FAST ALGORITHMS FOR VECTOR QUANTIZATION PICTURE CODING
h-y.
WILLIAM HOWARD EQUITZ

B.S. Mathematics, Massachusetts Institute of Technology
(1983)

Submitied to the
DEPARTMENT OF ELECTRICAL ENGIVEERING AMD COMPUTER SCIENCE
in partial tulfillment of the requirements
FOR THE DEGREE OF
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1984

© William Howard Equitz, 1584

The author hereby grants to MIT permission to reproduce and to
distribute publicly copies of this thesis document in whole or in part.

Signature of Author:) ~
Department of Electrical Engineerhﬂ and q«gmwtu Science, May 4, 1984
Certified by:
Dr. Jae S. Lia, MIT
Certified by: et LY e
" - Dr. Scott G-—lgxmucry}fl”mu; Laboratories
Accepted by: —
e e e T Dr. Arthur C. Smith
[T PRI SRR SN L T
OF MLCARULGU Y
AUG 2 4 1984
LIBRARIES

Krehives

FAST ALGORITHMS FOR VECTOR QUANTIZATION PICTURE CODING

by
WILLIAM HOWARD EQUITZ

Submitted to the Department of Electrical Engin=ering and Computer Scence
on May 4, 1984 in partial fulfillraent of the
requirements for the Degree of Master of Scence in

Blectrical Engineering
ABSTRACT

This research involves improving the method by which pictures can be coded using vector
quantization. Section 2 will detail the background of vector quantization, and describe previous
work in which vector quarization was used for speech and picture coding; section 3 will describe
theoretical advances made during the investigation of this topic; section 4 will describe
experimental results performed in the context of vector quantization picture coding; and section S,
conclusians.

Theoretical advances made include the following. A multi-dimensional data structure (k-d trees,
developed by Bentley) was determined to be an appropriate way to allow searching in logarithmic
time. Various metheds of reducing vector dimensionality to improve search speed were
investigated. Several implementations of a novel "clustering” algorithm were developed to derive a
codebook from a set of training data in a fraction of the time previously required, without
sacrificing performance.

Thesis Supervisor (Academic): Dr. Jae S. Lim

Title: Associate Professor of Flectrical Engineering and Computer Science
Thesis Supervisar (AT&T Bell Laboratories): Dr. Scott C. Knauer

Title: Head, Digital Architectures Research Department

1. INTRODUCTION

2. VECI’ORQUAN'IIZATIQ‘I .
2.1 Theory
2.1.1 General 10
2.1.1.1 Description 10
2.1.1.2 General References 12
2.1.2 History 12
2.1.2.1 Motivations 13
2.1.2.2 LBG Algorithm 13
2.1.3 Variations 16
2.1.3.1 Tree Codebooks 16
2.1.3.2 Vornoi Cell Searches 17
2.1.3.3 Product Codes 18
2.1.3.4 Muitistage Codebooks 19
2.1.3.5 Segmented Codebooks 19
2.1.3.6 Vector Quantization in the Transfarra Domain 20
2.1.3.7 VectoernnmmmManory 2
2.2 Applications
2.2.1 wApphcauam 21
2.2.1.1 Coding 21

2.2.1.2 Speech Recognition 21
2.2.2 Picture Applications 21

3. THEORETICAL IMPROVEMENTS . . .
3.1 Multidimensional Searching with K-d Trees :
3.1.1 The Search Problem 23
3.1.1.1 Pattera Maiching 24
3.1.1.2 Multidimensional Nearest Neighbor Search 24
3.1.2 K-d Trees 25
3.1.2.1 Sgucture 25
3.1.2.2 Building a K-d Tree 27
3.1.3 Solution: Full Search Algorithm 28
3.1.3.1 Algorithmic Details 29
3.1.3.2 The Problem of Too Many Dimensions 30
3.1.3.3 Computed Keys 31
3.1.3.4 Computational Tricks 32
3.2 Nearest Neighbor Searching . ..
3.2.1 Qlustering 33
3.2.1.1 Codebook generation is Clustering 33
3.2.1.2 LBG and the K-means clustering algorithm 33
3.2.2 Nearest Neighbor (NN) Clustering 34
3.2.2.1 Motivation 34
3.2.2.2 Mathematical Justification 35
3.2.3 Variations of NN Clustering 37
2.2.3.1 Spherical Search 38
3.2.3.2 Yuval Search 39
3.2.3.3 Simple Search 40
3.2.4 NN as LBG startup 40

10
10

21

23

32

3.2.5 Theoretical Advantages of NN over LBG 41

4. PERFORMANCE TESTS . .

4.1 K-d Tree Search in LBG Alganthm

4.1.1 K-d Tree Search Speed vs. Exhaustive Search Speed 42

4.1.2 Computed Keys for Searching 43
4.2 Nearest Neighbor Search

4.2.1 NN Speed vs. LBG Speed 44

4.2.2 NN Quality vs. LBG Quality 45
4.2.2.1 Numerical Pixel Error 45
4.2.2.2 User Perceived Exror 46

4.2.3 NN Codebooks vs. LBG Codebooks 49

4.2.4 NN as LBG Startup 49

4.2.5 Performance Outside Training Set 50

5. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH
6. REFERENCES
7. APPENDICES . . .

7.1 Algorithms In Gmcral Langunge Notatmn
7.1.1 Building K-d Trees 57
7.1.2 Searching K-d Trees 57
7.1.3 LBG Algorithm 60
7.1.4 Yuval NN Clustering 60
7.1.5 Simple NN Clustering 61
7.2 Distance Constancy with Orthogonal Transfarms
7.3 Photographs of Coded Pictures .
7.3.1 Baboon 64
7.3.2 Lake 66
7.3.3 Airport 67
73.4 Lena 69
7.3.5 Plane 70

42
42

44

51
53
57

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Fgure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

LIST OF FIGURES
Vectaor Quantization Picture Coder
Vector Quantization Picture Decoder .
LBG Algorithm
Vornoi Partitions
AK-d Tree .
Example of a K-d Tree s e s . .
Partition Corresponding to Example of K-d Tree .
SearchingaK-d Tree
Searching a Tree with Skinny Buckets

Qlusters Found by Gowda-Krishna Algorithm .
Qlusters Found by K-means Algorithm

Yuval Shifting of Partitions .

"Peppers’ Original . e
"Peppers’ Coded with LBG Codeboak

"Peppers’ Coded with Simple NN Codebook

Blowup (256x256 pixels) of "Peppers’ Coded with LBG Codebook
Blowup (2562256 pixels) of 'Peppers’ Coded with Simple NN Codebook

‘Baboon’ Original
"Baboon’ Coded with LBG Codebook
"Baboon’ Coded with Simple NN Codebook
"Lake’ Coded with LBG Codebook

'Lake’ Coded with Simple NN Codebook
Airport’ Coded with LBG Codebook . . .
*Airport’ Coded with Simple NN Codebook
'Lena’ Coded with LBG Codebook
"Lena’ Coded with Simple NN Codebook . .
"Plane’ Coded with LBG Codebook

&5 388 ENYHS RS R

238358

43383888

Figure 32. 'Plane’ Coded with Simple NN Codebook

)

LIST OF TABLES

TABLE 1. Speed without K-d Trees vs. Speed with K-d Trees
TABLE 2. Execution time of LBGvs. NN .
TABLE 3. Coded Picture Error of LBG vs. NN .

43
45

1. INTRODUCTION

Picture coding is the process of reducing the amount of information needed to transmit and
reproduce a picture with acceptable quality. Traditionally, aitempts to reduce picture redundancy
have centered around the elimination of interpixel repetition, either within a still picture, or
between corresponding elements of the neighbaring frames of a moving picture. The only form of
picture coding to date to deal with groups of picture elements (pixels or pels) has been transform
coding, and this method ends up dealing with scalars when doing quantization. Recently,
however, it has proven attractive to look at groups of pixels (say, 4x4 blocks) as a discrete entity.
Treating these blocks, or pixel vectors, as a unit, and trying to optimally describe these blocks of
pixels in an effident manner is the basis for vector quantization. In vector quantization, the pixel

vectors are quantized as vectors as opposed to more traditional scaler quantzation schemes.

Although the algorithmic improvements described in this thesis are relevant to any vector
quantization application, this thesis will be written in the context of improving the method by
which pictures can be coded using vector quantization. The basic idea is to develop a set (or
codebook) of pixel blocks which are someliow representative of the blocks likely to occur in the
picture to be transmitted. The vector quantization coder then examines the picture to be
transmitted and tries to match up the blocks of pixels occurring in the picture with the closest
match in a set of "quantized” pixel blocks (the "codebook”) developed ahead of time. Picture
transmission is then simply a process of transmitting the identity of the codebook block which was
deemed to most closely match the pixel block fram the original picture. Decoding is a simple
matter of reconstructing the quantized picture by piecing together the blocks whose identity has
been transmitted.

This thesis is organized as follows. Section 2 will detail the background of vector quantization,
and describe previous work in which vector quantization was used for speech and picture coding;
section 3 will describe theoretical advances made during the investigation of this topic; section 4

will describe experimental results; and section 5, conclusions.

Theoretical advances made include the following. A multi-dimensional data structure (k-d trees,
developed by Bentley) was determined to be an appropriate way 1o allow searching in logarithmic
time. Various methods of reducing vector dimensionality to improve search speed were
investigated. Several implementations of a novel “clustering” algorithm were developed to derive a
codebook from a set of training data in a fraction of the time previously required, without

sacrificing performance.

-10 -

2. VECTOR QUANTIZATION
2.1 Theory
2.1.1 General

2.1.1.1 Description

Vector quantization (VQ) is a process by which hiocks of information are coded as a group in such
a way as to minimize the expected error resulting from the coding. The idea is to identify a set of
possible blocks of data (vectors) which 1might in some way be representative of the infarmation to
be transmitted. The blocks to be quantized are then matched against the code vectors to find the
closest matching block among the code vectors. The vector is thus "quantized” to match a
particular preset code vector, and the infermation is coded by giving the identity of the code vector
the block was found to be the most similar to. The "trick” to this method, of course, is to have a

good set of representative codes, typical of the data to be sent.

A form of two-dimensional vector quantization would occur when one tried to describe in what
part of the country one’s friends lived. For this application, quantization by cities might be
enough. Rather than say that the exact coordinates of where Paul lived were 33.7°N 97.1°W, and
that Alfred lived at 29.9°N 95.3°W, one might feel that it was enough to say they lived in Dallas
and Houston, respectively. Naturally, this loses some precision, but it requires less information to
be processed while giving all the essential data. Similarly, if even more coarse quantization was
acceptable, one might say they both lived in Texas, or even "somewhere in the scuth”. One would

try to tailor the quantization to the data needing representation.

In more formal mathematical language, one could describe the vector quantization process as
follows. If £ was an arbitrary block (vector) of data to be quantized by encoder =, then
E(z) = C, would represent quantization of £ to the j* value of the quantization alphabet C. For

coding purposes, one could break up the quantization of £ to C; into two meppings. First, the

-11 -

encoding of £ to j, and second, the decoding which would map j to C;. If j were allowed to take

on values from 1 to J, then one could say the coding rate was logy/ bits per vector.

With respect to coding, vector quantization could be described as follows. The first step is to
somehow determine the allowable levels for quantization. This is equivalent to finding a codebook
against which all blocks of data to be coded are matched. The next step is to sequentially break up
the data to be coded into blocks, or “data vectors”. Hopefully, the data within a block will
represent some sort of natural unit in which there is likely to be a certain amount of order.
Arbitrarily organized data will wark, but best (lowest error) performance is obtained when
individual elements within a block are somewhat correlated. Third, each block of data to be coded
is matched up with an entry in the codebook in such a way that the codebook entry chosen most
nearly approximates the original data. Finally, the identity of the codebook entry is transmitted in

lieu of the original block of data. (See figure far block diagram of a vector quantization coder)

ENCODER

Origlinael Codebook
Plcture of veclors

Break originel

plcture up
into blocks

Plectur Find besl code Gne cod i
.y ctur:“ vector for eech t ecChestskgne
ecto plcture vector o ea ec

Figure 1. Vector Quantization Picture Coder
The beauty and attractiveness of vector quantization coding is that while the coder is relatively

complicated, the decoder is as simple as table lookup. Assuming the receiver has an identical copy

of the codebook used while encoding the data (either built into the system or transmitted
independently), decoding is simply a matter of replacing the code identity with what it represents.
Since data was originally transmitted in a predictable, sequential order, reconstruction of the
original signal is trivial. A computer terminal might be considered to use vector quantization
decoding when it converts an asdii character code to a 5x7 matrix of dots making up a visually

recognizable character. (See figure far block diagram of a vector quantization decoder)

Codebook

of vectors
One code Convert codes Assembls Reconstructe
per block to vectors blocks picture

Figure 2. Vector Quantization Picture Decoder
2.1.1.2 General References

Perhaps the best general reference for basic vector quantization was written by Gray |Gray 1984].
In this paper he not only outlines the basics of vector quantization, but also describes various
applications and details of more advanced vector quantization systems. Another important work
on vector quantization includes a theoretical paper by Gersho [Gersho 1982] in which he discusses

various mathematical properties of vector quantizers.

2.1.2 History

-13 -

2.1.2.1 Motivations

As described by Gray [Gray 1984], one of the first justifications given for vector quantization

appeared in Shannon’s rate-distortion theory [Shannon 1948), the branch of information theory

devoted to data compression. Shannon stated that better performance could always be achieved by

coding vectors instead of scalars. As Gray said,
While some traditional compression schemes such as transform coding operate on vectors
and achieve significant improvement over PCM, the quantization is still accomplished on
scalars and hence these systems are, in a Shannon sense, inherently suboptimal: better
performance is always achievable in theory by coding vectors instead of scalars, even if the
scalars have been produced by preprocessing the ariginal input data so as to make them
uncorrelated or independent!

This theory was not explcited in actual systems for two reasons. First, there e.visted no simple
technique for determining the quantization levels to be used, and second, existing coding
techniques were both adequate for existing tasks and showed promise of further improvement.
Near the end of the 1970s the first problem was greatly alleviated by the discovery that work done

by Lloyd [Lloyd 1957)] on scalar quantization algorithms could be extended to the vector case.

2.1.2.2 LBG Algorithm

The recognition that Lloyd's algorithm was generalimble to the vector case was published in 1980
by Linde, Buzo, and Gray [Linde, Buzo, and Gray 130]. This was a crucial step in the
development of vector quantization because until that time there had existed no algorithm by which
vector quantizers could be designed. This algorithm (often referred to as the "LBG Algorithm™)
provides a simple way in which vector quantization levels might be derived in an appropriate way,

sO as to in some sense optimally partition a training sequence of vectors into quantized levels.

Their algorithm for deriving a codebook based on a set of training vectors is iterative, and can be

described as follows. The initialization step involves choosing the starting codebook of vectors.

-14 -

This could be a codebook used previously, or something arbitrary, such as evenly spaced points in
the vector space. The iteration begins by assigning each training vectar to its “best fit" code, based
on some error metric and an exhaustive search. Next, given a set of vectors assigned to a
particular code, that code is modified to optimize is error relative to the training vectors currently

assigned to it. This two step process continues iteratively (see figure).

(start)

in{tialize
codebook

oseign training
vectore to
codes

optimize codes
for traeilning
veclors eseigned

to them

afgnl{flcan
code changeo?

Figure 3. 1.BG Algorithm
Step one is where the training vectars are reassigned to the newly modified codebook, and step two

is where the codebook gets altered to minimize the error between the codes and the training
vectors currently assigned to it. The process is terminated when the overall error, between all the
training vectors and the codes they are assigned, reaches a low enough percent change between one

iteration and the next. The codebook is then considered complete, and, given arbitrary error

.15 -

tolerances, provides at least a local minimum of error with respect to the training data used to

generate it.

In this algorithm, by far the most difficult task is to come up with an acceptabie initial codebook.
As stated previously, one option is to initialize with an old codebook, or w0 evenly space the initial
codes in the vector space. Perhaps the best simple initialization, howcver, is to randomly choose
from the training set a sampling for use as the initial codes. Quantizers based siniply on random
samples as their codebook have been shown to be near-optimal [Roucos, Schwartz, and Mzkhou}
1983], so using a random guantizer as an initial codebook isn’t as much a shot in the dark as it

may appear at first.

A more complicated method of determining an initial codebook is by the use of what is called a
“product code” [Gray 1984]. Using this method, one would quantze the individual pixel elements
individually and then consider all the combinations of individually quantized pixel levels.
Naturally, this generates far too many codes, but one might consider a subset of these codes as an

initial codebook.

Another technique is generating the initial codebook by “splitting” [Lind=, Buzo, Gray 1980]. In
this method, one begins by developing a codebook with only one entry in it. The user then
develops two codes using the knowledge that the optimal ane code codebook was developed in the
previous step. There are a number of ways to develop a codebook of size 2K from a codebook of
size K, but perhaps the simplest is to leave the K previous codes, and add K more which are the
original K slightly perturbed. This could be used as the initialization for a LBG algorithm which
would converge on a codebook of size 2K. The advantage of retaining the ariginal K codes is to

ensure that the error does not increase.

As a final comment on the 1BG algorithm, one might object to the nctian of developing the codes
for a training sequence and then "assuming” that they will be appropriate for other images i3 a
purely heuristic idea, and not one particularly justifiable mathematically. In fact, however, as

- 16 -

Gray points out [Gray 1984], there are only relatively weak statistical requirements on the source
generating both the training sequence and the data to be coded. Spedfically, all that is required
for assuring that the expected values of error for transmitted data be the same as the expected
value of error in a training sequence is that the source for both the data to be coded and the

training sequence be asymptotically mean stationary.

2.1.3 Variations

The vector quantization schemes described above are the basic algorithms, with no features added
to aid in the implementation of the systems, and with nothing added to enhance the performance.
Because the decoder is so simple, virtually all refinements of the basic algorithm are in the form of

improving the way the codebook is derived. Several improvements are described below.

2.1.3.1 Tree Codebooks

The greatest liahility to vectar quantization is the fact that there is a tremendous amount of
computation involved in the generation of codebooks. The LBG algorithm calls for exhaustive
search of every code in the codebook for each vector in the training sequence. This set of searches
must be repeated for each iteration. This means that computation is proportional to the product of
codebook size and training sequence size. This is in addition to the fact that more iterations are
required the more codes and training data is used.

One method to get around this problem is to use so-called "tree codebooks” in an effort to create
admittedly sub-optimal codebooks in excnange for requiring a fraction of the computation. The
original presentation of this method was done by Buzo, et al [Buzo, Gray, Gray, and Markel 1980]
in the context of speech processing. The idea is to first determine a two code codebook based on
the original training set. Next, one partitions the training set into two sections, based on which
code the members are similar to. Then, the algorithm treats each half of the training set
independently, and begins to again split each "half” into half again, and so forth. Consequently, at
each node of the binary tree, there are only two codes, which direct the code looking for a closest

E o mE R

rox

- wowR — 1 R

TEESET R M g < W e

-17-

fit to one branch or another, until the tree terminates. While most easily described in terms of a

binary tree, any number of branches could occur at the nodes.

Tree codebooks provide much faster determination of the closest fit codebook entry (O(log(n)) vs.
0O(n)), but have two drawbacks. First, this method requires storage for twice the number of
codebook entries, and, second, the codebook entry one arrives at using tree codebooks is not
necessarily the optimal entry. Buzo, et al [Buzo, Gray, Gray, and Markel 1980], report that for a
speech application operating at 8 bits per vector an extra two bits per vector were required in the

tree codebook case to achieve comparable performance with the full search case.

2.1.3.2 Vornoi Cell Searches

Another way to reduce search time is to do extensive codebook preparation to make finding the
appropriate code easier. The "Vornai Cell” method is based on the fact that the every possible
picture vector is mapped to anly one "best fit" code vector such that the picturc vector space is
partitioned into distinct “varnoi cells” in such a way that only those possible picture vectors within
a vornoi cell would be coded with a particular entry from the codebook. This is similar to

partitioning a geographical region into districts for school attendance purposes (see figure).

y

region 3

region 1

Figure 4. Vornoi Partitions
The locations (and only those locations) within a district are served by a common schoal, and by

comparing one’ cross streets with a table (the axes on a schoal district map, for instance) one can

-18 -

quickly identify to which district one belongs. It is not necessary to measure the distance to every

schoal tc determine which is closest.

Similarly, vornai cell techniques such as the one described by Cheng, et al {Cheng, Gersho,
Ramamurthi, and Shoham 1984] set up a table for each dimension listing which vornoi cell could
poscibly overlap this dimension, allowing for progressive elimination of possible codes one
dimension at a time. Determining the exact vornoi cell partitions is extremely costly, however, and
invests significant effort in reducing coding time on the assuruption that a given codebook will be

used for coding a number of pictures.

2.1.3.3 Product Codes

A "product code” is a code that consists of a number of separately determined "factors” which
combine to make up the entire code. A good example of a product code in vector quantization in
the breaking apart of an LPC voice code vector into "gain” and “shape” factors as done by Buzo, et
al [Buzo, Gray, Gray, and Markel 1980]. Here, the original LPC vector was considered naturally

"separable” into two terms, both of which were necessary to code the intended vector accurately.

Another form of product code is to treat the full codebook as the product of a statistic and a
separate codebook normalized for thie statistic. In an effort to make a codebook more generally
applicable, work has been done to normalize various statistics, so that mare entries in the codebook
would be "in the running” for best fit, thus giving more accurate coding. Baker and Gray [Baker
and Gray 1983b] have done work with extracting the mean for separate transmission, and
Murakami, et al [Murakami, Asai, and Yamazaki 1983] have normalized both the mean and
variance of code blocks in their wozk. Naturally, along with normalizing the codes, the coder must

also send along statistical information to allow for accurate reconstruction of the data.
Because of this additional information which need be sent, coders using algorithms which
normalize and extract statistics have not yet demonstrated better performance than more

straightforward vector quantizer systems. This is because the flexibility of separating statistical

.19 -

information (such as the mean pixel value) from the vectors results in the capability to reproduce
more possible vectors than might actually occur, thus introducing an inherent suboptimality. On
the other hand, using product codes allows for more simple (although possibly suboptimal) code

assignment because one decomposes a large search into two smaller anes.

2.1.3.4 Multistage Codebooks

Multistage codebooks are codebooks in which a number of codes are assigned to a given vector to
be reproduced in such a way as to get progressively better approximations to a vector. The
original vector is first matched to a code, then the error vector between the original and the first
level code vector is matched at the second stage, etc. This method, first demonstrated by Juang
and Gray [Juang and Gray 1982), has the acdvantage that it requires less computation in that the
comparisons done at any given stage are typically much fewer than that which would be performed
in a single-stage method. It also allows for greater freedom in the reproduction quality, as one
might include as many stages as one needs accuracy. The drawbacks, of course, are that a nuniber
of codes are needed to represent a single vectar, and that the decoder requires greater complexity

to reconstruct the ariginal vector.

2.1.3.5 Segmented Codebooks

A method analogous to that of tree coding is the method of segmented codebooks. In this type of
system, the vectar to be coded is only compared for best fit with a subset of the number of codes
available. The novel aspect of segmented cocdebooks is that the user often chooses to artificially
overrepresent a type of code (serviced by a particular segment) in an effort to improve coder
performance cn a particular type of vector. An example of using segmented codebooks to reduce
the occurrence of particularly offending errors is the partitioning of a codebook of picture vectors
into codes representing edge vectars and codes representing non-edge vectors. In this way, the
user can in effect weight one type of error more highly than another. Gersho and Ramamurthi

[Gersho and Ramamurthi 1982] have presented two segment codebook for picture coding, and

Ramamurthi, et al, [Ramamurthi, Gersho, and Sekey 1983] have pres:nted three segment
codebooks for image coding. Ramamurthi and Gersho [Ramamurthi and Gersho 1984b] have also
presented a codebook partitioning scheme with thirty different categories corresponding to different
edge types.

2.1.3.6 Vector Quantization in the Transform Domain

While vector quantization seems most appropriately suited to reducing redundancy in the spatial
domain, some experiments have been done with applying vector quantization to 1-d and 2-d
transforms [King and Nasrabadi 1983] [Nasrabadi and King 1983). In these experiments, pictures
were coded by applying either 1-d or 2-d Hadamard transforms and truncating the high frequency

components followed by vector quantization.

As one might expect, results were no better than those achieved using vector quantization purely in
the spatial domain. This is because the same vectors grouped together in the transform domain
would also be grouped together in the original pixel luminance domain, since nearby vectors in ane
domain are also nearby in the other (see appendix for "proof” of distance constancy after
transformations). Even these results must be tempered by the fact that Huffman coding of the
vectors was also used, an obvious improvement which was left cut of the results given by others.
In addition, it is important to note that in this implementation one of the big advantages of vector
quantization, the simple decoder, is sacrificed.

The possibility of using transformed vectors for searching only will be discussed in section three.

2.1.3.7 Vector Quantizers with Memory

Just as traditional data compression includes many systems involving some sort of predictor or
adaptivity, so too &~ vector quantization be altered to use "memory”. These coders are in most
cases the direct analogs to the one-dimensional case, so they will not be discussed here. For an
overview of existing vectar quantizers with memory, the reader is referred to Gray’s article [Gray
1984].

-2 -

2.2 Applications
As mentioned a number of times above, vectar quantization has been successfully applied in a

number of practical applications as a means of data compression. The following is a brief
description of some of the ways VQ hes been used.

2.2.1 Speech Applications

2.2.1.1 Coding
Vector quantization was originaily developed in the context of speech processing. Typically, a VQ
speech coding system, such as described by Buzo, et al [Buzo, Gray, Gray, and Markel 1980] will
code speech LPC coefficients as a group to make up a vector with dimensionality of about ten,
Error measurements used in the vector quantization process need not be squared euclidean distance
and for speech processing alternative metrics are often used. A number of the imprcvements listed
above have been used in speech systems with good results.

2.2.1.2 Speech Recognition

It is also interesting to note that the speech recognition problem, when attacked by use of such
methods as template matching, is in fact another application of vector quantization, although the
dimensionality is of course greater than the simple use of LPC vectors listed above. The
recognition system tries to match segments of a given speech waveform to a code (vector)
representing a particular phoneme or word. Thus appropriately identified (coded), the speech
recognition system need only deal with prototype "words", rather than with highly varying and
speaker dependent utterances.

2.2.2 Picture Applications

Picture coding using vector quantization was developed and published by at least four separate
groups since 1980 [Baker and Gray, 1983a] [Murakami, Asai, and Yamazalid 1982] [Gersho and
Ramamurthi 1982] [Yamada, Fujita, and Tazaki 1980]. In all these cases, the "vector” being

quantized was a group of adjacent pixel intensity values. Typically, a rectangular block of size
four to sixteen was used. Blocks of greater dimension were avoided because of the computation
involved. In all cases, the algorithm used for developing the codebook was some variation of the

LBG algarithm.

3. THEORETICAL IMPROVEMENTS

In this secticn improvements to the cxisting LBG algorithm will be described. These
improvanmts_indude the use of a multi-dimensional tree structure to allow for fast error-free
nearest neighbor searching and the development of several variations of a completely novel
algorithm for developing codebooks, an algorithm which significantly reduces the computation

necessary to generate codebooks without sacrificing perfaormance.
3.1 Multdimensional Searching with K-d Trees

This section describes the use of a multi-dimensional tree structure to facilitate fast codebook
searching. Several issues involved with this application are also discussed. While the abstract
concept of this tree structure was developed by Bentley [Bentley 1975], this presentation represents
the first recognition of the appropriateness of this structure to the vector quantization search

problem and the first discussion of the issues invalved in doing so.

3.1.1 The Search Problem
The greatest drawback of vector quantization is that is very computationally demanding. To do
full search vector codebook development on conservatively sized codebooks (on the order of 256
4x4 codes) takes a fair number of hours on a large computer to accomplish (see section 4 for
details and actual performance tests). The vast majority of the time spent both in developing VQ
codebooks and in the encoding process is spent trying to find the closest fit in the codebook to a
vector. In codebook development, the vector being matched is from the training set of vectors,
and in the encoding process, picture vectors are being matched with codebook entries. In an effort
to alleviate this problem, several computation saving variations on the basic VQ algorithm have
been developed, as outlined in the previous section. Unfortunately, all these methods achieve their
computational savings at the cost of performance. As Gray says [Gray 1984),

Ideally, one would like to take a full search, unconstrained VQ and find some fast means of

encoding having complexity more like the [log(N)] techniques than that of the full search.

... Unfortunately, however, no design methods accomplishing this goal have yet been found.

3.1.1.1 Pattern Matching

One way to approach this problem is to attempt to solve it in the same way as would a person
trying to find the best match to a given vector. To use the example of vector quantization of
images, a person would look at the vector to be matched and classify using terminology such as
"brighter on the left” or "has a dot in the middle” and would proceed from there. This is basically
a pattern matching approach, and was investigated by the authar as a means of reduding the
number of vectors in the codebook which needed to be examined. Unfortunately, finding a set of
mutually exclusive as well as meaningful "patterns” for classifying vectars is basically a heuristic
problem. The edge dassification schemes such as Ramamurthi and Gersho [Ramamurthi and

Gersho 1984a] can be considered to be a pattern matching approach.

3.1.1.2 Multidimensional Nearest Neighbor Search

Another approach is to treat each vectar as a point in multidimensional space. Using this
approach, one could say that the goal was to group "nearby” vectors together. Of course, this
leaves the problem of defining "nearby” in terms of which vectors are in actuality similar, but this
problem is nothing new. When treated as a multidimensional search problemn, it becomes clear that
whatisnwdedisa‘waydm'ganizingdatasothatallnwby points (vectors) are easily
determined. The most obvious way to do this is to have an M-dimensional array (where M is the
dimensionality of the vector) with entries where vectors in a codebook occur. This way, a vector
to be matched could first look in the array entry it would oocupy, to see if an exact match
occurred. If an exact match was not found, then an cutwards search could be made through
surrounding array entries until a vector was found. Unfortunately, this method of storage requires
space exponential in the dimensionality of the vectors being used. What is needed is some sort of

flexible structure which allows for fast access to a "region” in multidimensional space.

3.1.2 K-d Trees

K-d trees (shart for K-dimensional trees) were developed by I. L. Bentley [Bentley 1975] and
provide a data structure which allows for log(N) multidimensional searches to be accomplished.
This was the structure which was used to allow for fast searching in connection with vector
quantization.

3.1.2.1 Structure

K-d trees are binary trees designed to organize multidimensional data (see figure).

m nodes
O
o o

o o

e_ buckets contalining date

Fgure 5. A K-d Tree
These trees consist of a set of interconnected nodes and a set of "buckets” located at the lowest

level of the tree. The nodes serve to organize the data, and the buckets hold the data. Similar to
binary search trees [Knuth 1973], each node in the tree partitions the data "below it" on the basis
of whether the data is greater or less than a certain value. The novelty of the tree is based on the

fact that each node partitions the data based on only one dimension.

A node in a k-d tree cousists of either four or five elements. The first element tells on the basis of
which dimension the data is split, and the second element gives some value which is the threshold
which determines in which child of the node data could be found. If the appropriate dimension of
the data was less than the threshold it would reside in the left child, and if it were equal, it would
go in the right child. Data with dimensions equal to the "split value" could go to either (but not
both) child, depending on convention. The next two entries are pointers to the left and right
children. The children could be ether another node, or could be a bucket, if the bottom of the
tree had been reached. The optional fifth entry is a pointer to the node’s parent. This element is
optional, because it is not needed in all applications.

Buckets are really a spedal kind of "terminal” node which points to data instead of other nodes. In
a completely organized tree, each bucket would point to only one "record”, or “piece of
multidimensional data”. Usually, however, it is more efficient to have a bucket point to a number
of recards which would all belong at this spot. This way fewer nodes are needed. If a particular
record is required, it can be searched for among the few records sharing a given bucket. The
records in a given bucket could be stored in an array if it was guaranteed that there would never
bemoreﬂmnacznainnumbu'ofrecordspabuckct,orcmldbestoredasa]inkedlist. As with

a node, buckets and even records could contain a pointer to their “parent”.

What this amounts to is a progressive chopping up of the K-dimensional space which the K-d tree
is trying to organize. Each node represents a hyperplane parallel to all but one dimension, and
separates the data on the basis of that dimension. For example, consider the two-dimensional case
which is the simplest non-trivial case (see figures). Here, the top node represents the first pertition,
dividing the two-dimensional region into twc half planes. The next level of the tree divides these
half planes once again, and so on. The lines (hyper-planes) dividing up the "space” correspond to
nodes, and the regions defined by the nodes correspond to buckets. Each partition could, in

theory, be done with respect to any dimension, although to get the best partitions one would

RN
H U G J
B o H
L r l L

Figure 6. Example of a K-d Tree

X A
node 1 node 3
x B
X6
x C
node 2 x J
X H
X K
x0
X E x I
x L
X F

Figure 7. Partition Corresponding to Example of K-d Tree
normally use a variety of different dimensions for the partitioning.

3.1.2.2 Building a K-d Tree
K-d trees, like binary trees, are typically built from the top down to conform to a particular set of

data. The basic "algorithm” for building a k-d tree is to build it recursively. If the set of records
needed to build a tree is smaller than the maximum size of a bucket, all the records are stuffed in
the bucket and the tree is done. If there are too many records, a single dimension is chcsen to be
the "spliting key" and the actual “splitting value" is chosen. The records are then divided up into
two halves based on whether the value of the dimension being used as the splitting value is greater
or less than the "splitting value”. These two lists of records are then used to make a k-d tree for

each, and these trees serve as the left and right child;‘cn of this node. Splitting will continue until
the number of records in the right and left children falls below a certain threshold. In this way it

is insured that the number of records in a bucket will never exceed a certain ypaximum size.

The parameters available during building are: which dimension to use as the key for splitting at a
given node, the value of this dimension at which the partitioning should take place, and the
maximum size of buckets which are to be allowed. These values are typically chosen as follows.
The most tricky question is which key (dimension) should be used for splitting at a particular
node. The simplest thing is to simply choose cyclically among the varicus choices. That is to say,
on the top level of the tree use the first key, on the second level, use the second, etc.. When

you've used all the keys once, start over with the first one again.

Another preferred method is to choose the dimension which best spreads out the data. That is to
say that one could choose the dimension which has the largest variance assodated with it. The
reason for choosing this for the split key is that if the data is very spread out along a particular
dimension then presumably differences in that dimension are more "significant” in some sense than
differences in another, more densely grouped dimension. This has the effect of choosing
uncorrelated dimensions and also has the effect of making the partitions more “cubical” as opposed
to making them long and skinny, which would lead to more lengthy searches, 25 will be pointed

out later.

The other two decisions are pretty easy. For as balanced a tree as possible, one could use the
median key value from among the records invalved as the split value. As far as bucket size goes,
Friedman, et al, [Friedman, Bentley, and Finkel 1977) report that a bucketsize averaging around

eight entries seems to be optimal for a wide range of problems.

3.1.3 Solution: Full Sec~-h Algorithm

3.1.3.1 Algorithmic Details
Using this data structure, Friedman, et al [Friedman, Bentley, and Finkel 1977) describe a search
algorithm for finding best matches in logarithmic expected time. The algorithm can be described

geometrically in the following way (see figure).

XA

node 1 node 3
xB8
X6
x C
node 2 x J
X H
I“_-‘\\
/7 quety x K
x0 ! data :
%] xi
[}] xL
\ 4
\\ / ” |

Figmre 8. Searching a K-d Tree
Initially, a K-dimensional point, or "query record", is presented with the intention of finding which

entry in the k-d tree is most similar 10 it. The first step is to identify which bucket the query
record would have been assigned to had it been a memher of the K-d tree. Next, every entry in
that bucket is compared to the query record to determine which is most similar based on some
distance-preserving error criterion. Then a "sphere” is constructed centered around the query
record with a radius equal to the distance to the nearest neighbor found so far. The purprse of
this is to see whether any other buckets (partitions in K-dimensional space) are worth checking v
see if they could possibly contain an entry more similar (closer) to the query record. As many
partitions are checked as are necessary, while updating the radius of the sphere as new "closest
matches” are found.

If the number of dimensions is not too great, Bentley shows that search time is logarithmic with
the size of data set being checked. At worst, the distance ("closeness”) between the query record
and all the tree entries must be calculated, and this is just the old search method plus the overhead

of nuintaining a tree structure for searching.

3.1.3.2 The Problem of Too Many Dimensions

The problem with too many dimensions is that the K-d tree structure only allows a single
dimension to be checked at each node, and the number of levels of the tree only grows
logarithmically with data set size. This, of course, i also the basis for the computational
advantages of K-d trees, but if all the dimensions are uncorrelated, then being able to only check a
small fraction of them during the search procedure can result in greater computation during

searches.

This technique gets part of its computational advantage from finding the nearest neighbor to the
query record close to where the algorithm first looks, and if all the dimensions are uncorrelated,
the "first shot" gotten by following only a few dimensions down the tree won't necessarily be very
close to the eventual nearest neighbor. Another way to look at i is to realize that this mzthod
presumes that all buckets will contain recards which are pretty similar to one another, and if only a
fraction of the possible dimmsiom are used as hyper-planes to define a bucket, then the buckets
will be long and skinny, and the closest match in a bucket may generate a "sphere” which overlaps

many other long, skinny buckets (see figure).

X - ~
X - T~
< X N
” ~
l, x \
‘ x \
/ \ x
o ,' query \ spherae
" data \ intereectie
¥ — — — —Xnmany
! t buckete

Figure 9. Scarching a Tree with Skinny Buckers
Note that this becomes a serious problem only if the dimensions are very uncorrelated. If they are

&
&
|
¥

"E O FEEEY TR

? n

"Fiw ERPE EC e

-31-

correlated, then the members of a bucket will be grouped together (and the sphere will be small)
despite the fact that they occupy a long, skinny bucket. However, it is reassuring to remember
that if au the dimensions are uncarrelated, then there is no way to achieve adequate vector

quantization in the first place.

3.1.3.3 Computed Keys

Although the above analysis indicates that it is uncorrelated dimensions, rather than simply a large
number of dimensions that causes K-d tree searching to be inefficient, there is still a reason to
want to work with reduced dimensionality for its own sake. Spedfically, the larger the
dimensionality of the records (vectors), the more computationally costly the distance calculations
are. One would prefer to represent each vector by a set of "computed keys" which represent the
vector while having reduced dimensionality. These keys are to be used only far searching

purposes; at all times the actual pixel values are to be used for code representation.

The most obvious “"computed keys” to use are those which concentrate the "information” into a
reduced set of uncorrelated coefficients. By definition the Karhunen-Loeve Transform would
optimally concentrate vector energy into uncorrelated coefficients, but because of computational
considerations the Discrete Cosine Transform (DCT) was used as a method of reducing vector
dimensionality while still retaining near optimal energy compaction properties [Chen and Smith
1977). |

Because an arthogonal transform such as the DCT preserves distances (see appendix) one can
directly perform all distance comparisons in transform space without affecting the algarithm, and
since only the low frequency transform coefficients significantly affect the picture [Chen and Smith
1977), one can perform distance calculations on a truncated set of coefficients at reduced cost in
the spirit of transform coding. It is not clear however, whether the reduced cost of distance
calculations will cutweigh the added cost of computing the transform coefficients (see section four

for performance tests).

F =T =3 zp ¥ ~3 8

- me— —— p— = = —

-3

Other computed keys derived in more heuristic ways could also be used as a method of reducing
dimensionality while preserving picture information. Such computed keys include using just pixels
on the edge of pixel blocks and using every other pixel (pixel subsampling), under the assumption
that nearby pixels were very correlated. Both these methods were tried and yielded satisfactory,
although somewhat degraded performance. Other heuristic computed keys spedific to other
applications could also be used.

3.1.3.4 Computational Tricks

In addition to the major search speed improvement of K-d tree searching with or without computed
keys, other, more mundane “tricks” were used to speed calculations. First, when performing
distance calculations, one wants only the closest pair of points and does not care whether a
particular pair of points was close to being the best or not, as lang as it is not the best. To this
end, distance calculations were always performed with respect to a threshold which was the
distance to the closest neighbor discovered so far. If the threshold was exceeded on the basis of
only a few dimensions (assuming a distance metric in which the triangle inequality holds), the
calculation was terminated on the theory that "a miss is as good as a mile".

Another "trick” used was the pre-calculation of squares in a look-up table for use when doing
euclidean distance calculations or when calculating variances for choosing which dimension to use
at a K-d tree node.

3.2 Nearest Neighbor Searching

This section deals with the development of a completely new algorithm to determine the codebook
used for vector quantization coding. This algorithm, the Nearest-Neighbor or "NN" algorithm,
results in a significant computational savings as corrpared with the previously used algorithm

without sacrificing performance.

-33-

3.2.1 Clustering

3.2.1.1 Codebook generation is Clustering -

A crudal realization in understanding vectar quentization codebook development is that these
algorithms are in fact what are known as "clustering” algorithms. While other authors have
occasionally referred to this fact in passing, to the best of the author’s knowledge, this presentation
represents the first successful attempt to use this insight to fundamentally change the way

codebooks are developed for vectar quantization coding.

Qlustering algorithms have "traditionally” been used to find correlations between many seemingly
unrelated variables. A typical biological application might be an attempt to isolate genetically
distinct classifications among a wide range of samples. A marketing application might be to
distinguish various typu of “typical” consumers from among the population at large. And more
recently, pattern recognition algorithms in artificial intelligence will call for grouping an image into
various distinct objects or patterns.

All these problems, as well as the vector quantization probiem, have a great similarity. A
"clustering” algorithm is one which takes a large number of data points and attempts to group them
into meaningful groups, and that is exactly the paint of vecior quantization. The goal is to exploit
the redundancy that occurs because there are many similar patterns occurring locally in a picture.
The codebook generation problem is simply one of finding out what these locally similar

OCCuITEnces are.

3.2.1.2 LBG and the K-means clustering algorithm

A very good argument for vector quantization codebook development being just an application of
clustering is the fact that the only existing algorithm for determining a VQ codebook is
algorithmically equivalent to one of the most famous clustering methods, the "K-means" algorithm.
The K-means algorithm [Hartigan 1975] is & method which defines "a priori” how many clusters

one wants. It involves choosing K initial "means”, or "original clusters” and iteratively improving

upon these clusters. Exactly as in the LBG algorithm, the K-means algorithm alternates between
assigning all members of a training set to the most appropriate cluster and redefining these clusters
by replacing them with the mean of those training vectors assigned to each “cluster”.

Linde, Buzo, and Gray argue that their algorithm is nor equivalent to clustering algorithms because
the motivations behind it are different. They claim that the motivation for their algarithm, and for
the Lloyd quantization algorithm [Lloyd 1957] which was its predecessor, is that at each iteration
one is trying to minimize errar not only for the training set but for a class of data represented by

the training set. With all due respects to Linde, Buzo and Gray, this differersw= seems academic.

3.2.2 Nearest Neighbor (NN) Clustering

This section describes the development of the NN algorithm. Motivations, theoretical justification,
and various implementations of this algorithm are discussed. Finally, the advantages of using this
completely novel algorithm for the development of vector quantization codebooks are discussed.

3.2.2.1 Motivation

The LBG (k-means) clustering algarithm succeeds as & quantizer because it tends to generate
spherical clustas‘: Another algorithm which may generate "better” clusters in a pattern recognition
sense, such as one developed by Gowda and Krishna [Gowda and Krishna 1978], would in fact
provide for quantization with greater error because they often result in non-spherical clusters (see
figures). Of course this is not a problem in many applications, but is unacceptable for a quantizer
intended to minimize error. What one wants are clusters which contain only those members which
are similar to one another in the sense that they can be represented by a common vector similar to

all members.

Further considerations affecting algorithm design were the two biggest computational drawbacks of
the LBG algorithm. First, the LBG algorithm is iterative and has an unknown execution time.
The algorithtm may converge rapidly or may take many iterations. Unfortunately, this problem
gets worse when dealing with points with large dimensionality, when dealing with a large number

P X » ~
/S x x x N
r X - T T ~J x N\
- ~
<~ ~ \
- ~ X \
P
- 1
g b4 “' \\4’
’ -
‘.~ =~ G-K finde “naturael”
clustere

Figure 10. Clusters Found by Gowda-Krishna Algorithm

-
’,“"‘s\ I’ \\
~ \
.7 X ,N \
/ x *V X \
, X N x :
' \
] ‘, |
\ “ x
‘\ ‘\ !
N AR !
N x \ -

K-means finde epherical
cluetere

Figure 11. Qlusters Found by K-means Algorithm
of clusters, and when dealing with a large training set. Also, the LBG algorithm depends on the

entire training set at each step. This that there is a computational bottieneck at each
iteration which gets warse as the size of the training set increases, whereas a more parallel
algorithm, desling with less than the entire training set, would be much more attractive
computationally, particularly in terms of eventual hardware implementations. With this all in

mind, an appropriate clustering algorithrn was designed.

3.2.2.2 Matkematical Justification
The algorithm that was developed is based on the premise that all members of a cluster should be

similar to the vector representing that cluster, and is "agglomerative” in that it begins by having

each point represent its own cluster, followed by merging of pairs of similar clusters while trying to
minimize error. If N clusters each contain cne point, and one wants to have (N - 1) clusters with
minimailm,theopﬁmal parti“‘oning is to merge the two closest points and replace them with the

point which minimizes their error with respect to the new point (replace them with their mean).

Unfortunately, once clusters have more than one member, things become more complicated.
However, if one asswnes that relative to the entire set of points, the members of a cluster can be
approximated by their mean, then it becomes possitie to optimally derive (N - 1) clusters given an
optimal parution of N clusters. One does this by merging the two clusters which when merged
minimize error. Consequently, if one begins with an optimal partition (each point with its own
cluster), by induction it is true that by merging similar clusters until the desired number of clusters
(equivalent to the number of codes wanted for the codebook) is reached, one will arrive at the
optimal clusters in the sense that they minimize the error between the members of the cluster and

their mean. The codes for the codebook will be the means of each cluster.

With the following notation:

2 = mean of the ith cluster

ny = rmumber of elements in ith cluster

2y = mean of new cluster formed by merging clusters i and j
ny = number of elements in merge of ith and jth cluster
E(®,, ;) = error betweer point i and point j

the optimal merging of two clusters (using squared euclidean distance as the error measure) is
accomplished by replacing the two clusters with the weighted mean

xu= n,f‘+nél
’l'+lll

and by letting

npy=mt+n

Again, using the approximation that members can be represented by their mean, then the

appropriate pair of clusters to merge can be calculated by observing the error generated by merging

two clusters.

error = n*E(%y, £;) + n*E(%, £))
which, with squared euclidean distance as the error measure reduces to
-y
error——m—_;'ﬂlz. 2P
One need only then find the minimal value of this term to optimally cluster the data in the training

set.

The codebook development algorithm is then simply a matter of progressively merging together
pairs of clusters with minimal weighted distance. The key to quick execution of this algorithm is
to be able to quickly find the closest pairs of points among an essentially randomly disiributed set.
The obvious (slow) way is to find each point’s nearest neighbor (a log(N) search using k-d trees)
and choose the minimum distance between nearest neighbors. This leads to closest pair
computation cost on the order of Nlog(N). It is possible, however, to find the closest pair of
points in linear time using other, more effident methods, as described below.

3.2.3 Variations of NN Clustering

The basic approach taken in all these variations is based on the fact that ane can afford to be a
little inexact in choosing the closest pair to merge. With a minimum training set of a single image
and typical parameters, there are thousands of merges performed in determining the codebook, so
it really isn’t too critical if one merges the absolute closest pair at each try. One can easily afford
to merge the tenth closest pair, or even the hundredth, as long as the close pairs get merged
eventually. If a set of points get merged, it does not matter which pairs were merged in what

order.

3.2.3.1 Spherical Search

The simplest compromise is to merge all pairs which fall below a certain threshold distance at the
same time. Of course, the merging of two paints affects which points might be closest, but the
supposition is that no single merge will dramatically affect the weighted distance calculations. This
is not a bad assumption, either, since the merges were designed to minimize the change in
weighted distances between paints.

In the "spherical search” method, a threshold is determined and all peirs having a weighted
distance below this threshold are merged. The members of the training set can first be organized
as a K-d tree, and then all paints within the threshold distance can be determined by checking all

buckets which intersect with a sphere of the threshold radius.

The threshold distance can be determined in two ways. Most simply, the sphere can be started out
at radivs zero and expanded slowly to catch more and more pairs. Second, the threshold could be
determined by checking the distances between a random sample of records and considering this an
estimate of what the closest distances between pairs were. This is the basis for an algorithm by
Rabin [Rabin 1976} for determmmg the closest pair of neighbors given a set of points. Rabin’s
algorithm was presented in the context of demonstrating a particular type of algorithm (what he
calls “probabilistic algarithms”), and is very effident for points of just a few dimensions. In his
aigorithm, he sampled points and then partitioned the vector space into cubes in which he did local
searches which arrived at the closest pair of points in time linear with the data set size. The time
was linear because the distance comparisons were done only locally (within a partition), and the

way K-d trees are constructed there is a fixed maximum size of a bucket.

While this algorithm as Rabin presents it cannot be effidently implemented in practical vector
quantization applications because it requires storage space exponential in vector dimension (vectors
typically have over ten dimensions), a modified version is implementable by using the partitions
generated by the K-d tree buckets as the partitions. These partitions grow in number only linearly

with data set size and independent of dimension. In addition, the minimum dimension of these
bucket partitions could be considered an estimate of threshold radius size.

3.2.3.2 Yuval Search
Another method utilizing local nearest neighbor searches could be used to find close pairs quickly.
Yuval [Yuval 1975, 1976] has shown that given a regular K-dimensional lattice of minimum

dimmsimD,onemnﬁndaﬂpainofpdnBofmuimmdismmemq‘D_—U. First one constructs
K additional lattices by shifting each hyperplane making up the lattice-(KDTD- in each dimension.
Next one searches locally within the partitions in each of the (K + 1) lattices for pairs below the

minimum distance (see figure).

— -+ K=2

' lattice ehifted
+ 4 in three
positione

<o

Rl el
g

|
[

Figure 12. Yuval Shifting of Partitions
Once again, the K-d tree bucket partitions can be used as the lattices.

This algorithm works terrifically for low dimensionalities, but for larger values of K, the fact that
onecano:ﬂybeguaranteedofmtdlingpairsofdistmce-(xg_—n makes it necessary to increase D

to such a large value as to negate the advantages of needing only to search for closest pairs within
a lattice partition. A compromise is to allow for a certain amount of error and to not use (K + 1)

as the factor for shifting and calculating the search threshold, but to use a factor F with

F<(K+l)anddo(F—l)shiftsofdistance-?—ineadldimmsionandseard\forpairsof

distance apart of less than D The limit of this method is to let F equal one (see section four for

performance tests).

See appendix for listing of algorithm in generic computer langusge notation.

3.2.3.3 Simple Search

The most simple method using local searches is to search for closest pairs only within a partition.
K-d partitions are applicable once again, and in this method, no absalute threshold of pair distance
is used, but rather, the best pair in each partition is considered as a candidate for merging.

Clearly some partitions will have larger “"smallest pairs” than others, but if only a fraction of the
partitions’ best peirs get merged (say, the best % of the pairs), extremely acceptahle results can be
cbtained very quickly.

See appendix for listing of algorithm in generic computer language notation.

3.2.4 NN as LBG startup

It is important to remember that although these algorithms may come up with acceptable
codebooks (often better than those generated by the LBG algarithm with random initialization),
the codebooks be improved by using the result of this algorithm as the initialization step of the
LBG algorithm, so at the very worst, the nearest neighbor clustering algorithms result in a very
good initializer for the LBG algorithm.

The important point is that although the result in the NN clustering algorithm can virtually always
be improved upon by later LBG processing, the idea was to come up with a fast algorithm to give
performance comparable with that obtained by common implementations of the LBG algorithm.
The fact that the NN algorithm can ever come up with better codebooks than the LBG algorithm

(and it does, see section four for performance tests) just shows how important the fact is that the

1LBG algorithm only guarantees "local” minimums far coding errar, a fact often glossed over.

-41 -

3.2.5 Theoretical Advantages of NN over LBG

In summary, the theoretical advantages grined by use of the NN algoarithm for developing
codebooks are as follows. First, and most important, the NN algorithm is virtually always faster
than the LBG algorithm by a significant factor (see next section for performance tests) and
computational complexity grows only linearly with the size of the training set, independent of
codebook size. Second, since all practical implementations of the NN algorithm utilize local
nearest neighbor searching, processing can be done in parallel to take advantage of the added
speed that extra hardware can bring. Third, this algorithm begins with many clusters and works
its way down to the final codebook size, thus allowing codebooks to be developed either with a
pre-specified number of entries or with a flexible codebook size constrained only by the maximum
allowable error in reproduction. Fourth, this algorithm is non-iterative and is therefore guaranteed
to terminate in a finite amount of time and not be sensitive to various “initializations”. Last, this
algorithm lends itself much more readily to flexible tradeoffs between speed and accuracy, as

lemonstrated by the variety of implementations described above.

-42 -

4. PERFORMANCE TESTS

All tests were performed on either a Vax 11/780 or a Vax 11/750 with programs written in the C
programming language using the Berkeley 4.2BSD Unix operating system. Execution time is |
measured in Berkeley 4.2BSD Unix internal accounting units. These “units” are measured in
seconds and are similar to CPU seconds, except that they are adjusted for system load. All
performance tests shown in a single table were run an the same computer. All tests involving the
LBG algorithm were run until there was less than a .1% change in the error between the training
vectors and the best fit of the codebook being developed. All pictures were 512x512 pixels, and,
except where noted, all codebooks were developed using all blocks of the picture to be coded as the
training set. All codebooks developed contained 256 entries and blocks were 4x4 pixels in size for
a coding rate of .5 bits / pel.

During the course of research, non-linear filters were developed to "smooth out” the abrupt
transitions which occurred between blocks. These filters greatly enhanced the visual acceptability

of the pictures, but for the sake of concentrating on the perforinance of other aspects of the coding

system, these filters were not used in the following tests.
4.1 K-d Tree Search in LBG Algorithm

The programs used to compare differing search variations were identical with the exception of the

exact parameters being varied.

4.1.1 K-d Tree Search Speed vs. Exhaustive Search Speed
In the LBG algorithm, of the two steps in the algorithm (assigning training vectors to codes and
adjusting codes to fit the data assigned) the searching out of the best vector is by far the most

costly step. If we let

{ = rumber of iterations the algorithm uses
= number of vectors in the training set
C = number of codes the aigorithm is generating

-43 -

and consider the search to be the dominant time consuming operation, then we can say that
execution time of the standard LBG algorithm is proportional to (/ * T * C). If the LBG
algorithm using K-d trees uses K-d trees efficiently, then one can say that execution time would be
proportional to (I * T * log(C)). I (the number of iterations) is a complicated function of both T
and C, and is data dependent. Of course, there are unknown constants involved, and as pointed
out in section 3, it is not at all clear that it is possible to explait the potential “log search” of K-d
trees. At any rate, though, if K-d tree searching is found to be competitive with exhaustive
searching than one can safely say that its performance advantage can only increase as the size of
the codebook being developed increases. Actual results (see table below) show favorable
pertormance.

There is a certain unpredictability in the execution time of the L BG algorithm because both the
algorithm and the computational “tricks" (see section 3.1.3.4) are very sensitive to the data being
processed. Differences in the number of iterations needed for convergence (and in the codes
generated) with and without K-d trees are because occasionally two separate entries in the
codebook are equally good fits to a training vector, and the two implementations don’t necessarily

choose the same code in this case.

Execution time (in Berkeley 4.2BSD Unix accounting uiits)
I BG with random initialization

Picture | Without k-d tree searching With K-d trees
iterations time (secs) iterations | time (secs)

baboon 18 21954 17 15234
lake 27 33825 30 15059
airport 17 20696 18 15926
lena 25 31123 32 12977
peppers 27 32931 21 7181
plane A4 29904 25 8211

TABLE 1. Speed without K-d Trees vs. Speed with K-d Trees
4.1.2 Computed Keys for Searching

Computed keys were tested and found to degrade performance (because of the approximations they
entail) with very slight (if any) savings in execution times, thus supporting the claim that using

o

T R SRR D S [—— T S—) W - —— —] W— g g = =

computed keys will not result in any savings beyond that achieved by computing distances between
points of reduced dimensions. However, this computation time includes the cost of computing the
keys (a relatively high cost far sophisticated keys such as transform coefficients). If the cost of

computing these keys could be reduced, a reduction in search costs could be expected.
4.2 Nearest Neighbor Search

The nearest neighbor search technique (NN search) presented in section 3 was tested and compared
to the LBG algorithm (executed using K-d tree searching). Initially, the Yuval search variation
(see section 3.2.3.2) was tested but performed poorly in terms of execution time because of the
problem of having tov large a dimension for searching as described in section 3. Next, a version
of the NN algarithm run using the simple pair merging variation (see section 3.2.3.3) was tried

and performed so well that the NN spherical search variation was not pursued.

4.2.1 NN Speed vs. LBG Speed

In the version of the simple NN algorithm tested, each bucket found its pair which when merged
would create the least errar, and exactly the half of the buckets with the pairs with the lowest
merge error had their pairs merged at any given pass. This one half figure was arbitrary and done
(as opposed to merging all the best pairs) to prevent buckets with no good pairs from getting a
merge. When a bucket got too smal! (contained three or fewer points) it was eliminated and its
remaining points redistributed. Any time a merge of cost zero (two identical points) was
discovered, the merge was perfarmed, independent of the other merges.

Since buckets are kept at a small constant size (from 3 to 12 entries), searching within a bucket is a
constant computational cost. Using the notation from above, during the algorithm initially there
are T clusters (ane for each training vectar), and at the end there are C clusters, and since each
merge reduces the number of clusters by one, there must be (T — C) merges, which is
approximately equal to T merges, since the whale point of the clustering is to make T much greater
than C.

-45-

Now, since on each pass each bucket gets searched for its closest pairs, and since half the buckets
get their pair merged an each pass, the number of buckets searched i- approximately 2 * T, or of
order T. This means that the NN clustering algorithm is linear in the size of the training set and
independent of the size of codebook generated (even though larger codebooks take slightly less
time than small ones). Of course, ane still has to worry about unfavorable constants and the
overhead of using a K-d tree, etc., but actual results (see table below) show extremely good
performance. Recall that for these examples, the training set is the picture to be coded itself

(T = 16,384 for 512x512 pictures and 4x4 codes), although in practice (although not necessarily)

the training set weculd be composed of several pictures which belong to a certain "class of pictures”.

Execution time (in Berkeley 4.2BSD Unix accounting units)
Codebook Development Algorithm
Picture LBG with random initialization simple NN
iterations time (secs) time (secs)
baboon 17 9273.0 312.0
lake 30 M62.6 320.8
airport 18 10148.9 321.9
lena 32 §344.0 321.1
peppers 21 4628.5 317.7
plane 25 5419.8 341.7

TABLE 2. Execution time of LBG vs. NN
4.2.2 NN Quality vs. LBG Quality
4.2.2.1 Numerical Pixel Error
A very important question at this point is how good is the performance of the NN algorithm in
terms of the pictures it results in. After all, the algorithm is useless if it produces bad pictures,
even though it may be extremely fast. It should be noted that the codebooks generatea by the NN
algorithm are necessarily sub-optimal, since the LBG algorithm can always improve on them by
running a few iterations. On the other hand, the LBG algorithm nevers guarantees optimality
cither. What is desired is a fast alternative giving performance equivalent to LBG performance,
and as the results (see table) show, quality is comparable, and even bemr in many cases.

B

R LN

Squared Pixel Error for Reconstructed Piciures (x 107)
Codebook Development Algorithm
Picture LBG initialized with . NN LBG initialized with
random training vectors simple simple NN codes

baboon 6.565 7.215 6.542

lake 2.674 2.655 2.371
airpart 1.718 1.539 1.379

lena 1.165 1.253 1.101
peppers 1.561 1.343 1.195
 plane 1.549 1.436 1.250

TABLE 3. Coded Picture Error of LBG vs. NN
Admittedly, squared error is a poor error criterion, but since that is what is used in the codebook

generation algorithm to “optimize” the codes, it seems appropriate. In any case, various versions of
a typical coded picture are shown below along with blowups to show detail (see figures), and
additional pictures are reproduced in an appendix. These pictures support the results reported with
mean square criterion.

4.2.2.2 User Perceived Error

In the pictures that were coded, various subjective quality issues were observed which were not
necessarily captured in the numerical quality ratings. Spedfically, pictures coded with the LBG
codebooks tended to have mare objectionable contouring in the "flat” smoothly varying regions. In
addition, when the picture was "noisy” (such as the fur on the "‘Baboon’ picture) both methods
produced excellent reproductions, while (predictably) vector quantization coded pictures perfarmed
mare poorly in general on pictures with lots of sharp edges and detail. These comments are, of
course, far from a rigorous subjective evaluation, but are intended solely as an aid to evaluating
the effectiveness of NN vs. LBG codebook development, and as an aid to evaluate the effectiveness

of vector quantization picture coding in general.

LI i S |

=

R i s "} r g " Foay

=

.47 .

Figure 14. 'Peppers’ Coded with LBG Codebook

EE R mm m o=

v mp mm—— -

Figure 16. Blowup (256x256 pixels) of 'Peppers’ Coded with LBG Codebook

— e = a mm

e E— i ——— T IR CUE AR R BT SSERRASLSE M e opa Eae g

.49 -

Figure 17. Blowup (2561256 pixels) of *Peppers’ Coded with Simple NN Codebook
4.2.3 NN Codebooks vs. LBG Codebooks

A feature of the NN algorithm is its tendency to come up with codebooks containing more edges,
since it is less likely to cluster together blocks containing “edges” and blocks with more even gray
level values. This is because with random initialization, there are less likely to be many "edge"
codes (since edges typically compose only a small fraction of the picture) and the edges are then
likely to get compromised by being grouped with other blocks from the training set. One might
argue that it is the initialization of the LBG algorithm that is at fault here, rather the the algorithm
itself, but the fact is that the initialization is such an important part of the algorithm that the
algorithm as a whole deserves the "criticism”. The inclusion of mare edge code blocks is an
advantage beyond simple squared error reduction, because poorly reconstructed edges are more
offending to the observer than overall DC level errors.

4.2.4 NN as LBG Startup

As can be seen by the table above, when the output from the nearest neighbor (NN) clustering

Q= — mm = e

algorithm was used as the initializer for the LBG algorithm, total coding errar was lower than
LBG with random initialization in all cases. This is an example of how very dependent the LBG
algorithm is on its initialization step. In addition, with the NN initializer the LBG algorithm
always converged in fewer iterations (often half as many), so the computation time overall was
lower also, as one ar two iterations alone take more time than the entire execution of the NN
algorithin.

Consequently, it is clear that even it the NN algarithm were to be considered unacceptable because
it usually does not generate the "optimal” codebook, it is at worst an excellent initielizer for the
LBG algorithm, and used this way results in excellent performance as well as computational
savings over the LBG algarithm with random initialization.

4.2.5 Performance Outside Training Set

While every attempt will presumably be made to code pictures using a codebook developed with a
training set representative of the pictures being coded, one might worry that all the above results
might somehow be anomalous and not valid for pictures coded by codebooks developed on
different training sets. Tests were performed to check on this possibility and it was determined
that NN codebooks continue to perform comparably with LBG codebooks for pictures different
from the sort the codebooks were designed for. In these cases, picture reconstruction was
understandably worse, but suprisingly, ccding with codebooks developed wnh a training set of

vectors markedly different from the picture to be coded left the pictures still quite recognizable.

.51 -

5. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

This thesis presented two fundamental improvements in the amount of computation needed to do
vector quantization picture coding. Although these results were presented in the context of picture
coding, the results are generalizable to any vector quantization system. A data structure (X-d
trees by Bentley) was presenied as a means of drastically reducing time spent in searching without
sacrificing any performance.

A completely novel code generation algorithm was presented which generates codebooks
comparable to those generated by the LBG algorithm in a significantly smaller fraction of the time
needed for the LBG algorithm, even when the LBG algorithm is enhanced with K-d tree searching.
It was shown that the new algarithm is both faster and increases in complexity more slowly than
the existing codebook generation algorithm. Pictures generated with this new algorithm were
shown to be at least as good as those generated with the ald algorithm. The algorithm presented is
also much more amenable to parallel implementations.

By using the codebooks generated by the new algorithm as a starting codebook for the LBG
algorithm it was discovered that the LBG algorithm using random training vectors as an initializer
typically converges to sub-optimal codebooks. It was determined that alternate representations for
pixel intensity values in a block (computed keys) could be used as a basis for searching, but that
with current implementations the actual time savings by such an approach were minimal, because
of the costs involved in generating the computed keys.

Qbvious enhancements of vector quantization picture coding include using entropy coding to
explait the wide variation in individual codebook entry usage and using some sort of hlock

predictor analogous to single pixel predictive schemes to reduce the coding rate.

Coding of color images could also be done with no alteration of the existing coding algorithms.

This could be done in two different ways. First, one might vector quantize luminance information

-52-

and chrominance information separately, allowing for mare coarse (possibly subsampled) resolution
for the chrominance data. Alternately, one might simply including the chrominance information
within a block (subsampled as needed) with the luminance information already being processed. In
this way, a 4x4 pixel block might actually consist of twenty to thirty numbers, some of which
would represent color information. All facets of vectar quantization could then proceed as before,
with this increased dimensionality.

Another improvement would be to weight the blocks in the training set prior to developing a
codebook on the basis of how well one wants them to be reproduced. In the NN algorithm this
would mean initializing each clvster (when each entry in the training set is a cluster) with a weight
perhaps greater than one. In picture applications this might correspond to assigning a weight to a
block based on some sort of gradient or other edge detecting measure that the block exhibits, on
the theory that it is important to correctly reproduce edges.

Finally, a very important issue to be researched is the possibility of using a single codebook, or set
of general codeboaks, to code a wide variety of images. Although with the developments of this
paper it is more possible than ever to develop a spedial codebook for each image (a codebook that,
with given parameters, would cost %- bit per pixel to transmit), it would be much more convenient

if one could provide the decoder with a small set of codebooks ahead of time and then, after
perhaps performing a few statistical tests to determine the "type” of picture being coded (faces vs.
aerial photos for example), the coder would need only inform the decoder which codebook to use.

.53.

6. REFERENCES

Baker and Gray (1983a)
R. L. Baker and R. M. Gray,
"Image Compression Using Non-Adaptive Spatial Vector Quantization”,
in Proc. 16th Asilomar Conf. on Grcuits, Systems & Computers,
pp. 55-61, 1982.

Baker and Gray (1983b)
R. L. Baker and R M. Gray,
“Differential Vector Quantization of Achromatic Imagery",
Proc. International Picture Coding Symposium,
UC-Davis, pp. 105-106, March 1983.

Bentley (1975)
J.-L. Bentley,
"Multidimensioral Binary Search Trees Used for Associative Searching”,
Communications of the ACM,
Vol. 18, No. 9, pp. 509-517, Sept. 1975.

Buzo, Gray, Gray, and Markel (1980)
A. Buzo, A. H Gray Jr., R M. Gray, J. D. Markel,
"Speech Coding Based Upon Vector Quantization”,
IEEE Trans. ocn ASSP,
Val. ASSP-28, No. 5, pp. 562-574, Oct. 1980.

Chen and Smith (1977)
W.-H Chen and C. H Smith,
"Adaptive Coding of Monochrome and Color Images”,
IEEE Trans. on Communications, _
Vol. COM-25, No. 11, pp. 1285-1292, Nov. 1977.

Cheng, Gersho, Ramamurthi, and Shohem (1984)
D.-Y. Cheng, A. Gersho, B. Ramamurthi, and Y. Shoham,
"Fast Search Algorithms for Vector Quantization and Pattern Matching”",
Proc. ICASSP,
pp- 9.11.1-9.11.4, San Diego, March 1584.

Friedman, Bentley, and Finkel (1977)
J. H Friedman, J. L. Bentley, and R. A. Finkel,
"An Algorithm for Finding Best Matches in Logarithmic Expected Time",
ACM Trans. on Mathematical Software,
Val. 3, No. 3, pp. 209-226, Sept. 1977.

Gersho (1982)
A. Gersho,
"On the Structure of Vectar Quantizers"”,
IEEE Trans. on Information Theory,
Vol. IT-28, No. 2, pp. 157-166, March 1982.

Gersho and Ramamurthi (1982)

A. Gersho and B. Ramamurthi,

"Image Coding Using Vector Quantization”,

in Proc. of IEEE Conf. on Acoustics, Speech and Signa! Processing, Paris,
pp. 428431, Paris, France, 1982.

Gowda and Krishna (1978)
K. C. Gowda and G. Krishna,
"Agglomerative Clustering Using the Concept of Mutual Nearest
Neighborhood”,
Pattern Recognitian,
Val. 10, pp. 105-112, 1978

Gray (1984)
R M. Gray,
"Vector Quantization”,
to appear in IEEE Trans. on ASSP,
1984.

Hartigan (1975)
J. A Hartigan,
"Qlustering Algorithms",
Wiley, 1975.

Juang and Gray (1982)
B.-H. Juang and A. H Gray Jr.,
"Multiple Stage Vector Quantization for Speech Coding”,
Proc. IEEE Conf. on Acoustics, Speech & Signal Processing,
Paris, Val. 1, pp. 597-600, May 1982.

King and Nasrabadi (1983)
R A King and N. M. Nasrabadi,
"Image Coding Using Vector Quantization in the Transform Domain”,
Pattern Recognition Letters,
Val. 1, Numbers S-6, pp. 323-329, July 1983.

Knuth (1973)
D. E. Knuth,
"The Art of Computer Programming - Vol. 3 Sorting and Searching”,
Addison, 1973.

Linde, Buzo, and Gray (1980)
Y. Linde, A. Buzo, and R M. Gray,
"An Algorithm for Vector Quantizer Design”,
IEEE Trans. on Commmunications,
Vol. COM-28, No. 1, pp. 84-95, January 1980.

Lloyd (1957)
S. P. Lloyd,
"Least Squares Quantization in PCM",
IEEE Transactions on Information Theory,
Val. [T-28, No. 2, pp. 129-137, March 1982 (reprint).

.55-

!

Murakami, Asai, and Yamazaki (1982)
T. Murakami, K. Asai, and E. Yamazaki,
"Vector Quantiser of Video Signals”,
Electronics Letters,
Vol. 18, No. 23, pp. 1005-1006, Nov. 1982.

Murakami, Asai, and Yamazaki (1983)
T. Murakami, K. Asai, and E. Yamazaki,
"A Design of Vector Quantizer for Video Signals”,
Proc. International Picture Coding Symposium,
UC-Davis, pp. 25-26, March 1983.

Nasrabadi and King (1983)
N. M. Nesrabadi and R. A. King,
"Transform Coding Using Vector Quantization”,
in Proc. Conference on Information Science and Systems,
March 1983.

Rabin (1976)
M. O. Rabin,
“Probabilistic Algorithms",
in Algorithms and Complexity, J. F. Traub, ed.,
pp. 21-39, New Yoark: Academic Press; 1976.

Ramamurthi and Gersho (1984a)
B. Ramamurthi and A. Gersho,
"Edge-Oriented Spatial Filtering of Images With Application to
Post-Processing of Vector Quantized Images”,
Proc. ICASSP 84,
San Diego, pp. 48.10.1-48.10.4, March 1984.

Ramamurthi and Gersho (1984b)
B. Ramamurthi and A. Gersho,
"Image Vector Quantization With A perceptuelly-Based Cell Qlassifier”,
Proc. ICASSP 84,

San Diego, pp. 32.10.1-32.10.4, March 1984.

Ramamurthi, Gersho, and Sekey (1983)
B. Ramamurthi, A. Gersho, and A. Sekey,
"Low-rate Image Coding Using Vector Quantization”,
Proc. IEEE Global Telecommunications Conference,
pp5.6.1-5.6.4, San Diego, 1983.

Roucos, Schwartz, and Makhoul (1983)
S. Roucos, R M. Schwartz, J. Makhoul,
"A Segment Vocoder at 150 B/S”
in Proc. ICASSP 83,
pp. 61-64, Boston, 1983

Shannon (1948)
C. E. Shanron,

-56 -

"Mathematical Theory of Communication”,
Bell System Technical Journal,
July and October, 1948.

Yamada, Fujta, and Tazaki (1980)
Y. Yamada, K. Fujita, and S. Tazaki,
"Vector Quantizer of Video Signals"”,
Proc. of Annual Conference of IECE,
p. 1031, 1980.

Yuval (1975)
G. Yuval,
"Finding Near Neighbours in K-Dimensional Space”,
Information Processing Letters,
Val. 3, No. 4, pp. 113-114, March 1975.

Yuval (1976)
G. Yuval,
"Finding Nearest Neighbours”,
Information Processing Letters,
Val. §, No. 3, pp.63-65, August 1976.

7. APPENDICES

7.1 Algorithms In General Language Notation
7.1.1 Building X-d Trees

/* Function which returns a node created out of the given list of records
*/

make_tree(records[], numrecords)

{
if (numrecords <= BU
return{make_bucket(records(], numrecords));

node_key = next_key(records[], numrecords);

splitval = median(node_key, records(], numrecords);

new_tree = make_node(node_key, splitval,
make_tree(Llist{], L_count),
make_tree(r_list{], r_count));

return (new_tree);

}

7.1.2 Searching K-d Trees

/* Routine to initialize search parameters and start recursive searching
L]
/

tree_search(root)

{
best_distsq = INFINITY;

for (i = 0;i < num keys; i++)
{
i] = KEYMAX;
keymin[i] = KEYMIN;
done_flag = FALSE,

node_search(root);
}

/* Recursive routine to search to a best batch to a query record
*/

node_search(node)

~rE T 0 R G TERT RS

" o

7% Tpegc g cpgey sc

-58 -

if (node is really a bucket)

{

}

}f (query_rec.keys[node_keynum] < node_keyval)

}
else
{

}

if (query_rec.keys[node_keynum] < node_keyval)

~p~

}

bucket_search(node);

if (ball_within_bounds())
done_flag = TRUE;
return(0);

tempkeylim = keymax[node_keynum];
keymax{node_keynum] = nod:_keyval;
node_search(node -> |_child);

if (done_flag) return(0);
keymax{node_keynum] = tempkeylim;

tempkeylim = keymin[node_keynum];
keymin[node_keynum] = node_keyval;
nodc_search(node -> r_child);

if (done_flag) return(0);
keymin{node_keynum] = tempkeylim;

tempkeylim = keymin[node_keynum];
!:cynﬁn[node_kcynum] = node_keyval;
f (bounds_overlap_ball())
node_search(node -> r_child);
if (done_flag) return(0);

}
keymin[node_keynum] = tempkeylim;

terapkeylim = keymax[node_keynum];
keymax{node_keynum] = node_keyval;
if (bounds_overlap_ball())
node_search(node -> |_child);
if (done_flag) return(0);

keymax{node_keynum] = tempkeylim;

if (ball_within_bounds())
done_flag = TRUE;

O Em — —— T ——

——
ol -} T R e e

.59 .

return(0);

/* Routine to determine if all necessary buckets have been checked
*/

ball_within_bounds()

{
for (i = 0;i < num_keys; i++)
{

keyterm = query_rec.keys[i] - keymax{i];
if (keyterm * keyterm <= best_distsq)
return(FALSE);
keyterm = query_rec.keys[i] - keymin(i];
if (keyterm * keyterm <= best_distsq)
return(FALSE);

}

return(TRUE);

}

/* Routine to determine if buckets on the opposite side of a node need
to be searched

*/

bounds_overlap_ball()

{
for (i = 0; i < num keys; i++)
{

keydif = keyminli] - query_rec. keysli];
if (keydif > 0)
{

sum += keydif * keydif;
if (sum > best_distsq)
return(FALSE);

keydif = query_rec.keysi] - keymax{i];
}f (keydif > 0)

sum += keydif ° keydif;
if (sum > best_distsq)
} return(FALSE) ;
}
return(TRUE);

7.1.3 LBG Algorithm

/* Routine to implement iterative lbg algorithm
*/

#define EPSILON .001 /* change in codes needed to demand another iteration */

}bs()
iterations = 0;
n>w_error = INFINITY;
error_test = EPSILON + 1.;
codeinit(partitions, dimension, trainsize);

/* basic loop to implement algorithm
*/

while (exror_test > EPSIL.ON)
{
iterations += 1;
old_error = new_error;
new_error = 0.;
for (i = 0; i < trainsize; i++)

{

minerrar = [_INFINITY;

for (j = 0; j < partitions; j++)
error = distance(query_rec, trainers(j]);
if (error < minerror)
{

minerror = eIror;

best_code = j;

}

trainers[i].code = best_code;
New_errof + = Mminerror;

}

}

if (new_error == (.) error_test = 0.;
clse error_test = (old_error - new_errc~) / new_error;
if (error_test > EPSILON) fix_codes(partitions, dimension, trainsize);
}
}

7.1.4 Yuval NN Clustering

/* Routine to implement yuval shifting of partitions to detect all nearby pairs
*/

-6l -

yuval_cluster(root, partitions)

{
delta_factor = number_of dimensions + 1;

while(num_clusters > partitions)
{
if (old_clusters == num_clusters)
"eliminate smallest bucket and redistribute points it contained";

old_clusters = num_clusters;
min_d = smallest_bucket_dimension(root);

thresh = min_d / delta_factor;
threshsq = (min_d * min_d) / (delta_factar * delta_factor);

num_shifts = delta_factor;

for (i = 0; i < num_shifts; i++)
{
find_low_pairs(bucket_list, num_buckets, threshsq);

shift_tree(root, thresh);
}

/* shift the partitions defined by the K-d tree over by a constant amount
in each dimension
L]
/
shift_tree(root, -thresh * num_shifts);

if ((num_clusters - num_pairs) < partitions)
sort(pair_list);

/ Merge together all pairs below threshold distance
*/

}

return(root);

root = mst_merge(partitions, root, pairs, num_pairs);

7.1.5 Simple NN Clustering

/* Routine to implement simple version of NN clustering algorithm
L]
/

/* fraction of buckets that get their "best pair” merged */
#define MERGEFRACTION .5

mst_cluster(root, num_clusters_wanted)

{

while (num_clusters > num_clusters_wanted)

{
/* get list of closest pair of points within each bucket
*/
num_pairs = best_pairs(bucket_list, num_buckets);

/* merge all pairs of points with zero distance even if they are not the
. bucket’s "best pair"
/ root = mst_merge(num_clusters_wanted, root, z_pairs, z_num_pairs);
/:/sort pairs by distance
sort(pairs, num_pairs);
num_merges = MERGEFRACTION * (float) num_pairs;

/* Merge fraction of best pairs
o

}

return(root);

root = mst_merge(num_clusters_wanted, root, pairs, num_merges);

/* Routine to merge two points
*/

mst_merge(num_clusters_wanted, roof, pt_pairs, num_pairs)

for (j = 0; (j < num_pairs) && (num_clusters > num_clusters_wanted); j++)
pt_1 = pt_pairs(i]. point_one;
pt_2 = pt_pairs{j].point_two;
if(pt_1 and pt_2 in different clusters)
{ num_clusters -= 1;

for (i = 0;i < dimension; i++)
pt_1 -> data[i] =
(pt_1 -> weight * pt_1 -> data[i] +
pt_2 -> weight ° pt_2 -> data]i]) /
(pt_1 -> weight + pt_2 -> weight);

pt_1 -> weight += pt 2 -> weight;
pt.2 -> weight = 0;

root = tree_delete(pt_1, root);
root = tree_delete(pt_2, root);

pt2 -> mzt_rec_ = pt_1;
root = tree_insert(root, &pt_1);

}
}
return(root);

7.2 Distance Constancy with Orthogonal Transforms

Let 2,= N-dimensional vector |
2= N-dimensional vecior 2
T= linear orthogonal transform (N x N matrix)
X\=T#1= transformed vector |
X2=TR= transformed vector 2

diy= distance betweent, and £,
=|e; — 22
=(2; = 22)7(2, — £2)

D& =distance betweenX, and X,
=X, - X,p
=(xl - xz)r(xl - Xz)

Now, D=, — X;)T(X, — X;)
=(T8 ~ Te)"(Tx, — Tx,)
=(T(®, = 22))"(T (2, — £2)) by linearity

define AX=2, — X,

so dh,=AzTAx
and Dj=(TA£)"(TAx)
_=AfTTTTAz

=AfT(TTT)Az
now T=an orthonormal matrix with orthonormal rows, since each row is a basis function

This implies that
TIT=1

Bt since T is square, its right inverse is the same as its left inverse, and
T7=T"!

therefore TTT=TIT=I

Consequently Df;=Az2"(TTT) Az
s =AfT(DAz
=ArTAx
. =df
7.3 Photographs of Coded Pictures

This appendix contains reproductions of the pictures used to test the effectiveness of the various
algorithmic improvements described in the body of this presentation. In addition, they serve to
test the performance of vector quantization picture coding in general on a wide variety of pictures.
Each of five originals is reproduced as are the reconstructed pictures after being vector
quantization coded with an LBG-derived codebook and with an NN-derived codebook.

All pictures coded with 256 4x4 codes for a rate of .5 bits per pixel. Unless specified, pictures
were of size 512x512 pixels.

7.3.1 Baboon

th LBG Codebook

wi

Coded

"Baboon’

19.

Figure

"Baboon’ Coded with Simple NN Codebook

Figure 20

7.3.2 Lake

Figure 22. 'Lake’ Coded with LBG Codebook

-67 -

Figure 23. 'Lake’ Coded with Simple NN Codebook
7.3.3 Airport

Figure 24. ’Airport’ Original

Figure 25. ’Airport’ Coded with L.BG Codebook

Figure 26. ’Airport’ Coded with Simple NN Codebook

7.3.4 Lena

Figure 28. 'Lena’ Coded with LBG Codebook

-70 -

Figure 29. 'Lena’ Coded with Simple NN Codebook
7.3.5 Piane

Figure 30. "Plane’ Original

-7 -

B R T P R

Figure 32. 'Plane’ Coded with Simple NN Codebook

