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AS  yy TRACT

The linear-elastic and elastic-plastic line-spring models are

valuable tools in the analysis of surface-cracked plates and shells in
which crack surface contact is not of concern. The linear-elastic

line-spring model has been extended to include nonlinear-elastic

response resulting from partial external closure of surface cracks.
Closure lengths and crack tip stress intensities can now be obtained

for the partially-closed surface crack. This capability has been

incorporated into the ABAQUS © finite element program.

Characteristics of the partially-closed crack are evaluated

using a double iterative solution scheme which utilizes multiple

interpolation of discrete parametric finite element data.

The case of an axially-cracked, pressurized cylinder has been

examined in two ways due to the absence of numerically accepted

solutions. The results of a complex plane strain finite element

analysis with gap elements defining the crack surface have been

compared to those of a simple finite element analysis utilizing shell

elements and a single nonlinear-elastic line-spring. Closure lengths

and crack tip stress intensities obtained by the two methods

compare very favorably. The line-spring model solution was found
to be applicable over a limited range of closure due to a lack of

parametric data available for interpolation. The lack of data was
found to be most severe in the small closure range where the

largest displacement variations occur.

In general, the nonlinear-elastic line-spring model is shown to
be a viable alternative to complex finite element models in analyzing

partial external closure of surface-cracked plates and shells.

Thesis Supervisor: Dr. David M. Parks

Title: Associate Professor of Mechanical Engineering
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1. INTRODUCTION

In the design and analysis of typical engineering structures

fracture mechanics principles can be applied to a great extent in

the evaluation of overall structural component integrity. Among the

types of problems which lend themselves to a fracture mechanics

approach, perhaps the most common can, in their most basic form,

be classified as "part-through surface-cracked plates and shells".

In any geometry, beyond the fact that a crack or "defect" is pre-

sent, it is necessary to characterize the severity of the crack tip

singularity. In the case of linear-elastic fracture mechanics the

crack tip singularity is characterized by the stress intensity factor.

An accurate evaluation of the stress intensity factor is vital in

determining the overall structural integrity of the component (i.e.,

to evaluate the fatigue crack growth characteristics or to determine

the potential for catastrophic failure).

A considerable amount of work has been done in

two-dimensional SIF calibrations for a number of geometrically linear

crack and loading configurations. However, for thick curved shells

(R/w £ 10) and fully three-dimensional geometric and kinematic

configurations stress intensity factor calibrations are severely

lacking; the main stumbling blocks being the complexity of fully 3-D

elastic analyses, and the computational and mesh generation costs

associated with complete 3-D finite element models with sufficient

accuracy and convergence characteristics. These stumbling blocks

become even more restrictive when considering the class of problems

mentioned above loaded in such a way that partial closure of the

0



crack occurs. The phenomenon of partial closure introduces highly

non-linear aspects into an already complex finite element or

analytical model.

The weight function method has been used successfully to

characterize crack tip singularities in two and three dimensions.

Bueckner's [1] development of weight functions for a notched bar

allowed for easy computation of stress intensity factors for a

variety of symmetric loading configurations. Similarly, stress

intensity factors for semi-elliptical surface cracks in finite thickness

plates have been examined by Mattheck et al [2,3] using weight

functions and by Isida et al [22].

A related and perhaps more general analytical tool which can

be applied to many types of surface cracks (2- or 3-D) is the

"line-spring"” model of Rice and Levy [4]. Within the past 5-10

years, the "line-spring" model has received renewed interest in its

application to 3-D part-through surface-cracked plates and shells.

The line-spring considerably simplifies the analysis of this type of

problem by reducing the fully three-dimensional problem to

effectively one dimension in plate or shell theory. In linear

elasticity the line-spring model has been found to estimate stress

intensity factor distributions along a crack front to within a few

percent of accepted numerical solutions. Through further recent

development by Parks et al [5], the line-spring model has been

incorporated into the ABAQUS © finite element program. However,

to date the applications and development of the line-spring model

( Parks, et al [5-8] ) have been limited to linear-elastic and

3



elastic-plastic analyses. Geometrically nonlinear elastic

configurations (partial crack closure) have not been addressed.

For a surface-cracked specimen subjected to a linear traction

distribution through the thickness there are only two types of

closure which can be obtained; "internal" and "external". These

can be characterized as follows:

Internal Closure - Crack closure begins at the crack tip. In

this type of closure a shallower surface

crack results with a stress intensity factor

of zero.

External Closure Closure begins at the mouth of the crack.

This type of closure effectively results in

a non-surface (central) crack configuration

with a non-zero stress intensity factor at

the crack tip.

In the present work, the nonlinear characteristics of partial

external closure of part-through surface cracks in Mode I are

developed and incorporated into the linear-elastic line-spring model

formulation and into the ABAQUS © finite element program.

[(nternal crack closure is discussed briefly in Appendix I.

L 1 External Closure of Surface Cracks

With respect to the finite element line-spring model

formulation which will be reviewed in Section 2.1, let it suffice

to say that a fully 3-D part-through surface-cracked plate or

shell can be modeled by a series of single edge-cracked strips.

To this end, the phenomenon of partial external closure of

| 9



three-dimensional cracks can be characterized by examining an

edge-cracked strip.

Consider the edge-cracked strip of Figure 1.1-1 subjected

to far-field membrane force, N (per unit width) and bending

moment, M (per unit width). The positive sense of each load

is as shown; resulting in separation of the crack surfaces.

For a constant tensile force, N = Napp’ consider the

application of a bending moment, M = - M eli such that the

outer edge of the crack (crack mouth) just comes into contact

as shown in Figure 1.1-2. If the far-field moment is

decreased further, M = Mapp &lt; - M crit °ne of the two

configurations depicted in Figures 1.1-3 will result. That

shown in Figure 1.1-3(a) considers a purely linear

superposition of the membrane and bending loading. This

superposition neglects the interference which actually develops

between the crack surfaces (i.e., it allows for overlap of the

crack surfaces). In accounting for the interference, the true

equilibrium configuration as depicted in Figure 1.1-3(b) is

obtained. Over the area of contact a pressure distribution will

be developed between the crack surfaces. This pressure

distribution, when superposed on the configuration of Figure

1.1-3(a), results in additional crack surface separation,

effectively stiffening the strip. This stiffening results in a

contact length (closure length) less than that determined by

purely linear superposition and also results in a decrease in

the far-field work-conjugate displacements, &gt; and 6

corresponding to Nooo and Mop? respectively.

12
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The effect of crack closure interface on the stress

intensity factor can be deduced by considering the true

configuration to be the superposition of the three loadings of

Figure 1.1-4. The applied tensile membrane force, Napp

causes a positive stress intensity factor, +KiN at the crack

tip. The "closing" moment, Mapp introduces what can

effectively be considered a negative SIF contribution, “Kime

The third component, the resultant pressure distribution, has

associated with it a positive contribution, + K, p* The ratio of

the stress intensity factor allowing overlap (Figure 1.1-3(a))

to that for the true configuration (Figure 1.1-3(b)) is then

XK, overlap _ Kin = Emm

Ki closure ~~ ¥in ~ Em * Epp

’

ot Cl -1)

As the sense of the K, contributions have already been

included, it can be seen that this ratio is always less than one

for any non-zero closure length. Therefore, by neglecting the

stiffening effects of the crack surface interference an

unconservative estimate of the stress intensity factor is

obtained. For pure bending the error has been evaluated by

Bowie and Freese [12] to be 9% (within 1%) for a wide range of

crack depth ratios, 5 = a/w &gt; 0.5.

The effect of this underestimation on a fatigue life basis

can be seen more clearly by considering the limiting case of

pure cyclic bending (Figure 1.1-5). For fatigue life estimates

it is necessary to know the range of the stress intensity factor

and its mean value. As before, the SIF contribution due to

{ 7
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the reversing moment is *K,, and for the pressure

distribution, +K, p’ By allowing overlap the range of the

stress intensity factor is Kim with a mean value of zero. By

accounting for the crack surface contact the range of the SIF

is K, alt = + (Kpy~2Ky,) with K, — HK. Therefore,

the effect of the crack surface interference is to increase the

mean applied stress intensity factor while decreasing its range.

1.2 Background

For fully three-dimensional crack configurations, partial

closure has not been examined. The recent work of Mattheck

et al [2,3] and Isida et al [22] is applicable only to the point

at which closure begins. Theoretical and numerical

examinations of two-dimensional crack configurations with

partial closure date back to the late 1960's. Closed form

solutions have been obtained for partially-closed Griffith

cracks under a variety of loading conditions [9-11] and for the

two-sided exterior crack [23]. Partial closure of edge-cracked

strips subjected to pure reverse bending has been examined

[12-15] with numerically calibrated relationships now available.

To date partial closure of an edge-cracked strip subjected to

combined tension and reverse bending has not been examined.

Burniston [9], Tweed [10] and Thresher and Smith [11]

all, within a four year period, considered partial closure of a

Griffith crack, albeit considering significantly different loading

configurations and closure modes. Burniston applied the

method of complex variables to the problem of a Griffith crack

0



subjected to biaxial tension, partially closed at its center by

the application of concentrated forces at points located within

the solid above and below the crack centerline. Using this

approach closed form solutions were developed for the closure

length and for the stress intensity factor. Tweed considered

the Griffith crack loaded in biaxial tension and subjected to a

symmetric system of body forces. Through application of a

Fourier transform technique, formulae were derived for the

crack opening displacement shape and the stress intensity

factor. Finally, Thresher and Smith examined partial closure

at one end of a Griffith crack subjected to an arbitrary

polynomial loading function. By applying a potential

formulation approach closed form solutions for the stress and

displacement fields were developed as well as a criterion for

determining the open length of the crack.

As far as partial closure of Griffith cracks are concerned,

the work of Thresher and Smith appears to have the widest

range of application. However, the work of Burniston has

application in methods of crack (propagation) arrest.

Dundurs and Comninou [23] have considered the

two-sided exterior crack configuration subjected to an

arbitrary far-field load distribution. Using a formulation

leading to singular integral equations, the possible closure

regimes were defined in the "applied force / bending moment"

plane and the resultant traction distribution in the neck was

determined.

‘eq
i:



A fair amount of (non-closed form) analysis has been

performed nearly simultaneously on partial closure of an edge-

cracked strip under reversed bending. Bowie and Freese [12]

considered the "overlapping" problem first for an arbitrary

crack in a large plate subjected to bending. This solution was

then modified and combined with numerical calculations to

evaluate the closure characteristics and stress intensity factor

of an internal crack in a finite width strip. At nearly the

same time Paris and Tada [13] considered the effects of partial

closure on the stress intensity factor of an edge-cracked strip

subjected to load-controlled cyclic reversed bending. Empirical

relations for the open (kh) and closed (K) stress intensity

factors were developed and the effect of closure on fatigue

crack growth was discussed. Bowie and Freese [14] compared

their previous work [12] to that of Paris and Tada [13] and

noted some differences in stress intensity factor ratio (up to

20%) for deep cracks. ! Gustafson [15] extended the work of

Paris and Tada, evaluating the effects of partial closure on the

stress intensity factor of an edge-cracked strip subjected

to displacement-controlled cyclic reversed bending with some

1 The differences between the results of Paris and Tada [13]

and those of Bowie and Freese [12] can be attributed at least

in part to the fact that Paris and Tada actually considered a

semi-infinite crack in an infinite plate subjected to reversed

bending. A correction factor accounting for the finite width

was applied; however, it was assumed to be equal to the

tensile load correction factor for a center cracked finite width

strip.

pe



significantly different results. With reference to Figure 1.1-5,

load-controlled cyclic bending is characterized by M" = M™ and

6" + O while for deflection-controlled bending, M" # M~ and

of = 6°.

In general the results and conclusions from past work on

partial closure of an edge-cracked strip subjected to pure

bending can be summarized as follows:

1. In analyzing partial closure of edge-cracked (finite width)

strips some numerical computation is required (closed form

solutions are not obtainable).

The classical solution for the stress intensity factor of an

edge-cracked strip (allowing crack surface overlap)

underestimates the SIF by 9-10% for a variety of crack

depth ratios.

For load-controlled cyclic bending the SIF ratio is K /K'

= 5.4% for crack depth ratios less than 0.8.

For deflection-controlled cyclic bending the SIF ratio can

3

be significantly larger than for the load-controlled case;

K /K' = 6% for crack depth ratio, 3, = 0.6, K7/K" = 50%

for Z, = 0.80. For deeper cracks, the SIF ratio

increases further to K /K' = 1.0 for gy = 0.88 and

rapidly to 4.5 for § = 0.95.

For crack depth ratios less than 0.6 the effects of crack

closure on fatigue crack growth is minimal. However, for

deeper cracks under displacement-controlled bending the

closure effects can be significant

29



On the basis of the past work which has been performed

on partial crack closure two major limitations become evident.

First, the available solutions for pure reverse bending are

valid only for crack depth ratios, Sy = 0.5. The reason is

that for all smaller crack depths pure reverse bending causes

full closure. Secondly, none of the available solutions for the

edge-cracked strip combine the effects of tension loading and

reverse bending. Even though the partially closed

configuration (attributed to pure reverse bending) resembles

an internally-cracked strip (for Sy &gt; 0.5), the tensile

stiffness of the closed portion of the crack is zero as is the

stress intensity factor at the closed tip. Therefore, direct

superposition of the stress intensity factor and related

parameters from an internally-cracked strip in tension and an

edge-cracked strip under pure reverse bending is not valid.

A final note is that the difference between the reverse

stress intensity factors, K for load-controlled and deflection-

controlled reverse bending [13 and 15] implies that the

phenomenon of partial crack closure carries with it a

significant stiffening effect. This appears to be especially

true for deep cracks where the original total stiffness of the

cracked specimen is very low relative to the uncracked

stiffness. For a crack depth ratio of 0.8 there is an order of

magnitude difference between the closed stress intensity

factor, K,for deflection- and load-controlled cyclic bending.

Combined with the increase in the effective uncracked ligament

of the partially-closed case this necessitates a very large

24



M~/M' for deflection-controlled cyclic reverse bending. These

results indicate that K effects can have a significant influence

on fatigue crack growth for sufficiently deep cracks subjected

to deflection-controlled reverse bending (which, it should be

noted, is more typical of thermal cycling).
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2 LINE-SPRING MODEL WITH CLOSURE

Thus far the phenomenon of partial external closure of an

edge-cracked strip has been discussed and past theoretical and

numerical examinations have been summarized. With respect to the

final objective, to incorporate partial closure capabilities into the

line-spring model, the past work was not considered to contain

sufficient definition over the entire range of crack depths to be

conducive to the general nature of the finite element formulation.

However, some of the past work can serve verification purposes.

The present approach is basically numerical, combining

theoretical compliance relations with (polynomial interpolation of)

discrete data from parametric two-dimensional finite element

analyses. All required data are obtained from superposition of

force and reverse bending solutions of an internally-cracked strip.

The resulting finite element implementation introduces a nonlinear

iterative (Newton-Raphson) scheme ‘into the existing linear-elastic

line-spring model. The resulting formulation allows for application

of any combination of applied (mode I) loads and is capable of

modeling all crack depth ratios through 34 = 0.8.

The approach will be described in depth in the following

sections beginning with an overview of the linear-elastic line-spring

model formulation.

2 q Linear-Elastic Line-Spring Model

The line-spring model of Rice and Levy [4] was

introduced in 1972 and was originally used to estimate stress

2A



intensity factors for part-through surface cracks in plates and

shells subjected to membrane and bending loading. Further

development of the line-spring concept by Parks et al [5-8,16]

has extended its range of application to encompass

linear-elastic and elastic-plastic configurations. Finite element

implementation of the linear-elastic line-spring has been

completed by Parks, Lockett and Brockenbrough [5] with

plasticity capabilities incorporated by White [17].

In general, the existence of a crack in any structure

decreases the overall stiffness of the structure. Herein lies

one of the two basic features of the line-spring model; the

introduction of an additional compliance into the cracked

structure which, when combined with the compliance of the

uncracked structure, fully characterizes the effects of the

part-through surface crack. Consider the surface crack of

length 2c¢' and variable thickness a(x) as shown in Figure

2.1-1(a). If the crack length is assumed to be much greater

than the plate thickness then an idealized two-dimensional

situation results in which the crack can be considered a

one-dimensional crack of length 2c’. However, the

traction-carrying capability of the uncracked ligament, w-a(x),

must be retained. Therefore, in the line-spring model

formulation, the part-through surface crack is replaced by a

through crack of equal length with a generalized foundation

between the crack faces as depicted in Figure 2.1-1(b).

These generalized "line-springs" carry the membrane force, N,

and bending moment, M, transmitted across the crack ligament.
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The stiffness of the line spring at any location x is related to

the local uncracked ligament, w-a(x). With this information in

hand, the general effects of the additional cracked compliance

on the structure can be deduced. Consider the structure in

the absence of a crack, a(x) = 0. In this case, there is no

additional compliance. The tractions along the plane of the

crack correspond to the far-field tractions and the

displacements across the crack plane are zero. This

corresponds to a zero displacement condition. Consider now a

crack, a(x) = w, for which there is a (locally) infinite

additional compliance. In this case the crack face tractions

are zero and the displacements across the crack plane are

discontinuous; a zero traction condition. For any crack depth

profile, 0 &lt;a(x)&lt; w it can therefore be expected that the

line-spring will result in a situation in between the zero

traction and zero displacement conditions; i.e. some traction

will be supported across the crack face and the displacements

across the crack plane will be discontinuous.

As the stiffness of the line-spring model varies with

crack depth it should be possible to examine the additional

compliance introduced by the crack on a local basis. Herein

lies the second basic feature of the line-spring model.

Consider a section normal to both the plane of the shell and

the plane of the crack at some location x. The resulting

configuration reduces locally to that of an edge-cracked strip

with crack depth "a" and loads "N" and "M" corresponding to

20



the local values: depth a(x) and loads, N(x) and M(x)

transmitted across the cut (Figure 2.1-2).

All that now remains is to determine the local compliance

of the cracked strip. To do this it is necessary to obtain a

constitutive relation between the local (far-field) loads, N and

M, and their local (far-field) work-conjugate displacements, 0

and ©. In general, this relation takes the form

of cq oo | - ol ":

Cy Coot || M M]
(2.1-1)

where [C,] is the local total compliance matrix, related to the

local total stiffness matrix by [C,] = (s,17%. The far-field

displacements can be considered to consist of cracked and

"no-cracked" contributions.

6 | or ’
The no-crack contribution is obtained from mechanics to be

— fr"

5.
(2.1-2)

el 0 INOe | 0 241/E'w?| | M_
(2.1-3)

1

where E is the plane strain modulus. The cracked

displacements are a measure of the additional compliance

introduced into the strip by the presence of the crack.

Combining equations (2.1-1) through (2.1-3) gives

5 C C N N~
cl _| 11 12 = [C]

6] | C21 CoM M |

(2.1-4)
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N = N(x)

M = M(x)

=

a = a(x) |

Figure 2.1-2

Cross-Section of a Part-Through Surface Crack at Location "x"

Resembling a Single Edge-Cracked Strip
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where [C] is the local cracked compliance matrix. Note that

these displacements are assumed to occur directly on the line

of the crack and therefore represent discontinuities across the

cut. From Rice's early work [18] the local compliances can be

obtained from

Cyq = 2 TY,/E

Ciy = Coy = 12 &amp; o/E'w

Cpy = 727 X,,/E'w?

£)a%$IF.()I TFChere Yi A
WwW

(2.1-5)

(2.1-6)

The functions F, and F, are K,; calibration factors from the

single edge notched specimen:

K, = (ra)¥ [F,(a/w) N/w + Fy(a/w) eM/w2] .  (2.1-T)

The compliance aspects of the elastic line-spring model

are now complete. The line-springs as defined by the above

equations can now be distributed across a through crack

representation of a surface cracked structure. The resulting

equations can then be solved to obtain the displacement and

generalized force solution across the crack. As a final step

the local stress intensity factor can be estimated directly from

equation (2.1-7).
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2.2 Definition of Governing Parameters

Before proceeding with any analysis the parameters which

govern the problem of edge cracks with partial closure must be

ascertained and combined into appropriate dimensionless forms.

The governing parameters can be obtained fairly directly from

the geometric and the kinematic properties of the system.

Geometrically the specimen thickness (w) and crack depth (a)

are obvious choices (Figure 1.1-3(b)). The length dimension

(1) from the crack plane to the "far-field" can be removed

from consideration by assuring sufficiently large 1/w (from

Parmerter [19] et al, the far-field effects are minimal for

l/w = 2). As partial closure of the crack is of interest the

final geometric parameter is the closure length (c¢). For the

kinematic parameters the only choices available are the

far-field membrane force (N) and bending moment (M).

n dimensionless form the governing parameters are

defined by

be = alw - crack depth (ratio)

} oc = Clw - closure length (ratio)

NX = Nw/M - load ratio

Notice that the definition of the closure ratio limits the range

of attainable values’ to 0 = 3, .
 gp

ER RR.

The choice of % relative to crack depth (a) rather than
to thickness (wf is an alternative which gives a range of

0 to 1; however, in this way, to visualize the actual

closure length the local crack depth must also be

considered. The definition given above avoids this

complication.

29



As was discussed earlier there are two possible closure

modes, internal and external. Only the external closure mode

is being examined here (internal closure is discussed in

Appendix I). For the external closure mode a closing moment

is required. As discussed in Section 1.1 the bending moment

must therefore be negative relative to the crack face definition

(i.e., a positive moment opens the crack). The membrane

force can be tensile or compressive’ so the range of the load

ratio is -Q0 = X\ = +Q0

2.3 Limits of Closure

There are two critical situations between which the

evaluation of partial closure is possible: the condition at which

closure begins and the condition at which the crack is fully

closed.

in general, the onset of closure can technically be

defined as the point at which the stress intensity factor at, in

general, either crack tip is zero (cusp). For any partially-

closed cracked specimen the leading edge of the closure will

always be defined by a cusp. Using logical reasoning this can

be proven as follows:

1.

Consider a crack tip formed by ihe closure of two crack

It will be shown that for full closure of cracks with

the force N must be compressive.

~0.5
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surfaces with an assumed K, &gt; (0. Locally the positive SIF

indicates that a positive stress singularity exists at the crack

tip. However, the two surfaces are independent and cannot

support tensile load, therefore, the surfaces must separate

(and the closure length will decrease). Consider now the

opposite case with K, &lt;0. On a local scale this implies an

overlapping displacement field. As this cannot occur, the

surface will separate and the closure length will increase.

With respect to these two considerations the only closure

length for which equilibrium is satisfied is that for which the

stress intensity factor is zero. This deductive reasoning

agrees with the findings of Thresher and Smith [11], who

developed the further requirement that the slope of the crack

opening profile also be zero at the cusp. Applying this

reasoning to the edge-cracked specimen, the two critical

situations mentioned above can be further defined as:

Onset of Closure - outer edge of the crack surfaces

(crack mouth) just contact (with zero load)

Full Closure - K, at each end of the crack is zero

and its length is zero (%_= 7%).

Before beginning the finite element analysis of the edge-

cracked strip some preliminary calculations will be performed to

define the load range over which partial closure applies as well

as to serve as verification for the later modeling results.
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Onset of Closure

Consider the condition where the crack is fully open and

loaded as shown in Figure 2.3-1(a). By superposition the

crack mouth opening displacement (CMOD) can be written as

CMOD = Nd + Md,, = 0 (2.3-1)

Nith reference to Tada, Paris and Irwin [20]

47%, [1.46 + 3.42 (1-cos 9)
a =—— —_—

E' \ cos? 0

and (2.3-2)

24 3 0.66
da. =—2(0.8-1.73 +2.43%2+—2_M E'w ( 5s a (1- 5)

where @ = Tr3,/ 2. From the definition of the onset of

closure, CMOD = 0, the critical load ratio becomes

- -Z)2

Acrit = -6cos? o(23.7 3at2.4%,°+0.66/(1 5) ) (2.3-3)
1.46+3.42(1-cos Q)

The critical load ratios given by this equation are presented in

Table 2.3-1 for crack depth ratios % as 0.80. Notice that for

all crack depths the critical load ratio is 2A crit = 0. From the

discussions in Chapter 1 and Appendix I, external closure

occurs only for negative (closing) bending moments.

Therefore, a tensile force and a closing moment are required

for the onset of external closure.

Center-Cracked Strip

Consider the center-cracked strip as shown in Figure

2.3-1(b). In relation to the edge-cracked strip with partial

closure this corresponds to a crack depth 3 with closure
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TABLE 2.3-1

THEORETICAL LOAD RATIO FOR SPECIFIC CLOSURE AMOUNTS

CRACK DEPTH

Taw)

J.9

0.10

0.20

0.30

0.40

0.50

0.60

0.70

nN

ONSET
A crit

-6.0000

-5.7241

-5.2938

-4.8170

-4.3440

-3.8880

~3.4447

-3.0175

-2.6192

LOAD RADIO

SYMMETRIC

A symm

-We

Ah amine

0.0

-0.5860

-1.1004

-1.5040

Nef
-6.0000

-4.8000

-3.6000

-2.4000

-1.2000

0.0

1.2000

2.4000

3.6000
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length 7 _ 1 - Sar In this instance the closure length is

defined by a cusp (K, = 0) at point A. From superposition

the stress intensity factor is then

I ro
K; = Nk + Mk, = 0 (2.3-4)

From Tada et al [20]

&lt;, =T&amp; F(T, w~00)
N ow! a

iad

1 viral Vi-3" 3a G( 3.)
own? a- 7

(2.3-5)

where w' = w/2 and a' is the half length of the symmetrical

crack. In these equations the function F is known in

graphical form and G is an empirical relation. Combining

equations (2.3-4) and (2.3-5) then gives the load ratio for the

symmetric case

S _ 6 3, G( Ta) \/1- fo
symm ' ' 13y

F (5, Uw~@)1- 5.)

Using the relations between §_', %_ and 7%.

(2.3-6)

= '

3, = 1 (3+)

Sa = 1 - 35")

it can be seen that equation (2.3-6) applies only for 3, = 0.5

(2.3-7)

LI &gt;) i i -

(3, =0.0). The PB eymmn is evaluated in Table 2.3-1.

Full Closure

The upper limit of the range of applicability of partial

closure is that pertaining to full closure. Notice that once full

closure has occurred the additional cracked compliance is zero

10



so an increase in the magnitude of the closing moment has no

effect on the closure characteristics and the problem becomes

linear. Upon decreasing the closing moment (or increasing the

tensile load) a state of partial closure may again result. Full

closure implies an effective crack length of zero and a stress

intensity factor of zero at the "crack tip". This situation is

demonstrated in Figure 2.3-1(c). At the "crack tip", A, the

stress contributions are

0 = N/w

and (2.3-8)

Ty = 6M (23 -D/w?.

For the stress intensity factor to be zero at the crack tip the

net stress must also be zero so the critical load ratio for full

closure is then

As, = 6(2 3. -1) . (2.3-9)

This equation is also evaluated in Table 2.3-1. Notice that for

crack depth ratios §q&gt;0.9, Ngo is positive. Therefore, since

the moment is negative, a compressive force is required for

full closure to occur.

2.4 Development of NonLinear Tangent Compliance Matrix

The final objective in the development of the line-spring

model is the formulation of the corresponding compliance

matrix. For the linear-elastic case, the compliance matrix is

linear; dependent only upon the crack geometry as indicated

by equations (2.1-5) and (2.1-6). The introduction of partial

closure capabilities results in a nonlinear compliance matrix

ir"



which is dependent not only upon the crack geometry but also

upon the crack closure length; which, in turn, is dependent

on both the crack geometry and the applied loads. In these

nonlinear situations it is far more convenient to formulate the

local or tangent compliance matrix.

In the preceding section superposition of the membrane

force and bending moment contribution of stress, crack mouth

opening displacement and stress intensity factor was used to

evaluate the load ratio at which specific closure "limits" would

occur. Using the same approach the cracked displacements are

E'S, = Noy + Mw by

E'O, = (N/w) © + (M/w?) Oy

(2.4 1)

where ON. M and On .m are the cracked displacement

contributions on a per unit load, per unit thickness basis and,

in general, are functions f(3,(x,%,),3,). For a given and

constant crack depth (throughout the remaining work the term

ratio will be implied when used with "crack depth" and

"closure length") the cracked displacement contributions are

dependent on the closure length which itself is uniquely

defined by the load ratio, Nw/M (i.e., for a given load ratio

with M&lt; 0 there is one and only one corresponding closure

length). Equations (2.4-1) can then be rewritten as

E'S, = (MIWA 8y + yp) = M/w) 8"

0 CON TM \ (2.4-2)

E'O, = M/wH)( A Oy + Oy) = M/W?) ©

where sM, aM are the total cracked displacements per unit

bending moment, per unit thickness. Notice that the direct

u



effects of the membrane force have been explicitly removed

from equation (2.4-2) by introducing the load ratio.

The compliance matrix relates the applied loads to their

wvork-conjugate displacements such that

[C] C11 2Cy1 Coo

20,/ ON 05,1 OM

08,1 ON 26,1 2M
(2.4-3)

Combining equations (2.4-2) and (2.4-3) gives the tangent

compliance matrix coefficients as

Cp = amw(35, . Bois 2a)

Cig = (1/E'W) sM , are (Ti 5, + Dh +38)

Coy = arp) (Fhe, + 283 +2a) (2.4-4)

Cyy = (L/EW2) OM + amu, + 285 .280),

From the definition of the load ratio it can be seen that

OAION = RAIN ; OX/IM=-A/M .

Using the relationship

0/ ON = (35/25 )(0%,/9A)(DA/ ON) , (2.4-6)

with similar expressions for the remaining terms, and equations

(2.4-5) the tangent compliance matrix coefficients can be

reduced to:

- Myr ge

Ci; = (By +x (8HNIE

-— - XN Mj, 1
Cy = (6p - x X(ED/EW

- Myry ge

Cop = (By = XA (BMHN/EW?

(2.4-7)
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where the "prime" on the displacements Y and aM represents

differentiation with respect to closure length and &amp; = 05,/ 20.

At this point the formulation of the tangent compliance

matrix is complete. What now remains is to determine the

necessary functions; dN Opp Oy: One Ze such that the

coefficients of equation (2.4-7) can be evaluated in terms

of A and 3
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3. PARAMETRIC FINITE ELEMENT ANALYSIS

The data required to evaluate the tangent compliance matrix is

obtained from a parametric finite element analyses of an edge-

cracked strip and an internally-cracked strip. The discrete

parametric results are then combined to satisfy the necessary

conditions to define closure. This combination of discrete data then

results in the parameters needed to evaluate the compliance matrix.

3.1 Model Description

The parametric analysis was performed using the

ABAQUS © finite element program. The two-dimensional model

of the cracked strip is presented in Figure 3.1-1. The model

consists of 200 8-node biquadratic plane strain elements, CPES

[21] with mesh refinement biased toward the crack plane.

There are two active degrees of freedom per node (in-plane

translation) and full 3 x 3 Gaussian integration was used.

Due to symmetry across the crack plane only one-half of

the strip was modeled with a half-length to thickness ratio of

3:1 to the "far-field". For this 1/w ratio, it is expected that

interactions between the far-field and the crack will be

negligible. To assure a unique evaluation of the far-field

displacement and rotation the nodes along the top edge of the

strip were required to remain in a straight line.

Equation-defined connectors were used to relate the vertical

displacement of each node to the center node (LP in Figure

31-2).
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A total of 20 uniformly sized elements were used along the

plane of the crack. The crack depth was modeled by applying

symmetry boundary conditions to those nodes corresponding to

the remaining (uncracked) ligament. The closure length was

modeled in the same way. In this way the model of the

partially-closed edge-cracked strip more closely resembles an

internally-cracked strip. However, by applying the far-field

membrane force and bending moment independently,

superposition can be used to assure that the required

condition exists at the closed "crack tip" (i.e., a cusp is

formed at the closed end with K, = 0). The model as shown in

Figure 3.1-2 represents a crack depth of 0.8 with a modeled

closure length of 0.15.

J-integral estimation capabilities were applied at the crack

tip node with up to 4 contour evaluations such that the effects

of closure on crack tip stress intensity could be determined.

In obtaining the required data a crack depth (ratio)

increment of 0.10 was used for depths up to 0.80. For each

of these cases a closure length (ratio) from "fully open" to

"fully closed" was examined in increments of 0.05. With the

far-field force and moment applied independently, each pair of

crack depth and closure length required two load steps to

fully characterize the strip's behavior. A total of 144 steps

were required to complete the entire behavior "matrix".

Each load step results in the evaluation of the following

“Qf4

total far-field displacements

y=



crack opening profile

symmetry plane reaction forces (for the uncracked

ligament and for the closed length)

four J-integral estimations about the crack tip

which must be manipulated into a form more useful for

evaluation of the tangent compliance matrix.

3.2 Evaluation of Load Ratio and Cracked Displacements

The first step in reducing the finite element results is to

determine the closure length versus load ratio characteristics.

This important step not only defines the range of loads over

which partial closure applies but also serves as an initial

comparison with accepted numerical solutions (see Section 2.3).

The second step, to determine the characteristics of the

cracked displacement contributions versus closure length, is

required in conjunction with the first to numerically evaluate

the tangent compliance matrix.

Before proceeding with the finite element data reduction

several comments should be made:

The modeling of the cracked strip employed

symmetry across the crack plane. The calculated

far-field displacements therefore represent one-half

of the actual work-conjugate displacements. The

total work-conjugate displacements are used in the

formulation of the tangent compliance matrix.

The calculated far-field displacements include2

contributions from both cracked and uncracked
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cases. The cracked contributions are necessary for

evaluation of the tangent compliance matrix and can

be obtained as implied by equations (2.1-2) and

(2.1-3).

All nodes along the open length of the crack deflect

due to the application of the far-field loads. Under

a tensile membrane force the opening profile

corresponds to separation of the crack surfaces for

all crack depths and closures. Under an "opening"

bending moment, for sufficiently deep cracks ( % a&gt;

0.5) the crack opening profile for some range of

closure indicates that a portion of the open crack

overlaps (Figure 3.2-1). Appropriate combination of

the two loads is sufficient to eliminate this overlap.

The "closed" ligament will carry tractions under the

application of the far-field membrane force and

bending moment. Independently these tractions may

be tensile, but after appropriately combining the

loads the tractions must be compressive along the

entire closure length. Physically the tractions occur

continuously over the contact length. In the finite

element formulation, however, the total traction is

distributed among each node along the contact

surface. Consider the schematic of an 8-node

element as shown in Figure 3.2-2 with, for example,

a lumped 1-4-1 nodal load distribution. The traction

distribution shown in the figure becomes tensile near
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node 3. In this situation the nodal load distribution

results in a discrete compressive load at node 3.

Therefore, the nodal tractions are not necessarily

indicative of the actual continuous local traction

distribution.

These comments will prove useful in the evaluation of the

load ratio and the cracked displacement contributions.

In determining the load ratio corresponding to various

closure lengths it is valuable to look more closely at the finite

element model in the closed region. This is depicted in Figure

3.2-3 for a modeled closure length, 3. mo d at node i. The

far-field tensile membrane force results in a reaction force, Ry

at the closed tip (node i) and a separating displacement,

COD at the first open crack node (node i+l). Similarly, the

positive (opening) far-field bending moment introduces a

reaction force, Ry and separating displacement, COD, at the

same nodes.

As was discussed in Section 2.3, the leading edge of

closure is defined by a cusp (K;=0). This also implies that

the local reaction force (traction) is zero and that the crack

surfaces are just in contact. Two methods of evaluating the

load ratio now become evident; requiring a net zero reaction

force at node i or requiring a net zero displacement at node

i+1. From comment number 4 above, the former does not

necessarily imply a cusp condition. Using the latter method as

more suitable, the load ratio is determined to be

A = Nw/M = -COD,,/COD (3.2-1)
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with a corresponding closure length of

e © %e,mod tA,

where, AT, = 0.025 for the uniform finite element mesh used

here. Equations (3.2-1) and (3.2-2) apply for all closure

except for the onset. For this case

Aopit = ~ CMOD,,/CMOD

_ +

5, = 0.0

(3.2-3)

where CMOD is the crack mouth opening displacement for the

fully open crack. The load ratios for the onset of closure and

for symmetric closure are presented in Table 3.2-1 for all

crack depths. The numerically accepted solutions from Table

2.3-1 are also included for comparative purposes. Over the

entire range of crack depths the finite element analysis is seen

to agree very well with the accepted numerical solutions. The

closure length is plotted versus load ratio for all crack depths

in Figure 3.2-4.

Several points can be made regarding the relationships

between load ratio and closure length. For all crack depths

the closure length asymptotically approaches the theoretical

solution for full closure given by equation (2.3-9). As the

theoretical solution is a straight line, the closure versus load

ratio curves approach a constant slope at full closure. As a

second point note that for crack depths greater than 0.5 a

compressive membrane force is required for full closure to

occur. This fact was noted earlier and is now verified by the

finite element analysis.
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TABLE 3.2-1

LOAD RATIO FOR ONSET OF CLOSURE AND SYMMETRIC CLOSURE

CRACK DEPTH

( a/w ) —
LOAD RATIO (Nw/M)

TABLE 2.3-1

Onset of Closure

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-5.647

-5.247

-4,811

-4.353

-3.892

-3.446

~3.032

-2.655

-5.724

-5.294

-4.817

-4.344

-3.888

-3.445

-3.018

-2.619

Symmetric Closure"

|

Hy 3ut -0.876

-0.437

-0.586

&gt; F

a
] ~-1.366

-0.959

-1.100

*.8 -1.718

-1.355

-1.504

F.E.A. data for symmetric closure are calculated at 0.025 from

true symmetric closure length,
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FIGURE 3.2-4

PARTIAL CRACK CLOSURE

CLOSURE LENGTH RATIO vs LOAD RATIO
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The cracked displacement contributions; oN» Zap Oy Sh

are obtained fairly directly from the finite element data by

subtracting the uncracked far-field displacement contributions

(equation 2.1-3) from the total calculated displacements. The

resulting quantities (after appropriately accounting for the

modulus of elasticity) are one-half of the actual work-conjugate

displacements required for the tangent compliance matrix

evaluation. The cracked displacement contributions are plotted

against closure length in Figures 3.2-5 through 3.2-7. Again,

several comments can be made regarding the figures. Because

they are obtained under independent loads (force and moment

not applied simultaneously), the displacement contributions

actually correspond to the modeled closure lengths but are

applied at the effective length defined by equation (3.2-2).

Figure 3.2-6 presents the cracked displacement contribution

due to a unit applied moment in the far-field ( On) and,

because of reciprocity, it also represents the cracked rotation

contribution due to a unit applied membrane force ( oN)-

Notice also that for symmetric modeled closure om = Oy =0

as is to be expected.

In the development of the tangent compliance matrix the

total displacements per unit moment, sM and oM were

introduced. These terms combine the force and moment

contributions corresponding to a given closure length (equation

2.4-2). These values are plotted versus closure length in

Figures 3.2-8 and 3.2-9. In this case the values correspond

to the actual closure lengths given by equation (3.2-2). The
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FIGURE 3.2-5

PARTIAL CRACK CLOSURE
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PARTIAL CRACK CLOSURE

ONE-HALF CRACKED DISPLACEMENT (&amp;,=6,)
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FIGURE 3.2-7
PARTIAL CRACK CLOSURE

ONE-HALF CRACKED ROTATION ( 6,)
vs CLOSURE LENGTH RATIO
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terms "effective" and "actual" closure length are discussed in

more detail in Appendix II.

In all of the figures several of the small closure data

points were not included due to their magnitudes relative to

the remaining data. For completeness the remaining data are

presented in Table 3.2-2. A sample of the data reduction is

presented in Appendix II.

3.3 J-Integral and K, Calibration

The final aspect of the finite element data reduction is

the evaluation of the stress intensity factors for the partially-

closed crack from the calculated J-integrals.

Four J-integral contour estimations were obtained about

the crack tip for each load step. The appropriate J-integral

for a given step was chosen on the basis of the convergence

rate of the estimates from one contour to the next. For all

crack depths the convergence characteristics followed a

consistent trend. In general, for sufficiently large differences

between crack depth and closure length convergence behavior

was such that the 4th contour resulted in the best estimate.

The sufficiently large difference was found to be satisfied

when the 4th contour did not enclose both crack tips. Since

each contour represents a normalized radius of 0.05 about the

crack tip both tips were enclosed for 2, - Ze = 0.20. For

the cases were both tips were enclosed the J-integral estimates

begin to decrease; approaching the difference between the

J-integral at the two tips. It should be noted that for very

oq



TABLE 3.2-2

DISPLACEMENT DATA FOR SMALL CLOSURE

CLOSURE, 5/2 50/2 Oy/2 sM;2
LENGTH~ © }

CRACK

DEPTH

0.10 0.000

0.025

0.100

0.019 0.104 0.576
0.009 0.050 0.269

0.0 0.0 0.0

-2,037E-3

-0.896E-3

0.0

0.20 0.000

0.025

0.092 0.466

0.048 0.234

2.366

1.149

-1.761E-2

-1.222E-2

0.30 0.000

0.025

0.265 1.216 5.616

0.130 0.566 2.490

-6.023E-2

-4 .7T20E-2

0.40 0.000

0.025

0.640 2.645 11.07

0.273 1.044 4.10

-1.421E-1

-1.183E-1

0.50 0.000

0.025

1.461 5.410 20.40

0.492 1.640 5.73

-2.753E-1

-2.380E-1

0.60 0.000

0.025
3.374 11.15 37.65
0.798 2.27 7.05

-4,763E-1

-4.223E-1

0.70 0.000

0.025
8.446 24.83 74.55
1.185 2.82 7.83

25.70 66.98 177.6

1.65 3.12 8.1

-7.761E-1

-7.006E-1

0.30 0.000

0.025

-1.253

-1.145

|
For crack displacement contributions, this is the effective

closure length.
For total cracked displacements, this is the actual closure

length.

6/2

-1.082E-2

-0.463E-2

0.0

24



small open crack lengths ( Zz a” 5 &lt;&lt; 1) and for symmetrical

cracks the J-integral estimates approached zero as they

should. To show these convergence trends the J-integral

estimates for a crack depth of 0.4 subjected to far-field

membrane force are presented in Table 3.3-1.

Once the appropriate J-integral was determined it was

necessary to obtain the corresponding stress intensity factor.

This can be obtained from

&lt;. = +fE'J (3.3-1)

For the fully open case the stress intensity factor due to the

membrane force and due to the bending moment have been

calculated from equation (3.3-1). These values compare very

well to the accepted solutions [20] as presented in Table

3.3-2. The differences between the two were found to be of

consistent magnitude for several other models of less mesh

refinement about the crack plane; although the effect of using

crack tip elements was not examined.

It was now necessary to determine the relationship

between the stress intensity factor, the strip thickness and

the applied load. The J-integral is equivalent to the energy

release rate per unit crack growth,

A FeQuvs

T *W Ie = TW, /wDT,

”

wb

N,
Oc

sma

=} [N M]

| 6 |

(3.3-2)

(3.3-3)

i5



TABLE 3.3-1

J-INTEGRAL ESTIMATES FOR CRACK DEPTH OF 0.40

DUE TO AN APPLIED MEMBRANE FORCE

EFFECTIVE

CLOSURE

LENGTH

0.0

0.0"

9.05

0.10

0.15

0.20

0.25

0.30

&gt; ow

~

iq
t 2

J-INTEGRAL

CONTOUR CONTOUR CONTOUR CONTOUR
2 3 4

1.610E-1

5.341E-2

2.514E-2

1.762E-2

1.304E-2

9.624E-3

6.794E-3

4.220E-3

1.630E-1 1.631E-1

5.413E-2 5.417E-2

2.550E-2 2,552E-2

1.788E-2 1.789E-2

1.324E-2 1.325E-2

9.785E-3 9.779E-3

6.900E-3 6.654E-3

4.150E-3 7.280E-5

1.631E-1

5.417E-2

2.552E-2

1.789E-2

1.323E-2

9.419E-3

1.665E-4

1.045E-5

1.745E~-3 1.484E-5 5.567E-7 2.448E-"7

RB



TABLE 3.3-2

STRESS INTENSITY FACTOR CONTRIBUTIONS FOR FULLY OPEN CRACKS

CRACK DEPTH &amp;
1

(a/w) FEA Ref [20]

0.1 0.6533

1.0601

0.6702

1.0833

1.6068

2.3630

0.2

0.3 1.5792

2.31880.4

0.5 3.4631

5.3996

3.5426

5.5511

9.4545

0.6

0) 7 9.1363

0). 18.146 19.012

|
For unit thickness and unit applied load.

FEA

3.4958

4.9432

6.4604

8.3620

11.080

15.461

23.625

492.782

vl

Ref [20]

3.5003

4.9248

6.3946

8.3030

11.094

15.637

24.169

44.463

17



Rewriting equation (2.4-1) in the form

de

 |
= 1/E'

= -

Cyy Cyolw | N2

Coq/w CoolW M

(3.3-4)

and combining with equations (3.3-2) and (3.3-3) gives

J =
rw) 2 -

(1/2E'w)25C11 #(Cpp*+Cop IMN/ WC, M2 WE) . (3.3-5)

Since the force and moment have been applied independently,

the J-integral contributions due to each become

J » XX N2/E'w ; dy &amp;C M2/E'w? (3.3-6)

From equation (3.3-1) the stress intensity factor contributions

then become

- - 3

Kin = ~/E' Ig CC +/N2¢/w = ky Nw
2

Kim = +E ay CC ~/M2/w3 = ky; M/w

where kyo ky include the necessary proportionality factors.

By superposition the total stress intensity factor is

(3.3-7)

- _ 3

(3.3-8)

As in equation (2.4-2) the effect of the membrane force can be

eliminated resulting in

— 32

K. = (Rkgtky) Mw = 1M yyw”
(3.3-9)

where kM is the total stress intensity factor due to a unit

bending moment with unit thickness. Note that since M is

negative for all closures. kM must also be negative. These

values are plotted versus closure length in Figure 3.3-1.

AR
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An interesting point should be made here regarding the

stress intensity factor contributions of the negative bending

moment. It is clear that Kin will be positive for all closures.

Similarly, for shallow cracks ( 3,&lt; 0.5) the contribution due to

the closing moment will be negative for all closure lengths.

However, for crack lengths in excess of 0.5 there exists a

closure length above which the SIF contribution due to the

closing moment is positive. This can be visualized by

considering a small (Griffith) crack located entirely within the

tensile portion of a bending stress field (Figure 3.3-2), for

which a positive SIF will exist at each end. Now remove the

crack plane contact from the crack tip through the original

compressive region (i.e., allow overlap). The stress field

must redistribute resulting in a negative SIF at the crack tip.

Clearly, somewhere between these two extremes the SIF

contribution due to the moment must change from positive to

negative. The FE results, being in the form of J-integral, are

always positive so that this effect is more difficult to notice.

In Figure 3.3-3 is presented a typical plot of J-integral versus

modeled closure length due to an applied far-field bending

moment. A curve through the data should reach J = 0 at some

closure, increase (with a discontinuous but reflected slope)

and gradually approach zero again at full closure. The

contribution change-over occurs at the closure for which J =

0. A second method of estimating the change-over closure is

to examine the crack opening profile in the vicinity of the

crack tip. For a pure closing moment and no crack closure an
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overlapping crack opening profile is obtained. As the

crack closure length is increased the crack opening profile

changes, ultimately resulting in a positive crack opening

profile at the tip. The closure length at which this occurs

also signifies the contribution change-over.

Using both of these methods the range of the effective

closure length in which the stress intensity factor contribution

due to the applied moment reverses is

Crack Depth Effective Closure Lengti.

J  U

{
0.5

0.6

0.7

0.8

no reversal

no retersul
0.25 - 0.30

0.03 - 0.10
0.0 - 0.05

As a final point, consider the stress intensity factors

given in Table 3.3-2 for a crack depth ratio of 0.4. These

values all correspond to the reference case N = M = w = 1 and

therefore represent the stress intensity factor contributions,

ky and ky of equations (3.3-7) through (3.3-9). Consider

now an arbitrary load distribution: N = 20,000 lb, M = 4594.7

in-1b, with w = 1.0 in. The resulting load ratio is A= -4.353

= A ori for 3a = 0.40. Applying equation (3.3-8) with the

FEA estimates, ky = 2.3188 and ky = 8.3620 gives a total

stress intensity factor of K; [FEA] = 7.955 ksiin. Performing

the same calculation with the estimates from reference [20], ky

= 2.3630 and ky = 8.3030 gives Kj, = 9.110 ksi Vin’.

Therefore, even though the individual errors are very small

( 1.9% on kyo 0.5% on kv ) the combined error can be very

7

I



large at the onset of closure (12.7% in this case). As the

estimates from reference [20] are the currently accepted

solutions the finite element contributions [FEA] have been

ratioed so as to satisfy continuity across the fully-open/

partially~-closed interface.

The effects of both the reversal of the bending moment

contribution and the error of the finite element estimates have

been included in the evaluation of kM from equation (3.3-9).

7



4 FINITE ELEMENT IMPLEMENTATION

The mathematical development of the nonlinear-elastic

line-spring model with partial closure capabilities has been

presented in Chapter 2. In Chapter 3 the parametric data

necessary to employ the model in a generalized problem of crack

closure was obtained and reduced. What remains is the topic of

this chapter; to incorporate the partially-closed line-spring model

into the ABAQUS © finite element program and to demonstrate its

application to a specific problem.

For the type of problem to which the nonlinear-elastic

line-spring model can be applied, the implementation of the

partially-closed line-spring model results in a solution algorithm

consisting of two iterative loops. The primary (or outer) loop

represents the global iteration performed by the standard’

ABAQUS © finite element code. In simplified form, the primary

iteration algorithm, in conjunction with the partially-closed

line-spring model, proceeds as follows:

Step 1 = Given an- incremental tangent stiffness, the

displacement and force distributions” are calculated.

2

The "standard" ABAQUS finite element code refers to the

portion of the code which existed prior to the incorporation of

the partially-closed line-spring model. Note that the operation
of the "standard" portion is not affected by the new capabil-

ities.

Unless otherwise noted, the displacement and force
distributions which will be discussed in the following sections

are those not of the entire structure but those of the

line-spring element(s) only.
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Step 2 -

Step 3 -

The displacement solution is applied to the

partially-closed line-spring element and a new

tangent compliance matrix and resultant force

distribution are calculated.

Force distributions from steps 1 and 2 are compared.

If convergence is not satisfied, the new tangent

compliance from step 2 is input to step 1 for the

next iteration.

The secondary (or inner) loop represents the iterations performed

within the partial closure portion of the finite element code to

obtain the incremental characteristics of the partially-closed

line-spring model. This loop is completely contained within step 2

of the primary loop.

The implementation of the partially-closed line-spring model

nad associated with it three distinct parts:

Interface between the standard ABAQUS © code and the

partial closure routines

Secondary iteration algorithm

3. Interpolation of the discrete parametric data

These topics are discussed in more detail in the following sections.

1.1 Interface Between Standard Code and Partial Closure Routines

Before proceeding with the discussion of the programming

interface, a brief review of the terminology inherent in

ABAQUS © multiple load case, nonlinear analyses is

appropriate. In each ABAQUS © analysis a four level

hierarchy exists which defines the solution state: step,

TH



increment, attempt, and iteration. Each of these terms can be

described as follows:

STEP

INCREMENT

AT TEMPT

 TERATION

The largest division of the analysis.

It represents a new set of applied loads,

displacements, temperatures, etc.

- A fraction (1.0) of a step. Multiple

increments form a step.

- An effort to solve for the increment

state. A reduction in increment size

results if the effort is unsuccessful.

- A single pass through the primary

loop. Multiple iterations (may) form an

attempt.

These four terms will be used throughout the remainder of this

chapter.

The interface between the standard ABAQUS © finite

element code and the programming required to analyze partial

crack closure was developed with two major objectives:

Ensure minimal interaction between the standard code

and the new routines.

Allow the partial closure routines to be accessed only

when closure is predicted.

The standard configuration of the finite element implemen-

tation of the linear-elastic line-spring model consists of two

primary routines, MATLSA and MATLS. To support the

partial closure capability two additional primary routines have

oeen introduced, PRTCLL and PART, and minor modifications
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have been made to MATLS. With respect to the first objective

above, the interface between the standard code and the partial

closure routines is contained entirely within routine MATLS.

The modifications which have been made to this routine serve

three purposes; initialization of fixed data and storage

locations, updating storage locations, and evaluation of

closure. Each of these will be discussed in more detail below.

During execution, upon entering routine MATLS the

standard code retains only the displacement and force distri-

butions for the last converged increment and, in general, a

current incremental displacement distribution estimate. For

reasons to be discussed later, the solution algorithm for the

partially-closed line-spring requires a significant amount of

intermediate data to be carried from iteration to iteration prior

to incremental convergence. The majority of the data and

storage location initialization and updating is performed within

the supporting partial closure routines and, as such, are not

affected by the operation of the standard code. Data initial-

ization consists basically of reading the discrete parametric

data into a common array for use by all routines. This

operation is performed once per analysis within routine

MATLS. Intermediate data updates are performed once per

iteration within the support routines INIT, INIT1 and ICOUNT.

Appendix III contains the listing of the modified MATLS

routine with each area of modification indicated and described.

The evaluation of closure is, of course, the final objective

of the implementation of the partial closure routines. The

7



entire solution for the partially-closed line-spring model is

obtained.inroutinePART, as will be discussed in the following

section. Prior to the evaluation of closure two other

operations must be considered; checking to see if closure is

predicted and, if so, ensuring that the correct intermediate

data are input to routine PART. The first of these is

performed in a manner similar to that by which a structure is

found to be stressed above its yield limit. An incremental

displacement distribution (step 1 of the primary iteration loop)

is applied to the fully open (linear-elastic) line-spring element.

The resulting work-conjugate force distribution is determined

in the form of the load ratio, A. A load ratio exceeding the

critical load ratio required for closure to occur (Table 3.2.1)

indicates that the line-spring element is no longer linear; the

closure has introduced nonlinearities. In conjunction with

objective 2, should closure not be obtained the partial closure

routines are bypassed (with the exception of storage updating

routines) and the standard solution algorithm is followed.

In the event that closure has occurred the data which

must be input to the partial closure routines (step 2 of the

primary iteration loop) can be of several forms. Consider the

diagrams of Figure 4.1-1 which represent different primary

iteration step 2 procedures between the same solutions. In the

first, Figure 4.1-1(a) the procedure is stationary, always

proceeding from the previously converged increment. The

second diagram, Figure 4.1-1(b), shows a progressive

procedure in which the previously converged iteration or
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increment is used as input for the next iteration. In other

words, the "base" for the stationary procedure does not

change until incremental convergence is obtained. The "base"

for the progressive procedure progresses with the solution.

Notice that for both iteration procedures a previously

converged solution is required to determine the solution state

of the partially-closed crack. This restriction is satisfied only

when a linear (fully open crack) solution has been obtained.

Therefore, a linear solution must be performed prior to the

existence of closure. Intuitively it is expected that the

progressive procedure should have better inherent convergence

characteristics than the stationary procedure. For this reason

the progressive solution procedure was selected for step 2 of

the primary iteration loop with the following exceptions:

Consider a situation with a very large increment size

and increasing closure length. Due to the large

increase in line-spring element stiffness with

increasing closure, the work-conjugate force

distribution may be very large (Figure 4.1-2(a)).

This occurs because the current incremental

displacement estimate corresponds to the previous,

lower stiffness solution. If this progressive solution

is input to the partial closure routines the secondary

iteration loop may become unstable. To avoid this

possibility, the stationary procedure is applied in

these situations.

1
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2 If convergence is not obtained after a sufficient

number of iterations, the increment size is decreased

by the standard ABAQUS © code. For the first

iteration of the new attempt the progressive solution

procedure is started from the previously converged

increment rather than continuing from the previous

iteration (Figure 4.1-2(b)).

At this point the reason for requiring storage of inter-

mediate data becomes evident. As mentioned earlier, the

standard code retains only the displacement and force distri-

butions from the previous increment and the current incre-

mental displacements. To input the data from the previous

iteration into the partial closure routines requires intermediate

results from that iteration as well as, for the exceptions noted

above, results from the previous converged increment.

] 4 Secondary Iteration Algorithm

The partial closure portion of the total finite element

program consists of 18 subroutines. As discussed in the

previous section, the interface between the standard code and

the partial closure portion is performed entirely within routine

MATLS. Direct access is made by MATLS to six of the

subroutines. The subroutine hierarchy and access paths are

presented diagramatically in Figure 4.2-1. A description and

listing of each of the partial closure routines is presented in

Appendix IV.
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In general, the objective of the partial closure routines

can be described as follows: given the force and displacement

distribution from a previous solution state and a current

displacement increment, determine the corresponding partially-

closed crack characteristics. The crack characteristics consist

of the resultant force distribution and tangent stiffness (or

compliance) matrix, the closure length ratio, and the stress

intensity factor. The previous solution state may be either

the previously converged increment or the last iteration as

discussed in Section 4.1. Routine PRTCLL is the primary

interface between the standard code and the remaining partial

closure routines. The data input to the closure routines is

controlled by PRTCLL and the other storage initialization and

apdating routines.

The secondary iteration is performed entirely within

subroutine PART. A Newton-Raphson scheme is employed and

is described briefly below:

Step 1 - Use the incoming force distribution to evaluate

a new tangent compliance matrix.

Step 2 - Use the incremental displacements and the new

tangent compliance to determine the load

increments.

Step 3 -

Step 4 -

Use the total load estimate and total compliance

to calculate the total displacement estimate.

Compute the error in the total displacement

from the incoming displacement. If convergence

is not satisfied, return to step 1 replacing the
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incoming force distribution with the total load

estimate and replacing the incremental

displacements (step 2) with the displacement

error.

The steps outlined above comprise primary iteration step 2

with the results being used for comparative purposes in

primary iteration step 3. The actual secondary iteration

algorithm is discussed in more detail in Appendix V.

A significant aspect of the partial closure algorithm deals

with the stiffness mismatch across the fully-open/

partially-closed interface. At this interface, the onset of

closure, the fully-open and the partially-closed line-spring

stiffnesses should be equal. Due to the different calculation

procedures (Sections 2.1 and 2.4) this is not the case. The

resulting stiffness discontinuity is unacceptable as convergence

will never be obtained in the small closure range. To avoid

this inconsistency, factors are calculated within routine MATLS

to relate the fully-open and the partially-closed line-spring

stiffnesses at the onset of closure. The factors may be

greater or less than 1.0 and are applied the partially-closed

stiffnesses at each step of the secondary iteration loop (within

routine PART). The rationale behind applying the factors to

the closed stiffnesses is relatively simple. The stiffness

calculation as discussed in Section 2.4 requires a significant

amount of interpolation and slope evaluation of discrete data

"curves" (Section 4.3). It is to be expected that some error

will be introduced due to the interpolation, predominantly in
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the small closure range where the most severe gradients occur.

Therefore, to minimize the effects of the interpolation errors,

the factors are applied to the partially-closed stiffnesses.

However, beyond the small closure range the discrete data

"curves" tend to be more well behaved. In this range it is

expected that the partially-closed equations (equations 2.4-7)

yield relatively good stiffness estimates. Therefore, the

factors should be "reduced" to a value of 1.0 at some point in

the closure range. The method by which this reduction is

performed has a significant effect on the convergence

characteristics of the partially-closed line-spring model. This

will be discussed in more detail later. In routine PART,

presented in Appendix IV, the reduction occurs linearly over

the range 0 = So = 3.

i 3 Interpolation of Discrete Parametric Data

The description of the parametric data necessary to

characterize partial closure of external cracks has been

presented in Chapter 3. It should be noted that although the

data was obtained at discrete values of crack depth and

closure length, the final objective this study is to apply the

analytical technique to all cracks with depths Sy = 0.8.

Therefore, an interpolation scheme was required which would

allow continuous evaluation of the parametric data. Of itself

this presents little difficulty as a linear interpolation scheme

would satisfy the requirement. However, to evaluate the

tangent compliance matrix coefficients (equations 2.4-7) the
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slopes of the discrete data "curves" must be known. A

further requirement then becomes that slope continuity must be

satisfied by the interpolation scheme.

Each parametric data set must be interpolated with

respect to two variables; closure length, for displacement and

stress intensity factor contributions, and crack depth. The

closure length must be interpolated with respect to load ratio

and crack depth.

Interpolation with respect to closure length (and load

ratio) was performed using a cubic spline curve through two

consecutive data points with known slopes. As indicated in

Figure 4.3-1 the slopes were evaluated by a weighted central

difference approximation. This approach is sufficient to

satisfy the continuity requirements described above. This

interpolation scheme has been applied to all data ranges with

the following exceptions:

For the first range of the stress intensity factor

contribution (0 = 3a £ 0.025) the left-side slope is

unknown. In this range a quadratic interpolation

scheme is used (QUADR). The situation is similar at

the final SIF range ( 3a - 0.075 £ §_ £ 3.) and for

the first closure length (vs. load ratio) range where

quadratic interpolation was used (QUADL and

QUADR, respectively).

/ For the first two ranges of the displacement contri-

bution ( 0 £ %_ = 0.025 and 0.025 = Z _ = 0.075,

Figures 3.2-5 through 3.2-7) the situation is
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somewhat different. As illustrated in Figure 4.3-2

the gradient of the displacement contributions are

very large at the onset of closure. Direct use of

the weighted central difference approximation for the

slope at data point 2 ( Se = 0.025) resulted in a

non-monotonic displacement curve (cubic spline)

between data points 2 and 3 as shown

(cubic/quadratic). To avoid this, multiple quadratic

interpolation is performed; first using routine

QUADR between points 2 and 3 and then, with the

slope calculated at point 2, using QUADR again

between points 1 and 2 (double quadratic). The

resulting "curve" satisfies the continuity

requirements, as well as the monotonic expectations.

Note that at the full closure end of the data (final range) the

slopes of the displacement vs. closure length and the closure

length vs. load ratio curves are known. Therefore, cubic

spline interpolation is applicable in the final data range.

As no differentiation with respect to crack depth is

required a linear interpolation scheme in Sa was deemed

sufficient. Although this represents the most direct type of

interpolation several aspects of it should be noted. Figure

4.3-3 shows a 3-D representation of a typical crack closure

length versus load ratio curve for two discrete crack depths,

3, and 3, = Sal + 0.1. As can be seen in the figure

both curves are not defined over the same total data range.

The curves for S49 and a1 are undefined in regions I and III,
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respectively. In region II both curves are defined and the

interpolation can be performed directly. In region III, line BD

defines the load ratio for full closure for crack depths between

Sal and Sao The data and slopes along this line are known

(equation 2.3-9) so the interpolation can be performed between

the curve for a2 and a point on the (known) line BD. In

region I, line AC defines the approximate onset of closure. In

this region the data and slopes are not known and must first

be interpolated (linearly) along the line between points A and

C. The interpolation in I can then be performed between

this point and the curve for Sal These same types of

considerations are required at the full closure end of the

displacement and SIF contribution curves.

1.4 Application of the Partially-Closed Line-Spring Model

A crack configuration which is of value due to both its

generality and its relative simplicity is that of a cylindrical

pressure vessel containing two long, axial, internal surface

cracks located diametrally opposite each other. Accepted

solutions for partial closure of surface cracks subjected to an

arbitrary membrane force/bending moment combination are not

available. Therefore, the verification of the partially-closed

line-spring model implementation is performed by examining the

cracked cylinder in two ways: one using gap elements to

define the crack face and the other using the line-spring

model. A comparison of the results of the two examinations is

presented in the next chapter.
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The crack configuration and loading is presented in

Figure 4.4-1. The long axial cracks (i.e., 2c'&gt;&gt;w) are

approximated by plane strain edge cracks. Due to the

presence of the cracks, the internal pressure results in a

tensile membrane force and a small closing bending moment

applied to each crack. For closure to occur the cylinder is

also "pinched" by concentrated compressive loads applied

normal to the plane of the cracks. The geometric parameters

defining the configuration are:

cylinder average radius, R = (R_+R;)/2 = 21.0 in.,

cylinder thickness, w = 2.0 in.,

crack depth ratio, a/w = 0.4.

The internal pressure, p, is held constant in both analyses

with the resulting membrane force due to the pressure, being

equal. Recall that the partial closure routines require a linear

solution to be available prior to the onset of closure. To

satisfy this requirement the compressive load, F, is applied

incrementally; beginning at a small value for which closure will

not occur and increasing such that partial closure is obtained.

Crack face pressurization is not considered.

The plane strain crack configuration contains two planes

of symmetry, thereby allowing only one-quarter of the

geometry to be modeled.

In the first analysis the cylinder is modeled using 336

8-node plane strain elements (CPE8R). The crack face is

defined by 16 gap elements. This model will be referred to as

the "gap" model and is shown in Figure 4.4-2

- Q4



 wv

 me

i

2F

Figure 4.4-1

Axially-Cracked Pressurized Cylinder
Analyzed Using the Partially-Closed

Line-Spring Model
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In the second analysis, the cracked cylinder is modeled

with 6 8-node shell elements (S8R) and one 3-node line-spring

element (LS3S). Convergence tolerance limits of 1-2% of the

resultant line-spring force distributions at the onset of closure

were used. This "shell" model is presented in Figure 4.4-3.

Several points should be noted with respect to the

analyses. As was mentioned, the internal pressure was held

constant in each analysis. However, the actual pressures are

not the same. For the gap model the pressure, p g’ acts over

the inner surface (radius RD. For the shell model the

elements are located at the average radius, R, so the

pressure, Pp, effectively acts over a larger area. Therefore,

the pressure for the shell model must be

P -s = Pg R,/R (4.4-1)

to result in the constant crack plane membrane force due to

pressure in the two analyses.

For the shell model, the partial closure routines as

presented in Appendices IIT and IV are used. In Appendix III

the variables FCl, FC2, and FC3 are introduced. As

described in Section 4.2 these factors are used to multiply the

stiffnesses obtained from the partial closure routines such

that at the onset of closure the "fully-open" and the

‘partially-closed" stiffnesses are equal (i.e., assure continuity

across the open/closed interface). These factors must be

"reduced" to 1.0 at some closure length $ c= S.- For the
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shell model this reduction is performed linearly over the total

crack depth.
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3. RESULTS OF AN AXIALLY-CRACKED CYLINDER

Of primary interest in the linear-elastic analysis of cracked

structures is the crack tip stress intensity. With the introduction

of partial crack closure a second parameter becomes of interest, the

crack closure length. Figure 5-1 presents the closure length ratio,

5 a» Versus normalized compressive force, F/Fg,s for the axially-

cracked pressurized cylinder described in the previous section.

The normalizing force, Feos corresponds to the force required for

full closure to occur. From previous discussion, full closure is

representative of an uncracked structure with zero stress at the

location of the crack tip. From reference [24], the force which

satisfies this requirement for the axially cracked cylinder is

Fe, = pRw/(w-0.3634 RAs) (5-1)

where A fo is the load ratio at full closure from Table 3.2-1.

In general, the two solutions agree quite well. It should be

noted that the shell model allows for a pseudo-continuous evaluation

of the closure length (i.e., although a unique value of closure

length is obtained, a range of values exist for which convergence

criteria are satisfied). The closure length estimates for the gap

model are known only as a range of values which are governed by

the mesh refinement of the model. This closure range is plotted in

the figure. The actual closure length falls within the defined range

for the gap model. For the shell model the range is unknown as is

the location of the estimated closure length within the range. In

general, the accuracy of the estimated closure length is governed
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by the convergence tolerance limits for line-spring elements and by

the mesh refinement for gap models.

Both models have been analyzed for two linear (fully open)

load cases such that the linear trends could be examined. For the

shell model, the following relationships were obtained between the

generalized forces, N and M, and the applied loads,

N=pR -F

M = -0.02588 pR - 7.204 {

(H--kD’

where F is positive as shown in Figure 4.4-1. From the definition

of the load ratio, the onset of closure is found to occur at F crit’Fe.

= 0.316. Similar development for the gap model, using the crack

mouth opening displacements rather than the generalized crack

plane tractions, yields

CMOD = (7.39E-8) pR - (1.280E-6)  FE . &gt;3)»

for a critical force of F crit! Fs o = 0.322. Both of these critical load

points are indicated in the figure.

Figure 5-2 presents the second and final comparison between

the two solutions; the normalized crack tip stress intensity,

K,/ (pRYTra/w), versus normalized compressive force. Again, the

two solutions agree very well over the applicable range of closure.

The linear solutions from each analysis have been combined,

resulting in the following relationships between K; and the applied

loads:

K, = 1.5952 pR - 22.823 F
"Retr)

for the shell model and
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K, = 1.6005 pR - 22.9877 F
(5.3)

for the gap model. These linear solutions are also plotted in Figure

5-2. The effects of partial crack closure on the stress intensity

factor are dramatically shown. From equations (5-4), the linear

stress intensity factor is zero at F/Fg, = 0.390. However, both

solutions indicate that at this load point the stress intensity factor

has decreased only by ~33% from the fully open case (the onset of

closure).

It should be noted that the curves presented in Figures 5-1

and 5-2 are applicable only for the geometry modeled (i.e., R = 21

in, w = 2 in, a = 0.8 in). However, since the closure length ratio

is purely geometric and the applied force and the stress intensity

factor are normalized with respect to the internal pressure, the

effects of kinematic variations are implicitly included.

Notice also that the agreement between the stress intensity

factors is better than that between the closure lengths. This is

expected to be the case in general because a larger closure length

implies greater stiffness which, for a given displacement field,

results in a greater bending moment. Simultaneously, Figure 3.3-1

shows that the increased closure length corresponds to a lower

stress intensity factor calibration. The increase in the moment is

therefore offset by the decrease in the SIF calibration resulting in

a more well behaved SIF.

Also, in both figures it can be seen that the shell model

solution is applicable over a limited range of closure. This topic

will be discussed in the following chapter. For the present, let it

suffice to say that over the applicable range, the very good
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agreement between the two solutions suggests that the

nonlinear-elastic line-spring model formulation provides the

analytical capability of much more complex finite element models.
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3. DISCUSSION

The objective of this work has been the development and

implementation of the nonlinear-elastic line-spring model to be

applied in the analysis of partially-closed surface cracks in plates

and shells. The results of an axially-cracked pressurized cylinder

have been presented, indicating that the newly developed model is

capable of analyzing surface-cracked structures to the same extent

as much more complex finite element models. It has been noted that

the nonlinear-elastic line-spring model solution is applicable over a

limited range of closure. Some of the factors which control this

range are now considered.

The primary factor contributing to the limited solution range is

considered to be the lack of parametric data available for

interpolation. This lack of data appears to be most severe in the

small closure range. Recalling Figures 3.2-4 through 3.2-9, the

most extreme variations in displacement contributions versus closure

length and closure length versus load ratio occur at and just

beyond the onset of closure. As discussed in Section 4.3, a

significant amount of interpolation is performed on all of the

parametric displacement data to evaluate the compliance matrix

coefficients. The large variations in the data in the small closure

range represent a challenge to the interpolation technique,

especially with very few data points defining the curves. The

importance of this area increases when considering that the fully-

open and the partially-closed stiffnesses must be equal at the onset

of closure to satisfy convergence requirements. To satisfy this

requirement, stiffness factors are applied to the partially-closed
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stiffnesses as discussed in Section 4.2. The stiffness factor

reduction technique (i.e., linear, quadratic, etc. and the range

over which it is applied) serves to shift the effect of insufficint

data to a different closure range.

A significant number of trial analyses of the axially-cracked

cylinder were performed to examine the effects of convergence

tolerance limits, iteration procedure, and stiffness factor reduction

techniques on the nonlinear-elastic line-spring model characteristics.

The effects of the tolerance limits on the convergence

characteristics of the line-spring model have a relatively predictable

trend. In general, the larger the tolerance limit, the quicker the

convergence; the smaller the limit, the longer the solution time.

The accuracy of the line-spring model solution is governed by the

tolerance limits defined in the analysis. Therefore, a better

solution is expected if small tolerance limits are defined.

Unfortunately, as is typically the case, there exist advantages and

disadvantages to both small and large tolerance limits. As can be

seen in Figures 5-1 and 5-2, at the upper limit of applicability of

the shell model the increment size decreases and both the closure

length and the stress intensity factor solutions begin to oscillate.

At the maximum increment size allowed in the analysis of the

axially-cracked cylinder, the increment in applied load, F, was 60

lb. The resulting linear increments in the generalized forces, N

and M, were 60 lb and 430 in-lb, respectively, versus a tolerance

limit of 150 1b and 150 in-lb. This indicates that if the increment

size is decreased by a factor of 3 in the linear regime the

incremental generalized forces will be less than the tolerance limit.
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Due to the nonlinearities which develop with crack closure, these

incremental forces will change. However, it can be expected that a

sufficiently small increment size exists, and has been attained, for

which the incremental generalized forces are less than the tolerance

limits. A second effect of the tolerance limit demonstrates the

sensitivity of the nonlinear line-spring model solution to the

"ligament" tractions. A relatively small variation in the generalized

force or moment (or load ratio) can have a significant effect on the

solution. Closure length differences of up to 20% were obtained for

the same load state with maximum residuals in the upper (+150)

versus the lower (-150) portion of the tolerance range. The effect

on the stress intensity factor is somewhat less severe. Both of

these situations have been found to contribute to the solution

behavior at the upper limit of applicability.

From this it appears that very small tolerance limits are

desirable. However, the solution time required to converge to very

small tolerances may be restrictive. In general, the larger

tolerances will yield good results for sufficiently large increment

sizes, smaller tolerances may require smaller increments and

correspondingly greater solution times. One further effect of the

tolerance limit can be seen at the onset of closure. From Figure

5-1, the first solution point within the closure range predicted zero

closure. The reason is that the nonlinear stiffnesses associated

with closure resulted in an incremental displacement estimate which

corresponded to a fully open crack configuration. The resulting

residual forces were small enough to satisfy convergence

requirements. A smaller tolerance limit will minimize the range of

 144 D
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closure length over which this can occur but it will not remove the

possibility of occurence.

The stationary and progressive iteration schemes have been

described in Section 4.2. Several analyses comparing the

convergence characteristics of the two procedures have been

performed. In each case, the convergence characteristics of the

progressive iteration scheme exceeded those of the stationary

scheme. Although the amount varied with the tolerance limit and

the stiffness factor reduction technique, the progressive precedure

resulted in consistently better convergence.

By far, the stiffness factor reduction technique was found to

have the greatest impact on ‘the line-spring model characteristics.

In light of this, a significant number of reduction techniques have

been considered as summarized below:

STIFFNESS FACTOR REDUCTION TECHNIQUE

3, = 0.075

2c = 0.100

$e = Sa

Quadratic to %e = 0.075

to 3. = %

to

In addition, constant factors were applied (no reduction) and the

partially-closed stiffnesses were used directly. There was no clear

effect of the factor reduction technique. In the example

considered, linear reduction was applied over the total crack depth.

For the same model, no reduction and quadratic reduction over the

crack depth resulted in very different convergence behavior.

Applying the partially-closed stiffnesses directly (i.e., a constant
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factor of 1.0) had a second effect; the load at which closure began

changed due to the difference between the fully-open and the

partially-closed crack stiffness. However, it should be noted that

over the applicable closure range for each reduction technique,

the closure length estimate for the same load state were somewhat

different. This difference is due in part to the increased or

decreased effects of the tolerance limits and to the stiffness

differences obtained by the reduction technique.

The effects of the three primary aspects of the partial crack

closure implementation on the convergence characteristics of the

nonlinear-elastic line-spring model can be summarized as follows:

Large tolerance limits in conjunction with small increment

sizes can result in oscillatory solution behavior.

Progressive iteration is more advantageous than stationary

iteration.

The stiffness factor reduction technique has the most

significant effect on convergence.

The calculated closure length is affected more than the

corresponding stress intensity factor.

A comparison of the gap model and shell model results

presented in Figures 5-1 and 5-2 indicate that over the applicable

range the two solutions give effectively the same results, especially

for the stress intensity factor. The most dramatic difference

between the two analyses is that of model complexity (Figures 4.4-2

and 4.4-3). The gap model consists of a relatively large number of

3-node plane strain elements in comparison to the shell model which

consists of 6 8-node shell elements. The shell elements were chosen
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because of their suitability in modeling cylindrical structures.

Another advantage of the shell elements is that the nodal degrees of

freedom are the same as for the line-spring element allowing for a

simple and direct connection. A model consisting of plane strain

elements and a line-spring element would require additional modeling

effort associated with a larger number of elements necessary to

model the cylinder and the definition of constraint equation

connections between the line-spring element and the lower order

palne strain elements. A caution associated with the shell elements

is that the cylinder centerline is modeled such that the internal

pressure must be modified to account for the actual pressure area.

For very large radius to thickness cylinders this pressure load

variation is not significant. However, for the example performed

here the 5% difference could have a major influence considering the

impact of the other factors already considered.

It was originally expected that the most significant gradients

of the data would occur in the range of full closure as the cracked

compliances must decrease to zero (and the stiffnesses must become

infinite). As evidenced by the parametric data curves, Figures

3.2-4 through 3.2-9, the reverse is true; all curves show very

smooth trends as full closure is approached. For the most part,

the presence of the stiffness factor is due to the lack of parametric

data available for interpolation in the small closure range. The

evaluation of the partially-closed compliance matrix coefficients

(equations 2.4-7) requires estimation of slopes and displacements of

the parametric data curves. With reference to Figure 4.3-2, a very

different displacement can be obtained depending on which
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interpolation procedure is used. Similarly, slope estimates can be

widely varied. The interpolation method used can result in a

very different compliance matrix in this closure range. The

differences decrease with increasing closure because of the smoother

data curves obtained.

The results from the cases which have been examined by

modifying the stiffness factor reduction technique, the iteration

procedure and the tolerance limits indicate that the interpolation of

the parametric data governs the convergence characteristics of the

nonlinear-elastic line-spring model. The interpolation is most

severly tested in the range of small closure where the parametric

data curves are not well defined.

When the partially-closed stiffnesses are used throughout the

analysis, a difference will exist in the load required to cause

closure. For this reason it is advantageous to apply the stiffness

factor. It is expected that additional small closure data will result

in a more accurate estimate of the partially-closed stiffnesses and

will minimize the effect of the stiffness factor. However, unless the

partially-closed stiffness is to be applied at all time (i.e., the 0.0

closure stiffnesses apply for the fully-open crack as well), the

stiffness factor will be necessary to assure continuity across the

fully-open/partially-closed interface.

The implementation of additional parametric data or

nodifications in the stiffness factor reduction technique, should

follow the procedure discussed in Appendix VI.
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7. CONCLUSIONS

In this study, the linear-elastic line-spring model has been

extended to include nonlinear-elastic response resulting from partial

external closure of surface cracks. This enhanced model has been

incorporated into the ABAQUS © finite element program. From the

comparisons and discussion presented, the following conclusions are

drawn.

Partial closure of an axially-cracked cylinder has been

analyzed using both a highly detailed model consisting of

plane strain elements and gap elements and a very simple

model consisting of several shell elements and a single

nonlinear-elastic line-spring. The two methods result in

essentially the same variations in closure length and

stress intensity factor with variations in the applied

loads.

/

3

A progressive iteration scheme requires

intermediate displacements, forces and stiffnesses.

Despite this increased recordkeeping, progressive

iteration is more advantageous than stationary iteration

due to its inherently better convergence characteristics.

The effect of crack closure on the stress intensity factor

is dramatic. An order of magnitude difference in the

stress intensity factor between the linear and the

storage of

nonlinear solutions can be obtained within a closure

length equal to 1/3 of the crack depth.

The nonlinear-elastic line-spring model is applicable over

a limited range of closure. The actual range varies with

110Lh



several factors. However, the primary cause is

considered to be the lack of parametric data available for

interpolation. The lack of data is most severe in the

small closure range where the largest variations in the

displacement contributions occur.

In general, the newly developed nonlinear-elastic line-spring

model is a viable alternative to highly detailed finite element models

in analyzing partial external closure of surface cracks in plates and

shells.

For future consideration it is expected that additional

parametric data is required, primarily in the small closure range, to

fully utilize the nonlinear-elastic line-spring model.
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APPENDIX 1

CLOSURE MODE - INTERNAL CRACK CLOSURE

The closure mode which is the subject of this analysis is that

where the crack mouth closes first and closure progresses toward

the crack tip. It has been noted that this mode of closure requires

a closing (negative) bending moment and either a tensile (positive)

or compressive membrane force. If an opening bending moment is

applied a compressive membrane force is required to close the

crack. The resulting closure begins at the crack tip and

progresses toward the mouth. In this mode a cusp is formed at the

crack tip. Applying superposition of the stress intensity factor

gives:
! i

K. = Nky + Mky = 0.

Defining A to be the load ratio required to satisfy equation (I-1)

the result becomes

X= 60.923 + 0.199(L-sin 4 :
0.752 + 2.02 §_ + 0.37(1-sin @)

where ky and Ky are obtained from Tada et al [20] and @ =T% /2.

Figure I-1 presents the load ratio required for the onset of

internal (2A) and external ( A crit’ closure versus crack depth. To

determine which closure mode occurs first under various loading

-v_

combinations the crack opening displacement profile and the stress

intensity factor are required. The findings are as follows:

Jase 1 - N=&gt;0, M-=U No closure of either type.
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FIGURE 1-1
CRACK CLOSURE MODE

CRITICAL LOAD RATIO vs CRACK DEPTH
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Case 2 - N&gt;0, M&lt;0

case 3 N pt 0 M&gt;0

Case  aq N&lt;0, M&lt;0

A =A, - overlapping C.0.D.

N=X pit ~ Positive SIF.

A=7, - separating C.0.D.

A= it - negative SIF.

Full external closure ( Sa &lt; 0.5).

Possible full external closure

(%,-0.5).

In summary, the closure mode is dependent only upon the

applied bending moment. For a closing (negative) moment closure

begins at the crack mouth. For an opening moment closure begins

at the crack tip
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APPENDIX II

REDUCTION OF PARAMETRIC DATA

Reduction of the parametric finite element data was discussed

in Sections 3.2 and 3.3. At this time the actual data reduction will

be performed on the data for a crack depth of 0.100.

For this crack depth three closure lengths were modeled;

0.0 (fully open), 0.0" and 0.05. The uncracked contributions to

the far-field deflections are 0.091 due to a unit membrane force and

1.092 due to a unit bending moment (equation 2.1-3) with

E'=30/0.91 and w = 1.0.

Before proceeding with the actual data reduction the

differences between the "modeled", "effective" and "actual" closure

lengths should be discussed. Consider a portion of the finite

element model presented in Figure 3.2-3. The "modeled" closure

length is just that, the amount of closure corresponding to node i

of the model. For 0.0" modeled closure, i = 0; for 0.0" modeled

closure, i = 1; ete. The "effective" closure length correpsonds to

the closure at node i+l and applies to the displacement contributions

( oN on = Ox» Ow - With a given modeled closure (to node i) the

model characteristics remain constant until the gap COD, is zero.

At this point the characteristics will change, again to remain

constant until gap COD; ,, closes. Therefore, the displacement

contributions for the effective closure length correspond to those

for the modeled length. The "actual" closure length also

corresponds to the closure at node i+l. However, it applies to the

total displacements and stress intensity factor ( gM aM and My,
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These values, as described in Sections 2.4 and 3.3 combine the

displacement and SIF contributions corresponding to the modeled

closure length. In summary, the term "effective" simply implies

that the displacement contributions are applicable over the entire

closure range from node i to node i+l and are dependent on the

finite element mesh size.

For the 0.0” and 0.0" modeled closure lengths 0.0" and 0.025

effective) the data reduction is presented in Tables II-1 and II-2.

Note that k rat,N and k rat,M relate the Kin and Kim estimates from

the finite element analysis to those from reference [20] (Table

3.3-2). For the case of 0.05 closure a different approach is

required. Consider the 0.05 closure model of Figure II-1.

Application of equation (3.2-1) results in a load ratio of A= -5,1

with a closure length of 0.075 (node 4). However if node 4 has

closed, then, to the accuracy of the finite element model, the crack

is fully closed. From equation (2.3-9), full closure occurs at a

load ratio of -4.8. The discrepancy lies in that what appears to be

full closure as far as the model is concerned in reality represents

the presence of a crack between nodes 4 and 5 (i.e., no traction is

present on the surface between nodes 4 and 5).

Since full closure has in reality occured, the 0.05 modeled

closure length data is neglected in favor of the full closure

characteristics. This effect occurs for all crack depths.

Table II-3 presents a complete list of the reduced parametric

data requred for the partial closure routines.

19



TABLE II-1

DATA REDUCTION FOR 0.0 CLOSURE

CRACK DEPTH - 0.10

MODELED CLOSURE LENGTH - 0.0

Displacement (Far-Field)

Rotation (Far-Field)

0.091569 (N) 0.003152 (M)

0.003152 (N) 1.109473 (M)

0.00847 (N) 0.049961 (M)

0.012948 (N) 0.3707 (M)

COD,4

J-Integral

EFFECTIVE CLOSURE LENGTH - 0.0"

Foy = E'(.091569-.091) = 0.01876

}&amp;y = $6 = E'(0.003152) = 0.10392

10) = E'(1.109473-1.092) = 0.57603

ACTUAL CLOSURE LENGTH - 0.0"

» = -0.049961/0.008847 = -5.64708

peM = 4 sn A * 16) = 0.002037

1M = 16 A + 19), = -0.010819

KotNy= 0-6702/0.6533 = 1.0259

Kpq¢, = 3-5003/3.4958 = 1.0013

Me x ky VE'(0.012948) +k, \ VE'(0.3707)=-0.28437
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TABLE II-2

DATA REDUCTION FOR 0.07 CLOSURE

CRACK DEPTH - 0.10

MODELED CLOSURE LENGTH - 0.0

Displacement (Far-Field) 0.091277 (N)

0.001502 (N)

0.003536 (N)

0.001502 (M)

1.100153 (M)Rotation (Far-Field)

COD;4 0.019528 (M)

J-Integral 0.006561 (N) 0.1774 (M)

EFFECTIVE CLOSURE LENGTH - 0.025

Foy = E'"(.091277-.091) = 0.00913

toy = 1 Oy = E'(0.001502) = 0.04951

+O), = E'(1.100153-1.092) = 0.26879

ACTUAL CLOSURE LENGTH - 0.025

X\ = -0.019528/0.003536 = -5.52209

16M = 16, X + $5) = -0.00090

eM = 30 A+ 16, = -0.00463

Kyat, = 0-6702/0.6533 = 1.0259

Spat, = 3:5003/3.4958 = 1.0013

M2 Rk, VE(0.00656D) + k , \ VE'(0.1774)=-0.21326
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[ABLE 11-3
PARTIAL CRACK CLOSURE - PARAMETRIC DATA

Number of Discreet Data Points Available

for Crack Depth Ratio

2.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
3 5 7 9 11 13 15 17

Crack Depth = 0.10

Aewit 5 B72 g"/e kK” 8u/2
-5.64708 .000 -2.0371E-3 -1,0819E-2 ~-,.28437 .0187634

-5.52209 .025 -8.9607E-4 -4.6304E-3 -.21326 ,0091287

-4,80000 .100 0.0000000 0.0000000 .00000 .0000000

Crack Depth = 0.20

Neri 5. “2 gM/2 kM &amp;u/2
-5.24679 .000 -1.7614E-2 -8.0639E-2 -.75905 .0922415

-5.13448 .025 -1.2219%E-2 -5.4311E-2 -.63228 .0480350

-4.76670 .075 -4.4843E-3 -1.8879%E-2 -.39294 .0172090

-4,33957 .125 -9.0437E-4 -3.5887E-3 -.19343 .0065008

-3.60000 .,200 0.0000000 O.0000000 .00000 .0000000

Crack Depth = 0.30

ret TM 6/2 kM Su/2
-4,81112 .000 -6.0228E-2 -2.3167E-1 -1.3360 .2651587

-4,71098 .025 -4.7201E-2 -1.7503E-1 -1.1582 .1300800

-4,38720 .075 -2.6125E-2 -9.0642E-2 -.86567 .0563050

-4,00480 .125 -1.2443E-2 -4.0326E-2 -.60850 .0311660

-3.58532 .175 -4.5211E-3 -1.3609E-2 -.37863 .0159030

-3.14211 .225 -9.0525E-4 -2.5065E-3 -.18291 .0063747

-2.40000 .300 0.0000000 0.0000000 ,00000 ,0000000

Crack Depth = 0.40

rt 5 8 e¥/2 kK Su /2
-4,35286 .000 -1.4209E-1 -4.4258E-1 -1.9828 .6401989

-4,26558 .025 -1.1832E-1 -3.5147E-1 -1.7539 .2724800

-3,97712 .075 -7.7615E-2 -2.1143E-1 -1.4235 ,1243000

-3.63400 .125 -4.7966E-2 -1.1972E-1 -1.12%6 .0779270

-3.24489 .175 -2.6575E-2 -6.0300E-2 -.84978 .0493520

-2.82582 .225 -1.2526E-2 -2.355635E-2 -.59034 .0293510

-2.39119 .275 -4.5296E-3 -8.1993E-3 -.36201 .0155790

ld =
vy

Sul2  6ul/2

1039211 .5760317

.0495130 .2687900

,0000000 .0000000

Sm/2 8/2

.4663580 2.366244

2344200 1.149300

0775440 .3507500

0273060 .1149100

0000000 .0000000

Ba 12 Ou /2
1.215482 5.616157

5656100 2.489500

2209000 .8784800

, 1123700 .4096900

.0525170 .1746800

,0191250 .0575860

,0000000 .0000000

Sm/2 Bu /2

2.644603 11.06500

1.044000 4.101700

4167300 1.445900

.2352200 ,7350600

,1335700 .3731100

,0709800 .1750100

.0327220 .0700460



TABLE 11-3

PARTIAL CRACK CLOSURE - PARAMETRIC DATA

(continued)

-1.94302 .325 -9.0543E-4 -1.4209E-3 -,17001 .0063326

-1.20000 .400 0.0000000 0.0000000 .00000 ,.0000000

Crack Depth = 0.50

Ait 58" 0"/2 KM
-3.89162 .000 -2.79534E-1 -6.5594E-1 -2.6925

-3.81571 .025 -2.3798E-1 -5.3147E-1 -2.4105

-3.55408 .079 -1.7148E-1 -3.3919E-1 -2.03591

-3.24200 ,125 -1.2036E-1 -2.1047E-1 -1.7413

2.88163 ,175 -7.9582E-2 -1.2114E-1 -1.4251

~2.48636 ,225 -4.86357E-2 -6.3056E-2 -1.119%¢6

-2.06796 .275 -2.67359E-2 -2.8608E-2 -.83550

1.63435 .325 -1.2562E-2 -1.0563E-2 -.57530

-1.19356 .375 -4.5336E-3 -2.7664E-3 -.34820

0.74337 .425 -9.0548E-4 -3.3448E-4 -.16057

0.00000 .500 0.0000000 0.0000000 .00000

Bu /2

1.460995

.4920900

2257200

1500900

,1041200

0716280

.0473250

,0283710

0154520

0063165

,0000000

Crack Depth = 0.60

Pet 5. Bf e"/2 ng Bu /2
-3.44645 .000 -4.7628E-1 -7.8557E-1 -3.4946 3.374369

-3.37874 .025 -4.2227E-1 -6.3167E-1 -3.1624 .7976900

-3.13426 .075 -3.227%E-1 -3.9773E-1 -2.7976¢ .3630000

-2.84305 ,125 -2.4403E-1 -2.4415E-1 -2.4578 .2501600

-2.50443 ,175 -1.7767E-1 -1.3749E-1 -2.1113 ,1827300

-2.12905 .225 -1.2337E-1 -6.7611E-2 -1.7667 ,1349000

-1.72738 ,275 -8.0800E-2 -2.6034E-2 -1.3605 .0983610

-1.30774 .325 -4.9078E-2 +-4.7092E-3 -1.1148 .0695410

-0.87642 .375 -2.6878E-2 13.5180E-3 -.82275 .0466650

-0.43689 .425 -1.2587E-2 4.5196E-3 -.56311 .,0288100

0.00602 .475 -4.5366E-3 2.6758E-3 -.33804 .01542390

0.45665 .525 -9.0544E-4 7.5226E-4 -.14939 .0063165

i.20000 .600 0.0000000 0.0000000 .00000 .0000000

Crack Depth = 0.70

Ned 5 8/2 e"/2 kK u/2
-3.03154 .000 -7.7607E-1 -7.1091E-1 -4.4927 8.445548

~2.96777 .025 -7.0055E-1 -S5.3147E-1 -4.1000 1.184800

-2.72858 .075 -5.5677E-1 -2.7089E-1 -3.7147 .5386900

-2.44620 .125 -4.4094E-1 -1.1111E-1 -3.3391 .3820800

-2.11894 .175 -3.4027E-1 -8.3404E-3 -2.9518 .2894000

-1.759586 .225 -2.5423E-1 S.1161E-2 -2.53592 .2234400

Led =

a  a

.0113990 .0207270

,0000000 .0000000

Em /2 Bu /2
5.410300 20.39889

1.639700 5.725100

.6307500 1.902500

,3662200 .9768100

2204700 .S5141600

.1294400 .2587700

.0711090 .1184400

0347860 .0462300

.0139090 .0138350

,0037900 .0024829
0000000 .0000000

om/2 Bu/2
11.15332 37.6537?

2.272900 7.048000

,8149600 2.156600

,4672000 1.084100

,2799700 .5636700

,1638300 .2812000

,0891070 ,1278900

.0418640 .0500370

,0140210 .0150860

,0000000 .0045196

-.0046295 ,0027036

-.0037899 .0024829

.0000000 .0000000

ou/2 Bn /2
24,82695 74.55299

2.815600 7.824600

9130900 2.220600

14937100 1.096600

,2729500 .5700200

,1381100 .2936600



TABLE 11-3

PARTIAL CRACK CLOSURE - PARAMETRIC DATA

(continued)

-1.36644 .273 -1.8292t-1

-0.95859 .325 -1.2582E-1

-0.53820 .375 -8.1836E-2

-0.10926 .425 -4.9462E-2

0.32551 .475 -2.6996E-2

0.76535 .523 ~-1.2614E-2

1.20734 .575 -4.5402E-3

1.65702 .625 -9.0354E-4

2.40000 .700 0.0000000

7.8043E-2 -2.1723 .1724300

3.2055E-2 -1.7999 .1312600

7.1846E-2 -1.4485 .0974130

5.4612E-2 -1.1228 .0693410

3.5929E-2 -.82670 .0468730

1.9666E-2 -.56283 .0289710

B.1266E-3 -.33586 .0154990

1.8394E-3 -.14737 .0063326

3.0000000 .00000 .0000000

0526920 .1500400

.0000000 .0820330

-.0294090 .0560180

-.0418630 .0500370

-.0422340 .0496830

-.0347860 .0462900

-.0232530 .0362010

-.0113990 .0207270

.0000000 .0000000

Crack Depth = 0.80

et 3. 9/2 e"/2 kK 5n/2 Sun Ou/2
-2.65483 .000 -1.2525000 -2.2619E-1 -6.0106 25.69929 66.97476 177.5804

-2.58921 .025 -1.1446000 -2.2047E-2 -5.4998 1.645400 3.115700 8.045000

-2.33836 .075 -9.3191E-1 2.4371E-1 -5.0432 .7649000 .8567100 2.247000

-2.04842 .125 -7.5900E-1 3.7913E-1 -4.5891 .5591900 3864600 1.170800

-1.71790 .175 -6.0655E-1 4.4165E-1 -4.1162 .4370700 ,1443000 .6895500

-1.35542 .225 -4.7337E-1 4.5156E-1 -3.6361 .3492500 .0000000 .4515600

-0.96994 ,275 -3.5972E-1 4.2403E-1 -3.1617 ,2802400 -.0878970 .3387700

-0.56890 .325 -2.6522E-1 3.7222E-1 -2.7035 .2234400 -.1381100 .2936600

-0.15769 .375 -1.8878E-1 3.0737E-1 -2.2682 .1755700 -.1610900 .2819600

0.26018 .425 -1.2874E-1 2.3857E-1 -1.8627 .1343000 -.1638300 .2812000

0.68268 .475 -8.3166E-2 1.7287E-1 -1.4874 .1004400 -.1517300 .2764500

1.10903 .525 -4.9998E-2 1.1522E-1 -1.1464 .0716280 -.1294300 2587700

1.53896 .575 -2.7177E-2 7.8788E-2 -.83979 .0480930 -.1011900 .2245100

1.97352 .625 -1.2660E-2 3.4932E-2 -.56982 .0295510 -.0709800 .1750100

2.41111 .675 -4.5475E-3 1.3597E-2 -.33894 .0157040 -.0424120 .1158600

2.85799 ,725 -9.0579E-4 2.9277E-3 -.14829 .0063747 -.0191250 .0575860

3.60000 .800 0.0000000 0.0000000 .00000 .0000000 .0000000 .0000000

Data for 99% Closure for Each Crack Depth

I
-4,81198

-3.62382

-2.433558

-1.24724

-.058824

1.12968

2.31828

3.46572

5/2
.083574

,084625

,085326

.086008

,086683

,087355

,088020

.088685
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APPENDIX III

VIODIFIED MATLS ROUTINE

A listing of the modified version of MATLS is contained on the

following pages. The modifications are lumped into five major

blocks, each identified on the listing. A brief description of the

function of each block is given below.

Block A - Storage Initialization

Storage locations are dimensioned for up to 30 nodes

connected to line-spring elements. The discrete

parametric data will be stored in arrays CJ, ALAM9, and

SXIC9. Arrays STF_, EEPR_, FOR_, STF_A, and EEl_A

are used for storage of stiffnesses, displacements and

forces at various intermediate solution states.

Block B - Data Initialization/Update

Discrete parametric data are read from an external file

and stored in the arrays CJ, ALAMY9 and SXIC9. Array

NPT contains the number of parametric data points which

are available for each crack depth analyzed. Subroutine

INIT determines the number of line-spring element nodes

and initializes and updates several of the arrays (see

Appendix IV).
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Block C - Data Initialization/Update

The variables FC1l, FC2, and FC3 are factors which

multiply the partially-closed crack stiffnesses to ensure

continuity across the fully-open/partially-closed interface.

This topic is described in more detail in Section 4.2 and

in the Discussion.

Block D - Closure Check/Evaluation and Data Update

A linear solution is obtained (array SE1l) to determine if

closure will occur. Three possibilities exist at this point.

If closure is predicted but incremental displacements are

zero (ICOUNT = 1 from subroutine INIT) then this is a

first pass through after a converged increment. In this

case the stiffnesses are updated and the closure routines

are bypassed. If closure is predicted and the incremental

displacements are non-zero then the closure routines are

called and the closure characteristics are evaluated. If

closure is not predicted the linear solution scheme is

continued. Also, if closure is predicted but, due to the

convergence tolerance limits, an "open crack" solution is

obtained, the stress intensity factor is evaluated linearly.

Block E - Data Update

if no closure is predicted in block D the arguments of

subroutine INIT1 are updated. This update is performed

within block D if closure occurs.

y €)r
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Subroutine MATLS

SUBROUTINE MATLS(JMATYP,AMK,AMPK,TEMP,DTEMP,EVAL,AMTAB,EPAR,
\A,C,EE1,DEEL,DSEL,AMKO,GELA,51,SVAR)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION JMATYP(2,1)

SIMENSION AMK(1) ,AMPK(1),TEMP(1),DTEMP(1),EVAL(1),AMTAB(1),
LEPAR(1) ,A(1),C(1),EE1(1),DEE1(1),DSE1(1) ,AMKO(1),GELA(L)
251(1) ,SVAR(1)

Cede de dee Fede ededeFede de dede de de ekFededeeded de ded dedede de Fed dede Fedededdedededed ded deok dededed deh dedehded dekh

DIMENSION CJ(8,17,10),SE1(2),ALAMI(8),SXIC2(8),NPT(8)
DIMENSION STF11(30),STF12(30),5TF22(30),EEPR1(30),EEPR2(30)

1 ,FORN( 30) ,FORM(30) ,STF11A(30),5TF12A(30),STF22A(30)
2,EE11A(30) ,EE12A(30) ,KFCL(30)

A

COMMON /JJL/CJ,THCK ,X1A,EPRIME,NPT /LOC/ICL,ICLP
COMMON /RNGE/ALAM1 ,ALAM2,ALAMS,SXIC9 /FCT/FC1,FC2,FC3

Cede ede de Fede dodo de FedeFe Fede Tede Fede ede Fede Fede ededeFede Fede Fe Fede ded dododeded kde dee dedededededededededededededed de deh Joke A

COMMON/CEL/LELOP,JETP,JETP1,KEL,KINTK,KINTL,KINTSL,KSPT,NEMCRD,
L JINTYP,JEXTYP,JEXTY2,JL1B,NAN24,MDOF,MCRD,
{ NNODE ,NNODU,NTENS NDI ,NSHR ,NPR ,NINTK ,NINTM,NINTSL ,NINTLL ,NMP,
4 NPARS,NSHL ,NBM,NELZM,NINTTS,NEINT,NDOFEL,JUNSYM,NEGEOM,
5 LNODEK ,NNODEP,LBASIS,NNODET,NTENST,NTDOFN,LLUMPM,NOFFT,
L NSPT,NNOD2,NNOD3,NNOD4,NTDOFE,KSPTT
COMMON/CMATS/JMATP,NMPROP,LCONFA,LGSECT,AMPTEM,

I LACTP1,JELA,JEXP,JHARD,JCREEP,JSWELL,JVISCP,JHYPO,JPERME,
2 JSOILE,SLAMDA,SKAPPA,SMRAT2,5V01D0,SV0ID1,SCONST,
3 JFRIC,LNOTC, JORNL ,LUNSMD,LCONCR ,LMROT , JCRK ,NCRKS , LCRKD(3)
4,LMORI , LUNSMT ,NTENSA ,NDIA ,NSHRA , LNWCRK

COMMON/CMATSZ/NMVARB,NMZ
SOMMON/CONSTS/P1,SIN6G0,C0OS60,KCROS2(3),KCROS3(3),ZERO,LZERD,LONE,

ONE, TWO, HALF ,ABIG,ASMALL ,BCBIG,LOCSHR( 2,3) , THIRD, PRECIS, BLANK
OMMON/CSMDB/1ECR,IESW,1EPL,1STRE,IPDISS,I1CDISS,ERAT,10RIG,

10RNL , ISTUAR,1IRSET,ICONFA
&gt;

Cdedodedododeedo hedededdedod hedodeve dk dedeeded deded dekh dk ke kT |

ATA ITTHL,ITTH /0,0/
(F (ITTHL.EQ.0) THEN

READ(90,%) (NPT(1),1=1,8)
30 75 1=1,8

DO 76 J=1,NPT(I)

READ(90,%) (CJ(I,J,K),K=1,10)
CONTINUE

CONTINUE

77 1=1,8

READ(90 ,%) ALAMI(1),SXICI(I)
SONTINUE

X1C=ZERD

3VAR(3)=ZERO

3VAR(4)=ZERO
“ND IF

rr

I WJ
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Subroutine MATLS (page 2)

CALL INIT(ITTHL,ITTH,ICNT,ICLCNT,EE1,DEE]l,EE11A,EEL12A,STF11,

1STF12,8TF22,8TF11A,8TF12A,8TF22R)
THCK=EPAR(2)

DEPTH=A(NMVARB)

X1A=DABS(DEPTH/EPAR(2))
ICL=10%XIA

[CLP=ICL+1

ALAM1=(CJ(ICLP,1,3)-CJ(ICL,1,3))%(10.DOXXIA-ICL)+CJ(ICL,1,3)
ALAM2=6.D0%(2.D0*X1A-1.D0)

Diced deok kkkded deeded deeded ddd deeb rtebrbbbcec drb db 0
[1=6

D0 10 K=1,NMPROP

JPROP=JMATYP(1,11)
[F(JPROP.EQ.1) GO TO 11

[1=1142

CONTINUE

50 TC 990

CONTINUE

201 Kl=1,NMZ

AMK(K1)=ZERO
CONTINUE

iADDR=JMATYP(1,11+1)

NPDEP=JMATYP(1, IADDR)
1COLS=1ADDR+1+NPDEP

NCOLS=JMATYP(1,1COLS)
CONTINUE

NROWS=JMATYP(1,1C0LS+1)
NEVAL=2

TALL TABVAL(JMATYP(1,ICOLS+2),EVAL,TEMP,NROWS,NCOLS,NEVAL,NPDEP,
LAMTAB)

CALL MATLS1(EVAL,AMK,DEPTH,EPAR(2),C(2),C(101),C(200),C(299),

LC(398),C(497))
EPRIME=EVAL(1)/(ONE-EVAL(2)%k2)

Cake dedede dedeeded dedede ded dededede ede edd”
CALL CLOSE(XIC,SXIC,KCL,ALAM1)
CALL COMPL(XIC,SXIC,PDM,PRM,ALAM1,C11,C12,C21,C22,CM,KDEF]

LKDEFIP)

FC1=AMK(1)/(CMXC22)

FC2=-AMK(2)/(CMXC12)

=C3=AMK(3)/(CMXC11)

IF (DEPTH.LT.ZERO) FC2=-FC2

Cckdedededededededededededciddoleddedodoeddoookdooed4©
DO 23 Ki=1,NMZ

AMPK (K1)=AMK(K1)
23 CONTINUE

IF(DTEMP(1) .EQ.ZERO) GO TO S50
CONTINUE

IF(NCOLS.LT.2) GO TO 30

DO 25 K=1,NMVARB

 -~

oo
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Subroutine MATLS (page 3)

IF(EE1(K).NE.ZERO) GO TO 26

25 CONTINUE

50 TO S0

CONTINUE

FT=TEMP(1)-DTEMP(1)

CALL TABVAL(JMATYP(1,1COLS+2),EVAL,TT,NROWS,NCOLS,NEVAL,NPDEP,
1AMTAB)

CALL MATLS1(EVAL ,AMKO,DEPTH,EPAR(2),C(2),C(101),C(200),C(299),
1C(398),C(497))

DO 46 Kl=1,NMZ

AMKO(K1)=AMPK(K1)-AMKO(K1)
CONTINUE

CALL ASET(GELA,ZERO,NMVARB)

CALL APRDTA(AMKO,EE1,GELA,NMVARB)

DO 47 K1=1,NMVARB

DSEL(K1)=DSE1(K1)+GELA(KL)
CONTINUE

CONTINUE

51 K1=1,NMVARB

EE1(K1)=EE1(K1)+DEE1(K1)
51 CONTINUE

Cdkckehddodkdekdokddokdekdkdkdohdodhkhkhkkh. =

SE1(1)=ZERO

SE1(2)=ZERO

TALL APRDTA(AMPK,EE1,SE1,NMVARB)

IF (SE1(2)*DEPTH.GE.ZERO) GOTO 52

ALMBDA=SE1 (1)*EPAR(2)/SE1(2)
[F (DEPTH.LT.ZERO) ALMBDA=-ALMBDA

IF (ALMBDA.LT.ALAM1) GOTO S52

[F (ICLCNT.EQ.1) THEN

CALL ICOUNT(ICNT,ICLCNT,AMK,AMPK,STF11A,STF12A,5TF224)
GOTO S52 |

END IF

IF (FM.EQ.ZERO.AND.FN.EQ.ZERO) THEN

WRITE(6,100)
FORMAT(/ ’,’THE FIRST LOAD STEP INCREMENT OF THE ANALYSIS

1 HAS RESULTED IN CLOSURE’//2X,’THE PARTIAL CLOSURE ROUTINES

2 REQUIRE A PREVIOUSLY CONVERGED (LINEAR) SOLUTION‘//2X,’PLEA

3SE REDEFINE THE LOADS SO A LINEAR SOLUTION WILL BE OBTAINED’)

GOTO 999

END IF

CALL PRTCLL(ICNT,EE1,DEE1,S1,DSE1,AMK,AMPK,A(2),5TF11,5TF12,

1STF22,FORN, FORM, EEPR1 ,EEPR2,KFCL ,DEPTH,NMVARB ,XIC, THCK KCL)
SVAR(3)=XIC

IF (KCL.EQ.-1) GOTO 53

GOTO 60

CONT INUE

SUAR(3)=ZERO
Codededededer-dedesfeadentent=170

ae
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Subroutine MATLS (page 4)

CALL APRDTA(AMPK,DEE1,DSE1,NMUARB)
CedeFordeFedede FedeFedeFede dete feded dede Fede dedede de de dede Fedede de ke Fededededededededede dededededed Tt TC

IF (ICNT.GE.1) THEN

CALL INIT1(ICNT,EE1,S1,DSE1,AMPK,STF11,58TF12,5TF22,FORN,
.  FORM,EEPR1,EEPR2)

END IF

53 CONTINUE

Codedde dededededdeeded kdedododehdd dododokdedodeded dont factott

4ABS=DABS( DEPTH)
“ALL MATLS2(AABS,EPAR(2),F1,F2,F3,F4,F5)
IF(DEPTH.GE.ZERO) GO TO 55

F2=-F2

F5=-F5

CONTINUE

SPLAS0=A(1)-A(2)**2/EPRIME

A(2)=F1%DSEL (1)+F24DSE1(2)+A(2)
IF(ISTVAR.EQ.0) GO TO 59

CALL MATLS3(DEPTH,EPAR(2),COD1,C0D2)

SUAR( 2) =SVAR( 2)+(DSE1L (1)%*COD14+DSEL(2)*COD2)/EPRIME
CONTINUE

[F(JINTYP.EQ.2403) GO TO 60

A(3)=F3%DSEL(3)+A(3)
A(4)=F4%DSE1(S)+FSXDSEL(6)+A(4)

A(1)=A( 2) FX 2+A( 3) **2+A( 4) *%2/ ( ONE-EVAL( 2) )
GO TO 70

CONTINUE

A(1)=GPLASO+HA(2)%%2/EPRIME
30 TO 990

A(1)=A(2)%k2
ZONTINUE

A(1)=A(1)/EPRIME

SUAR (4) =THCK*SVAR(3)
CONT INUE
RETURN

STOP

END
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APPENDIX IV

PARTIAL CLOSURE SUBROUTINES

A listing of each of the 18 partial closure subroutines and the

parametric data file is presented in the following pages. The

subroutines are grouped and contained in the following order.

[COUNT

INIT

INIT1

PRTCLL

PART

CLOSE

CLOSEA

COMPL

DEFL

DEFLA

FULL

PDEFL

PDEFLA

SIFAC

SIFACA

CUBIC

QUADL
QUADR

CLOSEDAT.DAT

Data initialization, updating and

partial closure check/evaluation routines

Main partial closure routine

Support routines to evaluate closure,

deflections, compliances and stress

intensity factor

Interpolation routines

Parametric Data File
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Subroutine ICOUNT

SUBROUTINE ICOUNT(ICNT,ICLCNT ,AMK,AMPK,STF11A,STF12A,8TF22R)
CCCCCCCcecceccecceccecececceccceccccccccecccccccccceccecceccccccecceccccecccecceec
C SUBROUTINE ICOUNT

C

SET STIFFNESSES TO PREVIOUS INCREMENT STIFFNESSES RATHER THAN

CALLING ROUTINE ‘PART’ IF DISPLACEMENT INCREMENTS ARE ZERO.

ho

~CrcCccccccceccccecccecccccccccecccececececceceneenrannnrnnCCrrCCCCCCCCCCCCC

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION AMK(1),AMPK(1)

DIMENSION STF11A(1),STF12A(1),STF22A(1)

AMK(1)=STF11A(ICNT)
AMK(2)=STF12A(ICNT)
AMK(3)=STF22A(ICNT)
[CLCNT=0

pO 79 KK1=1,3

AMPK(KK1)=AMK(KK1)
CONTINUE

RETURN

ND

79

i 1K
”



Subroutine INIT

SUBROUTINE INIT(ITTHL,ITTH,ICNT,ICLCNT,EE1,DEE1,EE11A,EEL12A,

1STF11,STF12,STF22,STF11A,STF124,5TF22A)
CCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCLeriCCCCCCCCCCCCCCCCCeeeeeee

= SUBROUTINE JINIT

:

3 INITIALIZE STORAGE LOCATIONS AND DETERMINE THE NUMBER

2 OF LINE-SPRING ELEMENTS

CCRCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLEnrrrnrnnnannannann=nrrnrCCCCe
IMPLICIT REAL*8(A-H,0-Z)

DIMENSION EE1(1),DEE1(1)

DIMENSION STF11(1),STF12(1),STF22(1),STF11A(1),5TF12A(1),

1STF22A(1) ,EE11A(1) ,EE12A(1)

COMMON/CONSTS/P1 ,SIN60,C0S60 ,KCROS2(3) ,KCROS3(3) ,ZERO,LZERD (LONE,

1 ONE, TWO,HALF,ABIG,ASMALL ,BCBIG,LOCSHR(Z,3) ,THIRD,PRECIS,BLANK
-

wr

=

w ITTHL IS EQUAL TO THE NUMBER OF LINE-SPRINGS TIMES 3 (NUMBER OF

L-S NODES). EE11A AND EE12A ARE THE ‘PREVIOUSLY CONVERGED

INCREMENT’ DISPLACEMENTS (EEl).

IF ALL DISPLACEMENTS ARE ZERO THEN THIS 1S STILL THE FIRST PASS

THROUGH THE MODEL SO ITTHL IS INCREMENTED.

wl

IF (DEE1(1).EQ.ZERO .AND. DEE1(2).EQ.ZERO .AND. EE1(1).EQ.ZERO

1.AND. EE1(2).EQ.ZERO) THEN

ITTHL=ITTHL+1

EELIA(ITTHL)=ZERD

EEL12A(ITTHL)=ZERO
END IF

C

CT DO NOT ACCESS ROUTINE ‘PART’ IF DISPLACEMENT INCREMENTS ARE

c ZERO (ICLCNT=1). INSTEAD, THE CURRENTLY STORED STIFFNESSES

c WILL BE SENT BACK TO MATLSA.

(DEE1(1) .EQ.ZERO .AND. DEE1(2).EQ.ZERO)

{CLCNT=1

iF (ITTH.GE.2%ITTHL) ITTH=ITTH-ITTHL

ELSE

ICLCNT=0

END IF

IF (ITTH.EQ.3%ITTHL) ITTH=ITTH-ITTHL

[TTH=ITTH+1

[CNT=ITTH-ITTHL

IFCICNT.GT.ITTHL) ICNT=ICNT-ITTHL

THEM

C

C IF DISPLACEMENT (EE1) HAS CHANGED THEN THE INCREMENT HAS CONVERGED

&amp; AND THE ‘PREVIOUSLY CONVERGED INCREMENT’ DATA IS UPDATED.

[le



Subroutine INIT (page 2)

(ICNT.GE.1 .AND. ICLCNT.EQ.1) THEN

IF (EE11A(ICNT).EQ.ZERO) EE11A(ICNT)=EE1(1)

IF (EE12A(ICNT).EQ.ZERO) EE12A(ICNT)=EE1(2)

DBS1=DABS((EE1(1)-EE11A(ICNT))/EELIA(ICNT))
DBS2=DABS( (EE1(2)-EE12A(ICNT))/EE12A(ICNT))
[F (DBS1.GT.1.0E-4 .OR. DBS2.GT.1.0E-4) THEN

EELIACICNT)=EEL1(1)

EE12A(ICNT)=EE1(2)

STF11A(ICNT)=STF11(ICNT)

STF12A(ICNT)=STF12(1CNT)

BTF22A(ICNT)=8TF22(1CNT)
END IF

END IF

RETURN

END

» DT
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Subroutine INIT1

SUBROUTINE INIT1(ICNT,EE1,S51,DSE1,AMPK,STF11,STF12,STF22,

LFORN,FORM,EEPR1,EEPR2)
CCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCEeernnrrrrantiCCCCCrCCCLenneCeteeeee
 SUBROUTINE INIT1

: UPDATE DISPLACEMENT STIFFNESS, AND FORCE QUANTITIES FOR USE
2 IN ROUTINE ‘PRTCLL.

:

~ArPLLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCoCehrrarrrrraenCCCre

IMPLICIT REALX8(A-H,0-Z)

DIMENSION AMPK(1),EE1(1),DSE1(1),51(1)

DIMENSION STF11(1),STF12(1),STF22(1),EEPR1(1),EEPR2(1),

1FORN(1) ,FORM(1)

EEPRI(ICNT)=EE1(1)

EEPR2(ICNT)=EE1(2)

STF11(ICNT)=AMPK(1)

STF12(ICNT)=AMPK(2)

STF22(ICNT) =AMPK(3)
FORN(ICNT)=S1(1)+DSE1(1)

FORM(ICNT)=S1(2)+DSE1(2)

RETURN

END

ie
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Subroutine PRTCLL

SUBROUTINE PRTCLL(ICNT,EE1,DEE1,S1,DSE1,AMK,AMPK,ASIF,STF11,

1STF12,STF22,FORN,FORM,EEPR1,EEPR2,KFCL,DEPTH,NMVARE,X1C,THCK,KCL)
~CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCnnets

* SUBROUTINE PRTCLL

CALCULATE THE PREVIOUS SOLUTION RESULTS TO TRANSMIT TO ROUTINE

‘PART’. THE RESULTS WILL EITHER BE FROM THE PREVIOUSLY

CONVERGED INCREMENT OR FROM THE PREVIOUS ITERATION.

-*FreCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCtnnerarrneCCnCrantCCCCeCeee

[IMPLICIT REAL*8(A-H,0-Z)

DIMENSION AMK(1),AMPK(1),EE1(1),DEE1(1),DSE1(1),51(1),DFNM(2)

DIMENSION STF11(1),S5TF12(1),STF22(1),EEPR1(1),EEPR2(1)

L,FORN(1) ,FORM(1) ,KFCL(1)

COMMON /RNGE/ALAML ,ALAM2 ,ALAMI, SXICI

COMMON/CONSTS/PI,51IN60,C0S60,KCROS2( 3) ,KCROS3(3) ,ZEROD,LZERD,LONE,
| ONE, TWO,HALF ,ABIG,ASMALL ,BCBIG,LOCSHR(2,3) ,THIRD,PRECIS,BLANK

DELTA=EE1(1)

THETA=EEL1 (2)
-

C

[

IF FULL CLOSURE HAS OCCURED USE PCI, IF NOT USE LAST ITERATION.

(KFCL(ICNT).EQ.1) THEN

FN=81(1)

FM=S1(2)

DDELTA=DEE1(1)

DTHETA=DEE1(2)

ELSE

FN=FORN(ICNT)

FM=FORM(ICNT)
DDELTA=DELTA-EEPR1(ICNT)
DTHETA=THETA-EEPR2(ICNT)

END IF

UPDATE THE LAST ITERATION DISPLACEMENTS

EEPRICICNT)=EEL1(1)

EEPR2(ICNT)=EE1(2)

DFNM(1)=ZERD

DFNM(2)=ZERD

-

wr

-

wr

SEND IN THE LINEAR STIFFMESSES IN CASE EXTRAPOLATION TO

THE ONSET OF CLOSURE IS NECESSARY

ed

STF11(ICNT)=AMPK(1)

STF12( ICNT) =AMPK(2)
STF22( ICNT )=AMPK(3)

L yo



Subroutine PRTCLL (page 2)

{(F (DEPTH.LT.ZERO) THEN

FM=-FM

THETA=-THETA

DTHETA=-DTHETA

STF12(ICNT)=-STF12(ICNT)
END IF

c

C IF CLOSURE DID NOT OCCUR IN THE PREVIOUS ITERATION (OR INCREMENT)

c CALCULATE THE INCREMENTAL FORCES BASED ON LINEARITY

Cc

IF (FMXDEPTH.LE.ZERO.OR.(FNXTHCK/FM).LT.(1.000001%ALAM1)) THEN

KCL=-1

CALL APRDTA(AMPK,DEE1,DFNM,NMVARB)
IF (DEPTH.LT.ZERO) DFNM(2)=~DFNM(2)

ELSE IF (FNXTHCK/FM.GT.ALAM2) THEN

KCL=1

ELSE

KCL=0

END IF

S53 CONTINUE

G

h

"

re

-

od

“
™

deat

EVALUATE THE PARTIALLY-CLOSED CRACK CHARACTERISTICS

CALL PART(FN,FM,DELTA,THETA,DDELTA,DTHETA,XIC,KCL,STF11(ICNT)

1,STF12(ICNT),STF22(ICNT) ,ASIF,DFNM(1) ,DFNM(2) ,KDCR ,KFCL(ICNT))
IF (DEPTH.LT.ZERO) THEN

FM=~FM

STF12(ICNT)=-8TF12(1CNT)
END IF

UPDATE STIFFNESS, FORCE, AND INCREMENTAL FORCE VALUES

AMIK(1)=STF11(ICNT)

AMK(2)=STF12(ICNT)

AMK(3)=STF22(I1CNT)
FORN( ICNT)=FN

FORM(ICNT)=FM

DO 80 K1=1,3

AMPK (K1)=AMK(K1)
CONTINUE

DSE1(1)=FN=-5S1(1)

DSE1(2)=FM-S1(2)

IF (DSE1(1)/51(1).GE.10.D0.AND.DSE1(2)/81(2).GE.10.D0)

L KFCLCICNT)=1

RETURN

END

=]
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Subroutine PART

SUBROUTINE PART(FN,FM,TDCR,TRCR,DTDCR,DTRCR,XIC,KCL,

1 s11,812,522,51F,DFN,DFM,KFCL)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCenreentCCCCCCCCCCernanrnCCCCCCCCCe
C SUBROUTINE PART

EVALUATION OF CLOSURE PARAMETERS

DISCRETE PARAMETRIC DATA:

CJ(1,J,K) - FINITE ELEMENT DATA

[=1 TO 8 - CRACK DEPTH RATIO (TIMES 10)

J=1 TO 2141 - DATA POINT NUMBER

K=1 = 1

K=2 = J

X=3 - LOAD RATIO (ALMBDA_BAR)

&lt;=4 - CORRESPONDING CLOSURE DEPTH RATIO

X=5 - ONE-HALF TOTAL ‘CRACKED’ DISPLACEMENT PER UNIT FM

K=6 - ONE-HALF TOTAL ‘CRACKED’ ROTATION PER UNIT FN

K=7 - STRESS INTENSITY FACTOR PER UNIT FM

X=8 - ONE-HALF ‘CRACKED’ DISPLACEMENT DUE TO FN

X=9 - ONE-HALF ‘CRACKED’ DISPLACEMENT DUE TO FM

X=10 - ONE-HALF ‘CRACKED’ ROTATION DUE TO FM

ALAMS(1) - LOAD RATIO FOR 99% CLOSURE

I=1 TO 8 - CRACK DEPTH RATIO (TIMES 10)

SX1C9(1) - SLOPE OF CLOSURE VERSUS LOAD RATIO AT 99% CLOSURE

I=1 TO 8 - CRACK DEPTH RATIO (TIMES 10)

NPT(1) - NUMBER OF DATA POINTS (CLOSURE LENGTHS)

I=1 TO 8 - CRACK DEPTH RATIO (TIMES 10)

INCOMING INFORMATION

AT TIME T:

FN - APPLIED FAR-FIELD TENSILE FORCE

FM - APPLIED FAR-FIELD BENDING MOMENT

X1C - CLOSURE LENGTH RATIO

SIF - STRESS INTENSITY FACTOR

AT TIME T+DT:

TDCR - ‘CRACKED’ FAR-FIELD TOTAL DISPLACEMENT

TRCR - ‘CRACKED’ FAR-FIELD TOTAL ROTATION

DTDCR - INCREMENTAL ‘CRACKED’ FAR-FIELD TOTAL DISPLACEMENT

DTRCR - INCREMENTAL ‘CRACKED’ FAR-FIELD TOTAL ROTATION

RETURNED DATA AT TIME T+DT:

FN - REQUIRED FAR-FIELD TENSILE FORCE

FM - REQUIRED FAR-FIELD BENDING MOMENT

XIC ~ CLOSURE LENGTH RATIO

Skk - STIFFNESS MATRIX ELEMENTS

5IF - STRESS INTENSITY FACTOR

4,
~CCCCCCCCCCCCCCCcecceccecoceeCete

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CJ(8,17,10),ALAM3(8),SXICI3(8) ,NPT(8)

“TTT lZCCCCcccecococece
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Subroutine PART (page 2)

-,

ut

COMMON /JJL/CJ,THCK,X1A,EPRIME,NPT /LOC/ICL,ICLP

COMMON /RNGE/ALAM1,ALAM2,ALAMI,SX1IC9/FCT/FCL1,FC2,FC3

[F (ICL.EQ.0) THEN

ALAMSA=11.8802D0%*X1A~6.D0
SX1C%=1.00/12.D0

ELSE

ALAMIA=(ALAMI( ICLP) -ALAMS(ICL) )*(10.D0%xXIA-ICL)+ALAMI(ICL)
SXIC9A=(SXICI(ICLP)-SXICI(ICL))*(10.DOXXIA-ICL)+SXICI(ICL)

END IF

=
-

=

md

CHECK FOR FULL CLOSURE BASED ON INCOMING TDCR AND TRCR

CALL FULL(XIC,SXIC9A,PDM,PRM,ALAM9A,C11,C12,C21,C22,

CM,KDEFI ,KDEFIP,1)
TFN=C22%CMXTDCR

TFM=C11#*CM*TRCR

KFCL=0

"F ((TFNXTHCK/TFM) .GE.ALAM2.AND.TFM.LT.0.D0) THEN
XFCL=1

KCL=1

KI1C=X1A

§11=CMXC22

512=0.0D0

522=CMXC11

GOTO 1030

END IF

IF (KCL.EQ.-1) THEN

ALPH=( FMXALAM1 -FNXTHCK ) / ( DFNXTHCK-DFM*ALAM1)
FN=FNHALPHXDFN

FM=FM+ALPHKDFM

ALMBDA=ALAMI

SM=1.D0/(511%522-512%512)

DTDCR=TDCR-SMk( S22%FN-S12%FM)
STRCR=TRCR-SMk(S11%FM-S12%FN)

ELSE

ALMBDA=FN*THCK/FM

END IF

IF (KCL.EQ.0 .AND. ALMBDA.LT.ALAM1) ALMBDA=ALAM1

TALL CLOSE(XIC,SXIC,KCL,ALMBDA)

IF (KCL) 1010,1020,1020
C

LINE 1010 - CHECK BASED ON ALMBDA AT TIME T+DT

LINE 1020 - PARTIAL OR FULL CLOSURE WILL OCCUR

FIRST PASS (FIRST ESTIMATE AT NEW LOADS)

1020 CONTINUE

bd ™



Subroutine PART (page 3)

IF (XIC.GT.(0.99D0%XIA).OR.KCL.EQ.1) THEN

CALL FULL(XIC,SXIC9A,PDM,PRM,ALAM9A,C11,C12,C21,C22,

CM,KDEFI ,KDEFIP,KCL)
ELSE

CALL COMPL(XIC,SX1C,PDM,PRM,ALMBDA,C11,C12

C22,CM,KDEF1,KDEFIP)
END IF

BX1C=X1A

AFC=X1C/BXIC

IF (AFC.GE.1.D0) AFC=1.D0

522=C22%(AFC(1.D0-FC1)+1.D0)
211=C11*(AFCx(1.D0-FC1)+1.D0)

£12=C12k(AFC*(1.D0-FC1)+1.D0)

C21=C21%(AFCx(1.D0-FC1)+1.D0)

TDFN=CMk( C22%DTDCR-C12%DTRCR)
TDFM=CMk(C11%DTRCR-C21%DTDCR)
N=0

n

C BEGINNING OF NEWTON-RAPHSON ITERATION

1050 CONTINUE

TFN=FN+TDFN

TFM=FM+TDFM

N=N+1
A

-

-

\

SUBSEQUENT LOAD ESTIMATIONS

(TFM.GE.0.D0) THEN

KCL=-1

GOTO 1010

END IF

TTLAM=TFNATHCK/TFM

ALL CLOSE(XIC,SXIC,KCL,TTLAM)
[F (KCL.EQ.-1) THEN

EN=TFN

FM=TFM

GOTO 1010

END IF

CONTINUE

(XIC.GT.(0.99D0%XIA).OR.KCL.EQ.1) THEN

CALL FULL(XIC,SXIC9A,PDM,PRM,ALAMSA,C11,C12,C21,C22,

CM,KDEF1 ,KDEFIP KCL)
ELSE

CALL COMPL(XIC,SXIC,PDM,PRM,TTLAM,C11,C12,C21,

C22,CM,KDEFI ,KDEFIP)
END IF

AFC=XIC/BXIC

IF (AFC.GE.1.D0) AFC=1.D0

222=C22% (AFC*(1.D0-FC1)+1.D0)

1040

1
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-

-

=

-~

“

C11=C11%(AFCX(1.D0-FC1)+1.D0)

C12=C12k(AFCk(1.D0-FC1)+1.D0)
C21=C21%(AFC*(1.D0-FC1)+1.D0)

ESTIMATION OF ERROR

ERRD=TDCR-TFMxPDM/THCK/EPRIME

ERRR=TRCR-TFMXPRM/THCK/THCK/EPRIME

DTDFN=CMk (C22%ERRD-C12*ERRR)
DTDFM=CM*(C11*ERRR-C21%ERRD)
TDFN=TDFN+DTDFN

TDFM=TDFM+DTDFM

[F (N.EQ.1) THEN

ERRD1=ERRD

ERRR1=ERRR

END IF

DERRD = DABS(ERRD/TDCR)

DERRR = DABS(ERRR/TRCR)

DERRD1 = DABS(ERRD/ERRD1)

DERRR1 = DABS(ERRR/ERRR1)

DABN = DABS(DTDFN/TDFN)

DABM = DABS(DTDFM/TDFM)

DABTN = DABS(DTDFN/TFN)

DABTM = DABS(DTDFM/TFM)

(F ((DERRD .LT. 1.0E-3 .OR. DERRD1 .LT. 1.0E-3) .AND,

(DERRR .LT. 1.0E-3 .OR. DERRR1 .LT. 1.0E-3) .AND.

‘DABN .LT. 1.0E-3 .OR. DABTN .LT. 1.0E-4) .AND.

(DABM .LT. 1.0E-3 .OR. DABTM .LT. 1.0E-4)) GOTO 1030

[F (N.GE.200) GOTO 1010

50TO 1030

CONTINUE

FN=TFN

FM=TFM

[F (KCL.EQ.1) THEN

SIF=0.0D0

ELSE

CALL SIFAC(KDEFI,KDEFIP,TFM,SIF,XIC)
END IF

CONTINUE

511=C22%CM

S22=C11%*CM

512=-C12%CM

IF (KCL.EQ.-1) XIC=0.0D0

RETURN

END

|

L

1030
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Subroutine CLOSE

SUBROUTINE CLOSE(ZC,SZC,KCL,TLAM)
CCCCCCCCCCCCCCCCCCCCecCCCecececececceeccececeecccececcccecccececccceccccceccccoceccecec

&gt; SUBROUTINE CLOSE

CALCULATE THE NEW CRACK CLOSURE LENGTH BASED ON INCOMING LOAD

RATIO ‘TLAM’La

»

sr =ereCCCCCCCCCCCCCCCCCCCCCCCCCeCeeee:™
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CJ(8,17,10) ,ALAMI(8),SXICI(8) ,NPT(8)

COMMON /JJL/CJ,THCK,X1A,EPRIMENPT/LOC/ICL,ICLP
COMMON /RNGE/ALAMI ,ALAM2,ALAMI,SXICI

DETERMINE TYPE OF CLOSURE (NONE, PARTIAL OR FULL)

CTR RAARTARRRRRRRCE

»
w

~n

1%

~
jy

(TLAM.LT.ALAM1) THEN

KCL=-1

RETURN

ELSE IF (TLAM.GE.ALAM2) THEN

KCL=1

ZC=1.D0

SZC=0.D0

RETURN

END IF

KCL=0
-+

’ DETERMINE THE REGIME OF TLAM RELATIVE TO THE

DISCRETE DATA POINTS

REGIME 1 - TLAMXALAMI(I) ; TLAMKALAMI(IP)

REGIME 2 - TLAMXALAML(IP) ; TLAMCALAM2(I)

REGIME 3 - TLAMXALAM2(1) ; TLAMCALAMZ(IP)

DO 1125 J=1,NPT(ICLP)

IF (TLAM.GT.CJ(ICLP,J,3)) GOTO 1125

NIP=J-1

GOTO 1130

1125 CONTINUE

1130 CONTINUE

IF (ICL.EQ.0) GOTO 1160

DO 11335 J=1,NPT(ICL)

NI=NPT(ICL)+1-J

IF (TLAM.LT.CJ(ICL,NI,3)) GOTO 1135
GOTO 1140

1135 CONTINUE

1140 CONTINUE

IF (NI.LT.NPT(ICL).AND.NIP.GT.0) GOTO 1145

IF (NIP.EQ.O0) GOTO 1150

”

n

 gd
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-

-

L
LY

ul

REGIME 3

CALL CLOSEA(ICLP,NIP,ZCIP,SZCIP,TLAM)
8ZCl=1.D0/12.00

ZC1=TLAMXSZCI+0.500

ZC=(ZCIP-ZCI )*(X1A-ZC1)*10.D0/(ICLP-10.D0%*ZCI )+ZCI

SZC=(SZCIP-SZCI )*(XIA-ZCI)*10.D00/(ICLP-10.D0*ZCI)+SZCI
RETURN

C

C REGIME 1

1150 CONTINUE

TALL CLOSEA(ICL,NI,ZCI,SZCI,TLAM)
ZCIP=0.D0

DLTLAM=(TLAM-CJ(ICL,1,3))/(CJ(ICLP,1,3)-CJ(ICL,1,3))
[F (DLTLAM/ICL.LT.1.E-2) THEN

ZC=2C1

5ZC=SZCI

RETURN

END IF

ZP=DLTLAM#1 .DO*ICL
CALL CLOSEA(ICL,1,ZTMP,SZTMP,CJ(ICL,1,3))

CALL CLOSEA(ICLP,1,ZTMPP,SZTMPP,CJ(ICLP,1,3))

5ZC1P=DLTLAMk( SZTMPP-SZTMP)+5ZTMP
ZC=(ZCIP-ZCI)*(10.D0%XIA-1CL)/(ZP-1CL)+ZCI
5ZC=(SZCIP-SZCI)*(10.DOXXIA-ICL)/(ZP-1CL)+SZCI
RETURN

C

C REGIME 2

c

1145 CONTINUE |

CALL CLOSEA(ICL,NI,ZCI,SZCI,TLAM)

CALL CLOSEA(ICLP,NIP,ZCIP,SZCIP,TLAM)

ZC=(ZCIP-ZCI)*(10.D0*XIA-1CL)+2ZCI
SZC=(SZCIP-SZCI)*(10.DO%*XIA-ICL)+SZCI
RETURN

c

C DO THE FOLLOWING IF XIA ¢ 0.100

C

1160 CONTINUE

§ZC1=1.00/12.00

ZCI =TLAMXSZCI+0.500

IF (NIP.EQ.0) THEN

DLTLAM=(TLAM+6.D0)/0.35292D0
ZP=DLTLAM

TALL CLOSEA(ICLP,1,ZTMPP,SZTMPP,CJ(ICLP,1,3))

SZC1P=DLTLAM( SZTMPP-SZCI)+52ZC1
ZC=(ZCIP-ZCI)*10.D0XX1A/ZP+ZCI

irf-
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Subroutine CLOSE (page 3)

§ZC=(SZCIP-SZC1)*10.D0%xXIA/ZP+5ZC]
ELSE

CALL CLOSEA(ICLP,NIP,ZCIP,SZCIP,TLAM)

ZC=(ZCIP-ZCI)*(X1A-ZCI)*10.D0/(1.D0-10.D0*ZCI)+ZCI
8ZC=(SZCIP-SZC1)*(XIA-ZCI1)%10.D00/(1.D0~10,D0*ZCI)+SZC]I

END IF

RETURN

END

147



Subroutine CLOSEA

SUBROUTINE CLOSEA(1C,NIC,ZCIC,SZCIC,TLAMT)
CCCCCCCCCCCCCCCCCCCCeCCeCCeCeCCCCCCCCCCeCCCCCCCCCCCCCCereCCaCCCCCeceeee

 SUBROUTINE CLOSEA

z CALCULATE CRACK CLOSURE DATA FOR USE IN SUBROUTINE CLOSE

LCCCRCCCCCCCCCCCCCCCCCCCCCeeCCCCCCCCCCCeeeceeeeer™

IMPLICIT REALXS (A-H,0-2)

DIMENSION CJ(8,17,10),NPT(8)

SSRRRRCRLCCCCCLCE

COMMON /JJL/CJ,THCK ,XIA,EPRIME,NPT
»

 bd

¥ LOAD RATIO; Z - CLOSURE
a

ol

XL=CJ(IC,NIC,3)
XR=CJ(I1C,NIC+1,3)
ZL=CJ(1C,NIC,4)
ZR=CJ(1C,NIC+1,4)
KRMXL=XR-XL

IF (NIC.GT.1) THEN

XLM=CJ(1C,NIC-1,3)

ZLM=CJ(1C,NIC-1,4)
END IF

IF (NIC.LT.NPT(IC)-1)

XRP=CJ(1C,NIC+2,3)
ZRP=CJ(IC,NIC+2,4)

END IF

THEN

C

C

-

EVALUATE THE REQUIRED SLOPES USING A WEIGHTED CENTRAL DIFFERENCE

METHOD AND USE APPLICABLE SPLINE FIT (CUBIC OR QUADRATIC)

IF (NIC.LT.NPT(IC)-1) THEN

AMR=( (ZR-ZL )*x (XRP-XR)/XRMXL+(ZRP-ZR)*XRMXL/(XRP=XR})/(XRP-XL)
ELSE

AMR=1.D0/12.D0

END IF

IF (NIC.GT.1) THEN

AML=( (ZL-ZLM) *XRMXL/ (XL-XLM) + (ZR~ZL )* (XL-XLM) /XRMXL)/ (XR-XLM)

CALL CuBIC(AML ,AMR,XL,XR,ZL,ZR,TLAMT,ZCIC,SZCIC)
ELSE

CALL QUADR(AMR XL ,XR,ZL,ZR,TLAMT ,ZCIC,SZCIC)
END IF

RETURN

END

1,0



Subroutine COMPL

SUBROUTINE COMPL(ZC,SZC,PDM,PRM,TLAMT,C11,C12,C21,C22,CM,KDEFI,
KDEFIP)

CCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCLrnaantrntCCCCCennrnnnnnrnCCoCCCCCCCCOCe

3 SUBROUTINE COMPL

CALCULATE COMPLIANCE MATRIX COEFFICIENTS FOR. PARTIALLY

CLOSED CASE (CLOSURE LESS THAN 99%)

SN ePARRCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECES™nTrnrnnararannererCCC
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CJ(8,17,10),NPT(8)

COMMON /JJL/CJ,THCK,X1A,EPRIME,NPT

DETERMINE DISPLACEMENTS AND SLOPES

 TC

CALL PDEFL(ZC,PDM,PRM,SPDM,SPRM,KDEFI ,KDEFIP)
CALL DEFL(ZC,DN,DM,RM,KDEFI,KDEFIP)

mn

-

~~

»

-

-

CALCULATE COEFFICIENTS

C11=SZCxSPDM+DN

£12=(DM-SZCXTLAMT*SPDM)/THCK
C21=(SZCkxSPRM+DM)/THCK
C22=(RM-SZCXxTLAMT*SPRM)/THCK/THCK

C12=(DABS(C12%C21))**(1.00/2.D0)
IF (ZC .GT. 1.D0-XIA) Cl2=-Cl2

C21=Cl2

CM=EPRIME/(C11%C22-C12%C21)

RETURN

END

1/4
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Subroutine DEFL

SUBROUTINE DEFL(ZC,DN,DM,RM,KDEFI ,KDEFIP)
CCCCCcCcCcCccccccccecececcceccccceccececocccceccccececccececceccccccececcccercccccccccece

~ SUBROUTINE DEFL

CALCULATE THE FAR-FIELD DISPLACEMENTS DUE TO THE

INDIVIDUAL FORCE AND MOMENT

“ARArRACCECCCCECCECCCCCECECCeCCCCCeeeeeenn "7"

IMPLICIT REALX8 (A-H,0-Z)

DIMENSION CJ(8,17,10),NPT(8)
nn

")

TTTRMCCCeee

COMMON /JJL/CJ,THCK,XIA,EPRIME NPT /LOC/ICL,ICLP
»

4

5

-

+

Le

CALCULATE END POINT DISPLACEMENTS AND SLOPES FOR

LINEAR INTERPOLATION IN XIA

IF (KDEFI.LT.NPT(ICL)) THEN

ZI=1.D0*ICL

CALL DEFLA(ICL,KDEFI,DNI,DMI,RMI(ZC)
ELSE

DNI=0.D0

DMI=0.D0

RMI=0.D0

Z1=10.00%ZC

END IF

CALL DEFLACICLP,KDEFIP,DNIP,DMIP,RMIP,ZC)
DN=(DNIP-DNI)*(10.D0*XI1A-Z1)/(1CLP-Z1)+DNI

DM=(DMIP-DMI )*(10.D0*X1A-Z1)/(1CLP-Z1)+DMI

RM=(RMIP-RMI )*(10.D0*XIA-Z1)/(ICLP-ZI)+RMI
RETURN

END

w idC3) -



Subroutine DEFLA

SUBROUTINE DEFLA(IC,KDEF,DNIC,DMIC,RMIC,ZC)
CCCCCCcececccececececeeceeeccececeeccecccccccccccccccccceccececceccccceccccccccccceccece
&gt; SUBROUTINE DEFLA

CALCULATE FAR-FIELD DISPLACEMENT DATA FOR USE IN

SUBROUTINE DEFL

‘~rrreCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeeens77
IMPLICIT REAL%S (A-H,0-Z)

DIMENSION CJ(8,17,10) ,NPT(8)

COMMON /JJL/CJ,THCK,X1A,EPRIMENPT

- CLOSURE; Z-8 - DISP DUE TO FORCE; Z-9 - DISP DUE TO MOMENT

AND ROTA DUE TO FORCE; Z-10 - ROTA DUE TO MOMENT

XL=CJ(1C,KDEF,4)
XR=CJ(IC,KDEF+1,4)
XRMXL=XR=XL

ZL8=2.D0*CJ(1C,KDEF,8)
ZR8=2.,D0*CJ(1C,KDEF+1,8)
ZL9=2.D0%CJ(IC,KDEF,9)
ZR9=2,DO0XCJ(1C,KDEF+1,9)
ZL10=2,D0%CJ(IC,KDEF,10)
ZR10=2.D0*CJ(IC,KDEF+1,10)
[F (KDEF.GT.1) THEN

KLM=CJ(1C,KDEF-1,4)

ZLM8=2,D0%CJ(IC,KDEF-1,8)
7LM9=2.,D0*CJ(1C,KDEF-1,9)
ZLM10=2.D0%CJ(IC,KDEF-1,10)

END IF

IF (KDEF.LT.NPT(IC)-1) THEN

XRP=CJ(1C,KDEF+2,4)
ZRP8=2.D0%CJ(I1C,KDEF+2,8)
ZRP9=2,D0*CJ(1C,KDEF+2,9)
ZRP10=2.D0%CJ(IC,KDEF+2,10)

END IF

-

TRECCCC

C

CT EVALUATE THE REQUIRED SLOPES USING A WEIGHTED DIFFERENCE METHOD

C AND USE APPLICABLE SPLINE FIT (CUBIC OR QUADRATIC)

(KDEF.EQ.NPT(IC)-1) THEN

AMR8=0.D0

AMR9=0.D0

AMR10=0.D0

ELSE

XRPMXL=XRP-XL

XRPMXR=XRP-XR

AMR8=( (ZR8-ZL8) *XRPMXR/XRMXL+(ZRP8-ZR8)*XRMXL/XRPMXR)/XRPMXL

51



Subroutine DEFLA (page 2)

AMR9=( (ZR9-ZL 9) *XRPMXR/XRMXL+(ZRPI-ZRI)¥XRMXL/XRPMXR)/XRPMXL
AMR10=( (ZR10-ZL10)*XRPMXR/XRMXL+(ZRP10-ZR10 )*XRMXL/XRPMXR)
/XRPMXL

END IF

[F (KDEF.EQ.1) THEN

CALL QUADR(AMRS,XL,XR,ZL8,ZR8,ZC,DNIC,SDNIC)

CALL QUADR(AMRI,XL,XR,ZL9,ZR9,ZC,DMIC,SDMIC)

CALL QUADR(AMR10,XL,XR,ZL10,ZR10,ZC,RMIC,SRMIC)
ELSE

XRMXLM=XR-XLM :

KLMXLM=XL-XLM

AML8=( (ZL8~-ZLM8) *XRMXL/XLMXLM+(ZR8-ZL8)*XLMXLM/XRMXL)/XRMXLM
AML9=( (ZL9-ZLMI) *XRMXL/XLMXLM+(ZRI-ZL9)*XLMXLM/XRMXL}/XRMXLM
AML10=( (ZL10-ZLM10)*XRMXL/XLMXLM#(ZR10-ZL10)*XLMXLM/XRMXL)
/XRMXLM

ALL CUBIC(AMLS,AMRS,XL,XR,ZL8,ZR8,ZC,DNIC,SDNIC)
TALL CUBIC(AML9,AMRI,XL,XR,ZL9,ZR9,ZC,DMIC,SDMIC)

TALL CUBIC(AML10,AMR10,XL,XR,ZL10,ZR10,ZC,RMIC,SRMIC)
END IF

RETURN

END

14,



Subroutine FULL

SUBROUTINE FULL(XIC,SX1C9%,PDM,PRM,ALAM9A,C11,C12,C21,C22,

1 CM,KDEFI,KDEFIP,KCL)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLOEnnnrran===""=arrrrrrCCCCCE
&gt; SUBROUTINE FULL

; CALCULATE THE COMPLIANCE COEFFICIENTS FOR CLOSURE LENGTHS

GREATER THAN 0.99%(CRACK DEPTH)

TrrrerCeCCCecCCeCeCocooccceiceeeeeeceeeer rman mmm mm”

IMPLICIT REAL*8 (A-H,0-Z)

OIMENSION CJ(8,17,10),NPT(8)
q

o

COMMON /JJL/CJ,THCK,X1A,EPRIME(NPT

NETA=0

[F (KCL.NE.1) THEN

ETA=100.D0%(X1C/X1A-0.99D0)
OMETA=1.D0-ETA

ELSE

NETA=1

END IF |

XCL=0 .99D0*X 1A
CALL COMPL(XCL,SXIC9A,PDM,PRM,ALAMIA,C11,C12,C21,

C22,CM,KDEFI ,KDEFIP)|

TT TUM CCCCe

C

C FOR FULL CLOSURE LET C12=C21=0 AND DECREASE THE DIAGONAL

- TERM BY A FACTOR OF 1000

C11P=C11/1000.D0

£22P=C22/1000.D0

C

© USE LINEAR INTERPOLATION BETWEEN 99% CLOSURE AND FULL

Cc CLOSURE
C

(NETA.EQ.1) THEN
C11=C11P

C12=0.D0

£21=0.D0

L22=C22P

ELSE

C11=C11*OMETA+ETAXC11P

C12=C12*0OMETA

L21=C21%0OMETA

C22=C22%OMETA+ETAXC22P

END IF

IM=EPRIME/(C11%C22~-C12%(C21)
RETURN

FND
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Subroutine PDEFL

SUBROUTINE PDEFL(ZC,PDM,PRM,SPDM,SPRM,KDEFI ,KDEFI1P)
CCCCCCCceccececccccecececcecececeoceeceeccceeccecccceecceccocececocccccceccccccccccccccec

© SUBROUTINE PDEFL

CALCULATE FAR-FIELD DISPLACEMENTS AND ROTATIONS PER UNIT

MOMENT ‘TFM’

+ Tm=a=30CCCCCCCCCCCCCCCCCCCCCCCCCCCCoCeeeen™

IMPLICIT REAL*S (A-H,0-Z)

DIMENSION CJ(8,17,10),NPT(8)

 — 7 a aw - my pn

hr

5
mp

COMMON /JJL/CJ,THCK,X1A,EPRIME NPT /LOC/ICL,ICLP
 Ww

C CALCULATE END POINT DISPLACEMENTS AND SLOPES FOR

C LINEAR INTERPOLATION IN XIA

c

DO 100 NICLP=1,NPT(ICLP)-1

IF (ZC.GE.CJ(ICLP,NICLP,4)) KDEFIP=NICLP
CONTINUE

110 NICL=1,NPT(ICL)
IF (ZC.GE.CJ(ICL,NICL,4)) KDEFI=NICL
SONTINUE

(KDEFI.LT.NPT(ICL)) THEN

Z1=1.D0%ICL

CALL PDEFLA(ICL,KDEFI,PDMI,PRMI,SPDMI,SPRMIZC)
ELSE

POMI=0.D0

PRMI=0.D0

5PDMI=0.D0

SPRMI=0.D0

Z1=10.D0%ZC

END IF

CALL PDEFLA(ICLP,KDEFIP,PDMIP,PRMIP,SPDMIP,SPRMIP,ZC)
PDM=( PDMIP-PDMI )%*(10 .DOXXIA-ZI)/(ICLP~ZI)+PDMI
PRM=(PRMIP-PRM1)*(10.D0%X1A-Z1)/(ICLP-Z1)+PRMI

SPDM=(SPDMIP-SPDMI )*(10.D0*XIA-ZI)/(ICLP-Z])+SPDMI
SPRM=(SPRMIP-SPRMI )*(10.D0XxX1A-Z1)/(1CLP-Z1)+SPRMI
RETURN

END

4k
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Subroutine PDEFLA

SUBROUTINE PDEFLA(IC,KPDEF,PDMIC,PRMIC,SPDMIC,SPRMIC,ZC)
CCCCCCCCCCCccccCcccccccccccecececeeccoeececcceeecccececececccceccececocccccccccocccec

- SUBROUTINE PDEFLA

CALCULATE FAR-FIELD DISPLACEMENT AND SLOPE DATA FOR USE

IN SUBROUTINE PDEFL

| ~=~rrCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeernnT™™

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10),NPT(8) |

COMMON /JJL/CJ,THCK,X1A,EPRIMENPT

-

nd

-

|]

“&gt;

Ww

~
pe}

X = CLOSURE; Z-D - FAR-FIELD DISP; Z-R - FAR-FIELD ROTA

XL=CJ(1C,KPDEF,4)
XR=CJ(1C,KPDEF+1,4)
XRMXL=XR-XL

ZLD=2.D0*CJ(I1C,KPDEF,5)
ZRD=2.D0*CJ(1C,KPDEF+1,5)
ZLR=2.D0*CJ(I1C,KPDEF,6)
ZRR=2.DO*CJ(1C,KPDEF+1,6)
ZRMZLD=ZRD-ZLD

ZRMZLR=ZRR-ZLR

[F (KPDEF.GT.1) THEN

XLM=CJ(1C,KPDEF-1,4)
ZLDM=2.D0*CJ(1C,KPDEF-1,5)
ZLRM=2.D0%CJ(1C,KPDEF-1,6)

END IF

[F (KPDEF.LT.NPT(IC)-1) THEN

XRP=CJ(1C,KPDEF+2,4)
ZRDP=2,D0%CJ(1C,KPDEF+2,5)
ZRRP=2,D0%CJ(IC,KPDEF+2,6)

END IF

C

¢ EVALUATE THE REQUIRED SLOPES USING A WEIGHTED DIFFERENCE METHOD

&gt; AND USE APPLICABLE SPLINE FIT (cuBIC OR QUADRATIC)
»

Ly

(KPDEF.EQ.NPT(1C)-1) THEN

AMRD=0.D0

AMRR=0.D0

=L SE
XRPMXL=XRP-XL

XRPMXR=XRP-XR

AMRD=(ZRMZLDXXRPMXR/XRMXL+(ZRDP~ZRD)*XRMXL/XRPMXR}/XRPMXL
AMRR=(ZRMZLR*XRPMXR/XRMXL+(ZRRP-ZRR)*XRMXL/XRPMXR)/XRPMXL

END IF

IF (KPDEF.EQ.1) THEN

CALL QUADR(AMRD XL (XR ,ZLD,ZRD,ZC,PDMIC,.SPDMIC)

15) =
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Subroutine PDEFLA (page 2)

CALL QUADR(AMRR,XL,XR,ZLR,ZRR,ZC,PRMIC,SPRMIC)
ELSE

XRMXLM=XR-XLM

XLMXLM=XL-XLM

AMLD= ( (ZLD-ZLDM) *XRMXL/XLMXLM+ZRMZLD*XLMXLM/XRMXL)/XRMXLM
AMLR=( (ZLR-ZLRM)*XRMXL/XLMXLM+ZRMZLR*XLMXLM/XRMXL)/XRMXLM
TALL CUBIC(AMLD,AMRD,XL,XR,ZLD,ZRD,ZC,PDMIC,SPDMIC)

CALL CUBIC(AMLR,AMRR,XL,XR,ZLR,ZRR,ZC,PRMIC,SPRMIC)
END IF

RETURN

END

5:

. SD



Subroutine SIFAC

SUBROUTINE SIFAC(KDEFI ,KDEFIP,TFM,SIF,ZC)
CCCCCccccceeeeeccccecccccccccccccccccecccccecceccccceccccccccecccccccceccec

~ SUBROUTINE SIFAC

CALCULATE STRESS INTENSITY FACTOR CALIBRATION® BASED ON

A UNIT APPLIED MOMENT ‘TEM’

SrreRECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCeeee™

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CJ(8,17,10),NPT(8)

“CCC CCe

nn

wr

COMMON /JJL/CJ,THCK,X1A,EPRIME NPT /LOC/ICL,ICLP
5

»

bw? CALCULATE END POINT DISPLACEMENTS AND SLOPES FOR

LINEAR INTERPOLATION IN XIA

IF (KDEFI.LT.NPT(ICL)) THEN

Z1=1.DO*ICL

CALL SIFACA(ICL,KDEFI,SIFI,ZC)
ELSE

SIF1=0.D0

Z1=10.D0%ZC

END IF

CALL SIFACA(ICLP,KDEFIP,SIFIP,ZC)
SIF=((SIFIP-SIFI)*(10.D0*XIA-ZI)/(1CLP-Z1)+SIFI)*TFM/THCK#*1,5D0
RETURN

ND

4

nn

bP

{8°t



Subroutine SIFACA

SUBROUTINE SIFACA(IC,KPDEF,SIFIC,ZC)
CcCCCCCCCCCCCCeecccecoeeeeeccecceececececececerccccccceerccercCCcccccccocce

- SUBROUTINE SIFACA

CALCULATE SIF CALIBRATION DATA FOR USE IN SUBROUTINE SIFAC

JAR RL 0 0 54 oo oo

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CJ(8,17,10),NPT(8)
-

of

ohm

weeerrtcCCCCCe

COMMON /JJL/CJ,THCK,X1A,EPRIME NPT
Vv
wr

»

L

-

I’

X - CLOSURE; Z ~- SIF CALIBRATION

XL=CJ(1C,KPDEF,4)

XR=CJ(IC,KPDEF+1,4)
ZL=CJ(1C,KPDEF,?7)

ZR=CJ(IC,KPDEF+1,7)
XRMXL=XR-XL

IF (KPDEF.GT.1) THEN

XLM=CJ(1C,KPDEF-1,4)
ZIM=CJ(1C,KPDEF-1,7)

END IF

IF (KPDEF.LT.NPT(IC)-1) THEN

XRP=CJ(1C,KPDEF+2,4)
ZRP=CJ(1C,KPDEF+2,7)

END IF

C

C EVALUATE THE REQUIRED SLOPES USING A WEIGHTED DIFFERENCE METHOD

o AND USE APPLICABLE SPLINE FIT (CUBIC OR QUADRATIC)

IF (KPDEF.EQ.1) THEN

AMR=( (ZR-ZL )* (XRP=XR } /XRMXL+(ZRP-ZR ) XXRMXL/ (XRP-XR) } / (XRP-XL)

CALL QUADR(AMR,XL,XR,ZL,ZR,ZC,SIFIC,DSIFIC)
ELSE IF (KPDEF.EQ.NPT(IC)-1) THEN

AML=( (ZL~ZLM)*XRMXL/(XL=XLM)+(ZR-ZL)*(XL=XLM)/XRMXL)/(XR=XLM)
CALL QUADL(AML ,XL,XR,ZL,ZR,ZC,SIFIC,DSIFIC)

ELSE

AMR=( (ZR-ZL )* (XRP=XR ) /XRMXL+(ZRP-ZR) *XRMXL/ (XRP-XR) ) / (XRP-XL)

AML=( (ZL-ZLM)*XRMXL/(XL=XLM)+(ZR=ZL)*(XL-XLM)/XRMXL)/(XR-XLM)
CALL CUBIC(AML,AMR,XL,XR,ZL,ZR,ZC,SIFIC,DSIFIC)

END IF

RETURN

END

oe
ad



Subroutine CUBIC

SUBROUTINE CUBIC(AML,AMR,XL,XR,ZL,ZR,XC,DIC,SDIC)
CCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCeereee

 SUBROUTINE CUBIC

CALCULATE REQUIRED DATA USING CUBIC INTERPOLATION BETWEEN

TWO POINTS WITH KNOWN SLOPE AT EACH END

;CCrercCCCCCCCCCCCCeeCecceccoececececcecececcecceceennrnncornrrrrifiCrCCeC

IMPLICIT REAL*8 (A-H,0-Z)

XRMXL=XR-XL

ZRMZL=ZR-ZL
8

I]

.

nt?

-

ry

CALCULATE COEFFICIENTS OF CUBIC EQUATION

A3=( (AMRH+AML)kXRMXL~-2.DOXZRMZL)/XRMXL**3
A2=(AMR-AML-3.DO*A3* (XR*XR~XL*XL) )/(2.DO*XRMXL)

Al=(ZRMZL-A3k (XR*x*3-XLik3) -A2k (XRAXR-XL*XL) ) /XRMXL

Al=ZL-( (ASXXL+A2)xXL+Al)XL
-

uf

a

br

»

a

CALCULATE DISPLACEMENT AND SLOPE

DIC=( (A3XkXC+A2)*kXC+Al ) x XC+AD

SDIC=(3.D0*A3*XC+2.D0%A2) kX C+Al
RETURN

END

.
" J



Subroutine QUADL

SUBROUTINE QUADL (AML,XL,XR,ZL,ZR,XC,DIC,SDIC)
CCCCCCeCcceeececcecccccccccccccecccccceccceeccceccccceccccccccccceccccccccccccec

C SUBROUTINE QUADL

CALCULATE REQUIRED DATA USING QUADRATIC INTERPOLATION

BETWEEN TWO POINTS WITH KNOWN SLOPE AT THE LEFT POINT

rrececcCCCCCeCiiCieCClllovue

IMPLICIT REAL*8 (A-H,0-Z)

XRMXL=XR~XL

ZRMZL=ZR~ZL

CARAS RRC ARRRCRRCLCCrNRTAPRCCCCE

-

wd

~~

at

-
-

-f

CALCULATE COEFFICIENTS OF QUADRATIC EQUATION

A2=(ZRMZL-AMLXXRMXL ) / (XRMXLA*XRMXL)
Al=AML-2.D0%A2%XL

A0=ZL-(A2*XL+A1 )%xXL
nL

=

|. CALCULATE DISPLACEMENT AND SLOPE
=

a”

DIC=(A2XXC+Al Y*xXC+AD
SDIC=2.D0%A2%xXC+Al

RETURN

“ND

107Lod =



Subroutine QUADR

SUBROUTINE QUADR(AMR,XL,XR,ZL,ZR,XC,DIC,SDIC)
CCCCCCCCCCeCCCCCCCCCCeCCCeCeeCCCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeceeeeee

&gt; SUBROUTINE QUADR

CALCULATE REQUIRED DATA USING QUADRATIC INTERPOLATION

BETWEEN TWO POINTS WITH KNOWN SLOPE AT THE RIGHT POINT

 A= mRECECCCCCCCCCCCCCCCOCCETe "0ECCCCECE™ "~~ ° TT TT TrenencCeee

IMPLICIT REAL*8 (A-H,0-Z)

XRMXL=XR=XL

ZRMZL=ZR~-ZL

 A

po

:

C CALCULATE COEFFICIENTS OF QUADRATIC EQUATION

A2=(AMR*XRMXL ~ZRMZL ) / (XRMXL*XRMXL)
Al=AMR-2 .D0*A2%XR

Al=ZL~-(A2%kXL+A1 )*xXL
L

of

»

a

s

CALCULATE DISPLACEMENT AND SLOPE

DIC=(A2kXC+AL ) XXC+AD

SDIC=2.D0%A2%XC+Al

RETURN

END

nl



Parametric Data File - CLOSEDAT.DAT

9 11 13 15 17

1 -5.64708 .000 -2.0371E-3 -1.0819E-2 -.28437 .0187634

2 -5.52209 .025 -8.9607E-4 -4.6304E-3 -.21326 .0091287

3 -4,80000 .100 0.0000000 0.0000000 .00000 .0000000

1 -5.24679 .000 -1.7614E-2 -8.063%E-2 -.75905 .0922415

2 -5.13448 ,025 -1.2219E-2 -5.4311E-2 -.63228 .0480330

3 -4.76670 ,075 -4.4843E-3 -1.8879E-2 -.39294 .0172090

4 -4,33957 ,125 -9.0437E-4 -3.5887E-3 -,19343 .0065008

5 -3.60000 .200 0.0000000 0.0000000 .00000 .0000000

1 -4.81112 .000 -6.0228E-2 -2.3167E-1 -1.3360 .2631387

2 -4.71098 .025 -4.7201E-2 -1.7503E-1 -1.1582 .1300800

3 -4.38720 .075 -2.6125E-2 -9.0642E-2 -.86567 .03563050

4 -4.00480 .125 -1.2443E-2 -4.0326E-2 -.60850 .0311660

5S -3.58532 .,175 -4.5211E-3 -1.3609E-2 -.37863 .0159090

6 -3.14211 ,225 -9.0525E-4 -2.5065E-3 -.18291 .0063747

7 -2.40000 ,300 0,0000000 0©.0000000 .00000 ,0000000

1 -4.35286 .000 -1.4209E-1 -4.4258E-1 -1.9828 .,6401989

2 -4.26558 025 -1.1832E-1 -3.5147E-1 -1.7539 ,2724800

3 -3.97712 075 -7.7615E-2 -2.1143E-1 -1.4235 .1243000

4 -3.63400 ,125 -4.7966E-2 -1.1972E-1 -1.1296 .0779270

5 -3.24489 .175 -2.6575E-2 -6.0300E-2 ~.84978 .0493320

6 -2.82582 ,225 -1.2526E-2 -2.5565E~2 -.59034 .0223310

7 -2.39119 .275 -4.5296E-3 -8.1993E-3 -.36201 .0133790

3 -1.94302 ,325 -9.0543E-4 -1.4209E-3 -.17001 .0063326

9 -1.20000 .400 0.0000000 0.0000000 .00000 .0000000

1 -3.89162 .000 -2.7534E-1 -6.5594E-1 -2.6325 1.460935

2 -3.81571 .025 -2.3798E-1 -5.3147E-1 -2.4105 .45203900

3 -3.55408 ,075 -1.7148E-1 -3.3919E-1 -2.0591 .2257200

4 -3.24200 ,125 -1.2036E-1 -2.1047E-1 -1.7413 .13500200

3 -2.88163 .175 -7.9582E-2 -1.2114E-1 -1.4251 .,1041200

6 -2.48636 .225 -4.8657E-2 -6.3056E-2 -1.1196 .0716280

7 -2.06796 .275 -2.6739E-2 -2.8608E-2 -.83350 .0473230

8 -1.63435 ,325 -1.2562E-2 -1.0563E-2 -.57530 .0289710

9 -1.19356 ,375 -4.5336E-3 -2.7664E-3 -.34820 .0154320

10 -0.74337 .,425 -9.0548E-4 -3.3448E-4 -.160357 .00631635

11 0.00000 ,500 0.0000000 0.0000000 .00000 .0000000

© 1 =-3.44645 .000 -4.7628E-1 -7.8557E-1 -3.4946 3.374369

2 -3.37874 .025 -4.2227E-1 -6.3167E-1 -3.1624 .7376300

3 -3.13426 075 -3.2279E-1 -3.9773E-1 -2.7976 .3630000

4 -2.84305 ,125 -2.4403E-1 -2.4415E-1 -2.43578 .2301600

5 -2.50443 ,175 -1.7767E-1 -1.3749e-1 -2.1113 .1827300

6 -2.12905 ,225 -1.2337E-1 -6.7611E-2 -1.7667 ,1349000

7 -1.72738 .275 -8.0800E-2 -2.6034E-2 -1.3605 .0983610

~ 8 -1.30774 ,325 -4.9078E-2 -4.70%2E-3 -1.1148 .0693410

6 9 -0.87642 .375 -2.6878E-2 3.5180E-3 -.82275 .0466630

6 10 -0.43689 .425 -1.2587E-2 4.5196E-3 -.56311 .0288100

6 11 0.00602 .475 -4.5366E-3 2.6758E-3 -.33804 .0154230

6 12 0.45665 .525 -9.0544E-4 7.5226E-4 -.14939 .0063165

,1039211 5760317

,0495130 .26873900

,0000000 .0000000

.4663580 2.366244

2344200 1.149300

0775440 .3507300

0273060 .1149100

,0000000 .0000000

1.215482 5.616157

.9656100 2.483500

,2209000 .8784800

1123700 .4096900

0525170 .1746800

0191250 .0575860

,0000000 .0000000

2.644603 11.06300

1.044000 4.101700

4167300 1.445900

,2352200 .7350600

.1335700 .3731100

,0709800 .17350100

0327220 .0700460
0113980 .0207270

0000000 .0000000

5.410300 20.39889

1.639700 5.725100

6307500 1.902500

,3662200 .9768100

,2204700 .35141600

,1294400 .2587700

.0711090 .1184400

0347860 .0462900

,0139090 .0138330

0037900 .0024822

.0000000 .0000000

11.15332 37.635377

2.272900 7.048000

,8149600 2.156600

,4672000 1.084100

2799700 .5636700

.1638300 .2812000

0891070 .1278900

.0418640 .03500370

.0140210 .01350860

,0000000 .0043196

-.0046295 .0027036

-.0037899 .0024829

TED



Parametric Data File - CLOSEDAT.DAT (page 2)

4 13 1.20000 .e00 0.0000000 0.0000000 .00000 .0000000

7 1 -3.03154 .000 -7.7607E-1 -7.1091E-1 -4.4927 8.443548

7 2 -2.96777 .025 -7.0055E-1 -5.3147E-1 -4,1000 1.184800

7 3 -2.72858 .075 -5.5677E-1 -2.7089E-1 -3.7147 .53865900

4 -2.44620 .125 -4.40%4E-1 -1.1111E-1 -3.3391 .3820800

5 -2.11894 .175 -3.4027E-1 -8.3404E-3 -2.9318 .2894000

8 -1.75586 ,225 -2.5423E-1 5.1161E-2 -2.5592 .2234400

 7 -1.36644 .275 -1.8292E-1 7.8043E-2 -2.1723 .1724300

7 3 -0.,95859 ,325 -1.2582E-1 8.2055E-2 -1.7999 .1312600

/ 3 -0.53820 ,375 -8.1836E-2 7.1846E-2 -1.44835 .0974130

7 10 -0.10926 .425 -4.9462E-2 35.4612E-2 -1.1228 .06335410

7 11 0.32551 .475 -2.6996E-2 13.5929E-2 -.82670 .0468730

7 12 0.76535 .325 -1.2614E-2 1.9666E-2 -.56283 .0283710

7 13 1.20734 .575 -4.5402E-3 3.1266E-3 -.33586 .0154990

7 14 1.65702 .625 -9.0554E-4 1.8394E-3 -.14735 .0083326

7 15 2.40000 .700 0.0000000 0.0000000 .00000 .0000000

2 1 -2.65483 .000 -1.2525000 -2.2619E-1 -6.0106 25.69929

2 -2.58921 ,025 -1.1446000 2.2047E-2 -5.4998 1.645400

3 -2.33836 .075 -9.3191E-1 2.4371E-1 -5.0432 .7649000

4 -2.04842 ,125 -7.5900E-1 13.7913E-1 -4.5891 .35391300

5 -1.71790 .175 -6.0655E-1 4.4165E-1 -4.1162 .4370700

6 -1.35542 .225 -4.7337E-1 4.5156E-1 -3.6361 .3492500

7 -0.96994 ,275 -3.5972E-1 4.2403E-1 -3.1617 .2802400

8 -0.56890 .325 -2.6522E-1 3.7222E-1 -2.70335 .2234400

. 9 -0.1576% ,375 -1.8878E-1 3.0737E-1 -2.2682 .1735700

3 10 0.26018 .425 -1.2874E-1 2.3857E-1 -1.8627 .1349000

3 11 0.68268 .475 -8.3166E-2 1.7287E-1 -1.4874 .1004400

8 12 1.10903 .525 -4.9998E-2 1.1522E-1 -1.1464 .0716280

3 13 1.53896 .575 -2.7177E-2 7.8788E-2 -.83979 .0480330

B14 1.97352 .625 -1.2660E-2 3.4932E-2 -.56982 .02935510

8 15 2.41111 .675 -4.5475E-3 1.3597E-2 -.33894 .0157040

8 16 2.85799 .725 -9.0579E-4 2.9277E-3 -.14829 .0063747

8 17 3.60000 .800 0.0000000 0.0000000 .00000 .0000000

-4.81198 .083574

-3.62382 .084625

-2.43558 .085326

-1.24724 .086008

-.058824 .086683

1.12968 .087355

2.31828 .088020

2.46572 .088685

.0000000 .0000000

24,.82695 74.55299

2.815600 7.824600

9130900 2.220600

4937100 1.096600

, 2729500 .5700200

1381100 .2936600

,0526920 ,1500400

,0000000 .0820330

-.0294090 .0560180

-.0418630 ,0500370

~.0422540 .0496830

-.0347860 .0462900

-.0232530 .0362010

-.0113930 .0207270

.0000000 .0000000

66.97476 177.5804

3.115700 8.045000

8567100 2.247000

,3864600 1.170800

1443000 .6895500

,0000000 .4515600

-.0878970 .3387700

-.1381100 .2936600

-.1610900 .2819600

-.1638300 .2812000

-.1517300 .2764300

-.1294300 .2587700

~.1011900 ,2245100

-.0709800 ,1750100

-.0424120 .1158600

-.0191250 .0575860

0000000 .0000000

vl



APPENDIX V

NEWTON-RAPHSON ITERATION

In Section 4.2 a very brief description of the Newton-Raphson

iteration scheme used in the secondary iteration loop was given. At

this time a more in-depth description will be presented in outline

form.

Given: tr iy

t+
AU =

force and displacement distributions of

previous solution state (time t)

current state incremental displacement

distribution (time t+ =t + At)

Assume: “A tes are within range of closure

Newton-Raphson Initialization

Evaluate te :

2 Calculate -* AFC

3 Estimate IFgo

Calculate t+ 0

a

* tt 0

Determine = e

tangent compliance matrix for LF.

{equations 2.4-7)

first approximation of incremental

loads.

toy tau
first estimate of new loads.

= te + t+ AFC

first estimation of total

displacements for t+go,

(equations 2.4-1)

displacement estimate error.

- ty d YAU _ t+,0

1¢7#



Newton-Raphson Iteration

5

7

R

J.

10.

11.

12.

tangent compliance matrix for tp.

(equations 2.4-T)

incremental load correction.

(tril) 1 tril
Estimate HAF ; incremental load estimate.

_ t+, pil + tra AFL

Compare both bh i-1 and Haar! to convergence limits.

[f within limits, solution is complete.

Estimate tpl ; total load estimate.

= tp + PpF

total displacement estimate for

teil gna ME.

(equations 2.4-1)

displacement estimate error.

ty + t+ AU - ti

Calculate t+

g t+ 3

Determine eo

13. Return to step 6.

With regard to this algorithm several points should be made.

As was discussed in Section 4.1 a linear solution is performed

initially to determine if closure will occur. Therefore this iteration

loop will only be performed for conditions where closure will occur.

[n this light, it was assumed that both t A and t+ A are within the

closure range. Consider the remaining three possibilities. If tN is

outside the range and 2 remains inside the range the previous

solution state is linearly modified (internally) to coincide with the

onset of closure. In this way the original assumption remains

valid, If tN is inside the range and +X falls outside the iteration

is stopped with current tangent compliance and load distribution

estimates sent out. Finally, tX outside the range and t+x falling

outside corresponds to a combination of the previous two cases.

18% -p



Note that 2A can (and typically will) fall outside the range of

closure when a very small amount of closure is obtained from a

previously fully open solution state. This is simply due to the

increase in stiffness with closure which causes displacement

increments to decrease. In this situation, the iteration scheme is

stopped. However, since the latest (closed) tangent compliance

estimates are returned a linear solution will not be obtained unless

the tolerance limits are satisfied.

As a final note, step 10 indicates that the incoming load

distribution, 'F is retained throughout the iteration loop. This is

consistent with the approach used in the primary loop as described

in Section 4.1.
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APPENDIX VI

MODIFICATIONS TO PARTIAL CLOSURE ROUTINES

Several features of the partial closure routines can be modified

quite easily to introduce additional parametric data or to modify the

stiffness factor reduction procedure. The tasks required to

institute these modification are outlined below.

Additional Parametric Data

Any additional data (acquired at crack depth ratio 0.1,

0.2,...0.8) must be reduced as shown in Appendix II and it

must be added to the parametric data file CLOSEDAT.DAT.

The first line of the data file gives the number of data points

available for each crack depth. The data must then be

formatted as shown in Table II-3 with two additional entries:

the integral crack depth (i.e., 1 for 0.1, 2 for 0.2, etc.) and

the data point number. The parametric data file is presented

in Appendix IV. Each column of the file is defined within the

listing of subroutine PART.

Stiffness Factor Reduction

The stiffness factors are calculated in block C of routine

MATLS. The actual factor reduction is performed in

subroutine PART. To use the partially-closed stiffnesses only

the factors must be set to 1.0 and the stiffnesses defined as

AMK(1) = CM*C22

AMK(2) = -CM*C12 (for positive crack depths)
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AMK(2) = CM*C12 (for negative crack depth)

AMK(3) = CM*C1l1

within block C. In this way, no factor

performed in subroutine PART.

reduction will be

The factor reduction is defined by the function by which

the reduction is performed (linear, quadratic, etc.) and the

closure length at which reduction is complete (BXIC). The

reducing functions are applied at two locations within

subroutine PART and are defined such that the factor is

FC=FC1 (or FC2 or FC3) at AFC=0.0 and FC=1.0 for AFC=1.0.

Interpolation of Parametric Data

The linear interpolation with respect to crack length is

performed in subroutines CLOSE, DEFL, PDEFL, and SIFAC.

The cubic and/or quadratic interpolation with respect to load

ratio is performed in subroutine CLOSEA and with respect to

closure length in subroutines DEFLA, PDEFLA, and SIFACA.

The weighted central difference approximation is applied in the

“A subroutines. Any change in the interpolation scheme will

impact each of these routines.
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Stationary vs. Progressive Iteration

The "previous solution state" data which is input to

subroutine PART is controlled by subroutine PRTCLL. To

force stationary iteration at all time, the first IF-ELSE-ENDIF

loop (beginning with IF (KFCL(ICNT).EQ.1) THEN ) must be

replaced by

FN

FM =

DDELTA =

DTHETA =

S1(1)

S1(2)

DEE1(1)

DEE1(2)

The data S1 and DEEl represent the results based on the

previous converged increment versus the previous converged

iteration.
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