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Abstract— We propose a method that simultaneously
estimates and controls extrinsic contact with tactile feedback.
The method enables challenging manipulation tasks that
require controlling light forces and accurate motions in
contact, such as balancing an unknown object on a thin rod
standing upright. A factor graph-based framework fuses a
sequence of tactile and kinematic measurements to estimate and
control the interaction between gripper-object-environment,
including the location and wrench at the extrinsic contact
between the grasped object and the environment and the grasp
wrench transferred from the gripper to the object. The same
framework simultaneously plans the gripper motions that make
it possible to estimate the state while satisfying regularizing
control objectives to prevent slip, such as minimizing the grasp
wrench and minimizing frictional force at the extrinsic contact.
We show results with sub-millimeter contact localization error
and good slip prevention even on slippery environments, for
multiple contact formations (point, line, patch contact) and
transitions between them. See supplementary video and results
at https://sites.google.com/view/sim-tact.

I. INTRODUCTION

Tactile feedback is specially useful in manipulation
tasks where visual information is limited, or tasks that
involve contact with an unknown or uncertain object and
environment [1]. We are specially interested in tasks where
precise contact regulation is important, but at the same time
difficult to observe.

Figure 1 shows an illustrative–maybe extreme–example.
A gripper is holding an unknown object and is attempting
to balance a corner of that object on a free-standing rod.
Forces that are transmitted directly vertically at the contact
between the object and the rod (extrinsic contact) will
excite the internal forces of the grasp (intrinsic contact)
and generate informative signals for estimating the location
of that contact. But forces in any other direction are to
be avoided, they will make the rod pivot and quickly
tumble. When the rod is thin, this is a very difficult–close to
impossible–task for a person to control, even with direct line
of sight, requiring both compliance and kinematic precision.

In this work we show that, by integrating tactile and
kinematic measurements, and with a simultaneous estimation
and control framework, it is possible for a robot to do it
blind, with arbitrary objects, and with poor prior information
of where the external contact is located. Realizing this
simultaneous estimation-control behavior with tactile
feedback involves the following challenges:

• A single snapshot from tactile sensors does not fully
describe the contact configuration or the kinematic
state of the system [2]. We need to fuse measurements
over time along informative motions to estimate it with
some certainty.

Fig. 1: Simultaneous tactile estimator-controller used to
stably place an unknown object on an unsupported thin rod
standing upright.

• The extrinsic contact between the grasped object and
the environment is un-sensed, and to reason about it we
need to infer through the chain of contacts that connects
the end-effector to the object and to the environment.
The tactile sensors we use allow to directly observe the
compliance between the object and the end-effector, and
tracking that compliance makes it possible to reason
about the behavior of the extrinsic contact (as in [3]).

This paper proposes a framework that uses a factor
graph-based simultaneous tactile estimator-controller
framework to: 1) estimate the contact state: object’s relative
displacement, extrinsic contact location and formation, and
the wrench exerted at the intrinsic and extrinsic contacts;
and simultaneously, 2) control the contact state to the
desired configuration. We especially focus on localizing
the contact with active motion while maintaining sticking
contact between object and environment in multiple contact
formations, importantly, doing this while minimizing the
forces exerted on the environment.

II. RELATED WORK

A. Contact State Estimation and Control

There has been prior work on contact state estimation
and control using tactile sensors [4]–[8]. One line of the
work is about avoiding slipping and maintaining sticking
contact at the intrinsic contact between the sensor finger
and the grasped object [9]–[11]. While maintaining the
sticking contact, other researchers use tactile sensing to
control the pose of the manipulated objects when executing
manipulation primitives [12], [13]. There also has been
research that studies sliding dynamics at the gripper finger
[14]. Lastly, researchers have used tactile sensing for
planning and decision-making [15], [16]. However, most of



Fig. 2: Factor graph architecture for the simultaneous tactile estimator-controller

these methods focus only on the intrinsic contact state and
do not reason carefully about the extrinsic contact state.

Doshi et al. [17] developed a contact configuration
estimator and controller to manipulate unknown objects.
Their task and approach are similar to ours in that they do
both estimation and control. They used force-torque sensing
instead of tactile sensing, which eased a challenge mentioned
in Sec.I. Kim and Rodriguez [18] used tactile sensors to
localize the extrinsic contact and solved the peg-in-hole
insertion using the estimated contact location. They used
a proportional controller to maintain the constant intrinsic
finger wrench in order to avoid slippage at extrinsic contact.
While both above methods estimate and control the extrinsic
contact, they do them separately in independent architectures
rather than simultaneously in an integrated architecture.

B. Factor Graph for Estimation and Control

A factor graph is a bipartite graphical model composed of
variables and factors where each factor represents a function
on a subset of the variables. One application recently gaining
attention is using factor graphs for planning and control [19].
For example, one can construct a linear quadratic regulator
(LQR) by representing the state and control input as variables
and system dynamics as factors [20]. Dong et al. [21]
formulate the Gaussian Process trajectory prior as a chain of
variables and factors to do motion planning that results in a
smooth trajectory. The same researchers demonstrate simul-
taneous motion planning (future) and trajectory estimation
(past) in the same factor graph [22]. This is especially rele-
vant to our work, where our framework also tries to control
(future) and estimate (past) the contact state simultaneously.

III. PROBLEM FORMULATION

The problem we solve is to estimate and control the
contact state in multiple contact formations and to detect
the transition between the different contact formations. The
conditions of the problem are:

• The object is unknown and rigid. The bottom of the
object has appropriate shape to make it possible to be
placed stably (e.g., corners, edges, flat bottom).

• The environment is flat at the contact with known
normal direction.

• At the first contact, the object and the environment
meet at a point contact.

• We do not make use of visual feedback.
Specifically, we would like to localize and control the
contact between object and environment with minimal slip
by minimizing the tangential force at extrinsic contact. To do
so, we estimate and control the contact state shown in Fig.1:

• gripper-object relative displacement from resting pose
to equilibrium pose (tactile displacement)

• location and formation of extrinsic contact
• intrinsic wrench exerted from the gripper to object, and

a resultant extrinsic contact force
The state is composed by five quantities:

• g ∈ SE(3) - gripper pose
• o = {ro, eqo} ∈ SE(3) - object pose
• w = {Mx,My,Mz,Fx,Fy,Fz} ∈ R6 - intrinsic wrench
• c ∈ SE(3) - contact pose
• K = {κx,κy,κz,kx,ky,kz,ηx,ηy,ηz} ∈ R9 - grasp

parameters
ro and eqo are the resting and equilibrium object poses. w is
the wrench the gripper exerts on the object. κ and k are the
rotational and translational stiffness of the grasp due to the
elasticity of the gripper finger. η is the offset of the center
of compliance from the gripper center point. The center
of compliance is the point where there is no translational
displacement when pure torque is exerted on the object, and
also it is where we define the intrinsic wrench (w). κ , k, and
η are combined as K, which we call “grasp parameters”.
The grasp parameters vary depending on the local geometry
of the object and the grasping force.

For a point contact, we only need translational components
of the contact pose, which makes the rotation of c redundant.
To handle this redundancy, we fix the rotation to be aligned
with the environment frame. Similarly, we only need one
rotational dimension for line contact since we already have
that the contact line is on the environment surface. Therefore,
we constrain the z-axis of c to be perpendicular to the envi-
ronment surface, while the x-axis represents the contact line.

IV. SIMULTANEOUS TACTILE ESTIMATOR-CONTROLLER

We use a factor graph to simultaneously estimate and
control the contact state with tactile feedback, shown in
Fig.2. Each circle represents a variable, and each dot
represents a factor. Factors with the red labels take input
as measurements, prior, or commands. The left part of the
architecture, from timestep 1 to t (past), is responsible for



aggregating measurements and estimating the past/current
contact states. The part from timestep t +1 to t +T (future)
is accountable for turning the desired rotation of the object
into planned gripper motion (blue circles) and predict the
future contact states. T is the length of the control horizon.
Both parts can be solved simultaneously by minimizing
the total factor costs, which breaks down to a nonlinear
least-squares problem:

x̂ = argmin
x

∑
f
||Ff (x1:t ,xt+1:t+T ;z1:t ,zt+1:t+T )||2∑ f

(1)

where x1:t and xt+1:t+T are past and future states, z1:t is
input from measurements and priors, and zt+1:t+T is input
from commands. Ff represents factors in Fig.2. ∑ f is the
covariance of the factors’ noise model.

When the new measurement arrives, the factors at
timestep t + 1 are modified, and the new measurement is
added, so the border between the estimation and control part
is pushed one step forward. Also, one control step is added
at t + T + 1, so the length of the control horizon remains
constant at T . Then, we solve this modified least-squares
problem to update the solution. We use an incremental
solver [23], which allows fast computation. After each
update, the gripper motion plan is sent to the robot, and
the robot follows that trajectory until the next update. The
update is asynchronous from the robot control; therefore,
the robot does not have to wait until the next update unless
it reaches the end of the previous motion plan trajectory.

A. Contact State Estimation

We describe the terms in Eq.1 that are responsible for
contact state estimation (x̂1:t ). These terms take inputs from
priors and measurements and impose costs for constraints.

Priors: Unary factors impose priors on the variables.
Fkp(K;K∗) := K −K∗ (2)

Fop(o1;o∗) := o∗−1(ro1) (3)
K∗ and o∗ are the priors for grasp parameters and initial
object pose. We obtain grasp parameters prior by fitting
it to one randomly selected grasp on the rectangular test
object. Then, the same unmodified prior is used for other
grasps/objects. A weak initial object pose prior is selected
to have a bottom surface parallel to the environment because
we do not know object shape and orientation.

Gripper Pose Measurement: The gripper pose measurement
from forward kinematics (g∗i ) is imposed as a unary factor:

Fgp(gi;g∗i ) := g∗−1
i gi (4)

Tactile Displacement Measurement: To measure the dis-
placement of the object from resting to equilibrium pose
under contact, we use GelSlim 3.0, a vision-based tactile
sensor that observes the deformation of the sensor finger
due to contact as a high-resolution tactile image. We feed the
tactile image to the tactile module adopted from [18] to get
the object displacement (δi). The tactile module is a convolu-
tional neural network that takes the tactile image as input and
outputs the tactile displacement. We use two types of factors
to impose the measurement: one for total displacement (Ftac)
and the other for incremental displacement (Ftac inc):

Ftac(gi,oi;δi) = δ
−1
i ((ro−1

i gi)
−1(eqo−1

i gi)) (5)
Ftac inc(gi−1,oi−1,gi,oi;δi−1,δi)

= (δ−1
i−1δi)

−1((eqo−1
i−1gi−1)

−1(eqo−1
i gi)) (6)

Extrinsic Contact Geometric Constraints:
Foc(oi−1,ci−1oi,ci) = (eqo−1

i−1ci−1)
−1(eqo−1

i ci) (7)

Fcc(ci−1,ci) = c−1
i−1ci (8)

Foc: Unless there is a transition in the contact formation,
the location of contact in the object frame should remain
constant. We impose it as a strong factor between adjacent
timesteps. Fcc: Since we assume a flat environment, the
location of contact on the environment should not change
in the direction perpendicular to the environment surface.
Also, the change in the tangential direction should be small
if the control objective of minimizing slip is met properly.
We impose this by formulating a binary factor and setting
a strong cost in the perpendicular direction and less strong
in the tangential direction.

Extrinsic Contact Torque Constraints: During point
contact, there should not be torque exerted about the
contact, and during line contact, there should not be torque
component in the direction parallel to the contact line.

pFtorq(gi,wi,ci,K) = M⃗− r⃗(gi,ci,η)× F⃗

= M⃗− ((g−1
i ci)trn −η)× F⃗ (point contact)

lFtorq(gi,wi,ci,K) = pFtorq · a⃗x(gi,ci) (line contact) (9)
where (g−1

i ci)trn is the translational location of the contact
with respect to the gripper, and a⃗x(gi,ci) is the unit vector
parallel to the estimated contact line.

Wrench Regression Constraints: To estimate the intrinsic
wrench from the measurements, we approximate the grasp as
decoupled linear springs in each rotational and translational
direction, with an additional nonlinear term ∆:

wi = [ M⃗, F⃗ ] = [ κ, k ]⊙ (ro−1
i gi)

−1(eqo−1
i gi)+∆ (10)

where ⊙ is element-wise multiplication. (ro−1
i gi)

−1(eqo−1
i gi)

is the tactile displacement in a canonical coordinate
[Rx,Ry,Rz,x,y,z], which we dropped the coordinate notation
for simplicity. We regress the wrench close to the linear
relation by imposing two types of factors:

Fwr(gi,oi,wi,K) = wi − [κ,k]⊙ (ro−1
i gi)

−1(eqo−1
i gi) (11)

Fwr inc(gi−1,oi−1,wi−1,gi,oi,wi,K)

= (wi −wi−1)− [ κ, k ]⊙ (eqo−1
i−1gi−1)

−1(eqo−1
i gi) (12)

Fwr penalize the additional nonlinear term. Fwr inc tries to
regress the incremental change in the intrinsic wrench to be
parallel to the linear relation.

B. Contact State Control

We describe the terms in Eq.1 that are responsible for
contact state control and prediction (x̂t+1:t+T ). In a nutshell,
the system achieves the behavior of pivoting about an
unknown contact point or line as the combination of these
objectives: 1) A desired rotation of the object; 2) Minimizing
motion effort and tactile deformation; 3) Maintaining a
minimum contact with the environment.



Fig. 3: An object making point (left) and line (right) contact with the horizontal environment

Fig. 4: Time series plots for the case in Fig.3

Desired Rotation: While the factor graph computes the fine
motion, we still need a input command in which direction
we want to rotate (tilt) the object:

Frot(gi−1,gi;Ri) = R−1
i (g−1

i−1gi)rot (13)
where Ri is the desired rotation. This factor is tuned to be
weaker than other control objectives, so the actual rotation
can deviate from the desired rotation if this factor conflicts
with other control objective factors (e.g., tactile energy).
For example, in Fig.4d, the actual rotation (solid line)
deviates from the desired rotation (dashed line).

Motion Effort: We impose a cost on the local motion at
the estimated contact point:

Fmotion(gi−1,gi,ci−1) = c−1
i−1gig−1

i−1ci−1 (14)

Tactile Energy: As we regress the intrinsic wrench to
the decoupled linear relation, we approximate the elastic
potential energy on the sensor finger as the quadratic sum
of wrench components and impose it as a factor:

E =
1
2
{M2

x

κx
+

M2
y

κy
+

M2
z

κx
+

F2
x

kx
+

F2
y

ky
+

F2
z

kz
} (15)

⇒ FE(wi,K) = wi ⊘ [
√

κ,
√

k ] (16)
where ⊘ is element-wise division.

This factor plays two important roles. First, it enables the
prediction of future tactile displacement. This is because,
given the extrinsic contact as a constraint, the intrinsic con-
tact will be at a stable state where it minimizes the potential
energy. Also, this factor helps to achieve control objectives
while having minimal deformation on the sensor finger.

Contact Maintenance: None of the above control objective
factors force the robot to push the object against the
environment. In fact, minimizing tactile energy encourages
moving away from the environment. Therefore, we impose
a factor that encourages the robot to push the object to the
environment by setting the target contact an offset distance
inside the environment (εi). We use a hinge function that
penalizes when the estimated offset distance is less than the
desired distance:

Fcm(oi,ci;εi) = max(0,ζi(oi,ci)− εi)

= max(0,−((ro−1
i c)−1(eqo−1

i c))trn,z − εi) (17)
where ζi is the estimated offset distance.

When this factor is combined with the tactile energy fac-
tor, it enables minimizing the tangential force at the extrinsic
contact. Imagine the contact state with no tangential force at
the extrinsic contact. If we move the gripper parallel to the
environment surface by applying tangential force in any di-
rection, it will do positive work, which adds to the tactile en-
ergy while maintaining the constant offset distance. In other
words, if the offset distance is fixed, minimizing the tactile
energy is equivalent to minimizing the tangential force.

C. Detection of Contact Formation Transition

When the contact formation transitions from one to
another, the extrinsic contact torque constraints are
violated. Therefore, the transition can be detected by simply
measuring an increase in the residual in Eq.9. Fig.4e shows
an example of detecting transitions from point-to-line
and line-to-patch, where the horizontal line at 0.1 is the
threshold for the detection. After the transition, we can
continue to use the estimator-controller by modifying the
noise model of the factors accordingly.

V. EXPERIMENTS AND RESULTS

Fig.5 shows the hardware setup for experiments. We use
6-DoF ABB’s IRB120 robot arm and a WSG-50 gripper
mounted with GelSlim 3.0 [6] on each side of the finger.
ATI’s Net Force-Torque sensor is mounted beneath the
environment to collect the extrinsic contact force. We use
eight 3D printed test objects, including rectangular and



TABLE I. Evaluation of Simultaneous Tactile Estimator-Controller on Point Contact Formation
Higher Friction (Paper) Lower Friction (Acrylic)

Rectangle Hexagon Rectangle Hexagon

loc.
error
(mm)

tan./norm.
(mean)

tan./norm.
(max)

loc.
error
(mm)

tan./norm.
(mean)

tan./norm.
(max)

loc.
error
(mm)

slipped
distance (mm)

loc.
error
(mm)

slipped
distance (mm)

small
motion

large
motion

small
motion

large
motion

small
motion

large
motion

small
motion

large
motion

small
motion

large
motion

small
motion

large
motion

proposed 0.89 0.105 0.096 0.201 0.193 0.81 0.060 0.091 0.134 0.188 0.90 0.19 0.35 0.78 0.06 0.16

constant tactile 0.94 0.172 0.176 0.252 0.278 1.30 0.056 0.132 0.102 0.282 1.93 0.84 12.90 1.43 0.06 4.27

w/o tactile E 1.42 0.180 0.216 0.249 0.330 1.38 0.047 0.156 0.103 0.303

Fig. 5: Experimental setup

Fig. 6: (left) Localization error, (right) maximum tangential
to normal force ratio during the point contact motion on the
higher friction surface

hexagonal cylinders and six others with irregular shapes
(Fig.7), to evaluate the generalization to various grasps
and geometries. Pytorch [24] is used for the tactile module
computation, and iSAM2 [23] with GTSAM library [25] is
used to solve the least-squares problem incrementally.

A. Point Contact Formation

We test our method in a point contact formation to
evaluate localization accuracy and capability to minimize
the tangential contact force and slippage. We first grasp and
orient the test objects with a random pose. Then we start a
desired rotation command that draws a small conical spiral-
like trajectory with a maximum of 5 degrees angle deviation
from the initial orientation. Then we continue with a large
cone-like desired rotation command with a maximum of 15
degrees from the initial orientation. We change the environ-
ment surface material between a higher friction paper, where
we can evaluate the tangential force, and a lower friction
acrylic, where we can evaluate the slippage. The result with

20 trials per each object is shown in Table.I and Fig.6. We
show localization error and mean/max tangential to normal
force ratio during the motion for the higher friction surface.
For the lower friction surface, we show localization error
with total slipped distance from the initial contact location.
We report the result from two ablation models: the ’constant
tactile’ and the ’w/o tactile E.’ The ’constant tactile’ is
the model in [18]. It uses a proportional controller to keep
the tactile displacement constant throughout the motion. In
other words, it tries to maintain a constant intrinsic wrench.
The ’w/o tactile E’ is similar to our proposed method, but
we make the weight of the tactile energy factor close to
zero, so it will not prioritize minimizing the tactile energy.

On the higher friction surface, the proposed method
showed approximately 25% and 40% reduction in local-
ization error than the ’constant tactile’ and ’w/o tactile E,’
respectively. The difference is more significant in tangential
to normal force ratio that the error bar of the proposed
method does not overlap with those of ablation methods
(Fig.6) Hence, the proposed method is better at reducing the
tangential forces required for pivoting, and less likely to slip.

On the lower friction surface, the proposed method
is compared with the ’constant tactile’ to evaluate the slip
minimization capability. The ’constant tactile’ showed small
slippage with small motion but showed about two orders
of magnitude higher slippage with large motion. This is
because maintaining the constant intrinsic wrench will not
be sufficient to keep the extrinsic contact force inside the
friction cone if the motion is large. As a result of the
large slip, the accuracy of localization also decreases. The
’constant tactile’ shows about two times larger localization
error than the proposed method.

Contact Force Estimation: From the estimated intrinsic
wrench (w), we estimate the extrinsic contact force (e.g.,
dashed line in Fig.4b) and evaluate the accuracy of the force
estimation by comparing it with the F/T sensor measurement
on the environment. However, the estimated force does not
have a physical unit specified, so we only compare the
mean difference in angle between the estimated force and
the sensor measurement over all the data collected. To study
the effect of incorporating the nonlinear term (∆) in Eq.10,
we evaluate the accuracy without adding the nonlinear term.
To study the effect of estimating the grasp parameters (K)
rather than using initial prior, we use the initial prior values
instead of estimated values and also remove the nonlinear



Fig. 7: CAD model of the test objects

TABLE II. Contact Force Estimation Accuracy
Mean Misalignment (deg)
Rectangle Hexagon

proposed 6.2 5.0

w/o nonlinear term 9.3 13.0

w/o nonlinear term &
grasp parameters estimation 13.9 14.5

term in Eq.10, then evaluate the accuracy. The result is
shown in Table.II. The performance gets better as we use the
estimated grasp parameters instead of the initial prior values
and also as the nonlinear term is considered. This implies
that considering the nonlinear term and estimating the grasp
parameters effectively improve the force estimation.

B. Multiple Contact Formations

We test the proposed method on multiple contact
formations, which requires the ability to detect the transition
between different contact formations. Working in multiple
contact formations is important in many manipulation tasks.
Fig.3 and Fig.4 show an example of placing the rectangular
object on a flat surface. It first makes initial point contact
with the surface, executes motion to localize the point
contact, detects the transition to the line contact, localizes
the line contact, then finally detects the transition to the
patch contact before releasing the grasp.

We run a similar experiments on the lower friction surface
with all eight 3D printed objects. We focus on point and
line contact because patch contact transition is trivial as it
does not require or allow any motion after the transition.
We first execute the same small desired rotation command
as in Sec.V-A, then command the desired rotation to tilt
roughly towards the direction where the object edge is.
We assume we have a weak prior knowledge of the object
edge’s direction by adding a maximum error of 20 degrees
to the true direction. After detecting the point-to-line contact
transition, we modify the desired command rotation to draw
a sinusoidal-like shape, where the sinusoid amplitude is
perpendicular to the direction of tilt before the transition
(dashed line in Fig.4d). We estimate the line localization
accuracy when the amount of rotation from the pose at the
transition reaches 5 degrees.

Table.III shows the localization error, amount of slippage,
and successful transition rate of the point-to-line contact
transition. The failed transition includes the case where the
transition is detected too early or late, so it loses the line
contact, which leads to poor line estimation accuracy or
causes the least-squares solver to throw an indeterminant

TABLE III. Evaluation of Simultaneous Tactile Estimator-
Controller on Multiple Contact Formation

Point Contact Successful
Transition

Rate

Line Contact
loc.
err.

(mm)

slip
(mm)

loc.
err.

(deg)

slip
trans.
(mm)

rot.
(deg)

rectangle 0.80 0.77 10 / 10 0.81 1.31 1.85

hexagon 0.76 0.48 8 / 10 4.54 0.84 1.16

object 1 0.99 0.63 8 / 10 2.66 1.73 1.75

object 2 1.19 0.87 6 / 10 4.24 3.41 1.98

object 3 0.96 0.94 10 / 10 1.58 1.18 1.48

object 4 0.93 1.08 9 / 10 0.82 1.12 1.39

object 5 0.86 0.47 8 / 10 2.03 1.25 1.70

object 6 0.93 0.75 10 / 10 1.84 0.83 1.00

error. The line contact evaluation metrics are calculated
with only the successful cases.

Most test objects showed reasonably good localization
errors, a small amount of slippage, and a high successful
transition rate, while hexagon and object 2 showed relatively
higher line localization errors. Object 2 also showed a lower
successful transition rate and higher slippage amount than
others. One main reason the hexagonal object showed
higher line localization error is that it has a shorter edge
than other objects. The hexagon edge is 17.5 mm, which is
significantly shorter than other object edges; for example,
the shortest edge of the rectangle is 35 mm. A short edge
will make it harder for our method to detect the point-to-line
contact transition, and it is more likely that the object loses
the line contact with the surface during motion. Object 2’s
worse performance is likely due to the different local grasp
geometry. It has a high curvature and sharp cut at the grasped
part, which leads to a smaller contact patch with the fingers.
This might makes the grasp parameters (K) deviate much
from that of other objects and lead to worse performance.

VI. CONCLUSION AND FUTURE WORK

We demonstrate simultaneous estimation and control for
contact state of unknown objects using tactile sensing. We
show that we can localize the extrinsic contact by fusing
the gripper pose and tactile measurements in a factor graph.
Regressing the grasp mechanics to a decoupled stiffness
model of the grasp enables the estimation of the grasp
wrench and the contact force. Also, we impose control
objectives as factors in the same graph to execute the pivoting
motion with minimal tangential force and slip. Lastly, we
implement the method on multiple contact formations and
are able to successfully detect the transition between them.

While the proposed work focuses only on minimizing the
tangential forces on the environment surface, one possible
follow-up is reasoning about normal force. A trade-off is
that a larger normal force will enhance observability but
possibly stress the environment and object. Extending the
proposed work to not only the sticking contact but other
contact modes is also an important direction of research.
Lastly, we plan to develop an automated desired command
rotation policy instead of manually commanding it.
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