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PROPERTIES AND APPLICATIONS
OF THE

SHORT-SPACE FOURIER TRANSFORM
by
JEFFREY GORDON BERNSTEIN

ABSTRACT

In many applications, such as image coding and image
restoration, localized spectral information is desired fromn
multidimensional signals. One common approach 1is to divide
the signal into rectangular blocks and perform a discrete
Fourier or similar transform over each block. A problem with
this approach is that discontinuities at the block Dboundaries
are often visible after processing. One way to avoid this
type of problem is to employ the short-time Fourier transform
(STFT) using a smoothly decreasing window function. The STFT,
however, is not well suited for signals of finite extent, such
as images. In this thesis, a multi-dimensional extension of
the STFT is introduced which is specifically suited for finite
extent signals. This 1is referred to as the short-space
Fourier transform (SSFT). Several important properties of this
new transform are discussed, and a fast algorithm for 1its
computation is presented. In addition, its applicability to

image coding is discussed and demonstrated for both intraframe
and interframe coding.

Thesis Supervisor: David H. Staelin
Professor cf Electrical Engineering
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1. Introduction

In image processing and many other applications, the
multidimensional Fourier transform plays an important role.
The Fourier transform of a signal represents its global
spectral characteristics. In many cases, however, it 1is
desirable to obtain localized spectral information. In the
case of image processing, one method that is often used is to
divide the image into small rectangular blocks, and perform
discrete Fourier transforms independently over each block.
There are several problems in taking this approach, however.
Discontinuities at the block boundaries can cause extraneous
spectral energy which does not +truly represent the signal
characteristics. This reduces its usefulness in image coding
and spectral estimation applications. For image coding, this
problem 1is somewhat avoided by using discrete cosine
transforms (DCT) rather than Fourier transforms [1]. A second
problem with any type of block transform in image processing
applications is that, after processing, the block boundaries
often appear as visible discontinuities. These are known as
blocking effects.

The short-time Fourier transform (STFT) has long Dbeen
used as a method of providing localized spectral information
of one-dimensional, infinite extent signals [2][3][23]. With
the proper choice of window function, a multidimensional
extension of the STFT could be used in many of the
applications discussed above, avoiding the problems of block

Fourier transforms. Unfortunately, the STFT has a number of



problems when applied to signals of finite extent. In this

thesis, a multidimensional extension of the STFT is

introduced, referred to as the short-space Fourier transform
(SSFT), which avoids these problems [13]. The specific
application of image coding 1is wused to demonstrate the
effectiveness of this new transform method.

This thesis begins by reviewing the basic concepts of
the short-time Fourier transform. Following this review, the
short-space Fourier transform is defined and a number of its
mathematical properties are presented. Next, an efficient
algcrithm for computing the SSFT is presented. Finally, the
application of the SSFT to both intraframe and interframe

image coding is discussed and demonstrated.



2. Review of Short-Time Fourier Analysis

Because the short-space Fourier transform, as
discussed in this thesis, is related to the short-time Fourier
transform, it is necessary to briefly review the basic
concepts of short-time Fourier analysis. This will include
definitions of the +transform, its interpretations, and a
discussion of implementation techniques.

The short-time Fourier transform (STFT) of a
discretely sampled signal, x, has been defined by the
equation [2][3][23]1[25]:

Q0
X(n, W) = Z x(m) win-m) ekp[-—jwm]

(2.1)
m=-c

where w is a localizing window function. The purpose of the
STFT 1is to provide a simultaneous time and frequency
representation of a signal. As such, the resulting function
X(n,) is a two-dimensional function whose first argument, n,
is a time index, and whose second argument, (J, corresponds
to angular frequency. The ordinary Fourier transform uses the
entire function in order to provide a spectral representation.
In order to simultaneously provide a temporal representation,
it 1is desired +to have +the spectrum corresponding to a
particular time, n, represent the signal only in the local
area of that position. The STFT accomplishes this by the use
of the localizing window function, w. A particular region of

the signal, centered at a position given by n, is isolated by



multiplying the signal by w, and performing an ordinary
Fourier transform on the result.

It is important to note the limitation on spectral and
temporal resolution that is inherent 1in short-time Fourier
analysis. Since the window function multiplies the signal in
the time domain, it equivalently convolves the signal 1in the
frequency domain. This smearing effect limits the
resolvability of features in the frequency dimension of the
STFT. By broadening the window function in the time domain,
the smearing will be reduced, thereby improving resolution.
However, a broad window function will reduce the resolvability
of rapid variations of the signal characteristics in the time
domain. Thus, there is an inherent trade-off of spectral
~versus temporal resolution that is controlled by the choice of
window function.

The STFT can be interpreted as a series of Fourier
transforms of a signal multiplied by a localizing window. It
has proven wuseful 1in the past to introduce a second
interpretation of the STFT. It has been noticed that (2.1)
can be viewed as a convolution between the window function and
the signal, x, modulated by an exponential of frequency .
As such, the STFT can be interpreted as a bank of filters.
For each frequency, (), the window 1is convolved with the
signal centered over that frequency. If w 1is 1lowpass in
nature, this corresponds to a bank of bandpass filters. In
the frequency domain, this can be seen as the dual of the

first interpretation. That is, the window spectrum isolates a
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region of the signal spectrum centered at the frequency @,
before an inverse Fourier transform is taken on the result.
The use of the STrT is generally referred to as
short-time Fourier analysis. From X(n,W), it is possible to
exactly reconstruct the original signal, x(n). That is, the
STFT is an invertible transformation. This inversion 1is
generally referred to as short-time Fourier synthesis. The
inverse STFT, in its most general form, has been found

to be [23]:

S
x(n) = E’TT-[ Z X(m,W) f(n-m) exp[jwn] dW (2.2)
_Tr mz=-0

The function, f, which appears in this expression is referred
to as the the synthesis window. In order for the inverse to
exactly reproduce the original function, the synthesis window
must be related to w, the analysis window, by the following

constraint:

®
Z f(=m) wim) = | (2.3)

m=-

In order to implement the STFT, the frequency
variable, (), must be discretized. The STFT and its inverse
can be rewritten to account for this discretization. Due to

the lack of resolvability of the STFT between each temporal

sample, it is common to decimate the STFT 1in the time
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dimension as well. If we take M samples of the STFT in
frequency between -TT and T, then we can substitute O)==(lk
where - 2T7T/M. Further, if the STFT 1is decimated by a
factor R in the temporal dimension, then the STFT can be

rewritten as:

, ®
X(Rn,{0k) = ) xtm) w(Rn-m) exp[-jkQm] (2.4

It has been shown that it is still possible to uniquely invert
the STFT as long as R = M. That is, the number of samples
skipped in the time dimension must be 1less than the total
number of samples in the frequency dimension. If this

condition is met, the synthesis equation can be expressed as:

|
x(n) =

w DT

@
TIA' 2. x(Rm,{k) tin-Rm) exp[ jkn] (25
0 m=-®

In this case the synthesis window must be related to the

analysis window by the constraint:

@
Z f(n-Rm) w(Rm-n + Mp) = 5(p) Vn (2.6)

When the temporal decimation ratio, R, 1is exactly
equal to the number of frequency samples, M, the STFT is

referred to as being critically sampled. That is, the STFT is
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represented with the minimum possible number of samples.
Unlike the general case where many synthesis windows may be
used to reconstruct the signal, in the critically sampled
case, only one synthesis window can be wused for a given
analysis window.

Analogous to the resolution trade-off discussed
earlier, there is also a +trade-off between the maximum
allowable temporal and spectral decimation. For +the case
where R = M, the temporal decimation ratio, R, and the
spectral decimation ratio, {2, are related by R£2:= _2TT.
Thus, in general, R{) = 2T,

For the discretely sampled STFT, it has been shown
that fast Fourier transform algorithms can be used to provide
an efficient implementation technique [23]. This can be
demonstrated by the following analysis. By decomposing the
summation in equation (2.4) such that m = Ma + b, it can be

rewritten as:

> ] M-I
X(Rn, (k) = ). ). x(Ma +b) w(Rn=-Ma-b)
az=- b=0

(2.7)
-exp[-ij(Ma-i-b)]

Since S)lﬂ = 277, we can remove the depencdence of the

exponential on a. By defining a new function, 2, we can

express the STFT as:
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M-
X(Rn, QK) = ). z(n,b) exp[-jk(lb] (2.8)
b=0
where
[+ )
z(n,b) = ). x(Ma+b) w(Rn-Ma-b) O=b=M-I(2.9)
a=-0

From this it can be seen that for each n, X can be expressed
as a discrete Fourier transform, of length M, of the function
z(n,b) in the variable b. The function z corresponds to x
multiplied by the window function, and then time aliased in
sections of length M. If w is a finite 1length window then
this can be computed directly since the summation in (2.9)
need not extend past the non-zero portion of w.

For the special cate of the critically sampled STFT,
it has been shown that z can be computed more efficiently than
by direct implementation of equation (2.9) [5][7][22]. If we

let M = R, then (2.9) can be rewritten as:

z(n,b) = ) x(Ma+b) w(M(n=-a)=b) O=b=M=1 (2.10)

If we define xp(a) = x(Ma+b) and wb(a) = w(Ma+b), then
equation (2.10) can be again rewritten in the following simple

form:



14

00
z(n,b) = Z xp(a@) wy(n -a) (2.11)
a=-00

z(n,b) = xy{n) *x wy(n) (2.12)

It we assume that w is of finite extent, then z(n,b) can be
computed using the FFT to implement these convolutions by the
overlap-add or overlap-save techniques. This implementation
of the critically sampled STFT 1is known as the polyphase
filtering implementation. This is because each decimated
phase of the signal, x,(n), for successive values of b, is
convolved with a different filter function wb(n), forming a

polyphase filter network.
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3.  The Short-Space Fourier T:ainsform

The short-time Fourier transform has been defined for
one-dimensional, infinite extent signals. It is very
straightforward to extend the STFT to account for
multidimensional signals. Let x(n) be a rectangularly sampled
function of the D-dimensional vector, n, over the region
D = (n: -00=n;=00 for i=1,2,...,D). Let R and ) be

sampling matrices defined as:

R = 2 Q = : (3.1)

Tre multidimensional extension of the STFT can then bte written

as:

X(Rn,{lk) = Z x(m) w(Rn-m) exp[-jjfﬂm] (3.2)
mEDy

In general, practical multidimensional signals, and
many one dimensional signals,‘cannot be considered to be of

infinite extent. If we attempt to use (3.2) for finite extent

.

Fad

signals, for example, by zero padding outside the region of
support, two problems immediately arise. First, depending
upon the extent of -the windcw function, X may be non-zero well

beyond the original region of support of x 1in the spatial
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dimension. Second, the discontinuities that may appear at the
boundaries of the signal due to zero padding would result in
spectra that do not necessarily reflect the true
characteristics of the signal within these boundaries.

The simplest approach to avoid the first problem is to
periodically extend x, rather than =zero padding. This 1is
analogous to the use of the Fourier series for firite extent
signals. We can define %®(n) such that %(n) = x(n+Ni) for all
integer vectors, i, where N is a periodicity matrix, defined

by the region of support of x. The matrix N takes the form:

N = . (3.3)

Replacing x with ® in equation (3.2), we obtain:

X(Rn, ) = Y. %m wiRn-m) exp[-jQm] 6.0
M€ Deg

Using this definition, X is periodic in n, and thus can be
uniquely determined from knowledge of only one period. Thus,
even if w is of infinite extent, X need only be known over the
region Rn €Dy .

Periodic extension does indeed solve the problem of

spatial extent, but it does not necessarily eliminate boundary
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discontinuities. 1o avoid these discontinuities, instead of
periodically extending the sigunal, we can reflectively extend
it. The signal boundaries are then continuous and the
resulting spectra will more closely represent the
characteristics of the signal. Such a technique is analogous
to the use of a discrete cosine transform which can be defined
in terms of the Fourier transform of a reflectively extended
signal block. From this point on, this definition of X will
be referred to as the short-space Fourier transform (SSFT)
[13]. Let us define the function X which is x reflected in

all D dimensions:

il
——
1=
C®
L]
x
L
jeo
-
(=
Ve
e

This defines the signal X over the regicn given by
Don= (n: 0=n;=2N for i=1,2,...,D). Outside of this region,
X can be defined as being periodically extended with
periodicity matrix 2N. Usihg ¥ rather than %, equation

(3.4) can be rewritten to obtain:

X(Rn,QK) = ) %m wRn-m) exp[-jKQm] .0
mEDg,
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Since X 1is periodic, it 1is possible to rewrite
equation (3.6) in such a way that infinite summations are not
needed to compute the SSFT. The summation in m can be

decomposed by defining m = a + 2Nb.

X(Rn,{dk) = ) ). %(a+2Nh) w(Rn-g - 2Np)
9€Dyy LED,,

(3.7)
. exp[-jl{rﬂ (g + ZNQ_)]
Since X 1is periodic with periodicity matrix 2N, then

x(a+2Nb) = x(a). We can define the matrix M, corresponding to
the number of samples in each frequency dimension of X, such
that §) = 2TM". If M and N are related by the equation
ML = N, and 2L forms an integer matrix, then the term 1in the
exponent, 2N(2 , can be eliminated. Thus, we can further

simplify this expression to be of the form:

X(Rn,{lk) = Z x(a) exp[-j_k_TQ_g]
9€DaN
(3.8)

- w(Rn -g-2Nb)
bED,,

We can now define a new function, W, which 1is the window

function spatially aliased over blocks of size 2N:
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win) = Z win - 2Nb) (3.9)

Using the aliased window function rather than w itself,

equation (3.8) can be rewritten in the final form:

X(Rn,(Qk) = ). %(g) W(Rn-g) exp[-jK Qa] .10
8€Dyy

Just as for the discretely sampled STFT, the SSFT has
a simple formulation for resynthesis of the signal x from the
SSFT coefficients. Since equation (3.6) represents the
multidimensional STFT operating on the function X, we can use
the direct multidimensional extension of the STFT synthesis

equations, (2.5) and (2.6), to write the SSFT synthesis in the

form:

X(n) = ﬁz 2. ftn - Rm) X(Rm, k) exp[jkTQn]3-11)
ﬁeDM '.".éDm

Y fa-Rm) w(Rm-n+Mp) = 8tp) Vo (.12)

meD,, -

Using the same approach as before, we can simplify these

expressions and avoid the infinite summations by letting
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m = a + Qb, where Q is defined by the relation QR = 2N.

$m o= =y ) 2 fla-R(g+Q@b))
IMl' xéD,, a€D, €D,
(3.13)

- X(R(a +@b), k) exp[jKQn]

Noting that X is periodic in the spatial dimensions with

period 2N, we can simplify this to:
(3.14)

Finally, we can define f such that the inverse can be written:

s = — Y Y xRg,Qk) Fa-Ra) exp[jK Qn )19
IMl keb,, a€p
-~"M Q
where,
fm) = ). f(n-2Nb) (3.16)
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The constraint on f can be found by substituting the

SSFT definition, equation (3.10), into the synthesis equation:

X(n) = ﬁ Z Z Z X(m) W(Ra-m)
IM| k€D, 9€Dy MED,y (3.17)

cexp[-jKQm] Fa-Ra) exp[jkQn]

Making ‘the substitution m = Mr + s, and noting that

Qwu- 2TTI, yields:
I Y Y Y %Mr+s) w(Rg-Mr-s)
€Dy €D, SE€D,,

-f(n- a)z cxp[ jkTQ.S] exp[jkT.Qn]

RGDM

X(n)

<

(3.18)

M) = Y 9. RMr+s) . W(Rg-Mr-s)
LED, SED, 9€Dg ( )
3.19

x(n) Z 'i(M_t_'_+g_)ZW(R_g—M_|:_—n) f(n-Ra) (3.20)
r€Dy 9€Dg
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3
Thus, for exact reconstruction of the original signal, f must

be related to W by the constraint:

Y #%(Ra-Mr-n) fin-Ra) = O8(r) Vo reDy (3.21)
a€bg
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L. Properites of the Short-Space Fourier Transform

4.1 Space-Frequency Duality

As discussed for the case of the short-time Fourier
transform, there are dual interpretations: that of a windowed
set of Fourier transforms and that of a bank of filters.
Similar}y, the short-space Fqurier transform also has dual
interpretations. The first is clear from the definition:
windowed Fourier transforms of the reflectively extended
signal. The exact form of the dual interpretation will be the
topic of this section.

For the case of the STFT, the filter-bank
interpretation could be viewed as taking a series of 1inverse
Fourier transforms of windoﬁed, or filtered, vefsions of the
signal spectrun. To determine if a similar relationship
exists for the SSFT, we can rewrite (3.10) as an inverse

Fourier transform:

x(Ra, (k) = o= ) exp[jo’Th] ). exp[-jn" ']
lel h€Dy mE Dy

%(a) W(Rm -ga) exp[-jK (a]
2€b,

where QR = 2N, 1-'= 277Q™ and lQl is the determinant of Q.

This can be rearranged into the following form:
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|
X(Rn,{lk) = Ql Z JnTFh X(a) exp[ jkTQo]
h€D, 9€D,y,
(4.2)

exp[-ji'['m] #(Rm-a)
éng

Expressing W in terms of its discrete Fourier transform over

DZN’ written as ﬁéN:

X(Rn, {1k) = |?|1-| 2 exp[JnTFh z %(a) expl-jKQa]
he €Dan
: exp[-]ﬂTFm] 2—|'— Y Wy () (4:3)
meD, NI seb,,

cexp[jF ¥ (Rm-a)]

where ‘I/= 29T(2N)". Noting that \;‘R =1-‘ , and rearranging the

summations yields:

X(Rn,{lk) = Ll 3 Wyy(s) expljn" 'h]
QI 2INl <eb,, népg

(@) exp[-jKQa] exp[-jsFW¥a] .
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Noting that

Y exp[its-n'T'm] = lal ) Sts-h-Qi) .5

médy i€,

[
m

the summation in h can be eliminated. Thus, equation (4.4)

simplifies to:

X(RQ_,Q_k_) = i Z WZN(S) exp[jp_TF_s_]
ae
(4.6)
%(a) exp[-j(kTQ +sT)a]
g€Dd

2N

Since LM = N, S) can be expressed as 2L§P. Thus the summation

in a can be seen as a discrete Fourier transform of X over

Doys and can be written iZN'

X(Rn,{dk) = - Z Wop(S) iaN(ZL_k_ +3) exp[jnT].-'s](a.ﬂ
AR 2|N| §€DZN - =

From this expression for X, it can be seen that the
SSFT can be interpreted as a series of inverse Fourier
transforms of iéNwindowed by ﬁéNcentered over a frequency (25.
The function Xpyis not the DFT of the signal x but of ¥, the
reflectiﬁely extended version of x. With the exception of a
phase wrap and a scaling factor, this is equivalent to taking

the even discrete cosine transform (DCT) of the original
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function x over the region Dy , followed by reflectively
extending the DCT about each zero-frequency axis. Thus, the
SSFT can be interpreted as a bank of filters operating in the
cosine transform domain rather than the Fourier transform

domaine.

4.2 Conditions for Reconstruction

One of the desired properties for a wuseful extension
of the STFT for finite extent signals was that it should not
extend beyond the spatial support of the original signal.
Periodic extension of the signal resulted 1in a short-space
spectrum which was also periodic, with a period equal to the
size of the region of support of the signal. 1In an attempt to
reduce the effect of signal boundary discontinuites, the
signal was reflectively extended, resulting in a periodicity
double that of the previous case. For the critically sampled
SSFT, this would imply that in order to wuniquely reconstruct
the original signal, the total number of sample points needed
would be 2D times the number of samples in the original
D-dimensional signal. It will be shown in this section that
for a wide class of analysis windows, the SSFT can, in fact,
uniquely represent a signal with no more sample values than
are in the original signal.

In the spatial dimension, one period of X(Rn,()k) is
defined over the region Rn€ Dpy. The most straightforward way
to constrain the region in which the SSFT uniquely represents

x without redundancy is to use the values of X only in ‘the
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region Rn€ Dy. To find a constraint on the analysis window
such that this will hold, we can begin by rewritting the

definition of the SSFT using the substitution a = Mr + s.

X(Ra,QKk) = 2. 9. (Mr+s) #(Ro-Mr-s)
§€DM LeDZL )
(4.8

. exp[-]F QME + )]

Noting that {2Ml= 2TTI, and reordering the summations, this

can be rewritten as:

xR, ) = ). exp[-ik"Qs] ) %Mr+s) #Rn-Mr-s) (4.9)
S€D,, r€D,
If we define a new function, 2z, such that:
2n,s) = 2. %(Mr+s) WRn-Mr-s)  S€D, (410

then the SSFT can be expressed as a multidimensional DFT of z:

X(Rn,{lk) = Z 2(n,s) exp[-jK {1s] (4.17)
séd,

Since there 1is a unique, one-to-one relationship between

X(Rgﬁflg) and z(n,s), to show that X uniquely represents x in
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the region Rné€ Dy, 1t is enough to show that x can be uniquely
reconstructed using z(g_,g) in the same region, RnéE€ DN’ or
equivalently, né€ DQ-/Z.

In order to reduce notational complexity, the window
constraints will be derived only for the case of
one-dimensional signals. The extension +to more than one
dimension is straightforward and will be discussed briefly

after the derivation.

In one dimension, z can be expressed as:

2L-1

z(n,s) = Z X(Mr+s) w(Rn-Mr-s) O=s=M-1l(4.12)
r=0

For each fixed value of s in the above -equation, =2z can be
viewed as a linear combination of the samples of one
particular phase of X decimated by a factor M. If z is known
over the complete interval 0=n=Q-1, then x can clearly be
reconstructed using the inversion equation (3.15) with one of
the numerous possible choices for the synthesis window. If,
however, z(n,s) is only known for 0=<n=<#%Q-1, it is not clear
that the decimated samples of X can be reconstructed by an
inverse transformation of z. By noting the symmetry in %, it
can be shown that for two values of s, z(n,s) depends on the
same decimated samples of X. If the values of z(n,s) are used
simultaneously for both of these values of s, there may be

enough information to reconstruct x.
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To show that for two values of s, z(n,s) depends on
the same decimated samples of X, we can make the substitutions
a = M-1-s for 0=<s=<M-1, and b = Q-1-n for #Q=n=Q-1, into

the definition of z.
2L-1
2(2-1-b,M=I1=a) = 3 F(Mr+M=I-a)

r=0
- WwR(Q=1=-b)-Mr-M+1+a)

Further, substituting m = 2L-1-r for 0=r=2L-1, this can be

rewritten as:

2L-1

2(Q=i=b,M=l=a) = ) %(M(2L-1-m) +M=I-a)
=0 (4.14)

. w(R(Q=-1-b)-MQ2L-I-m)-M +|+a)

2L-|
2(@-1-b,M=l-a) = ) K(2N-Mm=I-a)#%Mm +l +a-R=Rb)(4.15)

m=0

Using the definition of X by equation (3.5), we can see that:

$(2N=1=(Mm +a)) = %X(Mm +a) (4.16)
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Using the variables in the original definition of z, -equation

(4.15) can now be rewritten as:

2L-1

2(Q=1-n,M=1=8) = ) F(Mr+s) @Mr+1+s=R=Rn) (4.17)
r=0

Since the argument of X in (4.17) and in (4.12) are identical,
for a given value of s, the same decimated samples of X are
used to generate both z(n,s) and z(Q-1-n,M-1-s). If we define

2 and % such that:

z(n,s) Oﬁn.‘.%—-l
Z(n,s) = a
z(Q=l-n,M=Il-5s) -2—5n='G.—I
(4.18)
- . <n=<&_
. w(Rn<q) O=n=7 I
vW(Rn,q) =
#1+q-R-Rn) F=n=Q-|

then (4.12) and (4.17) can be combined into one equation
representing a single linear combination of the decimated

samples of X.

! O=n=Q-I
2(n,s) = Z X(Mr +s) W(Rn,Mr+s) T (4.19)
r=0 O=s=M-|
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For the SSFT to be uniquely invertable using only the region
of X(Rn,Qk) for 0=n<4Q-1, all that is required is that the
linear transformation defined by (4.19) is non-singular. A
very wide class of window functions will satisfy this
constraint.

Since ¥ is an arbitrary linear transformation, finding
and implementing the inverse may be very difficult. It would
be desirable to have an inverse that can be implemented in the
same manner as the ordinary inverse given by equation (3.15).
It can be shown that the window function can be further
constrained such that g;ven 2, z can be found completely by a

simple relationship. Once z is known, (3.15) can be used
directly to reconstruct x. As will be demonstrated in section
5, this can also help to reduce the computational complexity
in implementing the SSFT.

One case where such a simple relationship exists can

be found by constraining W such that:

w(Rn-q) = w(l+q-R-Rn) (4.20)

By the definition of Q, this implies that %4 can be written as:

w(Rn,q) = W(Rn-q) O=n=Q-I| (4.21)
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Now, equation (4.19) can be rewritten in the simpler form:

A ) z}"f‘ M O=n=Q-I| : |
- X W - - 022
2(n,s L X(Mr +s) w(Rn r—s) O=s=M-I 4

Comparing this to equation (4.12) we can see that they are

identical. Thus:

2(n,s) = %Z(n,s) (4.23a)

z(n,s) O=n=32-|

z(n,s) = (4.23b)

2
z(Q-1-n,M—1-5s) -g-snsQ—l

From the lower porticn of (4.23b), it is shown that the values
of z(n,s) for 3Q=<n=Q-1 can be determined from
z(Q-1-n,M-1-s). Since the argument Q-1-n is restricted to be
between zero and 3Q-1 for #Q=n=Q-1, the upper portion of =z
can be obtained directly from corresponding values in the
lower portion. Since all of z can be determined from the
known half of 2z, equation (3.15) can then be wused for
reconstruction.

The physical meaning of the constraint on the window
function can be seen by using equation (4.20) and substituting

p = Rn-q.
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#w(p) = W(l-R-p) (4.24)

This implies that W must be symmetric about the point p such

that p = 1-R-p. Solving for p, we obtain:

|-R

(4.25)
2

p=

This constraint is very reasonable for practical situations.
It simply means that % is nmultiplied by the time reversed
window function centered within blocks defined by the samples
of Rn. An example of a window function which satisfies this
constraint is shown below. Pictured is the time reversed

window w(Rn-m) for several values of n with R = 4.

0 R R 3R

It is possible to also define other constraints on the
window function such that z can be found from 2 by a simple
relationship. For example, if the window function is complex
valued, it may be desirable to have conjugate symmetry rather

than complete symmetry. Clearly, this simply corresponds to:
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z(n,s) = z*¥(Q-I-n,M-1I-5) (4.26)

In a similar manner, many other constraints on % may be found
which result in simple relationships such as this.

For the case of multidimensional signals, these
results can be extended in a straightforward manner. From the
sample values for a single phase of the decimated signal
%(Mr+s), we can generate 2(n,s) defined in a similar manner to
equation (4.18). The difference is that instead of % being
defined in terms of z on each half of the one-dimensional
axis, 2 is defined in terms of z for each "quadrant" of the
multidimensional space. Similarly, the "quadrants" of % can
also be defined in terms of w.

The constraint for symmetry in w such that =z can be
directly obtained from 2 also extends easily into multiple
dimensions. For more than one dimensional signals, the
symmetry constraint on the window function, given by equations
(4.24) and (4.25), must hold along each dimension for all
values of the remaining dimensions. For example, 1in two
dimensions, W(x,y) must be symmetric around y = 4(1-Ry) for
all x, and around x = 3(1-Rx) for all y. DNote that a
separably symmetric window function will satisfy this
constraint. For the example of the conjugate symmetry
constraint, a separably conjugate symmetric window will not

satisfy this condition.
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L+.3 Linear Filtering Using the Short-Space Fourier Transform

There are many applications in which it 1is desirable
to implement time-varying or spatially varying linear filters.
For the case of multidimensional finite extent signals, such
as 1images, examples of such applications incluae image
restoration, 1image enhancement and non-uniform motion
compensation. In general, spatially varying filters are
computationally difficult to implement. Unlike spatially
invariant filters which can be implemented very efficiently by
direct multiplication in the frequency domain, there 1is not
necessarily an efficient way to implement a spatially varying
filter.

For one-dimensional, infinite extent signals, Portnoff
[23] has shown tha£ by direct multiplication of the short-time
Fourier transform coefficients of a signal, a limited class of
time-varying filters can be implemented. Because of the
existence of fast algorithms for computing the STFT and its
inverse, many filters can be implemented much more efficiently
than they can in the time domain. Clearly, for
multidimensional, finite extent signals, direct multiplication
of the SSFT coefficients can be used to implement a similar
class of spatially varying filters. Since the SSFT is simply
the multidimensional extension of the STFT on the reflectively
extended signal, X, the class of spatially varying filters
implementable in this manner is the same class of filters

discussed by Portnoff operating on X. Since X is continuous
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at the boundaries, serious problems due to edge effects may be
avoided.

In his discussions, Portnoff addressed the issue of
what class of filters can be implemented by direct
multiplication of the STFT. A more general question to ask,
however, 1is how the STFT coefficients, or the SSFT
coefficients can be modified to implement any particular
filter. From this general formulation, it may then be
possible to find other classes of filters which can be
implemented efficiently using these transforms. The
implementation may be more complex for many of these classes
than direct multiplication, but still may be more efficient
than direct implementation in the spatial or temporal domains.
Although equally applicable to the STFT this issue will be
addressed only for the case of the SSFT.

The most general form of A spatially varying filter
operating on the signal, x, over a region Dy ,can be written

as:

y(m) = Z g{m,b) x(b) mé€ Dy (4.27)
26D,

Equivalently we can define y as the reflectively extended
version of y as in equation (3.5). By introducing a modified

transformation, 8, it is clearly possible to write:
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Fm = ). §(m,b) ¥p)  mED, (4.28)
b€0,y

This expression may be thought of as a general filter applied
to the signal X. Writing the transformation in this special
form is only useful because it allows us to directly wuse the
SSFT as previously defined.

The most straightforward way to determine how the SSFT
might be used to implement this transformation is to simply
find the relationship between the SSFT of x and the SSFT of y.

The SSFT of y is defined by:

vian,®k) = L ym wan-m) exp[-if®m] (.29
€D,

Using the expression for ¥ in terms of X, we can write this

as:

vean,®k) = Y Y §(m,b) X(b) WAn-m)
m€D,, bEDy

exp[-jK D]

(4.30)

Finally, we can express Y directly in terms of X by using the

SSFT synthesis equation given by (3.15).
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viandp =Y Y §mp ) ) fb-R)

mEDy BED,) h€D,, 8€Dy

- X(Ra,h) exp[jnTdb] W(An-m) (4.31)
cexp[-jK"®m]

By rearranging the summations and defining a new function G,

which does not depend on x, we can write (4.31) in the form:

vian,®k) = ). ). x(Rg,Qh) G(An,Ra;Pk, Q) (2.32)
n€b, s€by

where

Y ) Fb-Ra) WAn-m)
MED,, BED,,

G(An,Rg; Dk, {Ih)
(4433)
.§tm, b expl jn*Qb] exp[-jk"Pm]

The SSFT of the function y, has been written in the form of a
linear filtering operation on the SSFT coefficients of x. The
filter, G, can be interpreted as the (2D)-dimensional SSFT of
the spatial domain filter function g(m,b). For the variable
b, the analysis window, ¥, is used, and for the variable m,

the analysis window is ?, where f 1is the synthesis window
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ordinarily used in the definition of the D-dimensional SSFT
inverse.

The conversion of the filter function, g, into the
transformed filter function, G, by equation (4.33) can be seen
to be similar to the bi-frequency interpretation of
time-varying filters in the Fourier transform domain [7][9].
It has been shown that the effect of a time-varying filter on
Fourier coefficients can be regarded as a filter operating on
the frequency coefficients. This linear filter function can
be found by taking the Fouri-r transform along one dimension
of the original filter function, and an inverse Fourier
transform along the other. This process can be easily
understood by considering the matrix formulation of a linear
transformation. Let ¥y be a vector produced by multiplying the
vector x by the matrix G. This is equivalent to the general
linear filter given by equation (4.27). Let S be another
matrix, coresponding, for example, to the SSFT. We can find a
matrix H which can be used to express the transformed version

of y, Sy, in terms of the transformed version of x, S5x.

y =062
Sy = SG6x

(4434)
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where

H = SGS™ (4.35)

This corresponds to forward transforming the column vectors of
G, and inverse transforming the row vectors. This is exactly
what is being performed by equation (4.33).

By obtaining the SSFT of a signal, the new
transfomation that can be applied to obtain the SSFT of the
result is expressed in exactly the same form as the original
transformation. To generate the SSFT of y, all of the values
of X must be linearly combined, just as in the case of the
spatial domain filter. 1In fact, if the SSFT is not critically
sampled, more samples must be included. The computational
savings, of course, comes when the class of filters 1is
restricted to those which are computationally efficient in the
SSFT domain. The case which Portnoff discussed for the STFT
was the computationally simplest case: direct multiplication
of the STFT coefficients. He showed that, by varying the
choice of window function used, a fairly wide variety of
useful transformations could be closely approximated. In
terms of the matrix formulation, direct multiplication
corresponds to the H matrix being restricted to be diagonal.
This means that the spatial domain response matrix is

restricted to be of the form:
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G = S'DS (4.36)

where D is an arbitrary diagonal matrix.

For many applications, the purely diagonal constraint
may be too restrictive. For example, it has been found that
for image motion compensation, implementation with a striectly
diagonal operator is not sufficient to obtain a response close
to the desired response. By sacrificing some of the
computational savings gained by wusing a purely diagonal
transformation, it is possible to widely expand the class of
filters which can be implemented. For example, for the case
of motion compensation, using the frequency coefficients from
adjacent blocks could greatly improve the approximation to the
desired response. In the matrix formulation, this corresponds
to having non-zero terms not only along the main diagonal, but
also along the two adjacent diagonals.

In this sense, the general results obtained here can
be used to describe any class of filters. By not restricting
the filters to be diagonal from the beginning, we can
determine with more generality what types of filters can be
efficiently implemented in the SSFT domain. Specific cases,
and experimental tests have not yet Dbeen performed in this
area. A great deal of work still remains to determine if the
properties of the SSFT allow it to be of use in practical

applications.
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5. Implementation of The Short-Space Fourier Transform

5.1 Spatial Domain Implementation

The short-space Fourier transform would be of 1little
value if there were not an efficient algorithm for its
computation. As discussed in chapter 2, for the short-time
Fourier transform, a fast computational algorithm does exist,
which makes use of the fast Fourier transform [5]{22][23]. In
this section, a similar algorithm is developed for efficient
computation of the short-space Fourier transform.

The spatial domain algorithm for computing the SSFT
can be derived by beginning with the expression for the SSFT

given by equation (4.11).

X(RQ,QL) = z z(n,s) exp[—jfﬂg] (5.1)
S€D,,

where

2n,s) = 2. X(Mr+s) #WRn-Mr-s)  S€D, (5.2)

For each spatial location, n, X can be computed by taking the
size M discrete Fourier transform of the function z(n,s) as
" -indicated by equation (5.1). This can be efficiently
:implemented using any of the fast Fourier transform algorithms
[8][22]. The more difficult portion of the algorithm involves

the computation of z(gtg). If the transform is not critically
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sampled, z can only be found by direct implementation of
(5.2). Physically, equation (5.2) represents multiplying X by
the spatially reversed window function centered at position
Rn, and spatially aliasing this signal into size M blocks.

If the SSFT is critically sampled, the computation of
z can be done much more efficiently than by direct
implementation. If R = M then equation (5.2) can be written

as:
z(n,s) = Z X(Mr+s) wiM(n-r)-5s) (5.3)

By defining Xg and Wg as decimated versions of X and W, where

%g(r) = X(Mr +5) (5.4)
We(r) = W(Mr-s) (5.5)

equation (5.3) can be further rewritten  in the simplified

form:
z(n,s) = Z Xg(r) wg(n-r) (5.6)

Since W 1is periodic with periodicity matrix 2N, Wg, as
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defined, is periodic with periodicity matrix 2L. Thus
equation (5.6) simply corresponds to a circular convolution of
the decimated samples of X and W. To implement this series of
circular convolutions, the discrete Fourier transform can be
used. Again, by using FFT algorithms, the convolutions can be
done much more efficiently than they can be done in the
spatial domain.

By using the special case symmetric window, as
discussed in section 4.2, the computational complexity of the
SSFT can be further reduced. This is accomplished by
accounting for the redundancy in =z that results. For the

one-dimensional case, it was shown that

( ) (2L -1 M- ) O=n=2L"|
z(n,s) = z -l-a,M-1-5s .7
! O=<s=M-| (5.7

under the constraint that the window function 1is symmetric
about a point p given by equation (4.25). This was taken for
the critically sampled case where Q = 2L. To compute the
non-redundant portion of the SSFT it is required to compute
z(n,s) for 0=s=<M-1 and O=n=<L-1. This defines 2z only 1in
the region of support of the‘original signal. We know that
the other half of z is redundant. However, if we use the
discrete Fourier transform to implement the circular
convolutions in equation (5.6) for each value of s, the result
includes the values of z(n,s) for all n over O0=n=2L-1.

Since redundant information 1is computed, some of the
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computation is wasteful. However, if z is computed using the
DFT implementation for only the values of s over O0=<s=iM-1,
equation (5.7) can be used to find all of the remaining
values. Specifically, the values of z in the region 0=n=1L-1
and 3M=s=M-1 which are needed, correspond exactly to values
in the region L=n=2L-1 and 0=<s=4M-1 which are known.

For multiple dimensions, this corresponds to computing
z for only one '"quadrant" in s. From this, all of the
remaining quadrants can be found directly.

From this description of the SSFT analysis
implementation, a simple approach to SSFT synthesis is readily
apparent. For the critically sampled case, the synthesis
procedure simply involves reversing each step of the analysis
procedure. First, inverse discrete Fourier transforms are
performed, followed by the circular deconvolutions wusing the
inverse of the analysis window function in the frequency
domain.

The basic block diagram for computing the
one-dimensional critically sampled SSFT for a real valued,
symmetric window function is shown in figure £.1. In figures
5.2 and 5.3, a detailed flow diagram of the algorithm is
shown. Figure 5.2 shows the computation of the window
coefficient matrix. Since this depends only on the window
function, it can be precomputed and stored so that this
portion of the algorithm does not need to be performed each
time the SSFT is computed. Figure 5.3 shows the computation

of the SSFT coefficients from the input signal.



*1X9% 9y}
UT poqTJIOSepP SB UOTQOUNJ MOpPUTM oTajsumuks B8 Juisn JJg§ pardues

ATT®OT2TI0 TBUOTSUSWTIP-8UO 8y} J0J weIIBIP YooTg - L°G 8sn3Td

— 0 L4l \r\v_,ul EUN o
O —1 140 7 | y3aHon 1Ha RVVW\’ 140 7 | yiouo3y
~ SIN31214430) L
14SS aN023S 15H14 1ndNI
— Mo L4a1 @1 40—
— W0 [ L4ai _mw\ Ha
AHOWIW )
1N3I2144309

MOGNIM




47

TCreate the aliased window function:
! )

') = J wa+2N2) 0 <ms (N=1)
l Lm0

———e

Creaze an % x 1% matrix ﬁ from the aliased window samples
w(0) W(M) ce- Ww(2N - M
w(l) WM+ 1) W(2N - M + 1)
<M - 3M ~ M
U(i - l)v(—z— = 1)+ w(2N - 7" 1)

l

Perform DFT's along rows of the matrix W. The result is the
window coefficient matrix W.

Figure 5.2 - Computation of the window coefficient
matrix used in the implementation of the SSFT shown
in figure 5.3.



Figure 5.3 - Detailed flow diagram for
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Create an % x %N macrix ? from f(n)

£(0) £(M) cee f(N=-M) JE(N=1)E(N=-M=1)scef(M=1)
£(1) £(M+1) f(N-l‘H-l)If(ll-Z)f(N-H-Z) f£(M-2)

. . .
. ] . .

- 1):(—3;—‘-1)---f(u-%-1)|f(u-%)s(u-l:-) e £ J

Perform DFT's along rows of F.
M 2N

Call the resulting 7N matrix F.

Multiply each element in F by the conjugate of the
corres: element in the matrix W. Let the result be A.

Perform IDFT's along the rows of A. Let result A be of the form:

20,0 -+ -(0.—2'-;1-1)

M ceeg M AL
5(5-1.0) a(z-l..l‘l 1)

l

Create an M x %m:rix Iy by reordering A.

(40,0 ---.(o.%- n o
a(1,0) a(l.%-l)

M A M N
aG-1.0) seca(z-lag-1)

- ———— - ————— —

N
adr By a g1y

M, 2N M N
a(i-z.-ﬁ--l) a G-2.9

2N ‘N
a (O-?’ 19} a (oog)

\

I

Perform DFT's along columns of A giving the SSFT F(j,k) where j
corresponds to the frequency dimension.

( N )
EF(O.O) F(O.: 1) !
F(1,0) F(l.g - 1) l
oy eee gAY

FG 0 v P oD

F(%+zm) FEe2.3-1

N
(F(-1.0) F-Lg = D)

computation

of the one-dimensional critically sampled SSFT

using

a real, symmetric window function

described in the text.

as
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5.2 Frequency Domain Implementation

An alternative to implementing the SSFT by the use of
equations (5.1) and (5.2) is to use the dual formulation given
by equation (4.7). With the exception of the scale factor and
the fact that the shift is on the signal term rather than the
window term, this equation is in the same form as the SSFT
expressed in the spatial domain. Thus, given igN and WZN’
the amount of computation required to compute the SSFT in the
frequency domain would be approximately the same as it would
be to compute it in the spatial domain in the manner described
in the last section. However, if the functions X and W are
only known in the spatiﬁl domain, the Fourier transforms of
these must be computed first. Clearly, for an arbitrary
window function, this approach requires much more computation
than the spatial domain approach. For a particular class of
window functions, however, this is not true. Specifically, if
the window function is an ideal lowpass window, then the
frequency domain implementation becomes efficient. Such a
window will be shown in chapter 6 to be very useful for image
coding applications.

To show why implementation wusing an ideal lowpass
window is efficient to compute, we can decompose the summation
in equation (4.7) in a similar manner to what was done for the
time domain implementation. If we define, s = Qa + b, then

equation (4.7) can be expressed in the form:
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xRy, Q) = Fir L ) Wey@atb)
2IN 9€Dgy b€D, (5.8)

- Zon(2Lk +Ga +b) exp[ jnT[(Qa+b)]

Rearranging the summations and noting that IHQ = 2TTI, we get:

X(Ra, (k) = i 2 exp[jaTT'h] ). Woy(Qg +b)
2INl ey 4€b,
(5.9)
- Xon(2Lk +Qg + b)

Analogous to the spatial-domain approach, we can define a new

function, y(b,k), such that

X(Ro, (k) = = 2 yip,k) expljnTT'b] (5.10)
Q| 9.5

where

yb,k) = —,';-og Won(Qg +b) Ron(2Lk +Qa+b)  (5.11)

If ﬁéNis non-zero only in a region of size Q, then for each

value of b, there will only be one non-zero term in the
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summation to obtain y. Thus the computation of the SSFT will
simply consist of computing iZN’ then, for each wvalue of k,
windowing a block of izNof size Q, and taking a size Q inverse
Fourier transform. This can be done so that the computational
complexity is similar to that the spatial-domain algorithm.
As was previously stated, EZN is closely related +to the
discrete cosine transform. Thus, it can be computed using one
of the numerous fast cosine transform algorithms in existence
[16]. Computing it in this manner 1is considerbly more
efficient than directly computing the size 2N discrete Fourier
transform.

One useful choice for ﬁéNis a rectangular window with
constant amplitude over the band. In continuous frequency, a
rectangular window with a constant value of one over the band
would correspond to a separable sinc function (i.e. sin(x)/x)
in the spatial domain. If +this were used as the window
function, w(n), then we can define w(n) as the original window
spatially aliased over size 2N blocks as given by -equation
(3.9). In the frequency domain, the aliasing operation
corresponds to sampling. For a sinc function corresponding
exactly to a bandwidth of size Q, some of the sample points
will lie exactly at the discontinuities at the edges of the
rectangular window. The result is a discrete window function
of size larger than Q, and whose sample points are not of
constant amplitude. In order to obtain a discrete window

function that does have these propsrties, the continuous
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frequency window must be first shifted by some odd multiple of
half a sample point. This corresponds to multiplying the sinc
window by a separable phase wrap in the spatial domain. That
is, the spatial domain function corresponding to a constant

valued rectangular window is:

n;(2c;+|) ] Siﬂ(ﬂ‘l’li/Ri) (5.12)
i

win) = H eXP[i"T 2N (TTn;/R;)

where the c;'s are arbitrary integer constants which determine
the center frequency of the bands.

One important factor to notice about equation (5.13)
is that the window is separably conjugate symmetric. It was
noted in section 4.2 that for more than one dimensional
signals, a separably conjugate symmetric window does not
satisfy the condition found for simple reconstruction of the
SSFT from its values in the region Rn€Dy. For this
particular case, however, it is possible to find a different
region from which the signal can weasily be reconstructed.

Because igNis the Fourier transform of a reflectively extended

signal, it has a symmetry of the form:
Xon(k) = exp[iff k] Xyt (5.13)

where ‘I’= 2’fr(2N)-', for all integer valued vectors, f, where

fe Dl’ and h is found by:
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k; f.=0
h; = (5.14)

2N; = k; t. =1

Thus, XZN is completely defined from only one "quadrant." By
choosing the window function to be positioned such that
c; = £Q5-1, then only the frequency coefficients of X(Rg,gzg)
in the region k€ DMIaare required. These coefficients will
define 3('2"(5) over the region k€ Dy . The remainder of iZN
can be reconstructed by employing equation (5.13).

~If the original signal, x, is real valued, then the
total number of sample points needed for simple reconstruction
can be further reduced. If x is real, then iéN can be
expressed as a real valued function multiplied by a constant

phase wrap:
Xan() = Cl) exp[+ji"Wk] (5.15)

where all of the elements of the vector i are equal to one and
C(k) is a real valued function. If the rectangular window to
be used, instead of being constant and real valued, also has a

specific phase wrap corresponding to:
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exp[£ifT-Tk] k€D (544
Wop(k) =
0o other

then (5.11) can be expressed in the form:

yib,k) = —= Woy(b) Xpy(2Lk+b)  beEDy  (5.17)

=" IR|

!
= = C(2Lk +D
y(.b_oh) IRI c - _)

(5.18)

cexp[£j (" -Wp +i"W 2Lk + b)) ]

yp k) = o ceLk+b) exp[ £ I(Tp+ Qo] o9

It can be shown that after performing the size Q 1inverse DFT
over the variable b, the result, X(Rg,fzk) is symmetric in n
such that only half of the region Rn€Dpy is needed for
reconstruction. That is, for one of the dimensions, i, X; is
only needed for O0=R;n;=N;j. The remaining portion can be

reconstructed by the equation:

x(Rm, (k) = exp[ji'Qk] X*Rn,Qk) (5.20)
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where m; = Q;:1-n;.

An interesting fact to note is that the phase wrap on
the window function corresponds to a shift of the point of
symmetry of the window in the spatial domain to exactly the
same position that was required in the spatial-domain
technique for simple reconstruction.

To summarize, the frequency-domain computation of the
SSFT, using the sinc window function described above, involves
first obtaining EZN by either Fourier or cosine transform
algorithms, followed by performing inverse DFT's of size Q of
iZN multiplied by the the phase wrap given in equation (5.16)
at the position 2Lk.

One possible advantage to using the frequency-domain
approach to implement the SSFT is that it is very simple to
use a frequency dependent window function. That is, for each
frequency sample, which may not even be uniformly spaced, a
different window function may be used. This can be done very

easily since the transform is computed independently for each

frequency sample. One simple example of this, which has
proven to be useful in image coding applications, is to wuse
non-overlapping rectangular bands which are of different sizes
in different portions of the frequency spectrum. This will be

discussed further is chapter 6.
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6. Application of the Short-Space Fourier Transform to

Intraframe Image Coding

6.1 Review of Transform Image Coding Techniques

The short-space Fourier transform, as described in
previous chapters, has proven to be very useful as a method of
transform image coding. With the correct choice of analysis
window, the SSFT has several properties which enable it to
perform better than traditionally used transform coding
techniques. Before describing the process of SSFT image
coding, the basic ideas of traditional transform coding will
be briefly reviewed.

The goal of any image coding system is to -encode an
image, using as few bits of information as possible, with the
smallest possible distortion between the original image and
the reconstructed image. In general, the measure of
distortion that is used to determine the performance of an
image coding system is the statistical mean squared error.
This error measure is a relatively good approximation of
visual error sensitivity and a mathematically simple one to
analyze.

There are a wide variety of techniques wused in the
field of image coding. One of the most successful of these 1is
transform coding. The usefulness of linear transformations in
image coding arises by modeling an image as a sample of a
two-dimensional random process. Specifically, it has been
experimentally determined that natural images are

approximately two-dimensional first-order Gauss-Markov
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processes. For any Gaussian process, it has been shown that,
given the correlation matrix describing the process, the
optimal method of scalar quantization involves first
performing a Karhunen-Loeve (K-L) transformation on the image
data, then quantizing using indepenent Max quantizers [17] on
each of the K-L coefficients. The number of bits wused to
quantize each coefficient must be, within an additive
constant, the base-two log of the standard deviation of that
coefficient [24]. The K-L transform serves to diagonalize the
correlation matrix of the signal. For a Gaussian random
process, this results 1in K-L coefficients which are
independent Gaussian random variables. If the process is not
jointly Gaussian, the K-L transformation is still the optimal
linear processing that can be applied prior +to independent
scalar quantization.

For a two-dimensional first order Markov process, the
K-L transform can be closely approximated by a two-dimensional
discrete cosine transform (DCT), provided that the correlation
coefficient of the signal is close to unity [1]. In fact, as
the correlation coefficient approaches unity, the K-~-L
transform becomes exactly the DCT. The DCT has an important
advantage over the K-L transform, in that a fast algorithm
exist for its computation [16]. For the general K-L
transform, no fast algorithm exists. For this reason, the DCT
is widely used in image coding systems.

To this point, it has not been explicitly stated over

what regions these transforms should be taken. There are
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several reasons to use many DCT's over small blocks of the
image rather than one large DCT over the entire image. The
first reason involves computational considerations. It is
more computationally efficient to perform many small DCT's
than it is to perform one large DCT. The 1loss in coding
performance resulting from the use of small transforms is not
extremely significant. This is due to the fact that widely
spaced picture elements (pels) have little correlation. Thus,
there is 1little to be lost by not accounting for this
correlation. The second reason for using block transforms. is
a more important one. The K-L diagonalization only takes into
account second-order statistics of the image. If the image is
not jointly Gaussian, it is possible to improve coding
performance by taking advantage of its true statistics. One
characteristic of natural images that would not be expected in
a jointly Gaussian process is the high probability that
concentrated regions of high detail and large smooth regions
with little detail will appear. This characteristic 1is not
accounted for by the K-L transformation. By wusing block
transforms, however, it is possible to quantize each Dblock
differently by noting the characteristics of the region that
the block covers [30]. This technique is known as adaptive
transform coding. A simple example is the categorization of
blocks into two types: smooth or detailed. This can be done
by a measure of variance, for example. The smooth blocks may
be assigned very few bits for quantization leaving more bits

free for use in the detailed regions. Adaptive techniques
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such as this generally perform well. A reduction of up to
two to one in data rate may be expected over non-adaptive
techniques for comparable distortion.

The most apparent problem with block transform coding

is that the boundaries of the blocks are often visible in the

reconstructed image. At very low data rates, the block

boundaries clearly stand out as the most obvious defect,
giving a tiled appearance to the image. Such artifacts are
generally referred to as blocking effects. The cause of
blocking effects can be explained in simple terms. When a
block of the image is reconstructed there is a resulting error
field which represents the difference between the
reconstructed block values and those of the original. The
values in this error field may be correlated with each other.
For example, a large error in a low-frequency term of the DCT
may result in a large tilt in the error function. However,
since each block is quantized independently, the resulting
error in adjacent blocks is independent. Since the error at a
pel at the edge of one block may be correlated with with the
error at an adjacent pel within its own block, but completely
independent of the error at an adjacent pel in another block,
it is relatively likely that there will be discontinuities in

the error field from block to block.

There are several approaches that have been taken in
the past to reduce the visibility of the Dblock boundaries.
One approach, discussed by Reeve and Lim [261[27], is based on

post-processing of the reconsructed 1image. This technique
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involves the use of a smoothing filter which is used only on
pels adjacent to a block boundary. In this way, the boundary
discontinuities are smoothed. The problem with this method is
that any details which happen to fall at a block boundary will
also be smoothed, resulting in a possible loss of resolution.
Other techniques that have been proposed involve
slight modifications on the block +transform method itself.
One technique of this type, also discussed by Reeve and Lim
[26]1[27], involves overlapping the transform blocks by one row
of pels along each border. In the reconstruction process, the
pels which overlap are averaged to arrive at their final
reconstructed value. This technique smooths any
discontinuities at the block boundaries while preserving the
detail in the original image along these boundaries. The
drawback to this method is that more data is required to
encode the 1image since each block contains redundant
information. Another technique involves a "two-component
source model" of images [18][19][29]1[31]. A low-frequency
component of the image is obtained first. 1In general, this is
accomplished by averaging over blocks and  bilinearly
interpolating. This may be transmitted directly in sampled
form by PCM or coded by a transform technique. The remaining
signal is then coded using ordinary block transform coding.
By removing the 1low-frequency component, the correlation
within the ©blocks will be reduced. After coding, the
resulting error field will also be less correlated within each

block. Thus the independence of the noise between blocks will
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not cause the block boundaries to be as visible as they would

otherwise be.

6.2 Image Coding Using the Short-Space Fourier Transform

None of the techniques mentioned in the previous
section completely eliminate blocking effects. They merely
reduce their visibility somewhat. With a specific choice of
analysis window, the critically sampled SSFT can be wused for
both adaptive and non-adaptive transform image coding and
completely avoid the problem of blocking effects. Before
discussing the relative advantages and disadvantages of the
proposed method in comparison to the <iraditional techniques,
the SSFT coding technique will be presented in detail.

The characteristics of the block DCT that make it
useful for adaptive image coding are that it approximately
decorrelates the 1image data, making it suitable for
independent quantization, and that it provides localized
information which can be exploited by adaption techniques. By
its very nature, the SSFT can also be wused to provide
localized information over an 1image. Using any analysis
window in which most of the energy 1is concentrated over a
central position, this property will be satisfied. The choice
of analysis window which provides a set of wuncorrelated
frequency coefficients can be determined by making the
following observation. In section 4.1 it was noted that the
SSFT can be interpreted as taking the slightly modified DCT

over the entire image, followed by windowing at the selected
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frequencies and performing inverse Fourier transforms at each
frequency. Since the entire image can be modeled as a first
order autoregressive process, as with the block DCT, the full
image DCT results in approximately decorrelated coefficients.
Noting this fact, it is clear that one choice of windows that
can be multiplied by the transform are non-overlapping
rectangular windows. From equation (4.7), taken for the
critically sampled case where R = M, it can be seen that the
frequency-domain window function WéNshould be of width 2L.
This ensures that the windowed bands of iZN do not overlap.
Since all of the frequency components are uncorrelated, and
the bands do not overlap, it is clear that the coefficients in
the resulting inverse Fourier transform, taken for each
windowed segment, will not be correlated with each other.
Since these bands correspond to the frequency components of
the SSFT, then, using this window function, it will provide a
set of uncorrelated coefficients at each spatial position.

Due to the need to use the minimum amount of data to
represent the signal, the exact choice of window function
should be that given by equation (5.16) for the critically
sampled case where Q = 2L.

As stated 1in section 5.2, the frequency-domain
implementation of the SSFT involves taking inverse Fourier
transforms over these bands of iéNwith the proper phase wrap.
After the transform, assuming the image is real valued, it was
stated that the values for one of the spatial variables 1is

needed for only half of the ordinary range. That is, the
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signal can be simply reconstructed from X(ME, Qg) over
0=Mn =N, 0SMyny=2N, for 0sk;=<iM;. Effectively, this
corresponds to using one quarter of the Fourier spectrum for
each block, but using blocks taken over a double-sized image.
This condition <can be related +to +the case of wusing a
real-valued window function of the form described 1in section
L.2. In this case, the Fourier spectrum would be symmetric in
such a way that only half of +the sample points, or two
quadrants, are needed in each block. However, these would
only be needed for blocks covering the original, unreflected
image. That is, O=M;n; =N;. If one considers the meaning of
the blocks in one of the other spatial quadrants, they simply
correspond to windows over the reflected image. Thus, for
each block in one spatial quadrant, there is a corresponding
block in the others which windows the same portion of the
image. Using one quarter of the frequency domain in two of
these corresponding blocks is equivalent to the other case
where two quarters of the each block are needed, but only from
blocks in one spatial quadrant.

To this point, all that has been shown about the SSFT
and its use in image coding 1is that it provides the same
qualities as the block DCT. That is, it provides localization
and decorrelation. There are, however, several important
advantages to using the SSFT. The most important of these 1is
the complete elimination of blocking effects. The most
apparent reason for the lack of blocking effects is that the

window functions are smooth and overlapping. Thus the
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transition from one "block" to the next is gradual. It was
stated previously that the cause of blocking effects was the
non-stationary characteristic of the quantization noise. That
is, the noise may be correlated within a block, but between
blocks it will be independent. Quantization of the SSFT
coefficients can be viewed as adding noise 1in independent
bands of a bank of ideal bandpass filters. Since the Dbands
are non-overlapping, the resulting noise field is obtained by
simply summing the noise components from each band. Viewing
the coding process in this way, it is clear +that the noise
will be stationary over all positions, within or between
"blocks," and no blocking effects can occur.

A second advantage of the SSFT 1is that it provides
better energy compaction. This can be seen by considering how
the SSFT is formed. The first step is to perform a DCT of the
entire image. This closely approximates the K-L transform
which provides the best decorrelation and compaction of any
unitary transformation. Since the frequency bands of the SSFT
are simply the successive, non-overlapping bands of the DCT,
the energy within each band must be the maximum possible for
any localized transform. All other localized transforms can
also be expressed in terms of the DCT of the entire image. But
these must all have cross terms which serve to reduce the
energy in the low-frequency components and increase the energy
in the high-frequency components, thus poorer compaction will

result.
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Another advantage of the SSFT is its insensitivity to
the correlation coefficient of the image. It has been shown
that for a relatively large image, the DCT closely
approximates the K-L transform for nearly any value of the
correlation coefficient. Small DCT's however, are poor
approximations for values of the correlation coefficient not
very close to unity [6]. The decorrelation c¢f the SSFT
depends only on the decorrelation of the DCT of the entire
image since the bands are non-overlapping in this domain. As
a result, the SSFT coefficients will maintain good
decorrelaticn for any value of the correlation coefficient.
In chapter 7, this property will be shown to be of value for
interframe coding.

The final advantage of the SSFT is that, 1like a
Fourier transform, it can be defined in terms of magnitude and
phase components. Natural images are often composed of
objects with sharp edge features. It has been noted that
Fourier transform phase is more important in accurately
representing these edge features than is magnitude. Since the
SSFT is simply a windowed Fourier transform, the same property
applies. For Fourier transform coding of natural images, it
has been determined that by coding the phase component with
one bit more than the magnitude results in improved
performance over independent quantization of the real and
imaginary parts [4]. Since the SSFT coefficients can also be
separated into phase and magnitude, this method can also be

used to improve its coding performance. The DCT does not have
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the property of separability into phase and magnitude and thus
the coding performance cannot be improved by using this
technique.

As with the block cosine transform, there 1is an
inherent trade-off in determining the proper choice of "block"
size. For the SSFT, block size refers to the spacing between
samples of the SSFT in the spatial domain. The basis for this
trade-off can most easily be seen in the frequency domain.
The variance of each coefficient in izufor a typical set of

images is shown below.
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The blocks indicate cne possible choice of window function
width. By taking the inverse Fourier transforms over each
windowed segment, the result is a spatial domain function with
samples representing each spatial block of the SSFT. It is in
the spatial domain that one can take advantage of the
adaptability for coding. That is, it is possible to send few

bits for those spatial regions that are smooth and many bits
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in those that are detailed. If the frequency bands are
widened, this corresponds to making the spacing of the blocks
tighter. Since it is then possible to adapt to more rapid
changes in the signal characteristics, the adaptability can be
improved. One loss in doing this, however, is that, since the
total number of blocks increases, more overhead information is
needed to transmit the adaption information. Disregarding the
effect of overhead, there is still an important factor which
limits the minimum spacing of the blocks. Taking the inverse
Fourier transform over each band "recorrelates" the
coefficients within the band. The decorrelation and
compaction occurs strictly between the bands. Thus, the wider
the bands Dbecome, the less overall decorrelation and
compaction that can be exploited. For the advantages of
adaption, and decorrelation and compaction, a compromise
window size must be used.

One important fact regarding the trade-off 1is that
this "recorrelation" occurs differently at different
frequencies. In +the high-frequency range, the transform
coefficients have relatively constant variance. This can be
seen by the flatness of the high-frequency portion of the
variance pattern shown above. As a result of this flatness,
the inverse Fourier transforms produce coefficients which are
still relatively uncorrelatad. That 1is, the high-frequency
components have very little correlation from one block to the
next. In the very low frequencies, however, the slope of the

spectrum is very steep. The inverse Fourier transforms in
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this region of the spectrum will therefore produce
coefficients which are highly correlated. That 1is, the
low-frequency components of the SSFT may be highly correlated
from block to block.

One simple way to account for this effect is to divide
the frequency scale into two regions, where the bandwidth used
in each region is different. If narrow bands are used for the
low frequencies and wide bands are used for the high
frequencies, the overall performance can be improved. By
using narrow bands for the low-frequency coefficients, the
high degree of compaction in this region can be exploited.
Since the low-frequency components of most images are more
uniformly distributed than the high-frequency components,
there is very little that could be gained by wusing a high
degree of adaption for these frequencies. But there 1is much
to be gained by using the additional compaction. In the high
frequencies, wide bands can be used in order to provide
adaptability to rapid variations in the amount of image
detail. Since the high-frequency portion of the spectrum 1is
relatively flat, the low correlation of the high-frequency
SSFT components between blocks may be maintained. It can be
noted that this approach 1is similar to the two-component
coding procedure discussed earlier. One choice for the two
windows, which was used in the example images presented in the
next section, is to wuse one by one bands in the lowest
frequency block. Thus each point in what would otherwise be

the lowest frequency band is coded independently.
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It is not practical to vary the size of the bands over
the entire range of frequencies. This is true since, for each
group of frequencies with a specific Dblock size, separate
adaption information must be sent. If few frequency bands
have a common width, or if all are of different widths, the
amount of overhead information required would be wunreasonably

high.

6.3 Experimental Results

In order to demonstrate the effectiveness of the SSFT
for low data rate image coding a comparison was made between
block DCT coding and SSFT coding. To demonstrate the
elimination of blocking effects, the same 256x256 pel image
was first coded non-adaptively at a data rate of 0.35 bit/pel
using each of the two methods described above. The DCT coder
involved using 16x16 blocks of the image. The log-variance
procedure was used to determine the proper bit assignment, and
the coefficients were quantized with the optimal Max quantizer
for Gaussian random variables [17]. The DC coefficient for
each block was quantized with a uniform quantizer.

The SSFT coding was performed using a sample spacing
of 16x16 pels. The SSFT coefficients were coded as phase and
magnitude, using one extra bit for phase on each coefficient.
The phase was quantized using a uniform quantizer and the
magnitude was quantized using a Max quantizer for a Rayleigh
random variable. The lowest band of frequencies was coded

directly in the frequency domain of the entire 1image as
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discussed in section 6.2. These coefficients were quantized
using a Gaussian Max quantizer.

Figure 6.1 shows the original 256x256 test image.
Figure 6.2 shows the DCT coded image and figure 6.3 shows the
SSFT coded image. The signal-to-noise ratio of the DCT coded
image was found to be 20.0 dB while that of the SSFT coded
image was 21.3 dB. The most noticeable difference between the
two images is the complete laci: of blocking effects in the
SSFT coded image. The increase in SNR of 1.3 dB can be
attributed to several factors. One such factor is the coding
of phase with one extra bit. Since the test 1image has a
number of sharp edge features, the extra accuracy in the phase
provides better alignment of the edges, thus improving the
SNR.

To show that the SSFT lends itself well to adaptive
coding techniques, a second SSFT coded 1image was produced.
The method of adaption implemented is similar to that used by
Wintz for block transform coding. Each SSFT block 1is coded
with one of four possible bit and quantization assignments.
The category that each block is put into is determined by a
measure of the total energy within each of the +two frequency
quadrants corresponding to a particular spatial position. The
energy in each quadrant is compared to a threshold and the
result determines into which of the four categories the block
should be placed. The bit and quantization assignment for
each category 1is determined by wusing the log--variance

procedure on the blocks in a test image which fall in that
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category. By adaﬁting, not only for the overall energy of a
block, but also for the relative energy in the two quadrants
of the frequency domain, variations in directionality as well
as in detail are accounted for. Figure 6.4 shows the test
image coded at a data rate of 0.29 bit/pel, a lower data rate
than was used for the previous examples. The image was found
to have a signal to noise ratio of 22.0 dB. This clearly
demonstrates that the SSFT can be successfully used for

adaptive coding.
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Figure 6.1 - The original 256x256 image.
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Figure 6.2 - Non-adaptive DCT coded at 0.35 bit/pel.
SNR = 20.0 dB.
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Figure 6.3 - Non-adaptive SSFT coded at 0.35 bit/pel.
SNR = 21.3 dB.
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7. Application of the Short-Space Fourier Transform
to Interframe Image Coding

7.1 Review of Interframe Image Coding Techniques

t is often the case that images to be encoded do not
result from single, still images, but instead are part of a
sequence of related images. For example, 1in broadcast
television or video conferencing applications, each frame in a
sequence is, in general, only slightly different from the
previous frame. By accounting for the similarities between
frames, it is possible to greatly reduce the amount of data
required for transmission from what would otherwise be
required. There are a wide variety of techniques that have
been used in the past to perform efficient interframe coding.
In this section, only those methods which involve transform
coding will be reviewed. In the following section, it will be
shown that the SSFT can be used with all of these techniques
in order to prevent blocking effects.

In interframe coding, high efficiency is achieved by
accounting for the. correlation in both the spatial and
temporal dimensions. One approach that has been successfully
demonstrated is that of directly extending the method of block
transform coding to three dimensions [24][28]. That 1is, by
thinking of an image sequence as simply a three-dimensional
random process, the correlation in all three dimensions can be
exploited by using a three-dimensicnal block transform such as
a DCT. This technique can be made to provide excellent coding

efficiency. However, there are two problems which make this
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method much less practical than others. First, all of the
frames corresponding to the width of one block in the time
dimension must be simultaneously stored before the encoding
process can Dbegin. For a fairly high resolution image
sequence, this may require an extremely large amount of
storage, making the cost of such a system very high. Second,

because all of these frames must be stored before the blocks

are coded and transmitted, there may be a sizable delay from
the source to the destination. For one-way transmission such
delays are acceptable. However, for two-way transmission,
such as video conferencing, long delays are not tolerable.

The remaining techniques avoid these two problems by
coding each frame using only knowledge of the single previous
frame. In this way, only one frame need be stored at a time,
and the delay can be made arbitrarily small, depending only on
the computation time. The first of these methods is referred
to as selective replenishment. In such a system, the image is
first divided into blocks. The total error between each block
and the corresponding block from the previosly transmitted
frame is measured and compared to a threshold. If the error
is less than the threshold, this means that there was very
little change in the contents of the block since it was last
sent, and thus does not need to be updated. All that is sent
in this case would be the proper code informing the receiver
that the block will not be updated. If the error is above the
threshold, implying that a large change between frames, then

the new block must be transmitted. Generally this is done by
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block transform coding the new block. Since successive frames
of a sequence often change only slightly, and often only 1in
isolated areas, only a small percentage of the total number of
blocks will need to be updated at each frame, thus the total
amount of data that is sent may be very small.

Another technique for interframe coding is referred to
as hybrid transform/DPCM coding [10][11]. As implied by its
name, this technique employs differential coding in the time
dimension combined with transform coding in the spatial
dimension. Hybrid coding is very similar to selective
replenishment coding. The difference between the two methods
involves the way the blocks are updated. In selective
replenishment, the actual updated blocks are transform coded
and transmitted, while in hybrid coding, what 1is transmitted
is the transform coded difference signal between a block to be
updated and the previously transmitted block.

The operation of a hybrid coder can be viewed as
involving a simple, fixed, linear predictor to predict the
value of each frame from its predecessor. The predicted value
at each pel is simply the value of the corresponding pel in
the previous frame. It has been noted that in natural images,
successive frames often consist of the same objects, moved
non-uniformly in position. Instead of using a fixed predictor
directly along the time axis, it is possible to use a variable
predictor along the local direction of motion. This technique
is known as motion compensation [(12]1[15]1[=0]. One

implementation of this method involves first estimating a
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single motion vector for each block of the 1image. The next
frame is predicted using the pel values from the previous
frame projected in the direction of motion. Since the
prediction will in general be much better that for the DPCM
system, the energy in the error signal will be greatly
reduced, thereby greatly increasing coding efficiency. For
each block, the value of the motion vector must be transmitted
as overhead information. However, since natural images
closely fit the motion-compensation model, the savings 1in
coding the error signal greatly outweighs the expense of
sending the motion vectors. A further advantage of motion-
compensation coding is that it is possible to use lower frame
rates than would be practical in the other coding techniques.
For the other methods, if the frame rate is very 1low, the
image will appear "jerky." It is possible to 1linearly
interpolate between frames to remove this jerkiness. h»wever,
this results in blurring of the image. If motion compensation
is used, interpolation can easily be done in the direction of
the motion with little additional computation since the motion
vectors are already known to the receiver. This results in a
smooth transition between frames, even at very low frame rates

[12].
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7.2 The Use of the Short-Space Fourier Transform in
Interframe Coding

By using block transform coding with all of these
methods, blocking effects cannot be avoided. In moving
sequences, blocking effects are -especially annoying since,
except for the motion-compensation technique, the Dblocks
remain stationary while the image appears to move behind them,
creating a "dirty window effect." 1In the same way that the
SSFT was used to eliminate Dblocking effects in intraframe
coding, it can also be used in interframe coding. In each of
the four interframe transform coding techniques described in
section 7.1, the SSFT can be substituted for the block
transform.

For the case of three-dimensional transform coding,
the SSFT cannot be used directly as defined in chapter 3. The
signal to be coded is of finite extent in the two spatial
dimensions and of infinite extent in +the time dimension.
Since the multidimensional transform can be defined in a
separable manner, it is possible to use the SSFT in the two
spatial dimensions and the STFT in the time dimension. This
implies that a finite extent window function must be wused in
the time dimension. In order to compute this portion
efficiently, the overlap-add or overlap-save techniques for
polyphase filtering must be used, as discussed in chapter 2.
While the performance of such a system would be very good, and
blocking effects would be absent, the problems of the

three-dimensional transform method discussed in section 7.1
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are significantly worse with the SSFT. That 1is, if the
analysis window is long in the time dimension, more frames of
the image need to be stored simultaneously than for the block
transform case. This further increases the memory
requirements and the delay. One possible alternative to this
approach 1is to 1implement a three-dimensional transform
consisting of the SSFT in the spatial dimensions and the DCT
in the time dimension. In this way, blocking effects will be
avoided while the total amount of storage need not be any
larger than for the three-dimensional DCT approach.
Application the SSFT to a selective replenishment
system is straightforward. The frequency spectra at the
sample positions of the SSFT are updated rather than the
actual spatial blocks. Because the analysis windows localize
the signal, only those samples close to areas of large change
in the signal will generally need to be updated, thus
selective replenishment can still be used. Similarly, 1in a
DPCM system, the difference between the SSFT coefficients at a
particular location and the coefficients for that location
that were previously transmitted is sent to update the block.
Finally, the SSFT can also be used in similar fashion
in a motion-compensated coding system. Such a system would
operate by first making the motion-compensated prediction,
generating the error image, and coding the resulting 1image
using the SSFT, selectively transmitting the SSFT coefficients

only at location of high energy in the error signal.
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7.3 Experimental Results

In order to determine the performance of interframe
coding systems using the SSFT, several experimental
simulations were performed. The DPCM and motioh—compensation
techniques, as described above, were implemented wusing both
the block DCT and the SSFT. The coding was done wusing a
128x120, 15 frame per second original image sequence. All of
the simulated coding systems, were operating at a constant
data rate of 56 Kbits/second. In the coding process, only
alternate frames were transmitted, resulting in an actual
frame rate of 7.5 frames per second. The intermediate frames
were reconstructed at the receiver by interpolation. For the
DPCM case, the interpolation simply involved averaging of the
two surrounding frames. For the motion-compensation case,
however, the transmitted motion vectors were used to perform
motion-compensated interpolation.

For both the DCT and SSFT coders wusing DPCM, a
constant data rate was achieved by updating a fixed number of
blocks in each frame. For both cases, this was approximately
twenty percent of the total number of blocks. The block size
used was 8x8. Figure 7.1 shows the basic structure of the
DPCM transmitter. The corresponding receiver 1is shown in
figure 7.2. For each incoming frame, the transform 1is
performed over the image and the difference is taken between
the resulting transform coefficients and those of the
reconstructed previous frame. The total energy in each block

is then computed. The blocks are sorted by energy and only
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the highest twenty percent of the blocks are updated. Of the
blocks transmitted, adaption is used to ©provide a further
improvement in performance. The blocks are divided into four
categories depending on their energies. In each of the four
categories, a different bit assignment is wused so that the
most bits are assigned to the blocks with the largest error.
To ensure a constant data rate, a fixed number of Dblocks are
placed in each category. In order to account for both periods
of inactivity and periods of rapid motion, the scaling of the
quantizers is also adapted on the basis of the average energy
of the blocks in each category.

For both transforms the low-frequency inrormation was
coded separctely. For the DCT coder, the two-comvonent source
coding method [18][19][29]1[31], as described is section 6.1,
was used. The block averages were coded using PCM, vupdating
twenty five percent of these coefficients per frame. In the
coding process, the bilinearly interpolated low-frequency
comporents are subtracted from the image before the DCT coding
begins. For the SSFT coder, frequency-dependent window
functions were used, as discussed in section 6.2 and 6.3. For
tae lowest frequency band, rather than using one-by-one blocks
as was used in the intraframe coding experiments, narrow bands
were used which correspond to spatial block sizes of 32x32.
This was done in order to allow for selective wupdating of
coefficients. Again, only twenty five percent of these

low-frequency blocks were updated in each frame.
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In the motion-compensated coders, the method used to
code the error signal is identical to that described above.
The difference between the two coders is the addition of a
motion-compesated predictor. The basic form of the
motion-compensated transmitter is shown in figure 7.3. Figure
7.4 shows the corresponding reciever. Because of the fact
that the motion compensation must be performed in the spatial
domain, the additional computation of an inverse transform in
the predictor loop is required. The motion estimation is done
using an iterative technique based on the steepest-descent
minimization algorithm [12][21]. Motion vectors are estimated
using 4x4 blocks of the image. For each block, only a single
vector is computed. In order to prevent discontinuities, the
vector field is interpolated using a raised-cosine
interpolation filter. The interpolated vector field 1is then
used to generate the motion-compensated prediction which 1is
subtracted from the incoming frame +to produce the error
signal. In order for the reciever to perform the motion
compensation on the transmitted frames, the motion vectors
must be coded and transmitted as overhead information.
Because there is often a high degree of correlation in the
motion vector field, it is possible to reduce the amount of
data needed to transmit these vectors from what would be
required if PCM were used to independently code each vector
[12]. In the experimental system demonstrated here, adaptive
transform coding was employed for this purpose. Specifically,

the horizontal and vertical components of +the 1initial 32x32
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vector field are coded using 8x8 block DCT's. The adaption is
done by dividing these blocks into two groups, based on their
total energy, and quantizing the blocks in each group using a
different Dbit assignment. As stated above, 1intermediate
frames were generated by interpolation in order to 1increase
the frame rate to the original 15 frames per second. For the
motion-compensated coders, this was done by using the motion
vectors to generate an image moved half the distance used to
generate the prediction image.

The four coding systems described above were simulated
using 150 frames, or ten seconds, of an 1image sequence
consisting of a head-and-shoulder subject. In order to account
for the lack of an initial coded frame at the beginning of the
sequence, a blank frame was used for this purpose and the
coder was allowed to settle by repeating the first frame in
the sequence twenty times before ﬁhe remainder of the sequence
was coded. For the DPCM coders, the resulting signal-to-noise
ratios are plotted in figure 7.5 as a function of frame
number. For clarity, the SNR's of the interpolated frames are
not shown in the plot. Figure 7.6 shows the same comparison
for the motion-compensated coders.

The sequence that was coded consisted of a period of
inactivity (until approximately frame 10) followed by a period
of moderate motion (from frame 10 to frame 70) and a period of
extreme motion (after frame 70). From these plots it can Dbe
seen that for both the DPCM and the motion-compensated

coders, the SSFT performed better than the DCT in the period
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of inactivity, approximately the same as the DCT in the
moderate motion period and worse than the DCT in the periods
of high motion. From the characteristics of the DCT and the
SSFT it is easy to explain this behavior. In the region of
little motion, the error signal to be coded has very 1little
energy. In addition, it has been found that as the error

signals become smaller, the amount of spatial correlation also

decreases. In fact, for +the motion-compensated coder, the
correlation coefficient may drop to nearly 0.55. It was noted
earlier that the DCT does not closely approximate the optimal
K-L transform for low-correlation signals [6]. However, the
SSFT coefficients remain nearly uncorrelated for any value of
correlation coefficient. This effect seems to explain the
excellent performance of the SSFT in periods of inactivity.
The poor performance of the SSFT during periods of extreme
motion can also easily be explained. This 1s due to the
spatial extent of the SSFT window functions. In Dbackground
regions of the image, where there is very little change from
frame to frame, one would expect that the blocks would rarely
need updating. However, due +to the fact that the window
functions for these blocks extend into the regions of motion,
there will be a small, but finite error introduced into these
blocks by changes elsewhere in the image. Because of this,
these blocks need to be updated more frequently than would be
expected, using some of the data that could be used elsewhere.
Since the basis functions of the DCT do not extend past the

block boundaries, this problem is avoided.
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In order to more clearly demonstrate the relative
performance of the simulated coding systems, several frames
from each sequence are shown. In Figure 7.7 the fifth frame
from each of the four coding techniques is shown. This frame
demonstrates the superior performance of the SSFT in regions
of relative inactivity. The two frames from the DCT coded

sequences are clearly noisier than those from the SSFT

sequences. The next set of images, taken from frame 43 of
each of the sequences, demonstrates the relative performance
in a region of moderate motion. This is shown ir figure 7.8.
There is very little visible difference between the images
using the DCT and those wusing the SSFT. Figure 7.9,
consisting of images taken from frame 91 of the four sequences
clearly shows the poorer performance of the SSFT for periods
of extreme motion. For both the DPCM and motion-compenstated
coders, the noise within the area of motion 1is approximately
the same for both the DCT and the SSFT. The main difference
being the noticeable lack of blocking effects in the SSFT
coded images. However, in the background regions there is
clearly much more noise in the SSFT coded images. In Jdition
to the effect indicated above, the fact that the noise is
distributed into the Dbackgrounds is also due to another
factor. Another result of the large spatial extent of the
window functiocns is that the background regions contain a
small amount of information from the blocks in the regions of
motinn. In these blocks, there may be large quantization

errors introduced in the coding process. After the inverse
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SSFT is takgn, a small amount of the error in these blocks 1is
redistributed into the background areas.

To further demonstrate the coding perfcrmace, frame 5
and frame 73, from the motion-compensated coding simulation
only, are compared. These frames represent the two extremes
of motion: frame 5 occurs in a period of nearly complete
inactivity while frame 73 occurs in the most active portion of
the sequence. Figure 7.10 shows all four of these frames.
These images further emphasize the relative advantages and
disadvantages of the two coding techniques. In order to allow
for more detailed inspection of these images, they are
individually repeated in a much larger format in figures
T11=7.14.

It seems from these results that, for interframe
coding, the SSFT does not provide the overall increase in
performance over the DCT that was hoped. The SSFT does have
the advantages of improved performance in periods of
inactivity and the complete elimination of blocking effects.
However, the poor image quality in periods of rapid motion

make its overall performance lower than the that of the DCT.
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Figure 7.7 - Frame 5 from each of the four coded sequences.
Top left: SSFT/motion compensation.

Top right: DCT/motion compensation.

Bottom left: SSFT/DPCM.

Bottom right: DCT/DPCM.
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Figure 7.8 - Frame 43 from each of the four coded sequences.
Top left: SSFT/motion compensation.

Top right: DCT/motion compensation.

Bottom left: SSFT/DPCM.

Bottom right: DCT/DPCM.
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Figure 7.9 - Frame 91 from each of the four coded sequences.
Top left: SSFT/motion compensation

Top right: DCT/motion compensation.

Bottom left: SSFT/DPCM.

Bottom right: DCT/DPCM.
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Figure 7.10 - Frames 5 and 73 from each of the
motion compensation coded sequences.

Top left: SSFT/motion compensation, frame 5.

Top right: DCT/motion compensation, frame 5.
Bottom left: SSFT/motion compensation, frame 73.
Bottom right: DCT/motion compensation, frame 73.
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Figure 7.11 - Frame 5 from the SSFT/motion compensation
coded sequence.
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Figure 7.12 - Frame 5 from the DCT/motion compensation
coded sequence.
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Figure 7.13 - Frame 73 from the SSFT/motion compensation
coded sequence.
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Figure 7.14 - Frame 73 from the DCT/motion compensation
coded sequence.
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8. Conclusions

This thesis has demonstrated the value of the
short-space Fourier transform for several applications. The
properties of the SSFT were presented, along with a fast
algorithm for its computation. It was shown that the SSFT
could be wused for intraframe 1image coding with better
performance than traditional transform methods. Specifically,
it can improve coding accuracy and completely eliminate
blocking effects. Moreover, it has been demonstrated that the
SSFT can also be used for interframe coding in order to avoid
blocking effects. However, due to the spread of the SSFT
basis functions, the overall performance of the SSFT
interframe coding systems implemented was slighly poorer than

that of traditional coding techniques.

As a suggestion for further research, it would be
desirable to correct the one major flaw with the SSFT for
purposes of interframe image coding. That 1is, the coding
efficiency could be much improved by using a transform with
basis functions that do not extend throughout the image. If
the basis functions only extend into the surrounding blocks,
for example, this problem would be avoided. If +these Dbasis
functions smoothly overlapped between adjacent blocks, then
such a transform would still avoid the problem of blocking
effects.

Another possible area of future research includes
further investigation into the uses of the SSFT for linear

filtering. It has not yet been demonstrated, for example, if
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the SSFT could successfully be used for image restoration or

motion compensation applications.



(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

105

REFERENCES

N. Ahmed, T. Natarajan and K.R. Rao, "Discrete Cosine
Transform," IEEE Transactions on Computers, Vol. C-23
NOQ 1 ? pp- 90-93’ Jano 1974.

J.B. Allen, "Short-Term Spectral Analysis, Synthesis and
Modification by Discrete Fourier Transform," IEEE
Transactions on Acoustics, Speech and Signal Processing,
Vol. ASSP-25, No. 3, pp. 235-238, June 1977.

J.B. Allen and L.R. Rabiner, "A Unified Approach to
Short-Time Fourier Analysis and Synthesis," Proceedings
IEEE, Vol. 65, No. 11, pp. 1558-1564, Nov. 1977.

H.C. Andrews and A.G. Tescher, "The Role of Adaptive
Phase Coding in Two and Three Dimensional Fourier and
Walsh Image Compression," Proceedings of the Walsh
Function Symposium, Washington DC, March 1974.

M. Bellanger and J.L. Daguet, "TDM-FDM Transmultiplexer:
Digital Polyphase and FFT," IEEE Transactions on
Communications, Vol. COM-22, No. 9, pp.1199-1205, Sept.
1974 .

R.J. Clark, "Performance of Karhunen-Loeve and Discrete
Cosine Transforms for Data Having Widely Varying Values
of Intersample Correlation Coefficient," Electronic
Letters, Vol. 19, No. 7, pp. 251-253, March 31, 1983.

R.E. Crochiere and L.R. Rabiner, Multirate Digital
Signal Processing, Englewood Cliffs, NJ: Prentice Hall,
1983.

D.E. Dudgeon and R.M. Messereau, Multidimensional
Digital Signal Processing, Englewood Cliffs, NJ:
Prentice Hall, 1984.

A. Gersho, "Characterization of Time-Varying Linear
Systems," Proceedings IEEE, p. 238, Jan. 1963.

A. Habibi, "Hybrid Coding of Pictorial Data," IEEE

Transactions on Communications, Vol. COM-22, No. 5,
pp. 614-624, May 1974.

A. Habibi, "An Adaptive Strategy for Hybrid Image
Coding," IEEE Transactions on Communications, Vol.
COM-29, No. 12, pp. 1736-1740, Dec. 1981.

B.L. Hinman, "Theory and Applications of Image Motion
Estimation," MSEE Thesis, MIT, May 1984.



[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

106

B.L. Hinman, J.G. Bernstein and D.H. Staelin, "Short-
Space Fourier Transform Image Processing," Proceedings
International Conference on Acoustics, Speech and Signal
Processing, San Diego, CA, pp. 4.8.1-4.8.4, March 1984.

A.K. Jain, "Image Data Compression: A Review,"
Proceedings IEEE, Vol. 69, No. 3, pp. 349-389, March
1981.

J.R. Jain and A.K. Jain, "Displacement Measurement and
its Application to Interframe Image Coding," IEEE
Transactions on Communications, Vol. COM-29, No. 12,
pp. 1799-1808, Dec 1981.

B.G. Lee, "FTC-A Fast Cosine Transform," Proceedings
International Conference on Acoustics, Speech and Signal
Processing, San Diego, CA, pp. 28A.3.1-28A.3.4, March
1984.

J. Max, "Quantizing for Minimum Distortion," IRE
Transactions on Information Theory, Vol. IT-6, No. 1
pp. 7-12, March 1960.

A.Z. Meiri, "The Pinned Karhunen-Loeve Transform of a
Two-Dimensional Gauss-Markov Field," Proceedings SPIE
Conference on Image Processing, San Diego, CA, 1976.

A.Z. Meiri and E. Yudilevich, "A Pinned Sine Transform
Image Coder," IEEE Transactlons on Communications, Vol.
COM-29, No. 12, pp. 1728-1735, Dec. 1981.

A.N. Netravali and J.0. Limb, "Picture Coding: A
Review," Proceedings IEEE, Vol. 68, No. 3, pp. 336-406,
March 1980.

A.N. Netravali and J.D. Robbins, "Motion-Compensated
Television Coding: Part 1," Bell Systems Technical
Journal, Vol. 58, No. 3, pp. 631-669, March 1979.

H.J. Nussbaumer, "Polynomial Transform Implementation of
Digital Filter Banks," IEEE Transactions on Acoustics,
Speech and Signal Processing, Vol. ASSP-31, No. 3,
pp. 616-622, June 1983.

M.R. Portnoff, "Time-Frequency Representation of Digital
Signals and Systems Based on Short-Time Fourier
Analysis," IEEE Transactions on Acoustics, Speech and

Signal Processing, Vol. ASSP-28, No. 1, pp. 55-69, Feb
1980.

W.K. Pratt, Digital Image Processing, New York: Wiley,
1978.




[25]

[26]

[27]

[28]

[29]

[30]

[31]

107

L.R. Rabiner and R.W. Schafer, Digital Processing of
Speech Signals, Englewood Cliffs, NJ: Prentice Hall,
1978.

H.C. Reeve, "Reduction of Blocking Effect 1in Image
Coding," MSEE Thesis, MIT, Jan. 1983.

H.C. Reeve and J.S. Lim, "Reduction of Blocking Effects
in Image Coding," Proceedings International Conference
on Acoustics, Speech and Signal Processing, Boston, MA,
pp. 1212-1215, April 1983.

J.A. Roese, W.K. Pratt and G.S. Robinson, "Interframe
Cosine Transform Image Coding," IEEE Transactions on
Communications, pp. 1329-1339, Nov. 1977.

J.M. Schumpert and R.J. Jenkins, "A Two-Component Image
Coding Scheme Based on Two-Dimensional Interpolation and
the Discrete Cosine Transform," Proceedings
International Conference on Acoustics, Speech and Signal
Processing, Boston, MA, pp. 1232-1235, April 1983.

P.A. Wintz, "Transform Picture Coding," Proceedings

J.K. Yan and D.J. Sakrison, "Encoding of Images Based on
a Two-Component Source Model," IEEE Transactions on
Communications, Vol. COM-25, pp. 1315-1322, Nov. 1977.




