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Abstract: It is difficult to construct a post-inflation QCD axion model that solves the axion
quality problem (and hence the Strong CP problem) without introducing a cosmological
disaster. In a post-inflation axion model, the axion field value is randomized during the
Peccei-Quinn phase transition, and axion domain walls form at the QCD phase transition.
We emphasize that the gauge equivalence of all minima of the axion potential (i.e., domain
wall number equals one) is insufficient to solve the cosmological domain wall problem. The
axion string on which a domain wall ends must exist as an individual object (as opposed to a
multi-string state), and it must be produced in the early universe. These conditions are often
not satisfied in concrete models. Post-inflation axion models also face a potential problem
from fractionally charged relics; solving this problem often leads to low-energy Landau poles
for Standard Model gauge couplings, reintroducing the quality problem. We study several
examples, finding that models that solve the quality problem face cosmological problems, and
vice versa. This is not a no-go theorem; nonetheless, we argue that it is much more difficult
than generally appreciated to find a viable post-inflation QCD axion model. Successful
examples may have a nonstandard cosmological history (e.g., multiple types of cosmic axion
strings of different tensions), undermining the widespread expectation that the post-inflation
QCD axion scenario predicts a unique mass for axion dark matter.
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1 Introduction

The QCD axion, which dynamically relaxes θ and explains the absence of an observed neutron
EDM, has long been the leading contender to solve the Strong CP problem [1–4]. Via
the misalignment mechanism, a QCD axion also provides some abundance of dark matter,
which could range from a subdominant contribution to one so large it is observationally
ruled out, depending on the axion mass and cosmological history [5–7]. For a detailed
introduction to axion physics and the Strong CP problem, see [8–10]; for axion cosmology
specifically, see [11–13].

It was appreciated early on that a QCD axion is not truly sufficient to solve the Strong
CP problem: the coupling that allows θ to relax explicitly breaks the axion shift symmetry,
so a viable theory should explain why there are not other shift-symmetry breaking effects
that add to the potential and (generically) displace its minimum. This has come to be known
as the “axion quality problem,” and it is severe. Even Planck-suppressed higher dimension
operators that break a Peccei-Quinn (PQ) symmetry are dangerous, up to dimension ten or
more [14–23]. Depending on the UV structure of the model, PQ symmetry breaking operators
are not necessarily Planck-suppressed even when gravity is the only source of PQ symmetry
breaking, exacerbating the quality problem [24, 25]. An axion model that does not solve the
axion quality problem should not be thought of as a solution to the Strong CP problem, as
it requires introducing many exponentially small parameters rather than simply assuming
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|θ| to be small. Solutions to the problem generally either invoke new gauge symmetries that
forbid all of the dangerous operators, or extra dimensions so that new terms in the axion
potential only arise from nonlocal effects that are exponentially small.

Axion models are divided into two broad categories based on their cosmology, often
referred to as “pre-inflation” and “post-inflation”.1 In the post-inflation models, there is a
phase transition after the end of inflation in which an approximate global PQ symmetry is
spontaneously broken. The axion emerges as an independent real scalar field only after this
phase transition. In the pre-inflation models, there is no such phase transition. “Pre-inflation”
is something of a misnomer, because it suggests that there is a PQ symmetry that was realized
at some early time in the history of the universe, and this need not be true. For example,
models in which the axion arises as a mode of an extra dimensional gauge field (e.g., [28–31])
offer a compelling solution to the quality problem, and do not have a PQ phase transition at
all. They are intrinsically of pre-inflation type (as noted in, e.g., [10, 32, 33]).

In this paper, we focus instead on the post-inflation axion scenario. In this case, the
axion generally arises as the phase of a complex (possibly composite) scalar field, which
obtains a vacuum expectation value (VEV) during the PQ phase transition after inflation.
This scenario occurs quite generally when the axion decay constant is small compared to
the inflationary Hubble scale, fa < HI/(2π). It can also arise even for larger fa in more
model-dependent ways, e.g., if the PQ phase transition temperature is much lower than fa,
perhaps because it is triggered by SUSY breaking [34, 35]; or if a sufficiently high temperature
is achieved during reheating to restore the PQ symmetry [36]; or if the heavy lifting effect
raises the mass of the PQ scalar during inflation [37].

The post-inflation scenario has a rich cosmology. During the PQ phase transition, the
value of the axion field becomes randomized in different parts of the universe. Axion strings,
around which the axion field value winds, are produced through the Kibble-Zurek mechanism.
Later, during the QCD phase transition, the axion acquires a potential and domain walls form
that end on the axion strings. Axion dark matter arises not only through the misalignment
mechanism, but from radiation from the strings after the PQ phase transition and from the
dynamics of the string-domain wall network after the QCD phase transition.

Domain walls are potentially disastrous for the cosmology of a post-inflation axion [38],
because their energy density redshifts more slowly than that of matter or radiation and can
come to dominate the universe [39]. There are two mechanisms by which cosmological domain
walls can collapse: they can either have a boundary, ending on a cosmic string [40–43], or
they can be the boundary of a volume of higher vacuum energy, which exerts a force to
collapse the wall. The former case occurs when the broken discrete symmetry is gauged, and
the latter case occurs when the discrete symmetry is explicitly broken. Explicit symmetry
breaking has been proposed as a solution to the axion domain wall problem [38, 44–46], but
it has an obvious tension with the quality problem. PQ-violating terms in the potential must
be large enough to cause domain walls to collapse quickly, but small enough to maintain

1Alternatively, as an intermediate case, PQ symmetry could have a phase transition during inflation [26, 27].
We will not discuss this case in detail, but for our purposes it may be thought of as similar to either pre-inflation
or post-inflation depending on whether or not it introduces a potential domain wall problem in the late-time
universe.
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|θ| ≲ 10−10. A related proposal to solve the problem is to begin with biased initial conditions,
which again can cause domain walls to collapse [45, 47, 48]. This requires either explicit
symmetry violation at earlier times (again in obvious tension with the quality problem) or an
unconventional cosmology. The tension between the quality problem and a fast enough decay
of the domain wall in this scenario is long known and well-studied in the literature. The
decay of domain walls due to explicit PQ violation in the potential copiously produces axion
dark matter. Quantifying this effect has been the aim of studies based on detailed numerical
simulations and scaling arguments [46, 49–52]. These papers argue that if the CP phase of
the PQ-violating term is O(1), the current bound |θ| ≲ 10−10 and the constraint that axion
dark matter is not overproduced completely eliminate the parameter space with fa ≳ 108 GeV
that is consistent with astrophysical bounds on the QCD axion. Only by tuning the CP
phase to be small (and thus not fully solving the quality problem) can this scenario have a
consistent cosmology. We will not discuss explicit breaking or biased initial conditions further
in this paper, and focus instead on the alternative scenario of gauged symmetry, where the
tension between the quality problem and cosmology has not been clarified in previous work.

In this work, we assume the simplest solution to the axion domain wall problem: de-
struction of the axions by a network of cosmic strings that formed during the PQ phase
transition. This mechanism works when a single domain wall can end on a cosmic string [53].
The number of axion domain walls ending on an axion string of minimal winding number,
often simply called the “domain wall number,” can be read off from the axion-gluon coupling.
Specifically, given a 2π-periodic axion field θ(x) coupling to gluons via the action

kG

8π2

∫
θ(x) tr(G ∧G), (1.1)

we have kG ∈ Z for topological reasons, and QCD dynamics generates a potential with the
property V (θ) = V (θ + 2π/kG). Thus, there are |kG| degenerate minima, and we say the
theory has domain wall number NDW = |kG|. Hence, the simplest solution to the axion
domain wall problem is to engineer a model with NDW = 1, and to ensure that axion strings
of minimal winding number are produced during the PQ phase transition.

The post-inflation axion scenario with NDW = 1 is often, implicitly or explicitly, assumed
in discussions of axion phenomenology and the detection of axion dark matter. In the
pre-inflation scenario, a wide range of axion masses can accommodate the observed dark
matter abundance, depending on initial conditions. The post-inflation axion is often perceived
as more predictive. To quote some recent statements in the literature: “there is in principle a
unique calculable prediction for the axion mass if it is to make up the complete DM density
in such [post-inflation] models, which would be extremely valuable for experimental axion
searches” [54]; “If the PQ symmetry is broken after the cosmological epoch of inflation, then
there is a unique axion mass ma that leads to the observed DM abundance” [55]. Sophisticated
numerical simulations have been undertaken to assess the dark matter abundance in a post-
inflation QCD axion scenario [54–59], and to predict a specific mass for which axions constitute
all of the dark matter. These computations show that axion strings formed at the PQ phase
transition enter a scaling regime, emitting QCD axion dark matter as the string network
evolves, and then the string-domain wall network tears itself apart after the QCD phase
transition. The axions emitted from string and domain wall dynamics add to the abundance
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of dark matter arising from misalignment. Axion experimentalists take the predictions of
such simulations seriously for determining the optimal mass range to target in their searches.

In this paper, we complicate this picture. We argue that there is a tension between
achieving NDW = 1 and solving the axion quality problem without introducing other disastrous
cosmological problems. We illustrate this with various examples. While we do not have a
general no-go theorem, we also do not know any example of a QCD axion model without a
quality problem that gives rise to the conventional post-inflation axion cosmology. If there
is an axion theory that solves the quality problem and is not cosmologically excluded, it
seems likely that it also has a non-standard cosmological history, which would alter the
prediction for the axion dark matter abundance. One message to take away is that experiments
searching over a broad mass range, rather than targeting any theorists’ preference, are vital.
Another is that axion cosmology could differ in a variety of ways from that studied in
existing simulations; for example, there could be a network consisting of multiple types of
axion strings with parametrically different tensions at the time of the QCD phase transition.
Given the computational resources that are now being deployed to study post-inflation axion
cosmology, it would be worthwhile to carry out a suite of simulations for a wider range
of cosmological scenarios.

This paper is organized as follows. In section 2, we discuss the canonical solution to the
axion quality problem: a discrete Zp symmetry. We point out a basic cosmological tension.
The Zp symmetry ensures that, at the time of the QCD phase transition, domain walls can
form separating at least p different vacua. When Zp is a gauge symmetry, these vacua are
gauge equivalent and the domain wall can, in principle, end. However, whether the domain
wall can end on a single string, and whether cosmological dynamics produces such strings,
depend on details of the UV completion. We discuss a specific UV completion in recent
literature where the Zp symmetry is embedded in the center of a continuous gauge group
SU(N) [60]. In section 3, we examine a KSVZ-type model with a U(1) gauge symmetry
to ensure a high-quality axion and avoid the domain wall problem [19]. We find that the
model suffers from a series of cosmological problems including fractionally charged relics
and Landau poles in the Standard Model couplings below the UV scale. In section 4, we
briefly consider a model where the axion quality is protected by a nonabelian gauge symmetry
SU(n) × SU(n) [61]. The cosmological considerations are similar to the previous section
and we arrive at qualitatively the same conclusion. In section 5, we comment on the class
of composite axion models, in which we find it is generally hard to avoid the domain wall
problem. We present discussions on other types of models in the literature in section 6, and
pose some open questions on a more holistic approach to the solution of the axion quality
problem, the domain wall problem, and the cosmological dynamics.

2 A Zp symmetry for quality

2.1 First look

It is often said that the simplest solution to the axion quality problem is to impose a Zp discrete
symmetry, as first studied in [15]. For example, if a PQ-charged scalar field Φ carries charge 1
under such a symmetry, then all operators of the form Φk/Λk−4 are forbidden up to k = p.
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More generally, we will consider Φ to carry charge q under the Zp symmetry. Then we define

d ≡ gcd(q, p), p̃ ≡ p

d
. (2.1)

In this case, Φk terms are forbidden up to k = p̃. Although q is only defined modulo p, d and
p̃ are well-defined integers. When Φ obtains a vacuum expectation value, Zp is spontaneously
broken to a residual Zd symmetry that does not act on the axion.

There is a basic tension between such a solution to the quality problem and the domain
wall problem. If the axion arises as the phase of Φ,

Φ(x) = 1√
2
(f + s(x)) eiφ(x), (2.2)

then under the generator z of the Zp symmetry Φ 7→ e2πiq/pΦ and hence

z : φ(x) 7→ φ(x) + 2πq
p
. (2.3)

(This makes sense as a Zp symmetry action even though q is only defined mod p because,
through its definition as a phase, φ ∼= φ + 2π.) The symmetry (2.3) allows terms in the
potential of the form cos(p̃(φ− φ0)), and hence p̃ vacua separated by domain walls. For
an exact Zp global symmetry, these are stable domain walls. However, we don’t expect
global symmetries to ever be exact. For a principled mechanism forbidding higher-dimension
operators, we should focus on gauge symmetries.

It is instructive to see how the domain wall number divisible by p̃ arises in a detailed
model with a Zp gauge symmetry. For concreteness, consider a KSVZ-type model with quarks
Q(i), Q̃(i) carrying Zp gauge charges k,−(k + q) respectively, with flavor index i spanning a
range i ∈ {1, . . . , r}. With this charge assignment, Yukawa terms∑

i,j

(
yijΦQ(i)Q̃(j) + h.c.

)
(2.4)

are allowed by gauge invariance. (In later such expressions, we will leave the sum over i
and j implicit.) Such a model potentially has a mixed Zp-SU(3)2

C anomaly. In particular,
under a rephasing

Φ 7→ eiqαΦ, Q(i) 7→ eikαQ(i), Q̃(i) 7→ e−i(k+q)αQ̃(i), (2.5)

the chiral anomaly shifts the action by

∆I = 1
8π2 r [kα+ (−k − q)α]

∫
tr(G ∧G) = − rq

8π2α

∫
tr(G ∧G). (2.6)

In order for the Zp transformation to be a valid gauge symmetry, we require that exp[i∆I] = 1
when α = 2π/p. The quantization of instanton number 1

8π2
∫
tr(G∧G) ∈ Z then implies that

rq

p
∈ Z, (2.7)
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which in turn implies that the number of KSVZ quarks r must be an integer multiple of
p̃. We denote this integer as s:

s ≡ r

p̃
∈ Z. (2.8)

Integrating out the heavy modes after Φ gets a VEV, we obtain an effective coupling

r

8π2

∫
φ(x)tr(G ∧G), (2.9)

so the domain wall number |r| associated with φ is a multiple of p̃.

2.2 Second look: Zp strings

The argument that we have just given is not quite right, although it hints at an important
physical effect. Once we gauge Zp, the identification (2.3) is a gauge transformation. If all of
the vacua separated by domain walls are gauge equivalent under this transformation, then
the domain wall problem is potentially solved [53]. A minimal domain wall interpolates
between a minimum at some value φ0 and a neighboring minimum at φ0 + 2π/r. These
two minima are gauge equivalent under zk ∈ Zp if

2π
r

≡ 2πkq
p

mod 2π ⇒ 2π
sp̃

≡ 2πkq
dp̃

mod 2π. (2.10)

But (for any choice of integer q in its equivalence class) kq/d is an integer, which means that
in order for this expression to hold, 1/s must also be an integer. This is only possible for the
special cases s = ±1; suppose this is true. Choosing a representative integer q from its Zp

equivalence class, we can write q = q̃d. The condition (2.10) is then equivalent to

kq̃ ≡ ±1 mod p̃. (2.11)

It is a standard result in modular arithmetic that a solution k exists precisely when p̃ and
q̃ are relatively prime, which is the case here (by construction). Hence, we conclude that
neighboring minima are gauge equivalent if and only if |s| = ±1. Indeed, in general, the
Zp orbit generated by (2.3) includes p̃ distinct gauge equivalent values of φ, and hence
|s| = |r|/p̃ is the number of distinct gauge orbits of minima. Thus, |s| is the correct, physical
domain wall number in this theory.

We can define a 2π-periodic axion field θ(x) by

θ(x) = p̃φ(x) = arg(Φ(x)p̃). (2.12)

In other words, θ is the phase of the smallest Zp-invariant operator constructed from Φ. We
will see a similar pattern in other examples: the 2π-periodic axion is often the phase of the
lowest-dimension gauge invariant operator that carries PQ charge and obtains a vacuum
expectation value. In terms of this variable, the effective coupling (2.9) is

r

p̃

1
8π2

∫
θ(x)tr(G ∧G) = s

8π2

∫
θ(x)tr(G ∧G), (2.13)
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φ 7→ φ+ 2π

θ 7→ θ + 2π

V (Φ)

Figure 1. A generic PQ-breaking potential for a complex scalar Φ with charge q under a gauged
Zp subgroup of U(1)PQ. As in the text, we define d ≡ gcd(q, p), p̃ ≡ p/d. The field θ = φ/p̃ is 2π
periodic, where φ is the phase of Φ. In the illustration, p̃ = 5. However, at the time of the PQ phase
transition when Φ obtains a VEV, there is no dynamical reason for the phase of Φ to be restricted in
the sub-interval where θ 7→ θ + 2π. The cosmic strings produced therefore wind around the whole 2π
period of φ, which will be connected to p̃ domain walls after the QCD phase transition.

which makes manifest that the true domain wall number is s, which could be ±1. Thus, a
priori, a model with a Zp gauge symmetry protecting axion quality need not be in conflict
with a simple solution to the axion domain wall problem.

The trouble is that this argument is kinematic: the symmetries of the problem allow for
the right states to exist to solve the domain wall problem. They do not, however, guarantee
that the dynamics of the theory will solve the domain wall problem. In particular, at the PQ
phase transition, the complex field Φ(x) gets a VEV from some potential V (|Φ|). The Kibble-
Zurek mechanism guarantees that this phase transition will form axion strings around which
the phase φ winds from 0 to 2π, as illustrated in figure 1. Equivalently, these are strings for
which θ(x) winds from 0 to 2πp̃. Such a string can form a junction on which p̃ minimal domain
walls end, but it cannot destroy a single domain wall. In other words, as far as the PQ phase
transition is concerned, we have a theory in which the domain wall number is divisible by p̃.

The Zp gauge symmetry allows for the existence of twist vortices, dynamical cosmic
strings around which fields come back to themselves only up to a Zp gauge transformation [62].
These objects are expected to exist in any theory with a Zp gauge symmetry, due to the
absence of global symmetries in quantum gravity [63] (this is one example of the completeness
of the spectrum of quantum gravity [64]). The existence of these objects, in a theory with
NDW = 1, renders domain walls unstable: there is always some stringlike object (possibly
a composite one) on which a single domain wall can end. Even if these strings are not
populated in the early universe, a domain wall can in principle decay through the nucleation
of a bubble of string within the wall, though this rate is exponentially suppressed when the
string tension is much larger than the domain wall tension [42], so it does not solve the
QCD axion’s domain wall problem. Instead, we must rely on the cosmological production
of appropriate strings for the wall to end on.

In order for Zp strings to solve the domain wall problem, two important conditions should
be satisfied: there should be a single string on which a domain wall can end, and these strings
should be produced in the early universe. Neither is guaranteed. For example, consider a
minimal domain wall interpolating between φ = 0 and φ = 2π/p̃. These vacua are equivalent
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under the gauge transformation by zk with k obeying the condition (2.11). A Zp string of
charge k has the property that, as we circle the string, the field Φ maps back to itself up to a
phase exp(2πikq/p). This means that the winding of φ around the zk string is given by∮

zk
dφ = 2π

(
kq

p
+ n

)
, (2.14)

for some integer n. There is some choice of n for which this is equal to the desired 2π/p̃, but
whether a string with appropriate n exists depends on the UV completion of the theory.

To make this more clear, we consider an example: a theory with Z5 gauge symmetry under
which Φ has charge 2, and we suppose that s = 1. The Z5 generator z maps φ 7→ φ+ 4π/5
mod 2π. Consider the minimal domain wall interpolating between φ0 and φ0 +2π/5. Modulo
2π, these are related not by the generator z itself, but by z3, because 3 × 2 = 1 + 5 ∼= 1
mod 5. In (2.14), then, this example has p = 5, q = 2, k = 3, and we need n = −1 to
obtain net winding

∮
z3 dφ = 2π (3× 2/5− 1) = 2π/5. There may be a model where a string

producing such winding exists as a single object, perhaps even an elementary one. (Because
z3 also generates Z5, there is no invariant meaning to our choice of z as a generator, and
no reason to favor the case where the strings with holonomy z are fundamental.) On the
other hand, it may be that the only elementary Z5 string implements the operation z such
that the winding is

∮
z dφ = 4π/5. In this case, the z3 string could arise by stacking three

such z strings on top of each other, generating winding
∮

z3 dφ = 12π/5. This overshoots
the desired 2π/5 winding, and we require an additional shift in φ back 2π, as shown in
figure 2(a). In this case, the desired string on which a single axion domain wall can end
is the bound state of a z3 string and (in an abuse of notation) a −φ string where φ winds
by −2π. A z3 string has six domain walls attached to it, and five of them are absorbed by
the −φ string, as illustrated in figure 2(b).2 While −φ strings will be produced by the PQ
phase transition following the familiar story of cosmic string production from a spontaneously
broken global U(1) symmetry, the expected abundance for z3 strings can only be determined
within a UV completion. Figure 2(b) is consistent with the general claim that the domain
wall can end when NDW = 1. However, the messy, composite configuration on which it ends
is unlikely to arise dynamically. More likely, if there is a large abundance of z3 strings and
φ strings, one would form a large, frustrated network and the domain wall network would
not collapse. This is because, effectively, the picture is much like that for NDW > 1: any
given elementary string is attached to multiple domain walls. In summary, the cosmological
consequences of a discrete gauge symmetry depend on details of the UV completion that
cannot be deduced from the symmetry structure alone.

For the moment, suppose that the requisite Zp strings to destroy minimal domain walls
are somehow produced cosmologically, so that at the time of the QCD confining transition,
the universe is filled with a network of them. Axion domain walls can end on these strings,
solving the domain wall problem. However, there is an important physical difference from
the standard scenario. Because the Zp strings are not produced in the PQ phase transition,
there is no reason for their tension µ to be tied to the scale fa of the axion decay constant.

2Alternatively, because z2 is the inverse element of z3 in Z5, one could stack two anti-z strings, leading to
net winding −8π/5, and one +φ string of winding 2π for a net 2π/5. A similar picture results.
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z3

z

φ 7→ φ− 2π

2π0

φ

V (φ)

(a)

−φ

z3

(b)

Figure 2. (a) The potential for φ from the phase of Φ, where Φ has charge 2 under a Z5 gauge
symmetry. The action of the Z5 generator z does not map between neighboring vacua in V (φ), but
the combination of z3 and φ 7→ φ− 2π gauge transformation does. This means that the object where
a single axion domain wall can end on is the bound state of a z3 string and a “−φ” string (where φ
winds by −2π). In isolation, a z3 string will have six domain walls attached to it, five of which can
connect to the same −φ string to end the remaining domain wall. Another state on which a single
axion domain wall can end is the bound state of a z2 string and a −φ string: a −φ string is attached
to five domain walls, and four of the five domain walls are absorbed by the z2 string.

In principle, they could have a much larger tension. The string network radiates axions
continuously as it evolves, and further emits axions when the string-domain wall network
fragments, all of which enhance the abundance of axion dark matter. We will follow a recent
discussion in [55]. The rate of axion emission from strings is Γa ≈ 2Hρs, with ρs the energy
density in axion strings. This is directly proportional to the string tension: ρs = ξµ/t2, where
ξ is the string length per Hubble volume and is expected to be only logarithmically sensitive
to the string tension or other detailed physics in the string core. The final axion abundance
is largely determined by this process and proportional to Γa. The estimate of [55] assumes a
string tension µ0 = πf2

a . If the Zp string tension µ is much larger, then a first estimate is
that the axion dark matter abundance is enhanced by a factor of µ/µ0. (A similar discussion
of the role of higher tension strings in enhancing the axion emission rate appeared in [65],
as this paper was being completed.) This, correspondingly, implies that the correct axion
dark matter abundance is attained for a smaller value of fa and a larger axion mass than in
the conventional axion cosmology. We emphasize that this is just a crude scaling argument,
and the additional physics needed to construct a model in which the requisite population
of Zp strings is produced cosmologically could further complicate the story.

Before moving on, let us make a brief comment about Peccei-Quinn charges. In the
above discussion, we have never explicitly referred to a U(1)PQ global symmetry. We could
do so as follows: the couplings (2.4) respect a chiral symmetry under which Q(i) has charge
pQ = +1, Φ has charge pΦ = −1, and Q̃(j) has charge p

Q̃
= 0. (They also respect a “heavy

baryon number” symmetry under which Q(i) has charge +1 and Q̃(j) has charge −1; any
linear combination of this and the aforementioned chiral symmetry could be viewed as a
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Peccei-Quinn symmetry.) A standard formula is that the axion-gluon coupling is given by
kG = ∑

i 2I(ri)pi, where the sum is over left-handed Weyl fermions with PQ charge pi and
SU(3)C representation ri. In our example, this computation gives kG = r, as in (2.9). In
order to compute the properly normalized coupling kG = r/p̃ = s as in (2.13), then, we
should normalize the PQ charge so that pΦ = −1/p̃, i.e., it is the operator Φp̃ that has
unit magnitude PQ charge. This may seem unusual, since we customarily normalize U(1)
charges to be integers so that eiα ∈ U(1) has a well-defined action on a field as ψ 7→ eiqαψ.
However, fractional normalizations of charges under a global U(1) symmetry are often a
useful convention in the case where a discrete subgroup of U(1) is gauged. A familiar example
is baryon number symmetry, where we normalize quark fields to have baryon number 1/3,
the Z3 center of SU(3)C acts on the quarks in the same manner as the Z3 subgroup of baryon
number, and the gauge invariant baryon operators have baryon number 1. The utility of
fractional PQ charge assignments will become important in section 5 below.

2.3 Zp embedded in continuous gauge groups

We consider an illustrative class of models in a recent work [60], which aims to produce the
required Zp string at the time of the PQ phase transition. The string tension µ is then tied
with fa, and the model regains the possibility of a precise prediction of the axion mass to
produce the correct dark matter abundance. In this class of models, the axion arises from a
scalar S spontaneously breaking the gauge group SU(N). S lives in either the symmetric or
antisymmetric two-index representation of SU(N), which lead to different types of models
as we will discuss shortly. These models are realizations of the Lazarides-Shafi idea first
established in [53], where the domain wall problem is solved by embedding the discrete Zp

subgroup of U(1)PQ in a continuous gauge group. However, upon closer examination of
the models, we find that some subtleties have been overlooked and the embedding is not
necessarily sufficient to solve the domain wall problem.

The fermion content and charge assignments of the models are universal regardless of
whether S is a symmetric or antisymmetric tensor. The fermions include SU(N) fundamental
quarks Q (in the 3 of SU(3)C) and Q̃ (in the 3) which we can take to have hypercharge
Y = ∓1/3, and SU(N) antifundamental leptons L(i) and L̃(i) (i = 1, 2, 3), which we can take
to have Y = 0. These have Yukawa interactions with S,

L ⊃ −yQQS∗Q̃− (yL)ij L
(i)SL̃(j) + h.c. (2.15)

The potential for S is constructed such that it obtains a VEV

⟨S⟩ = vS
(
1N/2×N/2 ⊗ ϵ

)
(2.16)

when S is in the antisymmetric two-index representation and N is even, which spontaneously
breaks SU(N) to Sp(N),3 and

⟨S⟩ = vS1N×N (2.17)

3When N is odd the symmetry breaking pattern is different and there is no light axion [66].
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when S is in the symmetric two-index representation, which spontaneously breaks SU(N) to
SO(N). In both cases, we will denote the overall phase of S by φ(x); that is, we take

φ(x) = 1
N

arg detS. (2.18)

Performing a chiral rotation on the heavy quarks to remove φ(x) from the Yukawa terms,
we obtain the φ(x) coupling to gluons

L ⊃ N

8π2

∫
φ(x)tr(G ∧G). (2.19)

The domain wall number with respect to a 2π period of φ(x) is thus N , i.e., neighboring
vacua in the φ(x) potential are separated by 2π/N .

From the discussion in section 2.1, we know that this is not the whole story, since
the N vacua could be gauge equivalent. To see if that is the case, we need to look at the
lowest-dimensional U(1)PQ-charged operator that is consistent with the gauge symmetry
of the model. Now we will look at the antisymmetric and symmetric representations of
S separately. When S is in the antisymmetric representation and N is even, the lowest-
dimensional operator is the Pfaffian, Pf S =

√
detS = |

√
detS|eiNφ(x)/2. The minimal

2π-invariant variable with no gauge-equivalent sub-interval is therefore θ(x) = Nφ(x)/2,
which we will identify as the axion in our theory. By definition, all cosmic strings must
wind by an integer multiple of 2π in θ(x). Since

L ⊃ N

8π2

∫
φ(x)tr(G ∧G) = 2

8π2

∫
θ(x)tr(G ∧G), (2.20)

we see that the model has a domain wall number of 2, thus the domain wall problem is not
solved. The issue is that even though there is an anomaly-free ZN inside U(1)PQ, only the ZN/2
subgroup is gauged via its embedding in the center ZN ⊂ SU(N) by the model construction.

When S is in the symmetric representation, the lowest-dimensional PQ-breaking operator
is the determinant of S, detS = | detS|eiNφ(x), for both even and odd N . It is tempting
to say then that the minimal 2π periodic variable is θ(x) = Nφ(x). However, when N is
even, this is not correct: S being a two-index symmetric representation of SU(N), it has
charge 2 under the ZN center of SU(N) and is invariant under the Z2 subgroup of ZN . More
specifically, under a zk ∈ ZN transformation, φ(x) 7→ φ(x) + 4πk/N , which cannot relate
φ(x) with the neighboring vacua φ(x) ± 2π/N when N is even. The minimal 2π periodic
variable in the model is thus θ(x) = Nφ(x)/2. Similar to the antisymmetric case, we have

L ⊃ N

8π2

∫
φ(x)tr(G ∧G) = 2

8π2

∫
θ(x)tr(G ∧G), (2.21)

and the domain wall number of the model is again NDW = 2.
When N is odd, there is no Z2 subgroup of ZN , and a zk ∈ ZN transformation will be

able to reach all vacua starting from φ(x). In this case, we take θ(x) = Nφ(x), and we have
NDW = kG = 1. All domain walls are unstable in this theory. However, referring back to
our example of a Z5 symmetry in section 2.2, the minimal string for the ZN center cannot
destroy a single domain wall, because the minimal string winds φ from 0 to 4π/N rather
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than 2π/N . The strings that may play a dynamical role in destroying domain walls are
non-minimal, as they are composite objects of (k + 1) minimal z strings (or equivalently, k
minimal anti-strings), where N = 2k + 1, together with φ strings. We can make this more
explicit by studying the fundamental group involved in the Kibble-Zurek mechanism. The
potential for S is built out of the invariants tr(SS†) and tr(SS†SS†). This potential respects
a global symmetry: it is invariant under S 7→ USU⊤ with U ∈ U(N), but the element
U = −1N×N acts trivially on S. Thus, the faithfully acting global symmetry respected
by the potential is GV = U(N)/Z2. After symmetry breaking, the subgroup of GV leaving
the vacuum expectation value (2.17) invariant is HV = O(N)/Z2. Part of these groups are
gauged in our theory, but we expect that the topological defects arising when S relaxes to the
minimum of the potential are dominantly determined by GV and HV , independently of the
gauging. The axion string configurations formed during the phase transition are determined
by π1(GV /HV ). Using U(N) ∼= [SU(N)×U(1)]/ZN , we can construct noncontractible loops
in GV itself as the projections of the following maps from [0, 1] into SU(N)× U(1):

z(t) =


exp


−it2π

N



1
1

. . .
1
−(N − 1)




, exp(2πit/N)


, (2.22)

w(t) = (1, exp(πit)) . (2.23)

The first path, z(t), winds from the origin of SU(N) to the first element of the ZN center, and
also winds 1/N of the way around U(1). The ZN quotient in U(N) ensures that this forms a
loop in GV . The action S 7→ USU⊤ implies that the corresponding winding of φ is 4π/N .
The second path, w(t), winds from the identity element of U(1) to the element −1, while
remaining constant in SU(N). The Z2 quotient in the definition of GV makes this a loop.
The action on S corresponds to a full 2π winding of φ. Both homotopy classes [z] and [w]
generate Z subgroups of π1(GV ), but these are not independent, because [z]N is homotopic
to [w]2. We conclude that π1(GV ) ∼= Z. We have π1(HV ) ∼= Z2 and π0(HV ) ∼= 0 (because the
quotient by Z2 identifies the two disconnected components of O(N)). Then the homotopy
exact sequence · · · → π1(HV ) → π1(GV ) → π1(GV /HV ) → π0(HV ) → · · · , together with the
fact that the only homomorphism Z2 → Z is 0, implies that π1(GV /HV ) ∼= π1(GV ) ∼= Z.

The physical meaning of the above analysis is that the axion strings formed by the
Kibble-Zurek mechanism in this model are classified by an integer topological charge, labeled
by the winding of φ, which comes in units of 2π/N . However, just as in the discussion of
section 2.2, this does not mean that a string of minimal winding is an elementary object. The
paths that achieve minimal winding of φ have, from the UV viewpoint, nontrivial winding
in both SU(N) and U(1); they are composites of the z(t) path (2.22) (analogous to the z
strings of section 2.2) and the w(t) path (2.23) (analogous to the φ strings of section 2.2).
The string with minimal winding, then, may only exist as a collection of simpler objects,
much like the depiction in figure 2(b).

It seems likely that the cosmological dynamics produces primarily simple strings, z
strings generated by the winding (2.22) and φ strings generated by the winding (2.23),
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rather than a single string with minimal φ winding (but much more complicated winding
within GV ). Thus, we expect that the model has a domain wall problem, unless there is
a nontrivial dynamical mechanism populating the appropriate composite strings. It would
be worthwhile to explicitly construct semiclassical strings solutions of different winding,
and study their relative tensions. The complete dynamics of string formation may only be
definitively answered by dedicated numerical simulations.

The class of models in ref. [60] presents one type of embedding of Zp symmetry in a
continuous gauge group, and we have discussed how some nontrivial dynamical questions
about the cosmic strings need to be answered before the domain wall problem can be declared
solved. The models do withstand an examination of other cosmological considerations, such as
existing constraints on fractionally charged relics and avoiding a Landau pole in the Standard
Model couplings below the Planck scale.4 In the following sections we discuss other promising
models that embed Zp symmetry in more complicated symmetry structures. Some of them
have greater success in solving the domain wall problem than the class of models discussed
here. However, it turns out that they suffer from other cosmological considerations that
cannot be simultaneously satisfied with the axion quality constraint. In other words, the
axion quality problem is in tension with conventional post-inflation axion cosmology.

3 A U(1) symmetry for quality

In this section, we review a KSVZ-type model proposed by S. M. Barr and D. Seckel in
ref. [19]. The authors argue that this model has a high-quality U(1)PQ symmetry and the
correct dynamics of string formation to ensure NDW = 1. In section 3.1, we review the
field content and Lagrangian of the model, and discuss its solution to the quality problem.
We discuss the string formation dynamics and show that the solution to the domain wall
problem is much more complicated than originally claimed in [19]. We see that this solution
reduces to a Zp symmetry solution in a certain limit. In section 3.2, we show that the model
also suffers from a series of cosmological problems, including fractionally charged relics and
Landau poles in the SM gauge couplings below the UV scale.

3.1 Review of the Barr-Seckel model

The Barr-Seckel model [19] introduces two complex scalars Φp and Φq, which are singlets
under the Standard Model gauge group. The subscripts indicate their respective charges
under an additional U(1)′ gauge symmetry. The model also introduces p + q copies of
left-handed quarks (by which we mean they are in the fundamental representation of SU(3)C)

4There is another interesting dynamical question about the fate of SO(N) magnetic monopoles below
the confinement scale, briefly discussed in ref. [60] but deserving further attention. For odd N , SO(N) has
trivial center and admits Z2 monopoles thanks to the double cover of SO(N) by the simply connected group
Spin(N). Such monopoles are produced as topological defects when SU(N) is higgsed to SO(N). One heuristic
argument given in ref. [60] is that confinement is dual to higgsing, and so below the SO(N) confinement
scale, the magnetic charge is higgsed and monopoles should decay. On the other hand, because there is no
center symmetry, we do not expect any order parameter for confinement to exist, so it would be surprising if
confinement caused monopoles to decay. The fate of the monopoles is important for the cosmology of the
model, but unrelated to the concerns discussed in this paper, so we will not attempt to definitively answer the
question here.
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Q
(i)
0 , q copies of left-handed antiquarks (by which we mean they are in the anti-fundamental

representation of SU(3)C) Q̃(i)
p , and p copies of left-handed antiquarks Q̃

(i)
−q. They are

singlets under SU(2)L × U(1)Y and the subscripts indicate their respective U(1)′ charges.
The multiplicities are necessitated by cancellation of SU(3)3

C and SU(3)2
CU(1)

′ anomalies.
(Cancellation of the U(1)′3 anomaly can be accomplished with spectator fermions that play
no role in the remainder of the discussion.)

We assume that the complex scalars Φp and Φq have the appropriate potential to
undergo spontaneous symmetry breaking with VEVs vp and vq respectively. Aside from the
relationship between vp and vq, the specific form of the scalar potential will not be relevant
for our discussions. We will assume vp > vq without loss of generality.

Given the U(1)′ charge assignments, the Yukawa interactions that give the quarks masses
after the scalars get VEVs are therefore

LBS ⊃ (yp)ijQ
(i)
0 Q̃(j)

p Φ†
p + (yq)ijQ

(i)
0 Q̃

(j)
−qΦq + h.c. (3.1)

We will denote the phase degrees of freedom of the two scalars by θp and θq. Removing the
θp degree of freedom from the Yukawa terms then requires chiral rotation of q copies of Q0Q̃p

pairs, while removing the θq degree of freedom requires opposite chiral rotation of p copies of
Q0Q̃−q pairs. The coupling of the scalar phases to the gluon is thus given by

LBS ⊃ qθp − pθq

8π2

∫
tr(G ∧G) ≡ θ

8π2

∫
tr(G ∧G), (3.2)

and we identify the 2π periodic phase θ ≡ qθp − pθq as the axion degree of freedom that lives
in U(1)PQ, at energy scale below both vp and vq. The axion decay constant is given by

f2
a =

v2
pv

2
q

p2v2
p + q2v2

q

. (3.3)

The definition of θ makes it manifestly invariant under U(1)′, as it should be: the two phase
rotation symmetries Φp → eiθpΦp and Φq → eiθqΦq have been reorganized into an anomaly-free
linear combination that we have gauged and been calling U(1)′ and an anomalous orthogonal
linear combination which we identified as U(1)PQ. All charge assignments of the new fields
are collected in table 1.

We will assume that p and q are co-prime integers, such that the lowest order operator
that breaks U(1)PQ symmetry is (Φ†

p)q(Φq)p. The correction to the axion potential induced
by this operator is proportional to vq

p v
p
q/Λp+q−4, where Λ is the UV scale. The Barr-Seckel

model ensures a high quality U(1)PQ symmetry when p+ q is sufficiently large. For example,
for vp ∼ vq ∼ fa and the UV scale set to the Planck mass Λ =MPl, we need p+ q ≥ 10 for
1010 GeV < fa < 1012 GeV so that θ̄ will come out sufficiently small.

At a first glance, the setup by [19] seems to be exactly what we want: a high quality
axion with NDW = 1, since the coefficient of the θ coupling to the gluon is 1. However, again,
the problem with the construction of NDW = 1 is that it’s only kinematic. The fact that the
minimal axion θ with minimal coupling to gluons exists does not mean that the correct string
where θ winds from 0 to 2π will form in the early universe. Indeed, from the definition of
θ = qθp − pθq, we see that θ winding from 0 to 2π actually translates to nontrivial windings

– 14 –



J
H
E
P
0
7
(
2
0
2
4
)
2
2
7

spin SU(3)C U(1)Y U(1)′ copies U(1)PQ

Q0 1/2 3 0 0 (p+ q) c

Q̃p 1/2 3 0 p q a− c

Q̃−q 1/2 3 0 −q p −b− c

Φp 0 1 0 p 1 a

Φq 0 1 0 q 1 b

Table 1. We list the beyond-SM field content of the Barr-Seckel model [19]. All the fields here are
singlets of SU(2)L ×U(1)Y. The specific choice of c does not matter, as long as the combination Q0Q̃p

has PQ charge a and Q0Q̃−q has PQ charge −b. Different choices of c corresponds to U(1)PQ →
U(1)PQ + 3cU(1)B, where U(1)B is the heavy baryon number. We need p, q to be co-prime and
aq − bp = 1.

for the scalar phases θp and θq. In particular, θp and θq must have higher winding numbers a
and b, such that aq − bp = 1. Because p and q are assumed to be co-prime, such integers a
and b always exist, but the challenge is to ensure that the composite Φp-Φq string with θp

winding number a and θq winding number b will actually form in the early universe.
Without loss of generality, consider vp > vq. At the time of the first, Φp phase transition,

the familiar U(1) gauge strings are produced. Unless the now massive gauge boson is much
heavier than the radial mode of Φp, we expect the Φp strings to be dominantly winding
number 1.5 Therefore, we are now limited to values of p and q where an integer b exists
such that q − bp = 1. Later, after Φq undergoes its phase transition, the universe will have
strings with either Φp or Φq windings or both. We will denote the strings by their Φp and
Φq winding numbers, (n,m), where n is either 0 or ±1, while we leave the possibility of any
integer for m for now. The amount of axion winding around an (n,m) string is mp − nq,
which is nonzero for generic values of (n,m). This determines the number of minimal domain
walls that can end on a given string, which we will refer to as the domain wall number of the
string and denote w = |mp− nq| (as opposed to the domain wall number NDW of the theory
as a whole). In particular, (1,m) strings will have both a nontrivial gauge field flux and a
nontrivial axion winding, which gives it a logarithmically divergent tension [65, 70–73].

In [19], it is argued that at the time of the Φq phase transition, in the presence of a Φp

string, only (1, b) strings will form since m = b minimizes the logarithmic divergence propor-
tional to |m− q

p |
2. However, this cannot be the case, since formation of topological defects is

an inherently non-local process, where defects emerge from causally disconnected patches
randomly falling into different locations in the vacuum manifold. Causally disconnected
regions should not be able to communicate with each other to minimize their total energy.
Moreover, if there exists a process that could dynamically change the winding number to
minimize energy at the time of string formation, cosmic strings would not exist at all, since
the true minimal energy state is the vacuum with zero winding number.6

5When the gauge boson is much heavier, we expect string-string interactions to be attractive independent
of relative orientation, which may enable mergers forming higher winding strings [67–69].

6Strings can certainly split or merge to minimize energy, but that happens strictly after the strings have
already formed from the phase transition.
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Many nontrivial questions about the (1, b) string production thus remain: how many
(1, b) strings actually form at the time of the Φq phase transition? Would the abundance of
(1, b) string increase later due to mergers between (1,m ̸= b) strings with (0,±1) strings?
Compared to pure U(1) gauge strings where the kinematic constraints for mergers have been
worked out in full detail [74, 75], mergers of strings with logarithmically divergent tensions are
much less understood. Refs. [72, 73] have conducted simulations in the case of p = 1 and q = 4,
which showed that string mergers preferentially generated (1, 4) strings that have domain wall
number w = 0, instead of the desired (1, 3) strings with domain wall number w = 1. However,
for generic values of p and q, there is no (1,m) string with domain wall number w = 0, and
the question remains whether string mergers preferentially generate the (1, b) string. Lastly,
there is also the question of what is the minimal abundance of (1, b) (w = 1) strings needed
to annihilate domain walls, relative to other types of strings with w ̸= 1. As we will see in
the next section, even if all the questions about the string dynamics are answered and the
domain wall problem is resolved, the model suffers from additional cosmological problems.

In the limit vp ≫ vq, it is easy to see that the Barr-Seckel model solution to the axion
quality problem reduces to a discrete Zp symmetry. We effectively integrate out the scalar
with heavier VEV, Φp, and the gauged U(1)′ reduces to a Zp symmetry in the vacuum. The
leftover dynamical scalar Φq has non-minimal charge q mod p under the Zp symmetry. The
dynamics of the string formation in this limit is exactly as discussed in section 2.2. In the
simplest case of q = 1, the first phase transition at vp exactly produces the correct Zp strings
to annihilate domain walls, where the second phase transition forms strings where p domain
walls join. Again the model suffers from the fact that the wall-annihilating Zp strings have
tensions ∼ vp much higher and uncorrelated with fa ∼ vq, and the axion abundance from
this model depends on both scales, preventing a precise prediction of the axion mass. For
generic values of q and p, as discussed in section 2.2, whether all minimal domain walls can
be destroyed to prevent cosmological disaster depends on more complicated questions about
string dynamics. In this limit, we would need p to be large to ensure a good quality.

All the discussion above is easy to generalize to the scenario where p and q have greatest
common divisor d, so that we write p = p̃d and q = q̃d. This is very similar to the discussion
in section 2. The lowest-dimension PQ-violating operator is now (Φ†

p)q̃Φp̃
q , so we need p̃+ q̃

to be large for a high-quality U(1)PQ symmetry. After Φp and Φq obtain vacuum expectation
values, there is a residual unbroken Zd ⊂ U(1)′ gauge symmetry, but it does not act on the
axion and does not affect the domain wall problem. Effectively, the role of p and q in our
discussion above is now played by p̃ and q̃, and the results are unchanged.

3.2 Cosmology/quality tension

Assuming that the string dynamics already ensures that NDW = 1 in the Barr-Seckel model,
in this subsection we analyze the problems that may still render the model invalid. These
problems include fractionally charged relics in cosmology, or a more severe quality problem
due to Landau poles in the SM gauge couplings below the UV scale.

New heavy quarks Q introduced in KSVZ-type axion models need to be in specific repre-
sentations in order to not breach the current (stringent) bounds on fractionally (electrically)
charged relics [76, 77]. In some representations, the heavy quarks can only hadronize into
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fractionally charged hadrons, which cannot decay into SM particles. The representations
with fractionally charged Q-hadrons are thus ruled out directly by constraints on fractionally
charged relics. We are left to deal with only the rest of the representations in which Q only
form integrally charged hadrons and can decay into SM particles (equivalently, cases where the
fields are in representations of [SU(3)C×SU(2)L×U(1)Y]/Z6; see, e.g., [78, 79]). Furthermore,
the heavy hadrons must decay sufficiently promptly to Standard Model hadrons to not violate
observational constraints from BBN and CMB. Given the estimates for annihilation rates of
bound states [80, 81], the authors of [76, 77] conclude that Q must have either renormalizable
couplings to Standard Model quarks, or have mQ ≳ 800TeV for dimension-5 coupling between
Q and Standard Model quarks. Any higher dimensional couplings are excluded. There are
only 15 representations of heavy quarks which satisfy the constraints [76, 77]. In particular,
for Q to be in the fundamental of SU(3)C and to remain a singlet under SU(2)L, we need
U(1)Y charge −1

3 or 2
3 , and for an anti-fundamental like Q̃ we need hypercharge 1

3 or −2
3 :

YQ0 = −1
3 + n1 = x,

Y
Q̃p

= 1
3 − n2 = y,

Y
Q̃−q

= 1
3 − n3 = z, (3.4)

where the ni’s are either 0 or 1.
One might think that once the heavy quarks have nonzero U(1)Y charges, the operators

that allow them to decay to SM quarks will also violate U(1)PQ and spoil the axion solution
to the strong CP problem. For example, one can write down mass terms like mQ0ū and
mQ0d̄, which have nonzero PQ charge at dimension 3. However, as is argued in ref. [82],
since these operators do not acquire a VEV, their modification to the axion potential is at
least as suppressed as the lowest dimensional operator that involves only fields with VEVs
from spontaneous U(1)PQ breaking. The axion solution to the strong CP problem is not
spoiled in this case. However, because of the nonzero U(1)Y charges the model will run into
a severe Landau pole problem, as we sketch out below.

After adding nonzero hypercharges, we now have an additional set of gauge anomaly
cancellation conditions to consider. In the original model in [19], the SU(3)3

C, SU(3)2
CU(1)

′,
and SU(3)CU(1)′2 anomalies trivially cancel. The U(1)′3 anomaly can be cancelled with
additional SM singlet fermions without introducing new constraints. With the nonzero U(1)Y
charge assignments in (3.4), we have the following gauge anomaly cancellation constraints:

SU(3)2
CU(1)Y : (p+ q)x+ qy + pz = 0;
U(1)3

Y : (p+ q)x3 + qy3 + pz3 = 0;
U(1)2

YU(1)
′ : qy2p+ pz2(−q) = 0;

U(1)YU(1)
′2 : qyp2 + pzq2 = 0. (3.5)

The fields Φp and Φq must have zero hypercharge, because they obtain large VEVs. Then
the structure of the Yukawa couplings in (3.1) implies that we must take x = −y = −z. All
anomaly constraints except the last one (and including the U(1)Y gravitational anomaly)
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SU(3)C U(1)Y U(1)′ copies

Qi
0 3 xi =

(
−1

3 ,−
1
3 ,

2
3

)
(0, 0, 0) (p+ q)× 3

Q̃i
p 3 yi =

(
1
3 ,

1
3 ,−

2
3

)
(p, p,−p) q × 3

Q̃i
−q 3 zi =

(
1
3 ,

1
3 ,−

2
3

)
(−q,−q, q) p× 3

Table 2. We list the modified fermion contents of our adaptation of the model in ref. [19]. The fields
are still singlets under SU(2)L, but they now acquire nontrivial U(1)Y charge. The three generations
of fields are required to cancel gauge anomalies as well as to maintain NDW = 1. The U(1)PQ charge
closely resembles that in table 1. The quark combination Q3

0Q̃
3
p in the third generation has opposite

U(1)PQ charge from the first two, and the interaction with the scalars is correspondingly modified.
All the fields in this table are left-handed Weyl fermions.

are immediately satisfied after this assumption. The last constraint, which becomes (qp2 +
pq2)y = 0, cannot be satisfied with the field contents described above. Instead, we have to
enlarge the field content of the theory. If we simply double the fermion content of table 1, we
would have to give opposite hypercharges to the two copies. This is inconsistent with the
quantization rule y = 1/3 + Z; it would also double the SU(3)2

CU(1)PQ anomaly, spoiling
this model as a solution to the domain wall problem.

The minimal solution is to have three times the original fermion content. To declutter
our notation, we suppress the original copy indices i, j from (3.1), and keep only an index
a ∈ {1, 2, 3} to label the new copies or generations of the fields. We take the heavy
generations to have hypercharges xa, ya, za. All anomaly constraints are then satisfied with
xa = −ya = −za and ∑

a y
a = 0. In order to maintain domain wall number NDW = 1, we

take the third generation to have the opposite-sign U(1)′ charge (and, correspondingly, an
opposite-sign U(1)PQ charge) from the first two, so that it contributes an equal and opposite
amount to the SU(3)2

CU(1)PQ anomaly. The Yukawa couplings then take the form

L ⊃
∑

a=1,2

(
ya

pQ
a
0Q̃

a
pΦ†

p + ya
qQ

a
0Q̃

a
−qΦq

)
+ y3

pQ
3
0Q̃

3
pΦp + y3

qQ
3
0Q̃

3
−qΦ†

q + h.c. (3.6)

This argument can be understood by thinking about the chiral rotation of the Q0Q̃p com-
bination in the interaction term Q0Q̃pΦ†

p. In order to cancel the SU(3)2
CU(1)PQ anomaly

contribution from rephasing Φp between two generations, we need one generation to couple
to Φ†

p and the other to couple to Φp. This coupling is determined by the U(1)′ charges of the
Q0 and Q̃p fields. The same logic follows for the coupling to Φq. Since the axion is a linear
combination of the rephasing of Φp and Φq, the above treatment cancels the SU(3)2

CU(1)PQ
anomaly between two generations, and the remaining generation contributes NDW = 1.

We choose the smallest possible hypercharge assignments to make the Landau pole
constraint as mild as possible, choosing ni = 0 in (3.4) for the first two generations and ni = 1
for the third generation to achieve ∑

a y
a = 0. The additional matter field content with the

fields’ representations is displayed in table 2 for the readers’ convenience.
Our next task is to assess the quality problem in light of the UV cutoff of our effective

field theory. Before getting to the detailed calculations, let us explain the logic behind our
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argument. We expect that the PQ symmetry, like all global symmetries, is badly violated
at or below the fundamental UV cutoff energy ΛQG ≲MPl/

√
N (where N is the number of

weakly-coupled degrees of freedom below the cutoff [83]), at which gravity becomes strongly
coupled and local quantum field theory breaks down. To assess the quality problem, we
assume that the EFT below ΛQG includes all PQ-violating operators suppressed by ΛQG.
(In section 6, we will briefly comment on the possibility that some mechanism causes the
coefficients of these operators to be much more suppressed.) The large matter content of
our theory will lead to a Landau pole for Standard Model gauge couplings, at a UV cutoff
scale ΛSM. In general, ΛSM and ΛQG are different scales. There are two cases to consider.
First, suppose that ΛSM < ΛQG. Then, in the energy range ΛSM ≲ E ≲ ΛQG, physics is still
described by local quantum field theory, but this theory is not the weakly coupled gauge
theory that we started with. It may be a different weakly coupled gauge theory (as in Seiberg
duality), or it may not have any weakly coupled description. It is possible that PQ-violating
operators in the EFT below ΛSM are not suppressed by ΛSM, because PQ breaking may only
arise at the higher scale ΛQG. However, we do not know the description of the theory in
this window, and we cannot enumerate ΛQG-suppressed PQ-breaking operators above ΛSM,
match them onto operators below ΛSM, and quantify the amount of PQ symmetry violation
in the low-energy theory. Thus, from our viewpoint, in this scenario we can never claim to
have solved the axion quality problem. We will thus, instead, assume that ΛQG < ΛSM. In
that case, we can assume that the EFT we are working with is valid all the way up to a
scale Λ that suppresses PQ-violating operators, and we can assess whether this is sufficient
to solve the problem. Let us emphasize that our logic is that we are testing whether we have
a theory in which we can definitely claim that the quality problem has been solved. We are
not attempting to prove a no-go theorem, which is a more difficult task that would require
us to address the other ordering ΛSM < ΛQG. It would be interesting to attempt to find an
explicit example of this type in which we can extend our low-energy theory, through duality,
to include the high-energy regime, and test whether the quality problem can be solved. To
find a controlled example, we would likely have to assume approximate supersymmetry at
the scale ΛSM. Constructing such theories is beyond the scope of this paper.

To assess the tension between axion quality and Landau pole constraints in the scenario
with ΛQG < ΛSM, we use the one-loop β-functions of SU(3)C and U(1)Y to determine the
location of the Landau poles. Consider the SU(3)C running coupling at one-loop:

1
αs(µ)

= 1
αs(µ0)

− b0
2π ln µ

µ0
, (3.7)

where b0 = −11 + 2
3nf . In the following we assume that the Yukawa couplings of the quarks

to the scalars are 1. Decreasing the Yukawa couplings and thus the heavy quark masses will
make the Landau pole problem worse since the heavy quarks start affecting the running of
the coupling at a lower scale. We have checked that increasing the Yukawa coupling to the
maximum possible value of 4π will not change the conclusion of our analysis either. We run
the coupling from mass of the top quark mt to the smaller VEV of the two scalars, vq, with
SM fields only. Above vq and below vp we have 3 × p additional Dirac pairs of (Q̃−q, Q0)
fields, and above vp we have another 3× q additional (Q̃p, Q0) fields. Requiring the SU(3)C
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Figure 3. We show that the three constraints from Standard Model Landau poles and axion quality
exclude the parameter space of the model in section 3.2 completely. The shaded region for each color
indicates the excluded region by imposing the given constraint, i.e. the blue (orange) region indicates
where the SU(3)C (U(1)Y) Landau pole is below the UV scale Λ, and the green region is where the
correction to the axion potential is larger than 10−10. In the plot the Yukawa couplings and the
coupling strength of the lowest-dimensional PQ breaking operator g are set to 1, but varying the
couplings does not change the conclusion unless g is taken extremely small. We do not assume the value
any other parameters in the model, as the dependence can be fully captured by the combination on the
y-axis, which is q log10

vp

Λ + p log10
vq

Λ for the model in section 3.2. We later discuss a different model
in section 4, and find similar conclusions. The y-axis dependence in that case becomes n log10

mQ

Λ .
See the text for more detail.

Landau pole to be below the new physics scale Λ, we need

−7 ln mt

Λ + 2
(
q ln vp

Λ + p ln vq

Λ

)
+ 2π
αs(mt)

> 0 . (3.8)

Similarly, we can derive the constraints for the U(1)Y Landau pole:

41
6 ln mt

Λ + 4
∑

i

Q2
i,Y

(
q ln vp

Λ + p ln vq

Λ

)
+ 2π
αY(mt)

> 0 , (3.9)

where ∑
iQ

2
i,Y = ∑

i x
2
i = ∑

i y
2
i = ∑

i z
2
i = 2

3 is the sum over squares of U(1)Y charges for
each quark field for all 3 generations. Finally, the quality problem constraint is that the
correction to axion potential from operators of the form g(Φ†

p)q(Φq)p/Λp+q−4 is smaller than
10−10Λ4

IR, where Λ4
IR = mumd

(mu+md)2m
2
πf

2
π is the size of the QCD-generated contribution to the

axion potential. We then require when Φp and Φq get VEVs,

ln g +
(
q ln vp

Λ + p ln vq

Λ

)
− 4 ln ΛIR

Λ < ln 10−10 . (3.10)

We observe that the combination q ln vp

Λ + p ln vq

Λ is the defining parameter of this family
of models. Combining the three constraints into one exclusion plot shown in figure 3, where
we take g = 1, we see that the parameter space is completely ruled out.
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One might ask how small g would need to be to avoid this conclusion. Combining (3.10)
and (3.8), we derive

g < 10−10
(ΛIR
mt

)7/2
√

ΛIR
Λ eπ/αs(mt) ≈ 10−17

√
1012 GeV

Λ . (3.11)

This shows that, for any reasonable cutoff on a QCD axion model, solving the quality problem
while avoiding a Landau pole for QCD requires that the coefficient of the lowest-dimension
PQ-violating operator be tuned much smaller than θ itself. Thus, the Strong CP problem is
simply not solved, but (at best) transformed into a similar problem of why g is so small.

4 An SU(n) × SU(n) symmetry for quality

In this section we will discuss a model of a high quality axion protected by a nonabelian
gauge symmetry, following [61]. Many of the considerations are closely parallel to those in
the previous section, so our discussion will be relatively brief.

4.1 Scalar potential and axion strings

The theory has a gauge symmetry G = SU(n)L×SU(n)R, with a field Y in the bifundamental
( , ) representation. The renormalizable potential V (Y ) contains a tachyonic tr(Y Y †) term
and quartic terms which are a linear combination of tr(Y Y †Y Y †) and tr(Y Y †)2, which lead
to a vacuum expectation value ⟨Y ⟩ ∝ 1 breaking SU(n)L × SU(n)R to the diagonal SU(n)V.
This symmetry breaking pattern is familiar from the flavor symmetry of QCD, and the
structure of the potential for Y mimics that of the linear sigma model. The renormalizable
potential also has an accidental U(1) global symmetry rephasing Y , which is of high quality;
the lowest-dimension operator breaking it is detY . This is the Peccei-Quinn symmetry that
is spontaneously broken to provide an axion,

θ(x) = arg(detY (x)). (4.1)

To understand the formation of axion strings, consider the limit in which the gauge
couplings are turned off and we focus on the dynamics induced by the scalar potential. The
renormalizable potential has a global symmetry

GV = [SU(n)L × SU(n)R ×U(1)]/(Zn × Zn). (4.2)

Here SU(n)L : Y 7→ LY , SU(n)R : Y 7→ Y R†, and U(1) : Y 7→ eiαY . The Zn group generated
by L = R = exp(2πi/n)1 and α = 0 acts trivially on Y , as does the Zn group generated by
L = exp(2πi/n)1, R = 1, α = −2π/n, so we have taken the quotient by the product of these
two Zn groups to obtain the group GV acting faithfully on Y .

The vacuum expectation value ⟨Y ⟩ = v1 spontaneously breaks the symmetry to

HV = PSU(n)V ≡ SU(n)V/Zn. (4.3)

That is, pairs L = R = V ∈ SU(n) acting as Y 7→ V Y V † leave ⟨Y ⟩ invariant, but the cases
where V is in the center of SU(n) acted trivially on any Y and were quotiented out in GV ,
so we must take the Zn quotient here as well.
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The phase transition in which Y acquires a vacuum expectation value will lead, by the
Kibble-Zurek mechanism, to the production of strings characterized by the fundamental
group π1(GV /HV ). We claim that π1(GV /HV ) ∼= Z. To see this, we can realize GV as a
quotient of the simply connected space SU(n)L × SU(n)R × R by the freely-acting group
Zn × Z, where Zn is generated by (L,R, α) 7→ (e2πi/nL, e2πi/nR,α) and Z is generated by
(L,R, α) 7→ (e2πi/nL,R, α − 2π/n). Hence π1(GV ) ∼= Zn × Z. We also have π1(HV ) ∼= Zn.
The inclusion HV ↪→ GV induces a map identifying π1(HV ) with the Zn factor in π1(GV ). We
use the homotopy exact sequence . . . → π1(HV ) → π1(GV ) → π1(GV /HV ) → π0(HV ) ∼= 0
to conclude that π1(GV /HV ) ∼= Z. This fundamental group is generated by the image of
the path [0, 1] → SU(n)L × SU(n)R × U(1) given by

t 7→


exp


it2π
n



1
1

. . .
1
−(n− 1)




,1, exp(−2πit/n)


. (4.4)

In the covering space, this path winds from the origin to a central element in SU(n)L and
winds 1/n of the way around U(1); this endpoint is identified with the origin by the second
Zn factor in (4.2). The Kibble-Zurek mechanism leads to the production of cosmic strings
associated with this path, which correspond to strings of minimal winding for the axion
θ. We do not expect that gauging SU(n)L × SU(n)R and adding Yukawa interactions will
alter this conclusion. Unlike for the models of section 2.3 and section 3, then, there is no
ambiguity about string formation dynamics in this model: the domain wall problem can be
solved, if the model is free of other cosmological difficulties.

4.2 Standard Model couplings and Landau pole constraint

The model of [61] adds quark fields charged under SU(n)L × SU(3)C and SU(n)R × SU(3)C,
which give rise through triangle diagrams to the couplings of the axion to gluons. These fields
were chosen to be electroweak singlets, and so [61] assumes a pre-inflation scenario to avoid
the cosmological disaster of fractionally charged particles. However, as in section 3.2, we can
consider a model in the post-inflation scenario with additional fields carrying hypercharge
to eliminate this problem.

Specifically, we consider the matter content shown in table 3, together with the Yukawa
couplings

(yD)ikD
(i)Y †D̃(k) + yUUY Ũ + (yΨ)jlΨ(j)Y Ψ̃(l) + h.c. (4.5)

The symmetry U(1)PQ is an approximate accidental global symmetry; we have normalized
the charges to be fractional to signal that the 2π-periodic axion field θ is the phase of detY ,
rather than Y itself. This gives rise to the correctly normalized domain wall number from
the SU(3)2

C-U(1)PQ anomaly coefficient: 2 × n × 1/n + n × (−1/n) = 1. Importantly, the
SU(n)2

L,R-U(1)PQ mixed anomalies cancel, ensuring that the new nonabelian dynamics does
not spoil the solution to the Strong CP problem. Aside from U(1)PQ, all other symmetries
in the table are gauged, and the charges are chosen so that anomalies cancel. For example,
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spin SU(n)L SU(n)R SU(3)C U(1)Y copies U(1)PQ

Y 0 1 0 1 1/n
D(i) 1/2 1 3 −1/3 2 1/n
D̃(i) 1/2 1 3 +1/3 2 0
U 1/2 1 3 +2/3 1 −1/n
Ũ 1/2 1 3 −2/3 1 0
Ψ(j) 1/2 1 1 0 3 −1/n
Ψ̃(j) 1/2 1 1 0 3 0

Table 3. Matter content of a model with an SU(n)× SU(n) gauge symmetry to address the quality
problem. This closely follows [61], but we have added nontrivial hypercharge assignments to avoid
fractionally charged particles. This then requires a more elaborate field content, chosen to cancel
gauge anomalies and to ensure domain wall number 1. All spin-1/2 fields in table are left-handed
Weyl fermions.

the mixed SU(n)L
2-U(1)Y anomaly cancels because we have two copies of the D fields with

hypercharge −1/3, but only one copy of the U field with hypercharge +2/3. The SU(n)L
3

anomaly cancels because we have 2 copies of a color triplet in the representation and one
color triplet and three copies of a singlet in the representation, so altogether there are
six fundamentals and six antifundamentals. Similarly, one can check that all of the other
gauge anomaly cancellation conditions hold.

Much as in section 3.2, the large number of added fields poses a Landau pole problem.
We assume that all the additional fermion fields get mass mQ ∼ v/

√
2. This is valid if

all Yukawa couplings are of the same order. The masses are already naturally degenerate
within each SU(3)C and SU(n)L+R multiplet. Following a similar analysis as before, in which
the fermions alter the beta functions above the scale mQ, we arrive at the Landau pole
constraints for SU(3)C and U(1)Y:

−7 ln mt

Λ + 2n ln mQ

Λ + 2π
αs(mt)

> 0 , (4.6)

41
6 ln mt

Λ + 4n
∑

Q2
i,Y ln mQ

Λ + 2π
αY(mt)

> 0 . (4.7)

Here ∑
Q2

i,Y = 2
3 sums over D(i), U,Ψ(j), or equivalently D̃(i), Ũ , Ψ̃(j).

The quality problem constraint comes from requiring the correction to the axion po-
tential [61]

∆V =
( v√

2

)n κ

Λn−4 (4.8)

to satisfy ∆V/Λ4
IR < 10−10. Here κ is the coupling strength of the lowest-dimensional PQ

breaking operator detY , and we take κ to be O(1). This translates to

ln κ+ n ln mQ

Λ − 4 ln ΛIR
Λ < ln 10−10 , (4.9)

where we have used mQ ∼ v/
√
2.
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The exclusion plot for this model looks the same as figure 3 from the model in section 3.2,
except the defining parameter on the y-axis is now n ln mQ

Λ . This is clear to see by comparing
the constraint equations themselves. We conclude that this class of models with nonabelian
gauge symmetry also presents tensions between the quality problem constraint and standard
post-inflation cosmology. We reiterate that the domain wall problem is indeed solved here,
as the string formation dynamics is unambiguous, unlike the models considered in section 2
and section 3, where it remains unclear without detailed simulation whether the correct
strings can form to annihilate domain walls. Nonetheless, the model fails either because
of fractionally charged relics or because it does not solve the quality problem (and hence,
does not solve the Strong CP problem).

5 Comments on composite axion models

The models that we have discussed above have elementary scalar fields, which introduce a fine
tuning problem of their own. This scalar hierarchy problem could be solved by supersymmetry
or compositeness. It has long been appreciated that a composite axion model could naturally
explain the axion’s origin as a pseudo-Nambu-Goldstone boson, much like the pions of
QCD [84]. The minimal such models are free of a scalar hierarchy problem, but do not solve
the quality problem because they admit low-dimension PQ-violating operators. Over the
years, a number of examples have been constructed in which additional gauge symmetries
forbid such operators and solve the quality problem; see, e.g., [21, 24, 82, 85–87]. These
ensure that the lowest-dimensional PQ-violating operator has a large dimension by realizing
it as a baryonic operator of some SU(m) gauge theory (e.g., [21]) or as a product across
many links in a moose diagram (e.g., [85]).

All of these models feature a confining SU(n) gauge theory, and all of them predict a
domain wall number that is a multiple of n. Thus, none of them is a good candidate for a
post-inflation axion realizing the minimal solution to the domain wall problem.

The reason that the domain wall number is a multiple of n in these models is that the
heavy fields carrying PQ charge are fundamentals of both SU(n) and SU(3)C. Integrating
out fields carrying PQ charge pi, SU(n) representation ri, and SU(3)C representation si gives

kG =
∑

i

pi dim(ri)2I(si), (5.1)

with I(si) the Dynkin index normalized to 1/2 for the fundamental representation. For
the moment, we assume that pi ∈ Z (an assumption that we will revisit below). We have
2I(si) ∈ Z, and for the fundamental representation of SU(n), dim( ) = n. From this
expression, we see that in order to modify a composite axion model to have |kG| = 1, we must
necessarily have fields contributing to kG that transform in different representations of SU(n).

Let us consider a composite model with the following assumptions:

• It is based on strong dynamics arising from an asymptotically free SU(n) gauge theory.

• All of the PQ-charged fields contributing to kG transform nontrivially under SU(n).

• The PQ symmetry has no mixed anomaly with SU(n); otherwise, the would-be axion
would, like the η′ in QCD, acquire a large mass.
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We will see that, even before considering dynamics or how to arrange for a high-quality
accidental PQ symmetry, there are some quite general difficulties with achieving domain
wall number 1 from this starting point.

Asymptotic freedom of SU(n) is a strong restriction on the matter content. At one
loop, it requires that

11
3 n− 1

3
∑

i

2I(ri) dim(si) > 0, (5.2)

where the sum is over left-handed Weyl fermions ψi transforming in the ri representation
of SU(n) and the si representation of SU(3)C. For a nontrivial representation of SU(3)C we
have dim(si) ≥ 3. Hence, only representations satisfying

2I(ri) <
11
3 n (5.3)

can preserve asymptotic freedom. This eliminates large representations from consideration.
For example, the symmetric three-index tensor has 2I( ) = (n + 2)(n + 3)/2, which
exceeds 11n/3 for all SU(n). The fundamental, two-index tensors, and adjoint always obey the
inequality. Other tensors do in special cases, e.g., the fully antisymmetric three-index tensor

(2I( ) = (n− 3)(n− 2)/2) when n < 12, the mixed three-index tensor (2I( ) = n2 − 3)
when n = 4, and even the four-index fully antisymmetric tensor when n = 8.

Simply having multiple representations of SU(n) available is no guarantee that we can find
a viable model with domain wall number 1. For example, any model with only fundamentals
and symmetric or antisymmetric two-index tensor representations will have non-minimal
domain wall number. This is because, for each of these representations r, we have n | dim(r)
when n is odd, and n

2 | dim(r) when n is even. In fact, we can make a stronger statement. A
representation r of SU(n) has an associated n-ality zn(r), which is the representation’s charge
under the Zn center of SU(n), or equivalently the number of boxes in the Young tableau
modulo n. Any representation has the property that

zn(r) dim(r) ∼= 0 (mod n). (5.4)

This follows from the fact that for any SU(n) representation ρ, det ρ(g) = 1 for any g ∈ SU(n)
(and in particular, for g in the center); this is because det ◦ρ gives a one-dimensional
representation of SU(n) and all such representations are trivial. Using (5.4), we can exclude
many possible models in which all of the dim(r) terms in (5.1) have certain factors of n in
common. For example, if n is a prime power pk, then the dimension of every representation
of nonzero n-ality is divisible by p, and achieving domain wall number 1 requires the use
of a representation of zero n-ality (like the adjoint).

For an example where n is not a prime power, consider the case of SU(6). We have

dim( ) = 6, dim( ) = 15, and dim( ) = 20. Any model that exploits only two of these
representations has non-minimal domain wall number (divisible by 3 using and , by 2

using and , or by 5 using and ). A model that exploits all three representations (or
their conjugates) has a chance. However, such a model has a very large amount of matter! If
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we add fields in the ( , ), ( , ), and ( , ) of SU(6)× SU(3)C (possibly with conjugates
on some of these labels), we have added 3(6 + 15 + 20) = 123 new fields that must carry
hypercharge (to avoid fractional charges, as usual). If we assume that all of these fields have
the minimal hypercharge ±1/3 compatible with their SU(3)C representation, then they are
sufficient to drive U(1)Y to a Landau pole below the Planck scale unless fa ≳ 4× 1015 GeV,
which would lead to an overabundance of dark matter in the post-inflation scenario. In fact,
this field content is insufficient: we must cancel the U(1)Y-SU(6)2 anomaly, among others, so
the situation can only become worse. And so far we have only discussed field content; we must
also ask whether the model admits an approximate Peccei-Quinn symmetry of high quality,
what the PQ charge assignments are, and whether the model has the appropriate dynamics
to spontaneously break PQ without unwanted cosmological relics! It seems likely that, even
if we lower the cutoff below the Planck scale, no model along these lines could be viable.

Next, let us consider the case of the adjoint representation. We have 2I(Adj) = 2n, so
we can add a field λ that is an (Adj, ) of SU(n)× SU(3)C without spoiling the asymptotic
freedom of SU(n), but we cannot add two of them. We could also add ( , ) or ( , )
representations (at least one, possibly more, depending on Peccei-Quinn charge assignments)
to achieve domain wall number 1. Along the lines of the previous paragraph, we have added
at least 3(n2 + n− 1) new fields that must carry hypercharge at least ±1/3, so n cannot be
too large. For example, demanding a Landau pole below the Planck scale for fa = 1011 GeV,
we must have n < 7. One could further consider anomaly cancelation and other constraints
on the model, but there is another problem to consider that is specific to this case. The
adjoint is a real representation, and there is no reason to expect that ⟨tr(λλ)⟩ should be
zero. This expectation value would spontaneously break SU(3)C and U(1)Y at the scale fa,
in obvious contradiction to the world around us.

One of the assumptions that we made above, integer PQ charges pi ∈ Z, can be modified
in cases where a discrete subgroup of U(1)PQ is gauged. As we emphasized at the end of
section 2.2, in such cases, the formula (5.1) that we have used to compute kG may overcount
the true number of gauge-inequivalent vacua. Instead, we should divide by the number of
vacua connected by discrete gauge transformations acting on the axion. In other words, the
Lazarides-Shafi mechanism [53] gives a potential loophole in the above argument, just as it
did in our examples in previous sections. A gauged discrete subgroup of U(1)PQ cannot be
embedded in the confining SU(n) group itself, because we have assumed that the axion is a
meson of the confining sector (and hence that it is invariant under SU(n) transformations).
Thus, to exploit the loophole, we must embed a discrete subgroup of U(1)PQ in a different
gauge symmetry, i.e., a gauged flavor symmetry, from the SU(n) viewpoint. In doing so, we
will inevitably encounter difficulties that are closely analogous to those we saw in examples
in section 2.3, section 3, and section 4, and often worse. For example, in the model of [21]
(further analyzed in [82]), there is an SU(n) confining group and a further SU(m) gauge group
that is a flavor symmetry from the SU(n) viewpoint. The naive domain wall number is nm,
but the lowest dimension gauge invariant operator is baryonic from the SU(m) viewpoint;
effectively, the Zm center of SU(m) coincides with a subgroup of U(1)PQ and is gauged. This
reduces the domain wall number from nm to n, but does not solve the problem.
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While the considerations in this section do not constitute a rigorous no-go theorem,
they show that severe difficulties arise in attempts to construct a composite axion model
with minimal domain wall number.

6 Conclusions

We have seen that a wide variety of post-inflation axion models exhibit a fundamental tension:
modifying the model to solve the quality problem introduces cosmological problems; modifying
the model to solve cosmological problems resurrects the quality problem. The details have
varied from model to model, but there are common features. Models that solve the quality
problem generally rely on additional gauge symmetries under which the axion transforms.
These gauge symmetries can relate different, apparently distinct vacua that are separated
by domain walls at the time of the phase transition. The gauge equivalence implies that,
in principle, such domain walls can always be destroyed by axion strings. Whether such
strings form in the early universe, however, is a detailed dynamical question. A further
complication arises from strong experimental constraints on the existence of fractionally
charged particles, which require that particles with SU(3)C center charge also carry nonzero
hypercharge. Adding matter charged under the new gauge symmetries invoked to solve the
quality problem, and canceling all gauge anomalies including those involving hypercharge,
often requires the introduction of many fields charged under the Standard Model gauge group.
These can drive the couplings strong at a low scale Λ, which appears in the denominator
of higher-dimension operators, exacerbating the quality problem.

6.1 Brief discussion of other models

Our observations extend to a range of other models incorporating additional physical mech-
anisms. For example, supersymmetric axion models offer compelling possibilities to solve
both the electroweak hierarchy problem and the axion hierarchy problem (i.e., the question
of why fa ≪MPl). These problems can be linked, for example through the Kim-Nilles [88]
mechanism, where a Peccei-Quinn global symmetry forbids a simple µHuHd term in the
superpotential but allows a term of the form 1

ΛS
2HuHd. The phase of S can play the role

of the axion, predicting that µΛ ∼ f2
a . To protect the axion quality, a discrete Zp gauge

symmetry [89] or Z24 gauge R-symmetry [90–93] has been proposed. The arguments of
section 2 carry over directly: such models have a domain wall problem in the post-inflation
scenario, unless they are extended in some way to explain the cosmological origin of Zp

strings. Any supersymmetric model implementing the Lazarides-Shafi mechanism will differ
in two respects from examples we have discussed. On the one hand, holomorphy restricts the
set of allowed superpotential terms, potentially ameliorating the quality problem. On the
other, supersymmetry increases the number of fields in the theory and thus tends to push
Landau poles to lower scales. Perhaps there is a case where the effect of holomorphy is more
important, allowing the model to succeed where the models of section 3 and section 4 failed.
A search for such models is beyond the scope of this paper.

– 27 –



J
H
E
P
0
7
(
2
0
2
4
)
2
2
7

Recently a novel axion scenario has received some attention, in which a Zp symmetry
acts to permute p copies of the Standard Model that all couple to a common axion [94]. This
model predicts an exponentially suppressed axion mass, for a given fa, compared to the
standard QCD axion, and thus it necessarily predicts a different cosmological history and
dark matter abundance than the standard scenario. Nonetheless, one could ask whether such
a model admits a viable cosmology with a post-inflation Peccei-Quinn phase transition. This
question can only be answered in specific UV completions. A KSVZ-like UV completion of
this model, with a complex scalar S charged under Zp obtaining a VEV and coupling to all p
sectors, was argued to solve the axion quality problem [95]. Such a model does not have a
viable post-inflation cosmology, because S would be in thermal contact with all p sectors,
producing an overwhelming dark radiation problem. A different, composite UV completion
discussed in [95] does not solve the quality problem at all.

Our assessment of the quality problem has assumed that operators appear suppressed
by a UV cutoff Λ, below MPl and any Landau poles, with O(1) coefficients. A model like
that of section 4, which solves the domain wall problem and has no fractionally charged
relics, could give rise to a viable post-inflation QCD axion if our analysis of the quality
problem is flawed. This raises the question: are there axion models in which the coefficients
of PQ-violating operators are much smaller than O(1)? Within effective field theory, one
could simply postulate that there is a Peccei-Quinn symmetry broken only by a very small
spurion, which suppresses the coefficients of PQ-violating operators. From our viewpoint,
such a model does not solve the Strong CP problem at all; it simply shifts the question of why
|θ| is small to the question of why the spurion is small. On the other hand, a UV completion
that successfully accounts for a small spurion could solve the quality problem. One approach
would be to search for an even larger gauge group that is spontaneously broken at higher
energies, but this doesn’t add a qualitatively new ingredient compared to our examples and
seems unlikely to help. A different physical mechanism is needed. As mentioned in section 3.2,
one possibility is that above the Landau pole, one of the theories we have studied matches
onto a different EFT that still preserves PQ symmetry up to a larger scale ΛQG. Assessing
such a scenario would require a more UV-complete model, perhaps a supersymmetric one
that undergoes a Seiberg duality at the Landau pole scale. Alternatively, locality in extra
dimensions can lead to exponentially small coefficients of higher-dimension operators, if the
fields involved are located at sites a distance L apart in extra dimensions and interactions
between them are mediated by bulk fields with mass m ≫ 1/L. This is not immediately
useful for a model like that of section 4, since the PQ-violating operator det(Y ) involves
a self-interaction rather than an interaction among fields that can be spatially separated,
but there may be models where it succeeds. As already mentioned in section 1, a large
class of models that achieves exponential suppression of corrections to the axion potential
relies on the axion as a zero mode of an extra-dimensional gauge field [28], but such models
have no 4d Peccei-Quinn phase transition and so do not have a post-inflation cosmology.
An interesting alternative is the case where a U(1) gauge field obtains a Stueckelberg mass
by the 4d Green-Schwarz mechanism [96, 97]. In this case, the would-be axion is eaten by
an anomalous gauge field, but can leave behind an exponentially good approximate global
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symmetry.7 The phase of another field charged under the anomalous gauge symmetry can
then play the role of the axion; because it is the phase of a 4d field, such models can have
an ordinary 4d Peccei-Quinn phase transition. Models with this structure arise in string
theory and are often referred to as “open string axion models,” although the original example
was in the context of the heterotic (closed) string (see, e.g., [30, 98–104], or [105] for similar
structure in a phenomenological extra dimensional model). These models potentially offer a
compelling way out of the problems we have discussed. On the other hand, in the minimal
incarnation of this mechanism, the D-term potential ensures that the PQ breaking scale is
close to the string scale, which would make it difficult to find a model of inflation happening
at yet higher energies. It would be interesting to more fully explore the structure of open
string axion models that naturally have a separation of scales and the extent to which they
can achieve a viable post-inflation axion cosmology.

6.2 Concluding questions

We conclude by listing a set of questions raised by this work. To answer some of these
questions, we expect that numerical simulations of non-minimal axion models could be useful.
Others may be amenable to model-building.

• What is the string formation dynamics in the model of [60] with SU(N) broken to
SO(N) by a symmetric tensor (for odd N)? From our discussion in section 2.3, we
expect that the strings that form will not be suitable for solving the domain wall
problem, but a classical lattice simulation could give a definitive answer. An analytic
study of semiclassical string solutions, especially of the relative tension for strings of
different winding, could also be instructive.

• In a scenario with multiple types of strings, such as the model discussed in section 3,
what is the dynamics of string formation? In particular, is the minimal string (on which
a single domain wall ends) formed, and in what abundance relative to other strings?
How does the answer to this question depend on parameters in the theory (e.g., the
relative size of gauge couplings and quartic couplings, or the ratios of different VEVs)?

• If a string network forms that contains a mix of strings on which single domain walls
end and strings on which multiple domain walls end, what happens at the QCD phase
transition when the domain wall network forms? What population of minimal strings
is sufficient to solve the domain wall problem?

• Are there viable composite axion models that have domain wall number 1 (possibly
invoking the Lazarides-Shafi mechanism)?

7Ordinarily, when we higgs a U(1) gauge symmetry, there is no good approximate global symmetry left
behind. We can insert factors of ⟨ϕ⟩ to violate charge, and the mass of the gauge field is proportional to ⟨ϕ⟩,
so symmetry breaking effects are large at the higgsing scale. In the Green-Schwarz case, however, charge
breaking effects come from factors of ⟨e−T ⟩ where the axion Im T shifts under U(1) transformations. The
gauge field mass, on the other hand, depends on the second derivative of the kinetic term for T (and is
often, parametrically, a UV scale multiplied by a power of T ). Thus, global symmetry breaking effects can be
exponentially small compared to the Stueckelberg mass scale.
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• Are there post-inflation axion models that solve the axion quality problem (and hence
the Strong CP problem), have domain wall number 1, and are free of cosmological
difficulties?

If the answer to the last question is “yes,” then within such models one may be able
to predict a target axion dark matter mass, along the lines of recent simulations of axion
strings in the post-inflation scenario. However, it may be that these models have non-minimal
cosmological dynamics, axion strings of higher tension, or other novelties. Independent of the
answer to that question, we believe that the difficulties we have encountered constructing
a post-inflation axion scenario that solves the Strong CP problem with a viable cosmology
provide a reason to be wary of targeting any specific model or scenario. The QCD axion
already provides a well-defined target parameter space across several orders of axion mass.
The entire suite of experiments aiming to “delve deep and search wide” [106] is crucial in
the search for the axion.
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