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Abstract
Accurate, inexpensive and granular human poverty assessments are critical for data-driven 
policy decision-making. This research proposes a novel approach to computing poverty 
scores utilizing multispectral satellite images and indices calculated from census reference 
values. We show how this approach can leverage standard and sparse survey-based multidi-
mensional poverty assessments at the municipal level to develop a deep learning architec-
ture to obtain poverty scores at the residential block level. This method has the distinctive 
feature that the obtained inference corresponds to Multidimensional Measurement of Pov-
erty generated by CONEVAL, the Mexican agency responsible for measuring poverty. We 
provide a reliable alternative to survey-based approaches with an R2 of 0.802 ± 0.022 for 
the lack of housing quality and spaces dimension. A convolutional neural network trained 
on multispectral satellite images and the lack of housing quality and spaces dimension, 
which is regressed from census reference variables corresponding to lack of water, electric-
ity, sewage, concrete floor, toilet and occupancy level obtains an R2 of 0.753. These results 
represent a significant step forward in including machine learning techniques to provide 
reliable information at reduced costs and a higher spatiotemporal frequency than traditional 
person-to-person surveys.
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1  Introduction

Over the past two centuries, we have witnessed a sustained upward trajectory in global 
prosperity. This greater economic well-being and societal progress has not been with-
out challenges and setbacks. With persistent inequalities and socio-economic disparities, 
numerous people have managed to break free from extreme poverty, which is defined as 
living on less than $2.15 USD per day. However, despite the overall progress in global 
prosperity, a significant portion of the world’s population lives in impoverished conditions, 
deprived of access to necessities crucial for a dignified life. At the core of this issue lies 
the deprivation of food security, hunger and malnutrition, education, adequate healthcare, 
electricity, clean water, and sanitation. All these situations are experienced by those living 
in impoverished conditions (Ravallion, 2015).

Unfortunately, the convergence of multiple global challenges, such as the COVID-19 
pandemic, climate change, and ongoing conflicts, casts a gloomy forecast for the future. 
It is now anticipated that the number of individuals living in extreme poverty will surge 
to approximately 860 million people, representing over 10% of the world’s popula-
tion (Oxfam, 2022). This forecast derives from the profound impacts these interconnected 
crises can have on societies, exacerbating vulnerability and compromising progress toward 
poverty eradication and sustainable development. The recognition of this situation, cou-
pled with the establishment and adoption of the United Nations’ Sustainable Development 
Goals (SDGs), has served as a catalyst for researchers to precisely measure and understand 
global economic poverty.

Human vulnerability is a multifaceted and intricate assortment of risks, threats, and 
weaknesses that are inherent in the human condition. It encompasses a wide range of 
physical, social, economic, and environmental aspects, all of which interact and influence 
an individual’s susceptibility to harm, adversity, or adverse outcomes. In a more specific 
definition,  UN-habitat (2003) suggests that human settlements poverty may be defined in 
terms of clean drinking water and proper drainage, the quality and adequacy of housing 
structures that are not overcrowded, and housing security. Governments and other organi-
zations measure human poverty primarily through censuses, which can be time-consuming 
and expensive processes that may only occur every few years. However, the effectiveness 
of this approach has been the subject of debate (Bajotto et al., 2017; Kakareka, 2013; Mac-
kenzie et al., 2014). Some researchers have suggested alternatives to censuses, including 
surveys. However, this approach can be prone to errors due to declining participation and a 
lack of representativeness in the sample.

A promising approach to assessing poverty is using multispectral satellite 
images (Elvidge et al., 2009; Xie et al., 2016). For instance, our recent research developed 
a methodology to evaluate structural poverty at the residential block level in Mexico based 
on the UN-habitat definition (Salas et al., 2021). Recently, Owusu et al. (2021) proposed 
incorporating local needs and end-user requirements into Earth Observations (EO) poverty 
assessments.

This research definition of poverty closely follows the multidimensional model 
introduced by the National Council for the Evaluation of Social Development Pol-
icy  (CONEVAL, 2016), the Mexican institution with a law mandate to measure poverty 
in the country. CONEVAL expresses poverty in terms of income and social rights. Sub-
sequently, social rights include education, health, housing adequacy, food security, social 
security, and basic services. Overall, the agency delivers 16 poverty dimensions at the 
municipal level every five years and at the state level every two years.
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In this approach (see Fig. 1), we find the mapping between the census reference val-
ues and the poverty dimensions, expressing the latter at the level of residential blocks. We 
then find the mapping between satellite images and the poverty dimensions at that level of 
resolution. In the former mapping, we use classical Machine Learning techniques. In the 
latter, we employ Convolutional Neural Networks (CNNs). This manuscript further details 
the indicator of poverty related to the lack of housing quality and spaces. This approach of 
mapping multispectral satellite images to a direct reference of human poverty, as defined 
by a national agency, holds the potential to advance our understanding of poverty dynam-
ics and inform evidence-based decision-making. This approach enhances the accuracy 
and reliability of poverty assessments and enables comprehensive poverty mapping on a 
broader scale.

Distancing from prior research, the contributions of this paper include the following:

•	 An approach to relating census reference values describing poverty to the dimension 
constructed by CONEVAL, the Mexican agency responsible for measuring poverty, 
with a significant coefficient of determination.

•	 An empirical demonstration showing that it is possible to construct a mapping between 
multispectral satellite images and the referenced poverty indicator at the residential 
block level for the entire country of Mexico using CNNs with high-performance levels.

•	 Publicly releasing computer code and required data enabling other researchers and 
practitioners to verify the results and serving as a stepping stone for further research.

The remainder of the article is organized as follows. In Sect. 2, we provide an overview 
of previous works in assessing poverty by remote sensing techniques and the concept of 
multidimensional poverty employed by CONEVAL. Later on, in Sect. 3, we introduce an 
approach to transforming census reference values into standardized poverty dimensions. 
We also detail the methods employed to evaluate the mapping between poverty dimen-
sions and multispectral satellite images. The results of implementing the models, including 
their use in tracking poverty in census gap years, are presented in Sect. 4. We conclude the 
paper in Sect. 5 by summarizing the key findings and outlining potential avenues for future 
research.

Fig. 1   Fine-grained mapping of satellite images to poverty dimensions (refer to the text for details)
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2 � Addressing human poverty

This section reviews relevant studies to investigate the feasibility of assessing human settle-
ments’ poverty using remote sensing techniques globally and employing in-person surveys 
in Mexico.

2.1 � Related work

The research community broadly acknowledges the feasibility of assessing human poverty 
using remote sensing techniques (see Table 1). The employment of nightlight images, first 
pioneered by Elvidge et  al. (2009), has generated much interest  (Andreano et  al., 2020; 
Dorji et al., 2019; Elvidge et al., 2009; Jean et al., 2016; Li et al., 2019; Lin et al., 2022; Shi 
et al., 2020; Tingzon et al., 2019; Xie et al., 2016; Xu et al., 2021a; Yin et al., 2021). This 

Table 1   Earth observations to assess human poverty. The acronyms in the table stand for machine learning 
(ML), random forest (RF), support vector machine (SVM), gradient boosting (GB), neural networks (NN), 
canonical correlation forest (CCF), Gaussian process (GP), convolutional neural networks (CNN), synthetic 
aperture radar (SAR), resolution (Re), and reference values (Ref). Refer to the text for details
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(2017)
Ajami et al.
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approach materializes an intuition relating to development and energy consumption. Coin-
cidentally, the National Oceanic and Atmospheric Administration (NOAA) has been run-
ning the Defense Meteorological Program (DMSP) Operational Line-Scan System (OLS) 
since 1992, generating a large historical archive of gray-scale images covering the entire 
Earth. More recently, the LuoJia1 satellite publicly provides a new generation of nightlight 
satellite images with higher resolution  (Lin et  al., 2022; Xu et  al., 2021a). Complemen-
tary to nightlight images, many researchers have carried out studies using multispectral 
images (Ajami et al., 2019; Engstrom et al., 2017; Fisher et al., 2021; Gram-Hansen et al., 
2019; Hersh et al., 2021; de Mattos et al., 2021; Salas et al., 2021; Stark et al., 2020; Suel 
et al., 2021; Wurm et al., 2019). In some cases, multispectral images have been combined 
with nightlight images  (Jean et  al., 2016; Tingzon et  al., 2019; Xu et  al., 2021b). These 
techniques have been used to identify poverty, food insecurity, and other indicators of 
human vulnerability and have shown promising results.

The use of remote sensing technology for poverty assessment is becoming increas-
ingly accepted, primarily due to publicly available data coming from satellites such as 
Landsat  (Bansal et al., 2020; Salas et al., 2021) and the higher relative resolution Senti-
nel-2 (Fisher et al., 2021; de Mattos et al., 2021). Recent research has focused on exploring 
even higher resolution satellite data (Ajami et al., 2019; Engstrom et al., 2017; Roy et al., 
2019; Stark et al., 2020; Suel et al., 2021), often in conjunction with their lower resolution 
counterparts (Agarwal et al., 2019; Gram-Hansen et al., 2019; Li et al., 2021; Verma et al., 
2019). Particularly noteworthy is the combination of high-resolution multispectral and syn-
thetic aperture radar images with low-resolution images (Hersh et al., 2021; Wurm et al., 
2019), or multispectral images with nightlight time data (Elvidge et al., 2009).

Another significant factor is the growing availability of reliable methods to extract 
poverty indicators. Classical methods such as Extreme Gradient Boosting (XGB) (Bansal 
et  al., 2020; Dorji et  al., 2019; Hersh et  al., 2021; Xu et  al., 2021b), Support Vector 
Machine (SVM) (Li et al., 2021; Xu et al., 2021a), Canonical Correlation Forest (Gram-
Hansen et al., 2019; de Mattos et al., 2021), Random Forest (RF) (Engstrom et al., 2017; 
Hersh et al., 2021; Lin et al., 2022; Yin et al., 2021) have been extensively explored with 
researchers finding their proposed methods to outperform others. However, in a compar-
ison study, Li et  al. (2019) found RF, SVM, XGB, Neural Networks (NN), and Gauss-
ian Processes (GP) to perform equally well in assessing poverty. Recently, Deep Learning 
methods in the form of CNNs (Agarwal et al., 2019; Ajami et al., 2019; Fisher et al., 2021; 
Gram-Hansen et al., 2019; Hersh et al., 2021; Jean et al., 2016; Salas et al., 2021; Stark 
et al., 2020; Suel et al., 2021; Tingzon et al., 2019; Verma et al., 2019; Wurm et al., 2019; 
Xie et al., 2016) have been gaining traction due to their formidable performance and their 
requirement for large datasets, which the problem of assessing human poverty from EO 
provides ample and global examples.

2.2 � Multidimensional poverty

We aim to develop a method for predicting human poverty at the residential block level over 
time using satellite imagery to capture relevant information. To achieve this goal, we first 
examine the poverty indicators produced by CONEVAL, currently defined only at the munici-
pal level and based on sporadic survey data obtained from the National Institute of Statistics 
and Geography (INEGI). While these indicators offer valuable insights, they need to provide 
more granular data to capture the nuances of poverty at the residential block level. To address 
this limitation, we employ census reference values, which are surveyed at the residential block 
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level and can be considered a proxy for poverty indicators. We then outline our approach to 
extrapolating poverty indicators at the residential block level from the census reference values. 
By combining these data sources and leveraging them with CNN models, we aim to create an 
accurate and reliable predictive tool for assessing poverty at the residential block level.

CONEVAL’s approach to assessing poverty is based on a multidimensional space consist-
ing of three axes: economic well-being, social rights, and territorial context. Each axis repre-
sents different dimensions of poverty, including unsatisfied basic needs, fundamental human 
rights, and relational and community aspects  (CONEVAL, 2016). CONEVAL recognizes 
that these dimensions are not static and can change over time in response to social conditions. 
CONEVAL identifies individuals experiencing multidimensional poverty as those who cannot 
exercise at least one social right and cannot afford the goods and services necessary to meet 
their basic needs. CONEVAL has developed specific criteria for each axis, such as income 
poverty and extreme income poverty for economic well-being, access to education, access to 
health services, social security, housing quality and spaces, essential housing services, and 
access to quality and nutritious food for social rights.

The information generated by CONEVAL is crucial for identifying and addressing the 
needs of the poorest groups in Mexico. The National Development Plan of Mexico naturally 
incorporates this information as it is an essential reference for the state secretariats in charge 
of social development and the governments of states and municipalities. Well-being programs 
that serve the neediest rely on this information as an obligated reference. CONEVAL’s multi-
dimensional approach provides a comprehensive understanding of the factors contributing to 
poverty and enables policymakers to design poverty reduction strategies.

CONEVAL provides a range of dimensions to measure social and economic well-being 
at various levels of government in Mexico. At the national scale, the council produces meas-
urements every two years for state governments and every five years for the entire country, 
state governments, and municipalities (Czarnecki, 2013). At the municipal level, CONEVAL’s 
methodology estimates the proportion of poor populations exposed to different types of risks. 
CONEVAL’s database contains statistics for 2010, 2015, and 2020 for the 2456 municipalities 
in Mexico (CONEVAL, 2022). It includes 16 dimensions of social well-being, economic dep-
rivation, and territorial context (Czarnecki, 2013). These dimensions measure the proportion 
of the population experiencing poverty, extreme poverty, moderate poverty, income vulnera-
bility, and vulnerability to social deprivation. The database also includes the proportion of the 
population facing one or three types of social deprivation: lack of access to education, health 
services, social security, essential household services, nutritious and quality food, and housing 
quality and spaces. The dataset further registers the proportion of the population with income 
below the poverty income or extreme poverty income thresholds. Additionally, CONEVAL 
includes dimensions that capture the ratio between the population in extreme poverty and 
those not in extreme poverty or vulnerable in the territorial context.

3 � Methodology

The Mexican census (INEGI, 2012) is a valuable source of information for assessing pov-
erty, as it provides data on various factors such as access to water, electricity, sewage avail-
ability, and household structural information. These factors, which we call reference val-
ues, are used by UN-habitat (2003) to define poverty. To identify poor areas, we extracted 
information from the census corresponding to the residential blocks and used reference val-
ues suggested by UN-Habitat. Weighted by the residential block population, we aggregated 
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the residential block reference values to the municipal level to map them to the CONEVAL 
poverty dimensions. Using this mapping, we interpolated poverty indicators at the residen-
tial block level to establish a second regression mapping, this time with multispectral satel-
lite images. We obtained the best regression results when the initial CNN weights for the 
poverty indicators’ response variable were first obtained through training a classifier. This 
section provides details of such a process. It is worth noting that the census records lack 
geographic coordinates, such as longitude and latitude, when a person’s identity can be 
established. Please refer to Table 2 for the symbology to the discussion that follows.

3.1 � Census reference values

We use various reference values for the j-th residential block in the m-th municipality to 
assess its living conditions. These reference values include the average number of people 
per bedroom in a residential block x̂m

j,o
 and the proportion of households in the block with-

out basic amenities such as concrete floor xm
j,f

 , electricity xm
j,e

 , piped water xm
j,w

 , sewage xm
j,s

 , 
and toilet xm

j,t
 . Each variable, except x̂m

j,o
 , takes a value between 0 and 1. To normalize the 

range of x̂m
j,o

 , we set xm
j,o

 to be the minimum of x̂m
j,o

 and a predefined value �o divided by �o , or 
xm
j,o

= min(x̂m
j,o
, 𝜏o)∕𝜏o . Experimentally, we have established �o = 4 as the maximum average 

occupancy per bedroom. Additionally, we obtain the population qm
j
 of each block from the 

census. To summarize the different reference values for the same block, we group them 
into a vector xm

j
= [xm

j,o
, xm

j,f
, xm

j,e
, xm

j,w
, xm

j,s
, xm

j,t
]
T.

To establish a relationship between the reference values xm
j
 , associated with a residential 

block, and a CONEVAL dimension, we need to aggregate the xm
j
 values of all blocks in the 

same municipality. This aggregation can be achieved by computing the average of the xm
j
 

values for j = 1,… , J(m) , weighted by the block population. Thus, we obtain the value xm 
for the m-th municipality using

where J(m) is the number of residential blocks in the m-th municipality. Suppose we are 
working with n-dimensional vectors xm

j
 of features defined for each block in a municipality. 

In that case, we can replace the scalar values xm
j
 by xm

j
 in (1) to obtain the average vector 

xm that corresponds to the m-th municipality. Thus, we can compute the averages of the six 
reference variables weighted by the population of the block qm

j
 by using xm

j
 as xm

j
 in (1) as

This process enables us to derive a representative value for each municipality, which can 
then be used to analyze the relationship between the characteristics of the residential blocks 
and the CONEVAL dimension.

Note that the function h aggregates scalars or vectors associated with residential 
blocks (see Fig. 2), such as xm

j
 vectors, at the municipality level. Since we use an aver-

age weighted by the block population qm
j

 for this aggregation, h provides an estimate of 
the proportion of people in a municipality that would be associated with the characteris-
tics represented by xm . Then, we analyze the relationship between the traits aggregated 
by h and a CONEVAL dimension.

(1)xm = h
�
xm
1
,… , xm

J(m)

�
=

∑J(m)

j=1
qm
j
xm
j

∑J(m)

j=1
qm
j

,

(2)xm = h
(
xm
1
,… , xm

J(m)

)
.
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3.2 � Poverty indicators

In previous work (Salas et al., 2021), we established a baseline for a poverty index vm
j

 at 
the residential block j level for the municipality m. We used a linear combination of six 
reference variables related to UN-Habitat, with a uniform weight w as

where xm
j
 represents the vector of the six reference variables. To transform the problem into 

a classification one, we followed (Dorji et al., 2019) and introduced a threshold �v at the 
median value of the poverty index values as

After establishing the poverty index for residential blocks, we trained a CNN to map mul-
tispectral satellite images and the corresponding poverty classes. Our approach was based 
on the assumption that the six reference variables used to define the poverty index were 

(3)vm
j
= wTxm

j
.

(4)C
m
j
= T(vm

1
, �v) =

{
poor if vm

j
≥ �v,

non-poor otherwise .

Table 2   Symbology. Subindex j refers to the j-th residential block and super index m to the m-th municipal-
ity

� Parameters for the convolutional neural network

C̃
m , Cm Aggregated and actual class label, i.e., poverty or no-poverty at municipal level

Ĉ
m

j
 , Cm

j
Predicted and actual class label, i.e., poor or non-poor at the residential block level

Im
j

Satellite image
qm
j

Number of inhabitants
R2 Coefficient of determination
� Reference value standard deviation
�o Occupancy threshold used for normalization
�v Threshold assigned to the poverty value to distinguish between poor and non-poor
�k Parameters corresponding to the k poverty dimension
vm
j
, vm Poverty index at residential block and municipal level

v
k,m

j
 , v̂k,m

j
Actual and predicted k-th poverty index at residential block

ṽk,m , v̂k,m Estimated k-th poverty index at municipality level aggregated from actual and predicted 
residential block indices

w Weights assigned to the reference values
xm
j
 , xm Generic reference value with aggregation at residential block and municipal level

x̂m
j,o

Unnormalized census reference value for occupancy
xm
j,o

 , xm
j,f

 , xm
j,e

 , 
xm
j,w

 , xm
j,s

 , 
xm
j,t

Census reference values for occupancy (o), floor (f), electricity (e), water (w), sewage (s), and 
toilet (t)

xm
j

A vector containing the census reference values
yi , ŷi , y Ground truth, estimate, and mean value for the reference response variable
F(⋅) Regression function from reference values to poverty indices
G(⋅) Convolutional neural network
h(⋅) Aggregating function
J(m) Number of residential blocks at the m-municipality
T(⋅) Binary classification rule
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equally important. However, it may be preferable to reference vm
j
 to a standard poverty indi-

cator, such as CONEVAL (Czarnecki, 2013). Unfortunately, CONEVAL’s measurements 
are provided at the municipal level, so we cannot directly associate them with the surveyed 
residential blocks.

To obtain poverty indicators at the residential block level, we use census refer-
ence values and compute the parameters �k for a function vk,m

j
= F(xm

j
, �k) , which for a 

geolocation xm
j

 maps these values to the k-th poverty dimension for the j-th block in the 
municipality m. We assume that census reference values are correlated with poverty 
indicators.

To ensure consistency with the CONEVAL poverty dimension vk,m , defined at the 
municipality level, we minimize the squared norm of the difference between vk,m and 
the weighted average ṽk,m of vk,m

j
= F(xm

j
, �k) computed using (1):

We experimented with evaluating various design choices for F(xm
j
, �k) . We started with a 

simple linear regressor and then considered more complex non-linear models, including 
NN (Lichtner-Bajjaoui, 2021), XGB (Chen & Guestrin, 2016), and Support Vector Regres-
sors (SVR)  (Smola & Schölkopf, 2004). These models were chosen to represent differ-
ent classes of machine learning algorithms, such as graphical, tree-based, and kernel-based 
approaches. To train each model, we used the CONEVAL poverty dimension as the ground 
truth and sought to minimize the Mean Square Error (MSE) of the predicted values for 
each poverty dimension.

3.3 � Validating poverty inferences

To assess poverty at the residential block level, we first train a regression function F 
using a reference indicator at the municipal level. Then, we apply F to obtain poverty 
indices for residential blocks. We conduct four validation tests to ensure that using the 
regression function at a different scale is appropriate.

(5)ṽk,m = h
(
v
k,m

1
,… , v

k,m

J(m)

)
.

Fig. 2   Mapping reference values and satellite images to poverty (refer to Table 2 and the text for details)
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In the first test, we use the regression function to process the reference values F(xm
j
) 

and obtain the weighted average of the values for vk,m
j

 using (1). This produces 

ṽk,m = h
(
v
k,m

1
,… , v

k,m

J(m)

)
 . In the second test, we apply the threshold �v to the values of vm

j
 

to obtain Cm
j

 and then aggregate these values using (1) to produce C̃m = h
(
C
m
1
,… , Cm

J(m)

)
 . 

We compare C̃m with the actual values of Cm . Similarly, in the third test, we use a CNN 
G(Im

j
, �) to generate a class prediction Ĉ

m

j
 for each residential block image. We aggregate 

these predictors using (1) to obtain Ĉ
m
= h

(
Ĉ
m

1
,… , Ĉ

m

J(m)

)
 , which we compare to the 

actual values of Cm . In the fourth test, we generate poverty index predictions v̂k,m
j

 using 
the CNN regression model and aggregate these predictions to obtain 
v̂k,m = h

(
v̂
k,m

1
,… , v̂

k,m

J(m)

)
 (see Fig. 2). Next, ṽk,m and v̂k,m are compared with vk,m , the refer-

ence value given by CONEVAL.
To obtain Cm for each municipality, we apply the threshold �v to the vk,m values as in 

(4). We calculate the MSE and the determination coefficient R2 for the values of ṽk,m and 
v̂k,m , and the accuracy for the values of C̃m and Ĉ

m
 as a function of the threshold. Note 

that C̃m corresponds to the aggregation of the class values used for labeling the images 
Im
j

 , while Ĉ
m

 corresponds to the predictions made by the CNN.

3.4 � Mapping satellite images to poverty

Previously  (Salas et  al., 2021), we trained CNNs using image patches to predict pov-
erty. We analyzed and compared several architectures, including LeNet-5 (LeCun et al., 
1989), ResNet-50 v2 (He et al., 2016), ResNeXt-50 (Xie et al., 2017), and EfficientNet-
B3 (Tan & Le, 2019). The EfficientNet-B3 architecture outperformed the others in clas-
sifying images as belonging to poor or non-poor regions.

For this research, we selected the EfficientNet-B3 architecture as it performed the 
best and used a relevant measurement of poverty (Czarnecki, 2013) as the response vari-
able. Initially, we trained a CNN model for classification as in (Salas et al., 2021). We 
threshold the poverty indices vk,m

j
 using (4) to obtain the class values of Cm

j
 with which 

we train the CNN classifier that maps satellite images to residential block-level poverty. 
Due to the low resolution of the images, we considered this approach appropriate as the 
network only has to learn to identify the features that distinguish between two classes. 
However, the model discards information as it only predicts whether a region is poor. To 
gain more insight into the poverty inferences, we trained three additional CNN models, 
based on EfficientNet-B3, for regression to predict the continuous values of vk,m

j
 . These 

models differ only in the initiation stage of their training. Transfer learning from the 
previous CNN classifier significantly improved the regression model performance.

Note that vk,m
j

 is an estimation of the proportion of people within a residential block 
who are deemed poor according to a CONEVAL dimension (see Sects.  2.2 and  3.2). 
However, this definition does not encompass varying degrees of poverty among indi-
viduals. We assume that the CONEVAL methodology defines specific criteria between 
poor and non-poor.

We conducted experiments using three regression models to obtain predictions of the 
poverty dimension from satellite images. During the experiments, we discovered that 
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initializing the weights of a regression model’s layers with a pre-trained classification 
model improved performance. This approach, known as transfer learning, proved beneficial 
for the regression model. It is important to note that when training a classification model, 
the image patches should be labeled using the categorical variable Cm

j
 defined by (4), rather 

than using the continuous values vk,m
j

 of the poverty index. Below, we provide a detailed 
explanation of the training process for these models.

3.5 � Approximation error

The error we incur in approximating a regressor with a classifier can be evaluated in sev-
eral forms. Among the possible options, we employ the following approach. Suppose we 
have a set of poverty index values v = {v1,… , vN} , where vi ∈ [0, 1] . To frame the regres-
sion problem as a classification, we need to establish a threshold value �v that separates 
poor and non-poor instances. To determine the loss associated with this approach, we cal-
culate the difference between the poverty dimension values and the mean values, M0 and 
M1 . First, we compute the mean values as

Here, we define N0 =
∑N

i=1
1(vi ≤ �v) and N1 =

∑N

i=1
1(vi > 𝜏v) , where 1 is a function that 

is one when its argument is true and zero otherwise. Let us define a classification rule � (vi) 
as

The approximation error can be evaluated as

This expression quantifies the deviation of the poverty dimension values from the corre-
sponding mean values for each class.

3.6 � Performance assessment

This research aims to develop indicators that closely resemble the reference indicators. 
This section describes the procedure employed to assess performance. Let yi denote the ref-
erence response variable and ŷi be its estimate obtained through a function F(xi, �) , where 
xi represents the predictors and � defines the corresponding parameters for F. We evalu-
ated the performance of the regressors using metrics, including the ratio between the root-
mean-square error and the standard deviation of the response variable. These are defined as

(6)M0 =
1

N0

∑

vi≤𝜏v

vi, and M1 =
1

N1

∑

vi>𝜏v

vi.

(7)� (vi) =

{
M0 if vi ≤ �v,

M1 otherwise .

� =
1

N

N∑

i=1

(vi − � (vi))
2.

(8)RMSE =

�
1

n

∑n

i=1
(yi − ŷi)

2 and 𝜎 =

�
1

n

∑n

i=1
(yi − y)2.
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Here, ȳ denotes the response variable’s mean value, and � is its standard deviation. When 
the ratio RMSE∕� exceeds one, the mean value of the response variable should be used for 
better performance. We also employ the determination coefficient R2 , which measures how 
much better the regression model is compared to using the response variable mean value as 
an estimate. It is defined as

R2 takes values between zero and one, with higher values indicating better performance. It 
represents the proportion of residual variance the model explains, which is the difference 
between the observed and predicted values. Finally, we employ the Kullback-Leibler (KL) 
divergence to measure the difference between the probability distributions of the reference 
and predicted values. It is defined as

where p = (p1,… , pm)
T and q = (q1,… , qm)

T are the probability distributions correspond-
ing to the reference and prediction values and q is evaluated as a representation for p.

4 � Results

This section presents the results of implementing the methods described earlier to con-
struct regressors for mapping census reference values X and poverty dimensions v . We also 
evaluate the performance of these regressors in predicting poverty at the residential block 
level using multispectral satellite images.

The dataset consists of 2456 municipalities in Mexico, each with six reference values 
corresponding to the proportion of houses in a residential block with piped water, sew-
age, electricity, toilet, concrete floor, and occupancy less than �o = 4 . Residential blocks 
per municipality vary widely. Santiago Tepetlapa in Oaxaca has the minimum number of 
residential blocks at 13, whereas Tijuana in Baja California has the maximum at 20,932. 
On average, municipalities have 887.01 residential blocks, with a standard deviation of 
1744.11. The response variable vk

2456×1
 corresponds to the k-poverty indicator. To evaluate 

the performance of the regressors, we randomly partition the dataset {X, vk} into a training 
set {X�, v�k} ( 75% ) and a testing set {X��, v��k} (25%). We repeat this procedure 30 times 
for each poverty dimension and compute performance evaluations pi at each iteration (see 
Fig. 3). We report the mean value and the standard deviation of these performance metrics 
across all splits.

4.1 � Tuning up the regressors

To determine the most effective regression scheme for mapping census reference values X 
and poverty indicators v to multispectral satellite images, we tested four different methods: 
Linear Regression (LR), Neural Networks (NN), Extreme Gradient Boosting (XGB), and 
Support Vector Regression (SVR).

(9)R2
= 1 −

(
RMSE

�

)2

, for RMSE ≤ �.

(10)KL (p ∣∣ q) =

n∑

i=1

pi log

(
pi

qi

)
,
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Linear Regression.  We used Linear Regression as a baseline. We added a column to 
both the training X′ set and testing X′′ set to account for bias, resulting in the augmented 
sets X�

← [X�, 11,842×1] and X��
← [X��, 1614×1] , respectively. We solved the linear system 

wk
= (X

�T
X

�
)
−1X

�Tvk to obtain the weights for the k-th poverty dimensions during train-
ing. We then used these weights to predict the response variable v′′k for the testing set as 
v��k = X

��wk.
Neural Networks. We tested four networks, two with one hidden layer and two with three 

hidden layers. The first two had 10 or 30 neurons. The other two had 10, 8, and 5 neurons, 
and the other had 30, 16, and 8 neurons in the first, second, and third layers. We divided 
the training set into learning and validation subsets using a 75%/25% split. We used the 
Levenberg-Marquardt backpropagation algorithm (Hagan & Menhaj, 1994) to train the net-
works. We searched for the optimal hyperparameters, including the maximum number of 
epochs, the initial value of the learning rate, and the maximum validation failures for which 
the search space ranged from 100 to 2,000, 0.0001 to 0.01, and 4 to 20, respectively.

XGBoosting.  We used Extreme Gradient Boosting to train the models and split the 
training dataset into learning and validation sets 30 times (75%/25%). We employed ran-
dom search to fine-tune the hyperparameters of interest, including the learning rate, maxi-
mum tree depth, and percentage of data used to grow trees, in the range 0.0001-1, 2-10, 
and 0.1−1.0, respectively. We generated 2000 of these triplets for each iteration during 
fine-tuning, evaluated them using the validation partition, and kept the best-performing 
one. We then used the testing set to obtain the values for the hyperparameters.

Support Vector Regression.  We tested Support Vector Regression using polynomial 
kernels of orders one to four and Gaussian kernels. We searched for the optimal hyper-
parameters, including the maximal number of iterations, tolerance for gradient difference 
between the current and previous iterations, and box constraint for the trained SVR coef-
ficients. The search ranged from 106-108 , 0.0−0.01, and 0.1−10.0, respectively.

4.2 � From reference values to poverty dimensions

Figure 4 summarizes the results obtained for the mapping between reference values and 
poverty dimensions using linear and non-linear regression models. Figure 4a illustrates the 
performance for each model in terms of R2 . XGB outperforms LR for poverty, moderate 

Fig. 3   Performance assessment for regressors (refer to the text for details)
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poverty, no-poverty-no-vulnerability, and one social deprivation. At the same time, LR 
does better for indicators such as lack of housing quality and spaces, basic services depri-
vation, and three social deprivations, all resulting in an R2 > 0.6 . However, the non-linear 
models NN and SVR provide the best performance, with SVR having a slightly higher 
mean R2 than NN but overlapping uncertainty bars at one standard deviation. The best 
mean R2 performance of 0.802 ± 0.022 (at one standard deviation) was obtained using 
SVR for the lack of housing quality and spaces indicator. Figure 4b reveals that the regres-
sion process has a varying impact on the distributions of the poverty indicator values. Cer-
tain response variables, such as health services deprivation, moderate poverty, and food 
deprivation, exhibit more pronounced divergences than others, such as extreme poverty 
and lack of housing quality and spaces. This result shows that variables yielding high R2 
values also tend to exhibit less divergence, as the model predictions are more accurate. We 
hypothesize that the observed discrepancies are attributable to the predictive limitations 
of the reference values used as predictors. This conjecture necessitates further investiga-
tion and acquiring additional predictors to enhance the mapping accuracy for these specific 
response variables.

We evaluated the performance of various regressors on all the poverty indicators. We 
selected the SVR with Gaussian kernel as the best option for mapping the lack of housing 
quality and spaces dimension to the poverty indices (v) used in subsequent experiments. 
When we refer to poverty, we mean lack of quality and space in housing. Next, we vali-
dated the outputs ( vk,m

j
 ) of the function F(xm

j
, �k) (see Sect. 3.3) by comparing ṽk,m values to 

the corresponding vk,m values of the chosen indicator for all municipalities. The validation 
test yielded an RMSE of 0.078 and an R2 of 0.794, which were slightly smaller than those 
obtained using the function F(xm, �k) , using the aggregated reference values xm , for the 
test samples. Figure 6a presents a density plot of the values of ṽk,m versus vk,m for the 2456 
municipalities. Next, we describe the mapping of satellite images to the lack of housing 
quality and spaces dimension.

Fig. 4   Mapping census reference values to poverty dimension using linear (LR) and non-linear regressors 
(NN, SVR, XGB) (refer to the text for details)
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4.3 � From satellite images to poverty inference

We utilized satellite images from the Mexico Geospatial Data Cube for Landsat-7, a 
sun-synchronous satellite with a 16-day temporal resolution  (Irons et  al., 2012). Its 
radiometric resolution consists of eight bits for each band. Based on previous analy-
sis  (Salas et  al., 2021), we selected six spectral bands: blue (450–515 nm), green 
(525–605 nm), red (630–690), near-infrared (775–900 nm), SW1 (short-wavelength 
infrared, 1550–1750 nm), and SW2 (2080–2350 nm) at a spatial resolution of 30  m/
pixel. We utilized either the median or the geomedian (Roberts et al., 2017) to aggregate 
the information yearly. In both cases, the yearly collections of Mexico’s images were 
summarized and combined in a single mosaic of 5000 × 5000 pixels free of clouds and 
shadows. For the experiments, we used non-overlapping 20 × 20 pixel image patches. 
We reviewed the patches to identify and remove those containing not-a-number (NaN) 
values, resulting in a database containing 2,164,553 images.

4.3.1 � Training a CNN classification model

We fine-tuned EfficientNet-B3, initially trained on ImageNet, employing the satellite 
images corresponding to Mexican residential blocks. Using bicubic interpolation, we 
resized the 20 × 20 pixel image patches to 224 × 224 pixels. The CNN was trained using 
the Adam optimizer with a learning rate of 10−4 and included a dropout layer with a 
0.5 probability, �1 = 0.9 and �2 = 0.999 , during 20 epochs. We initialized the network 
inputs with Xavier and incorporated a dense layer, including a softmax activation func-
tion for two classes. First, we labeled the image patches as either poor or non-poor, 
denoted by Cm

j
 , using the vk,m

j
 indices, setting the threshold �v = 0.15053 as in (4). This 

threshold is the global maximum in the distribution of v, and both classes were roughly 
balanced, with 52.7% and 47.3% of poor and non-poor samples, respectively. This 
threshold was also the most frequent value of v when ‖xm

j
‖1 = 1 , equivalent to all house-

holds in a residential block lacking a basic service or having a maximum occupancy. 
To achieve a balanced dataset, we randomly removed some images corresponding to 
positive regions, resulting in 50% of regions of each class. We randomly partitioned the 
image set into training, validation, and test subsets with sample sizes of 50%, 25%, and 
25%, respectively.

We evaluated the performance of the model using ROC and Precision-Recall curves 
(see Fig.  5) with corresponding area under the curve (AUC). The AUC was 0.928 and 
0.927, respectively, obtained for the test subset using the model configuration and train-
ing hyperparameters described. The accuracy for predicting the classification of an image 
patch as poor or non-poor was 85.2% in the test dataset at a threshold value of 0.5.

4.3.2 � Training CNN regression models

The model described above aims to predict the likelihood that an image corresponds to a 
poor or non-poor region. To accomplish this, we utilized the softmax function as the output 
layer, which provides probabilities for each class. We implemented three regression models 
based on the EfficientNet-B3 architecture. The configuration included a dropout layer hav-
ing a 0.5 probability, followed by a dense layer with a single output unit. To ensure that the 
predicted values v̂k,m

j
 lie in the range of 0–1, the same as the reference values vk,m

j
 , we used 



	 M. Zea‑Ortiz et al.

1 3

the sigmoid activation function for the output layer. The mean squared error (MSE) was the 
loss function during the training phase.

We trained each CNN network for ten epochs using the Adam optimizer. We used the 
same partition of the image set to maintain consistency in subsequent comparisons with the 
CNN classification model. The networks differed in the initialization of their layer weights 
and learning rates. The first model (A) utilized Xavier initialization and a learning rate of 
10−4 . For the second model (B), we copied the weights from an EfficientNet-B3 model 
pre-trained on ImageNet to the layers with the same shape. The non-compatible layers used 
Xavier initialization, and the learning rate remained 10−4 . In the third model (C), we trans-
ferred the weights from the CNN trained for classification, excluding the output layer due 
to its different shape. We used a learning rate of 10−5 . The learning rates for each model 
were selected after several trial runs, where we assessed the best evolution behavior of the 
loss function during training for both the training and validation sets.

After training the models, we obtained predictions for the poverty index from each 
model for the test image subset. We compared the predicted values, v̂k,m

j
 , against the corre-

sponding ground truth values, vk,m
j

 , using the coefficient of determination R2 . Additionally, 
we determined the classification accuracy of the models by applying the same threshold 
( �v = 0.15053 ) used for the classification model to both vk,m

j
 and v̂k,m

j
 values. The results 

of these evaluations are presented in Table  3. With an R2 value of 0.628 for Model C, 
they demonstrate the advantage of training a classification model initially and subsequently 
transferring its weights to the regression model. This finding suggests that assessing pov-
erty as a continuous variable poses a more significant challenge for a network than distin-
guishing between poor and non-poor regions, especially when working with low-resolu-
tion images. Furthermore, the corresponding MSE of 0.0088 for the regressor reduces the 
approximation error in (), which was 0.0103.

Fig. 5   Performance assessment of convolutional neural networks (refer to the text for details)
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4.4 � Aggregating inferences

In this study, we aimed to verify whether the aggregation value preserved the map-
ping between reference values and the poverty dimension. To accomplish this, we first 
obtained the outputs vk,m

j
 of the regression function F(xm

j
, �k) , the referenced class val-

ues Cm
j

 by applying a threshold �v to the vk,m
j

 values, the outputs Ĉ
m

j
 of the trained CNN 

classification model for each residential block, which corresponded to the probability 
that people living in a block were poor based on the lack of housing quality and spaces  
dimension, and the outputs v̂k,m

j
 of the trained CNN regression model. We then com-

puted the weighted averages C̃m and Ĉ
m

 , for each municipality using (1) and compared 
them to the corresponding Cm values (see Sect.  3.3). To obtain Cm from vk,m , we used 
as threshold �v = 0.15053 . We computed the aggregated values ṽk,m of the regression 
function outputs and the aggregated predictions v̂k,m of the best CNN regression model 
(Model C) for each municipality in Mexico. Figure  6a shows the plot of ṽk,m versus 
vk,m , and Fig. 6b shows the plot of v̂k,m versus vk,m , where vk,m represents the CONEVAL 
dimension of lack of housing quality and spaces. We obtained an R2 of 0.801 for ṽk,m 
and 0.753 for v̂k,m.

To determine the accuracy, we applied a threshold �a to the C̃m and Ĉ
m

 values (see 
Fig.  6c). The accuracy was defined as the proportion of correct classifications of the 
municipalities, either as poor or non-poor. Maximum accuracies of 0.879 and 0.857 
were obtained at �a = 0.463 and �a = 0.555 , for C̃m and Ĉ

m
 , respectively. Although the 

computation of C̃m does not involve the images, determining its accuracy was still 

Fig. 6   Results of the validation tests applied to the regression function F(xm
j
, �k) outputs and the Efficient-

Net-B3 inferences (refer to the text for details)

Table 3   Performance of the CNN 
regression models evaluated with 
the R2 and MSE metrics (refer to 
the text for details)

Model R
2 MSE Accuracy

(�
v
= 0.15053)

A 0.382 0.0142 75.3%

B 0.511 0.0112 76.8%

C 0.628 0.0088 84.9%
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relevant because it was limited only by the MSE of the fitted values ŷi , and thus repre-
sented the best case scenario for the classification problem. From Fig. 6c, we observed 
that for some threshold values, the accuracy of ̂m was greater than that of C̃m , even 
though we used the class values Cm

j
 to train the CNN. However, we averaged the prob-

abilities of the CNN inferences in the first case, while in the second one, we averaged 
the class values.

4.5 � Median versus geomedian

When using satellite optical images, it is common for clouds to occlude a portion of the 
observation swath. Therefore, it is necessary to aggregate a collection of images to obtain 
cloud-free area coverage. In this study, we investigate whether summarizing a collection 
of images with the geomedian or median offers any advantages in determining poverty. To 
do so, we compared the performance of EfficientNet-B3 using Landsat-7 geomedian and 
median temporal aggregation of images.

For this experiment, we constructed datasets with a maximum cloud cover of 10% dur-
ing 2010. The geomedian and median datasets were created using 20 × 20 pixel patches 
from the same geographic location. However, due to the presence of null values in Land-
sat-7 images caused by the zigzag pattern in its scanned area, we had to exclude these 
patches. The median dataset comprised 2,115,343 patches, with balanced classes account-
ing for 2,023,204 records. This dataset was then divided into 50% for training (1,011,602 
records), 25% for validation (505,801 records), and 25% for testing (505,801 records).

The geomedian dataset contained 2,164,553 patches, with balanced classes comprising 
1,707,166 records. This dataset was also divided into 50% for training (853,583 records), 
25% for validation (426,791 records), and 25% for testing (426,792 records). We used 
the same number of epochs and hyperparameters for the median and geomedian datasets. 
We used the images in the testing dataset to evaluate the CNN model’s performance. We 
obtained an ROC AUC of 0.861 and a Precision-Recall AUC of 0.868 for the median data-
set. For the geomedian dataset, we obtained a higher ROC AUC of 0.928 and Precision-
Recall AUC of 0.927 (see Table 4).

4.6 � Assessing the evolution of poverty

This study on human poverty benefits from the availability of satellite images over time. 
We employed annual Landsat-7 geomedian images between 2010 and 2020 to generate 
20 × 20 pixel patches for selected states in Mexico, representing all the registered residen-
tial blocks in those states according to the 2010 census database. Using the trained Effi-
cientNet-B3 model, we obtained residential block classifications per year. Figure 7 shows 

Table 4   The evaluation of the CNNs performance can be measured by ROC AUC and Precision-Recall 
(refer to the text for details)

Bold values highlight better performance

Image type ROC Precision-recall Accuracy

Geomedian 0.928 0.927 85.2%
Median 0.861 0.868 78.5%
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the evolution of poverty for Mexico City and the states of Aguascalientes and Guerrero as 
proportions of poor blocks from 2010 to 2020. The results indicate differences in overall 
poverty among these states, with average proportions of poor blocks ranging from 5.8% 
for Mexico City, 38.1% for Aguascalientes, and 68.6% for Guerrero. The model predicted 
reductions in poor block proportions from 2010 to 2020 of 18.7% , 21.4% , and 31.5% for 
Mexico City, Aguascalientes, and Guerrero, respectively. However, the years with the high-
est and lowest poverty values varied among the states. Table 5 summarizes these results. 
Figure 8 shows the evolution of poverty maps for Acapulco, Guerrero from 2010 to 2020, 
where the EfficientNet-B3 predictions v̂k,m

j
 are represented by color.

To ensure the reliability of the yearly poverty assessments from 2010 to 2020 (censuses 
are programmed every 10 years in Mexico), we evaluated the performance of the Efficient-
Net-B3 model using image patches from the 2020 geomedians obtained via Landsat-8. We 
labeled these patches using the poverty dimension inference that resulted from evaluating 

Fig. 7   Changes in poverty for three Mexican states (refer to the text for details)

Table 5   Comparison of the poverty evolution between 2010 and 2020 for Aguascalientes, Guerrero, and 
Mexico City, represented by the changes in the proportion of poor blocks P̂

s

 , predicted by the EfficientNet-
B3 model for each state

State P̂
s

 (average 
2010–2020)

Reduction of 2010–2020 P̂
s

 
poverty year

Highest Lowest 
poverty 
year

Aguascalientes 38.1% 21.4% 2011 2019
Guerrero 68.6% 31.5% 2010 2020
Mexico City 5.8% 18.7% 2012 2016
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the regressors on the 2020 census database, which contained 1,070,046 records. As an 
intermediate step to obtain the regressor, we trained a classifier by splitting the dataset 
using a threshold �v (see 4). However, since the classes were unbalanced, we randomly 
selected a subset of 365,576 records to ensure equal positive and negative representation. 
The ROC AUC and Precision-Recall AUC values were 0.828 and 0.826, respectively, and 
the model achieved an accuracy of 75.9% . Compared to the performance results on the 
2010 census database, the test on the 2020 database showed a reduction of 0.100, 0.101, 
and 9.3% in ROC AUC, Precision-Recall AUC, and accuracy, respectively.

5 � Discussion and conclusion

Remote sensing-based poverty assessments using satellite imagery have gained 
widespread acceptance. Many studies have employed nightlight  (Elvidge et  al., 
2009), multispectral  (de Mattos et  al., 2021), high-resolution  (Suel et  al., 2021), 

Fig. 8   Evolution of poverty for the city of Acapulco, Guerrero. Spot colors correspond to different 
EfficientNet-B3 prediction values v̂k,m

j
 (refer to the text for details). Maps created using Google Earth 

Engine (GEE, 2024)
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low-resolution  (Salas et  al., 2021), SAR images  (Wurm et  al., 2019), employing clas-
sic (Yin et al., 2021) and deep learning (Xie et al., 2016) based techniques. However, as 
pointed out by Owusu et al. (2021), it is crucial to ensure that the mapping from remote 
sensing corresponds to actual poverty dimensions. This study focuses on the poverty 
dimension related to the lack of housing quality and spaces, which factors in aspects 
directly observable from Earth observations. Other variables related to social welfare 
and economic deprivation will not create a directly observable causal effect and should 
be studied with other means.

This research aligns the inference values the machine learning algorithm provided to the 
reference dimension provided by CONEVAL, the Mexican national agency in charge of 
measuring poverty (CONEVAL, 2022). The approach achieves higher temporal and spatial 
resolution and cost reduction.

Using aggregated poverty indicators at the municipal level can be less effective in 
accurately locating poverty, but it is a step towards addressing privacy concerns  (Gai 
et  al., 2022). Since the raw dataset provides reference values at the residential block 
level, choosing an additive aggregation function was critical in defining aggregation 
schemes that limit its statistical impact (Gründler & Krieger, 2022). However, the poten-
tial differential effect at the local level, especially in sparsely populated areas, requires 
further consideration to ensure it does not affect subregions significantly. This issue has 
been highlighted in previous studies on using census data for poverty mapping (Engbo 
et al., 2020), and it should be addressed to enhance the accuracy of poverty assessments.

This study demonstrates the potential of machine learning techniques to provide 
reliable and cost-effective information for decision-making at a higher frequency than 
traditional survey approaches. The results are consistent with previous studies  (Salas 
et  al., 2021) and offer a complementary perspective for assessing poverty in Mexico, 
even though our methodology differs from that of CONEVAL. It is essential to acknowl-
edge that the model’s ability to identify the spatial features driving image classification 
may only capture some factors contributing to poverty, even though the model has been 
trained with diverse images. Therefore, additional sources of information may be nec-
essary to predict changes in housing quality or changes over time accurately. Combin-
ing other sources of information can provide a more comprehensive understanding of 
poverty.

Identifying settlements with significant deficiencies in access to basic services and 
precarious housing conditions is crucial for decision-making and the development of 
effective public policies. These policies strive to alleviate poverty and reduce disparities 
in communities experiencing high levels of marginalization. However, obtaining this 
information in a promptly manner has been challenging, as traditional methods involve 
costly field operations and continuous monitoring. This research proposes an affordable 
and efficient alternative with improved spatiotemporal resolution, enabling faster track-
ing of the conditions in these settlements. Consequently, this approach provides more 
timely information for evaluating and designing public policies.

This research introduces a novel approach for mapping poverty dimensions at the 
residential block level using multispectral satellite images and census reference values. 
This approach is particularly valuable because it aligns with the official poverty meas-
urement standards established by the Mexican agency CONEVAL. As a result, it offers 
a reliable and cost-effective means of obtaining updated poverty assessments by lever-
aging the newest satellite images and inference from the trained models.

In future work, we aim to improve the accuracy of our poverty assessment for cen-
sus gap years by leveraging higher-resolution images, such as those from the Sentinel-2 
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satellite, and validating our results. Additionally, we plan to explore incorporating other 
sources of information, such as nightlight time images, vegetation indices, and other 
predictors related to poverty that can be obtained from field surveys, to enhance the per-
formance of the models further.
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