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Abstract

While much progress has been achieved over the last decades in neuro-inspired

machine learning, there are still fundamental theoretical problems in gradient-based

learning using combinations of neurons. These problems, such as saddle points and

suboptimal plateaus of the cost function, can lead in theory and practice to failures

of learning. In addition, the discrete step size selection of the gradient is problematic

since too large steps can lead to instability and too small steps slow down the learning.

This paper describes an alternative discrete MinMax learning approach for con-

tinuous piece-wise linear functions. Global exponential convergence of the algorithm

is established using Contraction Theory with Inequality Constraints [6], which is ex-

tended from the continuous to the discrete case in this paper:

• The parametrization of each linear function piece is, in contrast to deep learn-

ing, linear in the proposed MinMax network. This allows a linear regression

stability proof as long as measurements do not transit from one linear region to

its neighbouring linear region.

• The step size of the discrete gradient descent is Lagrangian limited orthogonal

to the edge of two neighbouring linear functions. It will be shown that this La-

grangian step limitation does not decrease the convergence of the unconstrained

system dynamics in contrast to a step size limitation in the direction of the gra-

dient.

We show that the convergence rate of a constrained piece-wise linear function learn-

ing is equivalent to the exponential convergence rates of the individual local linear

regions.
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1 Introduction

In this paper, we revisit standard convergence difficulties of gradient descent on a quadratic

error cost, such as the possible presence of saddle points, sub-optimal plateaus, non-

Lipschitz edges, time-varying measurements and the time discretization of the gradient.

Initial results of the MinMax learning we discuss were derived in [7][8].

The classical Rectified Linear Unit (ReLU) approach as e.g. in [4] implies a piece-

wise linear approximation function. The edges of the linear surfaces are not Lipschitz

continuous. Hence it is difficult to prove stability and even uniqueness of the solution.

The stability problem of the non-Lipschitz edges is overcome in this paper with a

Lagrangian constraint step (2) to the edge. Since the edge belongs to both Lipschitz con-

tinuous regions it is possible at the next iteration to transit to the neighbouring region

with a Lipschitz continuous step. Hence as a first step Contraction Theory of Constrained

Continuous Systems [6] is generalized in section 2 to discrete dynamics of the form

xi+1 = f(xi, i) (1)

with n-dimensional discrete state xi, time index i and l = 1, ..., L-dimensional linear

inequality constraints

gl = gT
l (i+ 1)xi+1 + hl(i+ 1) ≤ 0. (2)

Note that many non-linear constraints can be brought into a linear form with a coordinate

transformation, such that the results of this paper apply again.

Another problem in the stability analysis of deep learning is that e.g. a network of

depth 100 actually multiplies 100 linear parameters with each other. Hence the smooth

surface pieces are piece-wise polynomials of order 100 w.r.t. the chosen parametrization,

although the approximation function is actually piece-wise linear. To overcome this prob-

lem this paper suggests to use the sum of several piece-wise linear functions

ŷ(x) =

Jmin
∑

j=1

ŷjmin(x) +
Jmax
∑

j=Jmin

ŷjmax(x) (3)

which uses the convex and concave neurons j

ŷjmin(x) = min(ẑj1, ..., ẑjKj
)

ŷjmax(x) = max(ẑj1, ..., ẑjKj
)

which consist of k = 1, ..., Kj linear basic neurons ẑjk = xT ŵjk of estimated N + 1-

dimensional weight vector ŵjk.
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The concave max and convex min functions are a direct generalization of the ReLU to

achieve piece-wise linear functions. Multiple local convex and concave functions can be

approximated with multiple min and max operators. The key advantage to deep networks

is that the parametrization is still linear in ŵjk between the edges, i.e. linear stability

proofs can be used with the mentioned step size limitation to the edge.

The following example shows the main modeling difference of both approaches:

Example 1.1: Let us consider the unit pyramid in subfigure 1a

y(x) = max(0,min(x1 + 1, x2 + 1,−x1 + 1,−x2 + 1)).

In a deep ReLU network each ReLU adds an edge to the piece-wise linear function. A ReLU

network estimation of depth 2 exactly models the pyramid above with

ŷ(x) = max(0, ẑ11)

ẑ11 = 1− 0.5 (ŷ21 + ŷ22 + ŷ23 + ŷ24))

ŷ2j = max(0, ẑ2j)

ẑ21 = −x1 − x2, ẑ22 = x1 − x2, ẑ23 = x1 + x2, ẑ24 = −x1 + x2

The lower ReLUs ŷ2j = max(0, ẑ2j) define the the 4 edges of the pyramid without ground

leading to the linear input ẑ11 to the last layer in subfigure 1b. The upper ReLU ŷ = max(0, ẑ11)
then adds the remaining 4 edges to the ground. In general a high over-parametrization is needed

to approximate a piece-wise linear functions with deep ReLUs [4]. Also it is not very easy to

understand which edge is defined by which ReLU in which layer.

In contrast to the above the proposed MinMax approach (3) systematically defines

• all convex edges of the pyramid in ŷ1max and

• all concave edges of the pyramid in ŷ2min

with

ŷ(x) = ŷ1max + ŷ2min

ŷ1max = max(ẑ11, ẑ12, ẑ13, ẑ14, ẑ15), ŷ2min = min(ẑ21, ẑ22, ẑ23, ẑ24)

ẑ11 = 0, ẑ12 = x1 + 1, ẑ13 = x2 + 1, ẑ14 = −x1 + 1, ẑ15 = −x2 + 1

ẑ21 = x1 + 1, ẑ22 = x2 + 1, ẑ23 = −x1 + 1, ẑ24 = −x2 + 1

where subfigures 1c and 1d show the convex and concave neurons of the MinMax approach.

The legend indicates which basic neurons produce a nonzero output for the colored surfaces.

✷
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(a) Unit pyramid (b) Intermediate neuron ẑ1 of ReLU network

(c) Concave neuron ŷ1max of MinMax (d) Convex neuron ŷ2min of MinMax

Figure 1: Unit pyramid, intermediate ReLU neuron and a MinMax network with two

neurons
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Motivated by the above section 3 introduces a piece-wise linear MinMax discrete func-

tion learning (3) for the N-dimensional case. The approach still uses gradient descent on

a quadratic cost in discrete time. Exact exponential stability guarantees are provided us-

ing the results of section 2. Saddle points or sub-optimal plateaus are avoided with a

linear parametrization. Possible instabilities of the non-Lipschitz edges are avoided with

intermediate Lagrange constraints (2). Note that time-varying measurements and the time

discretization of the gradient are part of the exponential stability proof. Finally the result

is summarised in the Summary.

2 Discrete-time constrained systems

This section extends Contraction Analysis of Continuous Constrained Systems [6] to the

discrete case:

A constraint l in (2) only has an impact on the unconstrained dynamics (1) if the

inequality turns into an equality gl = 0 , leading to the following definition.

Definition 1 The set of active constraints A((xi+1, i+ 1) ⊆ {1, ..., L} contains the ele-

ments l (2) which are on the boundary of the original constraint

gl = gT
l (i+ 1)xi+1 + hl(i+ 1) = 0.

The constrained dynamic equations (1, 2) are then of the form

xi+1 = f(xi, i) +
∑

all l∈A

glλl. (4)

All constraints gl, l ∈ A are not violated at i+ 1 if

gl = gT
l (i+ 1)

(

f(xi, i) +
∑

all l∈A

gl(i+ 1)λl

)

+ hl(i+ 1) ≤ 0

leading to the following definition:

Definition 2 The set of Lagrange multipliers λl, l ∈ A of (2) is the solution of the linear
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programming problem

maximize
∑

all l∈A

λl subject to

gT
l

(

f(xi, i) +
∑

all l∈A

glλl

)

+ hl ≤ 0

λl ≤ 0

where we requested similar to [6] that the constraint term points in the interior of the

constraint with λl ≤ 0 and the negative λl are maximized [3] to minimize their joint usage.

The equation above corresponds to the initial solution problem of Linear Programming

(LP), see e.g. section LP in [2]. Diverse solutions exist for this problem, such as the

simplex algorithm in section LP in [2].

Similar to [6] we introduce a virtual displacement between two neighbouring trajecto-

ries, which is constrained by gl = 0 at the active l ∈ A. This virtual displacement has to

be parallel to gl = 0, i.e. orthogonal to the normals gl, which implies

δxi+1 = G‖(i+ 1)δxi+1∗ (5)

GT
‖G‖ = I

GT
‖ gl(i+ 1) = 0 ∀ l ∈ A

where δxi+1∗ is the reduced virtual displacement of dimension n minus by the number of

active constraints in A.

The constrained dynamic equations (4) can be rewritten as:

xi+1 = f(xi, i) +
∑

all l∈A

glλl = f(xi, i) +
L
∑

l=1

glstep(gl)λl

with the step function

step(gl) =







0 for gl < 0
1 for gl = 0
undefined for gl > 0

whose variation is

δxi+1 =
∂f

∂xi
δxi +

L
∑

l=1

(

gl

∂λl

∂xi+1
+ gl

∂step(gl)

∂gl
gT
l λl

)

δxi+1

6



Now the squared virtual length dynamics with a metric Mi(xi, i) can be bounded as

1

2
δxi+1TMi+1δxi+1 = δxiT ∂f

∂xi

T

Mi+1 ∂f

∂xi
δxi +

1

2
δxi+1T (Mi+1gl

∂step(gl)

∂gl
gT
l )Hλlδx

i+1

where we used GT
‖ gl

∂λl

∂xi+1 = 0 since on the constraint the first two terms vanish and

outside the constraint the last term vanishes. The Dirac impulse
∂step(gl)

∂gl
discontinuously

sets the virtual displacement δxi+1 to G‖δx
i+1∗ when a constraint is activated.

Thus the dynamics of δxi+1T δxi+1 is composed of exponentially convergent continu-

ous segments and an enforcement of δxi+1 to G‖δx
i+1∗ at the activation of a constraint.

Let us summarize this result.

Theorem 1 Consider the discrete dynamics

xi+1 = f(xi, i) +
∑

all l∈A

glλl (6)

within the metric M(xi, i) constrained by a l = 1, ..., L-dimensional inequality constraint

gl = gT
l (i+ 1)xi+1 + hl(i+ 1) ≤ 0 (7)

The set of active constraints A and Lagrange multipliers λl are given in Definition 4 and

2

The distance s = min
∫

x
i
2

xi(s)=xi
1

√
δxiTMiδxi within G

n from any trajectory xi
1(t) to

any other trajectory xi
2(t) converges exponentially to 0 with an exponential convergence

rate ≤ maxalong s(σmax(x
i, i)), σmax > 0 (≥ minalong s(σmin(x

i, i)), σmin > 0) with

σ2
minG

T
‖M

iGT
‖ ≤ G‖

∂f

∂xi

T

Mi+1 ∂f

∂xi
GT

‖ ≤ σ2
maxG

T
‖M

iGT
‖ (8)

with the constrained tangential space G‖ from equation (5).

In addition the activation of a constraint discontinuously sets the virtual displacement

δxi+1 to G‖δx
i+1∗.

Note that section 3.3. of [1] provides a stability condition on the constrained step fi+1 −
fi for the original contraction mapping theorem. Theorem 1 makes this condition more

concrete by giving explicit conditions on the derivatives of f . It also extends the result to

a metric. In addition all notes of the continuous theorem in [6] apply here as well.
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3 Discrete exponential stable learning

Let us us assume a piece-wise linear N-dimensional measurement function

y = y(x)

where the N-dimensional input vector x′ is augmented to the N + 1-dimensional input

vector x = (x
′T , 1)T . We have m = 1, ...,M measurements

yim = y(xi
m)

with the measured input vector xi
m at time index i. The goal is to approximate yim with

ŷim(x
i
m). We achieve the approximation of the true function by minimizing the weighted

cost

V =
1

2

M
∑

m=1

α2
mỹ

i2
m

with ỹim = ŷim(x
i
m)− yim(x

i
m) and measurement weight α2

m(x
i
m) ≥ 0. The unconstrained

parameter learning law is the classical gradient descent of V

Ŵi+1
j = Ŵi

j −
∂V

∂Ŵj

= Ŵi
j −

M
∑

m=1

Aj(x
i
m)α

2
mỹm

= Ŵi
j −

M
∑

m=1

Aj(x
i
m)α

2
m

(

J
∑

l=1

AT
l (x

i
m)Ŵ

i
l − yim

)

(9)

with ŴiT
j = (ŵiT

j1 , ..., ŵ
iT
jKj

) and the activation function

Aj(x) =

{

x if ẑjk∗ = ŷjmin(ŷjmax) for a min(max) neuron

0 for all other k 6= k∗ (10)

where for multiple solutions ẑjk∗ = ŷjmin(ŷjmax) only one activation is set to x and all

others to 0. Note that the gradient in (9) could be multiplied on top with a gain αj(i) which

we have skipped for simplicity here.
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The weight dynamics (9) is equivalent to the measurement estimation dynamics

ŷi+1
n =

J
∑

j=1

AT
j (x

i+1
n )Ŵi+1

j

= ŷin −
J
∑

j=1

AT
j (x

i
n)

M
∑

m=1

Aj(x
i
m)α

2
mỹm. (11)

In this last formulation we assume static measurements xi+1
n = xi

n.

To assure Lipschitz continuity of the active basic neurons ẑjk∗ at the learning step i+1
we have to exclude with Theorem 1 a transition beyond the edges of the min and max
operator with the constraints

gl = gT
l Ŵ

i+1
j = xi+1T

m ŵi+1
jk∗ − xi+1T

m ŵi+1
jk ≤ 0 for a min neuron j and all k 6= k∗

gl = gT
l Ŵ

i+1
j = xi+1T

m ŵi+1
jk − xi+1T

m ŵi+1
jk∗ ≤ 0 for a max neuron j and all k 6= k∗

where the related Lagrange parameters are given in Definition 2.

Theorem 1 then implies global contraction behaviour with the largest and smallest

singular value of the variation of (9) or alternatively (11) within the constraints above.

Summarizing the above leads to:

Theorem 2 Consider a piece-wise linear N-dimensional measurement function

y = y(x) (12)

where the N-dimensional input vector x′ is augmented to the N + 1-dimensional input

vector x = (1,x
′T )T . We have m = 1, ...,M measurements

yim = y(xi
m) (13)

with the measured input vector xi
m at time index i. We approximate (12) with

ŷ(xi
m) =

Jmin
∑

j=1

ŷjmin(x
i
m) +

Jmax
∑

j=Jmin

ŷjmax(x
i
m) (14)

which uses the convex and concave neurons j

ŷjmin(x
i
m) = min(ẑj1, ..., ẑjKj

)

ŷjmax(x
i
m) = max(ẑj1, ..., ẑjKj

) (15)

9



which consist of k = 1, ..., Kj linear basic neurons ẑjk = xiT
m ŵi

jk of estimated N + 1-

dimensional weight vector ŵi
jk at time i and the activation function (10). For a neuron j

we constrain the dynamics with

gl = gT
l Ŵ

i+1
j = xi+1T

m ŵi+1
jk∗ − xi+1T

m ŵi+1
jk ≤ 0 for a min neuron j, all k 6= k∗

gl = gT
l Ŵ

i+1
j = xi+1T

m ŵi+1
jk − xi+1T

m ŵi+1
jk∗ ≤ 0 for a max neuron j, all k 6= k∗ (16)

with ŴiT
j = (ŵiT

j1 , ..., ŵ
iT
jKj

). The constrained learning of the cost

V =
1

2

M
∑

m=1

α2
mỹ

i2
m (17)

with ỹim = ŷim(x
i
m)− yim(x

i
m) and measurement weight α2

m(x
i
m) ≥ 0

Ŵi+1
j = Ŵi

j −
∂V

∂Ŵj

+
∑

all l∈A

glλl

= Ŵi
j −

M
∑

m=1

Aj(xm)α
2
m(i)ỹ

i
m +

∑

all l∈A

glλl (18)

where the set of active constraints A and Lagrange multipliers λl are given in Definition

4 and 2 is globally exponentially converging to ∂V

∂Ŵj
= 0 with the largest and smallest

singular value of the matrix

Ijk −
M
∑

m=1

Aj(x
i
m)α

2
mA

T
k (x

i
m) (19)

or alternatively in the metric α2
n with the block diagonal matrix

Inm −
J
∑

j=1

αnA
T
j (x

i
n)Aj(x

i
m)αm (20)

In this last formulation we assume static measurements xi+1
n = xi

n e.g. for batch process-

ing.

The equilibrium point ∂V

∂Ŵj
= 0 is unique or global if the largest singular value is

strictly less then 1.

10



Note that e.g. 0 < αm ≤ 1
J |xi

m|
assures contraction behaviour in (20).

Also note that at the minimum of V the cost V will not be 0 if an incomplete active

topology (14) was used. Hence the following pruning and creation principles have to be

applied to find a right active topology (14). For a right topology V will go to 0 exponen-

tially since a contracting solution V = 0 then exists.

• Inactive neurons (15) close to 0 can be pruned.

• Basic neurons of a neuron, which never become active or which are similar to an-

other basic neuron, can be pruned.

• New convex or concave neurons (15) j can be initialized with all ẑjk = 0 and one

activated basic neuron if persistent relevant errors ỹm remain.

In principle one convex and one concave neuron are sufficient to activate convex or

concave edges everywhere. However, the numerical complexity of the simplex al-

gorithm in Definition 2 is exponential in the worst case. Hence it is computationally

more efficient to take several convex or concave neurons of low dimension rather

then one convex or concave neuron of very high dimension.

• Similarly, new basic neurons can be created by duplicating existing basic neurons

jk with persistent relevant errors ỹm

ẑjnew = ẑjk

Note that when the Lagrangian constraint is active at the boundary between two basic

neurons the following cases exist for the trajectory which starts at the next iteration on the

boundary between both neurons:

• Both trajectories move away from the boundary. Here one trajectory can be selected.

Several solutions may exist here since the boundary is not Lipschitz continuous.

Note that especially in this case δxi+1 does not diverge since it was parallelized to

the constraint the iteration before.

• One trajectory moves to the boundary the other away from the boundary. Here the

trajectory which moves away from the boundary is selected.

• Both trajectories again move to the boundary. Here the Lagrangian constraint has to

be maintained active at the next iteration, such that the trajectory moves on the edge

until it eventually leaves the edge at a later iteration.

11



The following example illustrates the effect above:

Example 3.1: Figure 2 shows the learning of a single measurement at the edge of 2 basic

neurons of Theorem 2:

• The left side shows a measurement on the convex side of 2 basic neurons. Learning of the

left or right neuron alone does not work since the measurement cost (17) at i

V =
1

2

M
∑

m=1

ỹi2m

has different measurements m at i+1. Learning works here only with an active Lagrangian

constraint (16) of Theorem 2

• On the right side the measurement is on the concave side of 2 basic neurons. Here both

neurons can learn without an active Lagrangian constraint (16) since the measurement

stays at i+ 1 at the same basic neuron where it was at i.

✷

Example 3.2: Figure 3 shows how a MinMax network of Theorem 2 evolves for a polygon.

We approximate the target polygon y (12) in subfigure 3a with the MinMax learning (18):

• We start with one linear neuron ŷ = y1,min = min(ẑ11) (15) in subfigure 3b.

• We then insert a new basic neuron in ŷ = y1,min = min(ẑ11, ẑ12), where ẑ11 and ẑ12 have

initially the same parameters. After training, the network converges to the approximation

in subplot 3c.

• A new concave neuron with two basic neurons is then inserted leading to ŷ = min(ẑ11, ẑ12)+
max(ẑ21, ẑ22) in subfigure 3d.

• After another insertion of a basic neuron, we get a perfect approximation in subfigure 3e

with ŷ = min(ẑ11, ẑ12) +max(ẑ21, ẑ22, ẑ23). The final two neurons (15) are depicted in

subfigures 3f and 3g.

The above example shows how important the (basic) neuron creation is to learn the topology of

the MinMax network.

The approach of this paper uses 5 basic neurons, whereas the benchmark in [10] had 100 to

2000 neurons in several layers. The benchmark in [10] took up to 50000 iterations to converge

to remaining persistent errors, where the MinMax network only needs a few hundred. The

approach of this paper needs 8 measurement points, i.e. the minimum number of points to

define the polygon. [10] used 100 measurement points for learning.

✷



Figure 2: Learning with measurements on convex or concave side

13



-1 0 1 2 3
-0.2

0

0.2

0.4

0.6

0.8

1

(a) Target function y
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(b) ŷ with one linear neuron
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(c) ŷ with one convex neuron
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(d) ŷ with one concave and one convex

neuron
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(e) ŷ with with one concave and one

convex neuron
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(f) Concave neuron ŷ1min
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(g) Convex neuron ŷ2max

Figure 3: Approximation of 1-dimensional target function by MinMax network
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Example 3.3: Figure 4 shows how a MinMax network of Theorem 2 evolves. We approximate

the target function y (12) in subfigure 4a with the MinMax learning (18):

• We start with one linear neuron in subfigure 4b.

• The network then continuously inserts new basic neurons. Subfigure 4c depicts the ap-

proximated function with one neuron consisting of 3 linear basic neurons (15).

• Figure 4d shows the final result, which perfectly matches the target function. The final

approximation ŷ is the sum of the concave neuron ŷ1max and convex neuron ŷ2max (15)

shown in subfigure 4e and 4f respectively.

✷

Example 3.4: Figure 5 shows the convergence of a MinMax Network of Theorem 2 to a 8-

dimensional function

y(x) = max
n=1,...,8

(|xn|)

The network is initialized with a single neuron with random parameters wn ∈ [−0.5, 0.5] and

further neurons are created after 100 iterations until the total cost V (17) converges to zero. Steep

drops in the error value indicate such insertions. Neurons are pruned if they become inactive or

too similar to other basic neurons, leading to a network with the minimal required number of 16

basic neurons in one max neuron for the 16 linear surfaces.

✷

4 Summary

This paper first extends discrete contraction theory to non-linear constrained systems in

Theorem 1. This allows to propose a new class of MinMax networks in Theorem 2 for the

learning of piece-wise linear functions:

• Possible instabilities or even non-unique solutions at the discontinuity between the

linear regions are avoided by limiting xi+1 to its linear subspace with a Lagrangian

constraint of Theorem 1. This linear subspace may change at the next time instance

since xi+1 then belongs to both neighbouring linear regions.

From a Contraction Theory perspective this constrained step parallelizes the virtual

displacement δxi+1 to the edge, which is then orthogonal to the Dirac instability at

the edge. Hence, it has no impact on the contraction rate under this constraint.
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(a) Target function y (b) ŷ after initialization with one linear neuron

(c) ŷ after two insertions of two basic neurons (d) ŷ after full training with two neurons

(e) Concave neuron ŷ1max of MinMax (f) Convex neuron ŷ2min of MinMax

Figure 4: Approximation of 2-dimensional target function by MinMax network
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Figure 5: Convergence of the cost V over i for the approximation of 16 surfaces in an

8-dimensional space by a MinMax network.
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• Saddles points or sub-optimal plateaus are avoided with a linear parametrization of

the MinMax network. This is not possible with a deep network since the parametriza-

tion is highly polynomial.

As a result exponential convergence guarantees are given with Theorem 2 for the dis-

crete time learning of piece-wise linear functions.

Although the learning was shown to be contracting in Theorem 2 the remaining errors

will not necessarily go to 0 if a wrong topology was used. Hence the current research

focus is to define finite neuron creation principles to find a correct topology of the MinMax

network, where one error free solution exists.

Also, since each basic neuron is linear in Theorem 2, all linear estimation techniques

can be exploited as e.g. computation of covariance matrices.
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