on free-space slicing over the
orientation component to construct a roadmap. A generalization
to 3D would require a less naive alternative decomposition of the
free-space into convex regions.

b) Future work: The first set of extensions to this work
come from its limitations. First, we can extend the contact-
trajectory optimization model to account for sliding motion, with
the caveat that it would require more binary variables. Secondly,
the trajectories from this model could be post-processed through
a nonlinear optimizer, fixing the contact schedule, in order to get
smoother object motions.

While this approach is not directly applicable to 3D tasks,
we can sequentially compose planar tasks between sagittal and
traversal environments in order to generate a ”2.5D” behavior.
In such case, we could also slice over the depth dimension
of the space and generate a graph of convex regions over two
rotation dimensions, leading to manipulation skills like those of

[4]. Another natural extension would be to combine the solutions
of this algorithm with a state-of-the-art feedback controller [23],
[13], [24]. The use of contact forces could rely on feedback from
localized tactile sensing [25], [4].

c) Source Code: The entire source code used as part of this
work is publicly available on GitHub: https://github.com/baceituno
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