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Object manipulation through contact configuration regulation:
multiple and intermittent contacts

Orion Taylor1 Neel Doshi2 Alberto Rodriguez

Massachusetts Institute of Technology

Abstract— In this work, we build on our method for manip-
ulating unknown objects via contact configuration regulation:
the estimation and control of the location, geometry, and mode
of all contacts between the robot, object, and environment.
We further develop our estimator and controller to enable
manipulation through more complex contact interactions, in-
cluding intermittent contact between the robot/object, and
multiple contacts between the object/environment. In addition,
we support a larger set of contact geometries at each interface.
This is accomplished through a factor graph based estimation
framework that reasons about the complementary kinematic
and wrench constraints of contact to predict the current contact
configuration. We are aided by the incorporation of a limited
amount of visual feedback; which when combined with the
available F/T sensing and robot proprioception, allows us to dif-
ferentiate contact modes that were previously indistinguishable.
We implement this revamped framework on our manipulation
platform, and demonstrate that it allows the robot to perform a
wider set of manipulation tasks. This includes, using a wall as
a support to re-orient an object, or regulating the contact ge-
ometry between the object and the ground. Finally, we conduct
ablation studies to understand the contributions from visual
and tactile feedback in our manipulation framework. Our code
can be found at: https://github.com/mcubelab/pbal.

I. INTRODUCTION

Robotic manipulation is driven by contact: robots manipu-
late objects by imparting wrenches and motions through the
contact interfaces of the system. The geometric and frictional
properties of these contacts determine which wrenches and
motions are feasible. As such, regulating an object’s contact
configuration – the location, mode and geometry of all
contacts between the object, robot, and environment – is
a fundamental aspect of manipulation. For example, when
folding origami or tying one’s shoes, regulating sticking
contact between the hand and the paper or shoe-lace ensures
that the latter moves as intended.

In our previous work [1], we developed a joint estimation
and control framework for manipulating 2D objects in the
gravity plane via contact configuration regulation. The key
estimation challenge was inferring the properties of the ob-
ject/environment contact(s) from measurements taken at the
object/robot contact(s), without prior knowledge of the ob-
ject’s geometry. Previously, we restricted the set of possible
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Fig. 1. Manipulating a box by first pushing it against a horizontal wall, and
then using the wall as a support to reorient the box. Executing this involves
several different combinations of contact geometries between the object and
the environment/hand. In our framework, the measured robot wrench (blue)
and the robot pose are used to estimate the friction constraints (green) and
the contact locations and geometries (red).

contact geometries that were considered to prevent ambigu-
ity. While effective, this assumption constrained the capabil-
ities of the robot. This work pushes beyond these limitations
by expanding our framework to include a more diverse set
contact interactions between the robot/object/environment.

Consider, for example, the common warehouse task of
loading (or unloading) boxes from a storage shelf (Fig. 1).
To accomplish this, it is natural to reason about the different
possible combinations of contact formations between the box
and the robot/environment. With the above in mind, the
key contribution of our research is the development of a
manipulation system that utilizes the mechanics of contact
(Section III) to generate dexterous behaviors with unknown
objects (Section VII) through a variety of contact formations.
In particular, we:

• Present an improved estimation framework that uses
factor graphs and limited visual feedback in order to
localize, characterize, and differentiate a more diverse
set of contact configurations (Section IV).

• Use these improved estimates to develop new manip-
ulation primitives for our controller to regulate the
system through these additional contact types, including
manipulating an object against a corner (Section V).

We conclude that, for our purposes, the unique strength
of vision is in revealing the global geometry/topology of
the system, as opposed to the dense local information pro-
vided by F/T sensing and proprioception. Even coarse, low-
frequency vision measurements can significantly magnify
the inferential power of the available high-quality tactile
sensing, allowing us to disambiguate contact configurations
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Fig. 2. Different contact geometries between the robot hand/object (top)
and object/environment (bottom) supported by our system.

that would be indistinguishable when relying on feedback
from a single source (Section VI). We demonstrate that this
allows us to perform more complex manipulation tasks while
still being agnostic to object geometry (Section VII).

II. RELATED WORK

Prior work on contact configuration regulation has often
focused on tasks such as polishing [2] and deburring [3], as
well as opening a variety of drawers [4] or doors [5]. The
ability to directly observe all contacts facilitates estimation
and control. Less attention has been given to manipulation
tasks where not all contacts are directly observable (e.g.,
during non-prehensile manipulation). In this area, prior re-
search usually either focuses on control assuming a known
model of the world [6], [7], [8], or estimation assuming stable
interactions [9], [10]. While there is more recent work on
joint estimation and control, individual papers often make
simplifying assumptions (e.g., frictionless models of contact)
[11], [12], or learn task-specific policies from data (e.g, for
cable manipulation [13], part insertion [14], or manipulating
rigid objects on a shelf [15]). In contrast, our contribution is
an object-agnostic joint estimation and control framework
that reasons about all frictional interactions between the
robot, object, and environment, leveraging limited visual
feedback to execute more complex manipulations than in our
previous work [1].

Estimation The primary focus of this work is the fusion
of vision and tactile information for improved estimation of
the location, geometry, and mode of all contacts between
the robot, object, and environment. There is a large body of
work in the area of localizing contacts/objects and estimating
contact configurations using vision and/or tactile feedback.
Many of these works present solutions to specific aspects of
the problem we tackle here. Prior information about the end-
effector geometry can be exploited to localize contacts [16],
[17], [18], [19]. Similarly, knowledge of the object geometry
can be used estimate its pose using only tactile sensing [20],
or a fusion of both visual and tactile feedback [21], [22].

Particle filters are a popular formulation for nonlinear
estimation problems, and have been often used in the context
of tactile localization. Koval et al. [23] develop an approach
to particle filters that takes into account how contact restricts
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Fig. 3. Contact configuration transitions that can occur in our system.

an object’s degrees-of-freedom. Li et al. [24] explicitly
reason about the complementarity constraints of frictional
contact, while Meeussen et al. [25] apply particle filters to
fuse visual and tactile data. These works partially overlap
with the problem that we are trying to solve.

A core part of our estimation framework is also inferring
the contact wrench constraints (i.e., the generalized friction
cone [26]). Prior work in this field has focused on the
problem of planar pushing [27], [28], [29]. Of particular
relevance is the work of Zhou et al. [29], who estimate the set
of wrenches that can be transmitted through planar frictional
contact (i.e., the limit-surface [30]).

Finally, several approaches have been presented to the
problem of joint shape and pose estimation for 2D objects
[31], [32], [33]. Suresh et al. [32] use factor graphs [34],
[35] to encode the kinematic constraints of contact, a method
that we also employ. However, our work places a significant
emphasis on estimating extrinsic contact formations [36]
(i.e., between the object and environment) that are not
directly measured.

III. SYSTEM OVERVIEW

We focus on quasi-static manipulation of objects on top
of a horizontal work surface. The system consists of: the
robot hand, which we represent as a line of length 2lh, the
object, which we treat as planar convex polygon, and the
environment, which features the ground (a fixed horizontal
line), and up to two vertical walls.

In our prior work, we assumed that the object was always
in flush contact with the hand (Fig. 2a), the object was always
in single point contact with the ground (Fig. 2d), and that
the object’s respective contact face and point at these two
interfaces were fixed. These restrictions greatly simplified
the system model, while still allowing for a contact-rich set
of behaviors, primarily: pivoting the object about its ground
contact, (Fig. 3a), translating the object (Fig. 3b), and sliding
the hand relative to the object (Fig. 3c).

Here we build on this framework, relaxing some of these
assumptions to regulate more complex geometric interactions



Fig. 4. System parameterization.

between the object and the hand/environment. We expand the
set of admissible contact interactions to include:

• Object-line/hand-point contact (Fig. 2b), and object-
point/hand-line contact (Fig. 2c).

• Flush ground contact (Fig. 2e), and other external con-
tacts, e.g., a wall (Fig. 2f).

• Transitions between contact geometries (Fig. 3d-i). This
could be simple, like the object making and breaking
contact with a wall (Fig. 3e); or more complex, like the
hand transitioning from flush contact with one object
face to the next by pivoting across a vertex (Fig. 3g).

A. System Parameterization

The system’s state consists of the planar poses of the
hand x⃗h = (⃗rh,θh) and object x⃗o = (⃗ro,θo) in the world-frame
(Fig. 4b). The object, which is treated as a convex polygon,
is parameterized by its (object-frame) vertex positions v⃗i =
(xi,yi), outward facing surface normals n̂i = (cosφi,sinφi),
and contact face offsets di = n̂i · v⃗i (Fig. 4a). We denote the
(world-frame) contact normals and contact tangents of the
hand and ground as (n̂h, t̂h) and (n̂g, t̂g) respectively. The
constant hgrnd represents the height of the ground. During
flush contact with the hand, we also consider the relative
tangential displacement between the hand and the object, s.

When the object is in single point contact with the ground,
we model the effect of gravity using the parameters (αi,βi),
which encapsulate the object’s weight (mg), the length (li)
of the gravitational moment arm (the vector from the ground
contact point to the object’s COM), and the angle (θo +ψi)
of the gravitational moment arm:

mgli sin(θo +ψi) = αi cos(θo)+βi sin(θo) (1)

From the quasi-static motion assumption, it follows that:

∑ w⃗net = w⃗h + w⃗e + w⃗grav = 0, (2)

where w⃗h = (F⃗h,τh), w⃗e = (F⃗e,τe), and w⃗grav = (−mgn̂g,0)
are the wrenches exerted on the object by the hand, environ-
ment, and gravity, respectively. Because the wrench exerted
by gravity is constant, it follows that w⃗e =−w⃗h+const. This
relation allows us to use the wrenches measured at the hand
contact to infer the external contact behavior.

Measured vs. estimated quantities: We are able to directly
measure the hand pose (⃗rh,θh) and wrench w⃗e via robot
proprioception and a force-torque sensor in the wrist of
the robot. We have added limited visual feedback, which

n̂

t̂

A

B
C

D
E

A
C

D

A

B
C

D

E

w = fnn̂ + ftt̂ , τ
)

�

(a) (b) (c)

Fig. 5. a) Point/line contact. b) Flush contact. c) Normal/tangent vectors.

estimates the world-frame positions of the object vertices
v⃗i,world . Compared to the tactile feedback, vision is relatively
noisy and operates at a lower frequency. We primarily
use it to seed the estimator with an initial prior, though
the estimator is also capable of making use of live visual
feedback. Besides the hand pose and wrench, every other
quantity, including the object vertices, is estimated.

B. The Constraints of Contact

Our framework is built on the idea that the constraints
of contact can be exploited to regulate the system. Under
the quasi-static assumption, these constraints describe the
relationship between the contact kinematics and wrenches.

In our previous work, we reasoned about the fric-
tion cone, to detect and regulate sticking/sliding at the
hand/environment contact interfaces; and the torque cone, to
enforce flush contact between the object and end-effector.
These constraints (the generalized friction cone [26]) are
still sufficient to describe the expanded set of interactions,
however we must express them in terms of the updated
parameterization. We focus on the torque cone, to help reason
about more diverse contact geometries.

We consider two contacting bodies, depicted in Fig. 5.
Here, A and D are material points fixed to the first body
frame, while B and E are material points fixed to the second
body frame. The unit vectors (n̂, t̂) are the normal and tangent
of the first body contact face. The wrench w⃗ = ( fnn̂+ ft t̂,τ)
is the net contact wrench that the second body exerts on
the first body, measured with respect to reference point C,
which is fixed in the first body frame. We consider point/line
contact (Fig. 5a), flush contact (Fig. 5b), and no contact.

Making and breaking contact: The contact wrench can
only be nonzero during contact. During periods of no contact,
the contact wrench is zero. For the interaction in Fig. 5:

fn > 0 → (⃗rB − r⃗A) · n̂ = 0 and/or (⃗rE − r⃗A) · n̂ = 0 (3)

Sticking, sliding, and the friction cone: We use the standard

linear complementarity constraints to reason about friction
and sticking/slipping. Given friction coefficient µ , and as-
suming either of the contact geometries shown in Fig. 5:

vslide =
d
dt
((⃗rb − r⃗a) · t̂) = v+slide − v−slide (4)

0 ≤−µ fn − ft ⊥ v+slide ≥ 0 (5)
0 ≤−µ fn + ft ⊥ v−slide ≥ 0 (6)

The ⊥ symbol is a shorthand, where 0 ≤ u ⊥ w ≥ 0 implies
u ≥ 0, w ≥ 0, and uw = 0. In our implementation, we do



not directly estimate the friction coefficient µ , but instead
estimate the wrench constraints themselves (see [1]).

Contact geometry and torque constraints: We define the
resultant contact torque, τP, about some reference point P:

τP = τ +(⃗rC − r⃗P)× ( fnn̂+ ft t̂) (7)

For the contact geometries shown in Fig. 5, we see that:

τA ≤ 0, τB = 0, τE ≥ 0 (point/line contact at B) (8)
τA ≤ 0, τB ≤ 0, τD ≥ 0, τE ≥ 0 (flush contact) (9)

These constraints allow us to disambiguate contact geome-
tries, estimate contact locations, and regulate the contact
geometry. Here, it is convenient to consider the center of
pressure (COP) of a line contact defined by points G and H
e.g., the point on the contact patch for which the resultant
contact torque is zero:

r⃗Q =COP(⃗rG ,⃗rH) ⇐⇒ τQ = 0, r⃗Q = γ⃗rG +(1− γ )⃗rH (10)

For the point contact illustrated in Fig. 5a, B is the COP of
AD. During estimation, we frequently solve (10) to compute
the COP of a potential contact patch, given its endpoints and
the measured contact wrench.

IV. ESTIMATION FRAMEWORK

The estimator consists of two separate modules: the fric-
tion estimator and the kinematic estimator (Fig. 6). The
friction estimator, described in [1], builds a model for the
friction cones at the hand and ground contact interfaces,
which is used to detect and regulate sticking/sliding at both
contacts. Our primary focus is the kinematic estimator (Fig. 6
bottom), which detects the location and geometry of each
contact. This process has two stages. First, we use a set of
heuristics to guess the contact geometry of each interface.
Second, these estimates (and the stick/slip estimates from
the friction module) are mapped to a set of kinematic/wrench
constraints, which are then added as constraint factors in a
factor graph. The graph is then solved to find an estimate
of the system state and parameters. We warm start this loop
using a prior provided by vision.

A. Contact Geometry Estimation

We rely on a sequence of heuristics to identify both the
active vertices and contact geometry using tactile feedback
and the previous state/parameter estimate. These heuristics
are built from the kinematic/wrench constraints laid out in
Section III-B and some geometric reasoning.

The object/hand interface: There are four possible con-
tact geometries that we will consider at the object/hand
contact interface: no contact, object-line/hand-point, object-
point/hand-line and flush contact. We omit object-point/hand-
point contact, because it is difficult to maintain and regulate.

Contact detection: The robot and object are assumed to be
in contact if the magnitude of the measured force felt at the
object/hand contact interface is above a set threshold (around
2−3N). Below this threshold, we assume no contact.

Hand Pose

Friction Estimator

Kinematic Estimator

Friction Cone
Estimator

Contact Mode
Estimator

Stick/Slip
State

Contact 
Geometry

Vision
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Fig. 6. The friction and kinematic estimators.

Object-line/hand-point: To test for this geometry (Fig. 2b),
we use the measured wrench to compute the COP of the
hand contact patch. If this COP is sufficiently close to one
of the end-effector boundary points, then object-line/hand-
point contact is detected.

Object-point/hand-line: For this case (Fig. 2c), we once
again examine the COP of the hand. As per (8), during
object-point/hand-line contact, the hand COP is coincident
with the contact vertex. If the estimated positions of the hand
COP and one of the object vertices are close, then object-
point/hand-line contact is likely. In this case, we then test the
kinematic feasibility of this geometry, taking into account the
other active contact constraints. A similar feasibility test is
performed for flush contact, and the results are compared to
determine which geometry is more likely. We supplement
this with a heuristic that leverages intuition of how the
hand COP changes as a function of the end-effector pose.
During flush contact, the COP often fluctuates while the
hand remains stationary; whereas during object-point/hand-
line contact, the COP motion is constrained by (8). We use
this to compare the likelihood of these two geometries.

Flush contact: If contact has been detected, but the previ-
ous two geometries have been ruled out as possibilities, then
we assume that the system is in flush contact (Fig. 2a). We
then identify the current contact face by comparing the sur-
face normal of the end-effector to the outward facing surface
normals of the object in the most recent state estimate.

The object/environment contact(s): Here, we assume that
the object is always in contact with the ground. Ground
contact is limited to either object-point/ground-line or flush
contact. We also check to see if wall contact is occurring.

Object-point/ground-line vs. flush contact: Given the most
recent kinematic estimate and tactile feedback, we perform
a sequence of tests. First, if one of the object vertices is
sufficiently below the rest, then we assume single point
contact with the ground at that vertex (Fig. 2d). Otherwise,
if the two lowest object vertices have similar altitude e.g.,
the bottom edge of the object polygon is near horizontal,
we compute the COP of that edge (assuming a weightless
object). If the COP is in the interior of this edge by some
margin, then we assume that the edge is in flush contact
with the ground (Fig. 2e). Otherwise, the closest vertex to
the COP is in single point contact with the ground.

Wall contact: To determine whether or not the object is



in contact with a wall (Fig. 2f), we compare the measured
force at the hand contact with the friction constraints that
we estimate for the ground contact [1]. These estimated
constraints are computed during periods when there are
no external contacts besides the ground; after which they
are frozen in place (during periods when wall contact is
allowed). Wall contact is detected when the measured contact
force significantly violates one of the friction constraints for
ground contact, since it implies the existence of a new contact
that is generating the wrench causing the constraint violation.

B. Object and Contact Localization

We now synthesize the contact mode/geometry estimates
with tactile feedback to estimate the contact locations.

Factor graphs and GTSAM: We use factor graphs to
formulate the problem of localizing the object and contacts
(Tactile SLAM [32]). Factor graphs are bipartite graphs
which encode variables and constraints as vertices, and
their input-output relationships as edges. For our purposes,
factor graphs provide a straightforward way to leverage our
knowledge of the contact constraints in order to localize
the object and contacts (Fig. 7). Here, the contact geometry
factors (depicted in blue) constrain the instantaneous contact
pose and wrench, while the contact mode factors (purple)
constrain how the contact pose evolves over time. Each factor
is expressed as a function that maps the estimated variables to
a constraint violation error. Each constraint has an associated
variance that reflects our confidence in its accuracy. There
are various algorithms available for computing the optimal
values of the estimated variables. We rely on the factor
graph software GTSAM [35], and its implementation of the
incremental smoothing and mapping algorithm [34].

Variable factors and measured quantities: The following
are variables in our factor graph:

• The object-frame vertex positions, v⃗i = (xi,yi).
• The parameters describing the object-frame surface nor-

mals φi and face offsets di.
• The object pose in the world-frame, (⃗ro,t ,θo,t).
• During flush contact, the tangential displacement be-

tween the hand and the object, st .
• The height of the ground hgrnd .
• The gravitational torque parameters (αi,βi).

We use F/T sensing and robot proprioception to measure:

• The hand contact wrench w⃗h,t = (F⃗h,t ,τh,t).
• The hand pose (⃗rh,t ,θh,t).

We also assume that the ground is horizontal, meaning that
n̂g and t̂g are respectively vertical and horizontal.

When describing the constraint factors in this paper, we
let u⃗i,t denote the current world-frame positions of the
object vertices. These are computed as a function of the
aforementioned estimation variables, specifically the object
pose and the object-frame vertex positions:

u⃗i,t = R(θo,t )⃗vi + r⃗o,t (11)

System Parameters

{�vi, di, φi, αi, βi|i ∈ 1...n},

Pose(t + 1)Pose(t− 1) Pose(t)

Contact 
Geometry 

Contact Mode 
(stick/slip)

Limited Motion

Vision Prior

Realtime Vision
(optional)

System State/Parameter Estimator

hgrnd

Fig. 7. Factor graph used for the kinematic estimator. Different sets of
contact mode and geometry factors are used at each time-step, with the
composition depending upon the stick/slip and contact geometry estimates.

where R(θ) is the rotation matrix for angle θ . When the
hand is in flush contact with object face c, we use:

u⃗i,t = R(θh,t −φc +π )⃗vi +dcn̂h,t + st t̂h,t (12)

The estimator may be provided with noisy live visual
feedback of the world-frame vertex positions, u⃗i,t,vision.

Constraint factors: We convert the estimated contact mode
and geometry into a set of constraint factors that are added
to the factor graph at each time-step.

Contact: The end-effector intersects any object point(s) it
is in contact with. The same holds true for the ground:

(
u⃗i,t − r⃗h,t

)
· n̂h,t = 0|i ∈ {hand contact vertices} (13)

u⃗i,t · n̂g −hgrnd = 0|i ∈ {ground contact vertices} (14)

During flush contact with the hand, the hand contact con-
straint is implicit to (12), so we do not include a factor.

Sticking contact: If the object is in sticking contact with
the hand, then the tangential motion (relative to the hand) of
the contact point(s) is zero:

(
u⃗i,t+1 − r⃗h,t+1

)
· t̂h,t+1 −

(
u⃗i,t − r⃗h,t

)
· t̂h,t = 0 (15)

st+1 − st = 0 (flush contact) (16)

Similarly, if the object is in sticking contact with the ground,
the horizontal motion of the ground contact(s) is zero:

(⃗ui,t+1 − u⃗i,t) · t̂g = 0 (17)

Torque Balance: When the object is in single point contact
with ground, but not in wall contact, then by the quasi-static
assumption, the net torque about the ground contact is zero.

(
r⃗h,t − u⃗i,t

)
× F⃗h,t + τh,t +αi cosθo,t +βi sinθo,t = 0 (18)

Here, the quantity αi cosθo,t +βi sinθo,t represents the grav-
itational torque about the ground contact vertex.

When the object is in single point contact with the hand,
then the object contact vertex should be coincident with the
COP of the hand contact patch, which we can compute by
applying (10) to the hand pose and measured contact wrench:

u⃗i,t − r⃗COP,h,t = 0, i = hand contact vertex (19)

Vision: Any vision estimates are added as extra constraints:

u⃗i,t − u⃗i,t,vision = 0 (20)



Geometric consistency: These constraints ensure that ob-
ject surface normal φi and face offset di parameters are
geometrically consistent with the object vertices v⃗i:

di = n̂i · v⃗i → xi cosφi + yi sinφi −di = 0 (21)
di = n̂i · v⃗i+1 → xi+1 cosφi + yi+1 sinφi −di = 0 (22)

Regularization constraints: We include low-weight con-
straint factors to limit the object motion between time-steps.

r⃗o,t+1 − r⃗o = 0, θo,t+1 −θo,t = 0 (23)
st+1 − st = 0 (flush contact) (24)

Optimization weights: Each constraint factor has an associ-

ated variance that reflects our confidence in its accuracy. This
is essentially an optimization weight, with lower variances
increasing the significance of their corresponding factor in
the optimization. We tuned these variances manually.

C. Estimator Initialization and the Role of Vision

The contact geometry heuristics (Section IV-A) and the
factor graph estimator (Section IV-B) are mutually depen-
dent: the contact geometry estimator needs a somewhat
accurate state/parameter estimate to disambiguate contact
geometries through tactile feedback, and the factor graph
based estimator relies on the contact geometry estimator
to determine which constraints are imposed at each time-
step. This presents a chicken and egg problem: if the initial
estimation error is too large, it will never correctly converge.

We resolve this by using vision to generate a prior of the
object’s geometry and starting pose to warm start the kine-
matic estimator. Once it has been initialized, the kinematic
estimator is capable of operating on tactile feedback alone.
Live visual feedback is still useful when available, and acts
to regularize the object pose. This safeguards against errors
from accumulating when the heuristics incorrectly guess the
contact geometries.

The vision heuristic we use directly estimates the posi-
tions of the object vertices in the world-frame, under the
assumption that the object is a convex polygon. We start
with a few seed pixels that belong to the object’s interior,
and assume that the object is a somewhat uniform color that
is distinct from its surroundings. With these seed pixels, we
perform a breadth-first-search on a down-sampled version of
the image to sparsely flood fill the portion of the object in
the image, giving us a blob that approximately covers the
object. Going back to the original high-resolution image, we
then randomly sample pixels near the boundary of this blob
to check if they should belong to the object’s interior. This
gives us a more accurate picture of the object’s boundaries.
Finally, we extract the object vertices using a heuristic to
approximate the 2D convex hull for a noisy data-set (the
same method we use to compute the friction constraints from
the measured contact wrenches in [1]). This heuristic was
sufficiently reliable for developing the kinematic estimator,
but should be replaced with a standard perception method
during real-world implementation.

Fig. 8. The controller relies on the kinematic estimates to regulate
the system: a) The controller enforces flush contact at an interface by
keeping the COP on the interior of the estimated contact patch. b) During
corner/corner pivoting, the admissible motions are pure rotations about the
respective contact points (A,B), and the constraint direction corresponds to
pure translation in the radial (êr) direction. c) During wall pivoting, the
admissible motion direction corresponds to pure rotation about the ICR,
D, which is a function of the external contact locations. In addition, the
external friction cone (red) is expanded due to the wall contact

V. CONTROL FRAMEWORK

We further develop the control framework that we pre-
sented in [1]. In this framework, the contact configuration
controller is built on top of a lower level impedance con-
troller that regulates the end-effector pose. At each time-step,
the controller solves a quadratic program (QP) to determine
the incremental change of the impedance target, ∆⃗xtar:

min
∆w⃗h,∆⃗xtar

α0||∆⃗xtar||2 +∑αi
(
∆⃗xtar · ∆⃗qi −βi∆εi

)2 (25)

s.t. n̂ j · (w⃗h,meas + γ j∆w⃗h)≤ b j ∀ j (26)
∆w⃗h = K∆⃗xtar (27)

Here, the sum w⃗meas + ∆w⃗h is the predicted wrench that
the hand will exert after the impedance target has been
incremented by ∆⃗xtar. The constraints (26) correspond to
the estimated value of the wrench space constraints, which
are weighted by γ j. The equality constraint (27) corresponds
to the stiffness law of the low-level impedance controller.
Finally, the cost (25) is used to regulate the pose along the
admissible motion directions of the system, ∆⃗qi. The com-
position of cost terms and wrench constraints is specified by
the motion primitive that the controller has been commanded
to execute. The main change to this control framework is the
adjustment/addition of individual constraints and cost terms,
as well as the addition of a few new primitives; however, the
underlying QP remains the unchanged.

Contact Geometry Regulation: In our previous work, the
controller enforced flush contact with the hand via. the
inclusion of two torque constraints in the QP:

−lh(F⃗h,meas +∆F⃗h) · n̂h − (τh,meas +∆τh)≤−ε (28)

lh(F⃗h,meas +∆F⃗h) · n̂h +(τh,meas +∆τh)≤−ε (29)

This ensured that the COP of the object/hand contact re-
mained in the interior of the hand by some safety margin ε .
These constraints rely on the assumption that the boundaries
of the object contact face extends past the hand, and will
fail in the cases of overhang (Fig. 8a). Since the improved
estimator keeps track of the object vertices at the hand
contact, we can adjust the torque constraints as follows:

−la(F⃗h,meas +∆F⃗h) · n̂h − (τh,meas +∆τh)≤−ε (30)

lb(F⃗h,meas +∆F⃗h) · n̂h +(τh,meas +∆τh)≤−ε (31)



l

y yy

wx x x(a) (b) (c)

Fig. 9. Experimental design: we manipulate an object while enforcing
wall contact, which provides ground truth for measuring the estimation
error. a) Pivoting a rectangle against a corner, and computing the estimation
error of the y-coordinate of the bottom vertex and the x-coordinate of the
wall contact vertex. b) Pivoting a triangle against a corner, and computing
the estimation error of the pivot vertex. c) Pivoting about the vertex of a
rectangle that is in flush contact with a wall, and computing the estimation
error of the pivot vertex.

The constants la and lb take into account the possibility of
overhang; and are a function of the estimated object vertex
positions, and the hand’s pose and length.

We have also constructed an analogous set of torque
constraints that enforce flush contact with the environment.
With these constraints, we have created variants of the three
original motion primitives (Fig. 3 a-c). These new primitives
can slide the object or hand while maintaining flush external
contact, or rotate an object to force a transition from single
point external contact to flush contact (Fig. 3d).

Corner/corner pivoting: Corner/corner pivoting is a new
primitive during which the object is in sticking single point
contact with both the ground and the hand (Fig. 8b). Here,
the admissible motion directions ∆⃗qφ = (R(90◦)(⃗rh − r⃗A),1)
and ∆⃗qθ = (R(90◦)(⃗rh − r⃗B),1) are rotations about the hand
contact and external contact respectively; and the constraint
direction n̂r = (êr,0) corresponds to pure translation along
the line segment connecting the two contacts. We build a
new QP using the cost terms and constraints corresponding
to (∆⃗qφ , ∆⃗qθ , n̂r), which gives us a controller that regulates
the system during this contact configuration.

Wall pivoting: Finally, we have constructed a primitive that
regulates the orientation of an object, while maintaining
sticking flush contact with the hand and sliding contact
at both external contacts (Fig. 8c). This is a variant of
our original rotation primitive (Fig. 3a), with two key
changes. First, the admissible motion direction for rotation,
∆⃗qθ = (R(90◦)(⃗rh − r⃗D),1), takes into account the adjusted
instantaneous center of rotation (ICR) location due to wall
contact. Second, the external friction constraints (26) take
into account the fact that the wall contact expands the
environment friction cone, since it can generate an arbitrary
amount of force in the direction normal to the wall.

VI. EXPERIMENTS

We perform a set of experiments to validate the estimator.
In our setup, we manipulate an object while enforcing contact
with a wall (Fig. 9). Under this contact constraint, the
known locations of the ground (y), wall (x), and the object
dimensions (w, l) act as ground truth for specific coordinates
subsets of the contact locations. The composition of those

Fig. 10. Demonstrations: To test our framework, we regulate the system
through a sequence of contact configurations. The measured robot wrench
(blue) and the robot pose are used to estimate the friction constraints (green)
and the contact locations and geometries (red). Top row: We execute the
corner/corner pivoting primitive to move a rectangle from line contact with
the ground to wall contact. Bottom rows: We regulate a pentagon through
sequence of contact geometry combinations.

TABLE I

Trial V only K + V K only
(a) Wall Pivot 3.28 (cm) 1.68 (cm) 1.66 (cm)

(b) Triangle Pivot .74 (cm) .62 (cm) 1.00 (cm)
(c) Object Corner .38 (cm) .53 (cm) .34 (cm)

subsets is determined the object and the type of wall contact.
We compare the root mean square error (RMSE) of these
coordinate subsets when computed by our vision heuristic
(V only), the kinematic estimator making use of live visual
feedback (K+V), and the kinematic estimator using a vision
prior, but without live visual feedback (K only). The results
(Table I) indicate that F/T sensing and robot proprioception
are often sufficient for estimating the geometry and locations
of the external contacts, which is especially important in
situations where the system does not have constant access
to visual feedback (object or wall occlusions).

VII. DEMONSTRATIONS

To demonstrate our framework, we use it to regulate
various shapes through a predetermined sequence of contact
geometries (Fig. 10). For these tests, the kinematic estimator
only relies on tactile feedback (after the initial vision prior).
We manually jog the hand to disengage from a face/vertex
of the object and then reengage at a different face/vertex.

VIII. CONCLUSION

In conclusion, we show that, with a reasonably accu-
rate prior, it is possible to use tactile feedback to infer
complex contact configurations between the object and the
hand/environment. This can then be used to regulate the
system as it transitions through these configurations.

One of the biggest challenges of this work was developing
the heuristic that differentiates object-point/hand-line contact
from flush hand contact, using tactile feedback alone. Though
it often works, a momentary failure can be disastrous.
Since the kinematically feasible object poses for the two
geometries can differ significantly, a bad guess can cause the
kinematic estimate to permanently diverge from the correct



solution. Though we plan to improve this heuristic, this issue
demonstrates how live visual feedback synergizes with tactile
estimation: even noisy low-frequency visual estimates can be
enough to regularize the object pose, allowing the estimator
to recover when a faulty contact geometry guess was made.

In the future, we plan on designing an additional estimator
that predicts the feasibility of various motions and discrete
transitions of the system using the kinematic and friction
estimates. This would then be combined with a high-level
planner that would sequence primitives, both to excite the
system for the purpose of estimation, and to drive an object
to a target state.
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