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Abstract

Title: Band Structure of Silver Chloride and Silver Bromide by the

Augmented Plane Wave Method.

Author: Peter Michael Scop

The energy of silver chloride and silver bromide crystals has

peen calculated using the augmented plane wave method.

In this method one solves Schroedinger's equation for a

periodic one electron potential in the crystal. In the augmented

plane wave method, this potential is assumed to be ionic-like and

spherically symmetric within spheres surrounding the ions, and con-

stant in the region between spheres. Consequently, the wave function

is expanded in a sum of free-ion functions within spheres and plane

waves outside of the spheres. By varying the relative value of the

constant potential between spheres, the size of the direct band gap

at k = O has been fit to the experimental value.

After considering non-spherical cubic field effects within the

spheres and relativistic effects (including spin-orbit coupling), the

calculated magnitude of he indiveat band gap is found to agree quite

well with experiment. The indirect band gap arises from electronic

transitions from the highest point in the valence band (the point La

at k = z (1,1,1) for both crystals) to the lowest point in the con-

duction band at k = O.

Selection rules for both direct and indirect transitions (with

and without spin) have been derived.

Thesis Supervisor: Professor John H. Wood

Title: Assistant Professor of Physics
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Chapter I

APW Calculations

I-1. Introduction.

The Augmented Plane Wave Method (henceforth abbreviated APW) was

employed in calculating the electronic band structure of silver chlo-

ride and silver bromide crystals. This method was originally proposed

by Slater! and later used by Wood? in his calculation of the band

structure of iron. More recently, Switendick® has extended the method

to deal with problems involving two atoms per unit cell in his band

IN of nickel oxide. This APW calculation of the band struc-

ture of silver chloride and silver bromide has been performed using

the programs written by Wood and Switendick for the IBM TO9 computer.

Briefly, the APW method takes advantage of the fact that the

one-electron wave function is ionic-like near an tonic site and

plane wave-like far from ionic sites. Consequently one inscribes

spheres about each ion in the crystal; within each sphere we assume

a spherically symmetric potential appropriate for the corresponding

ion. In the region between spheres, we assume that the potential is

equal to a constant, v, Corresponding to this choice of potential,

the one electron wave function is expanded in APW's; that is, functions

that are ionic-like inside the ionic spheres and plane wave-like outside

of the spheres. Finally, the secular equation is obtained and, after

taking advantage of the cubic symmetry, one obtains the eigenvalues.

Since the APW functions are constructed to cortespond to the

assumed potential, the convergence (the number of APW's needed to

adequately represent a particular state) will be fairly rapid. However,



one must face some serious questions about the validity of the as-

sumed potential.

The general form of this potential is sensible from physical

reasoning, but the problem of choosing the various parameters entering

into the calculations is a difficult one. Specifically, one must de-

termine the sizes of the APW sphere radii and the constant value of

the potential between spheres, Vo. In addition, the ionic potentials

themselves usually depend on several parameters, especially the

"ionicity" (the limit of 5 times the ionic potential, for large r).

If one attempts to choose these parameters by physical reasoning,

the results may be quite confusing. For example, in a real ionic crys-

tal +he previous simple definition of ionicity cannot even be applied

since an electron never experiences a single ionic potential far fram

ionic sites. In addition, the concept of sphere radii may be mis-

leading if there is any covalent bonding in the crystal.

In order to avoid these (and other) physical arguments, the

present author has chosen the parameters in a rather arbitrary manner,

and then varied one of them in order to obtain some agreement with

experimental results.
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i-2. Details of the calculations for AgBr and AgCl

AgBr and AgCl both have the NaCl structure; that is, two

displaced face centered cubic lattices. One lattice composed of

silver ions, the other containing the halogen ion.

In Figure I-1 we show the AgCl lattice. The silver ion is lo-

cated at the origin of coordinates. The six neighboring chlorine ions

are located at the points * &gt; (100), # &gt; (op), * 5 (O31). There are

twelve nearest neighbor silver ions located at + 2 (110), * &gt; (1-10),

t &gt; (or), + 2 (011), + Z (101), ¢ 2 (LO-1). All translations which
}

leave the lattice invariant are given by T, = Nyon + Noto + Nada

r . -p -&gt; -—&gt; frida
(ny, no, na are integers) where a;, as, 8&amp;3 are three primitive trans-

lations:

A = 2 (O11)

a&gt; = = (100)

a

By = = (110)

for AgCl &gt; = 5.2% atomic units.

Ag Br 5 = 5.463 atomic units

The ionic potentials used are those determined by the

Hartree-Fock-Slater equations and calculé&amp;ted using programs described

oy F. Herman and S. Skillmen.* That is, for a particular ion,



Figure I-1
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(o) = — 2 | o{t)at 2] Shar = 6p = Sr

Vile ©» Ei = Jd
ier2  alr) =) ay, [B,()3

n,l

b ~~ = occupation number for the orbital (n 2)

= 2(2f + 1) for a closed shell

I'he total number of electrons is N -) @ and the ionicity is Z -
2

Ng

Fhe Pgs are normalii zed solutions of the racadial Schroedinger

squation:

[£, ued)r2 *

(2 +1
ra : + vi) } 2n/ (x ) ==RKny Fn (C %

Las Ps (r) =r R , («+

The ionicity parameters were chosen in accordance with the or-

+
Jinary ideas of chemical valence (i.e. ionicity of Ag = +1, ionicity

&gt;f 01 = ionicity of Br = -1).

The potentials within each sphere are modified by adding (or

subtracting) the Madelun otential V, = 20 = % ha where 0 is
&gt; 2p MT a2 Ta

the Madelung constant for an NaCl structure (a = 1.747558) and "a"

is the cube edge (see HMgegure I-1l). That is:

. » +

about silver sites V(r) = (Vee rman- Skillman’ 28 ov

about halogen sites vir) = (Viarman-Skillman) 22L08ED -



The choice of the sphere radii and the initial determinatiors

of Vo was made in the following way. First the Herman-Skillman ionic

potentials for Ag” and C1 were superimposed and plotted in the (100}

jirection (Figure I-2-a). Then these potentials were corrected by

adding or subtracting the Madelung potential. The point where the

Madelung corrected potentials cross defines the sphere radii and

the first determination of Vo (Figure I-2-b). This scheme has the

Jesirable effect of insuring that v(7) is continuous throughout the

crystal. Finally we choose the zero of potential to be Vg on the APM

scale. The net result of the Madelung correction and change of the

zero of energy is that the Herman-Skillman potentials have been

sltered by different amounts called Verte:

For  ltA

for halogen

J
SHIFT

Verte = VA

Vi

AN

snd our corrected potentials become:

.."

SN )

V(r) = (Voge rman-skitiman’ae”° (VeHTFT Ag”

nal : =Gren vir) =( Veerman- Skillman’ halogen | ( Vsurer’ halogen

is potential is shown in Figures I-2-c and I-2-d for the (100) and

110) directions.



Figure I-2
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Unfortunately, when the above scheme is used in determining

the sphere radii and Vo, the bands subsequently found do not agree

with experimental facts. Specifically, the band gap at kK = 0 is too

small for both AgCl and AgBr. This discrepancy may be resolved by

varying the magnitude of Vg until agreement with experiment is ob-

—)

tained. For both AgCl and AgBr the experimental band gap at k = o, Eg

vas duplicated when the magnitude of Vo was reduced. This final po-

tential is shown in Figures I-2-e and I-2-f for the (100) and (110)

directions, respectively.

There are two reasons why this corrected potential should be

more representative of the actual crystalline potential than that

shown in Figures I-2-c and I-2-d. Along the line joining the APW

sphere centers(x, y, or z directions) the ionic potentials employed

will have some value V at the sphere radii. However, in some other

direction the actual crystalline potential just beyond either of the

APW spheres will not be equal to V as in Figure I-2-d4, but will have

some larger value as in our corrected potential (Figure I-2-f). Also,

the valence P and d states as well as the core electrons should be

fairly insensitive to the value of the potential between spheres.

Although the size of the band gap at EK = 0 depends in a criti-

cal way on the value of the potential between spheres, the relative

spacing of core states is almost independent of Vo. In fact, changing

Vo by as much as a few tenths of &amp; Rydberg only changed the relative

spacings of valence bands by less than .0l Rydbergs, and left their
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jualitative features virtually unchanged.

The Brillouin zone for the FCC lattice is shown in Figure I-3,

and the APW bands for AgCl and AgBr are shown in Figures I-4 and I-5

respectively. Values for the sphere radii, Vy» Vue’ Vir the ionic

potentials as functions of r, the starting values of the wave func-

tions, and the points in the Brillouin zone actually calculated for

the bands in Figures I-4 and I-5 are given in Appendix One.

At this point it should be mentioned that because our basis

functions are located on different sites on the unit cell, the symmetry

properties of certain eigenstates of the Hamiltonian depend on

which ion is located at the origin of coordinates. Switendick® has

shown that within the Brillouin zone it makes no difference which

ion is at the origin; but on the surface of the Brillouin zone,

the representation matrices for the ion located at R = = (1,0,0) must

be multiplied by the factor LH R-KOE (here R is an cperaion

of the group under consideration, and Ky is a vector of the recipro-

cal lattice). One finds that the symmetries at L, W, and Q are af-

Fected. The results are shown below in Table 1-1.

center A at origin

iid

 &gt;

center B at = (010)

[,»

La

[on
’

ls

Lo

Lio

{

i wha
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lable I-1 (continued)

center A at origiu center B at = (0,1,0)

WA

vD

a"

/

do

Ng

A)

od

1

Wa

Wo

Wa

Wa

Q
0

After solving the secular equations and obtaining eigenvalues,

the eigenfunctions may also be determined. For points of major in-

terest in the Brillouin zone, we have obtained the radial charge

jensities, Po, (r), within each APW sphere. The total amount of

charge in each sphere associated with a given '.{" value, q,, and the

amount of plane-wave charge (between spheres) has been calculated and

is also tabulated in Appendix One. Here the total amounts of charge

are normalized to unity; i.e.

pax = 12

). (9) pg sphere
0-0

Lpay=12
¥

) (ap) Halogen sphere

P=0

opm plane wave charge = .

dowever, in Appendix One these quantities are tabulated for only the

First three£values (£=0, L =1, £ = 2).

“pr

Since the group of the wave vector at k = o (point group 0)

contains the inversion, the bands are parity eigenstates at r. By

examining the charge within each APW sphere (Appendix One) the valence

bands at this point are seen to arise predominately from either p or
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Figure I-3

BRILLOUIN ZONE FOR FCC LATTICE



Figure I-4

BAND STRUCTURE OF SILVER CHLORIDE
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Figure I-5

BAND STRUCTURE OF SILVER BROMIDE
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1 functions with no mixing ofPand 4d states. At | the eigenfunction

is mostly eL™ (3p) or Br (4p) with some agt (5p). The [» and [bg states

are almost entirely Ag (La).

As one departs from [' along any of the three symmetry directions,

the bands exhibit a strong p-d mixing.

In the (100) or A direction, the p-d mixing is zero at [7, in-

creases until k= z (100), and then decreases to zero at the point X

(the point group at X is Dy; and includes the inversion operation).

Along the (110) or IT direction, the mixing is greatest at the point

© = = (110). Because of trensformation properties listed in Table 1-1,

the Agt(4a) function located at the origin and the Cl (2p) (or Br (L4p))

function located at = (010) both have even parity at the point L. Con-

sequently, this point is one of greatest pP-d mixing along the (111)

direction.

As one can see, a superficial understanding of the interactions

away from " can be partially obtained from our APW calculation. However,

vecause of the complexity of the details of an APW calculation it be-

:omes increasingly more difficult to obtain additional information about

these interactions. In order to better understand the nature of the

pands, in Chapter II we illustrate a fitting procedure based on the

ise of tight binding wave functions. As we will see, the detailed

nature of the various interactions involved become quite evident,

aven with a very crude fitting.

Before proceeding to Chapter II, we mention that when spin is



2D

introduced in the Hamiltonian direct optical transitions are allowed

between allbands except at some points where the wave functions are

parity eigenstates ([¥, X, and L); electric dipole transitions are

allowed only between states of opposite parity. Also, indirect or

phonon-assisted transitions from the uppermost valence bands to the

conduction band are allowed. Details regarding both types of transi-

ion are given in Appendix Four.

Finally, we mention that the APW bands for AgCl and AgBr in

figures I-4 and I-5 are approximately consistent with all experiments

known to the author. A more detailed comparison of the bands and ex

perimental results will be given in Chapter III.
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Chapter II

Band Fitting by Tight Binding Method

[IT-1. Introduction

In this chapter we shall show how the APW bands calculated in

Chapter 1 may be described by analytic functions with a parametric fit

of the bands. This fitting technique has been described in detail by

Slater and Koster.® In this method we begin with orthogonalized, Bloch-

like, tight binding wave functions. The usual integrals of the Hamil-

tonian between Bloch functions are regarded as disposable constants

used to fit the bands. These constants appear as the integral between

functions on the same ionic site as well as first, second, and higher

nearest neighbors. Naturally one can fit the APW bands to any desired

recuracy if a complete set of basis functions is used and if one in-

cludes integrals involving functions on ions that are widely separated

in the crystal.

The philosophy of the interpolation scheme employed here will not

pe that of obtaining an exact fit for all bands. But rather, we try

to obtain a reasonable fitting for the upper valence bands using a re-

stricted basis set (only functions of p and 4 symmetry), and including

only &amp;s many interactions (i.e. disposable parameters) as necessary

to approximate the APW bands. The value of fitting the bands in this

say is that one can understand the basic structure of the APW bands

vithout a great deal of numérical labor.
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vince the bands for AgCl and AgBr have a very similar structure

‘see Figures I-4 and I-5), only the fitting of the AgCl bands will he

Jescribed here. Fortunately, Slater and Koster have discussed the

tight binding interpolation scheme extensively, and in the treatment

of the AeCl fitting we will use the results of their work.

[I-2. AgCl fit.

-—

One starts with a set of normalized basis functions ,(r), ...,

-,

on (T) that are orthogonal even when the functions are located on dif-

-»

ferent centers in the crystal. That is, if the vectors Rj (Rg =

A Nn

2ii + £o T+ Lk) denote ionic sites in the crystal, then

-&gt; =&gt; swaywl
/ ¢.%(r-Ry) eo, (r-Ry av =

~\

8
we

J

“rom our functions ¢., we construct normalized Bloch

* 3
| . = 1 - &gt;

3 o } wT) Jk Ry I
L o.(r - Ry)

functions

(11-1)

a ~~]

‘4 = number of unit cells)

The wave function for an electron in the crystal is then written

AP
_

2JVi

i=1

and the n x n secular equation is obtained in the usual way. The



natrix elements are

——

1. .(k)
\ R0 E; (Ly &amp;04) 11-3)

&amp;

—

R

Jil pte

:, Ly hk) [ore (3 - £805 2 fav (11-n)

#or AgCl (with the silver ion located at the origin) we have

silver ions at

a 7 A A

R= 3 (sai + s2j + sak) Si+Sa+sg = even integer

and chlorine ions at

A A A
a 2 i

R, = 3 (cil + caj + cak) cy+catcs = odd integer

Xxir basis functions are

hp = f(r)xy

ba = f(r)xz

by = f(r)yz

be = f(r) 3(xB-y3)

be = f(r) (322-12)

be = 1 g(r) x

bz = 1 g(r) y

bg = 1 g(r) z

Five Ag" Ld functions

three cl zp functions

(LI-5)



and our Bloch functions LZ are

q

LY ik +R -
*R Ee

— e S ¢, r -

7 A R,)

R

- = —
* o -—

=) EB iy. R )
(v4 |

R,

\

L = 342: 5,45

(17-&amp;

0, [8

Thus our final matrix elements in equations II-3 and II-4 may be

jescribed as resulting from d-d interactions (both functions on silver

sites), p-p interactions (both functions on chlorine sites), and p-d

interactions (one function on a chlorine site, the other on a silver

site).

k a k a k a

Jsing the abbreviations 5 = —5—, n= —- , t= ee

elements (equation II-3) as derived by Slater and Koster are given in

Fable ITT1~1.%

the matri-

—

To start the fitting procedure, we begin with k in the (001) di-

rection since many of the matrix elements in T ible II-1 vanish when

x =n = 0. In addition, we observe that many matrix elements are

identical to each other, and we obtain the Hamiltonian matrix©

¥ Slater and Koster do not list all the matrix elements since many

are related by cyclical permutations of coordinates.
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able II-1

1. i

131 = Ey3{000) +4Ey3 (110) cos cosn + UEy;(011) cost(cos§+cos 7)

Hoe == Ey 4 (000) + 4E;3(110)cos§ cos § + LE;3(0Ll1)cos n(cos¥+cos ¢

Hyg = E33(000) + LE;y(110) cosncost + UEy;(011)cos€ (cosh + cosl)

{a4 = E55(000) + 3Eg5(110)cosf(cost + cosn) + UE44(110) [cos¢ cos

feos § cost + Feosneost

dss = Es5(000) + UEs&lt;(110) [cos§ cosn + Leosk cost + : cosneost |

+ 3844(110) (cost + cosn)cos

Hyp = «4B; (011) sinnsing

Hyg = «LE; (011) sing sin

Hy4 = O

ys = -LE;5(110) sing sing

Bog = =W4E3»(011) sing sinn

Hoy = 2 V3 Exs(110) sing sin

Hos = 2B35(110) sinf sing

Hay = 2 ¥3 Ers(110)sinfsint

Hoe x OBys (110) sinnsint

Tus = 43 Ess(110) cost (cost =c081)={3 Eus(110)cost(cos§-cosy)
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fable II-1 (continued)

pd

Hay = 2Bsy (010) sin

ss = 2Esy(OLO)sint

ss = O Hrs = 2Eg3 (010)sing

les = 13 Egs(001)sing Hyg = =J3 Egs(00L)sinn

Hass = ~Eas(001) sink Hos = =Eg5(001) sinn

Hay = O

Hep = 2Egy (010) sing

Has = OFay (010) sin

Haq = O

Has = 2Egs(001) sint

Ju

Hes = Ese(000) + UEgs(110)cosk(cosn + cos) + LEgg(OLLl)cosncost

Horr = Egs(000) + L4Egs(110)cosn(coss + cos) + UEgg(0ll)cos§cos

Hag = Eg (000) + 4Egg(110) cost(cosn + cost) + UEgg(Oll)cosncoss

Her = =lLBg7(110)singsing

Hyg = =4Eg7(110)singsing

T7g = =L4Eg7 (110) sinnsint
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Zz -

gH(00t) =

Hix O 0 0

Hon GC 0

AY,

re
lL: nin (Vv)

0 Hoo O OC \/

“~ oO Hqa O 0 L

yu 9 0 Hs O 0 :

ga © 0 0 Hee O G

 BR 4d

~

J Heo G 0 0 Hge ©
5

\_ G 0 0 0 Has O 0 Hag

(11-7)

By comparing our basis functions ¢;, ...¢g with basis functions

For the group of A (group C4yv) and observing that O= 1s a doubly de-

generate state, we easily find the bands in the A direction are given

energy, € = H;,(00¢;

As: € = H,,00¢)

Ay: det

Deo det

Jiicre

[Hesse H A5 8s Haga
Hoe +H ses V2

) = 0, € = (Hsg Hes) + Hag-Hee 1 + (Hse Haw) ©
\Hgoe Hgg-€

/ Hoo-e “) = 0

\ Heo» Hge=-€ ’

both roots occurring twice

= |

= (Isstlse) 4 Hooton[1, Mae
e = (257) 2 (Hoo- Han) 2

Hy 1(00¢) = E11(000) + 4Ey4(110) + 8 Ey (011) cos £

144(008) = Es5(000) + 4E44(110) + [6 Ess(110) + 2E4.(110)] cos

155.008) = E311(000) + 4E;33(110) cos ¢ + 4E,,(011)(1 + cos t,
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155 (000) = Ez5(000) + LEs5(110) [1+ $2 cos {] + 6E4q(110) cos !

Hes(00L) = Eee(000) + UEge(110) (1 + cos &amp;) + UEgs(011) cos ¢

Hae(00f) = Egs(000) + BEgg(110) cos ¢

He (00¢) = 2Es2(010) sin ¢

Has 008) = 2Ea=(001) sin ¢

The diagonal matrix elements are determined by fitting at I and

X (where the off-diagonal elements vanish). Thus we determine the

Bi 's along the bands

Mas -

re = &amp;

Ne ~

Me - 4, -

Ms - 85 - Xs

ml oA - x

Tw

Xs
(11-8)

The fitting for Ap and Ap turns out to be quite accurate. How-

ever, the fit for Ay and Ax at points between f and X is poor because

the p-d matrix elements are non zero. In fact, the A; bands are not

even fit properly at X; since without the p-d interaction we have bands

!

rN. - Ny w X4 and Mos a. Hy ~ ).€Y whereas the APW bands are r- i Ny ~ Xj

f] : ¥

and lo - Ny - Xa

—

Po include the p-d interaction, we fit at the point k = 2 (QoL)
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(or t = n/2) where the off diagonal elements Hgz and Hgs are largest.

However, because our bands in reality cannot be exactly described only

in terms of a p-d interaction, the values of the parameters Egy(010) and

Ees(001) will depend on which Ay or As band we fit. More precisely

to fit along Me - As - Xs we obtain Egy(010)= .0133765; along

Mie - As - Xe, Eeq(010) = .0149219. Similarly along [1a - 24 - X.

and ll. - A; - Xy we obtain Egg (001) equel to .OL16LT and .0385722

respectively. In Figures II-1 and II-2 we illustrate these fitted

bands with and without the p -d Sarat, For an "overall fit"

the average values of Ee2(010) = .014092 and Egg (001) erage

0401096.

In the (110) or 2. a section (¢=m1m, ¢ Hamiltonian

matrix is

Haz O 0 0 His Hear Hea

0 Hes Hog GC OO O 0 He

0 0 Hea

a(S ,€ 90) =
Hes Hes O

O Hss Hes Hes O

Hes Hes Hes Her ©

Hey O OO Hgs Hes He7z Hes O

(11-9)

0 Hea Hea © 0 0 0 Has

By direct substitution, one may verify that eigenvectors of the

natrix II-9 are:
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=
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(11-10)

Comparing these eigenvectors with basis functions for the

group of X (group Cay)» we find that the eigenvector \A ccrresponds

to the irreducible representation zZ,. Since there are three inde-

pendent coefficients for vector vy, we will have three distinct eigen-

values corresponding to symmetry Z,. Similarly, we have one Zz band,

two Zs bands, and two I, bands arising from our Cl (3p) and Ag’ (4a)

functions.

The corresponding secular equations are:

for Zi

for Za:

vands:

At

ge

-

Hyx-€ His 2Haa

Hys Hgs-€ 2Hgs

2Haa 2Hgs 2(Hge+H77-€.

Hoo-Hag

» (CI-11-a)

(II-11-b)
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“or Zal

Cor Za

det

jet

2(Hap+Hag-€)

2Hea

Heg-€

-2 3Hgs

2Hgy
Po

— o

Hag=~€
aasab

-P 3Hgsg

2(Hge-He7-€;

(1I-11-c)

(I1-11-4)
 he

[n the Z direction we again determine the off diagonal matrix

=lements where the p-d interaction is largest, i.e. at { = 5/2 or

k = n/a(ll0). The matrix element Hops = -U4E;2(0l1) can be found from

a fit of the band [|be - Io - Ko (equation II-11-b) or by fitting

either of the Zz bands, Ms - Is - Kg or n - Za - Kz. However, we

again encounter the same problems found in fitting the A direction;

namely that the three I bands cannot all be fit with any single value

of E35(011). For simplicity, we determine E;5(011) along the

J

Bk o5 ~ Lp = Ko band, and obtain E12(011) = .0009562.

The matrix element Hg7 = -UEg7(01l) is determined by fitting

either of the Z4 bands MM. - Z4 - Kq Or [. - 24 - K4. Once more,

a single value of Eg7(011) will not fit both band. Since the I4

band arising from [is is the highest in the valence band (note: whan

relativistic effects and other perturbations are included, the Lg state

will lie slightly higher), we fit along Is - Z4 - K4 at the point

 = = (310) or n= n/2. From equation TI-11-d we obtain Eg7(011) =

,0205815.

{n a similar manner we determine Hs = -4E;5(110) from any one
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of the three Z3 bands. As in our previous calculations, a fitting

along these three bands cannot be accomplished with any single value

of E35(110). The average value is Eas(110) came = .0109872.

Our fitting in the A and I directions has determined all matrix

2lements up to nearest neighbor interactions. To this extent we

have also determined the bands in the (111) direction. A summary of

the parameters is given in Table II-2, and in Table II-3 we compare

the APW and fitted valence bands for the A, A, and XI directions.

Table II-2

Parameters for fitting APW bands

E11(000) = -.320425

Ey1(110) = -.00295625

Ey2(011) = .000656250

Ess(000) = -.315162

Ess(110) = -.00003438

E44(110) = -.00182188

E12(011) = .0009562

Eys(110) = -.0109872

Ess(000) = -.2606

Eeg(01l) = -.002125

Egs(110) = .0063625

Eg7(110) = .0205815

Eg3(010) = .01L4OL92

Bee(001) = .0LO1096
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Table II-3

"p " bands

0,2,0

0,L4,0

0,6,0

0,8,0

0,2,0

0,4,0

0,6,0

2,8,0

2,2,0

L,4,0

5,6,0

2,2,0

i, 4.0

65,6.0

2,2,0

h, 4.0

5,6,0

symmetry

K
15

A;

A

AL

 w-

{..

~

’

»

3

’.
-

fl

LA

‘A

A

PN

APW energy

- 2182

* ° 2091

-.2116

-.2Uub6

- 3042

a .2192

-.,2255

- 0 oloo

-, 2521

i .2360

© a 23QL

-.2L19

-,2195

~ 2354

LY o7ol

=) 1779

-.1270

-,1993

Fitted energy

= 9 2182

-.2056

= 9 2087

- 2496

-.3042

- 2194

- , 2265

- 2415

= o 2621

~ 2509

- 2667

- 2634

. 2014

-.2415

-. . 2788

-.1641

=, 1270

ile 18726



rable 11-3 (continued)

J. 2,2

+ . a 4

symmety APW energy

oo «2591

= 9 1794

- 2668

ao 1281

Fitted enerp

- O8LG

- 1665

=,2159

on 1270

'd" bands

Lk

J,0,0,

y,2,0

04,0

3,8,0

3,2,0

0,4.0

3,6,0

3.8.0

5,0,0

3,2,0

0,6,0

symmetry

?Lo

2

Pt

Ae,

- ha

{ss

i i
oes

APW energy

-.326%

- 3550

-.3835

-, 3689

=o 3200

- 3250

- 3224

-.%198

z186

© 9 3270

- 3283

- + 3323

=. 2361

- 43375

Fitted energy

- 3263

= +3505

= 3757

- +3630

- 3200

- 3252

- 3225

=o 3197

= 8 27 86

= 9 A270

-, 3285

-.3323

- 3360

23375



)

Table 11-3 (continued)

9,6,0

2,8,0

&gt;,2,0

lb, 4,0

5,6,0

2,2,0

wb,0

5.6.0

2,2,0

LoL.O

4.6,0

2,2,0

i, 4,0

2.2.0

i,k,0

5,6,0

Symmetry

al

/ 2

Livy

wy

Lee
-

2

~ 5

APW energy

-. 3271

- 03257

- +5159

=, 3086

- 3481

.3835

-. 3543

&gt; 0 3182

-.3119

- 43133

- 3234

-.3%3116

= +3105

- 3343

- 3452

- «3406

=e 3611

- 3847

. 3623

Fitted energy

~. 3281

- 3264

lt 3169

- . 3086

- 0 TOL

 401

=e 353%

=. 3017

= a 2904

&lt;3 3018

«3231

= a 2166

=o 31.07

» 3350

 Ae z3

-— . 5506

=o 5522

=o 3665

~ 4 3522
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Table I1-3 (continued)

3 2,2

i

pv

Symmetry

 ry

APW energy

“0 3519

- 3622

-..3185

3946

- +3891

3137

Fitted energy

- 3645

=e 3 (31

=a «3012

- 4510

-. L072

=, 2759
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As Table II-3 indicates, our simplified fitting is not too bad

quantitatively, especially for the higher valence bands. For this

reason we may conclude that this higher band may be understood on the

basis of a single p-d interaction. However, since the greatest dis-

crepancies are found at the bottom of the "4d" bands (esperially along

the [lo - &amp;4 - K4 and EH - Ay - L; bands), we may safely conclude

that a good fitting here would necessitate the use of additional core

wave functions in the basis set.
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Chapter III

Calculation of Perturbation Effects

IITI-1. Introduction.

In considering the effects ofperturbations on our APW bands, we

will be primarily concerned with the states M.. and La at the top of

the valence band. The reason for focusing our attention on these states

is that two important experimentally obtained results are the magnitudes

of the direct band gap at k = 2, Eo and the indirect band gap, Pia’

The value for By is given by the difference of the energies of the [4

(conduction band) and [le states. The indirect gap is the difference

&gt;f the energies of the Mh state and the highest valence band state,

Jhere ever that may be. The experimental values for these quantities

a.1re
718

AgCl

AgBr

3g
3.25 ev

5 68 ev

g

5.13 ev

I,

L.,29 ev

Chere may be some question about whether or not these values

sorrespond exactlyto transitions between electronic bands or from an

~slectronic valence band to an exciton band at . However, for the

purposes of the present discussion we need not be concerned with this

detail. The important point is that the APW bands given in Chapter 1

were fit so that the APW value for 2 would agree with experiment. Un-

fortunately, even after fitting the APW bands to agree with E,the APW



edb).

values for E are:
ig

for AgCl

for AgBr

Bs 2
3.84 ev.

= 3.24 ev.
B,

Thus, for both crystals the calculated value of the indirect

band gap is too large by approximately .5 ev.

It turns ry that after considering some of the deviations of

the APW potential used from the actual crystalline potential, the

discrepancy in Ea can be resolved. But before discussing the various

perturbations, we first return to the definitions of the two band gaps.

In the early APW calculations the value of Vp was set so that the dif-

ference of the r and Me states equalled Eg Unfortunately, this

straightforward definition will lead to confusion when we consider

spin-orbit coupling which splits the [ state, so we redefine E, as

Follows*

&amp;
og

energy difference of lowest conduction band and
highest valence band at k = O.

Similarly,

By = energy difference of lowest
&amp; highest valence band state.

conduction band and

Since the original APW bands were calculated on the basis of

fitting E we continue to let E, be fit even after the perturbations

have been applied. This can be done in effect by ignoring the con-

duction band entirely and studying the difference of the highest valence
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band state and the highest valence band state at X = 0. Let us call

this difference A.

Thus for our APW calculations, the quantity A = E, - BE is toc

small for both AgCl and AgBr.

The perturbations that we will study are the effect of the cubic

field inside an APW sphere, gnd relativistic effects - the mass ve-

locity shift and spin-orbit coupling.

Calculations will be made by first-order perturbation theory.

Second order contributions are small (and will be neglected) because

the states of interest are widely separated in energy from any states

of like symmetry.

[II-2. Cubic field perturbation.

Since the APW method assumes a spherically symmetric potential

inside each sphere, any effects of the actual cubic field potential

enter the APW calculation only through the constant potential in the

region between spheres. Thus, the APW cubic field splittings are ne-

cessarily smaller than the correct splittings;and in this section we

will study the effect of the non-spherical cubic field inside spheres.

About an ionic gite the cubic field may be written as

(7) =
4, 4, 4 . -

\ (3.58) 2a0 ( r va _3,s Bulut), terms involving \
a/2 a/2 2 2 r4 higher powers of r

where &amp; = Madelung constant

8.9 = Bohr radius

+ sign about silver sites

- sign about chlorine sites

for r &lt; a/?

(1fi=L)
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2
The constant Madelung potential, = has already been in-

cluded in the APW calculation. We now consider the second and higher

Ferms.

The cubic field will affect d functions(only through the second

term in III-1) but leave p like functions unchanged. Therefore, the

[. state (p like) will not be affected by the cubic field, but at the

point Lg (containing a large amount of d in the wave function) the

cubic field will shift our APW bands. Thus, we must consider only the

4,4, 4
y ao I Y4 _3 5 XX +y "+2 .

term V = (2)(3-58) (379) (572) X &gt; +2 =) and its effect on the

d like portion of the wave function at Z4 and Lj. |

-&gt;
For a given point k in the Brillouin zone we have n orthogonal

i (1) — (n) i

Functions ¢ (r), ... 6: (7) (n = degeneracy of the band) which are

eigenfunctions of the unperturbed APW Hamiltonian, Hg. These functions

have the form

(1) |(TF) = ===

&gt; Na(®)

r |, max ( y= u, (z)
K*R¢ i cc Od

) c,”’ (k)Tm)Y (6.,4) within
=o 5 21 Use Reo) LE chlorine

=0 m=-4
spheres

L

maxyg
~&gt; — U (r )

HEY (1)2A Ls''s Csa s Ss)" (k)TRY (6 ,¢6 ) within
im Ues Ro) Lm ss silver

/=0 m=-/4
spheres

(IIT
¢

or

plane wave outside spheres
\

where
ly

R, = chlorine ionic site

nt. 4

Rg = silver ionic site

= =
- =&gt; = .
r =r-R,r =r -R,

Cc Cc S S

- -

e = |Z)x=| 7Cc C S S
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(6, ¢) are spherical angles about center R,
. -3

(6 , ¢) are spherical angles about center PR

(1) = (1) 2 :

Com (k) and Sim (k) are the coefficients of chlorine and
silver respectively for the spherical
harmonies in the ith function tabulated

ir Appendix Two.

uy, (xr)

Arm = chlorine radial wave function for a given AL value

Ug (Rs)
| = chlorine radial wave function for a given L value

se evaluated at the chlorine sphere radius.

UALR silver radial wave function

r
3

for a given L value

u, (R_)

As 58 = silver radial wave fimetion for a eiven { value
SS evaluated at the silver sphere radius

AK) is a normalization constant and is independent of .

Je will also need the quantities

4 Rse

NC FCI EE FEAL
Q(X) -

72 (R_)
(111-3)

HK i

= 1 Ei =| 2 [To (r )a
1, (8) = )

2(R_)
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vhich are the amounts of charge (normalized to unity) associated with

a particular £ value within the chlorine and silver spheres respectively

Note that the q,8 are independent of i.

The above notation is written for AgCl. For AgBr, simply replace

the letter € by the letter B everywhere.

The first order energy shift due to the cubic field perturbation

for the La state is given by

R
Ss

BK) = J 0 Ev (Fe CALA ( ITI-U4)

where we must integrate over the silver sphere, and

the integral is independent of i

vir) = 7q(r))Vv(e 0) (111-5)

rr

n(x) = (3.58) 532 ( F&amp;)*Wile2

=r v(e,_ @) = 1-5 [sin®g_cos®g_ +sin*g_sin®e_cos®e_]

then after substituting equations III-2, III-3, and III-5 into III-A

we obtain



x

LN

-&gt; dos 2 &lt;

AE(k) = 5 bh. Don) 0,0) si) (1) ¥p(0,50,) Jatt
) [sf 12 m=-2 Mee?

M==2
R

ss,
_ Uo (rinlr ddr,

( ITTF

=

)
bh

R

N88

us(rar
J

and finally

AE) = gq 1 23s) (0))2 - 28(r st) (1)?

 a
m=-=2

3.58 ag Te yt
X : al? &lt; (575 ). .

ere (1) t of 51 (©)R S21 (k) = Real par -

4

Tsr 4 4
5). = average value of ( 75

&lt; (gz) &gt; : 75

[pe :
—— }dr

(IIT)

1nd within silver sphere

Nes .

| U(r Jar
0

After substituting the values of Up (given in Appendix One), the

values of the §! 's (given in Appendix Two), and performing the radial

.ntegrations we obtain the cubic field shifts given in Teble III-1.
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Table III-1

A
Td

AC]

,00576

yr

OGEFT

L

E

at La

Note that the additional cubic field within the APW spheres has

the effect of raising the Ls state, or, equivalently, increasing

A = E, - Eig The effect is smaller in AgBr because the lattice

~onstant is larger (i.e., the strength of the cubic field is smaller

in AgBr).

[II-3. Mass-velocity perturbation.

The mass-velocity perturbation may be approximated by a

spherically symmetric operator about each site in the crystal. Since

the electron's speed is largest for core states and smallest far from

lonic sites, we ignore the mass-velocity effect for the plane waves

between APW spheres, and restrict ourselves to calculating the first

order correction to a given energy level by considering only the por-

tion of the wave function within spheres.

Because the mass-velocity perturbation, V', is spherically sym-

metric about a given site, when the integral of V' between the APW

functions (given in III-2) is calculated all cross product terms of

different£and m values vanish (because of the orthogonality of the

spherical harmonics) and one finally obtains

— L max=12

a g 9 = ) (a, (vy, + 6, @vp)
2=0

(111-6)

Jhere the v's are the ionic mass-velocity parameters defined by
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/ Fi

f-

.

a’ uy

Bsc o

[ G(r )V (r dar,

[
55

 92 (x Jar,

R

[* 2 1

A U rv (rar

R

A 58 Up (rar
J

(111-9)

We must now determine the mass-velocity parameters given in

equations III-9. For a first estimate _—— use the free-ion para-

meter since the radial wave functions within APW spheres for the free

lons and the crystal are substantially the same, especially near the

nucleus where the mass-velocity effect is largest.

For the free ions, Herman and Skillman calculated the mass-

velocity LiTh by first order perturbation theory, averaging the

mass-velocity operator Ve- ?(E - V)2 over the free-ion wave function.

However, a more accurate calculation has been performed by Waber who

solved the Dirac equation for the energies of the two possible J

values of a given electron. By taking the appropriate weighted average

of Waber's two eigenvalues, one obtains the energy for an electron

with all relativistic effects included with the exception of spin-

orbit coupling.

[n Table ITII-2 below we compare the Herman-Skillman and Waber

calculations for CL (3p), Br (ipj, and Agta) ionic eigenvalues.



 Lu8.

Table III-2

H-S (non-

relativistic)
H-S(including Waber(rel) Waber - H-S

mass--vel.) (mass~-vel.)

- 19794587 - .19064LO21 (3p) - ,19094587

ar (4p) ~- .18183391 212823291 - 1807204 +.00104187

\g ‘4q)  -1.5682048 -1.6152048  -1.5082592 +.0599456

‘Note: the Herman-Skillman mass-velocity energy was found by

interpolation from their tables which list only even

Z energies).

Waber's eigenvalues are higher than those of Herman-Skillman for

every case shown. This may be explained by the fact that the mass-

velocity operator in reality produces two effects for a valence

alectron:

A

ny

It lowers the eigenvalue because the mass-velocity operator

is always negative.

It raises the eigenvalue because the core electrons are

drawn closer to the nucleus, producing a stronger inner

shielding of the nucleus.

The Herman-Skillman calculation ignores the second effect which, as Weber's

calculation indicates, is actually greater in magnitude than the

£1 rst.

it is interesting to note that Waber's eigenvalues are very
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close to the Herman-Skillman non-relativistic energies. Therefore,

in our perturbation calculation, we may approximate the mass-velocity

parameter (to be substituted into equation III-8) by the difference

of the Waber and Herman-Skillman (non-relativistic) levels given in

~olumn four of Table III-2. Thus.

CJL ol or

»

V_ ~
n- , 00030

( 111-10 )
“or

For

Bl ot V.p pu
, 00104

— .05995Ag (4d) Vo =

After substituting the mass-velocity parameter (equation III-10)

and the appropriate q,'s into equation III-8, we obtain the shifts in

he bands at LI and La. The results are given in Table 1II-3.

Table III-3

Mass-velocity Shifts

Ae CL

\e.
L

A

Mem
0002

00QG

{ik

, 0399

C0Wp

III-4. Spin-orbit coupling.

In this section we will calculate spin-orbit effects at our

main points of interest, namely Ms and Las at the top of the valence

band. Since the spin-orbit parameters for the mixture of ionic states

that we are concerned with (i.e. C1 (3p), Br (4p), Ag” (4a) and Ag"(5p)

all are very small compared to the crystal field splitting (at Ms

and Ls) , we may expect that a perturbation treatment of spin-orbit
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coupling will be valid.

To compute spin-orbit energies, we must add spin to our original

1),

spin independent functions (o} ) (DD, ol) (3) given in equation

[(II-2.

WL EY)

() —- — - — —

YR (r) = oH (Da, YE 3) = 2) Da, LPR = ol (Da
k ¥ k k k

(111-

PIE 2 oP Be,
k k

yD - oP De
: #2

‘a and 3 are the usual spinors, i.e. @ = (4) B = (9)

hese 2n functions form a basis for a 2n dimensional representa-

—

;ion of the double group at the point k. In general, this 2n dimen-

sional representation will be reducible and may be decomposed into a

sum of irreducible representations of the double group. In Appendix Four

ve ojve a brief discussion of the irreducible representations of

the double group for the valence bands in AgCl and AgBr. A schematic

jrawing of these bands with spin included is shown in figure Ak-1.

I'he spin-orbit operator is

where

aidud

-&gt;  -

i =%5()g 0

¢

-

J EY 0 +]o +voy 2,

4 4
ay

(111-12)

a = fine structure

constant

(0, and £_ are the usual

raising and lowering operators)
I -J,
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When we calculate matrix elements of the spin-orbit operator

(1) 2
between our 2n functions 4, (r) (equation III-1l1) we first note

k

that all diagonal elements vanish (i.e. (E,) 11 = 0). The reason

. -— .

for this is that the wave functionsASD) (3) are simple products of

k

2 Bloch orbital function times a spinor. Consequently, the matrix

element

(1) 2 (1) 2

(Ho) sg = “¥, (x) | Boo | Fo (r) &gt;

(1) — (1) —

) [&lt;e ()§ (011, 05, '(r) &gt;&lt; slo,ds.&gt;
in | Xk !

 =X. YZ

&lt;

where

{2 i=1, =
B 1 = n+l

Dv

Ls a sum of three terms, each of which factors into a product of the

natrix element of a component of the orbital angular momentum between

Bloch functions (modified only by a radial operator), and a matrix

element of the same component of the spin angular mcmentum between spinors

Since the crystal Hamiltonian is invariant under inversion, we have

i), = i), = i), = - =

(1) (3) = {1 = of; JD. Using the fact that 1, = (-ir x v
k -k k ¢

the matrix element is:

Soa HEE 18 @&gt; - [oD B1010 Day
J k x J Xk

» *_,

[6 (§(r)1, de. (Rav
-k =k

» ¥

TO m,1080 Dav
K KK
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It0s) (52,10 Gav

EO (1) *

J Efy gfe (0)

But this matrix element must be real; hence it is zero.

The fact that the first order matrix elements vanish has im-

portant consequences as far as the spin-orbit bands are concerned.

Specifically, a band that is non degenerate without spin will be shift

ed only in second order by an amount proportional to \2/ AE where A is

of the order of the spin orbit parameters, and AE the difference in

energy of a neighboring band of similar symmetry (under the double

group). Thus for the I4 band at the top of the valence band (labeled

Zs in the double group), the shift is of order A2/AE which is defi-

nitely negligible. Consequently, we must calculate only the splittings

at lM . and La since these states are degenerate without spin.

The non-diagonal matrix elements of the spin-orbit operator are:

ror #

rs _ (1) 2 32

oy = &lt;H @| ne) @ &gt;

LL 21) 2 A) 2

4m 2m (c) = 1

L. ). ) joi (KY? 9 (8 at 9 10m
n,] m=-4 m'=-{ Am

T1T-13)

L 4
(1) (2 509)

s, \*/ (x) 539% (k) (a) &gt; at

 ) ini oo@el@A0
4.5 0, aE eh

be
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h L Ld &lt; 7-0where mot" - Yoo] £ Ym, &gt;

R
SC

(&lt;a [ese es,
i O

=
. Ue(r lar,

R

(s) _ | ss
nd. LJ Us(r,)§ (r dr

2 BD

Rss
/ g(r I(r ar

Note that the summation on n,s in equation III-13 must be in-

cluded if there is any appreciable mixing of core states in our

Jalence band wave functions

Splitting at | 15

As figure Ak-1 indicates, the I15 state 1s split into a

l (four fold degenerate) and a[lg (doubly degenerate) state, the Mh

level lies highest. Since [5 is predominantly p-like (mostly Cl (3p)

or Br (4p) with a small amount of Agt (5D) , the splitting resembles

the free ion Ig - Ig splitting in that the fourfold degenerate Ig ionic

level lies above the doubly degenerate Jj 2 ionic level.

The matrix elements (III-13) at [1,- are:



Glia

Ew) (5 y [o*(1) (2) :ce = ) Im “Im' c,

so" 1] en Be | 2 9. Cp

—3 -&gt; i
(Lo)

1m,lm"
at Ms

 RE
 Js?m=-1 m'=-1 1m

(s)
Ys Cop =i3 | §A- 9) 13,1m

woah

at
A
=

After substituting the coefficients given in Appendix Two, we ob-

tain the spin-orbit matrix:

d
SC

~~

J

J

D

0 0 0

n.d 0 v y

GO 0

0 OU = 0

OO =~, -d 0

0 0 0

1

0

0

D

0

aL Ms.

(TII-14)

shere A = NI + a, 0%

38y rearranging rows and columns, the secular determinant factors:

det |H_ ~ ell=
SO

-1A A 0 0

iN ig -iAn O oO

A +12 ge O \J

OO OO O - -1 2

0 0 ik -

3) 0 0 r 1 4h

0

OD

J

J wu

CA
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with roots €
A

{ -O% occuring 4 times (111-15)
occuring 2 times

Ae approximate the one electron spin-orbit parametersby their

free ion values. Thus, substituting

(c) _ .0030
CL (%): Cp

- (B) _ 0122

Br (4p) : Clip

Ag (8) 010
(5p): bas 0105

from Waber's | (111-16)

relativistic
solutions

from Atomic Energy levels.

into III-15 we find that the [',5 level is split into the two levels:

te, «=-2€ where

027 AgCl

0110 AgBr
(111-16 )

Splitting at Lg

The La state will be split into a (doubly degererate) Ls

state and singly degenerate Lo and Ls’ states, as shown in figure

N
A4-1. The Le" and Ls states are degenerate with each other because

of time reversal symmetry; therefore Ls will be split into only two

levels by the spin-orbit interaction.

The wave function at La is composed mostly of Cl (3p) or Br (4p)

Wr
Atomic Energy Levels, Vol. III, circular 467, U.S. Dept. of Commerce.
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and Ag (5d) ionic-like function. After using equation III-13 to deter-

mine the matrix elements, we obtain the spin-orbit matrix

H = A

50 Af5

J -

0 “2% G

AD" 0

v ow

Pw 0

E)
_

0

at, L&lt;

(111-17)
am

Jhe re
w = ot n/h and

(a lo -1¢°%p (K) pg tosths’

\ atte - (K))posta

for AgCl

for AgBr

(111-18)

The constant K is defined by

*(1) (2)

(202) | DR 4 (s5Vs8) ee) (111-15)
= {3 { at LaK

L] 2|

for either crystal. The eigenvalues of the spin-orbit matrix at Ls are

E = +3.

[t is interesting to note that the form of the splitting at Lj

ls quite different from that at lus. First of all, at Ls the indi-

vidual contributions of the two ions are of opposite sign, which will

tend to reduce the size of the actual band splittings. Secondly, the
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angular dependence of the d portion of the wave function in the crystal

will be distorted from that of the free ion by the cubic field. For this

reason the constant K appears in equation III-18, and is then a mea-

sure of the cubic field strength in the crystal. Substituting the

values of the 53) (given in Appendix Two) in equation III-19, we find

hat

(K) pcr = YI

'K) AocRr -

c
(ITI-20)

shich agrees with our previous reasoning, since the lattice spacing

for AgBr is larger than that of AgCl (i.e., the cubic field strength

is smaller).

Because our four spin-dependent functions transform as a basis

For a reducible representation of the double grcup at Ls, the preceding

analysis has only determined the energy splitting and gives no infor-

mation about the symmetry labels of the split levels. In order to

jetermine whether the Le or ta and Ls" levels is highest, we must

apply projection operators to the eigenfunctions of the spin-orbit

matrix (equation ITII-17).

Details about the use of projection operators in this case are

given in Appendix Five. There it 1s shown that the vector

rl.
=

/ 8/2

b '

-3/2 wk

\ buw*

hice b [2 REE
i nfl

iad = ee

(111-21)
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is an eigenvector of the spin-orbit matrix (III-17) with symmetry

Lo" and eigenvalue € = + A. Consequently the Ls” state also has energy

= + A and the Le’ state is associated with the level € = - Xk

Using the free ion spin orbit parameters obtained from Waber's

salculation (for Ag (4d) ( = .00935) we obtain

( -.0032 AgCl

Y

| +,0029 AgBrx

or equivalently

Table III-4

Lapr

AgCL -.00%2

AgBr .0029

- 0032

a

C02

+.0032

or
Mi ae

«or

Thus, in AgCl the Le state lies highest, in AgBr the Ly’ and

= states are highest.

[TT-5. Summary of Perturbationsand final Results.

The results of the three perturbations are summarized in tables

[II-5 and III-6 for AgCl and AgBr respectively.

Table III-5 - AgCl

APW state

Cg

1

PE

~ubic field

058

mass vel.

 0002

JO3CJ

[,.
y

spin orbit

Me™: .0027

Ve:-.0054

Lt L003

Ce -.003%2
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Table III-6 AgBr

APW state

[}
Lo

~ubic field mass~-vel.

4

spin-orbit

[l 8 J 0110

(es: -.0220

Juu5? Ly I=

i”

, 0026

- , 0026

By referring to Tebles III-5and III-6 we see that for both

crystals the La state (using single group notation) is the highest

point in the valence band after all perturbations have been applied

Schematic drawings (not to scale) of the perturbation effects for the

s and Lg states are shown in figures III-1 and III-2 for AgCl and

AgBr respectively.

As we mentioned previously, the quantity A will be used to

compare our results with experiment. From Tables III-5 and III-A we

"1nde

AgCl

ait DL

(8),

1.220 ev

1.049 eV

(AQ) Ls perturbation

1.8449 ev

1. 546 ev

A experimental = E ~E.
g 1g

4 350 ev.

1.61 ev.

[n other words, after fitting our bands gap, E, to the
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Figure III-1

Perturbation Effects in AgCl

APW

STATE

CUBIC FIELD MASS-

LNSIDE SPHERES VELOCITY

SPIN-

ORBIT

I, -

La a

-

A=Lg-Tg = 1361

\ = La-MMs

= ,0901

Tl =

3

1S

]

1 -

3

Figure III-2

APW

STATE

Perturbation Effects in AgBr

CUBIC FIELD MASS-

[INSIDE SPHERES VELOCITY

SPIN-

ORBIT

P

lL +43

»

«8

A= Lg - [1s A=Ld =ls = 0987

—- 0.775

1 =

, 8

1
=
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experimental values we obtain the indirect gap E = E, - an

(E; ) calc. (E. )
ig’ experimental

Ag 1 3.29 ev. 3.25 ev.

AgBr 2.95 ev. 2.68 ev.

At this point it should be mentioned that the values for Ra

given above are threshold energies found from optical absorption

measurements and really do not correspond to transitions between

alectron states in te crystal, but transitions invclving exciton for-

mation. To determine Eig for electronic transitions from the valence

sand to the conduction band one must take into account the binding

anergy of the exciton. However, not only is the binding energy of

the exciton known only approximately, but, in addition, surface ef-

fects may further distort the exciton levels .t© Thus, because we can

only obtain crude approximations for the exciton binding energies,

she true value of Pr must be considerec somewhat uncertain. A reasonai’=

estimate of the exciton binding energy is a few tenths of an elec-

tron volt; consequently, the corrected sizes of the indirect band

gaps are: Eig 3.4 ev in AgCl and EF 2.9 ev. in AgBr.

We mav conclude that the APW bands calculated after varying one

raraneter, Vg, certainly are in fairly good agreement with experimental

Pacts. Moreover, even though the effects of some of the major per-

turbations have been calculated only approximately, at least the
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correction terms tend to decrease the size of discrepancies between

the APW calculation and experimental results. Because of the un-

certainty in the true value of the indirect band gap, a precise

comparison of the difference between the calculations and experi-

ments is impossible, but the discrepancies are only of the order of

one or two tenths of an electron volt (i.e. the error in the calcula-

tion of the indirect band gep is 5% of the size of the gap).



Appendix One - Numerical Details of APW Calculations

wibe edge, a = 10.46 atomic units

Madelung potential, Vy = r 2a = t hg where a = 1.747558

a/p a

Vii. = t  0.668282217

sphere radii are (Rs) pz = 2.60 a.u., (Rs)

ionicities are: AE : +1; Cc,

Jo = «=.579357

TABLE Al-1

Numerical potential used to obtain energy bands for silver-chloride.

Potential used is tabular value - Vanift , where Vgpipe = Vy - Vo:

For chlorine Vins on * 1.088925, for silver Voniet = 1.247639

0012266

0024533
0036799
0049065
0061332
0073598

0085864
0098131
0110397

0122663
0134930
0147196
0159462
0171729

0183995
0196261
0208528
0220794

0233060
0245327
0269858
0294392
0318925

Silver

Potential

76221.36230
37901.89258
25127.27856
18739.46582
14906.69385
12351.62756
10526 .80750

9158.50818
809k .61035
7243 .84009
5548. 09686
5968.63867
5478.63605
5058.93311
4695.46661
L377.69415
4097.54822
3848.75784
3626.36865
3426.41632
3081.58112
2794 .85T45
2552.82355

.0017216

0034432
0051648
0068864
. 0086080

.0103%296

.0120512

,0137728
 0154 94k
0172160
.0189376
. 0206591

0223807
.0241023
,0258239
0275455
,02926T1
,0309887
,0327103
.0344319
0378751
.0413183
LOL 7615

Chlorine

Potential

19660.72876
9785. 44580
6493,29266
L846.98915
3859.03900
3200.3185k
2729. T4609

2376.78986
2102.25638
1882.62376
1702.93%3207

1553 .2040k
1426.53362
1317.98093
1223,92776
1141.65770
1069.09547
1004. 62495
ok6.97129
895.1117
805.61683%
731.14745
668 .234.205
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TABLE Al-1 (continued)

0343457
,0367990
.0392523%

0417055
0441588
0466121
, 0490653

.0515186
0559719

0564251
0588784
0613317
0637849
0662382
0686916
0711447
0735980
0785045
0834111
0883176
0932241
,0981307
1030372

1079437
1128503
1177568
1226633

1275699
 1324 76k
1373829
1422895
1471960

11521025

1570091

1619156
1668221

1717287
1815417
1913548
2011679
2109809
2207940
2306071
ohok201

Silver

Potential

2345.89508
2167 .04453
2011.00258
1873.73729
1752.11154
1643.64845
1546.36067
1458.63741
1379.16191
1306.84669
1240.78227
1180.20766
1124.47839
1073.04678
1025. 44504

981.27003
9k0.17476
366 .04665
801.06423
Th3.68162
692.68025
6L4T7.0887T
606.12086

569.13486
535.60062
505.07705

477.19402
451.64007
428.15045
4+06.49860
386.48938
367.9546k
350.74837
334. 74313
319.82697
305.9011k4
292.87850
269.23887
2U8.37656
229.86%10
213.34915
198.5453
185.22248
173%.17849

,0L820L7
0516479
0550910

0585342
L0619TTh
0654206
, 0688638

0723070

0757502

0791934
0826366
.0860798
.0895230
.0929661
, 0964093

,0998525
1032957
,1101821

1170685
1239549
1308412

1377276
Akh6140

1515004
1583868
1652731
1721595

1790459
1859323
1928187
.1997050

2065914
.2134778
2203642
2272506
.2341370
210233
2548961
,2685689
.2823416
2961144
,3098871
.3236599
.33Th327

Chlorine

Potential

61k 103k3
567 .83854
527.17647
4o1.3Th37
459.62084
431.27509
L05.82L49
382.85398
362.0209
343, 05443
325. 711k2

509.79902

295.15143
281.62753
269.10643
257.48383
2L46.67001
227.16L21
210.07030

194. 98497
181.589L5
169.62877
158.89489
149.21 728
140.45524
132.491k1
125.22519

118.57200
112.46151
106.83187
101.63052

96.81260
92.33908
88.17616
8k. 29381
80.66610

77.27049
71.09752

65.63782
60.78361
56. 44670
52.5549
49.04890
45.87858
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TABLE Al-1 (continued)

2502332

2600463
.2698593
2796724
2894854
.2992985
3091116
3189247
3287377
3385508
3483636
3581769
3679900
3876161
Lorako2
L426868k

Llelighs
L661206

4857468
50535729
5249990
5h 5252
5642513
583877Tk

.603506
623197
6427558
6623820
6820081

7016342
7212604
7408865
7605126
7997649

8390172
8782694
9175217

9567739
9960262

1.0352785
1. 0745307

L.1137830
1.153035%

Silver

Potential

162.25272
152.30886
143.23164
134.92279
127.29818
120.28530
113.82079
107.84921
102.32167
97.19559

92. 432uk
87.99859
83.86405
6.38983
69.82642
64. 02853
58.87959
54 .28586
50.17156
L6. 47497
43.14483
40.13803
37.41732
5k. 99k
32.70666
30.66144
28.79105
27.07522

25.49625
2.03903
22.69058
21.43989
20.27743
18.18641

16.36429
14.77029
13.37152

12.14109
11.05633
10.09807
9.24980
8.49735
7.82847
7.23257

.3512054
3649782
3787510
5925257
4062965
4200692
4338420
Ll 76148

4613875
4751603
14889330
5027058
5164786
 ShLo241
5715696
5991151
6266607
, 6542062

6817517
. 7092972

. 7368428

. 7643883

7919338
8194793
8470249
.B87U45T0L
.9021159
, 9296614

. 9572069

9847525
1.0122980
1.0398435
1.0673890
1.1224801

1.1775711

1.2326622
1.2877532
1.3428443
1.3979353

1.4530264
1.508117k
1.5632085
1..6182995

Chlorine

Potential

h3,00202
40.38354L
37.99268
35.80338
33 .79306
31.9422
30.23386
28.65329
27.18762
25.82556
2k. 55715
23.3757TL
22.26756
20.26105
18.49180
16.92400
15.52915

14 .2843L
13.17073

12.17265
11.27655
10.47059
9. Thlk12
9.0875k
8.49222
7.950L6
7.45551
7.00155

6.58357
6.19735
5.83934
5.50651
5.19632

 bh .63556
h.1L31lh
3.70856
3.32358
2.98155
2.67698
2.4o52k
2.16237
1.94496
1.75004



 ov

 0 =

TABLE Al-1 (continued)

1.2315398
1.2707921

1.3100443
1.3492966
1.3885489
1.4278011
1.4670534
L.5063056
L.54555T79
L.6240624

1.T7025670
1.7810715
1.8595760
1.9380805
2.0165851
2.0950896
2.1735941
2.2520986
2.3306032
2.4091077
2. 4876122

2.5661168
2.64L6213
2, 7231258

2.8016303
2.8801349
2.9586394
2.0371439

Silver

Potential

6.70046
6.22421

5.79693
5.41267
5.06624
lk. 75313
ly LL 69U6
4.21182

3.97723

3.56758
3.22318
2.93102
2.68105
2.46545
2.27804
2.11428

1.97005

1.84213
1.72804
1.66037
1.60797
1.55878
1.51250

1.46890
L.U27T7h
1.38882
1.35197
1.31702

1.7286816
1.7835726
1.8386637
1.8937547
1.9488458
2.0039368
2.0590279
2.1141189
2.1692100
2.2793921

2.38957h2
2.997562
2.609938k
2.7201204
2.8303025
2.9404846
3.,0506667

Chlorine

Potential

1.41766
1.27595
1.14816

1.03276
0.92838
0.83384
0.74809
0.67020
0.59935
0.47604
0.37320

0.28701
0.21447
0.15317
0.10120

0.05704
0.01946
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TABLE Al-2

Starting Values for Silver Potential

LO

Ll

L2

Ry = 0.0012266%

P, (Ry)

0.1088297LL4E-02
0.1419550T0E~-05
0.177585952E-08
0.219954081E-11
0.271363884E-14
0.33414 0100E-1T
0.410985142E-20
0.505156033E-23
0.620621569E-26
0.762236 T0TE-29
0.935949534E-32
0.114905238E-34
0.141048819E-37

Ro = 0.00245%25

P, (Ra)

0.191204511E-02
0.535101919E-05
0.136673540E-0T
0.34191873TE-10
0.84856432TE-13
0.209769309E-15
0.517412595E-18
0.12744882TE-20
0.313646004E-23
0.771380305E-26
0.189626046E-28
0.465991966E-31
0.114483923E-33

Starting Values for Chlorine Potential

LO

11

| 2

R, = 0.00172158

P, (Ry)

0.16222135TE-02
0.287813 716E-05
0.500395164E-08
0.865691431E-11
0.1494 72073E-13
0.2578294 T2E-16
0.444491304E-19
0.T76602541TE-22
0.131984435E-24
0.227369450E-27
0.391643129E-30
0.674544 6T70E-33
0.1161T72016E-35

Ro = 0.00344319

P, (Ro)

0.30511 7846E-02
0.111776300E-0k4
0.3925T77983E-07
0.136499569E-09
0.472736463E-12
0.163401678E-14
0.564171329E-17
0.194654 733E-19
0.671303995E-22
0.231437661E-24
0.797714 74OE-27
0.27490674TE-29
0.947250791E-32
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TABLE Al-3

5ilver Chloride Energy Band States and Charge Densities

Here we list the values of c(K) calculated by the APW method (k

is given in units of To). Also, for points of major interest in the
a

valence band the "charge density" within each sphere and between spheres

is given. This "charge density" within a given sphere is the total

amount of charge in that sphere which can be associated with a particular

AZ value. The charge between spheres is labeled 'plane wave". Finally,

only the dominant contributions to the charge density are tabulated below

aven though the calculations were performed for ¢ = 0,... . 12

LOWEST CONDUCTION BAND

0,0,0

0,k4,0

3,6,0

3,8,0

2,2,0

4. bh, 0

5,6,0

2,2,2

ell

+ i Symmetry

Ay

A

Aq

£1

IXY

21

K+

A

La

APW Energy (in Rydbergs)

, 1569

, 2200

, 5029

5199

. 3005

.2599

14063

, 3723

2791

1088



a
i

9

TABLE Al-3 (continued)

SECOND LOWEST CONDUCTION BAND

LKR

0,0,0

0,4%,0

0,8,0

6,6,0

4,k,l

Symmetry

[17
 25

As!

K =

{

APW Energy (in Rydbergs)

8351

 6871

6625

5864

, 5202
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TABLE Al-3 (continued)

"y 1" bands

hk Symmetry APW Energy

0,0,0 Le

0, 2 ’ 0 DN;

0,4 0 ax ,2116

0.6.0  HN _.2U66

2,8,0 Xi

0,2,0 As

-. 3042

-,2192

0,4,0 Ns

0,6,0 Ds

0,8,0 Xx

2,2,0 Ta

-.2255

- 2422

2521

-.2360

+,0,0 2a -.230L

5,6,0 K- -.2419

2,2,0 Xr. -.2195

+,4,0 2,
-

-  CZ 3

6,6,0 K.

2,2,0 2a

LW, 0 Ta

- 9 ool

-. 1779

-. 1271

Plane Wave Charge In Charge In

Charge Chlorine Sphere Silver Sphere

0A3 .897, 42 = 1 , 02%, K= 1

019, 2 22 0

482,2=1
, 003, L= 2

» A

048, £ = 0)

.003, ¢= 1

 328, ¢= 2

 4

119

024, p= 1
 001, ¢= 2

953, A= 2
3

-

818, ¢=1
.018, £L£= 1
085, ¢= 2J oe

- .

LE

+ bg 858, ¢=1 027, 2= 1

188
009, ¢= 0

A415,=1
007, = 2

049, ,=0
A429, p= 2

”~

006, ¢= 0

Sik, ¢= 1
,004, o= 2

.029, ¢= 0

.010, = 1

349, o= 2

i BdHe

\J 690, £=1

L022, f= 1

,209, f= 2 J

GH » LE. C=1
,025, /= 1
 L405, p= 2

 Ny "YA| 521,=1  BLL  ys f=C
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TABLE Al-3 (continued)

ol &amp; Symmetry APW Energy

6,6,0 K4

4,8,0 Wy

] 17%

-.1547

Ww .. 26404

2,2,2 A; -. 29591

Plane Wave Charge In Charge In

Charge Chlorine Sphere Silver Sphere

YA
671, /=1
 006, ¢=2

015, /=1

039,=2

-.1794

+ ,Lr ly L. -. 2668

-.1281 ,019

334,=1

Bl, r= 1

 042, ,=0

 560, g= 2

 666, /= 2

d bands

0,0,0 [1s

0,2,0 AN;

O,4,0 Aq

0,6,0

0,8,0

0,2,0

o,4,0

0,6,0 Caz

0,8,0

0,0,0

0,2,0

0,k4,0

0,6.,0 Al

-.3263

-+.3550

~~BCS

-.3689

-.3200

-.3250

-.322l

-.3198

-.%186

-.5270

-.3283

-.332%

-.33%361

 021)

1
»  83kr

136

02&gt;

002

OhE

(9H:

019, f= 2

,336, f= 1

C764  = 1

,0143. A= 2

.016, L= 2

007, X= 2

006, f= 2

952, (= 2

L012, /= O

.002, f= 1

.563, ¢ = 2

LOUG, »=1

956, ¢= 2

.960, /= 2

JOLT, P= 2

.93%6, P= 2
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TABLE Al-3 (continued)

+k

0,8,0

0,2,0

0,4,0

0,6,0

0,8,0

Symmetry APW Energy

Xa =.3375

a

-

-.3271

-.5257

-.3159

-.3086It

2,2,0 21 -.3L84

4,4,0 2 ~.3835

5,6,0 K -.2543%

2,2,0 ’ -.3182

ACl 0 -.3119

5,6,0 ~.31%3

2,2,0 -.323h

-.3116

-.3105

-.3343

dn

¥

2,2,0

65,6,0

 Zz

44,0 -.3452

-.34065,6,0 K

&gt;,2,0 5a

4,0 Ya -.3847

Plane Wave Charge In Charge In

Charge Chlorine Sphere Silver Sphere

G55 .010, ¢= 2 .925, L= 2

"51

.090, /=1

.002, p= 2

.002, = 1

.853, p= 2

.

» j- 2
To 973, /= 2

bd) 367, A=1
027 = 0

488. 42

100 279, = 0
011, /=0
.006, y= 1
 596, z= 2

DR
,003, £= 0

L001, ¢= 1

.003, L= 2

962, 4= 2

UDFad 034, = 1 .915, I= 2

,0%5 , 002A=2  961, £= 2

.970, = 2’ 0z9

3
2192, = 1

 003, ¢= 2

«3357, = 1

.008, ¢= 1

708, ¢7= 2

115 .020, A= 1
526, p= 2

A5E 258, 4=1 obra f= 2
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TABLE Al-3 (continued)

tk Symmetry APW Energy

5,6,0 Ka

4+,8,0 Wy

38.23%

-.3534

 MHid -.3078

Plane Wave Charge In Charge In

Charge Chlorine Sphere Silver Sphere

RE
-™

 Vv = 1

L004, £=1

075,2=2

-.3083

2,2,2 Aq

1 Ii ol

N-,

vo

v wm

[,

de,

Ld

-.34hk27

-.5519

-.3622

-.3185

-.3946

-.3891

-.3137

, 167

,06%

OF,

 L412, /= 1

282, ¢=1

,002, A= 1

OUT, 4= 0

372, ¢= 2

653, 4 = 2

967, ¢= 2



Th

AgBr Calculation

Cube edge, a = 10.926 atomic units

s _ + 2 _ + hoy

Madelung potential, Vy, = - 57, = = F=
= t 654423576

Sphere radii are: (Rs) py = 2.6105 a.u.

(Rs),~ = 2.8525

ionicities are: Ag + a
-

a Br

To= .60465

TABLE Al-L

Numerical potential used to obtain energy bands for silver-bromide.

Potential used is tabular value - Vani Ft? where Vani PE Vy - Vo:

For bromine Vari Pa .0k02300, for silver Vsnift = 1.34907000

0.001226619
0.002453253
0.003679894
N.004906528
0.006133154
0.007359788
0.008586422
0.009813063
0.011039697
0.012266%23
0.013492957
0.014719598
0.015946232
0.017172866
0.018399492
0.019626126
0.020852767
0.022079401
0.023306035
0.024532661
0.026985936
0.029439196

Silver

Potential

76221.2714844
57901.7529297
25127. 2478027
18739.4462891
14906.6660156
12351.5981445
10526.7927246
9158.4963379
809k. 5987549
7243 .,8256226
6548.0795288
5968.6193848
5478.6204834
5058.9168091
4695.4506836
4377.6T76733
+097.5325317
3848. 7419739
3626.3529358
3426.4010315
3081.5674438
2794. 847266

0.001353279
0.002706580
0.0040598Tk
0.005413160
0.006766446
0.008119840
0.0094 73041
0.010826327
0.012179621
0.013532907
0.014886208

0.016239487
0.017592788
0.0189460Tk
0.020299%68
0.021652654
0.023005955

0.0243592U49
0.025712535
0.027065821
0.029772416
0.032478996

Bromine

Potential

51458.8803711
25593.8713379
16971.205566k
12659.39135Th
10072.1009521

8347.1942139
T115.1671753
6191.2527466
5472.7929077
4898.1845093
4428,.2191772
4036.7518005
3705. 6761475
3422.0620728
3176.4215088
2961 .6369934
2772.2655640
2604 .0711670
ol 53, 7120667

2318.5105896
2085.3107605
1891.3712006



TABLE Al-4 (continued)

0.03189246k4
0.034345739
0.036798999
0.039252259
0.041705534
0.04L4158794
0.046612062

0.049065337
0.051518597
0.053971872
0.056425132
0.058878407
0.061331667
0.0637849%5
0.066238210
0.068691470
0.071144730
0.073598005
0.078504533
0.083411068
0.088317603
0.09%224138
0.098130681
0.10303T7201
0.107943736
0.112850279
J.11775681k
0.122663349
0.127569877
0.1324 76412
0.137382947
0.14228475
0.147196017
0.152102545
0.157009087
0.161915623
0.166822158
0.171728693
0.181541756
0.191354819
0.201167889
0.210980959
0.220794030
2.230607100
0.240420163
0.250233233

0.260046303
0.269859366

Silver

Potential

2552.8117676
23) 5,8832703
2167.0331116
2010.9913025

1873.7269135
1752.1028290
L643. 6396179
1546.3517151
1458.6299896
1379.1561584
1306.8414307
1240. TT77557
1180.2032928
L124 47h 720
L073 .0437775
1025. 4428406
981.2686539
940.1729889
866.0449371
801.0629425
 43 .6798782.
692.6789466
647.0874100
6506.1197433
569.1331253
535.5987701
505.074 8lkk
477.1917229
451.6385078
h28.1489754
406.4972382
386.4880676
36T7.9537277
350.Th77188
334. Th29733
319.8269997
305.9013290
292.8784409
269.2388268
248.3766289
229.8634224
213.3494549
198.5481 701
185.2233%200
173.1795063
162.2538338
152.3100491
143 ,2328358

0.035185583
0.037892163
0.040598743
0.043305330
0.046011910
0.048718490
0.051425077
0.054131657
0.056838252
0.059544832
0.062251419
0.064957999
0.067665479
0.070371166
0.073077746
0.0757843%26
0.078490913
0.081197943
0.086610660

0.09202383%5
0.097437002
0.102850169
0.108263329
0.113676496
0.119089663
0.124502838
0.129916005
0.135329165
0.1407k2339
0.146155499
0.151568659
0.156981841
0.162394993
0.167808175
0.17322133%5

0.178634502
0.18404 T7677
0.1894608k4L
0.200287171
0.211113505
0.221939839
0.232766174
0.243592501
0.254418835
0.265245177
0.276071511
0.286897846
0.297724180

Bromine

Potential

1727.6218262
1587.5860748
1466.5140076
1360.8458099
1267.8590851
1185.4371948
1111.9107056
1045.9430542

986.4518738
932.5508575
883.5079498
838.7114868
797. 6473007
759.8796921
725.0369415
692.8004532
662.8954239
635.0838013
58l4.9391479
540.999908k4
502.2084160
LET. 7335472
436.9139366
409.2166367
384. 2070427
361.5272636

340.8795433
322.0150108
30k. 7227592
288.8235130
274 .1633911
260.6103592
248.0500317
236.3829498
225.5222321

215.3918247
205.9247189
197.0619106
180.9469128
166.6930752
154.0190144
142.6975994
13%2.5428543
123.4003258
115.1403875
107.6528263
100.843742h
ol. 63214692
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TABLE Al-4 (continued)

0.279672429
0.289485507
0.299298570
0.309111640
0.318924710
0.32873T7773
0.3%8550851
0.348363914
0.358176984
0.36799005k4
0.387616195
0.407242328
0.426868L61

0.4L46kaol602
0.466120735
0.4857458T5
0.5053 T3001
0.524999142
0.544625267
0.564251415
0.583877549
0.603503682
0.623129822
0.642755955
0.662382089
0.682008237
0.T701634370
9.721260510
0. 740886644

2.T760512777
0.799765050
0.83901733%2
9.878269605
0.917521879
0.9567T74138
0.966026412
L.035278693%
L.0Tk530959
L.113783240
L.153035477
1.192287773
L.231540024
L.270792305
1.31004L4587
1.349296853
L.388549149

Silver

Potential

134 .9241047
127.2996359
120.2867231
113.8220320
107.8502293%
1L02.3225965
97.1962032
92.4329672
87.9991198
83.8645573
76.3902225
59.8267384
54. 0288830
58.8800192
54. 2864919
50.1724153
46.4 760094
43.1%60447
40.1387682
37.4172416
34.9k95497
32.T7063808
30.6612298
28.7909672
2T7.0751970

25.4962490
2k . 0390699

22.6906250
21.439951k4
20.2775328
18.186%356
16.3641756
14.7701148
13.3713899
12.1409519
11.056233%8
10.0980246

9.2498018
8.4973800
7.8285376
7.2327107
5. TOO6694
5.2244602

5.7972141
5.4129696
5.06653%82

0.308550514
0.319376834
0.330203183
0.341029510
0.351855852
0.3628%2186
0.373508506
0.384334855
0.395161182
0.405987523
0.427640185
0.449292853
0.4T70945530
0.492598191
0.514250860
0.535903521

0.557556190
0.579208858
0.600861527
0.622514196
0.644166857
0.665819533
0.68T472194
0.709124871
0.T7307T7532

0.752430201
0.77408287T
0.795735531

0.81738821k
0.839040875
0.882346220
0.925651558
0.968956888
1.012262210

1.055567548
1.098872870
1.142178223
1.185483560
1.228788882
1.272094220
1.315399557

1.358704895
1.402010232
1.445315555
1.488620907

Bromine

Potential

88.9495497
83.7352304
78.9379807
Th. 5134745
70.4234180
66.6346397
63.1182976
59.8491 740
56.8051538
53 . 9666767

48.8390660
bly 3482490
40.3987737
36.9121356
33.8230796
31.0768130
28.6270983
26.4346728
2h h661kh2T

22.6929793
21.0908067
19.6387401
18.3188715
17.1158204
16.0163610
15.0090995
14.0841998
13.2331501

12.4486718
11.72403%20
10.4336432

9.3240875
8.36524LL
7.5340976
6.8105917
6.178084k4
5.6221419
5.1309130
4.6944700
k.3045799
3.9545009
3.6387040
3.3526863
3.0927294
2.8556974
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TABLE Al-4 (continued)

1.427801400
1.467053682
1.506365963
1.545558214
1.624062777
L.T702567324
1.781071872
1.85957640k
1.938080952
2.016585499
2.095090032
2.17359456k4
2.252099127

2.330603629
2.409108192
2.487612754
2.566117257
2.6L44521849
2.723126352
2.801630914
2.880135506
2.958640009
3.03 71L4601
3.,115649104

Silver

Potential

 Lk. 7534295
Lk 4697595
L4.2121184

3.9775616
3 ,.567852k
3,2234192
2.9312140
2.6812400

2.4656413
2.2782515
2.1442354
1.9697405
1.8416888

1.7276102
L.6603654
1.6079673
L.5587752
L.5125036
1.4688998
1.4277398
1.3888235
1.3519725

1.3170265
1.2838416

1.575231582
1.618536904
1.661842242

1.70514 759k
1.791758269
1.87836891k4
1.964979589
2.05159026k4
2.138200939
2.224811614

2.311422259
2.398032933
2. 484643608

2.571254253
2.657864958
2. T4LL 75633

2.831086248
2.917696983
3.004307598
3 .090918303
3.177528977
3,264139622
3.350750357
3.437361002

Bromine

Potential

2.4405118
2.2582954
2.0907371

1.9364346
1.6628587
1.4291870
1.228791k
1.0563051
0.9073308
0.7782427
0.6660390
0.5682079
0.4826654
0.40765u46
0.3417047
0.2835761
0.2322267
0.1867669
0.1464482

0.1106344
0.0787765
0.0504112
0.0251396
0.0026110
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TABLE Al-5

Starting Values for Silver Potential

)

LO

11

0

R, = .001226619

Py (Ry)

0.11336545E-02
0.13999555E-05
0.16957T46E-08
0.20444263E-11
0.246014 92E-14
0.295764 92E-17T
0.35538675E-20
0.42688610E-23
0.51265T19E-26
0.615566T72E-29
0.73905125E-32
0.88723%274E-35
0.10650562E-37

Ro = .002453253

Pg (Ro)

0.21398334E-02
0.544L0691E-05
0.13312540E-07
0.32246228E-10
0.778173T3E-13
0.1874L4398E-15
0.45103516E-18
0.1084589TE-20
0.26069453E-23
0.626L42142E-26

0.15048931E-28
0.3614 TO66E-31
0.86813138E-34

Starting Values for Bromine Potential

L-)

Ll

12

R41 . 001353279

Py (Ry)

0.1241875TE-02
0.16519856E-05
0.21638519E-08
0.28234833E-11
0.36T789075E-14
0.47897289E-17
0.62332861E-20
0.810974L45E-23
0.10549212E-25
2.13720781E-28
0.17844255E-31
0.232053 T6E-34
0.30175614E-3T

Ro .002706580

Po (Rs)

0.24539369E-02
0.69535451E-05
0.19069694E-07
0.51886594E-10
0.14073923E-12
0.381157T73E-15
0.10313664E-17
0.27892264E-20
0.T7540439TE-23
0.203 T9768E-25
0.55070835E-28
0.14879354E-30
0.40197628E-33
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TABLE Al-6

Silver Bromide Energy Band States and Charge Densities

Here we list the values of ¢(k) calculated by the APW method (K

is given in units of 4 ). Also, for points of major interest in the

valence band the "charge density" within each sphere and between spheres

is given. This "charge density" within a given sphere is the total-

amount of charge in that sphere which can be associated with a particular

A value. The charge between spheres is labeled "plane wave". Finally,

only the dominant contributions to the charge density are tabulated below

even though the calculations were performed for £ = o,..., 12.

LOWEST CONDUCTION BAND

0,0,0

0,2,0

0,4,0

0,6,0

0,8,0

2,2,0

It, 4,0

6,6,0

2,2,2

Ilbh

]
c

i Symmetry

A

1

Ay

Ax

Ay

pl

XY

Fa

c,

Nn

L’
ps

APW Energy (in Rydbergs)

2396

 2961

.4000

3708

3552

3380

4o8lL

4323

. 3799

L277
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TABLE Al-6 (continued)

SECOND LOWEST CONDUCTION BAND

»

0,0,0

0,2,0

0,4,0

0,6,0

0,8,0

2,2,0

l,l,0

6,6,0

hol I

Symmetry

on5

Ao

Ao

Ao

yr

(Lc.
-—

wt§

-

{4

Ls,

AW Energy (in Rydbergs)

8366

.T486

, 6663

 6179

6020

 1507

,5699

 60404

,6300
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TABLE Al-6 (continued)

"»" bands

Symmetry APW Energy

9,0,0 [1s -.0782 .077 901, i= 1

0,2,0 Ay

Plane Wave Charge In Charge In

Charge Bromine Sphere Silver Sphere

Olh, 2=1

0,4,0 -. 0995
.

,031,£=0
 534, 2= 1he)

049, £= 0
22h, = 1

0,6,0

0,8,0 2?

0,2,0 Ns

-.1430

-, 2048 i 0271, J=1 Uni,d=2

..0827

I,k4,0 Ea . 0958 1)

 021, 2=1
 857, £= 1 023, £L= 2

0,6,0 aE

0,8,0 =

2,2,0 I

-.1001

-J1247 xl 834, £=1 UAL ¥ L=1

-..11908

+.4.0 I
012,4 =1
LU2, 4 = 2

.058,.4= 1
331, A= 2,Hh2 }

”

J, K, -.1%545 mEEY  558, £=1
.038,£=0
.011,£=1
.259, = 2

2, ~
~ 0  na  531

+h 0 y. iL 30

726,4=1
001,2=2

.028,4=1
135,=2y dan

6,6,0 Ks

2,2,0 Sa

h,4,0 Zo

5,6,0 Ka

4,8,0 W,

-. 1652 1 skh /Z=1
 033, Z= 1
O87,¢= 2J

~ ° 0250

-.0184 N44 397, €=1 OTL, 2= 2

-.0779

-.0182
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TABLE Al-6 (continued)

4k Symmetry APW Energy

af -.1518

2,2,2 lo, - hhh

-3
=~ 0500

44 Ly [4 ..16hLL

- 0007

Plane Wave Charge In Charge In

Charge Bromine Sphere Silver Sphere

vo
-a

J 515, = 1 Abo, 4= 2

d bands

J2,0,0 [La

0,2,0 A,

0,

0,€,\

0,8,.

O,z,u

0,4,u

0,6,0 -

0,8,0 A

2,0,0 |2s

0,2,0

o,k,0

0,6,0

0,8,0 a,

0,2,0 As

or  UJ As

-.2275

-.2L4L83

-.273%50

-.2601

-.2105

-.2263

.. 2240

..2216

 9 2206

-. 2282

-.2294

-.2330

-.2364

..2378

-. 2277

— et

” L-
hd

ro

Ck
- J  J

y Sibeins
&gt;

.02L

, 050

3 LOL

» AS { Le

57

278, £=1
.010,£=0
.619, 4 = 2

719. Z=1 LOHny=1

020,  LL =2 . 952 £L=2

.027, £= 1 .950,.¢= 2

 008, = 2 Johl, f= 2

OG.=2 , 924, A= 2

 012. P= 2 917, /= 2

.001, ./= 1

050, £= 1 892, ¢= 2
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AF

TABLE Al-6 (continued)

bk Symmetry APW Energy

0,6,0 As

0,8,0 X_

2,2,0 &lt;

LW, k,0 I

5,6,0 K;

2,2,0 2a

-.2154

~-.2L30

+,h,0 a -.27T31

5,5 ,0 K. ..SLE8

2,2,0 To

h,h,0 I

6,6,0 Ko

2,2,0 Ta

-.224¢g

 e 2190

-.213%5

-.233%5

4,40 |
403

- Lou

6,6,0 Ke,

2,2,0

b,k,0

6,6,0 Kq

4,8,0 Wa

-.2%36

- 2527

-.2729

-.25%6

-. 2334

A! .. 2068

Plane Wave Charge In Charge In

Charge Bromine Sphere Silver Sphere

7

157 Gi fJ=2

-

|
¥ - ,958, / = 2

by
* J

.011, /= 0

L032,2= 2 L915.4=2

ikeoo .355,.4 = 1

032, £=0

1458,4=2s &amp;

 a i“ 223 4= 1

.008, Z= 0

005,47=1
 645, /= 2

OO 002,4=2 1956, = 4

,965, /= 2.O%5

132, £=1

Look, =2

.006, #= 1

T66,2=2 QC

Ciel

.260,.4 = 1
«001, / = 2

016,=1
.600,=2

2

- 2116

-.2L05



Qj),

TABLE Al-6 (continued)

hk Symmetry APW Energy

2,2,2 A ..2L468

3 -.2199

-.2513ad?

shh Ly ..2872

-

Leb
Nh

- a. 2160

aa -. 2761

Plane Wave Charge In Charge In

Charge Bromine Sphere Silver Sphere

JH“ 001,72 =1 962, = 2

226,74 = 1 .708, = 2Cr
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Appendix Two

Coefficients of the Spherical Harmonics for the Scalar APW Wave Functions

at {iw
SE——

Ag Jl

[Ve+bd

(1)
51-1 = 1S

(1)
S10 = O

(1)
5,7) = -18

1

oh
els) =o

cL) = 10

~1C

(2)
51-1 = -

(2)
S100 =

52) |g

2

cies
cl2)
(2)

bY

Ly

$y

C

(3) (3)
51-1 - C1-1

sty) = ws 2

53) 3)

{

wae

(1)
21-1 = is

(1)
S10 = 0)

1
SL) is

5
RU
g{1) = iB

= -iRB

52) = -

5{2) = 0

2) g

B{2)

oi)
 {2

= B

G

E

52) =o
(3) = 1s

53) _

B23) - 0

83) - 1m

J3)11 = 0

where

S = .69156066

Cc = 1.5125040

where

S = 5.4092276

B = 13.5207L40
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at La

1

sit) - - [8

‘CL

Agr

(1)
50-1 = (1-1) 38

$3) _ 0

s$) - (1+ 15s

si) - 12

(2) |
So.2 = =2io

 (25{2) = (1 +1)s

2 .

542) = -155

(2)
021 = (-1 + i)s

(2)22 = 2 18

5{1) _ tis

NZ
S

5)
$2
sit) = -(1 +1)

(1) -12
Sp2 = &gt;

(1-1)|3s

et) = -(1 +1) 3c

(1) = 0

cid) = (-1 + 1)I/3cC

where

S = .020969772

C = 1.0860413

c{2) = (&lt;1 +1) C

cf) = abc

2) Las i)

p(1)1-1 = -(1 + 1)/3B

BY) - 0

pL) = (-1 + i)\{3B

where

S = 046648408

B = 1.047396
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(2)
o2.2 = -2i8

582) = (1 +1i)s

5{2) = -128

(2)
O21 = (-1 + i)s

(2) :
200 = 2iS

8

(2)
Bi.i = (-1 + 1)B

p{2) = -2|/oB

p{2) = «(1 + 1i)B
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Appendix Three - Operations of the Cubic Group, Op.

'he operations of the cubic group listed here are those defined by

Slater in "Quantum Theory of Molecules and Solids, Volume One".

Ry Vv(x,¥,2) =

Ra V(x,¥,2) =

Ra v(x,¥,2) =

1a V(x,y,2) =

Rs V(x,¥,2) =

Re v(x,¥,2) =

R-7 v(x,y,2) =
Ra ¥(x,y,2) =

Re V(x,y,2) =

Rio V(x,¥,2)
R11 W(X,¥,2)
R12 Vix,y,2)
Ris yX,¥,2)
Rig X,¥,2)
Ris © '%,¥,2)

Rie * 'X,¥,2)

Ri7 v 'X,¥,2)

Rig ' X,¥,2)

Rig X,¥,2)

Rao Y,2)
Rey ¥ %,¥,2°

Rez ¥(%,¥,2
Res V(X,¥52, =

Roa v(x, y,2) =

Wix,y,2z)

VX, -Y,-2)
~X,¥,2)
-X,-Y,2)
525%)
-Y, ZX)

=Ys=2,X)
Ys -2%,~-X)
'2,%,Y)
-z,-X,Y)
‘2,-%X,-y)
ZX, -Y)
=X,2Z,=Y)
=X,-2Z,Y)
~Z,-Y,X)
Z,-¥,-X)

Hy, -x,-2)
YX, -2)
X52,¥)
X,=Z,-Y)
'Z,¥,%)
~Z,Y¥,-X)

y,x,2)
v(=¥,-x,2)

Ros ¥(x,¥,2) = y(-x,-y,-2)

Rog ¥(x,y,2) = (-X,¥,2)
Ro? v(x,¥,2) = (x,-¥,-2)

Rog (x,y,z) = "%,¥, -2)
Rog 'X,¥,2) = ~Ys=Z,~X)

Rao (x,y,z) = ¥s-2Z,X)

Rai iX,¥,2) = Yr2Z5X)

Raz X,¥,2) Re ~Y2Z5X)
Ras X,¥,2) = m2, X,Y,
Ras X,¥,2) = Z,X,-Y)
Ras X,¥,z) = ~ZyX,Y)
Rae X,¥,2) = Zy-X,Y)

Rav X,¥,2) = Xy =Z,%

Ras GY,2) = K52,-Y)
Rag X,¥,2) = Z,Y, =X)
R40 X,¥,2) = ~Z,¥,X)

Rar X,¥,2) = ~Yr%,2)
Rsz X,¥,2) = Ys -X%,2)

Res X,¥,2) =X, =Z,-Y)
Raq XY,2) C ~XyZ,Y)

Rss \X,Y,2) = (-2,-¥,-X%)
R46 ¥(x,y,2) = (2,-Y,%)
Rav v(x,¥,2) = y(-y,-x,-2)
Res V(X,y,2) = w(y,x,-2)

1.
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Appendix Four - Interband Transitions

A IV-1 Introduction

The transition probability for an electronic transition from an ini-

ial state i to a final state f is proportional to |g, |? where

* / av
Hf= | Wp. BV ( Au

Here pp and Vy are the final and initial Bloch wave functions for the

s]lectron in the cyrstal. H’ is the interaction that mixes the two

states.

For direct optical transitions, qn’ is the electric dipole operator

0’ = ~-ieh x. .
me

driting the vector potential in the form

A
-) .  =3 —r

(Ao = constant vector in

the direction of

polarization)

Je obtain

- =

 yr _-ien i kr TJ
H® = —=—e Ao+V LAw=2

vhich has the form of a Bloch wave.

The interaction for the scatter.agofan electron by a phoron is

Ae
-

7

Ho = DTV (7)
whe re

u = lattice displace-
. » = =

ment =€ e ker

7(T) = crystalline

potential
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and also has the Bloch form.

Thus for either type of transition, the matrix element is

Pa  rd Ally[ow HY Ww dv (

wvhere Ho is a Bloch wave. As a consequence of translational invariance

ve have the usual selection rule:

L_}

-——

k + ky

0

or (AL-5)

a vector of the

reciprocal lattice
\

We now discuss the selection rules that follow from the rotational

invariance of the crystal.

let:

IWe
transform as a basis partner for the a? irreducible represen-

tation of the group of Ke.

(g)

5
th

transform as a basis partner for the 8 irreducible represen-

tation of the group of k.

(7)

I
th

transform as a basis partner for the ¥ irreducible represen-

tation of the group of K;.

T'hen from group theoretical arguments Ye may be deduced that the matrix

&gt;lement Hf, vanishes unless the direct product representation

mx(a) Y rn(B) x n(¥) (AL -6)

contains the identity representation in its decomposition. Since

I —&gt;

ko, k, and k; will in general belong to different groups, the direct
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product group contains only their common elements. The number of times

that the identity representation is contained in the decomposition of the

direct product is given by

where Ry =A th

1 x(a)L ) 4 5 1x)8xP(5)
4=

(AL-T7)

= = -&gt;

common element of the groups kj, k, and ko

¥
(BR) = character of the element Rg for the ott irredu-

cible representation. (Similarly for X (P ) (8,)

and X98).

g = number of common elements, R, »

Note that the order of the factors in either AL-6 or A4-T7 is immaterial.

If the sum A4-T7 is zero, then the matrix element Hf{ vanishes and the

corresponding transition is forbidden. Otherwise the transition is

allowed.

In general, to perform the sum on group elements (equation AL -T),

one must consider the representations of the entire space groups, but

if (as in the present case of the NaCl structure) the space groups do

not contain glide planes or screw displacements (i.e. symmorphic

space groups), only the appropriate point group representationsare re-

quired. Thus for the three main symmetry directions we need only the

character tables for the groups Op (for the point ["), Cov (for the T

direction and the point K), Cay (for the A direction), Dag (for the

point L), Csv (for the A direction), and Dy (for the point X). The

character tables for these groups are given at the end of this appendix
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in tables Ak-1 to A4-6. In these tables barred operations correspond to

an additional rotation by 2n. After each character table we give the

multiplication table for the direct products of the different irreducible

representations of that group.

For the groups that contain the inversion operation (Op, Dgp, Dad)

the multiplication table is given only for those representations even

on inversion. To determine the decomposition of the direct product of

n* X My (where the plus sign means even on inversion, the minus sign

means odd on inversion), we use the rule that the product of two even

‘or two odd) representations is even; the product of an even representa-

tion and an odd representation is odd. For example, from table Ak-1 we

nave: lie x lst = [at + [AY + [&amp;%; therefore [io x [&amp;°

IY + [7 + [&amp;.

Before proceeding with the calculations, it is important to remem-

ber that in general the addition of spin in the Hamiltonian and wave

functions will sometimes alter selection rules. For this reason, we

consider the problem of determining the selection rules in both cases:

first without spin, and then with spin added.

y- IV-2 - Selection Rules Without Spin

(a) Vertical Transitions

For vertical (or direct optical) transitions we have, to excellent

. NE ~ a o ‘ .

approximation;ke= ky, or k = 0 in equation Ak -5, Thus one studies

the direct product pla) x [15 x ne) since the interaction (light)

oehaves like an ordinary vector. Because spin is ignored, we use only



Nir
- J

single valued representations in our calculations.

Point [|(Group Op).

Here all three vectors belong to the same group. Hence, from the

multiplication table Al-1 we have:

sransition [1 — [1s: [1 X [1s X I1s = [1 + Is + [3s + [25

Contains identity representation M and is therefore allowed

1 A. B12 [31 X [1s X [12 [1 S + [2S forbidden

1 — 25 : [1 x [is x [2% = [2 + [15 + [1s + [2s

&lt;

Ta forbidden

ih — [1s : [1s x [is x [is = Ji’ +92" + [354 + 3[1s + 3 [bs

0 ll $

&amp; forbidden

[lex[1s x [25 = [7 +205 + 3 [15 +3 [5%

allowed

Along A (Group Cav

Using equation Ak-7 and table Al-2, we find that only the direct

products A; . XxX Il. and Ns Xx [1s contain the identity representation

Ay. Thus, the transition &amp;oj—&gt; Aj 1s allowed only if A; x Aj contains

~itler A; or As. From the multiplication table Ak -2 we find that the

allowed transitions are:



- o4-

—

A
— |

Ao

Ao

AY
nest

\
-

ra

Ae
——

.

— Ly since MN XA = 40)

ON X As = As

Do X No = NN;

Ao X As = As

A' x A' =
2 2

' Xx A =
AL s = Ds

Os x Os = Dy + AL + 0p + A)

All other direct transitions A.—&gt; A. are forbidden

At X (Group Dun)

From equation Ah-7 and Table Al-3 we find that only the direct prod-

acts [1s X Xx and [1s X Xx, contain the identity representation,

X1. The allowed transitions Xi —&gt; Xs must contain either xX! or Xx

in the direct product X; x Xs. By inspection of Table Ak-3, we obtain:

7

A Allowed transitions at X

A 4

{ = Aeen.om

Jt KX

All other direct transitions at X are forbidden



a

Along T and at K (Group Coy)

Only the direct products I; x Mis, a X [1s; and Ty x [1s con-

sain the identity representation, £;. Thus, allowed transitions Zi—&gt;%;

must contain ¥;, Iz or £4 in the direct product Fi Xx Ze From table

ah we have:

Ya

Pociisminiins

5.

a)

nT

we

(kK, ——r Kz

bint

hay

Fyn

my ———

Fa—— ln

gy =e 3 | Ka
A—————

A Aad

Also, the only forbidden transitions are:

 &gt; Be Ky ——&gt; Ko
forbidden

Ts —&gt; It Ks ——&gt; Kg

Along A (Group Cay)

Here only the direct product Az X [ls contains the identity re-

sresentation Ap. The allowed transitions Aj ——=&gt; Aj must contain As in

the direct product Af x Aj. By inspection of table Ak-5 we find the

51]lowed transitions are:

 kB

» As

allowed

 -

Ji 1

—— A, forbidden
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At L (Group Dag)

At the point L, only the direct products L'p x [1s and L's X is

contain the identity representation L;. As in the previous cases, the

transition Lj —&gt; Ly will be allowed only if the direct product Ij x L;

contains L's or L's. From table A4-6, we find that the allowed transi-

ions are:

= L'z

~~ ?
[y—&gt; L's

Lo——&gt; L's

[a——&gt; L'z

"uy
ht.3

\

allowed

[g—&gt; L's

Indirect Transitions

Indirect transitions are the result of an electron being scattered

by a phonon from an initial state ky , to an intermediate state k and

then emitting or absorbingaphoton to arrive at a final state Kp. The

second step of the process is a direct transition (Kp = KX) and governed

by the selection rules determined in the previous section. We now study

the phonon assisted transitions, i.e. those transitions in which an elec-

tron along a particular band is scattered by a phonon either to the

point [1 or to the edge of the Brillouin zone.

Yanagawal2 has shown that.the only allowed phonons for an NaCl struc-

ture are-
i ts ms

INEER]

Ay and As

Ly, Ig, and I4

Aq and Aa

in the A direction

in the £ direction

in the A direction
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[n order to determine whether or not an electron-phonon interaction

is possible along a particular direction,weagaininspect the decom-

position of the direct product (a) pe P(e) X ra) and see if it

contains the identity representation. However, for the electron-phonon

interaction we really have very little work to do. In each direction,

one of the allowed phonons has the identity representation for that par

ticular direction. Therefore the representation of the direct product

of (electron representation)x(phonon representation) will always con-

tain the irreducible representation of the electron along a given band.

Since the symmetry of the electron band must be compatible with that of

the associated state at [' or the zone edge, the decomposition of the

direct product will ATE contain the identity representation. Thus we

may conclude that the electron-phonon interaction is allowed for all

oands: selection rules for the total indirect transition being those of

the "direct" portion of the two step process.



0

\- IV-% Transitions when Hamiltonian is spin dependent

‘a) Direct Transitions

We now considerthe transitions when the Hamiltonian is spin depen-

jent because of the addition of spin-orbit coupling. The wave functions

sire two component spinors formed from linear combinations of the un-

perturbed APW functions each multiplied by a spinor, a or 8 (where

! (4), B = (1). Defining Dy /2 as the spinor representation, we find

that the direct product Dy/2 X re) may be decomposed into a sum of

irreducible representations of the double group These are:

at
»

—h

Dia x Ma = Ms"

Dia x [12 = °

Dijz2 x [f2 = ’

Dij2 x [15 = RT +

Dij2 x 2% = B+ IB

Diz x [M1 = [&amp;

Diz x [4 = [7

Dij2 x [2 = [6

Dif2 x [is = 6 + [s

Dito x [2s = [| + [a

je means that the representation has even parity

means that the representation has odd parity
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along A:

Dif2 x A = As

Dij2 x A'1 = Als

Dij2 x Az = UO

Dij2 x A's = Or

Dijon xXx OAs = ls

at X:

Dijz x Xi = XC

+

Dij2 x Xz = Xz

+

Dif x Xs = X¢

+

Dij2 x X4 = Xe

Di/2 X Xs = Xst + XT

Diz x Xi; = )

Dij2 x X2' = X;

Dil x X3' = X7

Dij2 x X4' = Xs

Dil x Xs! = Xa + 2

along©andatK:

Dif2 x ZL = o_

Dij2 x ZZ = ¥_

Dij2 x Zs = Is

Dil x 34 = Ts

DiJ2 x Ki = Ks

Dy 2 X Ks = Ks

Di] x Ks = Ks

Di] x Ky = Ks

along A:

Diz X AL = As

Dilz2 x Az = Ag

Dio xX Ag = M4 js A alle Ae



t OO. -—

atL
whe

Dia X Lj = Lg

 = 4

Dij2 x Lz = Leg

Dif2 x Ls = Li + Li + La

Dij]2 x Ly' = IL:

D2 X Lo! = Le

DiJ]z Xx Lg' = Lg + Ls + Lg
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The APW bands will be altered when spin-orbit coupling is included

in the Hamiltonian. At some points in the Brillouin zone, an unperturbed

band will be split into several distinct bands; in some cases the ori-

ginal APW states are only shifted slightly because of the spin-orbit

interaction. The upper valence and lower conduction bands (for AgCl)

with and without spin orbit coupling included are sketched in Figure Al-’

for the three symmetry directions. Note that the drawing is not to scale

and the spin orbit splittings have been greatly magnified.

The addition of spin-orbit coupling has reduced the number of pos-

sible symmetries in our bands. Consequently, since more bands have like

symmetry, there is a great deal more mixing of states than before. We

now show that because of this additional mixing of states, almost all

direct transitions are allowed. The only forbidden direct transitions

sre those between states of the same parity (at the points [} X, and L

+

which are parity eigenstates) and the transition ls” —_&gt; [77. at |

* t * .

The representatiomsat [! are [e”&gt; [77 ['a”. Since the parity

&gt;t the electric dipole interaction is odd, we can have non-zero matrix

elements only between states of opposite parity.

1 F
The direct products I X [} (i, j = 6, 7, 8) may be decom-

sosed into the irreducible representations of the single group (see

* T
ty) , Ad - “ « ° : = \

lable fl-1). In order that the transition [}™ —&gt; [} be allowed

chis decomposition of this direct product must contain the representaticn

| 45 since the interaction has symmetry [1s. From Table AL-1 we

find that!
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Figure Ak-1

JPPER VALENCE AND LOWEST CONDUCTION BANDS WITH AND WITHOUT SPIN-ORBIT INTERACTION
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LOA

ex nr + [is

7 x [2' + [3s

TR Net[is+
Tox FOR + hs
TRY Mes Rs + [is

TAR. os os 2 + 2 [5s

allowed

forbidden

allowed

allowed

allowed

allowed

along A

Here the possible symmetries are now Ag and Ay. Since the direct

products Ag x Ag, ONe X A7 and Ar x Ar all contain A; or As, every transi-

tion is allowed.

at X.

: +

The decomposition of the direct product X; x x3 must contain

sither X,' or Xs5'. From Table Ak-3, we see that the direct products

* ¥ T ¥ T ¥
Xs" X Xs , Xs X X+ » Xr Xx Xy all contain x3' o1 Xs' and there-

fore every parity allowed transition is possible.

along ¥ and K

Here the only possible symmetry is 5s (or Ks). Since

Is X ¥5 = 51 + Io + Ig + Xu, all transitions are allowed.

along A

The allowed symmetries are A,, As, and Ag, and the decomposition

&gt;f the direct products A, x A (i, = 4, 5, 6) must contain either

A orb. From Table AL-5, the allowed transitions are:



1:

A

A

a ow wu

 Nh

\ 5

nN

allowed

A -

A 6
oy

As

Aa

4.01

A M

forbidden

A 5 —AS

Note that in the absence of a magnetic field, A, and Ag are de-

generate bands. Therefore, in this case all direct transitions between

vpands with distinct eigenvalues are possible.

at L.

T t

The symmetries of bands with distinct energies are IL, (or Ls) and

E + ra ¥ + z
Ls. Since the direct products Lg Xx Lg, Is X Lg and Iz X Lg all

contain ILg', every transition between distinct states of opposite parity

is allowed.

[n order to see more clearly how the addition of spin-orbit coupling

changes some of the selection rules for direct transitions, we study a

particular case in detail: the transition 35 —_ 4. As we have seen.

without spin this transition is forbidden; with spin-orbit coupling the

transition is allowed. For simplicity, in this example, we ignore all

other bands.

Let the unperturbed (spin-independent) Hamiltonian be 1(°) with

eigenfunctions (0) and g (0) (transforming like Yq and I, respec-

(0) 0
cively) and eigenvalues €a, and (0) . Call the eigenfunctions under
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the double group w'® and va) before the spin-orbit perturbation is

introduced (note that there are really two eigenfunctions for each band,

but because each band is doubly degenerate we only use one function for

each band). When spin-orbit coupling is added to the Hamiltonian, we

find that the diagonal matrix elements &lt; 4] eo | Ww &gt; vanish

(proven in Chapter III), and the off diagonal elements

ZL vO] Ego 45°) &gt; ere proportional to a spin orbit parameter A. For

eq) - € 2) &gt;&gt; \, the energies of the bands will be:

(0) N°

(67 (eo)
ER  =€4

~~

(9) (0)  |

Lo) , 0)

and the wave functions become (to first order in \):

Fu

Vd,

V4

Va

J, + ETT ©
cs elo Va

0) A L
(0) (0) V3

€a - €nn

The matrix element for a direct transition from band three to band

four is

134 = &lt;val®ve&gt;

\.

‘= en

&lt;

&lt;p |W -
W © | H’ | Ws |
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0 0

since the matrix elements &lt; ve ) | 1 |! ) &gt; vanish by symmetry. Thus the

cransition probability for the transition will be proportional to

A 2

( Go) and therefore the corresponding intensity will
€3 - €

ve much less than that of a transition allowed without spin (assuming

that the density of states is the same).

v0) Indirect Transitions with Spin

Since the addition of spin in the Hamiltonian serves to bring about

nore mixing of the unperturbed functions, the matrix elements for the

electron-phonon interaction can only increase when spin is added. Be-

cause all such interactions were permissible without spin, the transitions

are still allowed. In fact, the arguments that were given for the spin-

independent situation may be applied here without any changes.
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Table Ak-1, Continued

MULTIPLICATION TABLE FOR EVEN REPRESENTATIONS

 Tr Iz
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1s [1

ho

[Y
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ni
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~
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= a
i.

2 rN
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3
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Appendix Five - Use of Projection Operators to Classify Spin Eigenstates

~x

As mentioned in Chapter ITI at the point L.

Ls

J 0 2w

0 \Puw 0-1

1a, o Bu Oo -~

20" 0)
|

C

Where ww = =

E.

~~

the spin-orbit mat-

(A5-1)

This matrix has four eigenvalues: A, A, =A, -A. One pair of these

eigenvalues must correspond to the degenerate states Ia and La; the other

pair is associated with the doubly degenerate state it.

One could determine the eigenvectors for these states by applying

projection operators to the four functions

(yp = ? a, V2 = 9a, Ya = 7.8, Ya = Pp) that form a basis for the

product representation of space and spin at L. However, it is unneces-

sary to use projection operators for all three states J, LE, and LE be-

cause once the eigenvalue for any one state, say It, is determined, the

aigenvalues for the other two states are known.

A projection operator for the ho irreducible representation is

defined as:

o
niet9Ja) ) [rym Jn

R

(A ved

here the summation is over the elements R in the group and 1, J
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where By = dimension of the a irreducible representation.

Thus, for a given value of Jj, the ny functions py (where ¥

is any arbitrary function) transform as a basis set for the oo irreducible

representation of the group.

The double group at L (group Dzg) contains 2x12 = 24 operations.

35ix of these operations are R;, Rs, Ro, Rie, Ro1, and Ros (see Appendix Three)

To each of these operationsweaddtheinversion, which makes a total

of twelve operations. Finally, because of spin, to each of these twelve

operations, we apply an additional rotation of 2n which gives us a final

total of 24 operations in all.

Now let us Seternine the projection operator for the representa-

tion Ia. Since this is a one dimensional representation the projection

operator applied to a function, vy, is

nid ) X*(R)Ry
R

But wo is even on inversion, so that adding this operation gives

nothing —_— Similarly, because spinors and the characters of the double-

valued representations go into their negative upon rotations through 2n,

these additional twelve operations may be ignored. Thus the final form

of the projection operator for It is

A J! P =

2 X'(R)R (sum on only six elements:

Ri, Rs, Rg, Rig, Roy, Ros)
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7 am

The characters YX(R) for the representation WH are:

R. Re Rg R50 Ro,

 1 -

Ro I

Y(JRy) = ¥(Ry)

X(R;) = -1(By)

J = inversion

To determine the effect of an operation on a spinor we use the

matrices found by Slater: The matrices for the spatial functions are

generated by the APW wave functions at Ls. These matrices are given in

Table A5-1.
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TABLE A5-1

Basis functions for spinor operations are S; = q, Sz = B.

Basis functions for spatial operations are the APW functiors ?, and Ps at La.

4

t_.

YO

Spinor Matrices

ol
[&amp; &amp;

3

(&amp; &amp;
AE N2

[ |
\\2 2

4 1
[&amp; ©

he
Ca

[+%
\ yZ2 2 ¢

a
= 1)

J

where uw = e" [i

Spatial Matrices

Co)
 BN

2 )

-3 -1.
2 'e

 J)

[2 22 2

 =5 2

[+ 2)

[2-2

[+ ©
 Ry

/
0

 wv

\
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The matrices in Table A5-1 are defined by

RF
th

- ) [M51 (R) fs where f, =~ basis function

For example, consider operation Rs:

Spinors

R w w
s@ = — 4 B

Do {&gt;

Rg = —W 4wo
2 Do

8

Space

‘a

Rs Fr =__.. P1 - 3 9-2
2 2

5 {2 = 3g - 19=

Rs (92 a) = (Rs?1):(Rs a)

 1 - 3 (wa w*

(-—=T1» —=72) = + +P

wg __\3 -w"
Re CP

9, 8-8 *—= vw Pep



19

After performing these calculations for all six operations, and

ising equation A5-3 with the character table for IS, we find that

P72) = Plu = 2 wn + biz-
_-

* =

wigs + bw ya
a

-— 7

P(P20) = Piz = 2 bY

P(? 18) = Pua = - wy

Pf SB) P 4 = b*¥

shere b -\2 - 3
2 2

J

Thus, application of the projection operator for Ii on any of our

original functions vi, V2, V3, ya gives us only one new function (with-

in a constant factor). This is because the irreducible representation

[a is one dimensional. The column vector corresponding to ¥

\ be

is an eigenvector of the spin orbit matrix (equation A5-1) with eigen-

value + A. Since Ir and rt are degenerate by time reversal, Ls also

has energy + A. Consequently the doubly degenerate state Lt has energy
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As a check on our results, we can apply the time reversal operator

\ = -1 oyKo

 [0-1

where Gy =

i 0

Ko = complex conjugation

to our eigenfunction for Ls. The new function Ky is the eigenfunction

for Li. We find that

1 &gt;

-

w'

.A

 fj

’/

is an eigenvector of the spin-orbit matrix with eigenvalue + A as re-

juired. We also verify that V and Ky are orthogonal since they trans-

form as basis functions for different irreducible representations:

vs
 *

Ky) = 2. b, 2 Ww, bow
/ 7

 J
-0 '

°
7 p*2 Ww wd we,
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