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ABSTRACT

The linear-elastic and elastic-plastic line-spring models are
valuable tools in the analysis of surface-cracked plates and shells in
which crack surface contact is not of concern. The linear-elastic
line-spring model has been extended to include nonlinear-elastic
response resulting from partial external closure of surface cracks.
Closure lengths and crack tip stress intensities can now be obtained
for the partially-closed surface crack. This capability has been
incorporated into the ABAQUS @ finite element program.

Characteristics of the partially-closed crack are evaluated
using a double iterative solution scheme which utilizes multiple
interpolation of discrete parametric finite element data.

The case of an axially-cracked, pressurized cylinder has been
examined in two ways due to the absence of numerically accepted
solutions. The results of a complex plane strain finite element
analysis with gap elements defining the crack surface have been
compared to those of a simple finite element analysis utilizing shell
elements and a single nonlinear-elastic line-spring. Closure lengths
and crack tip stress intensities obtained by the two methods
compare very favorably. The line-spring model solution was found
to be applicable over a limited range of closure due to a lack of
parametric data available for interpolation. The lack of data was
found to be most severe in the small closure range where the
largest displacement variations occur.

In general, the nonlinear-elastic line-spring model is shown to
be a viable alternative to complex finite element models in analyzing
partial external closure of surface-cracked plates and shells.

Thesis Supervisor: Dr. David M. Parks

Title: Associate Professor of Mechanical Engineering
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Total cracked rotation per unit applied bending moment
Load ratio (=Nw/M)

Crack depth ratio (=a/w)

Closure length ratio (=c/w)

Stress contributions

applied in the far-field (M, N)

cracked contributions ( 6,8 )

critical for onset of closure (M,X)

full closure ()

due to applied bending moment (d, k, k', K, ,6,q)
modeled ( ?c)
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due to resultant crack face pressure distribution (KI)

symmetrical closure (X)

The subscripts apply to the variables following the definition.



1 8 INTRODUCTICN

In the design and analysis of typical engineering structures
fracture mechanics principles can be applied to a great extent in
the evaluation of overall structural component integrity. Among the
types of problems which lend themselves to a fracture mechanics
approach, perhaps the most common can, in their most basic form,
be classified as "part-through surface-cracked plates and shells".
In any geometry, beyond the fact that a crack or "defect" is pre-
sent, it is necessary to characterize the severity of the crack tip
singularity. In the case of linear-elastic fracture mechanics the
crack tip singularity is characterized by the stress intensity factor.
An accurate evaluation of the stress intensity factor is wvital in
determining the overall structural integrity of the component (i.e.,
to evaluate the fatigue crack growth characteristics or to determine
the potential for catastrophic failure).

A considerable amount of work has been done in
two-dimensional SIF calibrations for a number of geometrically linear
crack and loading configurations. However, for thick curved shells
(R/w £ 10) and fully three-dimensional geometric and Kkinematic
configurations stress intensity factor calibrations are severely
lacking; the main stumbling blocks being the complexity of fully 3-D
elastic analyses, and the computational and mesh generation costs
associated with complete 3-D finite element models with sufficient
accuracy and convergence characteristics. These stumbling blocks
become even more restrictive when considering the class of problems

mentioned above loaded in such a way that partial closure of the
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crack occurs. The phenomenon of partial closure introduces highly
non-linear aspects into an already complex finite element or
analytical model.

The weight function method has been used successfully to
characterize crack tip singularities in two and three dimensions.
Bueckner's [1] development of weight functions for a notched bar
allowed for easy computation of stress intensity factors for a
variety of symmetric loading configurations. Similarly, stress
intensity factors for semi-elliptical surface cracks in finite thickness
plates have been examined by Mattheck et al [2,3] using weight
functions and by Isida et al [22].

A related and perhaps more general analytical tool which can
be applied to many types of surface cracks (2- or 3-D) is the’
"line-spring" model of Rice and Levy [4]. Within the past 5-10
years, the "line-spring" model has received renewed interest in its
application to 3-D part-through surface-cracked plates and shells.
The line-spring considerably simplifies the analysis of this type of
problem by reducing the fully three-dimensional problem to
effectively one dimension in plate or shell theory. In linear
elasticity the line-spring model has been found to estimate stress
intensity factor distributions along a crack front to within a few
percent of accepted numerical solutions. Through further recent
development by Parks et al [5], the line-spring model has been
incorporated into the ABAQUS © finite element program. However,
to date the applications and development of the line-spring model

( Parks, et al [5-8] ) have been limited to linear-elastic and
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elastic-plastic analyses. Geometrically nonlinear elastic
configurations (partial crack closure) have not been addressed.

For a surface-cracked specimen subjected to a linear traction
distribution through the thickness there are only two types of
closure which can be obtained; "internal" and "external". These
can be characterized as follows:

Internal Closure - Crack closure begins at the crack tip. In
this type of closure a shallower surface
crack results with a stress intensity factor
of zero.

External Closure - Closure begins at the mouth of the crack.
This type of closure effectively results in
a non-surface (central) crack configuration
with a non-zero stress intensity factor at
the crack tip.

In the present work, the nonlinear characteristics of partial
external closure of part-through surface cracks in Mode I are
developed and incorporated into the linear-elastic line-spring model
formulation and into the ABAQUS © finite element program.

Internal crack closure is discussed briefly in Appendix I.

1.1 External Closure of Surface Cracks
With respect to the finite element line-spring model
formulation which will be reviewed in Section 2.1, let it suffice
to say that a fully 3-D part-through surface-cracked plate or
shell can be modeled by a series of single edge-cracked strips.

To this end, the phenomenon of partial external closure of

- 12 -



three-dimensional cracks can be characterized by examining an
edge-cracked strip.

Consider the edge-cracked strip of Figure 1.1-1 subjected
to far-field membrane force, N (per unit width) and bending
moment, M (per unit width). The positive sense of each load
is as shown; resulting in separation of the crack surfaces.
For a constant tensile force, N = Napp’ consider the
application of a bending moment, M = - Mcrit such that the
outer edge of the crack (crack mouth) just comes into contact
as shown in Figure 1.1-2. If the far-field moment is
decreased further, M = Mapp< - Mcrit one of the two
configurations depicted in Figures 1.1-3 will result. That
shown in Figure 1.1-3(a) considers a purely linear
superposition of the membrane and bending loading. This
superposition neglects the interference which actually develops
between the crack surfaces (i.e., it allows for overlap of the
crack surfaces). In accounting for the interference, the true
equilibrium configuration as depicted in Figure 1.1-3(b) is
obtained. Over the area of contact a pressure distribution will
be developed between the crack surfaces. This pressure
distribution, when superposed on the configuration of Figure
1.1-3(a), results in additional crack surface separation,
effectively stiffening the strip. This stiffening results in a
contact length (closure length) less than that determined by
purely linear superposition and also results in a decrease in

the far-field work-conjugate displacements, ® and ©H

corresponding to Na

dM : spectively.
pp an app resp y
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The effect of crack closure interface on the stress
intensity factor can be deduced by considering the true
configuration to be the superposition of the three loadings of
Figure 1.1-4. The applied tensile membrane force, Napp
causes a positive stress intensity factor, +KIN at the crack
tip. The "closing" moment, Mapp introduces what can
effectively be considered a negative SIF contribution, -KIM'
The third component, the resultant pressure distribution, has
associated with it a positive contribution, + KIp' The ratio of

the stress intensity factor allowing overlap (Figure 1.1-3(a))

to that for the true configuration (Figure 1.1-3(b)) is then

K.y - K

IN
- K

M
+ K

KI overlap

{1.1-1)

KI closure KIN IM Ip

As the sense of the K, contributions have already been

I
included, it can be seen that this ratio is always less than one
for any non-zero closure length. Therefore, by neglecting the
stiffening effects of the crack surface interference an
unconservative estimate of the stress intensity factor is
obtained. For pure bending the error has been evaluated by
Bowie and Freese [12] to be 9% (within 1%) for a wide range of
crack depth ratios, '%a = a/w > 0.5.

The effect of this underestimation on a fatigue life basis
can be seen more clearly by considering the limiting case of
pure cyclic bending (Figure 1.1-5). For fatigue life estimates

it is necessary to know the range of the stress intensity factor

and its mean wvalue. As before, the SIF contribution due to

_17_
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the reversing moment is tKIM and for the pressure
distribution, +K1p. By allowing overlap the range of the
stress intensity factor is KIM with a mean wvalue of zero. By
accounting for the crack surface contact the range of the SIF
is K = +3K

= + (KIM—J;KIP) with K . Therefore,

I alt I mean Ip

the effect of the crack surface interference is to increase the

mean applied stress intensity factor while decreasing its range.

Background

For fully three-dimensional crack configurations, partial
closure has not been examined. The recent work of Mattheck
et al [2,3] and Isida et al [22] is applicable only to the point
at which closure begi:is. Theoretical and numerical
examinations of two-dimensional crack configurations with
partial closure date back to the late 1960's. Closed form
solutions have been obtained for partially-closed Griffith
cracks under a variety of loading conditions [9-11] and for the
two-sided exterior crack [23]. Partial closure of edge-cracked
strips subjected to bure reverse bending has been examined
[12-15] with numerically calibrated relationships now available.
To date partial closure of an edge-cracked strip subjected to
combined tension and reverse bending has not been examined.

Burniston [9], Tweed [10] and Thresher and Smith [11]
all, within a four year period, considered partial closure of a
Griffith crack, albeit considering significantly different loading
configurations and closure modes. Burniston applied the

method of complex variables to the problem of a Griffith crack

- 20 -



subjected to biaxial tension, partially closed at its center by
the application of concentrated forces at points located within
the solid above and below the crack centerline. Using this
approach closed form solutions were developed for the closure
length and for the stress intensity factor. Tweed considered
the Griffith crack loaded in biaxial tension and subjected to a
symmetric system of body forces. Through application of a
Fourier transform techhique, formulae were derived for the
crack opening displacement shape and the stress intensity
factor. Finally, Thresher and Smith examined partial closure
at one end of a Griffith crack subjected to an arbitrary
polynomial loading function. By applying a potential
formulation approach closed form solutions for the stress and
displacement fields were developed as well as a criterion for
determining the open length of the crack.

As far as partial closure of Griffith cracks are concerned,
the work of Thresher and Smith appears to have the widest
range of application. However, the work of Burniston has
application in methods of crack (propagation) arrest.

Dundurs and Comninou [23] have considered the
two-sided exterior crack configuration subjected to an
arbitrary far-field load distribution. Using a formulation
leading to singular integral equations, the possible closure
regimes were defined in the "applied force / bending moment"
plane and the resultant traction distribution in the neck was

determined.

s L o



A fair amount of (non-closed form) analysis has been
performed nearly simultaneously on partial closure of an edge-
cracked strip under reversed bending. Bowie and Freese [12]
considered the "overlapping" problem first for an arbitrary
crack in a large plate subjected to bending. This solution was
then modified and combined with numerical calculations to
evaluate the closure characteristics and stress intensity factor
of an internal crack in a finite width strip. At nearly the
same time Paris and Tada [13] considered the effects of partial
closure on the stress intensity factor of an edge-cracked strip
subjected to load-controlled cyclic reversed bending. Empirical
relations for the open (K+) and closed (K ) stress intensity
factors were developed and the effect of closure on fatigue
crack growth was discussed. Bowie and Freese [14] compared
their previous work [12] to that of Paris and Tada [13] and
noted some differences in stress intensity factor ratio (up to
20%) for deep cracl-:s.1 Gustafson [15] extended the work of
Paris and Tada, evaluating the effects of partial closure on the
stress intensity factor of an edge-cracked strip subjected

to displacement-controlled cyclic reversed bending with some

The differences between the results of Paris and Tada [13]
and those of Bowie and Freese [12] can be attributed at least
in part to the fact that Paris and Tada actually considered a
semi-infinite crack in an infinite plate subjected to reversed
bending. A correction factor accounting for the finite width
was applied; however, it was assumed to be equal to the
tensile load correction factor for a center cracked finite width
strip.

- 9292 -



significantly different results. With reference to Figure 1.1-5,

load-controlled cyclic bending is characterized by M" =M and

9+ # B while for deflection-controlled bending, M+ +# M and
6" = 6.

In general the results and conclusions from past work on

partial closure of an edge-cracked strip subjected to pure

bending can be summarized as follows:

1.

In analyzing partial closure of edge-cracked (finite width)
strips some numerical computation is required (closed form
solutions are not obtainable).

The classical solution for the stress intensity factor of an
edge-cracked strip (allowing crack surface overlap)
underestimates the SIF by 9-10% for a variety of crack
depth ratios.

For load-controlled cyclic bending the SIF ratio is K /K"
= 5.4% for crack depth ratios less than 0.8.

For deflection-controlled cyclic bending the SIF ratio can
be significantly larger than for the load-controlled case;
K /K" = 6% for crack depth ratio, 5 = 0.6, K /K" = 503
for ;a = 0.80. For deeper cracks, the SIF ratio
increases further to K /K = 1.0 for éa = 0.88 and
rapidly to 4.5 for ?a = 0.95.

For crack depth ratios less than 0.6 the effects of crack
closure on fatigue crack growth is minimal. However, for
deeper cracks under displacement-controlled bending the

closure effects can be significant.
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On the basis of the past work which has been performed
on partial crack closure two major limitations become evident.
First, the available solutions for pure reverse bending are
valid only for crack depth ratios, ga = 0.5. The reason is
that for all smaller crack depths pure reverse bending causes
full closure. Secondly, none of the available solutions for the
edge-cracked strip combine the effects of tension loading and
reverse bending. Even though the partially closed
configuration (attributed to pure reverse bending) resembles
an internally-cracked strip (for ?a > 0.5), the tensile
stiffness of the closed portion of the crack is zero as is the
stress intensity factor at the closed tip. Therefore, direct
superposition of the stress intensity factor and related
parameters from an internally-cracked strip in tension and an
edge-cracked strip under pure reverse bending is not valid.

A final note is that the difference between the reverse
stress intensity factors, K for load-controlled and deflection-
controlled reverse bending [13 and 15] implies that the
phenomenon of partial crack closure carries with it a
significant stiffening effect. This appears to be especially
true for deep cracks where the original total stiffness of the
cracked specimen is very low relative to the uncracked
stiffness. For a crack depth ratio of 0.8 there is an order of
magnitude difference between the closed stress intensity
factor, K , for deflection- and load-controlled cyclic bending.
Combined with the increase in the effective uncracked ligament

of the partially-closed case this necessitates a very large

- 924 -



M /M* for deflection-controlled cyclic reverse bending. These
results indicate that K effects can have a significant influence
on fatigue crack growth for sufficiently deep cracks subjected
to deflection-controlled reverse bending (which, it should be

noted, is more typical of thermal cycling).
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2. LINE-SPRING MODEL WITH CLOSURE

Thus far the phenomenon of partial external closure of an
edge-cracked strip has been discussed and past theoretical and
numerical examinations have been summarized. With respect to the
final objective, to incorporate partial closure capabilities into the
line-spring model, the past work was not considered to contain
sufficient definition over the entire range of crack depths to be
conducive to the general nature of the finite element formulation.
However, some of the past work can serve verification purposes.

The present approach is Dbasically numerical, combining
theoretical compliance relations with (polynomial interpolation of)
discrete data from parametric two-dimensional finite element
analyses. All required data are obtained from superposition of
force and reverse bending solutions of an internally-cracked strip.
The resulting finite element implementation introduces a nonlinear
iterative (Newton-Raphson) scheme into the existing linear-elastic
line-spring model. The resulting formulation allows for application
of any combination of applied (mode I) loads and is capable of
modeling all crack depth ratios through fa = 0.8.

The approach will be described in depth in the following
sections beginning with an overview of the linear-elastic line-spring

model formulation.

2.1 Linear-Elastic Line-Spring Model
The line-spring model of Rice and Levy [4] was

introduced in 1972 and was originally used to estimate stress

_26_



intensity factors for part-through surface cracks in plates and
shells subjected to membrane and bending loading. Further
development of the line-spring concept by Parks et al [5-8,16]
has extended its range of application to encompass
linear-elastic and elastic-plastic configurations. Finite element
implementation of the linear-elastic line-spring has been
completed by Parks, Lockett and Brockenbrough [5] with
plasticity capabilities incorporated by White [17].

In general, the existence of a crack in any structure
decreases the overall stiffness of the structure. Herein lies
one of the two basic features of the line-spring model; the
introduction of an additional compliance into the cracked
structure which, when combined with the compliance of the
uncracked structure, fully characterizes the effects of the
part-through surface crack. Consider the surface crack of
length 2¢' and variable thickness a(x) as shown in Figure
2.1-1(a). If the crack length is assumed to be much greater
than the plate thickness then an idealized two-dimensional
situation results in which the crack can be considered a
one-dimensional crack of length 2c'. However, the
traction-carrying capability of the uncracked ligament, w-a(x),
must be retained. Therefore, in the Iline-spring model
formulation, the part-through surface crack is replaced by a
through crack of equal length with a generalized foundation
between the crack faces as depicted in Figure 2.1-1(b).
These generalized "line-springs" carry the membrane force, N,

and bending moment, M, transmitted across the crack ligament.

..27_



(b)

Figure 2.1-1

Line-Spring Representation of a
Part-Through Surface Crack
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The stiffness of the line spring at any location x is related to
the local uncracked ligament, w-a(x). With this information in
hand, the general effects of the additional cracked compliance
on the structure can be deduced. Consider the structure in
the absence of a crack, a(x) = 0. In this case, there is no
additional compliance. The tractions along the plane of the
crack correspond to the far-field tractions and the
displacements across the crack plane are zero. This
corresponds to a zero displacement condition. Consider now a
crack, a(x) = w, for which there is a (locally) infinite
additional compliance. In this case the crack face tractions
are zero and the displacements across the crack plane are
discontinuous; a zero traction condition. For any crack depth
profile, 0 <a(x)< w it can therefore be expected that the
line-spring will result in a situation in between the ;zero
traction and zero displacement conditions; i.e. some traction
will be supported across the crack face and the displacements
across the crack plane will be discontinuous.

As the stiffness of the line-spring model varies with
crack depth it should be possible to examine the additional
compliance introduced by the crack on a local basis. Herein
lies the second basic feature of the Iline-spring model.
Consider a section normal to both the plane of the shell and
the plane of the crack at some location x. The resulting
configuration reduces locally to that of an edge-cracked strip

with crack depth "a" and loads "N" and "M" corresponding to
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the local values: depth a(x) and loads, N(x) and M(x)
transmitted across the cut (Figure 2.1-2).

All that now remains is to determine the local compliance
of the cracked strip. To do this it is necessary to obtain a
constitutive relation between the local (far-field) loads, N and
M, and their local (far-field) work-conjugate displacements, o

and 6. In general, this relation takes the form

s1 [c c N N
M

| |Ca1t Cagt|M

where [Ct] is the local total compliance matrix, related to the
local total stiffness matrix by [C,] = [St]—l. The far-field
displacements can be considered to consist of cracked and

"no-cracked" contributions.

8 5l’lC 60

= + (2.1-2)

S s Se

The no-crack contribution is obtained from mechanics to be

o) 21/E'w 0 N
eeall £ (2,1=8)
Tw 3
enc 0 241/E'w?| | M

|
where E is the plane strain modulus. The cracked

displacements are a measure of the additional compliance
introduced into the strip by the presence of the -crack.
Combining equations (2.1-1) through (2.1-3) gives

o Cll Cio N N

¢l = = [C] (2.1-4)
] | €21 Caz || M M
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N = N(x)

M = M(x)

Figure 2.1-2

Cross-Section of a Part-Through Surface Crack at Location "x"

Resembling a Single Edge-Cracked Strip
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where [C] is the local cracked compliance matrix. Note that
these displacements are assumed to occur directly on the line
of the crack and therefore represent discontinuities across the
cut. From Rice's early work [18] the local compliances can be

obtained from

Cyy = 2TV /E
Cip = Cyy = 12T¥ ,/EW (2.1-5)
Cyp = T2 Y, /E'W?

where )"i].= ‘fa %Fi(i)Fj(ﬁ)d?. (2.1-6)

The functions F1 and F2 are KI calibration factors from the

single edge notched specimen:
K, = (Ta)? [Fy(a/w) N/w + Fy(a/w) 6M/w’] . (2.1-D)

The compliance aspects of the elastic line-spring model
are now complete. The line-springs as defined by the above
equations can now be distributed across a through crack
representation of a surface cracked structure. The resulting
equations can then be solved to obtain the displacement and
generalized force solution across the crack. As a final step
the local stress intensity factor can be estimated directly from

equation (2.1-7).
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2.2 Definition of Governing Parameters

Before proceeding with any analysis the parameters which
govern the problem of edge cracks with partial closure must be
ascertained and combined into appropriate dimensionless forms.
The governing parameters can be obtained fairly directly from
the geometric and the kinematic properties of the system.
Geometrically the specimen thickness (w) and crack depth (a)
are obvious choices (Figure 1.1-3(b)). The length dimension
(1) from the crack plane to the "far-field" can be removed
from consideration by assuring sufficiently large 1/w (from
Parmerter [19] et al, the far-field effects are minimal for
1/w = 2). As partial closure of the crack is of interest the
final geometric parameter is the closure length (c¢). For the
Kinematic parameters the only choices available are the
far-field membrane force (N) and bending moment (M).

In dimensionless form the governing parameters are

defined by
Za = a/w - crack depth (ratio)
Ec = e¢fw - closure length (ratio)
% = Nw/M - load ratio

Notice that the definition of the closure ratio limits the range

of attainable values® to 0 = ?c = fa.

1. The choice of § relative to crack depth (a) rather than
to thickness (w) is an alternative which gives a range of
0 to 1; however, in this way, to visualize the actual
closure length the local crack depth must also be
considered. The definition given above avoids this
complication.
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2.3

As was discussed earlier there are two possible closure
modes, internal and external. Only the external closure mode
is being examined here (internal closure is discussed in
Appendix I1). For the external closure mode a closing moment
is required. As discussed in Section 1.1 the bending moment
must therefore be negative relative to the crack face definition
(i.e., a positive moment opens the crack). The membrane
force can be tensile or compr‘czs'.sive1 so the range of the load

ratio is ~-A@D = X = +Q0 .

Limits of Closure

There are two critical situations between which the
evaluation of partial closure is possible: the condition at which
closure begins and the condition at which the crack is fully
closed.

In general, the onset of closure can technically be
defined as the point at which the stress intensity factor at, in
general, either crack tip is zero (cusp). For any partially-
closed cracked specimen the leading edge of the closure will
always be defined by a cusp. Using logical reasoning this can
be proven as follows:

Consider a crack tip formed by the closure of two crack

It will be shown that for full closure of cracks with %_=>10.5
the force N must be compressive. &
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surfaces with an assumed KI > (0. Locally the positive SIF
indicates that a positive stress singularity exists at the crack
tip. However, the two surfaces are independent and cannot
support tensile load, therefore, the surfaces must separate
(and the closure length will decrease). Consider now the
opposite case with KI<0. On a local scale this implies an
overlapping displacement field. As this cannot occur, the
surface will separate and the closure length will increase.
With respect to these two considerations the only -closure
length for which equilibrium is satisfied is that for which the
stress intensity factor is zero. This deductive reasoning
agrees with the findings of Thresher and Smith [11], who
developed the further requirement that the slope of the crack
opening profile also be zero at the cusp. Applying this
reasoning to the edge-cracked specimen, the two critical
situations mentioned above can be further defined as:

- Onset of Closure - outer edge of the crack surfaces

(erack mouth) just contact (with zero load)
- Full Closure - KI at each end of the crack is zero
and its length is zero (3% =7%).

Before beginning the finite element analysis of the edge-
cracked strip some preliminary calculations will be performed to
define the load range over which partial closure applies as well

as to serve as verification for the later modeling results.
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Onset of Closure

Consider the condition where the crack is fully open and
loaded as shown in Figure 2.3-1(a). By superposition the

crack mouth opening displacement (CMOD) can be written as

CMOD = Nd,, + Md,, = 0. (2.3-1)

N M

With reference to Tada, Paris and Irwin [20]

4%, / 1.46 + 3.42 (1-cos [)))

d —
N E' cos? ¢
and (2.3-2)
24 %
0.66
do = 800.8-1.7%5 +2.4%5 2 +——22
e A N )

where ¢ = ‘TT'§a/2. From the definition of the onset of
closure, CMOD = 0, the critical load ratio becomes

0.8-1.7% +2.4% 2+0.66/(1-%.)?
A .. = -bcos? a 4 4

. (2.3-3)
1.46+3.42(1-cos @)

The critical load ratios given by this equation are presented in
Table 2.3-1 for crack depth ratios ?a = 0.80. Notice that for

all crack depths the critical load ratio is 7\cr'it < 0. From the
discussions in Chapter 1 and Appendix I, external closure
occurs only for negative (closing) bending moments.
Therefore, a tensile force and a closing moment are required

for the onset of external closure.

Center-Cracked Strip

Consider the center-cracked strip as shown in Figure
2.3-1(b). In relation to the edge-cracked strip with partial

closure this corresponds to a crack depth ?a with closure
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Figure 2.3-1

Partial Closure States for Which Theoretical Solutions Can Be Obtained
(a) Fully Open Crack to Define the Onset, (b) Symmetrical Crack with
KI=0 at A, and c=w-a, and (c) Fully Closed with KI=0 at A.



TABLE 2.3-1

THEORETICAL LOAD RATIO FOR SPECIFIC CLOSURE AMOUNTS

CRACK DEPTH LOAD RADIO
(a/w) ONSET SYMMETRIC FULL
Acrit 7\symm Aef
0.0 -6.0000 i -6.0000
0.10 -5.7241 —— -4.8000
0.20 -5.2938 ——— -3.6000
0.30 -4,8170 — -2.4000
0.40 -4.3440 —— -1.2000
0.50 -3.8880 0.0 0.0
0.60 -3.4447 -0.5860 1.2000
0.70 -3.0175 -1.1004 2.4000
0.80 -2.6192 -1.5040 3.6000

- 38 -



length fc =1 - ‘%a. In this instance the closure length is
defined by a cusp (KI = 0) at point A. From superposition

the stress intensity factor is then
K, = Nk, + Mk,, = 0 . (2.3-4)

From Tada et al [20]

! VIT a'

k = ', -y
N o F( 3, U/w'~@)

and (2.3-5)
WTra" y/1- 3!
U a ?a' G( '{a!)

k =
M 2(w1)2 (1_ ?'813)

where w' = w/2 and a' is the half length of the symmetrical
crack. In these equations the function F is known in
graphical form and G is an empirical relation. Combining
equations (2.3-4) and (2.3-5) then gives the load ratio for the
symmetric case

6 | G L 1_ !
A cvmm S’ G( 54" s : (2.3-6)
¥ F (5, Uw~)1- 5"

Using the relations between ?a" ?c and J

3, = (34D (2.3-7)

a
?c = % (1~ fa')
it can be seen that equation (2.3-6) applies only for ’g'a = 0.5

( ?a' > 0.0). The xsymm is evaluated in Table 2.3-1.
Full Closure
The upper limit of the range of applicability of partial

closure is that pertaining to full closure. Notice that once full

closure has occurred the additional cracked compliance is zero
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2.4

so an increase in the magnitude of the closing moment has no
effect on the closure characteristics and the problem becomes
linear. Upon decreasing the closing moment (or increasing the
tensile load) a state of partial closure may again result. Full
closure implies an effective crack length of zero and a stress
intensity factor of zero at the "crack tip". This situation is
demonstrated in Figure 2.3-1(c). At the "ecrack tip", A, the
stress contributions are
TN = N/w
and (2.3-8)

o 6M (23, -1)/w? .

M
For the stress intensity factor to be zero at the crack tip the
net stress must also be zero so the critical load ratio for full
closure is then

e = 627, -1 . (2.3-9)
This equation is also evaluated in Table 2.3-1. Notice that for
crack depth ratios § a>0.5, ifc is positive. Therefore, since

the moment is negative, a compressive force is required for

full closure to occur.

Development of NonLinear Tangent Compliance Matrix

The final objective in the development of the line-spring
model is the formulation of the corresponding compliance
matrix. For the linear-elastic case, the compliance matrix is
linear; dependent only upon the crack geometry as indicated
by equations (2.1-5) and (2.1-6). The introduction of partial

closure capabilities results in a nonlinear compliance matrix
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which is dependent not only upon the crack geometry but also
upon the crack closure length; which, in turn, is dependent
on both the crack geometry and the applied loads. In these
nonlinear situations it is far more convenient to formulate the
local or tangent compliance matrix.

In the preceding section superposition of the membrane
force and bending moment contribution of stress, crack mouth
opening displacement and stress intensity factor was used to
evaluate the load ratio at which specific closure "limits" would

occur. Using the same approach the cracked displacements are

E's, = Ny +M/w 5
€ N M (2.4-1)
' - 2
E'O, (N/w) By + (M/w?) By
where SN,M and eN,M are the cracked displacement

contributions on a per unit load, per unit thickness basis and,
in general, are functions f( g’c(ﬁ ,?a),ga). For a given and
constant crack depth (throughout the remaining work the term
ratio will be implied when wused with "crack depth" and
"closure length") the cracked displacement contributions are
dependent on the closure length which itself is uniquely
defined by the load ratio, Nw/M (i.e., for a given load ratio
with M<0 there is one and only one corresponding closure
length). Equations (2.4-1) can then be rewritten as
E'S, = M/W)(R 8y + 5y = M/w) &
E'G, = M/wH( A Oy + Oy = M/w) gV

c

(2.4-2)

]
n

M

where 5M, 6" are the total cracked displacements per unit

bending moment, per unit thickness. Notice that the direct
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effects of the membrane force have been explicitly removed
from equation (2.4-2) by introducing the load ratio.
The compliance matrix relates the applied loads to their
work-conjugate displacements such that
C e 25./ 9N 0% 102M
[(C] = 11 12 | _ c c ] (2.4-3)
Cy; Cgg 06,/ ON 96,/ M
Combining equations (2.4-2) and (2.4-3) gives the tangent

compliance matrix coefficients as

Cyy = (M/E w)(m 5, + a5ui " %—Ej*D
_ ) M . 2 08., , 08,
Cyy = (1/E'w) & + (M!Ew)(W 8, + DM Z)M>
_ (2.4-4)
_ 1 2 28,
Cyy = (M/E w2)<aN T A+ ’0N>

022 (1/E Wz)e + (M/E 2)<aM9 + Ws—)\ 4 aMM)

From the definition of the load ratio it can be seen that
QAN = RA/N ;3 QN/OM=-A/M . (2.4-5)
Using the relationship
'aﬁNI ON = (35N/3§c)(’0?01’03\)(37/ oN) , (2.4-6)
with similar expressions for the remaining terms, and equations
(2.4-5) the tangent compliance matrix coefficients can be

reduced to:

— MT !
- Y My, '
Cpp = ( &y = xR(EHN/EW
M (2.4-7)
Cyy = (B + X (BHN/EW
Cpp = (O - xA(BHN/EW?
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where the "prime" on the displacements 5M and GM represents
differentiation with respect to closure length and & = ?3?(:/ 2N

At this point the formulation of the tangent compliance
matrix is complete. What now remains is to determine the
necessary functions; 5N’ éM’ @N, eM. ?‘c such that the
coefficients of equation (2.4-7) can be evaluated in terms

of 2 and ?a'
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3. PARAMETRIC FINITE ELEMENT ANALYSIS

The data required to evaluate the tangent compliance matrix is
obtained from a parametric finite element analyses of an edge-
cracked strip and an internally-cracked strip. The discrete
parametric results are then combined to satisfy the necessary
conditions to define closure. This combination of discrete data then

results in the parameters needed to evaluate the compliance matrix.

3.1 Model Description

The parametric analysis was performed using the
ABAQUS © finite element program. The two-dimensional model
of the cracked strip is presented in Figure 3.1-1. The model
consists of 200 8-node biquadratic plane strain elements, CPES8
[21] with mesh refinement biased toward the crack plane.
There are two active degrees of freedom per node (in-plane
translation) and full 3 x 3 Gaussian integration was used.

Due to symmetry across the crack plane only one-half of
the strip was modeled with a half-length to thickness ratio of
3:1 to the "far-field". For this 1/w ratio, it is expected that
interactions between the far-field and the crack will be
negligible. To assure a unique evaluation of the far-field
displacement and rotation the nodes along the top edge of the
strip were required to remain in a straight line.
Equation-defined connectors were used to relate the vertical
displacement of each node to the center node (LP in Figure

3.1-2).
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Figure 3.1-1

Finite Element Model of a Partially-Closed Edge-Cracked Stfip
Used to Obtain Discrete Parametric Data
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Figure 3.1-2
Boundary Conditions and Loading of the Partially-Closed Edge-Cracked Strip Model



A total of 20 uniformly sized elements were used along the
plane of the crack. The crack depth was modeled by applying
symmetry boundary conditions to those nodes corresponding to
the remaining (uncracked) ligament. The closure length was
modeled in the same way. In this way the model of the
partially-closed edge-cracked strip more closely resembles an
internally-cracked strip. However, by applying the far-field
membrane force and bending moment independently,
superposition can be used to assure that the required
condition exists at the closed "crack tip" (i.e., a cusp is
formed at the closed end with KI = 0). The model as shown in
Figure 3.1-2 represents a crack depth of 0.8 with a modeled
closure length of 0.15.

J-integral estimation capabilities were applied at the crack
tip node with up to 4 contour evaluations such that the effects
of closure on crack tip stress intensity could be determined.

In obtaining the required data a crack depth (ratio)
increment of 0.10 was used for depths up to 0.80. For each
of these cases a closure length (ratio) from "fully open" to
"fully closed" was examined in increments of 0.05. With the
far-field force and moment applied independently, each pair of
crack depth and closure length required two load steps to
fully characterize the strip's behavior. A total of 144 steps
were required to complete the entire behavior "matrix".

Each load step results in the evaluation of the following
data

- total far-field displacements
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3.2

- crack opening profile
- symmetry plane reaction forces (for the uncracked
ligament and for the closed length)
- four J-integral estimations about the crack tip
which must be manipulated into a form more useful for

evaluation of the tangent compliance matrix.

Evaluation of Load Ratio and Cracked Displacements

The first step in reducing the finite element results is to
determine the closure length versus load ratio characteristics.
This important step not only defines the range of loads over
which partial closure applies but also serves as an initial
comparison with accepted numerical solutions (see Section 2.3).
The second step, to determine the characteristics of the
cracked displacement contributions versus closure length, is
required in conjunction with the first to numerically evaluate
the tangent compliance matrix.

Before proceeding with the finite element data reduction

several comments should be made:

1. The modeling of the cracked strip employed
symmetry across the crack plane. The calculated
far-field displacements therefore represent one-half
of the actual work-conjugate displacements. The
total work-conjugate displacements are used in the
formulation of the tangent compliance matrix.

2. The calculated far-field displacements include

contributions from both cracked and uncracked
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cases. The cracked contributions are necessary for
evaluation of the tangent compliance matrix and can
be obtained as implied by equations (2.1-2) and
(2.1-3).

All nodes along the open length of the crack deflect
due to the application of the far-field loads. Under
a tensile membrane force the opening profile
corresponds to separation of the crack surfaces for
all crack depths and closures. Under an "opening"
bending moment, for sufficiently deep cracks (*gaz-
0.5) the crack opening profile for some range of
closure indicates that a portion of the open crack
overlaps (Figure 3.2-1). Appropriate combination of
the two loads is sufficient to eliminate this overlap.
The "closed" ligament will carry tractions under the
application of the far-field membrane force and
bending moment. Independently these tractions may
be tensile, but after appropriately combining the
loads the tractions must be compressive along the
entire closure length. Physically the tractions occur
continuously over the contact length. In the finite
element formulation, however, the total traction is
distributed among each node along the contact
surface. Consider the schematic of an 8-node
element as shown in Figure 3.2-2 with, for example,
a lumped 1-4-1 nodal load distribution. The traction

distribution shown in the figure becomes tensile near
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Figure 3.2-1

Crack Opening Profile of a Partially-Closed Edge-Cracked Strip
due to (a) Membrane Force and (b) Bending Moment
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Figure 3.2-2

Possible Inconsistency Between Distributed Traction and
Corresponding Nodal Distribution for an 8-Node Element
(a) Continuous Distribution and (b) Discrete Nodal Distribution
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node 3. In this situation the nodal load distribution
results in a discrete compressive load at node 3.
Therefore, the nodal tractions are not necessarily
indicative of the actual continuous local traction
distribution.
These comments will prove useful in the evaluation of the
load ratio and the cracked displacement contributions.
In determining the load ratio corresponding to wvarious
closure lengths it is valuable to look more closely at the finite
element model in the closed region. This is depicted in Figure

3.2-3 for a modeled closure length, g

¢, mod at node i. The

far-field tensile membrane force results in a reaction force, RN
at the closed tip (node i) and a separating displacement,
CODN at the first open crack node (node i+l). Similarly, the
positive (opening) far-field bending moment introduces a
reaction force, RM and separating displacement, CODM at the
same nodes.

As was discussed in Section 2.3, the leading edge of
closure is defined by a cusp (KI=U)' This also implies that
the local reaction force (traction) is zero and that the crack
surfaces are just in contact. Two methods of evaluating the
load ratio now become evident; requiring a net zero reaction
force at node i or requiring a net zero displacement at node
i+1. From comment number 4 above, the former does not
necessarily imply a cusp condition. Using the latter method as
more suitable, the load ratio is determined to be

A = Nw/M = -COD,,/COD, , (3.2-1)
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Figure 3.2-3

Finite Element Model in the Vicinity of the Modeled Closure Length



with a corresponding closure length of

b = ?c,mod MASKR (3.2-2)
where, Agc = 0.025 for the uniform finite element mesh used
here. Equations (3.2-1) and (3.2-2) apply for all closure
except for the onset. For this case

A ey = - CMODM/CMODN

(3.2-3)
_ +
5. = 0.0

where CMOD is the crack mouth opening displacement for the
fully open crack. The load ratios for the onset of closure and
for symmetric closure are presented in Table 3.2-1 for all
crack depths. The numerically accepted solutions from Table
2.3-1 are also included for comparative purposes. Over the
entire range of crack depths the finite element analysis is seen
to agree very well with the accepted numerical solutions. The
closure length is plotted versus load ratio for all crack depths
in Figure 3.2-4.

Several points can be made regarding the relationships
between load ratio and closure length. For all crack depths
the closure length asymptotically approaches the theoretical
solution for full closure given by equation (2.3-9). As the
theoretical solution is a straight line, the closure versus load
ratio curves approach a constant slope at full closure. As a
second point note that for crack depths greater than 0.5 a
compressive membrane force is required for full closure to
occur. This fact was noted earlier and is now verified by the

finite element analysis.
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TABLE 3.2-1

LOAD RATIO FOR ONSET OF CLOSURE AND SYMMETRIC CLOSURE

CRACK DEPTH LOAD RATIO (Nw/M)

(a/w) F.E.A TABLE 2.3-1

Onset of Closure

0.1 -5.647 -5.724

0.2 -5.247 -5.294

0.3 -4,811 -4.817

0.4 -4.353 -4.344

0.5 -3.892 -3.888

0.6 -3.446 -3.445

0.7 -3.032 -3.018

0.8 -2.655 -2.619

Symmetric Closure1

0.6 -0.876 -0.586
-0.437

0.7 -1.366 -1.100
-0.959

0.8 -1.718 -1.504
-1.355

1. F.E.A. data for symmétric closure are calculated at #0.025 from
true symmetric closure length.
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PARTIAL CRACK CLOSURE
CLOSURE LENGTH RATIO vs LOAD RATIO
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The cracked displacement contributions; 6N’ 5M’ GN, 9M
are obtained fairly directly from the finite element data by
subtracting the uncracked far-field displacement contributions
(equation 2.1-3) from the total calculated displacements. The
resulting quantities (after appropriately accounting for the
modulus of elasticity) are one-half of the actual work-—conjugaté
displacements required for the tangent compliance matrix
evaluation. The cracked displacement contributions are plotted
against closure length in Figures 3.2-5 through 3.2-7. Again,
several comments can be made regarding the figures. Because
they are obtained under independent loads (force and moment
not applied simultaneously), the displacement contributions
actually correspond to the modeled closure lengths but are
applied at the effective length defined by equation (3.2-2).
Figure 3.2-6 presents the cracked displacement contribution
due to a unit applied moment in the far-field ( ‘éM) and,
because of reciprocity, it also represents the cracked rotation
contribution due to a unit applied membrane force ( GN).
Notice also that for éymmetric modeled closure 51\’1 = SN =0
as is to be expected.

In the development of the tangent compliance matrix the
total displacements per wunit moment, 6M and GM were
introduced. These terms combine the force and moment
contributions corresponding to a given closure length (equation
2.4-2). These values are plotted versus closure length in

Figures 3.2-8 and 3.2-9. In this case the values correspond

to the actual closure lengths given by equation (3.2-2). The
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3.3

terms "effective" and "actual" closure length are discussed in
more detail in Appendix II.

In all of the figures several of the small closure data
points were not included due to their magnitudes relative to
the remaining data. For completeness the remaining data are
presented in Table 3.2-2. A sample of the data reduction is
presented in Appendix II.

J-Integral and K, Calibration

I

The final aspect of the finite element data reduction is
the evaluation of the stress intensity factors for the partially-
closed crack from the calculated J-integrals.

Four J-integral contour estimations were obtained about
the crack tip for each load step. The appropriate J-integral
for a given step was chosen on the basis of the convergence
rate of the estimates from one contour to the next. For all
crack depths the convergence characteristics followed a
consistent trend. In general, for sufficiently large differences
between crack depth and closure length convergence behavior
was such that the 4th contour resulted in the best estimate.
The sufficiently large difference was found to be satisfied
when the 4th contour did not enclose both crack tips. Since
each contour represents a normalized radius of 0.05 about the
crack tip both tips were enclosed for ?a - ?c = 0.20. For
the cases were both tips were enclosed the J-integral estimates

begin to decrease; approaching the difference between the

J-integral at the two tips. It should be noted that for very
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TABLE 3.2-2

DISPLACEMENT DATA FOR SMALL CLOSURE

CRACK CLOSURE; 5N/2 5M/2 SM/Z sM/o o2
DEPTH LENGTH
0.10 0.000 0.019 0.104 0.576 -2.037E-3 -1.082E-2
0.025 0.009 0.050  0.269 -0.896E-3 -0.463E-2
0.100 0.0 0.0 0.0 0.0 0.0
0.20 0.000 0.092 0.466 2.366 -1.761E-2
0.025 0.048 0.234 1.149 -1.222E-2
0.30 0.000 0.265 1.216 5.616 -6.023E-2
0.025 0.130 0.566 2.490 -4.720E-2
0.40 0.000 0.640 2.645 11.07 -1.421E-1
0.025 0.273 1.044 4.10 -1.183E-1
0.50 0.000 1.461 5.410 20.40 -2.753E-1
0.025 0.492 1.640 5.73 -2.380E-1
0.60 0.000 3.374 11.15 37.65 -4.763E-1
0.025 0.798 2.217 7.05 -4,223E-1
0.70 0.000 8.446 24.83 74.55 -7.761E-1
0.025 1.185 2.82 7.83 -7.006E-1
0.80 0.000 25.70 66.98 177.6 -1.253
0.025 1.65 3.12 8.1 -1.145

1 For crack displacement contributions, this is the effective
closure length. ‘
For total cracked displacements, this is the actual closure
length.

_64_



small open crack lengths ( ?a = ?c << 1) and for symmetrical
cracks the J-integral estimates approached zero as they
should. To show these convergence trends the J-integral
estimates for a crack depth of 0.4 subjected to far-field
membrane force are presented in Table 3.3-1.

Once the appropriate J-integral was determined it was
necessary to obtain the corresponding stress intensity factor.

This can be obtained from

KI = E'Jd . (3.3-1)

For the fully open case the stress intensity factor due to the
membrane force and due to the bending moment have been
calculated from equation (3.3-1). These values compare very
well to the accepted solutions [20] as presented in Table
3.3-2. The differences between the two were found to be of
consistent magnitude for several other models of less mesh
refinement about the crack plane; although the effect of using
crack tip elements was not examined.

It was now necessary to determine the relationship
between the stress intensity factor, the strip thickness and
the applied load. The J-integral is equivalent to the energy

release rate per unit crack growth,

J = W,/ 0c = VW, /WD, (3.3-2)
where
o
W, =% I[N M] g (3.3-3)
C
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TABLE 3.3-1

J-INTEGRAL ESTIMATES FOR CRACK DEPTH OF 0.40

DUE TO AN APPLIED MEMBRANE FORCE

EFFECTIVE J-INTEGRAL

CLOSURE CONTOUR CONTOUR CONTOUR CONTOUR

LENGTH 1 2 3 4
0.0° 1.610E-1 1.630E-1 1.631E-1 1.631E-1
0.0" 5.341E-2 5.413E-2 5.417E-2 5.417E-2
0.05 2.514E-2 2.550E-2 2.552E-2 2.552E-2
0.10 1.762E-2 1.788E-2 1.789E-2 1.789E-2
0.15 1.304E-2 1.324E-2 1.325E-2 1.323E-2
0.20 9.624E-3 9.785E-3 9.779E-3 9.419E-3
0.25 6.794E-3 6.900E-3 6.654E-3 1.665E-4
0.30 4.220E-3 4.150E-3 7.280E-5 1.045E-5
0.35 1.745E-3 1.484E-5 5.567E-T 2.448E-17
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TABLE 3.3-2

STRESS INTENSITY FACTOR CONTRIBUTIONS1 FOR FULLY OPEN CRACKS

CRACK DEPTH KIN KIM
(a/w) FEA Ref [20] FEA Ref [20]
0.1 0.6533 0.6702 3.4958 3.5003
0.2 1.0601 1.0833 4,9432 4.9248
0.3 1.5792 1.6068 6.4604 6.3946
0.4 2.3188 2.3630 8.3620 8.3030
0.5 3.4631 3.5426 11.080 11.094
0.6 5.3996 5.5511 15,461 15.637
0.7 9.1363 9.4545 23.625 24.169
0.8 18.146 19.012 42.782 44,463

1

For unit thickness and unit applied load.
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Rewriting equation (2.4-1) in the form

C 012/w N

c = 1/E 11
2
(S Cyi/W  Cyolw M

(3.3-4)

and combining with equations (3.3-2) and (3.3-3) gives

= 2 2 2 /w2 »
J = (1/2E'w) D’s’c(cllN +(Clz+021)MN/w+022M /w?) . (3.3-5)
Since the force and moment have been applied independently,

the J-integral contributions due to each become
JN OC N2/E'w ; JMCC M2/E'w? . (3.3-6)

From equation (3.3-1) the stress intensity factor contributions

then become

- 3
Kin = ~/E' Iy @ ~/N%/w ky N/wal
2

Kiv = +E' Iy &« M2 /w3 ky M/w
N’ kM include the necessary proportionality factors.

By superposition the total stress intensity factor is

(3.3-7)

[}

where k

- - 1 "
Ky = Ky + Ky = (ky N + ky M/w)/w?® . (3.3-8)

As in equation (2.4-2) the effect of the membrane force can be

eliminated resulting in

= 2. M 3/2 (3.3-9)
K; = (Akytky) M/w - = k" M/w

where kM is the total stress intensity factor due to a unit
bending moment with unit thickness. Note that since M is

negative for all closures, kM must also be negative. These

values are plotted versus closure length in Figure 3.3-1.
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An interesting point should be made here regarding the
stress intensity factor contributions of the negative bending

moment. It is clear that K will be positive for all closures.

IN
Similarly, for shallow cracks ( §a< 0.5) the contribution due to
the closing moment will be negative for all closure lengths.
However, for crack lengths in excess of 0.5 there exists a
closure length above which the SIF contribution due to the
closing moment 1is positive. This can be visualized by
considering a small (Griffith) crack located entirely within the
tensile portion of a bending stress field (Figure 3.3-2), for
which a positive SIF will exist at each end. Now remove the
crack plane contact from the crack tip through the original
compressive region (i.e., allow overlap). The stress field
must redistribute resulting in a negative SIF at the crack tip.
Clearly, somewhere between these two extremes the SIF
contribution due to the moment must change from positive to
negative. The FE results, being in the form of J-integral, are
always positive so that this effect is more difficult to notice.
In Figure 3.3-3 is presented a typical plot of J-integral versus
modeled closure length due to an applied far-field bending
moment. A curve through the data should reach J = 0 at some
closure, increase (with a discontinuous but reflected slope)
and gradually approach zero again at full closure. The
contribution change-over occurs at the closure for which J =
0. A second method of estimating the change-over closure is
to examine the crack opening profile in the vicinity of the

crack tip. For a pure closing moment and no crack closure an
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Figure 3.3-2

Approximate Bending Stress Distribution Along the Crack Plane
(a) Small Internal Crack Contained Entirely Within Tensile Field and (b) Deep Edge Crack



J-Integral

0-0 —_—T— 1.0

Closure Length (c/a)

Figure 3.3-3

Typical Curve of J-Integral Versus Closure Length Due to
Bending Moment for a Crack Depth Ratio < 0.5

- 72 -



overlapping crack opening profile is obtained. As the
crack closure length is increased the crack opening profile
changes, ultimately resulting in a positive crack opening
profile at the tip. The closure length at which this occurs
also signifies the contribution change-over.

Using both of these methods the range of the effective
closure length in which the stress intensity factor contribution
due to the applied moment reverses is

Crack Depth Effective Closure Length

0.0 no reversal

l

0.5 no reversal
0.6 0.25 - 0.30
0.7 0.0§ - 0.10
0.8 0.0 - 0.05

As a final point, consider the stress intensity factors
given in Table 3.3-2 for a crack depth ratio of 0.4. These
values all correspond to the reference case N = M = w = 1 and

therefore represent the stress intensity factor contributions,

k,, and k,, of equations (3.3-7) through (3.3-9). Consider

N M
now an arbitrary load distribution: N = 20,000 1b, M = 4594.7

in-1b, with w = 1.0 in. The resulting load ratio is A= -4.353

- 7\crit
FEA estimates, kN = 2.3188 and kM = 8.3620 gives a total

stress intensity factor of KI [FEA] = 7.955 ksiVin . Performing

for ‘ia = 0.40. Applying equation (3.3-8) with the

the same calculation with the estimates from reference [20], kN

= 2.3630 and kM = 8.3030 gives KI[ZO] = 9,110 ksi Vin .

Therefore, even though the individual errors are very small

( 1.9% on kN’ 0.5% on k the combined error can be very

M )
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large at the onset of closure (12.7% in this case). As the
estimates from reference [20] are the currently accepted
solutions the finite element contributions [FEA] have been
ratioed so as to satisfy continuity across the fully-open/
partially-closed interface.

The effects of both the reversal of the bending moment
contribution and the error of the finite element estimates have

been included in the evaluation of KM from equation (3.3-9).
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4. FINITE ELEMENT IMPLEMENTATION

The mathematical development of the nonlinear-elastic
line-spring model with partial closure capabilities has been
presented in Chapter 2. In Chapter 3 the parametric data
necessary to employ the model in a generalized problem of crack
closure was obtained and reduced. What remains is the topic of
this chapter; to incorporate the partially-closed line-spring model
into the ABAQUS © finite element program and to demonstrate its
application to a specific problem.

For the type of problem to which the nonlinear-elastic
line-spring model can be applied, the implementation of the
partially-closed line-spring model results in a solution algorithm
consisting of two iterative loops. The primary (or outer) loop
represents the global iteration performed by the standardl
ABAQUS © finite element code. In simplified form, the primary
iteration algorithm, in conjunction with the partially-closed
line-spring model, proceeds as follows:

Step 1 - Given an-. incremental tangent stiffness, the

displacement and force distribu‘cions2 are calculated.

i The "standard" ABAQUS finite element code refers to the
portion of the code which existed prior to the incorporation of
the partially-closed line-spring model. Note that the operation
of the "standard" portion is not affected by the new capabil-
ities.

2. Unless otherwise noted, the displacement and force
distributions which will be discussed in the following sections
are those not of the entire structure but those of the
line-spring element(s) only.
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Step 2 - The displacement solution 1is applied to the
partially-closed line-spring element and a new
tangent compliance matrix and resultant force
distribution are calculated.

Step 3 - Force distributions from steps 1 and 2 are compared.
If convergence is not satisfied, the new tangent
compliance from step 2 is input to step 1 for the
next iteration.

The secondary (or inner) loop represents the iterations performed
within the partial closure portion of the finite element code to
obtain the incremental characteristics of the partially-closed
line-spring model. This loop is completely contained within step 2
of the primary loop.

The implementation of the partially-closed line-spring model

had associated with it three distinct parts:

1. Interface between the standard ABAQUS © code and the

partial closure routines

2. Secondary iteration algorithm

3. Interpolation of the discrete parametric data

These topics are discussed in more detail in the following sections.

4,1 Interface Between Standard Code and Partial Closure Routines
Before proceeding with the discussion of the programming
interface, a brief review of the terminology inherent in
ABAQUS © multiple load case, nonlinear analyses is
appropriate. In each ABAQUS © analysis a four level

hierarchy exists which defines the solution state: step,
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increment, attempt, and iteration. Each of these terms can be
described as follows:
STEP - The largest division of the analysis.
It represents a new set of applied loads,
displacements, temperatures, etc.
INCREMENT - A fraction (=1.0) of a step. Multiple
increments form a step.
ATTEMPT = An effort to solve for the increment
state. A reduction in increment size
results if the effort is unsuccessful.

ITERATION

A single pass through the primary
loop. Multiple iterations (may) form an
attempt.

These four terms will be used throughout the remainder of this

chapter. |

The interface between the standard ABAQUS © finite
element code and the programming required to analyze partial
crack closure was developed with two major objectives:

1. Ensure minimal interaction between the standard code

and the new routines.

2. Allow the partial closure routines to be accessed only

when closure is predicted.

The standard configuration of the finite element implemen-
tation of the linear-elastic line-spring model consists of two
primary routines, MATLSA and MATLS. To support the
partial closure capability two additional primary routines have

been introduced, PRTCLL and PART, and minor modifications
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have been made to MATLS. With respect to the first objective
above, the interface between the standard code and the partial
closure routines is contained entirely within routine MATLS.
The modifications which have been made to this routine serve
three purposes; initialization of fixed data and storage
locations, updating storage locations, and evaluation of
closure. Each of these will be discussed in more detail below.

During execution, upon entering routine MATLS the
standard code retains only the displacement and force distri-
butions for the last converged increment and, in general, a
current incremental displacement distribution estimate. For
reasons to be discussed later, the solution algorithm for the
partially-closed line-spring requires a significant amount of
intermediate data to be carried from iteration to iteration prior
to incremental convergence. The majority of the data and
storage location initialization and updating is performed within
the supporting partial closure routines and, as such, are not
affected by the operation of the standard code. Data initial-
ization consists basically of reading the discrete parametric
data into a common array for use by all routines. This
operation is performed once per analysis within routine
MATLS. Intermediate data updates are performed once per
iteration within the support routines INIT, INIT1 and ICOUNT.
Appendix III contains the listing of the modified MATLS
routine with each area of modification indicated and described.

The evaluation of closure is, of course, the final objective

of the implementation of the partial closure routines. The
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entire solution for the partially-closed line-spring model is
obtained in routine PART, as will be discussed in the following
section. Prior to the evaluation of closure two other
operations must be considered; checking to see if closure is
predicted and, if so, ensuring that the correct intermediate
data are input to routine PART. The first of these is
performed in a manner similar to that by which a structure is
found to be stressed above its yield limit. An incremental
displacement distribution (step 1 of the primary iteration loop)
is applied to the fully open (linear-elastic) line-spring element.
The resulting work-conjugate force distribution is determined
in the form of the load ratio, A . A load ratio exceeding the
critical load ratio required for closure to occur (Table 3.2.1)
indicates that the line-spring element is no longer linear; the
closure has introduced nonlinearities. In conjunction with
objective 2, should closure not be obtained the partial closure
routines are bypassed (with the exception of storage updating
routines) and the standard solution algorithm is followed.

In the event that closure has occurred the data which
must be input to the partial closure routines (step 2 of the
primary iteration loop) can be of several forms. Consider the
diagrams of Figure 4.1-1 which represent different primary
iteration step 2 procedures between the same solutions. In the
first, Figure 4.1-1(a) the procedure is stationary, always
proceeding from the previously converged increment. The
second diagram, Figure 4.1-1(b), shows a progressive

procedure in which the previously converged iteration or
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PCI = Previous Converged
Increment
NCI = New Converged
Increment
Iteration 1 3
2 NCI
2

PCI
(b)

Figure 4.1-1

Schematics of Different
Primary Iteration Procedures
(a) Stationary and (b) Progressive
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increment is used as input for the next iteration. In other
words, the "base" for the stationary procedure does not
change until incremental convergence is obtained. The "base"
for the progressive procedure progresses with the solution.
Notice that for both iteration procedures a previously
converged solution is required to determine the solution state
of the partially-closed crack. This restriction is satisfied only
when a linear (fully open crack) solution has been obtained.
Therefore, a linear solution must be performed prior to the
existence of closure. Intuitively it is expected that the
progressive procedure should have better inherent convergence
characteristics than the stationary procedure. For this reason
the progressive solution procedure was selected for step 2 of
the primary iteration loop with the following exceptions:

1. Consider a situation with a very large increment size
and increasing closure length. Due to the large
increase in line-spring element stiffness with
increasing  closure, the  work-conjugate force
distribution may be very large (Figure 4.1-2(a)).
This occurs because the current incremental
displacement estimate corresponds to the previous,
lower stiffness solution. If this progressive solution
is input to the partial closure routines the secondary
iteration loop may become unstable. To avoid this
possibility, the stationary procedure is applied in

these situations.
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Figure 4.1-2

Exceptions to Progressive Iteration Procedure
(a) Excessive Step Size and (b) Non-Convergence



4,

2

2. If convergence is not obtained after a sufficient
number of iterations, the increment size is decreased
by the standard ABAQUS © code. For the first
iteration of the new attempt the progressive solution
procedure is started from the previously converged
increment rather than continuing from the previous
iteration (Figure 4.1-2(b)).

At this point the reason for requiring storage of inter-
mediate data becomes evident. As mentioned earlier, the
standard code retains only the displacement and force distri-
butions from the previous increment and the current incre-
mental displacements. To input the data from the previous
iteration into the partial closure routines requires intermediate
results from that iteration as well as, for the exceptions noted

above, results from the previous converged increment.

Secondary Iteration Algorithm

The partial closure portion of the total finite element
program consists of 18 subroutines. As discussed in the
previous section, the interface between the standard code and
the partial closure portion is performed entirely within routine
MATLS. Direct access is made by MATLS to six of the
subroutines. The subroutine hierarchy and access paths are
presented diagramatically in Figure 4.2-1. A description and
listing of each of the partial closure routines is presented in

Appendix IV.
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Figure 4.2-1

Hierarchy of Partial Closure Subroutines
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In general, the objective of the partial closure routines
can be described as follows: given the force and displacement
distribution from a previous solution state and a current
displacement increment, determine the corresponding partially-
closed crack characteristics. The crack characteristics consist
of the resultant force distribution and tangent stiffness (or
compliance) matrix, the closure length ratio, and the stress
intensity factor. The previous solution state may be either
the previously converged increment or the last iteration as
discussed in Section 4.1. Routine PRTCLL is the primary
interface between the standard code and the remaining partial
closure routines. The data input to the closure routines is
controlled by PRTCLL and the other storage initialization and
updating routines.

The secondary iteration is performed entirely within
subroutine PART. A Newton-Raphson scheme is employed and
is described briefly below:

Step 1 - Use the incoming force distribution to evaluate

a new tangent compliance matrix.

Step 2 - Use the incremental displacements and the new
tangent compliance to determine the load
increments.

Step 3 - Use the total load estimate and total compliance
to calculate the total displacement estimate.

Step 4 - Compute the error in the total displacement

from the incoming displacement. If convergence

is not satisfied, return to step 1 replacing the
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incoming force distribution with the total load
estimate and replacing the incremental
displacements (step 2) with the displacement
error.
The steps outlined above comprise primary iteration step 2
with the results being used for comparative purposes in
primary iteration step 3. The actual secondary iteration
algorithm is discussed in more detail in Appendix V.

A significant aspect of the partial closure algorithm deals
with the stiffness mismatch across the  fully-open/
partially-closed interface. At this interface, the onset of
closure, the fully-open and the partially-closed line-spring
stiffnesses should be equal. Due to the different calculation
procedures (Sections 2.1 and 2.4) this is not the case. The
resulting stiffness discontinuity is unacceptable as convergence
will never be obtained in the small closure range. To avoid
this inconsistency, factors are calculated within routine MATLS
to relate the fully-open and the partially-closed line-spring
stiffnesses at the onset of closure. The factors may be
greater or less than 1.0 and are applied the partially-closed
stiffnesses at each step of the secondary iteration loop (within
routine PART). The rationale behind applying the factors to
the closed stiffnesses is relatively simple. The stiffness
calculation as discussed in Section 2.4 requires a significant
amount of interpolation and slope evaluation of discrete data
"curves" (Section 4.3). It is to be expected that some error

will be introduced due to the interpolation, predominantly in
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4.3

the small closure range where the most severe gradients occur.
Therefore, to minimize the effects of the interpolation errors,
the factors are applied to the partially-closed stiffnesses.
However, beyond the small closure range the discrete data
"eurves" tend to be more well behaved. In this range it is
expected that the partially-closed equations (equations 2.4-T)
yvield relatively good stiffness estimates. Therefore, the
factors should be "reduced" to a value of 1.0 at some point in
the closure range. The method by which this reduction is
performed has a significant effect on the convergence
characteristics of the partially-closed line-spring model. This
will be discussed in more detail later. In routine PART,
presented in Appendix IV, the reduction occurs linearly over

the range 0 = ?c £ 8

Interpolation of Discrete Parametric Data

The description of the parametric data necessary to
characterize partial closure of external cracks has been
presented in Chapter 3. It should be noted that although the
data was obtained at discrete values of crack depth and
closure length, the final objective this study is to apply the
analytical technique to all cracks with depths §a = 0.8.
Therefore, an interpolation scheme was required which would
allow continuous evaluation of the parametric data. Of itself
this presents little difficulty as a linear interpolation scheme
would satisfy the requirement. However, to evaluate the

tangent compliance matrix coefficients (equations 2.4-7) the
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slopes of the discrete data "curves" must be known. A
further requirement then becomes that slope continuity must be
satisfied by the interpolation scheme.

Each parametric data set must be interpolated with
respect to two variables; closure length, for displacement and
stress intensity factor contributions, and crack depth. The
closure length must be interpolated with respect to load ratio
and crack depth.

Interpolation with respect to closure length (and load
ratio) was performed using a cubic spline curve through two
consecutive data points with known slopes. As indicated in
Figure 4.3-1 the slopes were evaluated by a weighted central
difference approximation. This approach 1is sufficient to
satisfy the continuity requirements described above. This
interpolation scheme has been applied to all data ranges with
the following exceptions:

1. For the first range of the stress intensity factor
contribution (0 = ’§c < 0.025) the left-side slope is
unknown. In this range a quadratic interpolation
scheme is used (QUADR). The situation is similar at
the final SIF range ( §, - 0.075 £ ¥ £ % ) and for
the first closure length (vs. load ratio) range where
quadratic interpolation was used (QUADL and
QUADR, respectively).

2. For the first two ranges of the displacement contri-
bution ( 0 £ %_ = 0.025 and 0.025 = T _ < 0.075,

Figures 3.2-5 through 3.2-7 ) the situation is
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Figure 4.3-1

Slope Evaluation Using Weighted Central
Difference Approximation
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somewhat different. As illustrated in Figure 4.3-2
the gradient of the displacement contributions are
very large at the onset of closure. Direct use of
the weighted central difference approximation for the
slope at data point 2 ( ?c = 0.025) resulted in a
non-monotonic displacement curve (cubic spline)
between data points 2 and 3 as shown
(cubic/quadratic). To avoid this, multiple quadratic
interpolation is performed; first wusing routine
QUADR between points 2 and 3 and then, with the
slope calculated at point 2, using QUADR again
between points 1 and 2 (double quadratic). The
resulting "curve" satisfies the continuity
requirements, as well as the monotonic expectations.
Note that at the full closure end of the data (final range) the
slopes of the displacement vs. closure length and the closure
length vs. load ratio curves are known. Therefore, cubic
spline interpolation is applicable in the final data range.

As no differentiation with respect to crack depth is
required a linear interpolation scheme in ?a was deemed
sufficient. Although this represents the most direct type of
interpolation several aspects of it should be noted. Figure
4.3-3 shows a 3-D representation of a typical crack closure
length versus load ratio curve for two discrete crack depths,
gal and 232 = §al + 0.1. As can be seen in the figure
both curves are not defined over the same total data range.

The curves for and are undefined in regions I and III,
a2 al gl
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4.4

respectively. In region II both curves are defined and the
interpolation can be performed directly. In region III, line BD
defines the load ratio for full closure for crack depths between
‘g-al and ?32' The data and slopes along this line are known
(equation 2.3-9) so the interpolation can be performed between
the curve for ?a2 and a point on the (known) line BD. In
region I, line AC defines the approximate onset of closure. In
this region the data and slopes are not known and must first
be interpolated (linearly) along the line between points A and
C. The interpolation in 'fa can then be performed between
this point and the curve for -gal' These same types of
considerations are required at the full closure end of the

displacement and SIF contribution curves.

Application of the Partially-Closed Line-Spring Model

A crack configuration which is of value due to both its
generality and its relative simplicity is that of a cylindrical
pressure vessel containing two long, axial, internal surface
cracks located diamétrally opposite each other. Accepted
solutions for partial closure of surface cracks subjected to an
arbitrary membrane force/bending moment combination are not
available. Therefore, the verification of the partially-closed
line-spring model implementation is performed by examining the
cracked cylinder in two ways: one using gap elements to
define the crack face and the other using the line-spring
model. A comparison of the results of the two examinations is

presented in the next chapter.
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The crack configuration and loading is presented in
Figure 4.4-1. The long axial cracks (i.e., 2c'>>w) are
approximated by plane strain edge cracks. Due to the
presence of the cracks, the internal pressure results in a
tensile membrane force and a small closing bending moment
applied to each crack. For closure to occur the cylinder is
also "pinched" by concentrated compressive loads applied
normal to the plane of the cracks. The geometric parameters
defining the configuration are:

cylinder average radius, R = (R0+Ri)/2 = 21.0 in.,

cylinder thickness, w = 2.0 in.,

crack depth ratio, a/w = 0.4.

The internal pressure, p, is held constant in both analyses
with the resulting membrane force due to the pressure, being
equal. Recall that the partial closure routines require a linear
solution to be available prior to the onset of closure. To
satisfy this requirement the compressive load, F, is applied
incrementally; beginning at a small value for which closure will
not occur and increasing such that partial closure is obtained.
Crack face pressurization is not considered.

The plane strain crack configuration contains two planes
of symmetry, thereby allowing only one-quarter of the
geometry to be modeled.

In the first analysis the cylinder is modeled using 336
8-node plane strain elements (CPE8R). The crack face is
defined by 16 gap elements. This model will be referred to as

the "gap" model and is shown in Figure 4.4-2.
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Figure 4.4-1

Axially-Cracked Pressurized Cylinder
Analyzed Using the Partially-Closed
Line-Spring Model
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Figure 4.4-2

Plane Strain and Gap Finite Element Model of
the Axially-Cracked Pressurized Cylinder



In the second analysis, the cracked cylinder is modeled
with 6 8-node shell elements (S8R) and one 3-node line-spring
element (LS3S). Convergence tolerance limits of 1-2% of the
resultant line-spring force distributions at the onset of closure
were used. This "shell" model is presented in Figure 4.4-3.

Several points should be noted with respect to the
analyses. As was mentioned, the internal pressure was held
constant in each analysis. However, the actual pressures are
not the same. For the gap model the pressure, pg, acts over
the inner surface (radius Ri). For the shell model the
elements are located at the average radius, R, so the
pressure, p, effectively acts over a larger area. Therefore,

the pressure for the shell model must be
Pg = pg Ri/R (4.4-1)

to result in the constant crack plane membrane force due to
pressure in the two analyses.

For the shell model, the partial closure routines as
presented in Appendiées III and IV are used. In Appendix III
the wvariables FCl, FC2, and FC3 are introduced. As
described in Section 4.2 these factors are used to multiply the
stiffnesses obtained from the partial closure routines such
that at the onset of closure the "fully-open" and the
"partially-closed" stiffnesses are equal (i.e., assure continuity
across the open/closed interface). These factors must be

"reduced" to 1.0 at some closure length ?c = ?a. For the
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Shell and Line-Spring Finite Element Model of
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shell model this reduction is performed linearly over the total

crack depth.
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5. RESULTS OF AN AXIALLY-CRACKED CYLINDER

Of primary interest in the linear-elastic analysis of cracked
structures is the crack tip stress intensity. With the introduction
of partial crack closure a second parameter becomes of interest, the
crack closure length. Figure 5-1 presents the closure length ratio,
';'c, versus normalized compressive force, F/ ch, for the axially-
cracked pressurized cylinder described in the previous section.
The normalizing force, ch, corresponds to the force required for
full closure to occur. From previous discussion, full closure is
representative of an uncracked structure with zero stress at the
location of the crack tip. From reference [24], the force which

satisfies this requirement for the axially cracked cylinder is

Fr, = PRW/(w-0.3634 R Az) (5-1)

f

where xfc is the load ratio at full closure from Table 3.2-1.

In general, the two solutions agree quite well. It should be
noted that the shell model allows for a pseudo-continuous evaluation
of the closure length (i.e., although a unique value of closure
length is obtained, a range of values exist for which convergence
criteria are satisfied). The closure length estimates for the gap
model are known only as a range of values which are governed by
the mesh refinement of the model. This closure range is plotted in
the figure. The actual closure length falls within the defined range
for the gap model. For the shell model the range is unknown as is
the location of the estimated closure length within the range. In

general, the accuracy of the estimated closure length is governed
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by the convergence tolerance limits for line-spring elements and by
the mesh refinement for gap models.

Both models have been analyzed for two linear (fully open)
load cases such that the linear trends could be examined. For the
shell model, the following relationships were obtained between the

generalized forces, N and M, and the applied loads,

PR - F
(5-2)

M = -0.02588 pR - 7.204 F

where F is positive as shown in Figure 4.4-1. From the definition
of the load ratio, the onset of closure is found to occur at Fcritl ch
= 0.316. Similar development for the gap model, using the crack
mouth opening displacements rather than the generalized crack

plane tractions, yields
CMOD = (7.39E-8) pR - (1.280E-6) F (5-3)

for a critical force of Fcri /F, = 0.322. Both of these critical load

t Ic
points are indicated in the figure.

Figure 5-2 presents the second and final comparison between
the two solutions; the normalized crack tip stress intensity,
KIl(pRVTT_a'/w), versus normalized compressive force. Again, the
two solutions agree very well over the applicable range of closure.
The linear solutions from each analysis have been combined,

resulting in the following relationships between KI and the applied

loads:

KI = 1.5952 pR - 22.823 F (5-4)

for the shell model and
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K, = 1.6005 pR - 22.9877 F (5-5)

I

for the gap model. These linear solutions are also plotted in Figure
5-2. The effects of partial crack closure on the stress intensity
factor are dramatically shown. From equations (5-4), the linear
stress intensity factor is zero at F/ch = 0.390. However, both
solutions indicate that at this load point the stress intensity factor
has decreased only by ~33% from the fully open case (the onset of
closure).

It should be noted that the curves presented in Figures 5-1
and 5-2 are applicable only for the geometry modeled (i.e., R = 21
in, w = 2 in, a = 0.8 in). However, since the closure length ratio
is purely geometric and the applied force and the stress intensity
factor are normalized with respect to the internal pressure, the
effects of kinematic variations are implicitly included.

Notice also that the agreement between the stress intensity
factors is better than that between the closure lengths. This is
expected to be the case in general because a larger closure length
implies greater stiffness which, for a given displacement field,
results in a greater bending moment. Simultaneously, Figure 3.3-1
shows that the increased closure length corresponds to a lower
stress intensity factor calibration. The increase in the moment is
therefore offset by the decrease in the SIF calibration resulting in
a more well behaved SIF.

Also, in both figures it can be seen that the shell model
solution is applicable over a limited range of closure. This topic
will be discussed in the following chapter. For the present, let it

suffice to say that over the applicable range, the very good
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agreement between the two solutions suggests that the
nonlinear-elastic  line-spring model formulation provides the

analytical capability of much more complex finite element models.
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6. DISCUSSION

The objective of this work has been the development and
implementation of the nonlinear-elastic line-spring model to be
applied in the analysis of partially-closed surface cracks in plates
and shells. The results of an axially-cracked pressurized cylinder
have been presented, indicating that the newly developed model is
capable of analyzing surface-cracked structures to the same extent
as much more complex finite element models. It has been noted that
the nonlinear-elastic line-spring model solution is applicable over a
limited range of closure. Some of the factors which control this
range are now considered.

The primary factor contributing to the limited solution range is
considered to be the lack of parametric data available for
interpolation. This lack of data appears to be most severe in the
small closure range. Recalling Figures 3.2-4 through 3.2-9, the
most extreme variations in displacement contributions versus closure
length and closure length versus load ratio occur at and just
beyond the onset of closure. As discussed in Section 4.3, a
significant amount of inferpolation is performed on all of the
parametric displacement data to evaluate the compliance matrix
coefficients. The large variations in the data in the small closure
range represent a challenge to the interpolation technique,
especially with very few data points defining the curves. The
importance of this area increases when considering that the fully-
open and the partially-closed stiffnesses must be equal at the onset
of closure to satisfy convergence requirements. To satisfy this

requirement, stiffness factors are applied to the partially-closed
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stiffnesses as discussed in Section 4.2. The stiffness factor
reduction technique (i.e., linear, quadratic, etc. and the range
over which it is applied) serves to shift the effect of insufficint
data to a different closure range.

A significant number of trial analyses of the axially-cracked
cylinder were performed to examine the effects of convergence
tolerance limits, iteration procedure, and stiffness factor reduction
techniques on the nonlinear-elastic line-spring model characteristics.

The effects of the tolerance limits on the convergence
characteristics of the line-spring model have a relatively predictable
trend. In general, the larger the tolerance limit, the quicker the
convergence; the smaller the limit, the longer the solution time.
The accuracy of the line-spring model solution is governed by the
tolerance limits defined in the analysis. Therefore, a better
solution is expected if small tolerance limits are defined.
Unfortunately, as is typically the case, there exist advantages and
disadvantages to both small and large tolerance limits. As can be
seen in Figures 5-1 and 5-2, at the upper limit of applicability of
the shell model the increment size decreases and both the closure
length and the stress intensity factor solutions begin to oscillate.
At the maximum increment size allowed in the analysis of the
axially-cracked cylinder, the increment in applied load, F, was 60
lb. The resulting linear increments in the generalized forces, N
and M, were 60 lb and 430 in-lb, respectively, versus a tolerance
limit of 150 1b and 150 in-lb. This indicates that if the increment
size is decreased by a factor of 3 in the linear regime the

incremental generalized forces will be less than the tolerance limit.
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Due to the nonlinearities which develop with crack closure, these
incremental forces will change. However, it can be expected that a
sufficiently small increment size exists, and has been attained, for
which the incremental generalized forces are less than the tolerance
limits. A second effect of the tolerance limit demonstrates the
sensitivity of the nonlinear line-spring model solution to the
"ligament" tractions. A relatively small variation in the generalized
force or moment (or load ratio) can have a significant effect on the
solution. Closure length differences of up to 20% were obtained for
the same load state with maximum residuals in the upper (+150)
versus the lower (-150) portion of the tolerance range. The effect
on the stress intensity factor is somewhat less severe. Both of
these situations have been found to contribute to the solution
behavior at the upper limit of applicability.

From this it appears that very small tolerance limits are
desirable. However, the solution time required to converge to very
small tolerances may be restrictive. In general, the larger
tolerances will yield good results for sufficiently large increment
sizes, smaller tolerances- may require smaller increments and
correspondingly greater solution times. One further effect of the
tolerance limit can be seen at the onset of closure. From Figure
5-1, the first solution point within the closure range predicted zero
closure. The reason is that the nonlinear stiffnesses associated
with closure resulted in an incremental displacement estimate which
corresponded to a fully open crack configuration. The resulting
residual forces were small enough to satisfy convergence

requirements. A smaller tolerance limit will minimize the range of
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closure length over which this can occur but it will not remove the
possibility of occurence.

The stationary and progressive iteration schemes have been
described in Section 4.2. Several analyses comparing the
convergence characteristics of the two procedures have been
performed. In each case, the convergence characteristics of the
progressive iteration scheme exceeded those of the stationary
scheme. Although the amount varied with the tolerance limit and
the stiffness factor reduction technique, the progressive precedure
resulted in consistently better convergence.

By far, the stiffness factor reduction technique was found to
have the greatest impact on the line-spring model characteristics.
In light of this, a significant number of reduction techniques have

been considered as summarized below:

STIFFNESS FACTOR REDUCTION TECHNIQUE

Linear to ?c = 0.075
" to ?c = 0.100

" e g
Quadratic to ?c = 0.075

%a

" to ‘?c

In addition, constant factors were applied (no reduction) and the
partially-closed stiffnesses were used directly. There was no clear
effect of the factor reduction technique. In the example
considered, linear reduction was applied over the total crack depth.
For the same model, no reduction and quadratic reduction over the
crack depth resulted in very different convergence behavior.

Applying the partially-closed stiffnesses directly (i.e., a constant
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factor of 1.0) had a second effect; the load at which closure began
changed due to the difference between the fully-open and the
partially-closed crack stiffness. However, it should be noted that
over the applicable closure range for each reduction technique,
the closure length estimate for the same load state were somewhat
different. This difference is due in part to the increased or
decreased effects of the tolerance limits and to the stiffness
differences obtained by the reduction technique.

The effects of the three primary aspects of the partial crack
closure implementation on the convergence characteristics of the
nonlinear-elastic line-spring model can be summarized as follows:

- Large tolerance limits in conjunction with small increment

sizes can result in oscillatory solution behavior.

- Progressive iteration is more advantageous than stationary

iteration.

- The stiffness factor reduction technique has the most

significant effect on convergence.

- The calculated closure length is affected more than the

corresponding stress intensity factor.

A comparison of the gap model and shell model results
presented in Figures 5-1 and 5-2 indicate that over the applicable
range the two solutions give effectively the same results, especially
for the stress intensity factor. The most dramatic difference
between the two analyses is that of model complexity (Figures 4.4-2
and 4.4-3). The gap model consists of a relatively large number of
8-node plane strain elements in comparison to the shell model which

consists of 6 8-node shell elements. The shell elements were chosen
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because of their suitability in modeling cylindrical structures.
Another advantage of the shell elements is that the nodal degrees of
freedom are the same as for the line-spring element allowing for a
simple and direct connection. A model consisting of plane strain
elements and a line-spring element would require additional modeling
effort associated with a larger number of elements necessary to
model the cylinder and the definition of constraint equation
connections between the line-spring element and the lower order
palne strain elements. A caution associated with the shell elements
is that the cylinder centerline is modeled such that the internal
pressure must be modified to account for the actual pressure area.
For very large radius to thickness cylinders this pressure load
variation is not significant. However, for the example performed
here the 5% difference could have a major influence considering the
impact of the other factors already considered.

It was originally expected that the most significant gradients
of the data would occur in the range of full closure as the cracked
compliances must decrease to zero (and the stiffnesses must become
infinite). As evidenced by the parametric data curves, Figures
3.2-4 through 3.2-9, the reverse is true; all curves show very
smooth trends as full closure is approached. For the most part,
the presence of the stiffness factor is due to the lack of parametric
data available for interpolation in the small closure range. The
evaluation of the partially-closed compliance matrix coefficients
(equations 2.4-7) requires estimation of slopes and displacements of
the parametric data curves. With reference to Figure 4.3-2, a very

different displacement can be obtained depending on which
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interpolation procedure is used. Similarly, slope estimates can be
widely varied. The interpolation method used can result in a
very different compliance matrix in this closure range. The
differences decrease with increasing closure because of the smoother
data curves obtained.

The results from the cases which have been examined by
modifying the stiffness factor reduction technique, the iteration
procedure and the tolerance limits indicate that the interpolation of
the parametric data governs the convergence characteristics of the
nonlinear-elastic line-spring model. The interpolation is most
severly tested in the range of small closure where the parametric
data curves are not well defined.

When the partially-closed stiffnesses are used throughout the
analysis, a difference will exist in the load required to cause
closure. For this reason it is advantageous to apply the stiffness
factor. It is expected that additional small closure data will result
in a more accurate estimate of the partially-closed stiffnesses and
will minimize the effect of the stiffness factor. However, unless the
partially-closed stiffness ié to be applied at all time (i.e., the 0.0
closure stiffnesses apply for the fully-open crack as well), the
stiffness factor will be necessary to assure continuity across the
fully-open/partially-closed interface.

The implementation of additional parametric data or
modifications in the stiffness factor reduction technique, should

follow the procedure discussed in Appendix VI.
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7. CONCLUSIONS

In this study, the linear-elastic line-spring model has been

extended to include nonlinear-elastic response resulting from partial

external closure of surface cracks. This enhanced model has been

incorporated into the ABAQUS © finite element program. From the

comparisons and discussion presented, the following conclusions are

drawn.

1.

Part.ial closure of an axially-cracked cylinder has been
analyzed using both a highly detailed model consisting of
plane strain elements and gap elements and a very simple
model consisting of several shell elements and a single
nonlinear-elastic line-spring. The two methods result in
essentially the same variations in closure length and
stress intensity factor with variations in the applied
loads.

A progressive iteration scheme requires storage of
intermediate displacements, forces and  stiffnesses.
Despite this 1increased recordkeeping, progressive
iteration is moré advantageous than stationary iteration
due to its inherently better convergence characteristics.
The effect of crack closure on the stress intensity factor
is dramatic. An order of magnitude difference in the
stress intensity factor between the linear and the
nonlinear solutions can be obtained within a closure
length equal to 1/3 of the crack depth.

The nonlinear-elastic line-spring model is applicable over

a limited range of closure. The actual range varies with
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several factors. However, the primary cause is
considered to be the lack of parametric data available for
interpolation. The lack of data is most severe in the
small closure range where the largest variations in the
displacement contributions occur.

In general, the newly developed nonlinear-elastic line-spring
model is a viable alternative to highly detailed finite element models
in analyzing partial external closure of surface cracks in plates and
shells.

For future consideration it 1is expected that additional
parametric data is required, primarily in the small closure range, to

fully utilize the nonlinear-elastic line-spring model.
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APPENDIX 1

CLOSURE MODE - INTERNAL CRACK CLOSURE

The closure mode which is the subject of this analysis is that
where the crack mouth closes first and closure progresses toward
the crack tip. It has been noted that this mode of closure requires
a closing (negative) bending moment and either a tensile (positive)
or compressive membrane force. If an opening bending moment is
applied a compressive membrane force is required to close the
crack. The resulting closure begins at the crack tip and
progresses toward the mouth. In this mode a cusp is formed at the
crack tip. Applying superposition of the stress intensity factor
gives:

K, = Nky + Mky = 0. (I-1)
Defining >—\k to be the load ratio required to satisfy equation (I-1)

the result becomes

%, = -6—0:923 + 0.199(L-sin %) _
0.752 + 2.02 5, + 0.37(1-sin @)’

where k'N and k’M are obtained from Tada et al [20] and @ =‘?T§a/2.
Figure I-1 presents the load ratio required for the onset of
internal (ik) and external (icrit) closure versus crack depth. To
determine which closure mode occurs first under wvarious loading

combinations the crack opening displacement profile and the stress

intensity factor are required. The findings are as follows:

Case 1 - N=0, M=>0 No closure of either type.
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Case 2 - N=>0, M<0 = overlapping C.0.D.

-
AN=X,pjt - Positive SIF.

Case 3 - N<0, M=>0 A=), - separating C.0.D.

A=A__., - negative SIF.
Case 4 - N<0, M<0 Full external closure (ga = 0.5).
Possible full external closure

(2,>0.5).

In summary, the closure mode is dependent only upon the
applied bending moment. For a closing (negative) moment closure

begins at the crack mouth. For an opening moment closure begins

at the crack tip.
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APPENDIX II

REDUCTION OF PARAMETRIC DATA

Reduction of the parametric finite element data was discussed
in Sections 3.2 and 3.3. At this time the actual data reduction will
be performed on the data for a crack depth of 0.100.

For this crack depth three closure lengths were modeled;
0.0 (fully open), 0.0+ and 0.05. The uncracked contributions to
the far-field deflections are 0.091 due to a unit membrane force and
1.092 due to a unit bending moment (equation 2.1-3) with
E'=30/0.91 and w = 1.0.

Before proceeding with the actual data reduction the
differencés between the "modeled", "effective" and "actual" closure
lengths should be discussed. Consider a portion of the finite
element model presented in Figure 3.2-3. The "modeled" closure
length is just that, the amount of closure corresponding to node i
of the model. For 0.0 modeled closure, i = 0; for 0.0+ modeled
closure, i = 1; etc. The "effective" closure length correpsonds to
the closure at node i+l and applies to the displacement contributions
(S 5M = GN, GM). With a given modeled closure (to node i) the
model characteristics remain constant until the gap CODi‘{_1 is zero.
At this point the characteristics will change, again to remain
constant until gap CODi +9 closes. Therefore, the displacement
contributions for the effective closure length correspond to those
for the modeled Ilength. The "actual" closure length also
corresponds to the closure at node i+l. However, it applies to the

M

total displacements and stress intensity factor ( 6M, ©" and kM).
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These values, as described in Sections 2.4 and 3.3 combine the
displacement and SIF contributions corresponding to the modeled
closure length. In summary, the term "effective" simply implies
that the displacement contributions are applicable over the entire
closure range from node i to node i+l and are dependent on the
finite element mesh size.

For the 0.0” and 0.0" modeled closure lengths (0.0° and 0.025
effective) the data reduction is presented in Tables II-1 and II-2.
Note that k estimates from

and k relate the KI and K

rat,N rat,M N IM
the finite element analysis to those from reference [20] (Table
3.3-2). For the case of 0.05 closure a different approach is
required. Consider the 0.05 closure model of Figure II-1.
Application of equation (3.2-1) results in a load ratio of A= -5.1
with a closure length of 0.075 (node 4). However if node 4 has
closed, then, to the accuracy of the finite element model, the crack
is fully closed. From equation (2.3-9), full closure occurs at a
load ratio of -4.8. The discrepancy lies in that what appears to be
full closure as far as the model is concerned in reality represents
the presence of a crack bétween nodes 4 and 5 (i.e., no traction is
present on the surface between nodes 4 and 5).

Since full closure has in reality occured, the 0.05 modeled
closure length data is neglected in favor of the full closure
characteristics. This effect occurs for all crack depths.

Table II-3 presents a complete list of the reduced parametric

data requred for the partial closure routines.
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TABLE II-1

DATA REDUCTION FOR 0.0° CLOSURE

CRACK DEPTH - 0.10

MODELED CLOSURE LENGTH - 0.0

Displacement (Far-Field) 0.091569 (N) 0.003152 (M)
Rotation (Far-Field) 0.003152 (N) 1.109473 (M)
CODi+1 0.00847 (N) 0.049961 (M)
J-Integral 0.012948 (N) 0.3707 (M)

EFFECTIVE CLOSURE LENGTH - 0.0"

15y
16y
%GM = E'(1.109473-1.092) = 0.57603

1l

E'(.091569-.091) = 0.01876

%eN = E'(0.003152) = 0.10392

ACTUAL CLOSURE LENGTH - 0.0"

X = -0.049961/0.008847 = -5.64708

1M =35 R + 15, = -0.002037

3oV = 10y A + %eM = -0.010819

Kpat N = 0-6702/0.6533 = 1.0259

Kpae v = 3-5003/3.4958 = 1.0013

M= Kyt VE'(0.012848) + k., VE'(0.3707) = -0.28437
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TABLE II-2

DATA REDUCTION FOR 0.0° CLOSURE

CRACK DEPTH - 0.10

+

MODELED CLOSURE LENGTH - 0.0
Displacement (Far-Field) 0.091277 (N) 0.001502 (M)
Rotation (Far-Field) 0.001502 (N) 1.100153 (M)
CODi+1 0.003536 (N) 0.019528 (M)
J-Integral 0.006561 (N) 0.1774 (M)

EFFECTIVE CLOSURE LENGTH - 0.025

%SN E'(.091277-.091) = 0.00913
%5M = QGN = E'(0.001502) = 0.04951

%GM = E'(1.100153-1.092) = 0.26879

ACTUAL CLOSURE LENGTH - 0.025

X = -0.019528/0.003536 = -5.52209

3 oM = 16y A+ 1By = -0.00090
oM =30 A+ %GM = -0.00463
Kpoq¢ N = 0-6702/0.6533 = 1.0259
Kpgt y = 3-5003/3.4958 = 1.0013

M3 V0. 0063617 VET@.1778) = -
kKW= A krat,N E'(0.006561) + krat,M E'(0.1774) = -0.21326
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TABLE I1-3

PARTIAL CRACK CLOSURE - PARAMETRIC DATA

Number of Discreet Data Points Available

for Crack Depth Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
] 7 9 11 13 15 17
Crack Depth = 0.10
It B Be 8%/2 " /2 Sul2  Oul2
-5.64708 .000 -2.0371E-3 -1.081%E-2 -.28437 .0187634 ,103%211 .5760317
-5.52209 .025 -8.9607E-4 -4.6304E-3 -.21326 .0091287 .0495130 .2687900
-4,80000 .100 0.0000000 0.0000000 .00000 .0000000 .0000000 .000000CO
Crack Depth = 0.20
At 5. 87/2 /2 KM Bu /2 5u/2  Bu/2
-5.24679 .000 -1.7614E-2 -8.063%E-2 -.75905 .0922415 .4663580 2.366244
-5.13448 .025 -1,2219%9E-2 -5.4311E-2 -.63228 .0480350 .2344200 1.149300
-4.76670 .075 -4,4843E-3 -1.8879E-2 -.39294 .0172090 .0775440 .35073500
-4,33957 ,125 -9.0437E-4 -3.5887E-3 -.19343 .0065008 .0273060 .1149100
-3.60000 .200 0.0000000 0.0000000 .00000 .0000000 .0000000 .0000000
Crack Depth = 0,30
e B e"/2 6 /2 ™ Su/2 Dpa /2 Ou/2
-4,.81112 .000 -6.0228E-2 -2.3167E-1 -1.3360 .2651587 1.215482 5.616157
-4,71098 .025 -4.7201E-2 -1.7503E-1 -1.1582 .1300800 .5656100 2.489500
-4,38720 .075 -2.6125E-2 -9.0642E-2 -.86567 .0563050 .2209000 .8784800
-4,00480 .125 -1.2443E-2 -4.0326E-2 -.60850 .0311660 .1123700 .4096900
-3.58532 .175 -4.5211E-3 -1.3609E-2 -,37863 .0159090 ,0525170 .1746800
-3.14211 .225 -9.0525E-4 -2.5065E-3 -.18291 .0063747 .0191250 .0575860
-2.40000 .300 0.0000000 O0,0000000 ,00000 ,.0000000 .0000000 .0CO000O0O
Crack Depth = 0.40
L A - e"/z K bu/2 B/ Bul2
-4,35286 .000 -1.4209E-1 -4.4258E-1 -1.9828 .6401989 2.644003 11.06900
-4,26558 .025 -1.1832E-1 -3.5147E-1 -1.7539 .2724800 1.044000 4.101700
-3.97712 .075 -7.7615E-2 -2.1143E-1 -1.4235 .1243000 .4167300 1.4435900
-3.63400 .125 -4.7966E-2 -1.1972E-1 -1.12%6 .0779270 .2352200 .7350600
-3.24489 ,175 -2.6575E-2 -6.0300E-2 -.84978 .0493520 .1335700 .3731100
-2.82582 .225 -1.2526E-2 -2.5565E-2 -.59034 ,0295510 .0709800 .1750100
-2.39119 .275 -4.5296E-3 -8.1993E-3 -.36201 .0155790 .0327220 .0700460
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TABLE 11-

3

PARTIAL CRACK CLOSURE - PARAMETRIC DATA

(continued)
-1.94302 .325 -9.0543E-4 -1.4209E-3 -.17001 .0063326 .0113990 .0207270
-1.20000 .400 0.0000000 O0.0000000 .0O0000 .00O0O000C .0OOQOOQOO .OCQOOOQOOQ
Crack Depth = 0.50
Al 5 8"/ g"/2 kM 5. /2 Bul2  Bu/2
-3.89162 .000 -2.7934E-1 -6.5594E-1 -2.6925 1.460995 5.410300 20.39889
-3.81571 .025 -2.3798E-1 -5.3147E-1 -2.4105 .4920800 1.639700 5.725100
-3.55408 .075 -1.7148E-1 -3.3919E-1 -2.0391 .2257200 .6307500 1.902500
-3.24200 .125 -1.2036E-1 -2.1047E-1 -1.7413 .1500900 .3662200 .9768100
-2.88163 .175 -7.9582E-2 -1.2114E-1 -1.4251 .1041200 .2204700 .5141600
-2.48636 .225 -4.8657E-2 -6.3056E-2 -1.1196 .0716280 .1294400 .2587700
-2.06796 .275 -2.6759E-2 -2.8608E-2 -.83550 .0473250 .0711090 .1184400
-1.63435 .325 -1.2562E-2 -1.0563E-2 -.57530 .0289710 .0347860 .04623%00
-1.19356 .375 -4.5336E-3 -2.7664E-3 -.34820 .0154520 .0139090 .0138350
-0.74337 .425 -9.0548E-4 -3,3448E-4 -.16057 .0063165 .0037900 .0024829
0.00000 .500 0.0000000 0.0000000 .00000 .0000000 .0000000 .0000000
Crack Depth = 0.60
heak % 5"/2 8"/2 K B /2 Ou/2 O /2
-3.44645 .000 -4.762BE-1 -7.8557E-1 -3.4946 3.374363 11.15332 37.63377
-3,37874 .025 -4.2227E-1 -6.3167E-1 -3.1624 .7976900 2.272%00 7.048000
-3.13426 .075 -3.227%E-1 -3.9773E-1 -2.7976 .3630000 .8149600 2.156600
-2.84305 .125 -2.4403E-1 -2.4415E-1 -2.4578 .2501600 .4672000 1.084100
-2.50443 .175 -1.7767E-1 -1.3749%E-1 -2.1113 .1827300 .2799700 .5636700
-2.12905 .225 -1.2337E-1 -6.7611E-2 -1.7667 .1349000 .1638300 .2812000
-1.72738 .275 -8.0800E-2 -2.6034E-2 -1.3605 .0983610 .0891070 .1278900
-1.30774 .325 -4.9078E-2 ~4.7092E-3 -1.1148 ,0695410 .0418640 .0500370
-0.87642 .375 -2.6878E-2 3.5180E-3 -.82275 .0466650 .0140210 .0150860
-0.43689 .425 -1.2587E-2 4.5196E-3 -,56311 .0288100 .0000000 .0045196
0.00602 .475 -4.5366E-2 2.6758E-3 -.33804 .0154290 -.0046295 .0027036
0.45665 .525 -9.0544E-4 7.5226E-4 -.14939 .0063165 -.0037899 .0024829
1.20000 .600 O.0000000 0.0000000 .00000 .0000000C ,0000000 .000QO0OQOO
Crack Depth = 0.70
Nerid .  8'/2 g/ "% %./2 B/ B /2
-3,03154 .000 -7.7607E-1 -7.1091E-1 -4.4927 8.445548 24.82695 74.55299
-2.96777 .025 -7.0055E-1 -5.3147E-1 -4.1000 1.184800 2.815600 7.824600
-2.72858 .075 -5.5677E-1 -2.7089E-1 -3.7147 .5386900 .9130900 2.220500
-2.44620 .125 -4.4094E-1 -1.1111E-1 -3.3391 .3820800 .4937100 1.096600
-2.11894 ,175 -3.4027E-1 -8.3404E-3 -2.9518 .2894000 .2729500 .5700200
-1.75586 .225 -2.5423E-1 5.1161E-2 -2.5592 .2234400 .1381100 .2936600
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TABLE I1-3
PARTIAL CRACK CLOSURE - PARAMETRIC DATA

(continued)
-1.36644 ,275 -1.8292E-1 7.8043E-2 -2.1723 .1724300 .0526920 .13500400
-0.95859 .325 -1.2582E-1 8.2055E-2 -1.7999 .1312600 .0000000 .0820550
-0.53820 .375 -8.1836E-2 7.1846E-2 -1.4485 .0974130 -.0294090 .03560180
-0.10926 .425 -4.9462E-2 5.4612E-2 -1.1228 .0695410 -.0418630 .0300370
0.32551 .475 -2.6996E-2 3.5929E-2 -.82670 .0468750 -.0422540 .0496830
0.76535 .525 -1.2614E-2 1.9666E-2 -.56283 .0289710 -.0347860 .0462900
1.20734 ,575 -4.5402E-3 8.1266E-3 -.33586 .0154990 -.0232530 .0362010
1.65702 .625 -9.0554E-4 1.8394E-3 -.14735 .0063326 -.0113990 .0207270
2.40000 .700 0.0000000 0.0000000 .00000 .0000000 .0000000C .0000000
Crack Depth = 0.80

Aeeit 5 S /2 a"/2 k™ 5 /2 Bun /2 O /2
-2.65483 .000 -1.2525000 -2.2619E-1 -6.0106 25.69929 66.97476 177.5804
-2.58921 .025 -1.1446000 -2.2047E-2 -5.4998 1.645400 3.115700 8.045000
-2.33836 .075 -9.3191E-1 2.4371E-1 -5.0432 .7649000 .8567100 2.247000
-2.04842 .125 -7.5900E-1 3.7913E-1 -4.5891 .5591900 .3864600 1.170800
-1.71790 .175 -6.0655E-1 4.4165E-1 -4.1162 .4370700 .1443000 .6895500
-1.35542 ,225 -4,7337E-1 4.5156E-1 -3.6361 .3492500 .0000000 .4515600
-0.96994 ,275 -3.5972E-1 4.2403E-1 -3.1617 .2802400 -.0878970 .3387700
-0.56890 .325 -2.6522E-1 3.7222E-1 -2.7035 .2234400 -,1381100 .2936600
-0.15769 .375 -1.8878E-1 3.0737E-1 -2.2682 .1755700 -.1610900 .2819600
0.26018 .425 -1.2874E-1 2.3857E-1 -1.8627 .1349000 -.1638300 .2812000
0.68268 .475 -8.3166E-2 1.7287E-1 -1.4874 .1004400 -.1517300 .2764300
1.10903 .525 -4.9998E-2 1.1522E-1 -1.1464 .0716280 -.1294300 .2587700
1.53896 .575 -2.7177E-2 7.8788E-2 -.83979 .0480930 -.1011900 .2245100
1.97352 .625 -1.2660E-2 3.4932E-2 -.56982 .0295510 -.0709800 .1750100
2.41111 .675 -4.5475E-3 1.3597E-2 -.33894 .0157040 -.0424120 .1158600
2.85799 .725 -9.0579E-4 2.9277E-3 -.14829 .0063747 -.0191250 .0575860
3.60000 .800 0.0000000 0.0000000 .00000 .0000000 .0000000 .0000000

Data for 99% Closure for Each Crack Depth

2 D% /2
-4.81198 ,083574
-3.62382 .084625
-2.43558 .085326
-1.24724 086008
-.058824 .086683

1.12968 .087355
2.31828 .088020
3.46572 .088685
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APPENDIX III

MODIFIED MATLS ROUTINE

A listing of the modified version of MATLS is contained on the
following pages. The modifications are lumped into five major
blocks, each identified on the listing. A brief description of the

function of each block is given below.

Block A - Storage Initialization
Storage locations are dimensioned for up to 30 nodes
connected to line-spring elements. The discrete
parametric data will be stored in arrays CJ, ALAMY9, and
SXIC9. Arrays STF , EEPR_, FOR_, STF_A, and EEl_A
are used for storage of stiffnesses, displacements and

forces at wvarious intermediate solution states.

Block B - Data Initialization/Update
Discrete parametric data are read from an external file
and stored in tﬁe arrays CJ, ALAMY9 and SXIC9. Array
NPT contains the number of parametric data points which
are available for each crack depth analyzed. Subroutine
INIT determines the number of line-spring element nodes
and initializes and updates several of the arrays (see

Appendix IV).
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Block C - Data Initialization/Update
The wvariables FC1, FC2, and FC3 are factors which
multiply the partially-closed crack stiffnesses to ensure
continuity across the fully-open/partially-closed interface.
This topic is described in more detail in Section 4.2 and

in the Discussion.

Block D - Closure Check/Evaluation and Data Update
A linear solution is obtained (array SEl1) to determine if
closure will occur. Three possibilities exist at this point.
If closure is predicted but incremental displacements are
zero (ICOUNT = 1 from subroutine INIT) then this is a
first pass through after a converged increment. In this
case the stiffnesses are updated and the closure routines
are bypassed. If closure is predicted and the incremental
displacements are non-zero then the closure routines are
called and the closure characteristics are evaluated. If
closure is not predicted the linear solution scheme is
continued. Also, if closure is predicted but, due to the
convergence tolerance limits, an "open crack" solution is

obtained, the stress intensity factor is evaluated linearly.

Block E - Data Update
If no closure is predicted in block D the arguments of
subroutine INIT1 are updated. This update is performed

within block D if closure occurs.
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Subroutine MATLS

SUBROUTINE MATLS(JMATYP,AMK ,AMPK, TEMP,DTEMP , EVAL ,AMTAB,EPAR ,
1A,C,EE1,DEE1,DSE1,AMKD, GELA, 51, SVAR)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION JMATYP(2,1)

DIMENSION AMK(1),AMPK(1),TEMP(1),DTEMP(1),EVAL(1) ,AMTAB(1),
1EPAR(1),A(1),C(1) ,EE1(1),DEE1(1),DSE1(1),AMKO(1) ,GELA(1),
251(1),5VAR(1)

e e et e e ke e e e e e e e ke e e e e e e Je e e Fe e e e e e oo e e e e e e Je e dede e ke e dededede ke de e e e dedededekededede e e
DIMENSION CJ(8,17,10),SE1(2),ALAMI(8),SXICI(8) ,NPT(8)
DIMENSION STF11(30),STF12(30),5TF22(30),EEPR1(30),EEPR2(30)

1,FORN(30) ,FORM(30) ,STF11A(30),STF12A(30),5TF22A(30)
2,EE11A(30) ,EE12A(30) ,KFCL(30)

COMMON /JJL/CJ,THCK,X1A,EPRIME,NPT /LOC/ICL,ICLP
COMMON /RNGE/ALAM1 ,ALAM2,ALAMI,SXIC9 /FCT/FCL1,FC2,FC3 (
e e oo e e Fe oo e Fe e e ke e Fehe Fe e e e e e Fe JeFede Fe ke Fededede e e de e ke ke e ke hedede Fedededededehededede e de e dededede o ke
COMMON/CEL/LELOP, JETP, JETP1,KEL ,KINTK,KINTL ,KINTSL ,KSPT ,NEMCRD,
1 JINTYP,JEXTYP,JEXTY2,JLIB,NAN24 ,MDOF ,MCRD,
1 NNODE ,NNODU,NTENS ,NDI ,NSHR ,NPR ,NINTK ,NINTM,NINTSL ,NINTLL ,NMP,
4 NPARS,NSHL ,NBM,NELZM,NINTTS,NEINT ,NDOFEL , JUNSYM,NEGECM,
5 LNODEK ,NNODEP ,LBASIS,NNODET ,NTENST ,NTDOFN , LLUMPM,NOFFT,
1 NSPT,NNOD2,NNOD3,NNOD4 ,NTDOFE ,KSPTT
COMMON/CMATS/ JMATP ,NMPROP , LCONFA ,LGSECT ,AMPTEM,
1 LACTP1,JELA,JEXP,JHARD, JCREEP, JSWELL , JVISCP, JHYPCQ, JPERME,
2 JSOILE,SLAMDA, SKAPPA, SMRAT2,5V01D0,SV0IDL ,, SCONST,
3 JFRIC,LNOTC,JORNL ,LUNSMD, LCONCR , LMROT , JCRK ,NCRKS , LCRKD( 3)
4,LMORI , LUNSMT ,NTENSA ,NDIA ,NSHRA , LNWCRK
COMMON/ CMAT SZ/NMUARE , NMZ
COMMON/CONSTS/P1,SING0,COS60 ,KCROS2( 3) ,KCROS3(3) ,ZERO,LZERD, LONE,
1 ONE,TWO,HALF,ABIG,ASMALL ,BCBIG,LOCSHR(2,3),THIRD,PRECIS, BLANK
COMMON/CSMDB/1ECR, 1ESW, IEPL, ISTRE, IPDISS, ICDISS, IEHAT, 10RIG,
1 TORNL,ISTUAR,IIRSET,ICONFA

C
Ccdededede e otk Jededededede Je Jedede e e de e fodededededede e dededededededededededededededede ke ek e dededededkededkk dek dedok ek keok
DATA ITTHL,ITTH /0,0/ A
IF (ITTHL.EQ.0) THEN
READ(90,%) (NPT(1),I=1,8)
Do 75 1=1,8
DO 76 J=1,NPT(I)
READ(90,%) (CJ(I,J,K),K=1,10)
76 CONTINUE
75 CONTINUE
Do 77 I=1,8
READ(90,%) ALAMI(1),SXICI(I)
77 CONT INUE
X1C=ZERD
SUAR (3)=ZEROD
SVAR(4) =ZERD
END IF
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Subroutine MATLS (page 2)

CALL INIT(ITTHL,ITTH,ICNT,ICLCNT,EE1,DEE]1,EE11A,EE12A,5TF11,
1STF12,5TF22,5TF11A,5TF124,5TF224)
THCK=EPAR( 2)
DEPTH=A(NMVARB)
X1A=DABS(DEPTH/EPAR(2))
ICL=10%XIA
ICLP=1CL+1
ALAM1=(CJ(ICLP,1,3)-CJ(ICL,1,3))%(10.D0*XIA-ICLY+CJ(ICL,1,3
ALAM2=6.,D0%(2,D0%X1A-1.D0) ﬁ
O e e e ek e ek e e e de e e et de e dededee
11=6
DO 10 K=1,NMPROP
JPROP=JMATYP(1,11)
IF(JPROP.EQ.1) GO TO 11
11=11+2
10 CONT INUE
GO TO 990
11 CONTINUE
DO 201 K1=1,NMZ
AMK(K1)=ZERO
201 CONT INUE
IADDR=JMATYP(1,11+1)
NPDEP=JMATYP(1, IADDR)
1COLS=1ADDR+1+NPDEF
NCOLS=JMATYP(1,1COLS)
21 CONTINUE
NROWS=JMATYP(1,ICOLS+1)
NEVAL=2
CALL TABVAL(JMATYP(1,I1COLS+2),EVAL,TEMP,NROWS,NCOLS,NEVAL ,NPDEF,
1AMTAB)
CALL MATLS1(EVAL,AMK,DEPTH,EPAR(2),C(2),C(101),C(200),C(299),
1C(398),C(497))
EPRIME=EVAL(1)/(ONE-EVAL(2)%*2)
ke e e et ehe e ke e e e Fe e e e e e oo Fe e Fedeshe oo e e Fe ek e e Fe e e e e dede ke dede e e b e ke dehe e e dede e dede ke heche e
CALL CLOSE(XIC,SXIC,KCL,ALAM1)
CALL COMPL(XIC,SXIC,PDM,PRM,ALAM1,C11,C12,C21,C22,CM,KDEFT,
1KDEFIP)
FC1=AMK(1)/(CMkC22)
FC2=-AMK(2)/(CM*C12)
FC3=AMK(3)/(CM*C11)
IF (DEPTH.LT.ZERD) FC2=-FC2
e e e Fe oo e dededeFede e FeFede e dededede e de oo dedede Fe e Fededededededede e dededededededededededededede ke dededededede e dededede ke
DO 23 K1=1,NMZ
AMPK (K1) =AMK (K1)
23 CONT INUE
IF(DTEMP(1) .EQ.ZERD) GO TO 50
24 CONT INUE
IF(NCOLS.LT.2) GO TO 50
DO 25 K=1,NMVARB
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IF(EE1(K) .NE.ZERO) GO TO 26
25  CONTINUE
GO TO 50
26 CONTINUE
TT=TEMP(1)-DTEMP(1)
CALL TABVAL(JMATYP(1,I1COLS+2) ,EVAL,TT,NROWS ,NCOLS,NEVAL ,NPDEP,
1AMTAB)
CALL MATLSI(EVAL ,AMKO,DEPTH,EPAR(2),C(2),C(101),C(200),C(299),
1C(398) ,C(497))
DO 46 Kl=1,NMZ
AMKO (K1) =AMPK (K1) -AMKO(K1)
46  CONTINUE
CALL ASET(GELA,ZERO,NMUARB)
CALL APRDTA(AMKO,EE1,GELA,NMVARB)
DO 47 K1=1,NMUARB
DSEL(K1)=DSE1(K1)+GELA(KL)
47  CONTINUE
50  CONTINUE
DO 51 K1=1,NMUARB
EE1(K1)=EE1(K1)+DEE1 (K1)
51 CONTINUE
Lo e e oo ke e e e e dedededededekedehekedehedehe ke Fe ke Ik ek dedede ek dekkdekkkekdekdedekedede ek dedekedekok
SE1(1)=ZERQ
SE1(2)=ZERO
CALL APRDTA(AMPK,EE1,SE1,NMUARB)
IF (SE1(2)*DEPTH.GE.ZERD) GOTO 52
ALMBDA=SEL (1) kEPAR(2)/SEL(2)
IF (DEPTH.LT.ZERO) ALMBDA=-ALMBDA
IF (ALMBDA.LT.ALAM1) GOTO 52
IF (ICLOCNT.EQ.1) THEN
CALL ICOUNT(ICNT,ICLCNT,AMK,AMPK,STF11A,5TF12A,5TF228)
GOTO 52
END IF
IF (FM.EQ.ZERO.AND.FN.EQ.ZERO) THEN
WRITE(6,100) D
100 FORMAT(’ “,’THE FIRST LOAD STEP INCREMENT OF THE AMNALYSIS
1 HAS RESULTED IN CLOSURE’//2X,’THE PARTIAL CLOSURE ROUTINES
2 REQUIRE A PREVIOUSLY CONVERGED (LINEAR) SOLUTION‘//2X,’PLEA
3SE REDEFINE THE LOADS SO A LINEAR SOLUTION WILL BE OBTAINED’)
GOTO 999
END IF
CALL PRTCLL(ICNT,EE1,DEE1,S1,DSE1,AMK,AMPK,A(2),5TF11,5TF12,
1STF22, FORN, FORM, EEPR1 , EEPR2 , KFCL , DEPTH,NMUARB ,X1C, THCK , KCL)
SUAR(3)=X1C
IF (KCL.EQ.-1) GOTO 53
GOTO 60
S2  CONTINUE
SUAR (3)=ZERO 1
Cookedede e et e e e e Fe e e de e dede e de e ke e e e dede dehe dede ke edkdok de ke dedededekedede ke dedekokdok kokok dokkdok dokokdokok
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CALL APRDTA(AMPK,DEE1,DSE1 ,NMUARE)
C**********‘k****ﬂ************‘k**ﬂ******‘k**‘k***‘k*******H******ﬁ*****
IF (ICNT.GE.1) THEN
CALL INIT1(ICNT,EE1,S1,DSE1,AMPK,STF11,S8TF12,8TF22,FORN,
1 FORM,EEPR1,EEPR2)
END IF
53 CONTINUE
C*'k*'k*‘k***H*******‘k***********H******H******H***‘k'k*‘kt**‘k**m'k***‘k’k
AABS=DABS(DEPTH)
CALL MATLS2(AABS,EPAR(2),F1,F2,F3,F4,F5)
IF(DEPTH.GE.ZERO) GO TO 55
F2=-F2
F5=-F5
S5 CONTINUE
c GPLASO=A(1)-A(2)%k2/EPRIME
A(2)=F14DSEL(1)+F2*DSEL (2)+A(2)
IF(ISTVAR.EQ.0) GO TO 59
CALL MATLS2(DEPTH,EPAR(2),COD1,COD2)
SUAR( 2) =SVAR(2)+(DSEL (1)*COD1+DSEL (2)%*C0OD2) /EPRIME
S9 CONTINUE
IF(JINTYP.EQ.2403) GO TO 60
A(3)=F3*DSEL(3)+A(3)
A(4)=F4*DSE1L(5)+FS*DSEL(6)+A(4)
ACL)=A(2)*k2+A( 3)*kk2+A(4)%k2/ ( ONE-EVAL(2))
GO TO 70
60 CONTINUE
c A(1)=GPLASO+A( 2)¥k2/EPRIME
c GO TO 990
ACL)=A(2)Kkk2
70 CONTINUE
A(1)=A(1)/EPRIME
SUAR( 4) =THCK*SVAR( 3)
990 CONTINUE
RETURN
999 STOP
END

o000
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APPENDIX IV

PARTIAL CLOSURE SUBROUTINES

A listing of each of the 18 partial closure subroutines and the

parametric data file is presented in the following pages. The

subroutines are grouped and contained in the following order.

ICOUNT
INIT
INIT1
PRTCLL

PART

CLOSE
CLOSEA
COMPL
DEFL
DEFLA
FULL
PDEFL
PDEFLA
SIFAC
SIFACA

CUBIC
QUADL
QUADR

CLOSEDAT.DAT

Data initialization, updating and
partial closure check/evaluation routines

Main partial closure routine

Support routines to evaluate closure,
deflections, compliances and stress
intensity factor

Interpolation routines

Parametric Data File
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Subroutine ICOUNT

SUBROUTINE ICOUNT(ICNT,ICLCNT,AMK,AMPK,STF11A,STF12A,STF22A)
Cccccceececeeeecceececcceecccececcccececceccccceccccccccccececcccecccecccccccecececceec
C SUBROUTINE ICOUNT

c

c SET STIFFNESSES TO PREVIOUS INCREMENT STIFFNESSES RATHER THAN

c CALLING ROUTINE ‘PART‘ IF DISPLACEMENT INCREMENTS ARE ZERO.

c
CCcccccccccccccccccoccccocccccccecccccceccceccecccocecceccecceccceccccccccoecccoecocec

IMPLICIT REAL*B(A-H,0-Z)
DIMENSION AMK(1) ,AMPK(1)
DIMENSION STF11A(1),STF12A(1),S5TF22A(1)

AMK(1)=STF11A(ICNT)

AMK(2)=STF12A(ICNT)

AMK(3)=STF22A(ICNT)

ICLCNT=0

PO 79 KK1=1,3

AMPK (KK1)=AMK(KK1)

79 CONTINUE

RETURN

END
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Subroutine INIT

SUBROUTINE INIT(ITTHL,ITTH,ICNT,ICLCNT,EE1,DEE1,EE11A,EE124,

1STF11,5TF12,STF22,5TF11A,STF124,STF22A)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCeeeeece
C SUBROUTINE JINIT

C

c INITIALIZE STORAGE LOCATIONS AND DETERMINE THE NUMBER

C OF LINE-SPRING ELEMENTS

C
CCCCCcCccccccccccecccccccceccecccecccecceccececcecccecccccccccccccccccccececceecce

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION EE1(1),DEE1(1)

DIMENSION STF11(1),STF12(1),STF22(1),5TF11A(1),5TF12A(1),
15TF22A(1) ,EE11A(1) ,EE12A(1)

C
COMMON/CONSTS/PI ,SIN60 ,COS60 ,KCROS2( 3) ,KCROS3( 3) ,ZERD,LZERD, LONE,
1 ONE,TWO,HALF ,ABIG,ASMALL ,BCBIG,LOCSHR(2,3) ,THIRD,PRECIS, BLANK
C
C ITTHL IS EQUAL TO THE NUMBER OF LINE-SPRINGS TIMES 3 (NUMBER OF
c L-S NODES). EE11A AND EE12A ARE THE ‘PREVIOUSLY CONVERGED
¢ INCREMENT/ DISPLACEMENTS (EE1).
C
C IF ALL DISPLACEMENTS ARE ZERO THEN THIS 1S STILL THE FIRST PASS
c THROUGH THE MODEL SO ITTHL IS INCREMENTED.
C

IF (DEE1(1).EQ.ZERO .AND. DEE1(2).EQ.ZERO .AND. EE1(1).EQ.ZERO
1.AND. EE1(2).EQ.ZERO) THEN
ITTHL=ITTHL+1
EE11A(ITTHL)=ZEROD
EE12A(ITTHL)=ZERD
END IF

DO NOT ACCESS ROUTINE ‘PART’ IF DISPLACEMENT INCREMENTS ARE
ZERO (ICLCNT=1). INSTEAD, THE CURRENTLY STORED STIFFNESSES
WILL BE SENT BACK TO MATLSA.

OO0 0

IF (DEE1(1).EQ.ZERO .AND. DEE1(2).EQ.ZERO) THEN
ICLCNT=1
IF (ITTH.GE.2%ITTHL) ITTH=ITTH-ITTHL
ELSE
ICLCNT=0
END IF
IF (ITTH.EQ.3%ITTHL) ITTH=ITTH-ITTHL
ITTH=ITTH+1
ICNT=ITTH-ITTHL
IFCICNT.GT.ITTHL) ICNT=ICNT-ITTHL

IF DISPLACEMENT (EE1) HAS CHANGED THEN THE INCREMENT HAS CONVERGED
AND THE ‘PREVIOUSLY CONVERGED INCREMENT’ DATA IS UPDATED.

[y B o B o I v ]
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Subroutine INIT (page 2)

IF (ICNT.GE.1 .AND. ICLCNT.EQ.1) THEN
IF (EE11A(ICNT).EQ.ZERO) EE11A(ICNT)=EE1(1)
IF (EE12A(ICNT).EQ.ZERD) EE12A(ICNT)=EE1(2)
DBS1=DABS((EE1(1)-EE11A(ICNT))/EE11A(ICNT))
DBS2=DABS( (EE1(2)-EE12A(ICNT))/EE12A(ICNT))
IF (DBS1.GT.1.0E-4 .OR. DBS2.GT.1.0E-4) THEN
EE11A(ICNT)=EE1(1)
EE12A(ICNT)=EE1(2)
STF11ACICNT)=STF11(ICNT)
STF12A(ICNT)=STF12(1CNT)
STF22A(ICNT)=STF22( ICNT)
END IF
END IF
RETURN
END
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Subroutine INIT1

SUBROUTINE INIT1(ICNT,EE1,51,DSE1,AMPK,STF11,STF12,5TF22,
1FORN, FORM, EEPR1 , EEPR2)
CCCCCCCCCCCCCCCCCCCCCeCeCeCCCCeCCCCCCCCCCCCCCCtCCCCCCCCCeeeeeeeeeeeeeee
C SUBROUTINE INIT1

UPDATE DISPLACEMENT,STIFFNESS, AND FORCE QUANTITIES FOR USE
IN ROUTINE ‘PRTCLL‘.

OO0

CCCCCCCCCCCCCECCCCtCCeCCeCeCeeeeeCeCeeCCCCCCCCCCCCeCCeCeceeceeee
IMPLICIT REAL*8(A-H,0-2)
DIMENSION AMPK(1),EE1(1),DSE1(1),51(1)
DIMENSION STF11(1),STF12(1),STF22(1),EEPR1(1),EEPR2(1),
1FORN(1) ,FORM(1)

EEPR1(ICNT)=EE1(1)
EEPRZ2(ICNT)=EE1(2)
STF11(ICNT)=AMPK(1)
STF12( ICNT)=AMPK(2)
STF22( ICNT)=AMPK(3)
FORN(ICNT)=S1(1)+DSEL1(1)
FORM(ICNT)=51(2)+DSE1(2)

RETURN
END
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Subroutine PRTCLL

SUBROUTINE PRTCLL(ICNT,EE1,DEE1,S1,DSEL,AMK,AMPK,ASIF,STF11,

1STF12,STF22,FORN,FORM,EEPR1 ,EEPR2,KFCL ,DEPTH,NMUARB,X1C, THCK ,KCL)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCornosil
C SUBROUTINE PRTCLL

CALCULATE THE PREVIOUS SOLUTION RESULTS TO TRANSMIT TO ROUTINE
‘PART’. THE RESULTS WILL EITHER BE FROM THE PREVIOUSLY
CONVERGED INCREMENT OR FROM THE PREVIOUS ITERATION.

O0O0OoOo0n

(2 o 0 o O O o o o o o o o o o o o o o o 2 e o e B e B e B W e B e 1
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION AMK(1),AMPK(1),EE1(1),DEE1(1),DSE1(1),51(1),DFNM(2)
DIMENSION STF11(1),STF12(1),STF22(1),EEPR1(1),EEPR2(1)
1,FORN(1),FORM(1) ,KFCL(1)

C
COMMON /RNGE/ALAMI ,ALAM2 ,ALAMS,SX1C9
COMMON/CONSTS/PI ,SIN60,COS60 ,KCROS2( 3) ,KCROS3( 3) ,ZERD,LZERD, LONE,
1 ONE,TWO,HALF,ABIG,ASMALL ,BCBIG,LOCSHR(2,3) ,THIRD,PRECIS, BLANK
c
DELTA=EE1(1)
THETA=EE1(2)
C

C IF FULL CLOSURE HAS OCCURED USE PCI, IF NOT USE LAST ITERATION.

IF (KFCLCICNT).EQ.1) THEN
FN=81(1)
FM=51(2)
DDELTA=DEE1(1)
DTHETA=DEE1(2)
ELSE
FN=FORM(ICNT)
FM=FORM( ICNT) :
DDELTA=DELTA-EEPRI(ICNT)
DTHETA=THETA-EEPR2( ICNT)
END IF

UPDATE THE LAST ITERATION DISPLACEMENTS

[ B I ]

EEPRI(CICNT)=EE1(1)
EEPRZ(ICNT)=EE1(2)
DFNM(1)=ZERD
DFNM(2)=ZERO

SEND IN THE LINEAR STIFFNESSES IN CASE EXTRAPOLATION TO
THE ONSET OF CLOSURE IS NECESSARY

oOoo00

STF11(ICNT)=AMPK(1)
STF12( ICNT)=AMPK(2)
STF22(1CNT )=AMPK(3)
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Subroutine PRTCLL (page 2)

[N o B ow I op ]

o000

>

IF

IF (DEPTH.LT.ZERQ) THEN
=-FM
THETA=-THETA
DTHETA=-DTHETA
STF12(ICNT)=-STF12(ICNT)
END IF

CLOSURE DID NOT OCCUR IN THE PREVIOUS ITERATION (OR INCREMENT)
CALCULATE THE INCREMENTAL FORCES BASED ON LINEARITY

IF (FM*DEPTH.LE.ZERO.OR.(FN*THCK/FM).LT.(1.000001%ALAM1)) THEN
KCL=-1
CALL APRDTA(AMPK,DEE1,DFNM,NMVARB)
IF (DEPTH.LT.ZERO) DFNM(2)=-DFNM(2)
ELSE IF (FNXTHCK/FM.GT.ALAM2) THEN
KCL=1
ELSE
KCL=0
END IF

93 CONTINUE

EVALUATE THE PARTIALLY-CLOSED CRACK CHARACTERISTICS

CALL PART(FN,FM,DELTA,THETA,DDELTA,DTHETA,XIC,KCL,STF11(ICNT)
1,STF12(ICNT),STF22(ICNT),ASIF,DFNM(1) ,DFNM(2) ,KDCR,KFCL{ICNT) )
IF (DEPTH.LT.ZERO) THEN
FM=-FM
STF12(ICNT)=-8TF12(I1CNT)
END IF

UPDATE STIFFMESS, FORCE, AND INCREMENTAL FORCE VALUES

80

AMK(1)=STF11(1CNT)
AMK(2)=STF12( ICNT)
AMK(3)=STF22( ICNT)
FORN( ICNT) =FN
FORM( 1CNT) =FM
DO 80 K1=1,3

AMPK (K1) =AMK (K1)
CONTINUE
DSE1(1)=FN-S1(1)
DSE1(2)=FM-§1(2)
IF (DSE1(1)/S1¢1).GE.10.D0.AND.DSE1(2)/51(2).GE.10.D0)

1 KFCL(ICNT)=1
RETURN
END
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Subroutine PART

c

b
C
c
C
C
C
B
c
c
C
c
c
c
C
c
c
c
C
c
c
c
C
c
c
C
c
C
C
c
C
c
C
C
[
C
c
C
c
C
C
C
c

SUBROUTINE PART(FN,FM,TDCR,TRCR,DTDCR,DTRCR,XIC,KCL,

1 s811,512,522,5IF,DFN,DFM,KFCL)
CCCCCCCCCCCCCCCCCCCCCCtCCCtCCCtCCCCCCCCCCCCCCCCCCCCCCCCCCtCCCCCeeeeeee
C SUBROUTINE PART

EVALUATION OF CLOSURE PARAMETERS

DISCRETE PARAMETRIC DATA:

CJ(1,J

AL

gX

EZIFW?‘K?X?ZQH
o nmuw i nu
WP YO~NGOWUMEWNE P

oo

yK) = FINITE ELEMENT DATA

TO 8 - CRACK DEFTH RATIO (TIMES 10)
TO 2%I1+1 - DATA POINT NUMBER

=1

J

LOAD RATIO (ALMBDA_BAR)

CORRESPONDING CLOSURE DEPTH RATIO

ONE-HALF TOTAL ‘CRACKED’ DISPLACEMENT PER UNIT FM
ONE-HALF TOTAL ‘CRACKED’ ROTATION PER UNIT FN
STRESS INTENSITY FACTOR PER UNIT FM

ONE-HALF “CRACKED’ DISPLACEMENT DUE TO FN
ONE-HALF /CRACKED’ DISPLACEMENT DUE TO FM

0 - ONE-HALF ‘CRACKED’ ROTATION DUE TO FM

(I) - LOAD RATIO FOR 99% CLOSURE

1 TO 8 - CRACK DEPTH RATIO (TIMES 10)

9(1) - SLOPE OF CLOSURE VERSUS LOAD RATIO AT 39% CLOSURE
1 TO 8 - CRACK DEPTH RATIO (TIMES 10)

(1) - NUMBER OF DATA POINTS (CLOSURE LENGTHS)

1 TO 8 - CRACK DEPTH RATIO (TIMES 10)

INCOMING INFORMATION
AT TIME T:
FN - APPLIED FAR-FIELD TENSILE FORCE
FM - APPLIED FAR-FIELD BENDING MOMENT
X1C - CLOSURE LENGTH RATIO
SIF - STRESS INTENSITY FACTOR
AT TIME T+DT:

TDCR -

CRACKED’ FAR-FIELD TOTAL DISPLACEMENT

TRCR - “CRACKED’ FAR-FIELD TOTAL ROTATION

DTDCR - INCREMENTAL ‘CRACKED’ FAR-FIELD TOTAL DISPLACEMENT

DTRCR - INCREMENTAL ‘CRACKED’ FAR-FIELD TOTAL ROTATION
RETURNED DATA AT TIME T+DT:

FN - REQUIRED FAR-FIELD TENSILE FORCE

FM - REQUIRED FAR-FIELD BENDING MOMENT

XIC - CLOSURE LENGTH RATIO

Skk - STIFFNESS MATRIX ELEMENTS

SIF - STRESS INTENSITY FACTOR

CCCCCCCCecceceeccececcceccecccccccccccccecceccecececcecececcecceccecccccecoccoeece

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10),ALAMI(8),SXIC3(8) ,NPT(8)
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Subroutine PART (page 2)

c

o000

oOO0O0000

1020

COMMON /JJL/CJ,THCK,X1A,EPRIME,NPT /LOC/ICL,ICLP
COMMON /RNGE/ALAM1 ,ALAM2,ALAMY,S5XI1C9 /FCT/FC1,FC2,FC3

IF (ICL.EQ.0) THEN
-ALAM9A=11.8802D0*X1A-6.D0
SX1C9%=1.D0/12.D0
ELSE
ALAMIA=(ALAMI(ICLP) -ALAMI(ICL) )*(10.D0*XIA-ICL)+ALAMI(ICL)
SXIC9A=(SXICI(ICLP)-SXICI(ICL))*(10.DOXXIA-ICL)+SXICI(ICL)
END IF

CHECK FOR FULL CLOSURE BASED ON INCOMING TDCR AND TRCR

CALL FULL(XIC,SXIC9A,PDM,PRM,ALAM%4,C11,C12,C21,C22,
CM,KDEFI ,KDEFIP,1)
TFN=C22%CMXTDCR
TFM=C11*CMXTRCR
KFCL=0
IF ((TFNkTHCK/TFM) .GE.ALAM2 .AND.TFM.LT.0.00) THEN
KFCL=1
KCL=1
XI1C=XI1A
511=CM*C22
$12=0.0D0
§22=CMC11
GOTO 1030
END IF
IF (KCL.EQ.-1) THEN
ALPH= ( FM*ALAM1 -FNXTHCK ) /  DFNXTHCK-DFMkALAML )
FN=FN+ALPH*DFN
FM=FM+ALPH*DFM
ALMBDA=ALAML
SM=1.D0/(S11*522-512%512)
DTDCR=TDCR-SMk ( 522%FN-512%FM)
DTRCR=TRCR-SMk ( S11%FM-S12%FN)
ELSE
ALMBDA=FN*THCK/FM
END IF
IF (KCL.EQ.0 .AND. ALMBDA.LT.ALAM1) ALMBDA=ALAM1
CALL CLOSE(XIC,SXIC,KCL,ALMBDA)
IF (KCL) 1010,1020,1020

LINE 1010 - CHECK BASED ON ALMBDA AT TIME T+PT
LINE 1020 - PARTIAL OR FULL CLOSURE WILL OCCUR

FIRST PASS (FIRST ESTIMATE AT NEW LOADS)

CONTINUE
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Subroutine PART (page 3)

C

IF (XIC.GT.(0.99D0%XIA).OR.KCL.EG.1) THEN
CALL FULL(XIC,SXIC9A,PDM,PRM,ALAMIA,C11,C12,C21,C22,
CM,KDEF1,KDEFIP,KCL)
ELSE
CALL COMPL(XIC,SXIC,PDM,PRM,ALMBDA,C11,C12,C21,
c22,CM,KDEF1,KDEFIP)
END IF
BX1C=XIA
AFC=XI1C/BXIC
IF (AFC.GE.1.D0) AFC=1.D0
C22=C22% (AFCx(1.D0-FC1)+1.D0)
C11=C11%(AFC*(1.D0-FC1)+1.D0)
C12=C12k (AFC*(1.D0-FC1)+1.D0)
C21=C21%(AFC*(1.D0-FC1)+1.D0)
TDFN=CM# ( C224DTDCR-C12*DTRCR)
TDFM=CMk ( C11*DTRCR-C21%DTDCR)
N=0

C BEGINNING OF NEWTON-RAPHSON ITERATION

c
1050

C

CONT INUE
TFN=FN+TDFN
TFM=FM+TDFM
N=N+1

C SUBSEQUENT LOAD ESTIMATIONS

c

1040

IF (TFM.GE.0.D0) THEN
KCL=-1
GOTO 1010
END IF
TTLAM=TFNATHCK/TFM
CALL CLOSE(XIC,SXIC,KCL,TTLAM)
IF (KCL.EQ.-1) THEN
FN=TFN
FM=TFM
GOTO 1010
END IF
CONT INUE
IF (XIC.GT.(0.99D0%X1A).OR.KCL.EQ.1) THEN
CALL FULL(XIC,SXIC9A,PDM,PRM,ALAM9A,C11,C12,C21,C22,
CM,KDEF1 ,KDEFIP,KCL)
ELSE
CALL COMPL(XIC,SXIC,PDM,PRM,TTLAM,C11,C12,C21,
£22,CM,KDEF1,KDEFIP)
END IF
AFC=XIC/BXIC
IF (AFC.GE.1.D0) AFC=1.D0
C22=C22% (AFCk(1,D0-FC1)+1.D0)
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Subroutine PART (page 4)

c

C11=C11%(AFC*(1.D0-FC1)+1.D0)
C12=C12%(AFCx(1.D0-FC1)+1.D0)
C21=C21%(AFCk(1.D0-FC1)+1.D0)

C ESTIMATION OF ERROR

C

1030

1010

=

ERRD=TDCR-TFM*PDM/THCK/EPRIME
ERRR=TRCR-TFM*PRM/THCK/THCK/EPRIME
DTDFN=CM#k (C22XxERRD-C12%ERRR)
DTDFM=CMk( C11*ERRR-C21*ERRD)
TDFN=TDFMN+DTDFN
TDFM=TDFM+DTDFM
IF (N.EQ.1) THEN

ERRD1=ERRD

ERRR1=ERRR
END IF
DERRD = DABS(ERRD/TDCR)
DERRR = DABS(ERRR/TRCR)
DERRD1 = DABS(ERRD/ERRD1)
DERRR1 = DABS(ERRR/ERRRL)

DABN = DABS(DTDFN/TDFN)
DABM = DABS(DTDFM/TDFM)
DABTN = DABS(DTDFN/TFN)

DABTM = DABS(DTDFM/TFM)
IF ((DERRD .LT. 1.0E-3 .OR. DERRD1 .LT. 1.0E-3) .AND.
(DERRR .LT. 1.0E-3 .OR. DERRR1 .LT. 1.0E-3) .AND.
(DABN .LT. 1.0E-3 .OR. DABTN .LT. 1.0E-4) .AND.
(DABM .LT. 1.0E-3 .OR. DABTM .LT. 1.0E-4)) GOTO 1030
IF (N.GE.200) GOTO 1010
GOTO 1030
CONTINUE
FN=TFN
FM=TFM
IF (KCL.EQ.1) THEN
SIF=0.0D0
ELSE
CALL SIFAC(KDEFI,KDEFIP,TFM,SIF,XIC)
END IF
CONT INUE
S11=C22%CM
§22=C11%CM
§12=-C12%CM
IF (KCL.EQ.-1) XIC=0.0D0
RETURN
END
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Subroutine CLOSE

SUBROUTINE CLOSE(ZC,SZC,KCL,TLAM)
{5 o i o o 0 0 0 0 0 o 0 o O 0 1 B O B B A B R B
C SUBROUTINE CLOSE

C

c CALCULATE THE NEW CRACK CLOSURE LENGTH BASED ON INCOMING LOAD

c RATIO “TLAM’

c

4 o o o o o o o o o o o o O o e O 1 1

IMPLICIT REAL*S (A-H,0-Z)
DIMENSION CJ(8,17,10),ALAM3(8),SXICI(8) ,NPT(8)

C
COMMON /JJL/CJ,THCK,XIA,EPRIME ,NPT /LOC/ICL,ICLP
COMMON /RNGE/ALAM1 ,ALAM2 ,ALAM3,SXICY
g
C DETERMINE TYPE OF CLOSURE (NONE, PARTIAL OR FULL)
c
IF (TLAM.LT.ALAM1) THEN
KCL=-1
RETURN
ELSE IF (TLAM.GE.ALAM2) THEN
KCL=1
ZC=1.D0
§ZC=0.D0
RETURN
END IF
KCL=0
c
C DETERMINE THE REGIME OF TLAM RELATIVE TO THE
c DISCRETE DATA POINTS
C
C REGIME 1 - TLAM)ALAMI(I) j TLAMCALAML(IP)
C REGIME 2 - TLAMALAML(IP) ; TLAMALAM2(I)
C REGIME 3 - TLAM>ALAM2(I) ; TLAMCALAM2(IP)
C
DO 1125 J=1,NPT(ICLP)
IF (TLAM.GT.CJ(ICLP,J,3)) GOTO 1125
NIP=J-1
GOTO 1130
1125 CONT INUE

1130 CONTINUE
IF (ICL.EQ.0) GOTO 1160
DO 1135 J=1,NPT(ICL)
NI=NPT(ICL)+1-J
IF (TLAM.LT.CJ(ICL,NI,3)) GOTO 1135
GOTO 1140
1135 CONTINUE
1140 CONTINUE
IF (NI.LT.NPT(ICL).AND.NIP.GT.0) GOTO 1145
IF (NIP.EQ.O0) GOTO 1150
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c

C REGIME 3

c
CALL CLOSEA(ICLP,NIP,ZCIP,SZCIP,TLAM)
SZCI=1.D0/12.D0
ZCI=TLAMXSZCI+0.5D0
ZC=(ZCIP-ZCI1)*(X1A-ZCI1)*10.D0/(ICLP-10.D0*ZCI )+ZC1
SZC=(SZCIP-SZCI )*(XIA-ZCI1)*10.00/(ICLP-10.D0*ZCI )+SZCI
RETURN

c

C REGIME 1

c

1150 CONTINUE

CALL CLOSEA(ICL,NI,ZCI,SZCI,TLAM)
ZCIP=0.D0
DLTLAM=(TLAM-CJ(ICL,1,3))/(CJ(ICLP,1,3)-CJ(ICL,1,3))
IF (DLTLAM/ICL.LT.1.E-2) THEN

ZC=ZCI

SZC=SZCI

RETURN
END IF
ZP=DLTLAME1.DOXICL
CALL CLOSEA(ICL,1,ZTMP,SZTMP,CJ(ICL,1,3))
CALL CLOSEA(ICLP,1,ZTMPP,SZTMPP,CJ(ICLP,1,3))
SZCIP=DLTLAMX( SZTMPP-SZTMP)+SZTMP
ZC=(ZCIP-ZCI)*(10.D0%XIA-I1CL)/(ZP-1CL)+ZCI
SZC=(SZCIP-SZCI)*(10.D0*XIA-ICL)/(ZP-1CL)+SZCI

RETURN
c
C REGIME 2
C

1145 CONTINUE .
CALL CLOSEA(ICL,NI,ZCI,SZCI,TLAM)
CALL CLOSEA(ICLP,NIP,ZCIP,SZCIP,TLAM)
ZC=(ZCIP-ZCI)*(10.D0%*X1A-1CL)+ZCI
SZC=(SZCIP-SZCI )* (10 .D0*XIA-1CL)+SZCI

RETURN
C
C DO THE FOLLOWING IF XIA < 0.100
C
1160 CONTINUE

§ZC1=1.00/12.D0

ZCI1=TLAMXSZCI+0.5D0

IF (NIP.EQ.0) THEN
DLTLAM=(TLAM+6.D0)/0.35292D0
ZP=DLTLAM
CALL CLOSEA(ICLP,1,ZTMPP,SZTMPP,CJ(ICLP,1,3))
SZC1P=DLTLAMK(SZTMPP-SZCI ) +SZC1
ZC=(ZCIP-ZCI)*10.D0%XIA/ZP+ZCI
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SZC=(SZCIP-SZC1)%10.DO*XIA/ZP+SZC]
ELSE
CALL CLOSEA(ICLP,NIP,ZCIP,SZCIP,TLAM)
ZC=(ZCIP-ZCI)%(XIA-ZCI)*10.D0/(1.00-10.D0%ZCI)+ZCI
§ZC=(SZCIP-SZC1)*(XIA-ZCI)*10.D0/(1.D0-10.DO*ZCI)+SZCI
END IF
RETURN
END
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SUBROUTINE CLOSEA(IC,NIC,ZCIC,SZCIC,TLAMT)

CCCcceccececcocecececoececeoecccoccccccccccccceccceccccecccccccccccccccccccccccceeee
C SUBROUTINE CLOSEA

c
c
c

CALCULATE CRACK CLOSURE DATA FOR USE IN SUBROUTINE CLOSE

CCCccccccccccccceccecccocccecccccccceccecececcccoccccccccccceccccccccccececcocece

000

o000

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10),NPT(8)

COMMON /JJL/CJ,THCK,XIA,EPRIME NPT

X - LOAD RATIO; Z - CLOSURE

XL=CJ(IC,NIC,3)

XR=CJ(IC,NIC+1,3)

ZL=CJ(1C,NIC,4)

ZR=CJ(1C,NIC+1,4)

XRMXL=XR-XL

IF (NIC.GT.1) THEN
XLM=CJ(1C,NIC-1,3)
ZLM=CJ(1C,NIC-1,4)

END IF

IF (NIC.LT.NPT(IC)-1) THEN
XRP=CJ(1C,NIC+2,3)
ZRP=CJ(1C,NIC+2,4)

END IF

EVALUATE THE REQUIRED SLOPES USING A WEIGHTED CENTRAL DIFFERENCE

METHOD AND USE APPLICABLE SPLINE FIT (CUBIC OR QUADRATIC)

IF (NIC.LT.NPT(IC)-1) THEN
AMR=( (ZR-ZL )% (XRP-XR ) /XRMXL+(ZRP-ZR ) *XRMXL/ (XRP-XR) )/ (XRP-XL)
ELSE
AMR=1.D0/12.D0
END IF
IF (NIC.GT.1) THEN
AML=( (ZL-ZLM)*XRMXL/ (XL=XLM)+(ZR-ZL )% (XL=XLM) /XRMXL )/ (XR-XLM)
CALL CUBIC(AML,AMR,XL,XR,ZL,ZR,TLAMT,ZCIC,SZCIC)
ELSE
CALL QUADR(AMR,XL,XR,ZL,ZR,TLAMT,ZCIC,SZCIC)
END IF
RETURN
END
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Subroutine COMPL

SUBROUT INE COMPL(ZC,SZC,PDM,PRM,TLAMT,C11,C12,C21,C22,CM,KDEFI ,
1 KDEFIP)

Oy b b b B 5 B B 05 0 I 0 5 3 B 3 B B 3 B 3 4 3 4 I 3 B 3 3 B 3 B 03 BB X I3 3 B 0 D M X B B

C SUBROUTINE COMPL

CALCULATE COMPLIANCE MATRIX COEFFICIENTS FOR PARTIALLY
CLOSED CASE (CLOSURE LESS THAN 99%)

o000

04 8 3 I 3 3 3 3 0 3 3 3 4 4 03 3 3 3 3 B3 3 B 5 ¢ 3 3 B 2 I X B X ¢ I 3 2 B W
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10),NPT(8)

‘ COMMON /JJL/CJ,THCK ,X1A,EPRIME ,NPT

g DETERMINE DISPLACEMENTS AND SLOPES

- CALL PDEFL(ZC,PDM,PRM,SPDM,SPRM,KDEFI ,KDEFIP)
CALL DEFL(ZC,DN,DM,RM,KDEFI ,KDEFIP)

E CALCULATE COEFFICIENTS

C11=SZCkSPDM+DN
C12=(DM-SZCXTLAMT*SPDM)/THCK
C21=(SZC*xSPRM+DM) /THCK
C22=(RM-SZC*TLAMT*SPRM) /THCK/THCK
C12=(DABS(C12%C21) )**(1.D0/2.D0)
IF (ZC .GT. 1.D0-XIA) Cl2=-Cl2
c21=Cl2
CM=EPRIME/(C11%C22-C12%C21)
RETURN

END
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SUBROUTINE DEFL(ZC,DN,DM,RM,KDEFI ,KDEFIF)
CCCCCCcccccccccccccccccccccccccccccccccceccceccccececccececccceccccccceccceceee
C SUBROUTINE DEFL

C

c CALCULATE THE FAR-FIELD DISPLACEMENTS DUE TO THE

c INDIVIDUAL FORCE AND MOMENT

c
CCCCCCCCCCCCCCCCCCCcecCCCceccceceoccoccccoccoccccoccccocccecocccececocecococcococccooeccec

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10),NPT(8)

C
COMMON /JJL/CJ,THCK,X1A,EPRIME,NPT /LOC/ICL,ICLP
c
C CALCULATE END POINT DISPLACEMENTS AND SLOPES FOR
c LINEAR INTERPOLATION IN XIA
c

IF (KDEFI.LT.NPTCICL)) THEN

ZI=1.DO%ICL

CALL DEFLA(ICL,KDEFI,DNI,DMI,RMI,ZC)
ELSE

DNI=0.D0

DMI=0.D0

RMI=0.D0

Z1=10.D0%*ZC
END IF
CALL DEFLA(ICLP,KDEFIP,DNIP,DMIP,RMIP,ZC)
DN=(DNIP-DNI )*(10.DO*XIA-Z1)/( ICLP-Z1)+DNI
DM=( DMIP-DMI )% (10 . DOXXIA-Z1)/( 1CLP-Z1)+DMI
RM=(RMIP-RMI )% (10 .DO*XIA-Z1)/( ICLP-Z1 )+RMI
RETURN
END
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SUBROUTINE DEFLA(IC,KDEF,DNIC,DMIC,RMIC,ZC)
cccccececceeccececceccceececcecececececcccecccccecceccccceccceccecccececccccccccecceece
C SUBROUTINE DEFLA

CALCULATE FAR-FIELD DISPLACEMENT DATA FOR USE IN
SUBROUTINE DEFL

OO0

CCCcccccccocccoccceccecceccecceccccccccccccccccccccccccccecccccecccccccccecececc
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10),NPT(8)

c
COMMON /JJL/CJ, THCK ,X1A,EPRIME ,NPT
c
C X - CLOSURE; Z-8 - DISP DUE TO FORCE; Z-9 - DISP DUE TO MOMENT
C AND ROTA DUE TO FORCEj; Z-10 - ROTA DUE TO MOMENT
£
XL=CJ(1C,KDEF,4)
XR=CJ(IC,KDEF+1,4)
XRMXL=XR-XL
ZL8=2.D0*CJ(IC,KDEF,8)
ZR8=2.D0XCJ(1C,KDEF+1,8)
ZL9=2.D0*CJ(1C,KDEF ,9)
ZR9=2.D0%*CJ(1C,KDEF+1,9)
ZL10=2.D0*CJ(1C,KDEF,10)
ZR10=2.D0*CJ(1C,KDEF+1,10)
IF (KDEF.GT.1) THEN
XLM=CJ(1C,KDEF-1,4)
ZLM8=2.D0*CJ(1C,KDEF-1,8)
ZLM9=2,D0%CJ(1C,KDEF-1,9)
ZLM10=2.D0%*CJ(IC,KDEF-1,10)
END IF
IF (KDEF.LT.NPT(IC)-1) THEN
XRP=CJ(IC,KDEF+2,4)
ZRP8=2.D0XCJ(1C,KDEF+2,8)
ZRP9=2.D0%CJ(1C,KDEF+2,9)
ZRP10=2.D0*CJ(1C,KDEF+2,10)
END IF
c
C  EVALUATE THE REQUIRED SLOPES USING A WEIGHTED DIFFERENCE METHOD
C AND USE APPLICABLE SPLINE FIT (CUBIC OR QUADRATIC)
C
IF (KDEF.EQ.NPT(IC)-1) THEN
AMRS=0.D0
AMR9=0. DO
AMR10=0.D0
ELSE

XRPMXL=XRP-XL
XRPMXR=XRP-XR
AMR8=( (ZRB-ZL8)*XRPMXR/XRMXL+(ZRP8-ZR8)*XRMXL/XRPMXR) /XRPMXL
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AMRI=( (ZRI-ZL 9 ) *kXRPMXR/XRMXL+(ZRPI-ZRI) kXRMXL/XRPMXR ) /XRPMXL
AMR10=( (ZR10-ZL10)*XRPMXR/XRMXL+(ZRP10-ZR10 ) *XRMXL/XRPMXR)
1 /XRPMXL
END IF
IF (KDEF.EQ.1) THEN
CALL QUADR(AMRS,XL,XR,ZL8,ZR8,ZC,DNIC,SDNIC)
CALL QUADR(AMR9,XL,XR,ZL9,ZR9,ZC,DMIC,SDMIC)
CALL QUADR(AMR10,XL,XR,ZL10,ZR10,ZC,RMIC,SRMIC)
ELSE
XRMXLM=XR~XLM
XLMXLM=XL~-XLM
AML8=( (ZL8-ZLM8) *XRMXL/XLMXLM+ (ZR8-ZL 8 ) *XLMXLM/XRMXL ) /XRMXLM
AMLI=( (ZLI-ZLMI) *XRMXL/XLMXLM+( ZRI-ZL 9 ) *XLMXLM/XRMXL ) /XRMXLM
AML10=( (ZL10-ZLM10 ) *XRMXL/XLMXLM+(ZR10-ZL10 ) *XLMXLM/XRMXL )
1 /XRMXLM
CALL CUBIC(AMLS,AMRS,XL,XR,ZL8,ZR8,ZC,DNIC,SDNIC)
CALL CUBIC(AML9,AMR9,XL,XR,ZL9,ZR9,ZC,DMIC,SDMIC)
CALL CUBIC(AML10,AMR10,XL,XR,ZL10,ZR10,ZC,RMIC,SRMIC)
END IF
RETURN
END
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Subroutine FULL

SUBROUTINE FULL(XIC,SXIC9A,PDM,PRM,ALAMSA,C11,C12,C21,C22,

1 CM,KDEFI ,KDEFIP,KCL)

CCCcCCCCCCCCCcCcCCcCcCeCeecCcoeccececceecceccceecceccoecececeecceoceceeccecececee
C SUBROUTINE FULL

OO0 0O0O

o000

QOO0

1

CALCULATE THE COMPLIANCE COEFFICIENTS FOR CLOSURE LENGTHS
GREATER THAN 0.9%%(CRACK DEPTH)

[ 5 ¢ o o o o o o o o o o o o e o

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10),NPT(8)

COMMON /JJL/CJ, THCK ,X1A,EPRIME ,NPT

NETA=0
IF (KCL.NE.1) THEN
ETA=100.D0*x(XIC/X1A-0.92D0)
OMETA=1.D0-ETA
ELSE
NETA=1
END IF
XCL=0.99D0*X1A
CALL COMPL(XCL,SXIC%A,PDM,PRM,ALAM%A,C11,C12,C21,
c22,CM,KDEFT ,KDEFIP)

FOR FULL CLOSURE LET C12=C21=0 AND DECREASE THE DIAGONAL

TERM BY A FACTOR OF 1000

C11P=C11/1000.D0
C22pP=C22/1000.00

USE LINEAR INTERPOLATION BETWEEN 99% CLOSURE AND FULL

CLOSURE

IF (NETA.EQ.1) THEN
Cl1=C1l1P
C12=0.D0
C21=0.D0
Cc22=C22P
ELSE
C11=C11*OMETA+ETAXC11P
C12=C12*x0OMETA
C21=C21*OMETA
C22=C22xOMETA+ETAXC22P
END IF
CM=EPRIME/(C11%xC22-C12%C21)
RETURN
END
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Subroutine PDEFL

SUBROUTINE PDEFL(ZC,PDM,PRM,SPDM,SPRM,KDEFI ,KDEFIP)
CCCCCCCCCCccccecccecccccccececccececccecocccecocccecocceocccecccecececcccecccccccccccecec
C SUBROUTINE PDEFL

C

c CALCULATE FAR-FIELD DISPLACEMENTS AND ROTATIONS PER UNIT

C MOMENT ‘TFM’

c
CCCCCCCCCCCCCCCCCCcCcCcCecccoccocococcccccccccccocceccecoccecceccococcecocoecceeceo

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10),NPT(8)

C
COMMON /JJL/CJ,THCK,X1A,EPRIME,NPT /LOC/ICL,ICLP
c
C CALCULATE END POINT DISPLACEMENTS AND SLOPES FOR
C LINEAR INTERPOLATION IN XIA
c

DO 100 NICLP=1,NPT(ICLP)-1
IF (ZC.GE.CJ(ICLP,NICLP,4)) KDEFIP=NICLP
100 CONTINUE
DO 110 NICL=1,NPT(ICL)
IF (ZC.GE.CJ(ICL,NICL,4)) KDEFI=NICL
110 CONTINUE
IF (KDEFI.LT.NPT(ICL)) THEN
ZI1=1.DO%ICL
CALL PDEFLA(ICL,KDEFI,PDMI,PRMI,SPDMI,SPRMI,ZC)
ELSE
PDMI=0,D0
PRMI=0,D0
SPDMI=0.DO0
SPRMI=0.D0
Z1=10.D0%ZC
END IF .
CALL PDEFLA(ICLP,KDEFIP,PDMIP,PRMIP,SPDMIP,SPRMIP,ZC)
PDM=( PDMIP-PDMI )% (10 .DO*XIA-Z1)/( ICLP~Z1)+PDMI
PRM=( PRMIP-PRMI )% (10 .D0%XIA-Z1)/( ICLP-Z1)+PRMI
SPDM=( SPDMIP-SPDMI )% (10 .DOXXIA-Z1)/( ICLP=Z1 )+SPDMI
SPRM=( SPRMIP-SPRMI )% (10 .DOXX1A-Z1)/(1CLP-Z1)+SPRMI
RETURN
END
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SUBROUTINE PDEFLA(IC,KPDEF ,PDMIC,PRMIC,SPDMIC, SPRMIC,ZC)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCteeee
C SUBROUTINE PDEFLA

c

c CALCULATE FAR-FIELD DISPLACEMENT AND SLOPE DATA FOR USE

C IN SUBROUTINE PDEFL

c
CCCCCCCCCCcccoccccocccccccccccocecccceccccececcecccceecccocecccceocccocccececceecoeec

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10) ,NPT(8)

COMMON /JJL/CJ, THCK,XIA,EPRIME ,NPT

X - CLOSURE; Z-D - FAR-FIELD DISP; Z-R - FAR-FIELD ROTA

(e N wl

XL=CJ(1C,KPDEF,4)
XR=CJ(I1C,KPDEF+1,4)
XRMXL=XR-XL
ZLD=2.D0*CJ(IC,KPDEF,5)
ZRD=2.DO*CJ(1C,KPDEF+1,5)
ZLR=2.D0O*CJ(IC,KPDEF,6)
ZRR=2.,DO*CJ(1C,KPDEF+1,6)
ZRMZLD=ZRD-ZLD
ZRMZLR=ZRR-ZLR
IF (KPDEF.GT.1) THEN
XLM=CJ(1C,KPDEF-1,4)
ZLDM=2.D0*CJ(I1C,KPDEF-1,5)
ZLRM=2.D0*CJ(1C,KPDEF-1,6)
END IF
IF (KPDEF.LT.NPT(IC)-1) THEN
XRP=CJ(1C,KPDEF+2,4)
ZRDP=2.D0*CJ(1C,KPDEF+2,5)
ZRRP=2.D0*CJ(IC,KPDEF+2,6)
END IF

EVALUATE THE REQUIRED SLOPES USING A WEIGHTED DIFFERENCE METHOD
AND USE APPLICABLE SPLINE FIT (CUBIC OR QUADRATIC)

o000

IF (KPDEF.EQ.NPT(I1C)-1) THEN
AMRD=0 . DO
AMRR=0 . DO
ELSE
XRPMXL=XRP-XL
XRPMXR=XRP-XR
AMRD= ( ZRMZLD*XRPMXR/XRMXL+(ZRDP-ZRD ) *XRMXL/XRPMXR ) /XRPMXL
AMRR=(ZRMZLR*XRPMXR/XRMXL+( ZRRP-ZRR ) *XRMXL/XRPMXR ) /XRPMXL
END IF
IF (KPDEF.EQ.1) THEN
CALL QUADR(AMRD,XL,XR,ZLD,ZRD,ZC,PDMIC,SPDMIC)
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ELS

END
RET
END

CALL QUADR(AMRR,XL,XR,ZLR,ZRR,ZC,PRMIC,SPRMIC)
E
XRMXLM=XR-XLM
XLMXLM=XL-XLM
AMLD=( (ZLD-ZLDM) *XRMXL/XLMXLM+ZRMZL D*XXLMXLM/XRMXL ) /XRMXLM
AMLR=( (ZLR~ZLRM) *XRMXL/XLMXLM+ZRMZLR*}XLMXLM/XRMXL ) /XRMXLM
CALL CUBIC(AMLD,AMRD,XL,XR,ZLD,ZRD,ZC,PDMIC,SPDMIC)
CALL CUBIC(AMLR,AMRR,XL,XR,ZLR,ZRR,ZC,PRMIC,SPRMIC)
IF
URN
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SUBROUTINE SIFAC(KDEFI,KDEFIP,TFM,SIF,ZC)
CCCccccccccecceoceceeccecceccceccececcecccececcccccececccccecccecceccccccccececce
C SUBROUTINE SIFAC

C

c CALCULATE STRESS INTENSITY FACTOR CALIBRATION® BASED ON

C A UNIT APPLIED MOMENT ‘TFM’

c .

[ 0 04 I i O i o o o 0 o 0 o 1 o O 0 e 4 e B 2 L

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CJ(8,17,10) ,NPT(8)

C
COMMON /JJL/CJ,THCK,X1A,EPRIME,NPT /LOC/ICL,ICLP
&
C  CALCULATE END POINT DISPLACEMENTS AND SLOPES FOR
c LINEAR INTERPOLATION IN XIA
c
IF (KDEFI.LT.NPT(ICL)) THEN
Z1=1.D0%ICL
CALL SIFACA(ICL,KDEFI,SIFI,ZC)
ELSE
SIF1=0.D0
Z1=10.D0%*ZC
END IF

CALL SIFACA(ICLP,KDEFIP,SIFIP,ZC)
SIF=((SIFIP-SIFI)*(10.D0*XIA-ZI)/(ICLP-ZI)+SIFI)*TFM/THCK¥*1.5D0
RETURN

END
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Subroutine SIFACA

SUBROUTINE SIFACA(IC,KPDEF,SIFIC,ZC)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCeee
C SUBROUTINE SIFACA
c
c CALCULATE SIF CALIBRATION DATA FOR USE IN SUBROUTINE SIFAC
c
CCCCCCCECCCCCCCCCCeCeCCCCCtCeCeCCCCCCeCCeCCCCCCCCCCCCeCtCCCeCCeeeeee

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CJ(8,17,10) ,NPT(8)

COMMON /JJL/CJ,THCK,X1A,EPRIME,NPT

X - CLOSURE; Z - SIF CALIBRATION

o0

XL=CJ(I1C,KPDEF,4)

XR=CJ(IC,KPDEF+1,4)

ZL=CJ(1C,KPDEF,?)

ZR=CJ(IC,KPDEF+1,7)

XRMXL=XR-XL

IF (KPDEF.GT.1) THEN
XLM=CJ(1C,KPDEF-1,4)
ZLM=CJ(IC,KPDEF-1,7)

END IF

IF (KPDEF.LT.NPT(IC)-1) THEN
XRP=CJ(IC,KPDEF+2,4)
ZRP=CJ(1C,KPDEF+2,7)

END IF

EVALUATE THE REQUIRED SLOPES USING A WEIGHTED DIFFERENCE METHOD
AND USE APPLICABLE SPLINE FIT (CUBIC OR QUADRATIC)

o000

IF (KPDEF.EQ.1) THEN
AMR=( (ZR-ZL )* (XRP-XR ) /XRMXL+(ZRP-ZR )kXRMXL/ (XRP=-XR) ) / (XRP-XL)
CALL QUADR(AMR,XL,XR,ZL,ZR,ZC,SIFIC,DSIFIC)

ELSE IF (KPDEF.EQ.NPT(IC)-1) THEN
AML=( (ZL-ZLM)*XRMXL/ (XL=XLM)+(ZR-ZL )* (XL-XLM) /XRMXL)/ (XR-XLM)
CALL QUADL(AML,XL,XR,ZL,ZR,ZC,SIFIC,DSIFIC)

ELSE
AMR=( (ZR-ZL )%* (XRP-XR ) /XRMXL+(ZRP-ZR ) *XRMXL/ (XRP-XR) )/ (XRP-XL)
AML=( (ZL~ZLM)*XRMXL/ (XL-XLM)+(ZR-ZL )% (XL-XLM) /XRMXL )/ (XR-XLM)
CALL CUBIC(AML,AMR,XL,XR,ZL,ZR,ZC,SIFIC,DSIFIC)

END IF

RETURN

END
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SUBROUTINE CUBIC(AML,AMR,XL,XR,ZL,ZR,XC,DIC,SDIC)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceeeee
C SUBROUTINE CUBIC
c
C CALCULATE REQUIRED DATA USING CUBIC INTERPOLATION BETWEEN
c TWO POINTS WITH KNOWN SLOPE AT EACH END
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCtCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeerereee

IMPLICIT REAL*8 (A-H,0-Z)
&

XRMXL=XR-XL

ZRMZL=ZR-ZL

CALCULATE COEFFICIENTS OF CUBIC EQUATION

(o M I v }

A3=( (AMR+AML ) kXRMXL-2 . DOXZRMZL ) /XRMXL*%k 3
A2=(AMR-AML-3, D0%A3k (XR*XR-XL*XL) )/ (2.D0%*XRMXL)
Al=(ZRMZL-A3% (XR**x3-XLk*3) -A2% (XRAXR-XL*XL) ) /XRMXL
AD=ZL - ( (AS*XL+A2)*XL+Al ) kXL

CALCULATE DISPLACEMENT AND SLOPE

BN w

DIC=( (A3kXC+A2)*XC+Al ) *kXC+AD
SDIC=(3.D0*kA3*XC+2.D0*A2) *XC+Al
RETURN

END
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Subroutine QUADL

SUBROUTINE QUADL (AML ,XL,XR,ZL,ZR,XC,DIC,SDIC)
CCccccoccececccccccccccccccccccccecccccccccceccccccccccccccccccccccccccccecee
C SUBROUTINE QUADL

c

C CALCULATE REQUIRED DATA USING QUADRATIC INTERPOLATION

c BETWEEN TWO POINTS WITH KNOWN SLOPE AT THE LEFT POINT

c

[ o 4 O o o o o o 0 B 1 B B e

IMPLICIT REAL*8 (A-H,0-Z)

c
XRMXL=XR-XL
ZRMZL=ZR-ZL
c
C CALCULATE COEFFICIENTS OF QUADRATIC EQUATION
C
A2=(ZRMZL-AML*XRMXL ) / ( XRMXL*XRMXL )
Al=AML-2.D0%AZ2%XL
AD=ZL-(A2%xXL+AL ) *XL
c
C CALCULATE DISPLACEMENT AND SLOPE
C

DIC=(A2XXC+Al ) *XC+AD
SDIC=2.D0%A2xXC+Al
RETURN

END

- 160 -



Subroutine QUADR

SUBROUTINE QUADR(AMR,XL,XR,ZL,ZR,XC,DIC,SDIC)
CCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCececeeeee
C SUBROUTINE QUADR

CALCULATE REQUIRED DATA USING QUADRATIC INTERPOLATION
BETWEEN TWO POINTS WITH KNOWN SLOPE AT THE RIGHT POINT

o000 0

CCcccccccccceccececoccccecceccoccccocccccecccceccceccccccccccccecoccccoccecccccececc
IMPLICIT REAL*8 (A-H,0-Z)

XRMXL=XR-XL
ZRMZL=ZR-ZL

CALCULATE COEFFICIENTS OF QUADRATIC EQUATION

o000

A2=(AMR*XRMXL-ZRMZL ) / ( XRMXL*XRMXL )
Al=AMR-2.D0*AZ2%XR
AD=ZL-(A2%XXL+Al ) *XL

CALCULATE DISPLACEMENT AND SLOPE

o0

DIC=(R2kXC+Al ) kXC+AD
SDIC=2.D0%A2%XC+Al
RETURN

END
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oGO UA A A psrDPr,LDELER,LDWOUMWWWOMNDNMNNNNDE R

-5.64708
-5.52209
-4,80000
-5.24679
-5.13448
-4.,76670
-4,33957
-3.60000
-4,81112
-4,71098
-4,38720
-4,00480
-3.58532
-3.14211
-2.40000
-4,35286
-4,26558
-3,97712
-3.63400
-3.24489
-2.82582
-2.39119
-1.94302
-1.20000
-3.89162
-3.81571
-3.55408
-3.24200
-2.88163
-2.48636
-2.06796
-1.63435
-1.19356
-0.74337

0.00000
-3.44645
-3,37874
-3.13426
-2.84305
-2.50443
-2.12905
-1.72738
-1.30774
-0.87642
-0.43689

0.00602

0.45665

.000
.025
.100
.000
.025
.075
.125
.200
.000
.025
.075
.125
175
.225
.300
.000
025
.075
125
175
. 225
.273
. 325
.400
.000
.025
075
.125
175
.225
273
.325
.375
423
.500
.000
.025
.075
+125
175
229
275
.325
.375
.425
.475
. 925

3 5 7 911131517

-2.0371E-3
-8.9607E-4

0.0000000
-1.7614E-2
-1.2219€E-2
-4,4843E-3
-9.0437E-4

0.0000000
-6.0228E-2
-4.7201E-2
-2.6125E-2
-1.2443E-2
-4,5211E-3
-9.0525E-4

0.0000000
-1.4209E-1
-1.1832E-1
-7.7615E-2
-4,7966E-2
-2.63735E-2
-1.2326E-2
-4.5296E-3
-9.0543E-4

0.0000000
-2.7534E-1
-2.3798E-1
-1.7148E-1
-1.2036E-1
-7.9582E-2
-4,8657E-2
-2.6739E-2
-1.2562E-2
-4.5336E-3
-9.0548E-4

0.0000000
-4.7628E-1
-4,2227E-1
-3.2279E-1
-2.4403E-1
-1.7767E-1
-1.2337E-1
-8.0800E-2
-4.9078E-2
-2.6878E-2
-1.2587E-2
-4.5366E-3
-9.0544E-4

Parametric Data File - CLOSEDAT.DAT

-1.0819E-2
-4.6304E-3

0.0000000
-8.0639E-2
-5.4311E-2
-1.8879E-2
-3.5887E-3

0.0000000
-2.3167E-1
-1.7303E-1
-9.0642E-2
-4.0326E-2
~1.,3609E-2
-2.5065E-3

0.0000000
-4.4258E-1
-3.5147E-1
-2.1143E-1
-1.1972E-1
-6.0300E-2
-2.5565E-2
-8.1993E-3
-1.4209E-3

0.0000000
-6.353594E-1
=5.3147E-1
-3.3919E-1
-2.1047E-1
=1.2114E-1
-6.3056E-2
-2.8608E-2
.0963E-2
.7664E-3
.3448E-4
0.0000000
.8557E-1
.3167E-1
.9773E-1
.4415E-1
.3749E-1
.7611E-2
-2.6034E-2
-4,70%2E-3

3.5180E-3

4.5196E-3

2.6758E-3

7.9226E-4
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-.28437
-.21326

.00000
=.75905
-.63228
-.39294
-.19343

.00000
-1.3360
-1.1582
-.86567
-.60850
-.37863
-.18291

.00000
-1.9828
-1.7539
-1.4235
-1.12%6
-.84978
-.39034
-.36201
-.17001

.00000
-2.6925
-2.4105
-2.0591
-1.7413
-1.4251
-1.119¢6
-.83550
-.57530
-.34820
-.16057

.00000
-3.49%46
-3.1624
-2.797¢6
-2.4578
-2.1113
-1.7667
-1.36035
-1.1148
.82275
.96311
.33804
.14939

.0187634
.0091287
.0000000
.0922415
.0480350
.0172090
.00635008
.0000000
. 2631387
.1300800
.0563050
.0311660
.0159090
.0063747
.0000000
.6401989
.2724800
.1243000
0779270
0493520
.0293510
.0155790
0063326
.0000000

1.460995

.4220900
2257200
.1500900
.1041200
.0716280
.0473250
.0289710
.0154520
.0063165
.0000000

3.374369

.7976900
.3630000
.2501600
.1827300
.1349000
.0983610
.0695410
.0466650
0288100
.0154290
.0063165

.1039211
.0495130
.0000000
.4663580
. 2344200
.0775440
0273060
.0000000
1.215482
.9656100
.2209000
.1123700
0525170
.0191250
0000000
2.644603
1.044000
.4167300
. 2352200
.1335700
.0709800
.0327220
.0113990
.0000000
5.410300
1.639700
.6307500
. 3662200
.2204700
.1294400
.0711090
.0347860
.0139090
.0037900
.0000000
11.15332
2.272900
.814%2600
.4672000
.2799700
.1638300
.0891070
.0418640
.0140210
.0000000
-.0046295
-.0037899

.5760317
. 2687900
.0000000
2.366244
1.149300
. 3507500
.1142100
.0000000
5.616157
2.489500
.8784800
.4096900
.1746800
.0575860
.0000000
11.06900
4.101700
1.445500
. 7350600
.3731100
.1750100
.0700460
0207270
,0000000
20.39889
5.725100
1.902500
.9768100
5141600
.2587700
.1184400
.0462900
.0138350
.0024829
0000000
37.65377
7.048000
2.156600
1.084100
.5636700
2812000
.1278900
.0500370
.0150860
.004519¢
.0027036
.0024829



Parametric Data File - CLOSEDAT.DAT

[

0000000000000 000000000 0M0AOONNNNNNNNNNSNNNNNG

i7

-4.81198
-3.62382
-2.43558
-1.24724
-.058824
1.12968
2.31828
3.46572

1.20000
-3.03154
=-2.96777
-2.72858
-2.44620
-2.11894
-1.75586
-1.36644
-0.93839
-0.53820
-0.10926

0.32551

0.76535

1.20734

1.65702

2.40000
-2.65483
-2.58921
-2.33836
-2.04842
=-1.71730
-1.35542
-0.96994
-0.56890
-0.15769

0.26018

0.68268

1.10903

1.53896

1.97352

2.41111

2.85799

3.60000

.600
.000
025
075
.125
.173
223
275
«323
375
.425
475
925
+ 979
.625
.700
.000
025
075
.125
175
. 225
273
.325
375
. 425
475
.925
373
.625
.675
.725
.800

.083574
.084625
.085326
086008
.086683
087335
.088020
.088685

0.0000000
=-7.7607E-1
~-7.0055E-1
-5.59677E-1
-4.4094E-1
-3.4027E-1
-2.5423E-1
=1 8292E~1
-1.2582E-1
-8.1836E-2
-4,9462E-2
-2.6996E-2
-1.2614E-2
-4.5402E-3
-9.0554E-4

0.0000000
-1.2525000
=1.1446000
-9.3191E-1
-7.3900E-1
-6.0655E-1
-4,7337E-1
-3.5972E-1
-2.6522E-1
-1.8878E-1
-1.2874E-1
-8,3166E-2
-4,9998E-2
-2.7177E-2
-1.2660E-2
-4.5475E-3
-9.0579E-4

0.0000000

(page

0.0000000
-7.1091E-1
-5.3147E-1
-2.7089E-1
=1.1130E-1
-8.3404E-3

5.1161E-2

7.8043E-2
8.2055E-2
7.1846E-2

S5.4612E-2

3.5929E-2

1.9666E-2
8.1266E-3
1.8394E-3

0.0000000
-2.2619E-1
-2.2047E-2

2.4371E-1

3.7913E-1
4.4165E-1
4.5156E-1
4.2403E-1
3.7222E-1
3.0737E-1
2.3857E-1
1,7287E-1
1.1522E-1
7.8788E-2
3.4932E-2
.1.3597E-2
2.9277E-3
0.0000000

2)

00000
-4.4927
-4.1000
-3.7147
-3.3391
-2.9518
-2.5592
-2.1723
-1.7999
-1.4485
-1.1228
-.82670
-.956283
-.333586
-.14735

.00000
-6.0106
-5.4998
-5.0432
-4.,5891
-4.1162
-3.6361
-3.1617
-2.7033
-2.2682
-1.8627
-1.4874
-1.1464
-.83979
-.96982
-.33894
-.14829

.00000
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.0000000
8.445548
1.184800
.5386900
.3820800
.2894000
.2234400
.1724300
.1312600
.0974130
.0695410
.0468730
.0289710
0154990
.0063326
.0000000
25.69929
1.645400
.7649000
. 5591900
.4370700
+ 3492500
.2802400
.2234400
.1755700
.1349000
.1004400
.0716280
.0480930
0295510
.0157040
.0063747
0000000

.0000000
24.82695
2.815600
.9130900
.4937100
. 2729300
1381100
.0526920
0000000
-.0294090
-.0418630
-.0422540
-.0347860
-.0232530
-.0113990
.0000000
66.9747¢6
3.115700
.8567100
. 3864600
.1443000
.0000000
-.08783970
-.1381100
-.1610900
-.1638300
-.1517300
-.1294300
-.1011900
-.0709800
-.0424120
-.0191250
.0000000

.0000000
74.55299
7.824600
2.220600
1.096600
.5700200
. 2936600
.1500400
.0820550
.0560180
.0500370
.0496830
.0462500
.0362010
.0207270
.0000000
177.5804
8.045000
2.247000
1.170800
. 6895500
.4515600
. 3387700
.2936600
.28139600
.2812000
. 2764500
.25987700
.2245100
.1750100
.1158600
.0575860
.0000000



APPENDIX V

NEWTON-RAPHSON ITERATION

In Section 4.2 a very brief description of the Newton-Raphson

iteration scheme used in the secondary iteration loop was given. At

this time a more in-depth description will be presented in outline

form.

Assume: t A,

force and displacement distributions of
previous solution state (time t)
current state incremental displacement
distribution (time t+ =t + At)

are within range of closure

Newton-Raphson Initialization

1.

Evaluate tc ; tangent compliance matrix for tF.
(equations 2.4-7)

Calculate t+AFO ; first approximation of incremental
loads.
doryttam

Estimate t+F° ; first estimate of new loads.
=F+ t+AF°

Calculate t+U° ; first estimation of total
displacements for t+Fo.

Determine tk

(0]
€

(equations 2.4-1)
; displacement estimate error.
=ty + %A - He°
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Newton-Raphson Iteration

6. Evaluate t+Cl_1 ; tangent compliance matrix for t+F.

(equations 2.4-7)
7. Calculate Haar ; incremental load correction.
(t+ci—1)—1(t+ei—1)
8. Estimate t+AFi ; incremental load estimate.
_ t+AFi-1 + t+d/_\.Fi_l
9. Compare both t*ei-1 gna aAF! to convergence limits.
If within limits, solution is complete.
10. Estimate t+Fi ; total load estimate.
= tp + AP
; total displacement estimate for
trel-1l gng UH,

(equations 2.4-1)

11. Calculate t+U1

12. Determine t+e1 ; displacement estimate error.

=g &« ¥ pp - g
13. Return to step 6.

With regard to this algorithm several points should be made.
As was discussed in Section 4.1 a linear solution is performed
initially to determine if closure will occur. Therefore this iteration
loop will only be performed for conditions where closure will occur.
In this light, it was assumed that both ti and B are within the
closure range. Consider the remaining three possibilities. If tNis
outside the range and ™\ remains inside the range the previous
solution state is linearly modified (internally) to coincide with the
onset of closure. In this way the original assumption remains
valid. If t\ is inside the range and X falls outside the iteration
is stopped with current tangent compliance and load distribution

estimates sent out. Finally, tX outside the range and LY falling

outside corresponds to a combination of the previous two cases.
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Note that YA can (and typically will) fall outside the range of

closure when a very small amount of closure is obtained from a
previously fully open solution state. This is simply due to the
increase in stiffness with closure which causes displacement
increments to decrease. In this situation, the iteration scheme is
stopped. However, since the latest (closed) tangent compliance
estimates are returned a linear solution will not be obtained unless
the tolerance limits are satisfied.

As a final note, step 10 indicates that the incoming load
distribution, tF is retained throughout the iteration loop. This is
consistent with the approach used in the primary loop as described

in Section 4.1.
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APPENDIX VI

MODIFICATIONS TO PARTIAL CLOSURE ROUTINES

Several features of the partial closure routines can be modified
quite easily to introduce additional parametric data or to modify the
stiffness factor reduction procedure. The tasks required to

institute these modification are outlined below.

Additional Parametric Data

Any additional data (acquired at crack depth ratio 0.1,
0.2,...0.8) must be reduced as shown in Appendix II and it
must be added to the parametric data file CLOSEDAT.DAT.
The first line of the data file gives the number of data points
available for each crack depth. The data must then be
formatted as shown in Table II-3 with two additional entries:
the integral crack depth (i.e., 1 for 0.1, 2 for 0.2, etc.) and
the data point number. The parametric data file is presented
in Appendix IV. Each column of the file is defined within the

listing of subroutine PART.

Stiffness Factor Reduction

The stiffness factors are calculated in block C of routine
MATLS. The actual factor reduction is performed in
subroutine PART. To use the partially-closed stiffnesses only
the factors must be set to 1.0 and the stiffnesses defined as

AMK(1)

CM*C22

AMK(2)

-CM*C12 (for positive crack depths)
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AMK (2)

CM*C12 (for negative crack depth)

AMK(3)

CM*C11
within block C. In this way, no factor reduction will be
performed in subroutine PART.

The factor reduction is defined by the function by which
the reduction is performed (linear, quadratic, etc.) and the
closure length at which reduction is complete (BXIC). The
reducing functions are applied at two locations within
subroutine PART and are defined such that the factor is

FC=FC1 (or FC2 or FC3) at AFC=0.0 and FC=1.0 for AFC=1.0.

Interpolation of Parametric Data

The linear interpolation with respect to crack length is
performed in subroutines CLOSE, DEFL, PDEFL, and SIFAC.
The cubic and/or quadratic interpolation with respect to load
ratio is performed in subroutine CLOSEA and with respect to
closure length in subroutines DEFLA, PDEFLA, and SIFACA.
The weighted central difference approximation is applied in the
_A subroutines. Any change in the interpolation scheme will

impact each of these routines.
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Stationary vs. Progressive Iteration

The "previous solution state" data which is input to
subroutine PART is controlled by subroutine PRTCLL. To
force stationary iteration at all time, the first IF-ELSE-END_IF
loop (beginning with IF (KFCL(ICNT).EQ.1) THEN ) must be

replaced by

FN = S1(1)
FM = S1(2)
DDELTA = DEE1(1)
DTHETA = DEE1(2)

The data S1 and DEEl represent the results based on the
previous converged increment versus the previous converged

iteration.
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