
MIT Open Access Articles

TRIPs-Py: Techniques for regularization
of inverse problems in python

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Pasha, M., Gazzola, S., Sanderford, C. et al. TRIPs-Py: Techniques for regularization of
inverse problems in python. Numer Algor (2024).

As Published: 10.1007/s11075-024-01878-w

Publisher: Springer Science and Business Media LLC

Persistent URL: https://hdl.handle.net/1721.1/155800

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/155800
https://creativecommons.org/licenses/by/4.0/

Numerical Algorithms
https://doi.org/10.1007/s11075-024-01878-w

ORIG INAL PAPER

TRIPs-Py: Techniques for regularization of inverse problems
in python

Mirjeta Pasha1 · Silvia Gazzola2 · Connor Sanderford3 · Ugochukwu O. Ugwu4

Received: 1 March 2024 / Accepted: 1 July 2024
© The Author(s) 2024

Abstract
In this paper we describe TRIPs-Py, a new Python package of linear discrete inverse
problems solvers and test problems. The goal of the package is two-fold: 1) to pro-
vide tools for solving small and large-scale inverse problems, and 2) to introduce test
problems arising from a wide range of applications. The solvers available in TRIPs-Py
include direct regularization methods (such as truncated singular value decomposition
and Tikhonov) and iterative regularization techniques (such as Krylov subspace meth-
ods and recent solvers for �p-�q formulations,which enforce sparse or edge-preserving
solutions and handle different noise types). All our solvers have built-in strategies to
define the regularization parameter(s). Some of the test problems in TRIPs-Py arise
from simulated image deblurring and computerized tomography, while other test prob-
lemsmodel real problems in dynamic computerized tomography. Numerical examples
are included to illustrate the usage as well as the performance of the described meth-
ods on the provided test problems. To the best of our knowledge, TRIPs-Py is the first
Python software package of this kind, which may serve both research and didactical
purposes.

B Mirjeta Pasha
mpasha@mit.edu

Silvia Gazzola
sg968@bath.ac.uk

Connor Sanderford
csanderf@asu.edu

Ugochukwu O. Ugwu
Ugochukwu.Ugwu@tufts.edu

1 Laboratory for Decision and Information System, Massachusetts Institute of Technology, 77
Massachusetts Avenue, Cambridge 02139, MA, USA

2 Department of Mathematical Sciences, University of Bath, 4 West 5.7, Bath BA2 7AY, United
Kindom, UK

3 School for Biological and Health Systems Engineering, Arizona State University, 501 E Tyler
Mall Win, Tempe 85281, Arizona, USA

4 School of Engineering, Electrical and Computer Engineering, Tufts University, 161 College Avenue,
Medford 02155, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-024-01878-w&domain=pdf

Numerical Algorithms

Keywords Regularization · Inverse problem · Python · Software · Computerized
tomography · Deblurring · Dynamic inverse problem · Krylov methods ·
Edge-preserving · Sparsity

1 Introduction

Inverse problems arise whenever one wants to recover information about a hidden
quantity frommeasurements acquired via a physical process (forward problem). In this
paper, we are interested in linear discrete inverse problems, which can be formulated
as linear systems of equations or linear least squares problems of the form

Ax = b, min
x

‖Ax − b‖2, (1)

whereA ∈ R
m×n is a suitable discretization of the forward operator, x ∈ R

n represents
a quantity of interest, and b ∈ R

m is the available data, which is typically corrupted
by some unknown perturbations (noise) e, i.e.,

b = btrue + e = Axtrue + e . (2)

To keep the following derivations simple, we assume m ≥ n; extensions to the
m < n case are often straightforward. Many important applications, such as medi-
cal, seismic, and satellite imaging require the solution of inverse problems; see, for
instance, [1–3]. Test problems in TRIPs-Py model deblurring (or deconvolution prob-
lems) and computerized tomography problems; while many realistic instances of these
problems can be generated using the provided synthetic data, also instances of dynamic
tomography problems that use real data are included. For this kind of problems, the
matrix A is typically ill-conditioned, with singular values that gradually decay and
cluster at zero. This implies that the solution of (1) is very sensitive to the noise in
b and some regularization should be applied to recover a meaningful approximation
of xtrue. All the regularization methods considered in this paper and available within
TRIPs-Py compute a regularized solution xreg by (approximately) solving the follow-
ing optimization problem

xreg = arg min
x∈D⊆Rn

F(x) + αR(x), α > 0, (3)

whereF(x) is a fit-to-data term that typically involves the matrixA (or a modification
thereof) and the data b, α is a regularization parameter,R is a regularization term, and
D is a set of constraints. Most of the methods in this paper take F(x) = ‖Ax − b‖p

p,
with p > 0, and R(x) = ‖�x‖qq , with � ∈ R

k×n and q > 0. The choice of p
is dictated by the distribution of the noise e (e.g., p = 2 for Gaussian white noise,
p = 1 for impulse noise), while the choices of q and of the regularization matrix� are
dictated by prior information available on xtrue (e.g., if the gradient of xtrue is smooth,
one typically takes q = 2 and � = ∇, i.e., a discretization of the gradient operator; if
xtrue is sparse one takes � as the identity and 0 < q ≤ 1). Approaches for solving (3)

123

Numerical Algorithms

depend on the particular choices of p, q, � and the features of the problem (e.g., ifA
is small or large scale). A summary of the possible choices of the functionals F and
R supported within TRIPs-Py is provided in Table 1, and more details are provided
in Section 2. Within the TRIPs-Py solvers, the set of constraints D is taken to be the
whole domain Rn for small-scale problems, and an appropriate linear subspace of Rn

for large-scale problems; choices for the latter are detailed in Section 2.2.
TRIPs-Py serves two interrelated purposes: 1) to provide model implementations

of solvers for a variety of both small and large-scale linear inverse problems, and 2)
to provide a range of test problems (dealing with both synthetic and real data) for the
users to test the TRIPs-Py solvers or, possibly, their own solvers. TRIPs-Py is an open
source package that is available through GitHub at https://github.com/trips-py/trips-
py, where the users can also find installation instructions and requirements. Figure 1
shows an overview of the TRIPs-Py structure and its modules.

When designing TRIPs-Py we aimed to create Python software that is easy to use,
with calls to all the solvers that are very basic and similar. More precisely, default val-
ues are provided for all the options and parameters needed by the solvers (including
automatic strategies to choose the regularization parameter in (3) or the stopping iter-
ation for iterative solvers); however, experienced users can easily set such parameters
by modifying the input options. The test problems in TRIPs-Py include 1D and 2D
deconvolution problems (deblurring), and a variety of computed tomography problems
that employ both synthetic and real data. All the test problems are generated with very
similar instructions, and default values for the test problem generators are provided
for users who are not familiar with the associated applications; as for the solvers,

Fig. 1 Overview of the TRIPs-Py’s structure and contents. Most of the files available in the ‘Utilities’
directory are auxiliary functions that can be used by the TRIPs-Py solvers, such as functions to set the
regularization operators, or to display data and reconstructions

123

https://github.com/trips-py/trips-py
https://github.com/trips-py/trips-py

Numerical Algorithms

experienced users can easily set such problem-specific parameters by modifying the
input options.

Although other packages are already available inMATLAB and Python for solving,
and numerically experimenting with, inverse problems (and TRIPs-Py shares some
features with them), some specifics make TRIPs-Py unique. For instance, solely the
solvers and test problems for small-scale inverse problems in TRIPs-Py are closely
modeled on the ones available inRegularization Tools [4], a pioneeringMATLAB
package that has proven to be very popular with the wider community of researchers
in algorithms for linear inverse problems since the Nineties. TRIPs-Py shares many
design objectives, solvers and test problems with IR Tools [5], a recent MATLAB
package of iterative regularization methods and test problems for large-scale linear
inverse problems. However, when compared to IR Tools, TRIPs-Py also features
one of the first publicly available implementation of some recent methods for �p-�q
regularization (see [6] for a MATLAB implementation of similar solvers that was
developed simultaneously to TRIPs-Py) and some test problems in TRIPs-Py also
employ real data. Other popular MATLAB toolboxes such as Restore Tools [7],
AIR Tools II [8]) and TIGRE [9] focus only on specific applications (the former
is for image deblurring, the latter for computerized tomography), while TRIPs-Py
encompasses a range of small and large-scale linear inverse problems. Nowadays, as
Python is very popular with researchers both inside and outside of academia, and stu-
dents at universities are increasingly exposed to Python as a programming language in
their courses, we envision that TRIPs-Py could be useful for the community of users
of these MATLAB toolboxes that may have to switch to Python for collaborating on
research projects and for didactical purposes. Since many TRIPs-Py functionalities
are similar to the ones underlying Regularization Tools and IR Tools, we are
confident that such users will find transitioning to Python through TRIPs-Py natural.
Even in the setting of the many powerful and popular Python packages for the solu-
tion of inverse problems, we believe that TRIPs-Py provides some valuable additions,
for a variety of reasons. First, as mentioned above, TRIPs-Py’s test problems model
diverse applications, while many Python packages for inverse problems are focused
on a particular application. This differentiates TRIPs-Py from recent packages like
CIL [10],ASTRA [11], and the Python version of TIGRE, which all target computer-
ized tomography. Second, TRIPs-Py’s solvers for large-scale problems are based on
standard or generalized Krylov subspacemethods, with some of the former and the lat-
ter not being available anywhere else or being used to solve non-convex non-smooth
instances of problem (3). This distinguishes TRIPs-Py from other general-purpose
libraries for inverse problems like ODL [12], whose majority of solvers are based on
optimization methods such as proximal gradient algorithms, primal-dual hybrid gra-
dient algorithms, and ADMM. We anticipate that the users of these Python packages
would consider using some of the TRIPs-Py solvers to tackle their applications, and
to compare available or newly developed solvers with the ones in TRIPs-Py.

The remaining part of this paper is organized as follows: Section 2 gives an
overview of the solvers available in TRIPs-Py, starting with filtering methods for
small-scale problems and including many projection methods for large-scale, smooth
and non-smooth regularized problems. Section 3 gives an overviewof the test problems

123

Numerical Algorithms

available in TRIPs-Py, together with some illustrations of the usage of solvers and test
problems. Conclusions and future directions are discussed in Section 4.

2 Overview of the TRIPs-Py solvers

We start this section by discussing the TRIPs-Py solvers for regularization methods
expressed in the 2-norm, i.e., to solve problem (3) with F(x) = ‖Ax − b‖22 and
R(x) = ‖�x‖22. This is the main part of the section, and most of the TRIPs-Py
solvers are tailored to this case. The last part of this section describes a solver that can
be employed for regularization methods expressed in the �p-�q norm, i.e., to solve
problem (3) with F(x) = ‖Ax − b‖p

p andR(x) = ‖�x‖qq , p, q > 0. An overview of
the solvers available within TRIPs-Py is given in Table 1. We will not give too many
details about the methods in this section, but rather provide extensive references for
the reader. All the solvers in TRIPs-Py can be called in a consistent way that, at the
very least, should include the forward operator (which could be a matrix or a function
that acts on vectors) and the measured data. Additional optional inputs, such as the
exact solution xtrue for synthetic test problems, the maximum number of iterations

Table 1 List of the solvers available in TRIPs-Py

Solver Description Specifics of problem (3) Ref.
F(x) R(x)

TSVD Truncated SVD ‖Ahx − b‖22 0 [13]

TGSVD Truncated GSVD ‖(A�
†
A)hx − b‖22 0 [14]

Tikhonov Tikhonov regularization ‖Ax − b‖22 ‖�x‖22 [13]

CGLS Conjugate Gradient Least
Squares

‖Ax − b‖22 0 [15]

GMRES Generalized Minimal
Residual

‖Ax − b‖22, A ∈ R
n×n 0 [15]

Hybrid_LSQR Hybrid LSQR ‖Ax − b‖22 ‖x‖22 [16]

Hybrid_GMRES Hybrid GMRES ‖Ax − b‖22, A ∈ R
n×n ‖x‖22 [16]

GK_Tikhonov Golub-Kahan-Tikhonov ‖Ax − b‖22 ‖x‖22 [17]

A_Tikhonov Arnoldi-Tikhonov ‖Ax − b‖22 ‖x‖22 [18]

GKS Generalized Krylov Sub-
space (GKS)

‖Ax − b‖22 ‖�x‖22 [19]

MMGKS Majorization minimiza-
tion with GKS

‖Ax − b‖pp ‖�x‖qq [20]

AnisoTV Anisotropic Total Varia-
tion

‖Ax − b‖22 ‖∇x‖1 [21]

IsoTV Isotropic Total Variation ‖Ax − b‖22 TV(x) [21]

GS Group Sparsity ‖Ax − b‖22 ‖�x‖2,1 [21]

Bold entries are used for matrices

123

Numerical Algorithms

to be performed and information about the stopping criterion for iterative solvers, or
other specific features about specificmethods, can be included.Most of these inputs are
otherwise assigned default values. All functions return the computed approximation of
the solution of the inverse problem, together with a dictionary that contains additional
information about the solver and typically depends on the additional optional inputs
assigned when calling the function.

We first surveymethods that are suited for small-scale problems, followed bymeth-
ods that are suited for large-scale problems; both the cases � = I and � �= I will be
covered.

2.1 Direct methods for small-scale problems

When problem (1) is small-scale, solvers for problems (3) expressed in the 2-norm
with R(x) = ‖x‖22 typically rely on the Singular Value Decomposition (SVD) of A,
i.e.,

A = U�VT ,

where U ∈ R
m×m and V ∈ R

n×n are the orthogonal matrices of the left and right
singular vectors, respectively, and � ∈ R

m×n is the matrix formed by the diagonal
matrix of the singular values σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 on top, and an (m − n) × n
matrix of zeros at the bottom. The SVD of A is also a useful tool to analyze the
ill-posedness of problem (1). While the SVD exists for every matrix, algorithms for
its computation have a cost of order O(mn2) flops, and are therefore prohibitive for
large-scale problems; see [22, §8.6] for more details.

WhenR(x) = ‖�x‖22, with I �= � ∈ R
k×n , problems (3) are naturally handled by

considering the generalized singular value decomposition (GSVD) of the matrix pair
(A, �). Assume that m ≥ n ≥ k, that rank(�) = k and that the null spaces of A and
� intersect trivially. Then the GSVD of (A,�) is given by

A = ˜U˜�YT , � = ˜V˜�YT , (4)

where˜U ∈ R
m×n and˜V ∈ R

k×n have orthonormal columns,Y ∈ R
n×n is nonsingular;

˜� ∈ R
n×n is the diagonal matrix with diagonal entries 0 ≤ σ̃1 ≤ · · · ≤ σ̃n ≤ 1, and

˜� ∈ R
k×n is the matrix formed by the diagonal matrix of the values 1 ≥ ˜λ1 ≥ · · · ≥

˜λk ≥ 0 on the left and k× (n− k) matrix of zeros on the right. The diagonal entries of
˜� and ˜� are such that, for 1 ≤ i ≤ k, σ̃ 2

i +˜λ2i = 1; the quantities σ̃i/˜λi are commonly
referred to as the generalized singular values of (A, �). Similarly to the SVD of A,
the cost of computing the GSVD of (A, �) is prohibitive for large-scale problems,
unless some structure of A and � can be exploited; see [22, §6.1.6 and §8.7.4] for
properties of the GSVD and its computation.

Next, we describe three TRIPs-Py basic regularization methods that are directly
based on the SVD of A or the GSVD of (A, �). Such methods are specific instances
of the general class of (G)SVD filteringmethods, whose solutions xμ can be expressed

123

Numerical Algorithms

as

xμ =
n

∑

i=1

φi (μ)
uTi b

σi
vi (for � = I)

xμ =
k

∑

i=1

φi (μ)
ũTi b

σ̃i
ỹi +

n
∑

i=k+1

(̃uTi b)̃yi (for � �= I) ,

(5)

where ỹi , i = 1, . . . , n are the columns of Y−T . The scalars φi (μ), 0 ≤ φi (μ) ≤ 1,
appearing in the above sums are called filter factors. The functional expressions of
φi (μ) determine different filtering methods, which all depend on the parameter μ.
The basic principles underlying filtering methods can be understood referring to the
so-called ‘discrete Picard condition’, which offers insight into the relative behavior
of the magnitude of uTi b and σi (for � = I), and ũTi b and σ̃i (for � �= I), which
appear in the expression of the filtered solutions. Namely, assuming that the quanti-
ties |uTi btrue| and σi , and |̃uTi btrue| and σ̃i , decay at the same rate, then the noise in
b dominates the unregularized solution for small σi ’s, and σ̃i ’s. Therefore, filtering
methods successfully compute regularized solutions when the filter factors φi (μ) are
close to 0 for small σi ’s and σ̃i ’s, and close to 1 for large σi ’s and σ̃i ’s (these are the
meaningful components of the solution that we wish to retain). Having too many filter
factors close to 1 results in under-regularized solutions (with φi (μ) = 1 for every i
resulting in the (unregularized) solution of problem (1)); having toomany filter factors
close to 0 results in over-regularized solutions. The second sum in the second equality
in equation (5) expresses the components of xμ in the null space of �, which are
unaffected by regularization. Many strategies for choosing the regularization param-
eter μ are available in the literature, and Section 2.3 provides more details about the
ones implemented in TRIPs-Py. In the following, we specify how the three filtering
methods in TRIPs-Py relate to the general framework (5), specifying an expression
for the filter factors φi (μ).

Truncated SVD (TSVD)
The truncated SVD (TSVD) method regularizes (1) by computing

xh =
h

∑

i=1

uTi b

σi
vi , h ∈ {1, 2, . . . , n} . (6)

TSVD is clearly a filtering method, with filter factors φi (h) = 1 for 1 ≤ i ≤ h
and φi (h) = 0 otherwise. Therefore, the integer h plays the role of the regulariza-
tion parameter, which can be set by applying the Generalized Cross-Validation (GCV)
method or the discrepancy principle (if an estimate of the noise magnitude ‖e‖2 is pro-
vided); see Section 2.3 for more details. Let Ah denote the best rank-h approximation
of A in the 2-norm, i.e.,

Ah = Uh�hVT
h ,

where Uh and Vh are obtained by taking the first h columns of U and V, respectively,
and �h is the diagonal matrix with the first h singular values on its main diagonal.

123

Numerical Algorithms

Then xh can be regarded as the solution of the following variational problem

xh = arg min
x∈Rn

‖Ahx − b‖22,

which belongs to the framework (3), with F(x) = ‖Ahx − b‖22, R(x) = 0, D = R
n .

Tikhonov regularization
Tikhonov regularization replaces (1) with the problem of computing

xα = arg min
x∈Rn

‖Ax − b‖22 + α‖�x‖22, where � ∈ R
k×n . (7)

When � = I, problem (7) is said to be in the standard form, and when � �= I it is
said to be the general form. Problem (7) clearly belongs to the framework (3), with
F(x) = ‖Ax − b‖22, R(x) = ‖�x‖22, D = R

n . Problem (7) can be equivalently
expressed as a damped least squares problem, with associated normal equations

(ATA + α�T�)xα = ATb. (8)

If the null spaces of A and � intersect trivially, the Tikhonov regularized solution xα

is unique. By plugging the SVD of A (if � = I) or the GSVD of (A, �) (if � �= I)
into the above equation, one can see that xα can be expressed in the framework of (5)
with

φi (α) = σ 2
i

σ 2
i + α

(for � = I) and φi (α) = (̃σi/˜λi)
2

(̃σi/˜λi)2 + α
(for � �= I) .

From the above expression and looking at (7), it is clear that more regularization is
imposed for larger values of α, as more weight is put on the regularization term and
more filter factors approach to 1 (depending on the location of α within the range of the
singular values of A or generalized singular values of (A, �)). Conversely, smaller
values of α lead to under-regularized solutions. When � �= I has a nontrivial null
space, it is important to stress (again, from the second equation in (5) or from (7))
that vectors in the null space of � are unaffected by regularization. The regularization
parameter α can be set by applying the GCV method or the discrepancy principle (if
an estimate of the noise magnitude ‖e‖2 is provided); see Section 2.3 for more details.
Finally, we remark that any Tikhonov regularized problem in general form can be
equivalently transformed into a Tikhonov regularized problem in standard form. The
specific transformation depends on the properties of�. Generically, one expresses the
equivalent standard form solution as

xα = �
†
Azα + x̄0, where zα = arg min

z∈Rk
‖A�

†
Az − b̄‖22 + α‖z‖22. (9)

In the above expression, �
†
A = (I − (A(I − �†�))†A)�† denotes the A-weighted

generalized pseudoinverse �
†
A of the operator �, x̄0 denotes the component of xα in

the null space of � and b̄ = b − Ax̄0; see [23] for more details.

123

Numerical Algorithms

Truncated GSVD (TGSVD)
The truncated GSVD (TGSVD) method regularizes (1) by computing

xh =
h−1
∑

i=0

ũTk−ib

σ̃k−i
ỹk−i +

n
∑

i=k+1

(̃uTi b)̃yi , h ∈ {1, 2, . . . , k} . (10)

TGSVD is a filtering method that can be expressed as in (5) (second equation), with
filter factors φi (h) = 1 for k − h + 1 ≤ i ≤ k and φi (h) = 0 otherwise. The TGSVD
solution can be linked to both TSVD and Tikhonov regularization in general form, in
that the TGSVD solution can also be expressed as

xh = �
†
A arg min

z∈Rk
‖(A�

†
A)hz − b‖22 + x̄0 , (11)

where �
†
A and x̄0 are as in equation (9), and (A�

†
A)h is the optimal rank-h approxi-

mation of A�
†
A in the 2-norm, which can be either computed using the SVD of A�

†
A

or the GSVD of (A, �A). The variational problem (11) belongs to the framework (3),
as it is essentially a transformed least squares problem. As for TSVD, the truncation
parameter h plays the role of the regularization parameter, and similar strategies are
used to automatically set it.

2.2 Projectionmethods for large-scale problems

The methods described in the previous section can be properly applied only when it is
feasible to compute some factorizations (e.g., the SVD) of the coefficientmatrixA, and
possibly joint factorizations of the regularization matrix � and A (e.g., the GSVD),
making them suitable only for small-scale problems or for problemswhereA, and pos-
sibly �, have a special structure that can be exploited for storage and computations;
see [13, 24]. In general, when solving large-scale problems, only matrix-free meth-
ods, which do not require storage nor factorizations of A but rather computations of
matrix-vector products with A and, often, with AT , are viable options. This section is
devoted to projection methods, which are iterative methods that determine a sequence
of approximate regularized solutions of the original problem (1) in a sequence of
subspaces of Rn of dimensions up to d∗
 n.

Remark 1 All the projectionmethods availablewithinTRIPs-Py compute a regularized
solution by one of the following strategies:

1. Applying a projection method directly to problems (1) and stopping before the
noise corrupts the approximate solution (i.e., exploiting semiconvergence); see
[13, Chapter 6].

2. Applying a projection method to approximate the solution of a Tikhonov-like reg-
ularized problem.

3. Adopting a ‘hybrid’ approach, whereby Tikhonov regularization is applied to a
sequence of projected problems [16].

123

Numerical Algorithms

As far as regularized problems in the 2-norm are concerned, all the approaches listed
above can be employed. Moreover, when considering standard form Tikhonov regu-
larization with a given regularization parameter, the second and third approaches are
equivalent. When considering regularization problems formulated in some �p norm,
only the second approach will be considered within a computationally convenient
majorization-minimization strategy.

In general, a projection method for computing an approximation xd of a solution
of problems (1) is defined by the two conditions

xd ∈ Sd , rd := b − Axd ⊥ Cd , (12)

whereSd andCd are subspaces ofRn andRm of dimension d
 min{m, n}, commonly
referred to as the approximation subspace and the constraint subspace, respectively. If
Sd ∈ R

n×d andCd ∈ R
m×d are matrices whose columns span Sd and Cd , respectively,

then the above conditions can be equivalently expressed as

find td ∈ R
d such that CT

d (b − ASd td) = 0 , (13)

so that, since d
 n, one can solve

CT
d ASd

︸ ︷︷ ︸

=:Gd∈Rd×d

td = CT
d b

︸︷︷︸

=:gd∈Rd

(14)

by any direct method and form the approximate solution of (1) by taking xd = Sd td . In
practice, starting without loss of generality from the initial guess x0 = 0, a projection
method for the solution of (1) is an iterative method that computes a sequence of
approximate solutions {xd}d=1,2,... satisfying conditions (12) by building a sequence
of nested subspaces

Sd = range(Sd) = range([Sd−1, sd]), Cd = range(Cd) = range([Cd−1, cd]),

d = 1, 2, . . . , with S0,C0 being empty matrices; see [25] for more details.
The majority of the solvers in TRIPs-Py are projection methods onto Krylov sub-

spaces [15], i.e., both Sd and Cd are Krylov subspaces. In general, given M ∈ R
n×n

and n ∈ R
n , a Krylov subspace is defined as

Kd(M,n) = span{n,Mn,M2n, . . . ,M(d−1)n} . (15)

Here and in the following, we assume that the dimension ofKd(M,n) is d; appropriate
checks are incorporated into TRIPs-Py to make sure that this assumption is satisfied.
Different Krylov methods differ in the choices of their approximation and constraint
Krylov subspaces, and in their implementation: when different Krylov subspace meth-
ods share the same Sd and Cd , d = 1, 2, . . . , we say that they are mathematically
equivalent. When Krylov methods are used to solve problems (1), the quantities M
and n appearing in (15) are typically defined in terms ofA and b (for square matrices),

123

Numerical Algorithms

or ATA and ATb, or AAT and b (for rectangular matrices). In the following, we will
refer to (15) as standard Krylov subspace, to distinguish it from other Krylov-like
subspaces that are generated by computing matrix-vector products with an iteration-
dependent modification of the matrix M, and therefore cannot be expressed taking
increasing powers of M as in (15).

2.2.1 Methods based on standard Krylov subspaces

In this section, we briefly describe the Krylov subspace methods available within
TRIPs-Py: namely, Generalized Minimal Residual (GMRES)(which can be applied
when the coefficient matrix in (1) is square), Least Squares QR (LSQR) and Conjugate
Gradient Least Squares (CGLS), along with their available hybrid variants. We will
emphasize how such methods relate to the framework in Remark 1.

Methods based on the Arnoldi algorithm: GMRES and its hybrid variant
Given A ∈ R

n×n and b ∈ R
n , d iterations of the Arnoldi algorithm initialized with

v1 = b/‖b‖2 compute the partial factorization

AVd = Vd+1Hd , (16)

whereVd+1 = [v1, v2, ..., vd+1] = [Vd , vd+1] ∈ R
n×(d+1) has orthonormal columns

that span the Krylov subspace Kd+1(A,b), and Hd ∈ R
(d+1)×d is upper Hessenberg.

TRIPs-Py provides two versions of the Arnoldi algorithm, both based on the modified
Gram-Schmidt orthogonalization process (see Table 2): one computes a given number
of Arnoldi steps, while the other only computes one step, updating an already available
partial Arnoldi decomposition. If the matrix A is symmetric, the Arnoldi algorithm
simplifies to the symmetric Lanczos algorithms [28], although only the former is
provided in TRIPs-Py.

GMRES is a Krylov method for the solution of the linear system appearing in (1).
At the dth iteration, GMRES chooses Sd = Kd(A,b), Cd = AKd(A,b) in (12).
Because of this choice, the associated residual rd at the dth iteration is minimized in
Kd(A,b); see [15]. In practice, exploiting the Arnoldi factorization (16),

xd = argminx∈Kd (A,b)‖Ax − b‖2 = Vdargmint∈Rd‖AVd t − b‖2
= Vd argmint∈Rd ‖Hd t − ‖b‖2e1‖2,

(17)

Table 2 List of decompositions used by some TRIPs-Py solvers

Decomposition Description Ref.

arnoldi Arnoldi decomposition [26]

arnoldi_update updated Arnoldi decomposition [26]

gsvd Generalized Singular Value Decomposition [27]

golub_kahan Golub-Kahan decomposition [22]

golub_kahan_update updated Golub-Kahan decomposition [22]

123

Numerical Algorithms

where e1 denotes the first canonical basis vector of Rd+1. Referring to the quantities
introduced in equation (14), GMRES takes Gd = HT

d Hd and gd = HT
d (‖b‖2e1). It

has been theoretically proven that GMRES is an iterative regularization method, so
that the number of GMRES iterations serves as a regularization parameter; in other
words, GMRES adopts the first strategy listed in Remark 1. If an estimate of the norm
of the noise e affecting the data b in (2) is provided, then TRIPs-Py automatically
uses the discrepancy principle as stopping criterion for the GMRES iterations; see
Section 2.3 for more details. Otherwise, the user may assign a maximum number of
iterations to be performed, being aware that toomany iterationsmay result in an under-
regularized solution. From the first equality in equation (17), we can see that GMRES
can be expressed in the general framework of problem (3), with F(x) = ‖Ax − b‖22,
R(x) = 0 and D = Kd∗(A,b), where d∗ is the stopping iteration for GMRES.

The hybrid GMRESmethod applies some additional, iteration-dependent Tikhonov
regularization in standard form to the projected problem appearing in (17), following
the third principle described in Remark 1. Namely, the dth iteration of the hybrid
GMRES method computes the regularized solution

xd = Vd argmint∈Rd ‖Hd t − ‖b‖2e1‖22 + αd‖t‖22, (18)

where αd is an iteration-dependent regularization parameter that can be automatically
chosen applying the generalized cross validation method or the discrepancy principle
(if an estimate of the noise magnitude ‖e‖2 is provided) to the projected problem;
we refer to Section 2.3 for more details. Assuming that a suitable value of αd is
chosen at each iteration, thanks to the additional regularization imposed in (18) to the
projected problem, hybrid GMRES is not affected by semiconvergence and setting a
stopping criterion is less crucial than for GMRES; see [16]. Therefore hybrid GMRES
is stopped when a maximum number d∗ of iterations is performed. By exploiting
decomposition (16) within (18) and the definition of the matrixVd+1, it can be shown
that the hybrid GMRES method belongs to the general framework stated in (3), with
F(x) = ‖Ax − b‖22, R(x) = ‖x‖22, α = αd∗ and D = Kd∗(A,b). The Arnoldi-
Tikhonovmethod is mathematically equivalent to hybrid GMRES, the only difference
between the two being that the former performs a given number of Arnoldi steps
(which, if an estimate of ‖e‖2 is available, is determined by the discrepancy principle),
and regularizes the projected problem only at the last computed iteration.

Methods based on Golub-Kahan bidiagonalization (LSQR and its hybrid variant)
and CGLS
Given A ∈ R

m×n and b ∈ R
m , d iterations of the Golub–Kahan bidiagonalization

algorithm initialized with v1 = ATb/‖ATb‖2 and u1 = b/‖b‖2 compute the partial
factorizations

AVd = Ud+1Bd , ATUd+1 = Vd+1B̄T
d+1, (19)

whereVd+1 = [v1, v2, ..., vd+1] = [Vd , vd+1] ∈ R
n×(d+1) has orthonormal columns

that span the Krylov subspace Kd+1(ATA,ATb), Ud+1 = [u1,u2, ...,ud+1] =
[Ud ,ud+1] ∈ R

m×(d+1) has orthonormal columns that span the Krylov subspace
Kd+1(AAT ,b), B̄d+1 ∈ R

(d+1)×(d+1) is a lower bidiagonal matrix, andBd is obtained
by taking the first d columns of B̄d+1. As for theArnoldi algorithm, TRIPs-Py provides

123

Numerical Algorithms

two versions of the Golub–Kahan bidiagonalization algorithm (see Table 2); both ver-
sions are implemented without reorthogonalization.

LSQR is aKrylovmethod for the solution of the problems appearing in (1) that, at the
dth iteration, choosesSd = Kd(ATA,ATb), Cd = AKd(ATA,ATb) in (12). Because
of this choice, at the dth iteration the residual rd is minimized inKd(ATA,ATb); see
[15]. In practice, exploiting Golub-Kahan bigiagonalization (19),

xd = argminx∈Kd (ATA,AT b)‖Ax − b‖2 = Vd arg min
t∈Rd

‖AVd t − b‖2
= Vd arg min

t∈Rd
‖Bd t − ‖b‖2e1‖2.

(20)

Referring to the quantities introduced in equation (14), LSQR takes Gd = BT
d Bd and

gd = BT
d (‖b‖2e1). It is well-known that LSQR is an iterative regularization method,

so that the number of LSQR iterations serves as a regularization parameter; in other
words, LSQR adopts the first strategy listed in Remark 1. Similarly to GMRES, the
LSQR iterations are stopped when the discrepancy principle is satisfied (if an estimate
of ‖e‖2 is provided by the user) or if a maximum number of iterations is performed.
From the first equality in equation (20), we can see that LSQR can be expressed in
the general framework of problem (3), with F(x) = ‖Ax − b‖22, R(x) = 0 and
D = Kd∗(ATA,ATb), where d∗ is the stopping iteration for LSQR.

Similarly to hybrid GMRES, hybrid LSQR applies some additional, iteration-
dependent Tikhonov regularization in standard form to the projected problem
appearing in (20), following the third principle described in Remark 1. Namely, the
dth iteration of the hybrid LSQR method computes the regularized solution

xd = Vd arg min
t∈Rd

‖Bd t − ‖ATb‖2e1‖22 + αd‖t‖22, (21)

where αd is an iteration-dependent regularization parameter that can be automati-
cally chosen by applying the same approaches listed for hybrid GMRES. A proper
choice of αd mitigates the LSQR semiconvergence and the hybrid LSQR iterations
are stopped when a maximum number d∗ of iterations is performed. Similarly to
hybrid GMRES, hybrid LSQR belongs to the general framework stated in (3), with
F(x) = ‖Ax − b‖22, R(x) = ‖x‖22, α = αd∗ and D = Kd∗(ATA,ATb). Similarly to
Arnoldi-Tikhonov,Golub-Kahan-Tikhonov computes a fixed number of Golub-Kahan
iterations and applies Tikhonov regularization only to the last computed projected
problem.

CGLS is a Krylov method for the solution of (1), which is mathematically equiva-
lent to LSQR. That is, at the dth iteration, Sd and Cd are as in LSQR, but the CGLS
solution is computed using a three-term recurrence formula, rather than by (implic-
itly) computing the factorization (19) and solving the projected problem (20) as in
LSQR. Both CGLS and LSQR can be naturally used to approximate the solution
of the Tikhonov-regularized problem (7) (both in standard and general form, with a
fixed regularization parameter α), following the second strategy in Remark 1. This is
achieved by applying such solvers to the equivalent formulation of (7) as a damped
least squares problem, and stopping when we reach high accuracy in the associated

123

Numerical Algorithms

normal equation residual. However, since CGLS does not compute the factorization
(19), it is not possible to state a hybrid version of CGLS as in (21).

2.2.2 Methods based on generalized Krylov subspaces

TRIPs-Py contains methods that rely on generalized Krylov subspaces, whose defini-
tion will be made clear in the next paragraph. Such methods include GKS, MMGKS,
AnisoTV, IsoTV, and GS (see Table 1 for a few more details). First we briefly describe
the generalized Krylov subspace method (GKS) that approximates the solution of
(7), with a general regularization matrix � ∈ R

k×n ; see [19]. Then we describe the
majorization-minimization (MM) technique that solves (3) for a broad selection of
0 < p, q ≤ 2 and �, and we explain how GKS can be used to approximate the
solution of the resulting reweighted problem: the resulting method is referred to as
MMGKS.

Generalized Krylov subspace (GKS) method
The GKS method computes an approximation to (7) with a general � ∈ R

k×n by
first determining an initial approximation subspace for the solution through 1 ≤ d

min{m, n} steps of the Golub-Kahan bidiagonalization algorithm applied to A, with
initial vector b. This gives a decomposition like the first one appearing in (19). As far
as d is relatively small, it is inexpensive to compute the skinny QR factorizations

AVd = QARA with QA ∈ R
m×d , RA ∈ R

d×d ,

�Vd = Q�R� with Q� ∈ R
r×d , R� ∈ R

d×d ,
(22)

where the matrices QA and Q� have orthonormal columns and the matrices RA and
R� are upper triangular. Taking xd = Vd t in (7) and using the factorizations in (22),
we obtain the d-dimensional linear system of equations

(RT
ARA + αRT

�R�)t = RT
AQ

T
Ab, (23)

to be solved to get t = td . We then expand the approximation subspace for the solution
of (7) by taking

Vd+1 = [Vd , vnew] ∈ R
n×(d+1), where

vnew = r̃d/‖̃rd‖2,
r̃d = AT (AVd td − b) + α�T�Vd td ,

(24)
i.e., by adding the current normalised residual of the (full) normal equations. This
concludes the first GKS iteration.

Next, the QR factorization in (22) is updated for the matrices AVd+1 and �Vd+1
and the process in steps (22) - (24) is repeated, expanding the solution space during
subsequent GKS iterations until a sufficiently accurate solution is reached. Since a
suitable valueof the regularizationparameterα in (7) is usually not knownandapplying
some parameter choice strategy to (7) is computationally unfeasible for large-scale
problems, the GKS method allows an iteration-dependent choice of α. Specifically,
in TRIPs-Py one can adopt the discrepancy principle (if a good estimate of the noise

123

Numerical Algorithms

magnitude ‖e‖2 is provided by the user) or generalized cross validation to compute
α = αd for problem (23); see Section 2.3 for more details. Since, in general, α may
vary at each iteration and � �= I, the range of Vd+1 (approximation subspace for
the solution) is not a standard Krylov subspace anymore, and it is called generalized
Krylov subspace. If α is fixed or� = I, the GKSmethod is mathematically equivalent
to LSQR or CGLS applied to the damped least squares formulation of the Tikhonov
problem (7).

Majorization-minimization Generalized Krylov subspace (MMGKS) method
Let us consider problem (3) with F(x) = ‖Ax − b‖p

p and R(x) = ‖�x‖qq . Due to
the non-differentiability and possibly nonconvexity for certain choices of p and q, it
is common to replace the data fidelity and the regularization terms with differentiable
approximations thereof, and solve the following problem

min
x

Jε,α(x) = min
x

m
∑

j=1

φp,ε((Ax − b) j) + α

k
∑

j=1

φq,ε((�x) j) , (25)

where

φr ,ε(t) =
(

t2 + ε2
)r/2

with

{

ε > 0 for 0 < r ≤ 1,
ε = 0 for r > 1,

(26)

for a small positive constant ε > 0. A well-known approach to solve (25) is
majorization-minimization (MM) [29, 30], which solves a sequence of regularized
least squares problems. Namely, at the (� + 1)th MM iteration, one computes

x(�+1) = arg min
x∈Rn

‖P(�)
fid (Ax − b) ‖22 + α‖P(�)

reg�x‖22 , (27)

where P(�)
s (s = fid, reg) denotes a diagonal weighting matrix, whose entries are

determined from the current solution x(�), � = 0, 1,
Classical methods for MM involve solving (27) with a fixed regularization param-

eter by, e.g., applying CGLS, which results in time-consuming inner-outer iterative
strategies. The MMGKSmethod implemented in TRIPs-Py simultaneously computes
a new approximation x(�+1) and updates theweightsP(�+1)

s (s = fid, reg) by projecting
the current problem (27) onto a generalized Krylov subspace, whereby an iteration-
dependent suitable value for the regularization parameter α = α� can be computed
(similarly to the method described in the previous paragraph) and the quantities P(�)

fidA,
P(�)
fid b, and P

(�)
reg� can be incorporated. In this way, for the MMKS methods, no inner-

outer iteration scheme is needed and an MM iterate corresponds to a GKS iterate.
Namely, the generalized Krylov subspace is expanded by 1 vector at each iteration,
so that the (� + 1)th approximate solution x(�+1) belongs to a generalized Krylov
subspace of dimension d = d0 + �, where d0 denotes the dimension of the initial
approximation subspace for building the generalized Krylov subspace. We refer to
[20, 31, 32] for further details.

A variety of regularized formulations can be handledmore or less straightforwardly
by the MMGKS methods, provided that the parameters p and q (for the �p and �q

123

Numerical Algorithms

(quasi) norms), the regularization matrix � and the weights P(�)
s (s = fid, reg) are

properly defined. Some of the solvers listed in Table 1 are indeed drivers forMMGKS,
whereby MMGKS is called with specific inputs, to conveniently handle particularly
relevant regularization terms. Namely,

• AnisoTV implements anisotropic total variation (TV) regularization. In this
instance, p = 2 and the matrix � ∈ R

k×n is a rescaled finite difference dis-
cretization of the first derivative operator in one or two spatial dimensions, or in
three spatio-temporal dimensions; k depends on the dimensionality of the problem.
The weights are given by the diagonal matrix with entries

(

(�x(�))2j + ε2
)(q−2)/4

, where 0 < q ≤ 1 .

• IsoTV implements isotropic TV regularization. In one spatial dimension this
coincides with anisotropic TV, so that isotropic TV is more meaningful in two
spatial dimensions or in three spatio-temporal dimensions.

• GS implements a regularizer enforcing group sparsity (possibly under transform),
for solutions that are that are naturally partitioned in subsets; see [33].

We refer to Section 3.3 for more details about (an)isotropic TV and group sparsity
within MMGKS; see also [21].

2.3 Strategies to choose the regularization parameter

In this section we discuss methods available within TRIPs-Py to choose the regu-
larization parameter for the solvers described in the previous two subsections (and
summarized in Table 1). Properly choosing regularization parameters is a pivotal task
for any regularization method, as the success of the latter crucially depends on the for-
mer. In this section, when considering projection methods, it is convenient to use the
following compact notation for the regularized solution associated to the dth projected
problem

xd = Vd F†
αd
fd

︸ ︷︷ ︸

=:td

, (28)

where Vd is the basis for the dth approximation subspace, F†
αd

is the so-called dth
regularized inverse for the projected problem (depending on the dth Tikhonov regular-
ization parameter αd), and fd is the dth projected right-hand side vector. All quantities
appearing in (28) are specific for each projection method. In particular, for projections
methods that do not involve any additional Tikhonov regularization, xd = VdF

†
0fd .

Discrepancy principle
Let us assume that an estimate δ for the norm of the noise e appearing in (2) is
available. Then the discrepancy principle computes the regularization parameter for
the regularized solution of the generic regularization problem (3) by imposing

D(xreg) := ‖Axreg − b‖2 = ηδ, (29)

123

Numerical Algorithms

where η > 1 (η � 1) is a safety factor. Since the specific expression and properties
of the functional D(xreg) depend on the considered regularization method, TRIPs-Py
includes different versions of (29). In general, for the discrepancy principle to be
satisfied, one should make the natural assumption that

‖b0‖2 ≤ ‖e‖2 ≤ ‖b‖2 , (30)

where b0 denotes the orthogonal projection of b onto the null space ofAAT ; see [34].
For T(G)SVD,D(xh) is a decreasing functional of the discrete truncation parameter

h: therefore one chooses the truncation parameter h∗ such that

D(xh∗) ≥ ηδ > D(xh∗+1) .

Similarly, for purely iterative regularizing methods,D(xreg) is evaluated at discrete
points (i.e., the number of iterations or, equivalently, the dimension of the projection
subspace). For the dth projected problem,D(xd) is essentially the norm of the residual
associated to thedth solution. ForGMRESandLSQR,D(xd) is a decreasing functional
of d: this is a consequence of the optimality properties mentioned in Section 2.2.1.
Therefore, to satisfy the discrepancy principle, one stops at the iteration d∗ such that

D(xd∗−1) ≥ ηδ > D(xd∗) .

Note that, for GMRES and LSQR, the discrepancy principle is computationally
cheap to apply, as the functionalD(xd) can be computed with respect to the projected
coefficient matrix and right-hand side vector; see the last two equalities in equations
(17) and (20), respectively, for a justification.

When the discrepancy principle is applied to Tikhonov regularization (for either the
full-dimensional problem or at each iteration of a projected problem), (29) amounts
to a nonlinear equation to be solved with respect to the regularization parameter α.
Note that, with the change of variable α̂ = 1/α in (7), (23), (27), and α̂d = 1/αd

in (18), (21), D(xreg) is a decreasing convex functional of α̂ and α̂d , respectively,
so that Newton’s method is guaranteed to converge when started on the left of the
zero of D(xreg) − ηδ. For hybrid GMRES and hybrid LSQR, i.e., when considering
the projected problems appearing in (18) and (21), the discrepancies computed with
respect to the full-dimensional and the projected problems coincide, i.e.,

D(xreg) = ‖b−AVdF(αd)
†
d‖2 = ‖fd −Ed(Fαd)

†fd‖2 , where Ed = Hd,Bd (31)

for GMRES and LSQR, respectively; see, again, the last two equalities in equations
(17) and (20). Therefore, in order for D(xreg) − ηδ to have a zero, one should also
assume that

‖(I − EdF
†
0)fd‖2 ≤ ‖e‖2 ≤ ‖b‖2 , (32)

which is essentially condition (30) applied to the projected problems appearing in
(18) and (21). Since the quantity on the left of the first inequality is the norm of the
GMRES or the LSQR residuals (recall that, with αd = 0 hybrid GMRES or hybrid

123

Numerical Algorithms

LSQR are equivalent to GMRES or LSQR, respectively), and since such residuals
decrease with d, the above condition is satisfied when d is sufficiently large (typically
after only a few iterations); see also [35]. For methods based on generalized Krylov
subspaces, the discrepancies computed with respect to the full-dimensional and the
projected problems are different. Namely,

D(xreg) =
(

‖fd − RAF†
αfd‖22 + ‖(I − QAQT

A)b‖22
)1/2

(33)

when computed for the full-dimensional problem. The second term in the above sum
is dropped when D(xreg) is computed with respect to the projected problem; see also
[36]. In this setting, in order for D(xreg) − ηδ to have a zero, a condition similar to
(32) should be satisfied; for the full-dimensional problem, the leftmost quantity in (32)
should be replaced by (‖(I −RAF

†
0)fd‖2 + ‖(I −QAQT

A)b‖22)1/2. By default, for the
GKS-based solvers, TRIPs-Py applies the discrepancy principle with respect to the
full-dimensional problem.

Generalized Cross Validation (GCV)
The GCV criterion prescribes to take the regularization parameter that minimizes the
functional

G(xreg) = ‖Axreg − b‖22
(

trace(I − AA†
reg)

)2 . (34)

Such procedure is derived from statistical techniques, starting from the principle that
a good regularized solution xreg (defined by a good regularization parameter) should

be able to predict the exact data btrue as well as possible. In equation (34), A†
reg is the

regularized inverse of A (specific for each regularization method), i.e., a matrix such
that xreg = A†

regb, and the quantity AA†
reg is often referred to as ‘influence matrix’.

SinceGCVdoes not require any information about themagnitude of the noise affecting
the data b, it is the default regularization parameter choice method for the TRIPs-Py
solvers that involve TSVD or Tikhonov regularization (for either the full-dimensional
or the projected problem).

For (G)SVD spectral filtering methods, the functional G(xreg) can be conveniently
expressed with respect to the filter factors and quantities appearing in the SVD of A
or the GSVD of (A, �). In particular, for T(G)SVD, the functional G(xh) is evaluated
at discrete points and its denominator simplifies to (m − h)2, with h = 1, . . . , n for
TSVD and h = 1, . . . , k for GSVD (see equations (6) and (10), respectively); we refer
to [13, §5.4] for further details.

When GCV is applied to the hybrid-projection methods based on standard Krylov
subspace methods (Section 2.2.1) and to the methods based on generalized Krylov
subspaces (Section 2.2.2), the values of G(xreg) may depend on whether the regular-
ization parameter is selected for the projected problem only, or by linking the projected
problem to the corresponding full-dimensional regularized problem.

For hybrid methods based on standard Krylov subspaces, the numerator of G(xreg)
(i.e., the square of the functional D(xreg)) is the same when computed for both the
full-dimensional and the projected problems; see (31). This is not true for GKS-based

123

Numerical Algorithms

methods; see (33). Concerning the denominator of G(xreg), using the properties of the
trace, one can derive the expressions

ζ − trace(EdF†
α), where Ed = Hd ,Bd ,RA

for hybrid GMRES, hybrid LSQR and (MM)GKS, respectively. The constant ζ is m
for all themethodswhen computed for the full-dimensional problem. For the projected
problems, ζ = d+1 for hybrid GMRES and hybrid LSQR (see [37] for more detailed
derivations in the hybrid GMRES case), and ζ = d for (MM)GKS. By default, and in
agreement with the common choices made in the literature, TRIPs-Py uses the GCV
criterion computed for the full-dimensional problem for hybrid GMRES and hybrid
LSQR, and the projected GCV version for the solvers based on generalized Krylov
subspaces; see [37, 38].

2.4 Regularization operators

This section describes the regularization matrices implemented in TRIPs-Py. We con-
sider two types of operators: those based on a finite-difference discretization of the first
derivative operator and those based on framelet operators. Somemore details about the
usage of these regularization matrices are discussed in Section 3, and an illustration
is provided towards the end of the demo demo_Tomo_large_scale.ipynb.

Case 1: Regularization operators based on the first derivative operator
Let

�D =

⎡

⎢

⎢

⎢

⎣

1 −1
1 −1

. . .
. . .

1 −1

⎤

⎥

⎥

⎥

⎦

∈ R
(nD−1)×nD and InD ∈ R

nD×nD (35)

be a rescaled finite-difference discretization of the first derivative operator and the
identity matrix of order nD , respectively. For problems that depend on one or two
spatial dimensions (x, y) and, possibly, a time dimension t , the matrix �D is used to
obtain discretizations of the first derivatives in the D-direction, with D = x (vertical
direction), D = y (horizontal direction), and D = t (time direction). For a static image
represented as a 2D array X ∈ R

nx×ny , such that x = vec (X) ∈ R
nxny is obtained by

stacking the columns of X, its horizontal and vertical derivatives are given as

vec(�xX) = (Iny ⊗ �x)x ∈ R
ny(nx−1)

vec(X�T
y) = (�y ⊗ Inx)x ∈ R

(ny−1)nx
, (36)

respectively. The discrete gradient is then expressed as

�s = [(Iny ⊗ �x)
T , (�y ⊗ Inx)

T]T . (37)

When modelling dynamic inverse problems with a time-varying solution, let X ∈
R
ns×nt be the 2D array whose columns store the quantity of interest at the nt time

123

Numerical Algorithms

instants; note that, if such quantities are 2D images, then the columns of X are vecto-
rialized images with ns = nxny pixels. The derivative in the time dimension is then
given by vec(X�T

t) = (�t ⊗ Ins)x ∈ R
(nt−1)ns .

Case 2: Regularization operators based on a two-level framelet analysis operator
When regularizing by leveraging sparsity but the desired solution is not sparse in
the original domain, a well-known technique is to perform a transformation to another
domain,where the solutionmay admit a sparse representation. For this purpose, TRIPs-
Py provides a two-level framelet analysis operator, defined as follows. LetW ∈ R

r×n

with 1 ≤ n ≤ r . The set of the rows ofW is a framelet system forRn if, for all x ∈ R
n ,

‖x‖22 =
r

∑

j=1

(wT
j x)

2, (38)

wherew j ∈ R
n denotes the j th row of the matrixW (written as a column vector), i.e.,

W = [w1,w2, . . . ,wr]T . The matrixW is referred to as an analysis operator andWT

as a synthesis operator. We use the same tight frames as in [32, 39, 40], i.e., the system
of linear B-splines. This system is formed by a low-pass filter W0 ∈ R

n×n and two
high-pass filtersW1,W2 ∈ R

n×n , whose corresponding masks are

w(0) = 1

4
[1, 2, 1], w(1) =

√
2

4
[1, 0,−1], w(2) = 1

4
[−1, 2,−1].

The analysis operatorW in one space-dimension is derived from these masks and by
imposing reflexive boundary conditions to ensure thatWTW = I. The corresponding
two-dimensional operator W is given by

W = [[W0 ⊗ W0]T , [W0 ⊗ W1]T , [W0 ⊗ W2]T , [W1 ⊗ W0]T , . . . , [W2 ⊗ W2]T
]T

, (39)

where⊗ denotes the Kronecker product. This matrix is not explicitly formed.We note
that the evaluation of matrix-vector products withW andWT is inexpensive, because
the matrix W is sparse. The operator W can be used for instance as a regularization
operator in GKS and MMGKS.

3 Overview of the TRIPs-Py test problems

In this section, we consider three main classes of test problems. In the first class we
consider both 1D and 2D deblurring, with the latter being used to produce both small-
scale and large-scale synthetic test problems. In the second classwe consider computed
tomography with synthetic data, which can be used to generate both small-scale and
large-scale inverse problems. The third class contains dynamic inverse problems with
real data. The usage of the classes to generate test problems and of the TRIPs-Py’s
solvers that can be attempted to compute their solutions is illustrated in a number of
demos collected in jupyter notebooks. A complete list of demos in TRIPs-Py, and
short descriptions thereof, is given in Table 3. For a smooth usage of the package,

123

Numerical Algorithms

Table 3 List of TRIPs-Py demos

Demo Description

demo_dynamic_Emoji.ipynb Emoji test problem and illustrations for
solving the static and dynamic problems.

demo_dynamic_CrossPhantom.ipynb CrossPhantom test problem and illustra-
tions for solving the static and dynamic
problems.

demo_dynamic_Stempo.ipynb STEMPO test problem and illustrations for
solving the static and dynamic problems.

demo_1D_Deblurring.ipynb 1D Deblurring test problem and illustration
of direct and iterative methods to solve it.

demo_2D_Deblurring_small_scale.ipynb 2D Deblurring for a small-scale test prob-
lem whose naive solution can be computed,
and illustration of direct and iterative regu-
larization methods.

demo_2D_Deblurring_large_scale.ipynb 2DDeblurring for a large-scale test problem
and illustration of iterative methods to solve
the ill-posed problem.

demo_2D_Deblurring_your_data.ipynb Illustration of functions that can be used to
upload users’ images and define a deblur-
ring problem.

demo_Tomo_small_scale.ipynb Small-scale Tomography test problem and
illustration of solution methods.

demo_Tomo_large_scale.ipynb Large-scale Tomography test problem and
illustration of iterative regularization meth-
ods.

demo_Tomo_saved_data.ipynb Illustration of how to use functions on the
Tomography class that access previously
saved tomography data.

we recommend the users to first download the data needed for test problems from the
google drive 1 and place the folder data inside the folder demos.

3.1 Deblurring (deconvolution)

Deblurring can be formulated as an integral equation of the kind

∫

B(s, t)x(t)ds + e = b(s), (40)

where s, t ∈ R
D represent spatial information (in TRIPs-Py, D = 1, 2). The kernel

B(s, t) (also known as the point spread function (PSF)) defines the blur. It is well-
known that, if the kernel is spatially invariant (as it is in TRIPs-Py), i.e., if B(s, t) =
B(s − t), then (40) is a deconvolution problem. In practical settings, discrete data
are collected in finite regions, so that the continuous model (40) is discretized and

1 https://drive.google.com/drive/folders/1VB8LaFewgwNKXq7QSVns4D6Rod8W8Pa1?usp=sharing

123

https://drive.google.com/drive/folders/1VB8LaFewgwNKXq7QSVns4D6Rod8W8Pa1?usp=sharing

Numerical Algorithms

yields a linear system of equations as in (1). In this particular case, the matrix A ∈
R
n×n represents the blurring operator, which is defined starting from the PSF and

the boundary conditions on the unknown quantity of interest. In TRIPs-Py the PSF is
given by a rescaled, possibly asymmetric Gaussian of the form

B(s, t) = c exp

(

−1

2
(s − t)TB(s − t)

)

, where c > 0, B = diag(β2
1 , . . . , β

2
D),

(41)
whose spread parameters β1, . . . , βD (D = 1, 2) are set by the user; reflective bound-
ary conditions are used. The vector b contains the vectorized measured blurred and
noisy quantity of interest. By default, the synthetic deblurring test problems available
within TRIPs-Py avoid inverse crime by allowing a mismatch between the forward
operator used to solve the problem, and the forward operator used to generate the data;
see [41]. Namely, the latter employs zero boundary conditions. Inverse crimes can be
allowed by setting the CommitCrime option to True (the default being False).
More details on deblurring can be found in [24].

Code 1: Generate Image deblurring 1D

Define an object of Deblurring1D class
Deblur1D = Deblurring1D(CommitCrime = True)
nx = 200
Generate a true solution
x_true = Deblur1D.gen_xtrue(nx , test = ’curve2 ’)
Generate the forward operator
A = Deblur1D.forward_Op_1D(parameter = 30, nx = nx)
Generate the blurred and noisy curve
b_true = Deblur1D.gen_data(x_true)
(d, delta) = Deblur1D.add_noise(b_true , ’Gaussian ’,

noise_level = 0.01)
Deblur1D.plot_data(d)
Deblur1D.plot_rec(x_true)

3.1.1 1D Deblurring

Referring to the notations in (2), in the 1D setting we consider a one dimensional
true signal xtrue ∈ R

n and a convolution forward operator A ∈ R
n×n , with asso-

ciated smoothed and noisy signal b ∈ R
n . This problem can be setup in TRIPs-Py

by defining an object of the Deblurring1D() class. The method gen_xtrue()
generates the true signal. The required arguments are the dimension of the prob-
lem nx and the test signal test; for the latter, the user can choose among the saved
options: piecewise, sigma, curve0, curve1, curve2, and curve3. The user
can have acces to the forward operator by calling the method forward_Op_1D()
with parameter storing the spread of the 1D Gaussian blurring function. The
data can be generated using the method gen_data(). Noise is then added to
the data through the method add_noise(), which takes as input the noiseless
data, the distribution of the random noise and the noise level (for Gaussian and

123

Numerical Algorithms

Laplace noise), i.e., the ratio ‖e‖2/‖Axtrue‖2. An illustration of the usage of the
Deblurring1D() class is shown in Code 1, and more illustrations are presented in
demo demo_1D_Deblurring.ipynb. Figure 2 shows the true ’curve2’ sig-
nal, its blurred and noisy version with 1% Gaussian noise, and reconstructions with
TSVD and TGSVD.

3.1.2 2D deblurring

In this sectionwe showstrategies to define and solve a 2Ddeblurringproblem inTRIPs-
Py. Similarly to the 1D case, 2D image deblurring test problems are set up as objects
of the Deblurring2D() class. As a first step, we start with a small-scale problem
to illustrate the ill-posedness of such inverse problem and the performance of direct
regularization methods applied to it (with some more illustrations available through
the notebook demo_Deblurring_small_scale.ipynb). Then we consider a
larger scale problem to illustrate iterative regularization methods (a full investigation
is provided in the demo demo_Deblurring_large_scale.ipynb). For con-
sistancy, we choose the same image in both examples, but the user can choose from
other images provided in the package, such as h_im, hubble, grain, and sky.
Other images (in tiff, tif, jpg, png or mat formats) can be easily used in TRIPs-Py by
performing the following operations:

1. Create the folder my_image_data under demos/data and place the desired
image inside the folder.

2. Run the function

convert_image_for_trips(imag = ‘image_name’, image_type=‘image_type’),

where ’image_name’ and ’image_type’ refer to the desired image name
and type.

This is shown in the demo demo_Deblurring_your_data.ipynb.

Small-scale image deblurring
For this illustration we set nx = ny = 50 and define the forward operator to be a
Gaussian PSF (41) with parameters (β1, β2) = (1, 1). The true image and the blurred
and noisy image with 1% Gaussian noise are shown in Fig. 3(a) and (b). We call
methods TSVD, Hybrid LSQR, and MMGKS with parameters specified as follows.

Fig. 2 1D image deblurring test problem. (a) xtrue and data with 1% Gaussian noise, (b) xtrue and naive,
unregularized solution, (c)xtrue, TSVDandTGSVDsolutions, (d)xtrue, standard andgeneral formTikhonov
solutions

123

Numerical Algorithms

Fig. 3 2D image deblurring small-scale test problem. (a) True image of size 50 × 50 pixels, (b) Blurred
and noisy image with 1% Gaussian noise. Approximate solutions by (c) TSVD, (d) Hybrid LSQR, and (e)
MMGKS

Code 2: Solve the small-cale 2D image deblurring problem

(x_tsvd , truncation_value) = tSVD_sol(A.todense (),
b_vec , regparam = ’dp’, delta = delta)

(x_hybrid_lsqr , info_hybrid_lsqr) = Hybrid_LSQR(A,
b_vec , n_iter = 100, regparam = ’dp’, x_true =
x_true , delta = delta)

L = first_derivative_operator_2d(nx , ny)

(x_mmgks , info_mmgks) = MMGKS(A, data_vec , L, pnorm
=2, qnorm=1, projection_dim =2, n_iter = 100,
regparam = ’dp’, x_true = x_true , delta = delta)

We remark that the user should provide the operator A as a dense matrix for TSVD
and the observed data as a vector for all the methods. The regularization parameter
can be a scalar, or chosen by the discrepancy principle (’dp’) or generalized cross
validation (’gcv’). When the regularization parameter is set to ’dp’, the user must
specify the noise level parameter delta, returned from the add_noise() func-
tion (see Code 1). For MMGKS, the user can specify the regularization matrix L
(for this example we choose L to be a 2D discretized derivative operator of the first
order). The values of p and q can be set as well through the input parameters pnorm
and qnorm. The approximate solution and information collected through the itera-
tions is outputed. Approximate solutions obtained from TSVD, and iterative methods
such as Hybrid LSQR and MMGKS are shown in Fig. 3 c), d), and e), respectively.
Apart from visual inspections provided in Fig. 3 for this example, more quantitative
measures on the reconstructed solution can be found in the demo jupyter notebook
demo_Deblurring_small_scale.ipynb.

Large-scale image deblurring
For the large-scale versionwe consider the true image of size 128×128 pixels shown in
Fig. 4(a). Such image is blurred by a Gaussian PSF with parameters (β1, β2) = (3, 3)
and we add 1% Gaussian noise. An illustration of how to define a large-scale 2D
Deblurring problem is shown in Code 3. The blurred and noisy image is shown in
Fig. 4(b). Approximate solutions obtained by hybrid GMRES, hybrid LSQR, and
MMGKS are shown in Fig. 4(c), (d), and (e). The calls to these solvers are essentially

123

Numerical Algorithms

Fig. 4 2D image deblurring large-scale test problem. (a) True image of size 128 × 128 pixels. (b) Blurred
and noisy image with 1% Gaussian noise. Approximate solutions obtained by (c) Hybrid GMRES, (d)
Hybrid LSQR, and (e) MMGKS

identical to the ones illustrated for the small-scale example. More details can be found
in the demo demo_Deblurring_large_scale.ipynb.

Code 3: Generate a large-scale 2D image deblurring problem

Create an object of class Deblurring ()
Deblur = Deblurring(CommitCrime = False)
nx = 256
ny = 256
Generate the forward operator
A = Deblur.forward_Op ((9 ,9), (3,3), nx , ny)
choose_image = ’satellite ’
generate the true image
x_true = Deblur.gentrue(choose_image)
generate data
b_true = Deblur.gen_data(x_true) # generate_matrix)
add noise
(b, delta) = Deblur.add_noise(b_true , opt= ’Gaussian ’

, noise_level = 0.01)
b_vec = b.reshape ((-1,1))

3.2 Computerized tomography

Another test problem considered in TRIPs-Py is 2D X-ray computerized tomography
(CT), which consists in reconstructing an object (i.e., the attenuation coefficients of
an object) from a set of projections along straight lines (i.e., intensities of energy
rays recorded by detectors). In the following we briefly describe the physical and
mathematical formulation of CT and then illustrate how to define a CT test problem
within TRIPs-Py.

Let x=[x1, x2]T , β ∈ [−π, π], β =[cos(β), sin(β)]T , β⊥ = [− sin(β), cos(β)]T ,
and c ∈ R. Let

L(β, c) =
{

x ∈ R
2 | x · β = c

}

=
{

x ∈ R
2 | x = cβ + �β⊥, � ∈ R

}

be the perpendicular line to β with signed orthogonal distance c from the origin.
Then, assuming that absorption dominates potential scattering effects, Lambert-Beer

123

Numerical Algorithms

law links the attenuation coefficient f (x) of the objectwewish to image to the recorded
intensity Iβ,c of the measured X-ray of incoming intensity I0 along L(β, c) as follows

∫

L(β,c)
f (x)d�

︸ ︷︷ ︸

=R[f](β,c)

= − log

(

Iβ,s

I0
+ eβ,c

)

, (42)

where eβ,c is a random perturbation corrupting the measurements. The left-hand side
of the above equation, when computed for all β’s and c’s, is the Radon transform of the
function f . After a discretization process, from (42) we obtain a discrete formulation
of the problem, Ax = b. More details on CT can be found in [42].

Code 4: Generate X-Ray CT problem

Define an object of the class Tomogrpahy
Tomo = Tomography ()
Specify the dimensions of the phantom and the

number of angels
nx = 256
ny = 256
views = 50
Define the true solution throught the function

gen_true ().
(x_true , nx , ny) = Tomo.gen_true(testproblem = ’

tectonic ’, nx = nx , ny = ny)
Define the forward operator
A = Tomo.forward_Op(nx , ny , views)
Generate the data
(A, b_true , p, q, AforMatrixOperation) = Tomo.

gen_data(x_true , nx , ny , views)
Add noise in the true simulated sinogram b_true
(b, delta) = Tomo.add_noise(b_true = b_true , opt = ’

Gaussian ’, noise_level = 0.001)

Similarly to deblurring, we generate a CT test problem in TRIPs-Py by first defin-
ing an object of the class Tomography(). By default, also the synthetic CT test
problems available within TRIPs-Py avoid inverse crime by using slightly different
forward operators to solve the problem and to generate the data. Namely, the set of
projection angles for the two operators are affected by a small constant mismatch.
Inverse crimes can be allowed by setting the CommitCrime option to True (the
default being False). The following demos in TRIPs-Py illustrate how to set up and
solve tomography test problems.

� demo_Tomo_small_scale.ipynb This notebook defines a tomography test
problem with small dimensions, so that the forward operator can be explicitly
formed and stored to compute a naive solution or a regulatized solution from
TSVD.

� demo_Tomo_large_scale.ipynb This notebook showcases how to gen-
erate a large-scale tomography problem along with how to call solvers for the

123

Numerical Algorithms

formulated inverse problem. For both demos described above, to setup the for-
ward operator, we use the ASTRA toolbox with ‘fanflat’ 2D geometry. Other
geometries such as ‘parallel’ and ‘fanflat_vec’ can be used. More details on the
ASTRA toolbox and its documentation can be found in [11] and references therein.

� demo_Tomo_saved_data.ipynb This notebook demonstrates how to gen-
erate a tomogrpahy problem where the forward operator and the data are already
available. This demo has no dependency on any ASTRA toolbox to generate the
forward operator.

Code 4 illustrates how to set up a large-scale tomography test problem, where
nx = ny = 256 and the number of view angles is 50; 1% Gaussian noise is added to
the data. A small-scale problem can be defined similarly by reducing nx and ny . The
angles can be limited by varying the parameter views. The true phantom is given
in Fig. 5(a); reconstructed solutions by iterative methods Hybrid LSQR, GKS, and
MMGKS are shown in Fig. 5(c), (d), and (e), respectively.

3.3 Dynamic computerized tomography

Recent technological advancements in detector speed and accuracy resulted in a grow-
ing interest in X-ray computerized tomography, which in turn prompted the need for
new and efficient methods to analyze the collected data. In particular, in this paper and
within TRIPs-Py, we are interested in reconstructing a series of images to explore the
spatial and temporal properties of data acquired within dynamic CT. The aim of this
section is three-folded: 1) to briefly describe several regularization termsR (x) for use
in dynamic inverse problems, 2) to show how to handle dynamic data and generate
dynamic CT problems in TRIPs-Py, and 3) to illustrate the need for temporal regular-
ization along with spatial regularization, as well as the usage of TRIPs-Py solvers for
dynamic CT.

In the dynamic setting, we are interested in solving the minimization problem

⎡

⎢

⎣

̂A(1)

. . .

̂A(nt)

⎤

⎥

⎦

︸ ︷︷ ︸

A

⎡

⎢

⎣

x̂(1)

...

x̂(nt)

⎤

⎥

⎦

︸ ︷︷ ︸

x

+
⎡

⎢

⎣

ê(1)

...

ê(nt)

⎤

⎥

⎦

︸ ︷︷ ︸

e

=
⎡

⎢

⎣

̂b(1)

...
̂b(nt)

⎤

⎥

⎦

︸ ︷︷ ︸

b

. (43)

Fig. 5 Tomography test problem. (a) True image of 256 × 256 pixels. Approximate solutions obtained by
(b) Hybrid LSQR, (c) GKS, and (d) MMGKS

123

Numerical Algorithms

The operator A has typically a block diagonal structure where the blocks ̂A(t) change
in time t = 1, . . . , nt . If ̂A(t) = ̂A for t = 1, . . . , nt , the forward operator simplifies
to A = Int ⊗ ̂A, where ⊗ denotes the Kronecker product. Problem (43) may be
approached by solving a sequence of ‘static’ regularized problems of the form

x(t)
static = arg min

x∈Rns
‖̂A(t)x −̂b(t)‖22 + α‖�sx‖qq , t = 1, 2, . . . , nt , (44)

where ns is the number of spatial unknowns (costant for all time instances), �s is
defined as in (37) and q > 0 (note that q = 1 corresponds to anisotropic total variation
in space). However, in order to overcome the difficulties associated to often having
only limited information per time instance, and to improve the reconstruction quality,
it is crucial to incorporate temporal information into the reconstruction process by
solving

xdynamic = arg min
x∈Rn

‖Ax − b‖22 + αR(x). (45)

HereR(x) is a regularization term that takes into consideration both spatial and tem-
poral dimensions. In TRIPs-Py, the user can find three regularization terms for (45);
see [21] for more details and a more extended list of such regularizers. In the Bayesian
setting, edge-preserving regularization methods for dynamic problems are proposed
in [43].

� Anisotropic space-time TV We take

R(x) =
nt

∑

t=1

‖�s x̂(t)‖1+
nt−1
∑

t=1

‖̂x(t+1)− x̂(t)‖1 = ‖(Int ⊗�s)x‖1+‖(�t ⊗Ins)x‖1
(46)

The anisotropic TV terms ‖�s x̂(t)‖1, t = 1, . . . , nt , ensure that the discrete spatial
gradients of the images are sparse at each time step; moreover, we enforce that
the images do not change considerably from one time instant to the next one by
penalizing the 1-norm of their difference.

� Isotropic TV in space, anisotropic TV in time Assuming, for simplicity, that
nx = ny , we take

R(x) =
n

∑

�=1

√

((Int ⊗ Iny ⊗ �̄x)x)2� + ((Int ⊗ �̄y ⊗ Inx)x)
2
� +

nt−1
∑

t=1

‖̂x(t+1) − x̂(t)‖1

= ‖ [(Int ⊗ Iny ⊗ �̄x)x, (Int ⊗ �̄y ⊗ Inx)x] ‖2,1 + ‖(�t ⊗ Ins)x‖1,
(47)

where �̄D (D = x, y) denote the square version of the matrix �D defined in (35),
where a zero row has been added at the bottom, and ‖ · ‖2,1 denotes the functional
defined, for a matrix Z ∈ R

mx×my , as ‖Z‖2,1 = ∑mx
i=1 ‖Zi,:‖2.

� Group sparsity In dynamic CT, one can naturally group the spatial variables
(pixels) at each time instant, i.e., {̂x(t)}ntt=1, although there are other possibleways of
defining groups. In TRIPs-Py we impose group sparsity across the groups defined

123

Numerical Algorithms

by the pixels of the gradient images for all the time instants, i.e., we take

R(x) =
n′
s

∑

�=1

(nt
∑

t=1

(�s x̂(t))2�

)1/2

= ‖�sX‖2,1, (48)

where n′
s = (ny − 1)nx + (ny − 1)nx is the total number of pixels in the gradient

images and, referring to the notations in (43), X = [̂x(1), . . . , x̂(nt)] ∈ R
ns×nt .

Code 5 gives examples of the usage within TRIPs-Py of the basic regulariza-
tion operators that appear in the regularization functionals listed above, as well
as the framelet operator described in Section 2.4. These are coded in the file
operators.py under the directory trips/utilities. All such regularization
functionals can be handled in the general framework of MMGKS, as described at the
end of Section 2.2.2.

Code 5: Regularization operators

Discretization of the first derivative operator in
1D

L = gen_first_derivative_operator(n)
Discretization of the first derivative operator in

2D
L = gen_first_derivative_operator_2D (nx , ny)
Spacetime derivative operator D_1
L = gen_spacetime_derivative_operator (nx , ny , nt)
Framelet operator of the second level
W = create_framelet_operator (nx , ny , 2)

3.3.1 Emoji test problem

This example considers real data of an “emoji” phantom measured at the University
of Helsinki [44]. We modify the data to determine two main limited angle problems
as follows:

1. Problem1: 10projectionangles. From thedatasetDataDynamic_128x30.mat
we generate the problemŝA(t)x̂(t)+ê(t) = ̂b(t), t = 1, 2, . . . , 33wherêA(t) of size
2, 170 × 16, 384 are defined by taking 217 fan-beam projections around only 10
equidistant angles in [0, 2π). The forward operatorA has size 71, 610×540, 672.

2. Problem2: 30projectionangles. From thedatasetDataDynamic_128x60.mat
we still generate 33 static problems, with ̂A(t) of size 6, 510 × 16, 384 computed
from taking 217 fan-beam projections around 30 equidistant angles in [0, 2π).
Hence the dynamic forward operator A has size 214, 830 × 540, 672.

For both cases, the ground truth xtrue is not available, but photographs of the scanned
shapes are shown in Fig. 6.

In TRIPs-Py, themain function to generate emoji data isgenerate_emoji(da-
taset = your_dataset)which allows the user to select the dataset to be either

123

Numerical Algorithms

Fig. 6 Emoji test problem. True images at time instances t = 6, 14, 20, 26; taken from [44]

30 or 60. Such function automatically downloads the data from the repository 2. If a
noise level is provided as an argument in generate_emoji(), then more Gaussian
noise (on the top of the unknown noise already present in the recorded data) of the
given level is added to the returned data. With generate_emoji() we generate
data for solving both a sequence of static inverse problems of the form (44), where the
operators are saved in Aseq and the sinograms are the columns of B, and the dynamic
problem of the form (45), with the blockdiagonal matrix A and the stacked sinograms
b. These are illustrated in Code 6.

Code 6: Emoji test problem

Generate the emoji test problem with the dataset
option 30

(A, b, Aseq , B, nx , ny , nt) = generate_emoji (dataset
= 30)

Generate the emoji test problem with the dataset
option 60

(A, b, Aseq , B, nx , ny , nt) = generate_emoji (dataset
= 60)

generate a test problem by adding more noise to the
real data

(A, b, Aseq , B, nx , ny , nt) = generate_emoji (dataset
= 30, noise_level = 0.001)

We run 100 iterations of MMGKS for solving both the static problems and the
dynamic problem, with regularization parameter computed by GCV. The usage of
the TRIPs-Py functions to solve the static problems is illustrated in Code 7, and the
reconstructions obtained at time steps t = 6, 14, 20, 26 are shown in Fig. 7, first
row. The function plot_recstructions_series() can be used to display the
reconstructions for both static and dynamic problems with the argument dynamic
= False or dynamic = True, respectively. When displaying the results, we set
negative solution entries to 0 as a post-processing step (note that this is different to
applying nonnegativity constraints during the reconstructions as done, for instance,
in [32, 39]). The usage of the TRIPs-Py functions to solve the dynamic problem

2 https://zenodo.org/records/1183532

123

https://zenodo.org/records/1183532

Numerical Algorithms

Fig. 7 Emoji test problem. Reconstruction results with 10 projection angles. The first row shows the
reconstructions with spatial anisotropic TV for the static problem, the second and third rows display the
reconstructions for the dynamic problem solved with anisotropic and isotropic TV at time instances t =
6, 14, 20, 26, respectively, from left to right

is reported in Code 8, where we particularly focus on solvers that, within MMGKS,
enforce (an)isotropicTV in space and anisotropicTV in time, aswell asGroupSparsity.

More details about this test problem can be found in the demo demo_dyna-
mic_Emoji.ipynb.

Code 7: Solve and plot a series of static emoji problems

Define the regularization operator (only for space)
L = gen_first_derivative_operator_2D (nx , ny)
For all problems , call MMGKS
for i in range(nt):

b_vec = B[i]. reshape ((-1,1))
(x_static_mmgks , info_mmgks) = MMGKS(Aseq[i],
b_vec , L, pnorm=2, qnorm=1, projection_dim =1,
n_iter = 100, regparam= ’gcv’ , x_true=None ,
epsilon = 0.001)
xx[i] = x_static_mmgks

Plot static reconstructions
plot_reconstructions_series (xx , (nx , ny , nt), dynamic

= False , testproblem = ’Emoji’, geome_x = 1,
geome_x_small = 0, save_imgs= False , save_path=’
./ reconstruction /Emoji’)

123

Numerical Algorithms

Code 8: Solve the dynamic Emoji with different regularizers

Define the regularization operator (for space and
time)

L = gen_spacetime_derivative_operator (nx , ny , nt)
data_vec = b.reshape ((-1,1))
(x_mmgks , info_mmgks) = MMGKS(A, data_vec , L, pnorm

=2, qnorm=1, projection_dim =1, n_iter = 100,
regparam = ’gcv’, x_true = None , delta = delta ,
epsilon = 0.001)

Run TV_iso
(x_mmgks , info_mmgks) = MMGKS(A, data_vec , L, pnorm

=2, qnorm=1, projection_dim =1, n_iter = 100,
regparam = ’gcv’, x_true = None , delta = delta ,
epsilon = 0.001, isoTV = ’isoTV’, prob_dims = (nx
, ny , nt)

Run GS
(x_mmgks , info_mmgks) = MMGKS(A, data_vec , L, pnorm

=2, qnorm=1, projection_dim =1, n_iter = 100,
regparam = ’gcv’, x_true = None , delta = delta ,
epsilon = 0.001, GS = ’GS’, prob_dims = (nx , ny ,
nt)

Plot dynamic reconstructions
plot_reconstructions_series (x_mmgks , (nx , ny , nt),

dynamic = True , testproblem = ’Emoji’, geome_x =
1,geome_x_small = 0, save_imgs= False , save_path
=’./ reconstruction /Emoji’)

3.3.2 STEMPO

Starting from theSpatio-TEmporalMotor-POwered (STEMPO) ground truth phantom
from [45], within TRIPs-Py we generate both static and dynamic inverse problems,
with both simulated and real data. The data for this example can be downloaded from
the repository 3.

For the simulated data we consider the STEMPO ground truth phantom
stempo_ground_truth_2d_b4.mat, which contains 360 images of size 560×
560 pixels. From this dataset we retain nt images, chosen uniformly from 1 to 360 with
a factor of 8, i.e., we choose the 1st, the 8th, ... up to the 360th image: these represent
the ground truth at nt time instances; nt can be given in input by the user. Using the
ASTRA toolbox [11] we generate the forward operators ̂A(t), t = 1, 2, . . . , nt , each
defined with respect to the angles stored in nt vectors of length 11, with 791 parallel
rays departing from each angle. Each angle vector is generated by choosing 11 equis-
paced degree angles from (5∗(t−1), 5∗(t−1)+140), for t = 1, 2, . . . , nt , which are
then converted to radian. For instance, for nt = 20, the forward operators at each time
instant are of size 8701 × 313600,while the dynamic forwardoperator is a blockdiago-
nal matrix of size 174020 × 6272000.We perturb each measured vectorized sinogram
̂d(t)
true with white Gaussian noise of level given in input by the user. The true image x(t)

3 https://zenodo.org/records/8239013

123

https://zenodo.org/records/8239013

Numerical Algorithms

Fig. 8 STEMPO test problem. (a) True image, and reconstructions at time instance t = 10 by (b) static
anisotropic TV, (c) Hybrid LSQR, (d) dynamic isotropic TV

at time step t = 10, together with its reconstructions obtained by static anistotropic
TV, hybrid LSQR, and dynamic isotropic TV are shown in Fig. 8. An illustration for
both real and simulated gata generation is shown in Code 9. More details about this
test problem can be found in the demo demo_dynamic_Stempo.ipynb.

Code 9: Stempo test problem

Generate a simulated STEMPO test problem
(A, b, Aseq , B, nx , ny , nt , savedelta , truth) =

generate_stempo(data_set = ’simulation ’,
data_thinning = 2, nt = 10)

Generate a STEMPO test problem with real data
(A, b, Aseq , B, nx , ny , nt , savedelta , truth) =

generate_stempo(data_set = ’real’, data_thinning
= 2)

3.3.3 Cross phantom

The last example considers real data of the cross phantom measured at the Uni-
versity of Helsinki [46]. We obtain the forward operator and the data from the file
DataDynamic_128x15.mat, which can be downloaded from the repository 4.
The spatial resolution is 128× 128 pixels. The CT sinogram that represents the avail-
able data consists of 16 time frames that are generated bymeasuring a 2D cross-section
of the dynamic phantom that is built from an aluminum stick, a graphite stick, and can-
dle wax. Themeasurements were collected by considering 15 projection angles at each
time instance, with angles shifted by one degree from a given time instance to the next
one, i.e., if the angles for time step t1 are [1, 15, 29, ..], then for time step t2 they are
[2, 16, 30, ..]. The measurement matrix that represents the forward operator obtained
with a cone-beamgeometry is a sparsematrix of size 33600×262144, and the sinogram
matrix is represented as B ∈ R

140×240, i.e., 15 projections on 16 images. The instance
of the Cross Phantom test problem just described can be easily generated in TRIPs-Py
as shown in Code 10. The high resolution filtered back projection reconstruction of the
time dependent cross phantom computed from 360 projections along with the sino-
gram that corresponds to measurements from 16 time instances are shown in Fig. 9.

4 https://zenodo.org/records/1446516

123

https://zenodo.org/records/1446516

Numerical Algorithms

Fig. 9 CrossPhantom test
problem. Left frame: the
high-resolution filtered
back-projection reconstruction
of the time-dependent cross
phantom computed from 360
projections. Right frame:
sinogram that contains
measurements from 80 angels
for 16 time instances together

Reconstructed images with MMGKS for the static inverse problems at time instances
t = 1, 5, 10, 15 are shown in the first row of Fig. 10. The second row of Fig. 10 shows
reconstructed images by solving the dynamic inverse problem with anisotropic TV at
time instances t = 1, 5, 10, 15 from left to right, respectively. More details about this
test problem can be found in the demodemo_dynamic_CrossPhantom.ipynb.

Code 10: CrossPhantom test problem

Generate the CrossPhantom test problem
(A, b, Aseq , B, nx , ny , nt) = generate_crossPhantom (

dataset = 15)

4 Conclusions and outlook

In this paper we describe TRIPs-Py, a Python package collecting solvers for small
and large-scale discrete ill-posed inverse problems, and test problems. The package
allows the user to easily set-up a test problem, with both simulated and real data, and

Fig. 10 CrossPhantom test problem. Reconstructions with MMGKS for the static test problems (first row)
and anisotropic TV for the dynamic inverse problems (second row) at time steps t = 1, 5, 10, 15, from left
to right

123

Numerical Algorithms

employ built-in regularization methods to solve the inverse problem. Among solvers
for small-scale problems, TRIPs-Py includes direct regularization methods such as
truncated (G)SVD and Tikhonov. Among iterative regularization, TRIPs-Py includes
methods based on both standard and generalized Krylov subspace methods. Among
the test problems, special emphasis is given to a framework for handling dynamic
simulated and real data. We envision that the user can provide their own data and use
our solution methods within TRIPs-Py, as well as test their solution methods with the
TRIPs-Py test problems.

This is a first public version of TRIPs-Py. Future developments will focus on adding
new solutionmethods, functionalities, test problems, and improving existing data gen-
eration and visualisation tools. Specifically, in future versions of TRIPs-Py, we plan to:

� Include solvers based onflexibleKrylov subspacemethods to, e.g., enforce sparsity
on the desired solution; see [47].

� Include methods that can enforce constraints into the solutions; see, e.g., [32, 39,
48].

� Implement memory-aware iterative methods for edge-preserving and sparsity for
solving large-scale and massive inverse problems; see [49].

� Add other strategies to automatically determine the regularization parameter(s).
� Add other instances of the existing deblurring test problems (e.g., a variety of

PSFs) and tomography test problems (e.g., different scanning geometries).
� Add other test problems, such as hyperspectral imaging and spectral CT.
� Develop tools for high-order representation of dynamic imaging data.

Users are welcomed to contribute to TRIPs-Py by solutionmethods, functionalities,
and/or test problems and data.

Acknowledgements SG would like to thank Ludovico Carozza for his advice on many Python function-
alities. We would like to thank Tatiana Bubba for discussions about avoiding ‘inverse crimes’ in inverse
problems and Jakob Sauer Jørgensen for several discussions and advice that helped finalize the software
package.

Author Contributions MP and SG wrote the manuscript, designed the package and wrote most of the
functionalities of it. MP and SG wrote the demos and tested the software. CS developed early versions of
several functionalities of the software. UU contributed to writing the python code for GSVD decomposition
and tested MMGKS. All authors reviewed the manuscript.

Funding Open Access funding provided by the MIT Libraries. MP gratefully acknowledges support from
the NSF under award No. 2202846. MP further acknowledges partial support from the NSF-AWM Men-
toring Travel award. Both MP and SG acknowledge the Isaac Newton Institute for Mathematical Sciences,
Cambridge, for the support and hospitality during the programme “Rich and Nonlinear Tomography - a
multidisciplinary approach" (supported by EPSRC grant no EP/R014604/) where partial work on this paper
was undertaken.

Data availability/Materials availability Data sharing not applicable to this article as no datasets were gen-
erated or analyzed during the current study.
Available.

Code Availability All the codes are available on GitHub: https://github.com/mpasha3/trips-py

Declarations

123

https://github.com/mpasha3/trips-py

Numerical Algorithms

Conflict of interest/Competing interests The authors declare no competing interests.

Ethics approval and consent to participate Not applicable.

Consent for publication Yes.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Boas, D.A., Brooks, D.H., Miller, E.L., DiMarzio, C.A., Kilmer, M., Gaudette, R.J., et al.: Imaging
the body with diffuse optical tomography. IEEE Signal Process. Mag. 18(6), 57–75 (2001)

2. Miller, E.L., Abriola, L.M., Aghasi, A.: Environmental remediation and restoration: hydrological and
geophysical processing methods. IEEE Signal Process. Mag. 29(4), 16–26 (2012)

3. Bennett, A.F., Chua, B.S., Leslie, L.: Generalized inversion of a global numerical weather prediction
model. Meteorol. Atmos. Phys. 60(1), 165–78 (1996)

4. Hansen, P.C.: Regularization tools: A Matlab package for analysis and solution of discrete ill-posed
problems. Numer Algo. 6(3), 1–35 (1994)

5. Gazzola, S., Hansen, P.C., Nagy, J.G.: IRTools: aMATLABpackage of iterative regularizationmethods
and large-scale test problems. Numerical Algorithms. 81(3), 773–811 (2019)

6. Buccini, A., Reichel, L.: Software for limited-memory restarted �p − �q minimization methods using
generalized Krylov subspaces; To appear in Electron. Trans. Numer. Anal. (2024)

7. Nagy, J., Palmer, K., Perrone, L.: IterativeMethods for ImageDeblurring: AMATLABObject Oriented
Approach. Numerical Algorithms. 36(1), 73–93 (2004)

8. Hansen, P.C., Jørgensen, J.S.: AIR Tools II: Algebraic iterative reconstruction methods, improved
implementation. Numer Algo. 79, 107–37 (2018)

9. Biguri, A., Dosanjh, M., Hancock, S., Soleimani, M.: TIGRE: a MATLAB-GPU toolbox for CBCT
image reconstruction. Biomed Phys Eng Express. 2, 055010 (2016)

10. Jørgensen, J.S., Ametova, E., Burca, G., Fardell, G., Papoutsellis, E., Pasca, E., et al.: Core Imag-
ing Library - Part I: a versatile Python framework for tomographic imaging. Phil Trans R Soc.
A:3792020019220200192 (2021)

11. Van Aarle, W., Palenstijn, W.J., De Beenhouwer, J., Altantzis, T., Bals, S., Batenburg, K.J., et al.: The
ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. Ultrami-
croscopy 157, 35–47 (2015)

12. Adler, J., et al.: odlgroup/odl: ODL 0.7.0. Zenodo; (2018) https://doi.org/10.5281/zenodo.1442734
13. Hansen, P.C.: Discrete inverse problems: Insight and algorithms. SIAM; (2010)
14. Hansen, P.C.: Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion.

SIAM; (1998)
15. Saad, Y.: Iterative methods for sparse linear systems. SIAM; (2003)
16. Chung, J., Gazzola, S.: Computational methods for large-scale inverse problems: a survey on hybrid

projection methods. (2023) arXiv:2105.07221
17. Fenu, C., Reichel, L., Rodriguez, G.: GCV for Tikhonov regularization via globalGolub-Kahan decom-

position. Numer. Linear Algebr. Appl. 23(3), 467–84 (2016)
18. Lewis, B., Reichel, L.: Arnoldi-Tikhonov regularization methods. J. Comput. Appl. Math. 226(1),

92–102 (2009)
19. Lampe, J., Reichel, L., Voss, H.: Large-scale Tikhonov regularization via reduction by orthogonal

projection. Linear Algebr. Appl. Elsevier 436(8), 2845–2865 (2012)
20. Lanza, A., Morigi, S., Reichel, L., Sgallari, F.: A generalized Krylov subspace method for �p − �q

minimization. SIAM J. Sci. Comput. 37(5), S30–S50 (2015) SIAM

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.1442734
http://arxiv.org/abs/2105.07221

Numerical Algorithms

21. Pasha, M., Saibaba, A.K., Gazzola, S., Español, M.I de Sturler, Eric.: A computational framework
for edge-preserving regularization in dynamic inverse problems. Electron. Trans. Numer. Anal. 58,
486–516 (2023)

22. Golub,G.H.,VanLoan,C.F.:MatrixComputations, 4th edn. JohnsHopkinsUniversity Press, Baltimore
(2013)

23. Eldén, L.: A weighted pseudoinverse, generalized singular values, and constrained least squares prob-
lems. BIT Numer. Math. 22(4), 487–502 (1982)

24. Hansen, P.C., Nagy, J.G., O’leary, D.P.: Deblurring images: matrices, spectra, and filtering. SIAM;
(2006)

25. Björck Å.: Numerical Methods in Matrix Computations. Texts in Applied Mathematics. Springer
International Publishing; (2014)

26. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem.
Q. Appl. Math. 9(1), 17–29 (1951)

27. Van Loan, C.: Computing the CS and the generalized singular value decompositions. Numer. Math.
46(4), 479–491 (1985) Springer

28. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. United States Governm. Press Office Los Angeles, CA (1950)

29. Lange, K.: MM optimization algorithms. SIAM; (2016)
30. Rodriguez, P., Wohlberg, B.: An efficient algorithm for sparse representations with �p data fidelity

term. In: Proceedings of 4th IEEE Andean Technical Conference (ANDESCON); (2008)
31. Huang, G., Lanza, A., Morigi, S., Reichel, L., Sgallari, F.: Majorization-minimization generalized

Krylov subspace methods for �p − �q optimization applied to image restoration. BIT Numer. Math.
57(2), 351–78 (2017)

32. Buccini, A., Pasha, M., Reichel, L.: Modulus-based iterative methods for constrained �p − �q mini-
mization. Inverse Prob. 36(8), 084001 (2020)

33. Bach, F., Jenatton, R.,Mairal, J., Obozinski, G.: Optimization with Sparsity-Inducing Penalties. Found.
Trends Mach. Learn. 4(1), 1–106 (2012)

34. Reichel, L., Shyshkov, A.: A new zero-finder for Tikhonov regularization. BIT Numer. Math. 48(3),
627–43 (2008)

35. Gazzola, S., Landman, M.S.: Krylov methods for inverse problems: Surveying classical, and intro-
ducing new, algorithmic approaches. Mitteilungen der Gesellschaft für Angewandte Mathematik und
Mechanik. 43,(4) (2020)

36. Buccini, A., Reichel, L.: An �2-�q Regularization Method for Large Discrete Ill-Posed Problems. J.
Sci. Comput. 78, 1526–49 (2019)

37. Novati, P., Russo, M.R.: A GCV-based Arnoldi-Tikhonov regularization method. BIT. 54, 501–21
(2014)

38. Buccini, A., Reichel, L.: Generalized cross validation for �p − �q minimization. Numer Algor. 88,
1595–1616 (2021)

39. Buccini, A., Pasha, M., Reichel, L.: Linearized Krylov subspace Bregman iteration with nonnegativity
constraint. Numer. Algorithms. 1-24 (2020)

40. Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring. SIAM
J. Imag. Sci. 2, 226–52 (2009)

41. Mueller, J.L., Siltanen, S.: Linear and nonlinear inverse problems with practical applications. SIAM;
(2012)

42. Hansen, P.C., Jørgensen, J.S., Lionheart, W.R.B.: Computed Tomography: Algorithms, Insight, and
Just Enough Theory. SIAM, Philadelphia (2021)

43. Lan, S., Pasha, M., Li, S.: Spatiotemporal Besov Priors for Bayesian Inverse Problems. (2023)
arXiv:2306.16378.

44. Meaney, A., Purisha, Z., Siltanen, S.: Tomographic X-ray data of 3D emoji. (2018)arXiv:1802.09397.
45. Heikkilä, T.: STEMPO–dynamic X-ray tomography phantom. (2022) arXiv:2209.12471.
46. Latva-Äijö, S., Meaney, A., Siltanen, S.: Tomographic X-ray data of 3D cross phantom. (2018)

arXiv:1809.00166.
47. Gazzola, S., Nagy, J.G., Sabaté Landman,M.: Iteratively Reweighted FGMRES and FLSQR for Sparse

Reconstruction. SIAM J. Sci. Comput. (0):S47-69 (2021)
48. Gazzola, S., Wiaux, Y.: Fast nonnegative least squares through flexible Krylov subspaces. SIAM J.

Sci. Comput. 39, A655-79 (2017)

123

http://arxiv.org/abs/2306.16378
http://arxiv.org/abs/2209.12471
http://arxiv.org/abs/1809.00166

Numerical Algorithms

49. Pasha, M., de Sturler, E., Kilmer, M.E.: Recycling MMGKS for large-scale dynamic and streaming
data. (2023) arXiv:2309.15759.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2309.15759

	TRIPs-Py: Techniques for regularization of inverse problems in python
	Abstract
	1 Introduction
	2 Overview of the TRIPs-Py solvers
	2.1 Direct methods for small-scale problems
	2.2 Projection methods for large-scale problems
	2.2.1 Methods based on standard Krylov subspaces
	2.2.2 Methods based on generalized Krylov subspaces

	2.3 Strategies to choose the regularization parameter
	2.4 Regularization operators

	3 Overview of the TRIPs-Py test problems
	3.1 Deblurring (deconvolution)
	3.1.1 1D Deblurring
	3.1.2 2D deblurring

	3.2 Computerized tomography
	3.3 Dynamic computerized tomography
	3.3.1 Emoji test problem
	3.3.2 STEMPO
	3.3.3 Cross phantom

	4 Conclusions and outlook
	Acknowledgements
	References

