

BAND STRUCTURE OF SILVER CHLORIDE AND SILVER BROMIDE BY THE

AUGMENTED PLANE WAVE METHOD

by

PETER MICHAEL SCOP

B. S., Massachusetts Institute of Technology (1959)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF

PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1.964

Signature redacted

Signature of Author. Department of Physics, May 15, 1964

Signature reducted

Signature redacted

Certified by. .

Thesis Supervisor

Signature redacted

MRY

Thesis Phy 1964 Ph.D.

- 2 -

Title: Band Structure of Silver Chloride and Silver Bromide by the Augmented Plane Wave Method.

Author: Peter Michael Scop

The energy of silver chloride and silver bromide crystals has been calculated using the augmented plane wave method.

In this method one solves Schroedinger's equation for a periodic one electron potential in the crystal. In the augmented plane wave method, this potential is assumed to be ionic-like and spherically symmetric within spheres surrounding the ions, and constant in the region between spheres. Consequently, the wave function is expanded in a sum of free-ion functions within spheres and plane waves outside of the spheres. By varying the relative value of the constant potential between spheres, the size of the direct band gap at k = 0 has been fit to the experimental value.

After considering non-spherical cubic field effects within the spheres and relativistic effects (including spin-orbit coupling), the calculated magnitude of the indirect band gap is found to agree quite well with experiment. The indirect band gap arises from electronic transitions from the highest point in the valence band (the point L₃ at $k = \frac{\pi}{a}$ (1,1,1) for both crystals) to the lowest point in the conduction band at k = 0.

Selection rules for both direct and indirect transitions (with and without spin) have been derived.

Thesis Supervisor: Professor John H. Wood Title: Assistant Professor of Physics 38

Table of Contents

Abstract	.	• • • •	•••	• •	••	•••		• •	•	•	•	•	•	•	•	•	•	•	•	2
Acknowle	edgments	• • •	• • •	• •	•	• •	•	•••	•	•	•	• •	٠	•	•	•	•	•	•	5
Chapter	I- AP	W Calcul	ations	•	• •	• •	•	•••	•	•	•				•	•	•	•	•	6
	I-l. In	troducti	.on .	• •	•••		•		•		•	• •	•	•	•	•	•	•	•	6
	I-2. De an	tails of d Silver	the C Bromi	alcu de	lati	ons	fo •	r 9	ilv •	rer	CI.	lo	rić •	le •	•	•	•		•	8
Chapter	II-	Band Fi	tting	by	the	Tig	ht	Bir	ndir	ıg	Me	tho	d	•	•	٠	•	•	•	21
	II-l.	Introduc	tion	•••		• •		• •	•		•	•	•	•	•		•	•	•	21
	II-2.	Fit of A	gCl Ba	nds	•••	• •	•	• •	•		•	•••	•	•	•	•	•			22
Chapter	III-	Calcula	ation o	f Pe	ertu	bat	ion	Ef	fec	cts		•••	•	•	•	•	•	•	•	39
	III-l.	Introdu	action		•••			• •		•		• •		•	•	•	•	•		39
	III-2.	Cubic I	Field P	ertu	irbat	tion	•	• •	•	•	•	••••		•	•	•		•		41
	III-3.	Mass-Ve	elocity	Per	turi	oati	on		•	•	•	• •		•	•		•			46
	III-4.	Spin-On	bit Co	upli	ng			• •	• •					•	•	•	•			49
	III-5.	Summary	of Pe	rtur	bati	lons	ar	d I	rine	al	Re	sul	ts	•	•	•	•		•	58
Appendi	x One -	Numeric	Detail	s of	APV	√ Ca	lcu	lat	ior	ıs		• •				•	•	•	•	63
Appendi	x Two -	Coeffic	lents o	f th	ne Sp	her	ica	lI	ları	non	ic	s f	or	tł	ne					05
		Scalar A	APW Wav	e ru	inct:	Lons	•	• •	•••	·	•	•••	•	•	•	•	•	•	•	07
Appendi	x Three	- Operat	tions o	f th	ne Ci	ibic	Gr	our), (h	•	• •	•	•	•	•	•	•	•	88
Appendi	x Four -	Interba	and Tra	nsit	cions	5.	•	•	•	•	•	•••	٠	٠	٠	•	•	٠	•	89
Appendi	x Five -	Use of	Projec	tion	n Ope	erat	ors	t to	C C	las	si	fy	Sp:	in	Ei	ge	en-		7	٦),
		states	•••	• •	• •	• •	•	• •	•••	•	•	•••	•	•	•	•	•	•	• 4	.14
List of	Referen	nces	• • •	• •	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	.1	.21
Biograp	hical Sk	etch .					•				•				•	•	•	•	.1	.22

- 4 -

List of Figures and Tables

Chapter 1	Figure I-l.	Silver Chloride Lattice	9
	Figure I-2.	Determination of V and Sphere Radii	12
	Figure I-3.	Brillouin Zone for FCC Lattice	16
	Figure I-4.	Band Structure of Silver Chloride	17
	Figure I-5.	Band Structure of Silver Bromide	18
	Table I-1.	Transformation Properties of the Representations L,Q, and W About Different Centers	14
Chapter II	Figure II-1.	Tight Binding Fit of the Bands $\int_{15}^{1} -\Delta_5 - X_5$ and $\int_{25}^{2} -\Delta_5 - X_5 \cdots \cdots$	30
	Figure II-2.	Tight Binding Fit of the Bands $\Gamma_{15}-\Delta_1-X_1$ and $\Gamma_{25}-\Delta_1-X_4$	30
	Table II-1.	Tight Binding Matrix Elements	25
	Table II-2.	Parameters for Fitting APW Bands	33
	Table II-3.	Comparison of APW and Fitted Bands	34
Chapter III			
	Figure III-1	. Perturbation Effects in AgCl	60
	Figure III-2	. Perturbation Effects in AgBr	60
	Table III-1.	Cubic Field Perturbation at L_3	46
	Table III-2.	Comparison of Hermann-Skillman and Waber Free-ion Calculations	48
	Table III-3.	Mass-Velocity Shifts	49
	Table III-4.	Spin-Orbit Splitting at L_3	58
	Table III-5.	Summary of Perturbations in AgCl	58
	Table III-6.	Summary of Perturbations in AgBr	59

Appendix One

	Table Al-1.	Potentials for AgCl Bands 63
	Table Al-2.	Starting Values for Silver and Chlorine Potentials
	Table Al-3.	Silver Chloride Energy Band States and Charge Densities
	Table Al-4.	Potentials for AgBr Bands
	Table Al-5.	Starting Values for Silver and Bromine Potentials
	Table Al-6.	Silver Bromide Energy Band States and Charge Densities
Appendix Four		
	Table A4-1.	Character Table for Group 0, 107
	Table A4-2.	Character Table for Group C_{4V} 109
	Table A4-3.	Character Table for Group D4h 110
	Table A4-4.	Character Table for Group C_{2v}
	Table A4-5.	Character Table for Group C _{3v} 112
	Table A4-6.	Character Table for Group D _{3d} 113

Appendix Five

Table A5-1. Spinor and Spatial Matrices at $L_{\rm S}$. . . 117

Acknowledgments

The author wishes to thank Professor John Wood under whose supervision this work was performed. He also wishes to thank the members of the Solid State and Molecular Theory Group of M. I. T. for their discussions and assistance; especially Dr. A. C. Switendick who supplied virtually all of the necessary computer programs.

In addition he thanks James Conklin of the M. I. T. Electrical Engineering Department who also lent his advice and criticisms as well as some of the computer programs.

Many thanks are given to the staff of the Cooperative Computer Laboratory for their help and tolerance.

Finally, he wishes to thank the Graduate Committee for the teaching and research assistantships held by him during his period as a graduate student.

Chapter I

- 6 -

APW Calculations

I-l. Introduction.

The Augmented Plane Wave Method (henceforth abbreviated AFW) was employed in calculating the electronic band structure of silver chloride and silver bromide crystals. This method was originally proposed by Slater¹ and later used by Wood² in his calculation of the band structure of iron. More recently, Switendick³ has extended the method to deal with problems involving two atoms per unit cell in his band calculations of nickel oxide. This AFW calculation of the band structure of silver chloride and silver bromide has been performed using the programs written by Wood and Switendick for the IBM 709 computer.

Briefly, the AFW method takes advantage of the fact that the one-electron wave function is ionic-like near an ionic site and plane wave-like far from ionic sites. Consequently one inscribes spheres about each ion in the crystal; within each sphere we assume a spherically symmetric potential appropriate for the corresponding ion. In the region between spheres, we assume that the potential is equal to a constant, V_0 . Corresponding to this choice of potential, the one electron wave function is expanded in AFW's; that is, functions that are ionic-like inside the ionic spheres and plane wave-like outside of the spheres. Finally, the secular equation is obtained and, after taking advantage of the cubic symmetry, one obtains the eigenvalues.

Since the APW functions are constructed to correspond to the assumed potential, the convergence (the number of APW's needed to adequately represent a particular state) will be fairly rapid. However, one must face some serious questions about the validity of the assumed potential.

The general form of this potential is sensible from physical reasoning, but the problem of choosing the various parameters entering into the calculations is a difficult one. Specifically, one must determine the sizes of the APW sphere radii and the constant value of the potential between spheres, V_0 . In addition, the ionic potentials themselves usually depend on several parameters, especially the "ionicity" (the limit of $\frac{r}{2}$ times the ionic potential, for large r).

If one attempts to choose these parameters by physical reasoning, the results may be quite confusing. For example, in a real ionic crystal the previous simple definition of ionicity cannot even be applied since an electron never experiences a single ionic potential far from ionic sites. In addition, the concept of sphere radii may be misleading if there is any covalent bonding in the crystal.

In order to avoid these (and other) physical arguments, the present author has chosen the parameters in a rather arbitrary manner, and then varied one of them in order to obtain some agreement with experimental results.

-7-

I-2. Details of the calculations for AgBr and AgCl

AgBr and AgCl both have the NaCl structure; that is, two displaced face centered cubic lattices. One lattice composed of silver ions, the other containing the halogen ion.

In Figure I-1 we show the AgCl lattice. The silver ion is located at the origin of coordinates. The six neighboring chlorine ions are located at the points $\pm \frac{a}{2}(1,0,0)$, $\pm \frac{a}{2}(0,1,0)$, $\pm \frac{a}{2}(0,1,0)$. There are twelve nearest neighbor silver ions located at $\pm \frac{a}{2}(1,1,0)$, $\pm \frac{a}{2}(1,-1,0)$, $\pm \frac{a}{2}(0,1,1)$, $\pm \frac{a}{2}(0,1,-1)$, $\pm \frac{a}{2}(1,0,1)$, $\pm \frac{a}{2}(1,0,-1)$. All translations which leave the lattice invariant are given by $T_n = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$ $(n_1, n_2, n_3 \text{ are integers})$ where \vec{a}_1 , \vec{a}_2 , \vec{a}_3 are three primitive translations:

For	AgCl	a	=	5.23 atomic
		⇒ a ₃	П	a (1,1,0)
		⇒ a2	н	a (1,0,1)
		$\overrightarrow{a_1}$	=	a (011)

AgBr $\frac{a}{2} = 5.463$ atomic units.

The ionic potentials used are those determined by the Hartree-Fock-Slater equations and calculated using programs described by F. Herman and S. Skillman.⁴ That is, for a particular ion,

units.

Figure I-1

SILVER CHLORIDE LATTICE

$$V(\mathbf{r}) = \frac{-2Z}{r} - \frac{2}{r} \int_0^1 \sigma(t) dt - 2 \int_r^\infty \frac{\sigma(t)}{t} dt - 6 \left[\frac{-3}{2\pi} S(\mathbf{r})\right]^{\frac{1}{3}}$$

here
$$\zeta^{2}(\mathbf{r}) = \frac{\sigma(\mathbf{r})}{4\pi r^{2}}$$
, $\sigma(\mathbf{r}) = -\sum_{n,\ell} \omega_{n\ell} [P_{n\ell}(\mathbf{r})]^{2}$

 $\omega_{n,\ell}$ = occupation number for the orbital (n, ℓ) = 2(2 ℓ + 1) for a closed shell

The total number of electrons is $N = \sum_{n,\ell} \omega_{n,\ell}$, and the ionicity is Z - N.

The $P_{n,l}$'s are normalized solutions of the radial Schroedinger equation:

$$\left\{\frac{-d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + V(r)\right\} P_{n\ell}(r) = E_{n\ell} P_{n\ell}(r)$$

.e. $P_{n\ell}(r) = r R_{n\ell}(r)$

The ionicity parameters were chosen in accordance with the ordinary ideas of chemical valence (i.e. ionicity of $Ag^+ = +1$, ionicity of $Cl^- =$ ionicity of $Br^- = -1$).

i

The potentials within each sphere are modified by adding (or subtracting) the Madelung potential $V_{\rm M} = \pm \frac{2\alpha}{a/2} = \pm \frac{4\alpha}{a}$ where α is the Madelung constant for an NaCl structure ($\alpha = 1.747558$) and "a" is the cube edge (see Figure I-1). That is:

about silver sites $V(r) = (V_{\text{Herman-Skillman}})Ag^+ + V_{M}$ about halogen sites $V(r) = (V_{\text{Herman-Skillman}})^{\text{halogen}} - V_{M}$

-10-

The choice of the sphere radii and the initial determination of V_0 was made in the following way. First the Herman-Skillman ionic potentials for Ag⁺ and Cl⁻ were superimposed and plotted in the (100) direction (Figure I-2-a). Then these potentials were corrected by adding or subtracting the Madelung potential. The point where the Madelung corrected potentials cross defines the sphere radii and the first determination of V_0 (Figure I-2-b). This scheme has the desirable effect of insuring that $V(\vec{r})$ is continuous throughout the crystal. Finally we choose the zero of potential to be V_0 on the APW scale. The net result of the Madelung correction and change of the zero of energy is that the Herman-Skillman potentials have been altered by different amounts called V_{SHIFT} .

> for Ag^+ $V_{SHIFT} = V_0 + V_M$ for halogen $V_{SHIFT} = V_0 - V_M$

and our corrected potentials become:

 $Ag^+: V(r) = (V_{Herman-Skillman})_{Ag^+} + (V_{SHIFT})_{Ag^+}$ halogen: $V(r) = (V_{Herman-Skillman})_{halogen} + (V_{SHIFT})_{halogen}$

This potential is shown in Figures I-2-c and I-2-d for the (100) and (110) directions.

DETERMINATION OF V AND SPHERE RADII

Unfortunately, when the above scheme is used in determining the sphere radii and V₀, the bands subsequently found do not agree with experimental facts. Specifically, the band gap at $\vec{k} = 0$ is too small for both AgCl and AgBr. This discrepancy may be resolved by varying the magnitude of V₀ until agreement with experiment is obtained. For both AgCl and AgBr the experimental band gap at $\vec{k} = 0$, Eg, was duplicated when the magnitude of V₀ was reduced. This final potential is shown in Figures I-2-e and I-2-f for the (100) and (110) directions, respectively.

There are two reasons why this corrected potential should be more representative of the actual crystalline potential than that shown in Figures I-2-c and I-2-d. Along the line joining the APW sphere centers(x, y, or z directions) the ionic potentials employed will have some value V at the sphere radii. However, in some other direction the actual crystalline potential just beyond either of the APW spheres will not be equal to V as in Figure I-2-d, but will have some larger value as in our corrected potential (Figure I-2-f). Also, the valence P and d states as well as the core electrons should be fairly insensitive to the value of the potential between spheres.

Although the size of the band gap at $\vec{k} = 0$ depends in a critical way on the value of the potential between spheres, the relative spacing of core states is almost independent of V₀. In fact, changing V₀ by as much as a few tenths of a Rydberg only changed the relative spacings of valence bands by less than .01 Rydbergs, and left their

-13-

qualitative features virtually unchanged.

The Brillouin zone for the FCC lattice is shown in Figure I-3, and the APW bands for AgCl and AgBr are shown in Figures I-4 and I-5 respectively. Values for the sphere radii, V_o , V_{SHIFT} , V_M , the ionic potentials as functions of r, the starting values of the wave functions, and the points in the Brillouin zone actually calculated for the bands in Figures I-4 and I-5 are given in Appendix One.

At this point it should be mentioned that because our basis functions are located on different sites on the unit cell, the symmetry properties of certain eigenstates of the Hamiltonian depend on which ion is located at the origin of coordinates. Switendick⁵ has shown that within the Brillouin zone it makes no difference which ion is at the origin; but on the surface of the Brillouin zone, the representation matrices for the ion located at $\vec{R}_n = \frac{a}{2}$ (1,0,0) must be multiplied by the factor $e^{i(RK\ell-K\ell)\cdot\vec{R}}n$ (here R is an operation of the group under consideration, and $\vec{K}_{\mathcal{L}}$ is a vector of the reciprocal lattice). One finds that the symmetries at L, W, and Q are affected. The results are shown below in Table 1-1.

center A at origin	center $B_{1}at \frac{a}{2}$ (010)
L	L ₂
L ₂	L
L3	L'3
, L _l	L2
L ₂	L_1
L3	L_3

-14-

Table I-1 (continued)

center	A at origin	center B at $\frac{a}{2}(0,1,0)$
	Wl	W2
	W2	Wi
	W1	W2
	W2	Wl
	W3	W3
	Q_+	Q
	Q_	Q+

After solving the secular equations and obtaining eigenvalues, the eigenfunctions may also be determined. For points of major interest in the Brillouin zone, we have obtained the radial charge densities, $P_{n,\ell}^2$ (r), within each AFW sphere. The total amount of charge in each sphere associated with a given " ℓ " value, q_{ℓ} , and the amount of plane-wave charge (between spheres) has been calculated and is also tabulated in Appendix One. Here the total amounts of charge are normalized to unity; i.e.

$$L_{\max} = 12 \qquad L_{\max} = 12$$

$$\sum_{\ell=0}^{L_{\max}} (q_{\ell})_{Ag} + \sum_{\ell=0}^{L_{\max}} (q_{\ell})_{Halogen sphere} + plane wave charge = 1$$

However, in Appendix One these quantities are tabulated for only the first three ℓ values ($\ell = 0$, $\ell = 1$, $\ell = 2$).

Since the group of the wave vector at $\vec{k} = 0$ (point group 0_h) contains the inversion, the bands are parity eigenstates at Γ . By examining the charge within each APW sphere (Appendix One) the valence bands at this point are seen to arise predominately from either p or

Figure I-3

BRILLOUIN ZONE FOR FCC LATTICE

1

Figure I-4

110410 1-)

d functions with no mixing of P and d states. At Γ_{15} the eigenfunction is mostly Cl⁻(3p)or Br⁻(4p) with some Ag⁺(5p). The Γ_{12} and Γ_{25} states are almost entirely Ag⁺(4d).

As one departs from [along any of the three symmetry directions, the bands exhibit a strong p-d mixing.

In the (100) or \triangle direction, the p-d mixing is zero at Γ , increases until $\vec{k} = \frac{\pi}{a}$ (100), and then decreases to zero at the point X (the point group at X is D_{4h} and includes the inversion operation). Along the (110) or Σ direction, the mixing is greatest at the point $\vec{k} = \frac{\pi}{a}$ (110). Because of transformation properties listed in Table 1-1, the Ag⁺(4d) function located at the origin and the Cl⁻(3p) (or Br⁻(4p)) function located at $\frac{a}{2}$ (010) both have even parity at the point L. Consequently, this point is one of greatest p-d mixing along the (111) direction.

As one can see, a superficial understanding of the interactions away from Γ can be partially obtained from our APW calculation. However, because of the complexity of the details of an APW calculation it becomes increasingly more difficult to obtain additional information about these interactions. In order to better understand the nature of the bands, in Chapter II we illustrate a fitting procedure based on the use of tight binding wave functions. As we will see, the detailed nature of the various interactions involved become quite evident, even with a very crude fitting.

Before proceeding to Chapter II, we mention that when spin is

introduced in the Hamiltonian, direct optical transitions are allowed between allbands except at some points where the wave functions are parity eigenstates (\cap , X, and L); electric dipole transitions are allowed only between states of opposite parity. Also, indirect or phonon-assisted transitions from the uppermost valence bands to the conduction band are allowed. Details regarding both types of transition are given in Appendix Four.

Finally, we mention that the APW bands for AgCl and AgBr in figures I-4 and I-5 are approximately consistent with all experiments known to the author. A more detailed comparison of the bands and experimental results will be given in Chapter III.

Chapter II

Band Fitting by Tight Binding Method

II-1. Introduction

In this chapter we shall show how the APW bands calculated in Chapter I may be described by analytic functions with a parametric fit of the bands. This fitting technique has been described in detail by Slater and Koster.⁶ In this method we begin with orthogonalized, Blochlike, tight binding wave functions. The usual integrals of the Hamiltonian between Bloch functions are regarded as disposable constants used to fit the bands. These constants appear as the integral between functions on the same ionic site as well as first, second, and higher nearest neighbors. Naturally one can fit the APW bands to any desired accuracy if a complete set of basis functions is used and if one includes integrals involving functions on ions that are widely separated in the crystal.

The philosophy of the interpolation scheme employed here will not be that of obtaining an exact fit for all bands. But rather, we try to obtain a reasonable fitting for the upper valence bands using a restricted basis set (only functions of p and d symmetry), and including only as many interactions (i.e. disposable parameters) as necessary to approximate the APW bands. The value of fitting the bands in this way is that one can understand the basic structure of the APW bands without a great deal of numerical labor.

-21-

Since the bands for AgCl and AgBr have a very similar structure (see Figures I-4 and I-5), only the fitting of the AgCl bands will be described here. Fortunately, Slater and Koster have discussed the tight binding interpolation scheme extensively, and in the treatment of the AgCl fitting we will use the results of their work.

II-2. AgCl fit.

as

One starts with a set of normalized basis functions $\phi_1(\vec{r})$, ..., $\phi_n(\vec{r})$ that are orthogonal even when the functions are located on different centers in the crystal. That is, if the vectors \vec{R}_{ℓ} $(\vec{R}_{\ell} = l_1 \hat{i} + l_2 \hat{j} + l_3 \hat{k})$ denote ionic sites in the crystal, then

$$\int \phi_{i} \star (\overrightarrow{r} - \overrightarrow{R}_{g}) \phi_{j} (\overrightarrow{r} - \overrightarrow{R}_{g'}) dv = \delta_{ij} \delta_{\ell\ell'}$$
(II-1)

From our functions ϕ_i , we construct normalized Bloch functions

$$\Psi_{i,\vec{k}} (\vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{R}_{\not L}} e^{i\vec{k}\cdot\vec{R}_{\not L}} \phi_{i}(\vec{r} - \vec{R}_{\not L})$$
(II-2)
(N = number of unit cells)

The wave function for an electron in the crystal is then written

 $\mathcal{I} = \sum_{i=1}^{n} a_{i} \Psi_{i}$

and the n x n secular equation is obtained in the usual way. The

-22-

matrix elements are

$$H_{ij}(\vec{k}) = \sum_{\vec{R}_{\ell}} e^{i\vec{k} \cdot \vec{R}_{\ell}} E_{ij}(\ell_1, \ell_2, \ell_3)$$
(II-3)

where

$$\mathbf{E}_{ij} \left(\boldsymbol{\ell}_{1'} \boldsymbol{\ell}_{2'3}^{\prime} \right) = \int \boldsymbol{\phi}_{i} \ast (\vec{\mathbf{r}}) \mathbf{H} \boldsymbol{\phi}_{j} (\vec{\mathbf{r}} - \boldsymbol{\ell}_{1i}^{\prime} - \boldsymbol{\ell}_{2j}^{\prime} - \boldsymbol{\ell}_{3k}^{\prime}) dv (II-4)$$

For AgCl (with the silver ion located at the origin) we have silver ions at

$$R_{s} = \frac{a}{2} \left(s_{1} \hat{i} + s_{2} \hat{j} + s_{3} \hat{k} \right) \qquad s_{1} + s_{2} + s_{3} = \text{even integer}$$

and chlorine ions at

 $\vec{R}_{c} = \frac{a}{2} \left(c_{1} \vec{i} + c_{2} \vec{j} + c_{3} \vec{k} \right) \qquad c_{1} + c_{2} + c_{3} = \text{ odd integer}$

Our basis functions are

Φ <u>i</u>	=	f(r)xy	five Ag ⁺	4d fu	nctions	
¢2	=	f(r)xz				
Фз	-	f(r)yz				(II-5)
Φ4	-	$f(r)\sqrt{3}(x^2-y^2)$				
Φ5	=	$f(r) (3z^2 - r^2)$				
¢ ₆	1	ig(r) x	three C	1 3n	function	15
Φ7	=	i g(r) y		<u>)</u> p	2	
φ _β		i g(r) z				

and our Bloch functions ψ_{i} are

$$\Psi_{i} = \begin{cases} \frac{1}{\sqrt{N}} \sum_{\vec{r},\vec{r}} e^{i\vec{k} \cdot \vec{R}_{s}} \phi_{i}(\vec{r} - \vec{R}_{s}) & i = 1,2,3,4,5 \\ R_{s} & (II-6) \\ \frac{1}{\sqrt{N}} \sum_{\vec{r},\vec{r}} e^{i\vec{k} \cdot \vec{R}_{c}} \phi_{i}(\vec{r} - \vec{R}_{c}) & i = 6,7,8 \\ R_{c} & R_{c} & R_{c} & R_{c} & R_{c} & R_{c} \end{cases}$$

Thus our final matrix elements in equations II-3 and II-4 may be described as resulting from d-d interactions (both functions on silver sites), p-p interactions (both functions on chlorine sites), and p-d interactions (one function on a chlorine site, the other on a silver site).

Using the abbreviations $S = \frac{ka}{2}$, $\eta = \frac{y}{2}$, $\zeta = \frac{z}{2}$ the matrix elements (equation II-3) as derived by Slater and Koster are given in Table II-1.*

To start the fitting procedure, we begin with \vec{k} in the (OO1) direction since many of the matrix elements in Table II-l vanish when $\xi = \eta = 0$. In addition, we observe that many matrix elements are identical to each other, and we obtain the Hamiltonian matrix:

^{*} Slater and Koster do not list all the matrix elements since many are related by cyclical permutations of coordinates.

 $H_{11} = E_{11}(000) + 4E_{11}(110)\cos\xi\cos\eta + 4E_{11}(011)\cos\xi(\cos\xi + \cos\eta)$ $H_{22} = E_{11}(000) + 4E_{11}(110)\cos\xi\cos\zeta + 4E_{11}(011)\cos\eta(\cos\xi + \cos\zeta)$ $H_{33} = E_{11}(000) + 4E_{11}(110)\cos\eta\cos\zeta + 4E_{11}(011)\cos\xi(\cos\eta + \cos\zeta)$ $H_{44} = E_{55}(000) + 3E_{55}(110)\cos(\cos\xi + \cos\eta) + 4E_{44}(110) \int \cos\xi \cos\eta + \frac{1}{2} \int \cos\xi \sin\eta + \frac{1}{2} \int \cos\xi \cos\eta + \frac{1}{2} \int \cos\xi \sin\eta + \frac{1}{2} \int \sin\xi \sin\eta + \frac{1}{2} \int \sin$ $\frac{1}{4}\cos \xi \cos \zeta + \frac{1}{4}\cos \eta \cos \zeta$ $H_{55} = E_{55}(000) + 4E_{55}(110) \left[\cos \xi \cos \eta + \frac{1}{4} \cos \xi \cos \zeta + \frac{1}{4} \cos \eta \cos \zeta \right]$ + $3E_{44}(110)$ (cos ξ + cos η) cos ζ $H_{12} = -4E_{12}(Oll)sin\etasin\zeta$ $H_{13} = -4E_{12}(011) \sin \xi \sin \zeta$ $H_{14} = 0$ $H_{15} = -4E_{15}(110) \sin \xi \sin \eta$ $H_{23} = -4E_{12}(Oll) \sin\xi \sin\eta$ $H_{24} = 2\sqrt{3} E_{15}(110) \sin\xi \sin\zeta$ $H_{25} = 2E_{15}(110) \sin{\xi} \sin{\zeta}$ $H_{34} = -2\sqrt{3} E_{15}(110) sin\eta sin\zeta$ $H_{35} = 2E_{15}(110) \sin\eta \sin\zeta$ $H_{45} = \sqrt{3} E_{55}(110) \cos(\cos\xi - \cos\eta) - \sqrt{3} E_{44}(110) \cos(\cos\xi - \cos\eta)$

Table II-1 (continued)

p-d

H _{GL} =	= 2E61(010)sinn	$H_{71} = 2E_{61}(010) \sin{\xi}$	$H_{81} = 0$
H62 =	= 2E ₆₁ (010)sinζ	$H_{72} = 0$	$H_{82} = 2E_{61}(010) \sin{\frac{5}{2}}$
H63 =	= 0	$H_{73} = 2E_{61}(010) \sin \zeta$	$H_{83} = 2E_{61}(010) \sin \eta$
H64 -	$=\sqrt{3} E_{85}(001) \sin\xi$	$H_{74} = -\sqrt{3} E_{85}(001) \sin\eta$	H84 = 0
H ₆₅ =	= -E ₈₅ (001)sinξ	$H_{75} = -E_{85}(001) \sin \eta$	$H_{85} = 2E_{85}(001) \sin\zeta$

p-p

$$\begin{split} H_{66} &= E_{66}(000) + 4E_{66}(110)\cos\zeta(\cos\eta + \cos\zeta) + 4E_{66}(011)\cos\eta\cos\zeta \\ H_{77} &= E_{66}(000) + 4E_{66}(110)\cos\eta(\cos\zeta + \cos\zeta) + 4E_{66}(011)\cos\zeta\cos\zeta \\ H_{88} &= E_{66}(000) + 4E_{66}(110)\cos\zeta(\cos\eta + \cos\zeta) + 4E_{66}(011)\cos\eta\cos\zeta \\ H_{67} &= -4E_{67}(110)\sin\zeta \\ H_{68} &= -4E_{67}(110)\sin\zeta \\ H_{78} &= -4E_{67}(110)\sin\eta\sin\zeta \end{split}$$

By comparing our basis functions $\phi_1, \ldots \phi_8$ with basis functions for the group of \triangle (group C_{4V}) and observing that \triangle_5 is a doubly degenerate state, we easily find the bands in the \triangle direction are given by

$$\begin{split} \Delta_{2}^{\prime}: & \text{energy}, \quad \epsilon \; = \; H_{11}(00\zeta) \\ \Delta_{2}: \quad \epsilon \; = \; H_{44}(00\zeta) \\ \Delta_{1}: \; \det \begin{pmatrix} H_{55} - \epsilon & H_{85} \\ H_{85} & H_{88} - \epsilon \end{pmatrix} = \; 0, \quad \epsilon \; = \; \frac{(H_{55} + H_{88})}{2} \pm \frac{H_{55} - H_{88}}{2} \sqrt{1 + \frac{4H_{68}^{2}}{(H_{55} - H_{68})^{2}}} \\ \Delta_{5}: \; \det \begin{pmatrix} H_{22} - \epsilon & H_{62} \\ H_{62} & H_{66} - \epsilon \end{pmatrix} = \; 0, \quad \epsilon \; = \; \frac{(H_{55} + H_{66})}{2} \pm \frac{H_{22} - H_{66}}{2} \sqrt{1 + \frac{4H_{62}^{2}}{(H_{22} - H_{66})^{2}}} \\ \epsilon \; = \; (\frac{H_{55} + H_{66}}{2}) \pm \frac{H_{22} - H_{66}}{2} \sqrt{1 + \frac{4H_{62}}{(H_{22} - H_{66})^{2}}} \\ \text{where} \qquad H_{11}(00\zeta) \; = \; E_{11}(000) \; + \; 4E_{11}(110) \; + \; 8 \; E_{11}(011) \; \cos \zeta \\ H_{44}(00\zeta) \; = \; E_{55}(000) \; + \; 4E_{44}(110) \; + \; [6 \; E_{55}(110) \; + \; 2E_{44}(110)] \; \cos \zeta \\ H_{22}(00\zeta) \; = \; E_{11}(000) \; + \; 4E_{11}(110) \; \cos \zeta \; + \; 4E_{11}(011)(1 \; + \; \cos \zeta) \end{split}$$

-27-

$$\begin{split} H_{55}(00\zeta) &= E_{55}(000) + 4E_{55}(110) \left[1 + \frac{1}{2}\cos\zeta\right] + 6E_{44}(110)\cos\zeta\\ H_{66}(00\zeta) &= E_{66}(000) + 4E_{66}(110) \left(1 + \cos\zeta\right) + 4E_{66}(011)\cos\zeta\\ H_{86}(00\zeta) &= E_{66}(000) + 8E_{66}(110)\cos\zeta + 4E_{66}(011)\\ H_{62}(00\zeta) &= 2E_{62}(010)\sin\zeta\\ H_{85}(00\zeta) &= 2E_{85}(001)\sin\zeta \end{split}$$

The diagonal matrix elements are determined by fitting at l^{\prime} and X (where the off-diagonal elements vanish). Thus we determine the E_{ii} 's along the bands

$$\Gamma_{25}^{i} - \Delta_{2} - X_{3}
 \Gamma_{12} - \Delta_{2} - X_{2}
 \Gamma_{15} - \Delta_{1} - X_{4}^{i}
 \Gamma_{25}^{i} - \Delta_{1} - X_{1}
 \Gamma_{15} - \Delta_{5} - X_{5}^{i}
 \Gamma_{25}^{i} - \Delta_{5} - X_{5}^{i}$$
(II-8)

The fitting for Δ_2 and Δ_2 turns out to be quite accurate. However, the fit for Δ_1 and Δ_5 at points between Γ and X is poor because the p-d matrix elements are non zero. In fact, the Δ_1 bands are not even fit properly at X; since without the p-d interaction we have bands $\Gamma_{15} - \Delta_1 - X'_4$ and $\Gamma_{25} - \Delta_1 - X_1$ whereas the APW bands are $\Gamma_{15} - \Delta_1 - X_1$ and $\Gamma'_{25} - \Delta_1 - X'_4$.

To include the p-d interaction, we fit at the point $\vec{k} = \frac{\pi}{a}$ (901)

(or $\zeta = \pi/2$) where the off diagonal elements H_{62} and H_{65} are largest. However, because our bands in reality cannot be exactly described only in terms of a p-d interaction, the values of the parameters $E_{61}(010)$ and $E_{85}(001)$ will depend on which Δ_1 or Δ_5 band we fit. More precisely to fit along $\Gamma_{25}' - \Delta_5 - X_5$ we obtain $E_{61}(010) = .0133765$; along $\Gamma_{15} - \Delta_5 - X'_5$, $E_{61}(010) = .0149219$. Similarly along $\Gamma_{12} - \Delta_1 - X'_4$ and $\Gamma_{15} - \Delta_1 - X_1$ we obtain $E_{65}(001)$ equal to .041647 and .0385722 respectively. In Figures II-1 and II-2 we illustrate these fitted bands with and without the p-d interaction. For an "overall fit" the average values of $E_{61}(010)_{avg} = .014092$ and $E_{65}(001)_{average} = .0401096$.

In the (110) or Σ direction ($\xi = \eta$, $\zeta = 0$) the Hamiltonian matrix is:

$$H(\xi,\xi,0) = \begin{bmatrix} H_{11} & 0 & 0 & 0 & H_{15} & H_{61} & H_{61} & 0 \\ 0 & H_{22} & H_{23} & 0 & 0 & 0 & 0 & H_{61} \\ 0 & H_{23} & H_{22} & 0 & 0 & 0 & 0 & H_{61} \\ 0 & 0 & 0 & H_{44} & 0 & H_{65} & H_{65} & 0 \\ H_{15} & 0 & 0 & 0 & H_{55} & H_{65} & H_{65} & 0 \\ H_{61} & 0 & 0 & H_{65} & H_{65} & H_{67} & 0 \\ H_{61} & 0 & 0 & H_{65} & H_{65} & H_{67} & H_{68} \\ 0 & H_{61} & H_{61} & 0 & 0 & 0 & 0 & 0 & H_{88} \end{bmatrix}$$

By direct substitution, one may verify that eigenvectors of the matrix II-9 are:

30 -

i.e. $Hv_i = \epsilon_i v_i$

Comparing these eigenvectors with basis functions for the group of Σ (group C_{3V}), we find that the eigenvector v_i corresponds to the irreducible representation Σ_i . Since there are three independent coefficients for vector v_1 , we will have three distinct eigenvalues corresponding to symmetry Σ_1 . Similarly, we have one Σ_2 band, two Σ_3 bands, and two Σ_4 bands arising from our Cl⁻(3p) and Ag⁺ (4d) functions.

The corresponding secular equations are:

for Σ_1 bands:

det $\begin{bmatrix} H_{11} - \epsilon & H_{15} & 2H_{61} \\ H_{15} & H_{55} - \epsilon & 2H_{65} \\ 2H_{61} & 2H_{65} & 2(H_{66} + H_{77} - \epsilon) \end{bmatrix} = 0$ (II-11-a)

(II-11-b)

for Σ_2 : $\epsilon = H_{22}-H_{23}$

-31-

for
$$\Sigma_3$$
:
det
$$\begin{bmatrix}
2(H_{22}+H_{23}-\epsilon) & 2H_{61} \\
2H_{61} & H_{88}-\epsilon
\end{bmatrix} = 0 \quad (II-ll-c)$$
for Σ_4 :
det
$$\begin{bmatrix}
H_{44}-\epsilon & -2 & 3H_{65} \\
-2 & 3H_{65} & 2(H_{66}-H_{67}-\epsilon)
\end{bmatrix} = 0 \quad (II-ll-d)$$

In the Σ direction we again determine the off diagonal matrix elements where the p-d interaction is largest, i.e. at $\zeta = \pi/2$ or $k = \pi/a(1,1,0)$. The matrix element $H_{23} = -4E_{12}(011)$ can be found from a fit of the band $\prod_{25}' - \Sigma_2 - K_2$ (equation II-11-b) or by fitting either of the Σ_3 bands, $\prod_{15}' - \Sigma_3 - K_3$ or $\prod_{25}' - \Sigma_3 - K_3$. However, we again encounter the same problems found in fitting the Δ direction; namely that the three Σ bands cannot all be fit with any single value of $E_{12}(011)$. For simplicity, we determine $E_{12}(011)$ along the $\prod_{25}' - \Sigma_2 - K_2$ band, and obtain $E_{12}(011) = .0009562$.

The matrix element $H_{67} = -4E_{67}(011)$ is determined by fitting either of the Σ_4 bands $\prod_{15} - \Sigma_4 - K_4$ or $\prod_{12} - \Sigma_4 - K_4$. Once more, a single value of $E_{67}(011)$ will not fit both bands. Since the Σ_4 band arising from \prod_{15} is the highest in the valence band (note: when relativistic effects and other perturbations are included, the L_3 state will lie slightly higher), we fit along $\prod_{15} - \Sigma_4 - K_4$ at the point $\overline{K} = \frac{\pi}{a} (1,1)$ or $\eta = \pi/2$. From equation II-11-d we obtain $E_{67}(011) =$.0205815.

In a similar manner we determine $H_{15} = -4E_{15}(110)$ from any one

-32-

of the three Σ_1 bands. As in our previous calculations, a fitting along these three bands cannot be accomplished with any single value of $E_{15}(110)$. The average value is $E_{15}(110)_{\rm average} = .0109872$.

Our fitting in the Δ and Σ directions has determined all matrix elements up to nearest neighbor interactions. To this extent we have also determined the bands in the (lll) direction. A summary of the parameters is given in Table II-2, and in Table II-3 we compare the APW and fitted valence bands for the Δ , Λ , and Σ directions.

Table II-2

Parameters for fitting APW bands

 $E_{11}(000) = -.320425$ $E_{11}(110) = -.00295625$ $E_{11}(011) = .000656250$ $E_{55}(000) = -.315162$ $E_{55}(110) = -.0003438$ $E_{44}(110) = -.00182188$ $E_{12}(011) = .0009562$ $E_{15}(110) = -.0109872$ $E_{66}(000) = -.2606$ $E_{66}(011) = -.002125$ $E_{66}(110) = .0063625$ $E_{67}(110) = .0205815$ $E_{61}(010) = .0140492$ $E_{85}(001) = .0401096$

-34-

Table II-3

"p" bands

4 k	symmetry	APW energy	Fitted energy
0,0,0	Γ ₁₅	2182	2182
0,2,0	\triangle_{1}	2091	2056
0,4,0	\triangle_{1}	2116	2087
0,6,0	$\triangle_{\mathbf{l}}$	2466	2496
0,8,0	Xı	3042	3042
0,2,0	Δ_5	2192	2194
0,4,0	Δ_{5}	2255	2265
0,6,0	Δ_5	2422	2415
0,8,0	X ₅ '	2521	∞.2521
2.2.0	Σ	- 2360	~ .2509
29290	-1		
4,4,0	Σ1	2394	2667
6,6,0	K1	2419	2634
2,2,0	Σ3	21.95	2214
4,4,0	Σз	2354	2415
6,6,0	K3	2724	2788
2,2,0	Σ_4	1779	1641
4,4,0	Σ_{4}	1270	1270
6,6,0	Σ4	1993	1.826
-35-

Table II-3 (continued)

14k	symmetry	APW energy	Fitted energy
2,2,2	$\Lambda_{\mathbf{i}}$	2591	2849
	Λ_{3}	1794	1665
4,4,4	Lı	2668	2759
	L3	1281	1270

"d" bands

4k	symmetry	APW energy	Fitted energy
0,0,0,	\int_{12}	∞.3263	3263
0,2,0	$\triangle_{\underline{k}}$	3550	3505
0,4,0	\triangle_1	3835	- • 3 757
0,6,0	$\triangle_{\underline{r}}$	3689	3630
0,8,0	X.4	3200	3200
0,2,0	Δ_2	3250	3252
0,4,0	\triangle_2	3224	3225
0,6,0	\triangle_2	3198	3197
0,8,0	X2	3186	3186
0,0,0	(¹ 25	3270	3270
0,2,0	\triangle_2^*	··· . 3283	3285
0,4,0	Δ_{2}^{1}	3323	3323
0,6,0	$\Delta_2^{!}$	3361	3360
0,8,0	X ₃	~.3375	3375

Table II-3 (continued)

1	Symmetry	APW energy	Fitted energy
0,2,0	Δ_{5}	3271	3281
0,4,0	$\Delta_{\rm S}$	3257	3264
0,6,0	Δ_{5}	3159	3169
0,8,0	X ₅	3086	3086
2,2,0	Σ	3484	3701
4,4,0	Σ	3835	4214
6,6,0	Kı	3543	∞• 3733
2,2,0	Σ	~.3182	3017
4,4,0	Σ	3119	~. 2904
6,6,0	K1	3133	3018
2,2,0	Σρ	3234	3237
4,4,0	Σ_{2}	3116	3166
6,6,0	Kz	3105	3107
2.2.0	Σα	~.3343	3350
4,4,0	Σα	3452	- • 3433
6,6,0	Ka	3406	3366
2,2,0	$\Sigma_{\underline{A}}$	3611	3522
4,4,0	$\Sigma_{\underline{A}}$	3847	3665
6,6,0	K4	3623	3522

Table II-3 (continued)

4k	Symmetry	APW energy	Fitted energy
2,2,2	Λ_{1}	3519	3645
	Δ3	3622	3731
	Λ_{3}	3185	3012
4,4,4	Ll	3946	4510
	L3	3891	4072
	Ľз	3137	2759

-37-

As Table II-3 indicates, our simplified fitting is not too bad quantitatively, especially for the higher valence bands. For this reason we may conclude that this higher band may be understood on the basis of a single <u>p</u>-d interaction. However, since the greatest discrepancies are found at the bottom of the "d" bands (especially along the $\Gamma_{12} - \Sigma_4 - K_4$ and $\Gamma_{12} - \Lambda_1 - L_1$ bands), we may safely conclude that a good fitting here would necessitate the use of additional core wave functions in the basis set.

Chapter III

Calculation of Perturbation Effects

III-1. Introduction.

In considering the effects of perturbations on our APW bands, we will be primarily concerned with the states Γ_{15} and L_3 at the top of the valence band. The reason for focusing our attention on these states is that two important experimentally obtained results are the magnitudes of the direct band gap at $\vec{k} = 0$, E_g , and the indirect band gap, E_{ig} . The value for E_g is given by the difference of the energies of the Γ_1 (conduction band) and Γ_{15} states. The indirect gap is the difference of the energies of the Γ_1 state and the highest valence band state, where ever that may be. The experimental values for these quantities are:^{7,8}

	E ig	Eg
AgCl	3.25 ev	5.13 ev
AgBr	2.68 ev	4.29 ev

There may be some question about whether or not these values correspond exactly to transitions between electronic bands or from an electronic valence band to an exciton band at Γ_1 . However, for the purposes of the present discussion we need not be concerned with this detail. The important point is that the APW bands given in Chapter I were fit so that the APW value for E_g would agree with experiment. Unfortunately, even after fitting the APW bands to agree with E_g , the APW values for E are:

for	AgCl	Eig	=	3.84	ev.
for	AgBr	E	=	3.24	ev.

Thus, for both crystals the calculated value of the indirect band gap is too large by approximately .5 ev.

It turns out that after considering some of the deviations of the APW potential used from the actual crystalline potential, the discrepancy in E_{ig} can be resolved. But before discussing the various perturbations, we first return to the definitions of the two band gaps. In the early APW calculations the value of V₀ was set so that the difference of the Γ_1 and Γ_{15} states equalled E_g . Unfortunately, this straightforward definition will lead to confusion when we consider spin-orbit coupling which splits the Γ_{15} state, so we redefine E_g as follows:

> E_g = energy difference of lowest conduction band and highest valence band at k = 0.

Similarly,

 E_{ig} = energy difference of lowest conduction band and highest valence band state.

Since the original APW bands were calculated on the basis of fitting E_g , we continue to let E_g be fit even after the perturbations have been applied. This can be done in effect by ignoring the conduction band entirely and studying the difference of the highest valence

band state and the highest valence band state at k = 0. Let us call this difference Δ .

Thus for our APW calculations, the quantity $\Delta = E_g - E_{ig}$ is too small for both AgCl and AgBr.

The perturbations that we will study are the effect of the cubic field inside an APW sphere, and relativistic effects - the mass velocity shift and spin-orbit coupling.

Calculations will be made by first-order perturbation theory. Second order contributions are small (and will be neglected) because the states of interest are widely separated in energy from any states of like symmetry.

III-2. Cubic field perturbation.

Since the APW method assumes a spherically symmetric potential inside each sphere, any effects of the actual cubic field potential enter the APW calculation only through the constant potential in the region between spheres. Thus, the APW cubic field splittings are new cessarily smaller than the correct splittings; and in this section we will study the effect of the non-spherical cubic field inside spheres.

About an ionic site the cubic field may be written as

$$\mathbb{V}(\overrightarrow{r}) = \pm \left\{ \frac{2\alpha}{a/2} + \frac{(3.58)2a_0}{a/2} \left(\frac{r}{a/2}\right)^4 \left(-\frac{3}{2} + \frac{5}{2} \frac{x^4 + y^4 + z^4}{r^4}\right) + \begin{array}{c} \text{terms involving} \\ \text{higher powers of } r \end{array} \right\}$$

for r < a/2where α = Madelung constant $\mathbf{a}_{0} = Bohr radius$ (III-1)+ sign about silver sites - sign about chlorine sites

 $\frac{2\alpha}{a/2}$, has already been in-The constant Madelung potential, cluded in the APW calculation. We now consider the second and higher terms.

The cubic field will affect d functions (only through the second term in III-1) but leave p like functions unchanged. Therefore, the 15 state (p like) will not be affected by the cubic field, but at the point L_3 (containing a large amount of <u>d</u> in the wave function) the cubic field will shift our APW bands. Thus, we must consider only the term V' = (2)(3.58) $\left(\frac{a_0}{a/2}\right)\left(\frac{r}{a/2}\right)^4\left(-\frac{3}{2}+\frac{5}{2}\frac{x^4+y^4+z^4}{r^4}\right)$ and its effect on the d like portion of the wave function at Σ_4 and L_3 .

For a given point \vec{k} in the Brillouin zone we have n orthogonal functions $\phi_{\vec{k}}^{(1)}(\vec{r}), \ldots \phi_{\vec{k}}^{(n)}(\vec{r})$ (n = degeneracy of the band) which are eigenfunctions of the unperturbed APW Hamiltonian, Ho. These functions have the form

where

 \overrightarrow{R}_{c} = chlorine ionic site \overrightarrow{R}_{c} = silver ionic site $\vec{r}_{c} = \vec{r} - \vec{R}_{c}, \vec{r}_{s} = \vec{r} - \vec{R}_{s}, r_{c} = |\vec{r}_{c}|, r_{s} = |\vec{r}_{s}|$ (θ_{c}, Φ_{c}) are spherical angles about center \overrightarrow{R}_{c} (θ_{s}, Φ_{s}) are spherical angles about center \overrightarrow{R}_{s} $C_{\ell m}^{(i)}(\overrightarrow{k})$ and $S_{\ell m}^{(i)}(\overrightarrow{k})$ are the coefficients of chlorine and silver respectively for the spherical harmonics in the ith function tabulated in Appendix Two.

 $\frac{U_{lc}(r_c)}{r_c} = \text{ chlorine radial wave function for a given } \underline{l} \text{ value}$

$$\frac{U_{lc}(R_{sc})}{R_{sc}} =$$
chlorine radial wave function for a given l value evaluated at the chlorine sphere radius.

$$\frac{U_{\ell s}(r_s)}{r_s} = \frac{\text{silver radial wave function for a given } \mathcal{L} \text{ value}}{r_s}$$

 $Q(\vec{k})$ is a normalization constant and is independent of i. We will also need the quantities

$$q_{lc}(\vec{k}) = \frac{1}{Q(\vec{k})} \sum_{m=-l}^{l} |c_{lm}^{(i)}(\vec{k})|^{2} \frac{\int_{c}^{R_{sc}} U_{lc}^{2}(r_{c}) dr_{c}}{U_{lc}^{2}(R_{sc})}$$

(111-3)

$$q_{ls}(\vec{k}) = \frac{1}{Q(\vec{k})} \sum_{m=-l}^{l} |\dot{s}_{lm}(\vec{k})|^{2} \frac{\int_{0}^{R_{ss}} U_{ls}(r_{s}) dr_{s}}{U_{ls}(r_{s}) dr_{s}}$$

which are the amounts of charge (normalized to unity) associated with a particular $\underline{\ell}$ value within the chlorine and silver spheres respectively. Note that the q's are independent of \underline{i} .

The above notation is written for AgCl. For AgBr, simply replace the letter \mathcal{C} by the letter <u>B</u> everywhere.

The first order energy shift due to the cubic field perturbation for the L_3 state is given by

$$\Delta E(\vec{k}) = \int_{0}^{R} \varphi_{\vec{k}}^{\ast(1)}(\vec{r}_{s}) \forall (\vec{r}_{s}) \varphi_{\vec{k}}^{(1)}(\vec{r}_{s}) dv_{s} \qquad (III-4)$$

where we must integrate over the silver sphere, and the integral is independent of i.

Let

$$\nabla'(\vec{r}_{s}) = \eta(r_{s})\nabla(\theta_{s}, \Phi_{s})$$
(III-5)

where
$$\eta(r_s) = (3.58) \frac{2a_0}{a/2} (\frac{r_s}{a/2})^4$$

and
$$V(\theta_s, \phi_s) = 1-5[\sin^2\theta_s \cos^2\theta_s + \sin^4\theta_s \sin^2\phi_s \cos^2\phi_s]$$

then after substituting equations III-2, III-3, and III-5 into III-4 we obtain

$$\Delta E(\vec{k}) = \frac{q_{2s}}{\sum_{m=-2}^{Q_{2s}} \left\{ \iint_{m=-2}^{Q_{2s}} \vec{s}_{2m}^{(1)}(\vec{k}) \mathbf{y}_{2m}^{*}(\theta_{s}, \phi_{s}) \right\} \forall (\theta_{s}, \phi_{s}) \underbrace{\sum_{m=-2}^{2} \vec{s}_{2m}^{(1)}(\vec{k}) \mathbf{y}_{2m}^{}(\theta_{s}, \phi_{s})}_{m=-2} dt_{s}$$

$$(III-6)$$

$$X = \frac{\int_{2s}^{R} \frac{\mathbf{y}_{2s}^{2}(\mathbf{r}) \eta(\mathbf{r}_{s}) d\mathbf{r}_{s}}{\int_{2s}^{R} \mathbf{y}_{2s}^{2}(\mathbf{r}_{s}) d\mathbf{r}_{s}} dt_{s}$$

and finally

$$\Delta E(\vec{k}) = q_{2s} \frac{\left[\frac{12}{21}(s_{22}^{(1)}(\vec{k}))^2 - \frac{16}{21}(R_e s_{21}^{(1)}(\vec{k}))^2\right]}{\sum_{m=-2}^{2} |s_{2m}^{(1)}(\vec{k})|^2} x^{3.58} \frac{a_0}{a/2} < \left(\frac{r^4}{a/2}\right)^4 > \frac{16}{2} |s_{2m}^{(1)}(\vec{k})|^2$$

(III~7) here $\Re_{e} S_{21}^{(1)}(\vec{k}) = \text{Real part of } S_{21}^{(1)}(\vec{k})$ and $\langle (\frac{r_{s}}{a/2})^{4} \rangle = \text{average value of } (\frac{r_{s}^{4}}{a/2})^{4}$ within silver sphere $= \frac{\int_{0}^{R_{ss}} U_{2s}^{2}(r_{s}) (\frac{r_{s}}{a/2}) dr_{s}}{\int_{0}^{R_{ss}} U_{2s}^{2}(r_{s}) dr_{s}}$

After substituting the values of q₂₅ (given in Appendix One), the values of the S'_{2m} 's (given in Appendix Two), and performing the radial integrations we obtain the cubic field shifts given in Table III-1.

-46-

Table III-1

			AgCL	AgBr		
\triangle	E	=	.00576	.00337	at	L3

Note that the additional cubic field within the APW spheres has the effect of raising the L_3 state, or, equivalently, increasing $\Delta = E_g - E_{ig}$. The effect is smaller in AgBr because the lattice constant is larger (i.e., the strength of the cubic field is smaller in AgBr).

III-3. Mass-velocity perturbation.

The mass-velocity perturbation may be approximated by a spherically symmetric operator about each site in the crystal. Since the electron's speed is largest for core states and smallest far from ionic sites, we ignore the mass-velocity effect for the plane waves between APW spheres, and restrict ourselves to calculating the first order correction to a given energy level by considering only the portion of the wave function within spheres.

Because the mass-velocity perturbation, V', is spherically symmetric about a given site, when the integral of V' between the APW functions (given in III-2) is calculated, all cross product terms of different $\underline{\ell}$ and \underline{m} values vanish (because of the orthogonality of the spherical harmonics) and one finally obtains

$$\Delta \stackrel{(\vec{k})}{\underset{\text{mass-vel.}}{\underset{\ell=0}{\overset{(\vec{k})}{\underset{\ell=0}{\underset{\ell=0}{\overset{(\vec{k})}{\underset{\ell=0}{\overset{(\vec{k})}{\underset{\ell=0}{\overset{(\vec{k})}{\underset{\ell=0}{\overset{(\vec{k})}{\underset{\ell=0}{\overset{(\vec{k})}{\underset{\ell=0}{\overset{(\vec{k})}{\underset{\ell=0}{\overset{(\vec{k})}{\underset{\ell=0}{\underset{\ell=0}{\overset{(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\underset{\ell=0}{\atop\atop(\vec{k}}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}}{\underset{\ell=0}{\atop\atop(\vec{k}}$$

where the v's are the ionic mass-velocity parameters defined by

$$v_{ls} = \frac{\int_{0}^{R_{ss}} U_{ls}^{2} r_{s} V'(r_{s}) dr_{s}}{\int_{0}^{R_{ss}} U_{ls}^{2}(r_{s}) dr_{s}}$$

We must now determine the mass-velocity parameters given in equations III-9. For a first estimate we can use the free-ion parameter since the radial wave functions within APW spheres for the free ions and the crystal are substantially the same, especially near the nucleus where the mass-velocity effect is largest.

For the free ions, Herman and Skillman calculated the massvelocity shift by first order perturbation theory, averaging the mass-velocity operator $\bigvee_{=}^{I} \alpha^{2} (E - V)^{2}$ over the free-ion wave function. However, a more accurate calculation has been performed by Waber⁹ who solved the Dirac equation for the energies of the two possible <u>j</u> values of a given electron. By taking the appropriate weighted average of Waber's two eigenvalues, one obtains the energy for an electron with all relativistic effects included with the exception of spinorbit coupling.

In Table III-2 below we compare the Herman-Skillman and Waber calculations for $Cl^{(3p)}$, $Br^{(4p)}$, and $Ag^{+(4d)}$ ionic eigenvalues.

-47-

(111-9)

Table III-2

	H-S (non- relativistic)	H-S(including mass-vel.)	Waber(rel)	Waber - H-S (mass-vel.)
C1 ⁻ (3p)	19094587	19794587	1906440	+.00030187
Br ⁻ (4p)	18183391	21283391	1807204	+.00104187
Ag ⁺ (4d)	-1.5682048	-1.6152048	-1.5082592	+.0599456

(Note: the Herman-Skillman mass-velocity energy was found by interpolation from their tables which list only even Z energies).

Waber's eigenvalues are higher than those of Herman-Skillman for every case shown. This may be explained by the fact that the massvelocity operator in reality produces two effects for a valence electron:

- It lowers the eigenvalue because the mass-velocity operator is always negative.
- It raises the eigenvalue because the core electrons are drawn closer to the nucleus, producing a stronger inner shielding of the nucleus.

The Herman-Skillman calculation ignores the second effect which, as Waber's calculation indicates, is actually greater in magnitude than the first.

It is interesting to note that Waber's eigenvalues are very

-48-

close to the Herman-Skillman non-relativistic energies. Therefore, in our perturbation calculation, we may approximate the mass-velocity parameter (to be substituted into equation III-8) by the difference of the Waber and Herman-Skillman (non-relativistic) levels given in column four of Table III-2. Thus,

for
$$Cl^{-}(3p)$$
 $v_{1C} = .00030$ (III-10)
for $Br^{-}(4p)$ $v_{1B} = .00104$
for $Ag^{+}(4d)$ $v_{2S} = .05995$

After substituting the mass-velocity parameter (equation III-10) and the appropriate $q_{\mathcal{L}}$'s into equation III-8, we obtain the shifts in the bands at \int_{15}^{7} and L_3 . The results are given in Table III-3.

	Table 1	III-3
	Mass-veloci	ty Shifts
	Π15	L ₃
AgCl	.0002	.0399
AgBr	.0009	.0269

III-4. Spin-orbit coupling.

In this section we will calculate spin-orbit effects at our main points of interest, namely Γ_{15} and L_3 at the top of the valence band. Since the spin-orbit parameters for the mixture of ionic states that we are concerned with (i.e. Cl⁻(3p), Br⁻(4p), Ag⁺(4d) and Ag⁺(5p) all are very small compared to the crystal field splitting (at Γ_{15} and L_3), we may expect that a perturbation treatment of spin-orbit To compute spin-orbit energies, we must add spin to our original spin independent functions $(\phi_{\vec{k}}^{(1)}(\vec{r}), \dots \phi_{\vec{k}}^{(n)}(\vec{r}))$ given in equation III-2.

Let
$$\Psi_{\vec{k}}^{(1)}(\vec{r}) = \Phi_{\vec{k}}^{(1)}(\vec{r})\alpha, \Psi_{\vec{k}}^{(2)}(\vec{r}) = \Phi_{\vec{k}}^{(2)}(\vec{r})\alpha, \dots, \Psi_{\vec{k}}^{(n)}(\vec{r}) = \Phi_{\vec{k}}^{(n)}(\vec{r})\alpha$$

$$(\text{III-11})$$

$$\Psi_{\vec{k}}^{(n+1)}(\vec{r}) = \Phi_{\vec{k}}^{(1)}(\vec{r})\beta, \dots$$

$$\Psi_{\vec{k}}^{(2n)}(\vec{r}) = \Phi_{\vec{k}}^{(n)}(\vec{r})\beta$$

 $(\alpha \text{ and } \beta \text{ are the usual spinors, i.e. } \alpha = \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \end{pmatrix} \beta = \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \end{pmatrix}$

These 2n functions form a basis for a 2n dimensional representation of the double group at the point \vec{k} . In general, this 2n dimensional representation will be reducible and may be decomposed into a sum of irreducible representations of the double group. In Appendix Four we give a brief discussion of the irreducible representations of the double group for the valence bands in AgCl and AgBr. A schematic drawing of these bands with spin included is shown in figure A4-1.

The spin-orbit operator is

$$H_{so} = \xi(r)\vec{l}\cdot\vec{\sigma}$$
 (III-12)

where

$$\frac{1}{2}$$
 (r) = $\frac{\alpha^2}{2} \frac{1}{r} \frac{dV}{dr}$

 α = fine structure constant

and

$$= \begin{bmatrix} l_z & l_- \\ l_+ & -l_z \end{bmatrix}$$

 $\vec{l} \cdot \vec{\sigma} = l_{y} \vec{\sigma} + l_{y} \vec{\sigma} + l_{z} \vec{\sigma}$

(*l*₊ and *l*₋ are the usual raising and lowering operators)

When we calculate matrix elements of the spin-orbit operator between our 2n functions $\mathcal{A}_{\vec{k}}^{(i)}(\vec{r})$ (equation III-11) we first note that all diagonal elements vanish (i.e. $(H_{so})_{ii} = 0$). The reason for this is that the wave functions $\mathcal{A}_{\vec{k}}^{(i)}(\vec{r})$ are simple products of a Bloch orbital function times a spinor. Consequently, the matrix element

$$(H_{so})_{ii} = \langle \psi_{\vec{k}}^{(i)}(\vec{r}) | H_{so} | \psi_{\vec{k}}^{(i)}(\vec{r}) \rangle$$

$$= \sum_{j=x,y,z} [\langle \phi_{\vec{k}}^{(i)}(\vec{r}) | \xi(r) |_{j} | \phi_{\vec{k}}^{(i)}(\vec{r}) \rangle \langle s_{i} | \sigma_{j} | s_{i}] \rangle$$

$$s_{i} = \begin{cases} \alpha \ i=l, \ n \\ \beta \ i \ = \ n+l, \\ 2n \end{cases}$$

$$where$$

is a sum of three terms, each of which factors into a product of the matrix element of a component of the orbital angular momentum between Bloch functions (modified only by a radial operator), and a matrix element of the same component of the spin angular momentum between spinors.

$$< \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) | \xi(r) |_{j} | \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) > = \int \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) [\xi(r) |_{j}] \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) dv$$
$$= \int \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) [\xi(r) |_{j}] \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) dv$$
$$= \int \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) [\xi(r) |_{j}] \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) dv$$
$$= \int \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) [\xi(r) |_{j}] \phi_{\overrightarrow{k}}^{(i)}(\overrightarrow{r}) dv$$

$$= - \int \Phi_{\vec{k}}^{(i)}(\vec{r}) [\xi(r)]_{j}]^{*} \Phi_{\vec{k}}^{(i)}(\vec{r}) dv$$
$$= - \langle \Phi_{\vec{k}}^{(i)}(\vec{r}) | \xi(r)]_{j} | \Phi_{\vec{k}}^{(i)}(\vec{r}) \rangle^{*}$$

But this matrix element must be real; hence it is zero.

The fact that the first order matrix elements vanish has important consequences as far as the spin-orbit bands are concerned. Specifically, a band that is non degenerate without spin will be shifted only in second order by an amount proportional to $\lambda^2/\Delta E$ where λ is of the order of the spin orbit parameters, and ΔE the difference in energy of a neighboring band of similar symmetry (under the double group). Thus for the Σ_4 band at the top of the valence band (labeled Σ_5 in the double group), the shift is of order $\lambda^2/\Delta E$ which is definitely negligible. Consequently, we must calculate only the splittings at Γ_{15} and L_3 since these states are degenerate without spin.

The non-diagonal matrix elements of the spin-orbit operator are: for i $\neq j$

$$(H_{so})_{ij} = \langle \psi_{\vec{k}}^{(i)}(\vec{r}) | H_{so} | \psi_{\vec{k}}^{(j)}(\vec{r}) \rangle$$

$$= \sum_{n,\ell} \sum_{m=-\ell}^{\ell} \sum_{m'=-\ell}^{\ell} \frac{c_{\ell m}^{(i)}(\vec{k}) c_{\ell m'}^{(j)}(\vec{k})}{|c_{\ell m}^{(i)}(\vec{k})|^{2}} q_{\ell c}(\vec{k}) \zeta_{n q}^{(c)}(\vec{\ell} \cdot \vec{\sigma})_{\ell m,\ell m'}^{ij}$$

(III-13)

$$+\sum_{n,l}\sum_{m=-l}^{l}\sum_{m'=-l}^{l}\frac{s_{\ell m}^{*(i)}(\vec{k})s_{\ell m'}^{(j)}(\vec{k})}{|s_{\ell m}^{(i)}(\vec{k})|^{2}}q_{\ell s}(\vec{k})\zeta_{n\ell}^{(s)}(\vec{\ell}\cdot\vec{\sigma})_{\ell m,\ell m'}^{ij}\}$$

-52-

where
$$(\vec{l} \cdot \vec{\sigma})_{lm,lm'}^{ij} = \langle \underline{Y}_{lm} \mathbf{s}_{i} | \vec{l} \cdot \vec{\sigma} | \underline{Y}_{lm} \mathbf{s}_{j} \rangle$$

$$\begin{aligned} \xi_{n,l}^{(c)} &= \frac{1}{2} \int_{0}^{R_{sc}} U_{ls}^{2}(\mathbf{r}_{s}) \xi(\mathbf{r}_{c}) d\mathbf{r}_{c} \\ &= \frac{1}{2} \int_{0}^{R_{sc}} U_{ls}^{2}(\mathbf{r}_{c}) d\mathbf{r}_{c} \\ \xi_{n,l}^{(s)} &= \frac{1}{2} \frac{\int_{0}^{R_{ss}} U_{ls}^{2}(\mathbf{r}_{s}) \xi(\mathbf{r}_{s}) d\mathbf{r}_{s} \\ &= \frac{1}{2} \frac{\int_{0}^{R_{ss}} U_{ls}^{2}(\mathbf{r}_{s}) \xi(\mathbf{r}_{s}) d\mathbf{r}_{s} \\ &= \frac{1}{2} \frac{\int_{0}^{R_{ss}} U_{ls}^{2}(\mathbf{r}_{s}) \xi(\mathbf{r}_{s}) d\mathbf{r}_{s} \end{aligned}$$

Note that the summation on n_{ℓ} in equation III-13 must be included if there is any appreciable mixing of core states in our valence band wave functions.

Splitting at 15

As figure A4-1 indicates, the Γ_{15} state is split into a Γ_8^- (four fold degenerate) and a Γ_6^- (doubly degenerate) state, the $\Gamma_8^$ level lies highest. Since Γ_{15} is predominantly p-like (mostly Cl⁻(3p) or Br⁻(4p) with a small amount of Ag⁺(5p)), the splitting resembles the free ion $j_3^- - j_1^-$ splitting in that the fourfold degenerate j_3^- ionic level lies above the doubly degenerate j_1^- ionic level.

The matrix elements (III-13) at Γ_{15} are:

$$(H_{so})_{ij} = \left\{ \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \left[\frac{c_{lm}^{*(i)} c_{lm'}^{(j)}}{|c_{lm}^{(i)}|^{2}} q_{lc} \zeta_{3P}^{(c)} \right] \qquad (\vec{\ell} \cdot \vec{\sigma})_{lm,lm'}^{ij}$$

$$+ \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \left[\frac{s_{lm}^{*(j)} s_{lm'}^{(j)}}{|s_{lm}^{(i)}|^{2}} q_{ls} \zeta_{5P}^{(s)} \right] \qquad (\vec{\ell} \cdot \vec{\sigma})_{lm,lm'}^{ij}$$

$$+ \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \left[\frac{s_{lm}^{*(j)} s_{lm'}^{(j)}}{|s_{lm}^{(i)}|^{2}} q_{ls} \zeta_{5P}^{(s)} \right] \qquad (\vec{\ell} \cdot \vec{\sigma})_{lm,lm'}^{ij}$$

After substituting the coefficients given in Appendix Two, we obtain the spin-orbit matrix:

$$H_{so} = \lambda \begin{bmatrix} 0 & -i & 0 & 0 & 0 & 1 \\ i & 0 & 0 & 0 & 0 & -i \\ 0 & 0 & 0 & -1 & i & 0 \\ 0 & 0 & -1 & 0 & i & 0 \\ 0 & 0 & -i & -i & 0 & 0 \\ 1 & i & 0 & 0 & 0 & 0 \end{bmatrix}$$
 at Γ_{15} . (III-14)
where $\lambda = q_{1c} \zeta_{3,p}^{(c)} + q_{1s} \zeta_{5p}^{(s)}$

By rearranging rows and columns, the secular determinant factors:

$$\det |H_{SO} - \epsilon 1| = \begin{bmatrix} -\epsilon & -i\lambda & \lambda & 0 & 0 & 0 \\ i\lambda & -\epsilon & -i\lambda & 0 & 0 & 0 \\ \lambda & +i\lambda & -\epsilon & 0 & 0 & 0 \\ 0 & 0 & 0 & -\epsilon & -i\lambda & \lambda \\ 0 & 0 & 0 & i\lambda & -\epsilon & -i\lambda \\ 0 & 0 & 0 & \lambda & i\lambda & -\epsilon \end{bmatrix} = 0$$

-54-

with roots
$$\epsilon = \begin{cases} +\lambda & \text{occuring 4 times} \\ -2\lambda & \text{occuring 2 times} \end{cases}$$
 (III-15)

We approximate the one electron spin-orbit parameters by their free ion values. Thus, substituting

Cl
$$(3p): \zeta_{3p}^{(c)} = .0030$$

Br $(4p): \zeta_{4p}^{(B)} = .0122$
Ag⁺ $(5p): \zeta_{5p}^{(s)} \simeq .0105$
from Waber's (III-16)
relativistic
solutions
from Atomic Energy Levels.*

(111-16)

into III-15 we find that the ρ_{15} level is split into the two levels: +e, -2e where

$$\epsilon = \begin{cases} .0027 & AgCl \\ .0110 & AgBr \end{cases}$$

Splitting at L3

The L₃ state will be split into a (doubly degenerate) L_6^+ state and singly degenerate L_4^+ and L_5^+ states, as shown in figure A4-1. The L_4^+ and L_5^+ states are degenerate with each other because of time reversal symmetry; therefore L_3 will be split into only two levels by the spin-orbit interaction.

The wave function at L₃ is composed mostly of Cl (3p) or Br (4p)

* Atomic Energy Levels, Vol. III, circular 467, U.S. Dept. of Commerce.

and $Ag^+(5d)$ ionic-like function. After using equation III-13 to determine the matrix elements, we obtain the spin-orbit matrix

$$H_{so} = \frac{\lambda}{\sqrt{3}} \begin{bmatrix} 0 & i & 0 & \sqrt{2}\omega \\ -i & 0 & -\sqrt{2}\omega & 0 \\ 0 & -\sqrt{2}\omega^* & 0 & -i \\ -\sqrt{2}\omega^* & 0 & i & 0 \end{bmatrix}$$
(III-17)

where $w = e^{i \pi/4}$, and

$$\lambda = \begin{cases} q_{1C}\zeta_{3p}^{(c)} - (K)_{AgCl}q_{2s}\zeta_{4d}^{(s)} & \text{for AgCl} \\ q_{1B}\zeta_{4p}^{(B)} - (K)_{AgBr}q_{2s}\zeta_{4d}^{(s)} & \text{for AgBr} \end{cases}$$
 (III-18)

The constant K is defined by

$$K = \sqrt{3} \left\{ \frac{\left(\frac{s_{22}^{*(1)} s_{22}^{(2)} - s_{2^{-2}}^{*(1)} s_{2^{-2}}^{2} \right) + \left(\frac{s_{21}^{*(1)} s_{21}^{(2)} - s_{2^{-1}}^{*(1)} s_{2^{-1}}^{(2)} \right)}{\sum_{m=-2}^{2} \left| s_{2m}^{(1)} \right|^{2}} \right\}_{\text{at } L_{3}} (\text{III-19})$$

for either crystal. The eigenvalues of the spin-orbit matrix at L_3 are $\mathcal{E} = \pm \lambda$.

It is interesting to note that the form of the splitting at L_3 is quite different from that at Γ_{15} . First of all, at L_3 the individual contributions of the two ions are of opposite sign, which will tend to reduce the size of the actual band splittings. Secondly, the

angular dependence of the <u>d</u> portion of the wave function in the crystal will be distorted from that of the free ion by the cubic field. For this reason the constant K appears in equation III-18, and is then a measure of the cubic field strength in the crystal. Substituting the values of the $S_{2m}^{(i)}$ (given in Appendix Two) in equation III-19, we find that

$$(K)_{AgCl} = .67$$

(K)_{AgBr} = .83
(III-20)

which agrees with our previous reasoning, since the lattice spacing for AgBr is larger than that of AgCl (i.e., the cubic field strength is smaller).

Because our four spin-dependent functions transform as a basis for a reducible representation of the double group at L_3 , the preceding analysis has only determined the energy splitting and gives no information about the symmetry labels of the split levels. In order to determine whether the L_6^+ or L_4^+ and L_5^+ levels is highest, we must apply projection operators to the eigenfunctions of the spin-orbit matrix (equation III-17).

Details about the use of projection operators in this case are given in Appendix Five. There it is shown that the vector

$$\int = \begin{pmatrix} 3/2 \\ b \\ -3/2 \ \omega^* \\ b \\ \omega^* \end{pmatrix} \qquad \text{where } b = \sqrt{\frac{3}{2}} - \sqrt{\frac{3}{2}} i \\ \omega = e^{i \pi/4}$$
(III-21)

-57-

is an eigenvector of the spin-orbit matrix (III-17) with symmetry L_4^+ and eigenvalue $\epsilon = + \lambda$. Consequently the L_5^+ state also has energy $\epsilon = + \lambda$ and the L_6^+ state is associated with the level $\epsilon = - \lambda$.

Using the free ion spin orbit parameters obtained from Waber's calculation (for Ag⁺(4d) $\zeta_{4d}^{(s)}$ = .00935) we obtain

$$\epsilon = \begin{cases} -.0032 & \text{AgCl} \\ +,0029 & \text{AgBr} \end{cases}$$

or equivalently

		III-4	Table		
$\mathbf{L_6}^+$		L5+		L4+	
+.0032	· .	0032		0032	AgCl
0029		.0029		.0029	AgBr

Thus, in AgCl the L_6^+ state lies highest, in AgBr the L_4^+ and L_5^+ states are highest.

III-5. Summary of Perturbations and final Results.

The results of the three perturbations are summarized in tables III-5 and III-6 for AgCl and AgBr respectively.

APW state	cubic field	mass vel.	spin orbit
Г <u>15</u>	0	.0002	Γ ₈ ⁻ : .0027 Γ ₆ ⁻ :0054
La	.0058	.0039	L ₆ ⁺ : .0032
			L4, L5:0032

Table III-6 AgBr

APW state	cubic field	mass-vel.	spin-orbit
ſ,	0	.0009	ſ₅: .0110
			□ ₆ ⁻ :0220
L3	.0033	269	L4 ⁺ ,L5 ⁺ : .0029
			Lo ⁺ :0029

By referring to Tables III-5 and III-6 we see that for both crystals the L_3 state (using single group notation) is the highest point in the valence band after all perturbations have been applied. Schematic drawings (not to scale) of the perturbation effects for the Γ_{15} and L_3 states are shown in figures III-1 and III-2 for AgCl and AgBr respectively.

As we mentioned previously, the quantity Δ will be used to compare our results with experiment. From Tables III-5 and III-6 we find:

 $(\triangle)_{APW} \qquad (\triangle)_{APW}^{+ \text{ perturbation}} \quad \triangle \text{ experimental} = \mathbb{E}_{g} - \mathbb{E}_{ig}$ AgCl 1.220 ev 1.843 ev 1.880 ev.
AgBr 1.049 ev 1.336 ev 1.61 ev.

In other words, after fitting our bands gap, $\mathop{\mathrm{E}}_{\mathrm{g}}$ to the

-59-

experimental values we obtain the indirect gap $E_{ig} = E_g - \Delta$, :

	(E _{ig}) _{calc} .	(E _{ig}) _{experimental}
AgCl	3.29 ev.	3.25 ev.
AgBr	2.95 ev.	2.68 ev.

At this point it should be mentioned that the values for E_{ig} given above are threshold energies found from optical absorption measurements and really do not correspond to transitions between electron states in the crystal, but transitions involving exciton formation. To determine E_{ig} for electronic transitions from the valence band to the conduction band one must take into account the binding energy of the exciton. However, not only is the binding energy of the exciton known only approximately, but, in addition, surface effects may further distort the exciton levels.¹⁰ Thus, because we can only obtain crude approximations for the exciton binding energies, the true value of E_{ig} must be considered somewhat uncertain. A reasonable estimate of the exciton binding energy is a few tenths of an electron volt; consequently, the corrected sizes of the indirect band gaps are: $E_{ig} = 3.4$ ev in AgCl and $E_{ig} = 2.9$ ev. in AgBr.

We may conclude that the APW bands calculated after varying one parameter, V_0 , certainly are in fairly good agreement with experimental facts. Moreover, even though the effects of some of the major perturbations have been calculated only approximately, at least the

-01-

correction terms tend to decrease the size of discrepancies between the APW calculation and experimental results. Because of the uncertainty in the true value of the indirect band gap, a precise comparison of the difference between the calculations and experiments is impossible, but the discrepancies are only of the order of one or two tenths of an electron volt (i.e. the error in the calculation of the indirect band gap is 5% of the size of the gap). Appendix One - Numerical Details of APW Calculations

Cube edge, a = 10.46 atomic units
Madelung potential,
$$V_M = \frac{\pm}{2\alpha} = \frac{\pm}{4\alpha}$$
 where $\alpha = 1.747558$
 $V_M = \pm 0.668282217$
sphere radii are $(Rs)_{Ag}^{+} = 2.60$ a.u., $(Rs)_{C_{\ell}}^{-} = 2.63$ a.u.
ionicities are: $A_{g}^{\pm} : \pm$; $C_{\ell}^{-} : \pm$.
Vo = -.579357

TABLE A1-1

Numerical potential used to obtain energy bands for silver-chloride. Potential used is tabular value - V_{Shift} , where $V_{\text{Shift}} = V_{\text{M}} - V_{\text{O}}$. For chlorine $V_{\text{Shift}} = 1.088925$, for silver $V_{\text{Shift}} = 1.247639$.

r	Silver Potential	r	Chlorine Potential
.0012266	76221.36230	.0017216	19660.72876
.0024533	37901.89258	.0034432	9785.44580
.0036799	25127.27856	.0051648	6493.29266
.0049065	18739.46582	.0068864	4846.98915
.0061332	14906.69385	.0086080	3859.03900
.0073598	12351.62756	.0103296	3200.31854
.0085864	10526.80750	.0120512	2729.74609
.0098131	9158.50818	.0137728	2376.78986
.0110397	8094.61035	.0154944	2102.25638
.0122663	7243.84009	.0172160	1882.62376
.0134930	6548.09686	.0189376	1702.93207
.0147196	5968.63867	.0206591	1553.20404
.0159462	5478.63605	.0223807	1426.53362
.0171729	5058.93311	.0241023	1317.98093
.0183995	4695.46661	.0258239	1223.92776
.0196261	4377.69415	.0275455	1141.65770
.0208528	4097.54822	.0292671	1069.09547
.0220794	3848.75784	.0309887	1004.62495
.0233060	3626.36865	.0327103	946.97129
.0245327	3426.41632	.0344319	895.11147
.0269858	3081.58112	.0378751	805.61683
.0294392	2794.85745	.0413183	731.14745
.0318925	2552.82355	.0447615	668.23425

- 64 -

TABLE	A1-1	(continued)
the share the	UT-T	(COM CAMACA)

r	Silver Potential	r	Chlorine Potential
.0343457	2345.89508	.0482047	614.40343
.0367990	2167.04453	.0516479	567.83854
.0392523	2011.00258	.0550910	527.17647
.0417055	1873.73729	.0585342	491.37437
.0441588	1752.11154	.0619774	459.62084
.0466121	1643.64845	.0654206	431.27509
.0490653	1546.36067	.0688638	405.82449
.0515186	1458.63741	.0723070	382.85398
.0539719	1379.16191	.0757502	362.02409
.0564251	1306.84669	.0791934	343.05443
.0500784	1240. (022 (.0020300	323. (1142
.0013311	1100.20(00	.0000 (90	205 151/13
0662382	1073 04678	0020661	281 62753
0686916	1025 44504	.0964093	269.10643
.0000910	981.27003	.0998525	257.48383
.0735980	940.17476	.1032957	246.67001
.0785045	866.04665	.1101821	227.16421
.0834111	801.06423	.1170685	210.07030
.0883176	743.68162	.1239549	194.98497
.0932241	692.68025	.1308412	181.58945
.0981.307	647.08877	.1377276	169.62877
.1030372	606.12086	.1446140	158.89489
.10(943)	569.13486	.1515004	149.21 (20
.1120705	505 07705	1652731	132 101/1
1226633	477.19402	.1721505	125,22519
.1275699	451.64007	1790459	118,57200
.1324764	428.15045	.1859323	112.46151
.1373829	406.49860	.1928187	106.83187
.1422895	386.48938	.1997050	101.63052
.1471960	367.95464	.2065914	96.81260
.1521025	350.74837	.2134778	92.33908
.1570091	334.74313	.2203642	88.17616
.1619156	319.82697	.2272506	84.29381
.1668221	305.90114	.2341370	80.66610
.1(1(20)	292.07050	.2410233	(1.2/049
10135/18	204.2000	2040901	(1.09()2
2011670	220 86310	2823416	60.78361
.2109809	213, 34015	.2961144	56.44670
2207940	198.54753	.3098871	52,55494
.2306071	185.22248	.3236599	49.04890
.2404201	173.17849	.3374327	45.87858

- 65 -

TABLE Al-1	(continued)
------------	-------------

r	Silver Potential	r	Chlorine Potential
r .2502332 .2600463 .2698593 .2796724 .2894854 .2992985 .3091116 .3189247 .3287377 .3385508 .3483636 .3581769 .3679900 .3876161 .4072422 .4268684 .4464945 .4661206 .4857468 .5053729 .5249990 .5445252 .5642513 .5838774 .603506 .623197 .6427558 .6623820 .6820081 .7016342 .7212604 .7016342 .7212604 .7016342 .7212604 .7016342 .7212604 .7997649 .8390172 .8782604	Silver Potential 162.25272 152.30886 143.23164 134.92279 127.29818 120.28530 113.82079 107.84921 102.32167 97.19559 92.43244 87.99859 83.86405 76.38983 69.82642 64.02853 58.87959 54.28586 50.17156 46.47497 43.14483 40.13803 37.41732 34.94994 32.70666 30.66144 28.79105 27.07522 25.49625 24.03903 22.69058 21.43989 20.27743 18.18641 16.36429	r . 3512054 . 3649782 . 3787510 . 3925237 . 4062965 . 4200692 . 4338420 . 4476148 . 4613875 . 4751603 . 4889330 . 5027058 . 5164786 . 5440241 . 5715696 . 5991151 . 6266607 . 6542062 . 6817517 . 7092972 . 7368428 . 7643883 . 7919338 . 8194793 . 8470249 . 8745704 . 9021159 . 9296614 . 9572069 . 9847525 1. 0122980 1. 0298435 1. 0673890 1. 1224801 1. 1775711	Chlorine Potential 43.00202 40.38354 37.99268 35.80338 33.79306 31.94224 30.23386 28.65329 27.18762 25.82556 24.55715 23.37371 22.26756 20.26105 18.49180 16.92400 15.52915 14.28434 13.17073 12.17265 11.27655 10.47059 9.74412 9.08754 8.49222 7.95046 7.45551 7.00155 6.58357 6.19735 5.83934 5.50651 5.19632 4.63556 4.14314
.8782694	14.77029	1.2326622	4.14514 3.70856 3.32358
·9567739 ·9960262	12.14109	1.3428443	2.98155
1.0352785	10.09807	1.4530264	2.40524
1.1137830	8.49735	1.5632085	2.16237 1.94496
1.1530353 1.1922875	7.82847 7.23257	1.6182995 1.6733906	1.75004

- 66 -

TABLE Al-1 (continued)

r	Silver Potential	r	Chlorine Potential
1.2315398 1.2707921 1.3100443 1.3492966 1.3885489 1.4278011 1.4670534 1.5063056 1.5455579 1.6240624 1.7025670 1.7810715 1.8595760 1.9380805 2.0165851 2.0950896 2.1735941 2.2520986 2.3306032 2.4091077 2.4876122 2.5661168 2.6446213 2.7231258 2.8016303 2.8801349 2.9586394 2.0371439	6.70046 6.22421 5.79693 5.41267 5.06624 4.75313 4.46946 4.21182 3.97723 3.56758 3.22318 2.93102 2.68105 2.46545 2.27804 2.11428 1.97005 1.84213 1.72804 1.66037 1.60797 1.55878 1.51250 1.46890 1.42774 1.38882 1.35197 1.31702	1.7286816 1.7835726 1.8386637 1.9488458 2.0039368 2.0590279 2.1141189 2.1692100 2.2793921 2.3895742 2.4997562 2.6099384 2.7201204 2.8303025 2.9404846 3.0506667	1.41766 1.27595 1.14816 1.03276 0.92838 0.83384 0.74809 0.67020 0.59935 0.47604 0.37320 0.28701 0.21447 0.15317 0.10120 0.05704 0.01946

- 67 -

TABLE A1-2

l

0

1234567890

11 12

l

0

12345678

$R_1 = 0.00122663$	$R_2 = 0.00245325$
$P_{\ell}(R_1)$	$P_{\chi}(R_2)$
0.108829744E-02 0.141955070E-05 0.177585952E-08 0.219954081E-11 0.271363884E-14 0.334140100E-17 0.410985142E-20 0.505156033E-23 0.620621569E-26 0.762236707E-29 0.935949534E-32 0.114905238E-34 0.141048819E-37	0.191204511E-02 0.535101919E-05 0.136673540E-07 0.341918737E-10 0.848564327E-13 0.209769309E-15 0.517412595E-18 0.127448827E-20 0.313646004E-23 0.771380305E-26 0.189626046E-28 0.465991966E-31 0.114483923E-33

Starting Values for Chlorine Potential

$R_1 = 0.00172158$	$R_2 = 0.0034431$
$P_{\ell}(R_{l})$	P_{χ} (R ₂)
0.162221357E-02 0.287813716E-05 0.500395164E-08 0.865691431E-11 0.149472073E-13 0.257829472E-16 0.444491304E-19 0.766025417E-22 0.131984435E-24 0.227369450E-27 0.391643129E-30 0.674544670E-33 0.116172016E-35	0.305117846E-0 0.111776300E-0 0.392577983E-0 0.136499569E-0 0.472736463E-1 0.163401678E-1 0.564171329E-1 0.194654733E-1 0.671303995E-2 0.231437661E-2 0.797714740E-2 0.274906747E-2 0.947250791E-3

-9

2479247924792

- 68 -

TABLE A1-3

Silver Chloride Energy Band States and Charge Densities

Here we list the values of $\epsilon(\vec{k})$ calculated by the APW method $(\vec{k}$ is given in units of $\frac{\pi}{a}$). Also, for points of major interest in the valence band the "charge density" within each sphere and between spheres is given. This "charge density" within a given sphere is the total amount of charge in that sphere which can be associated with a particular $\underline{\ell}$ value. The charge between spheres is labeled "plane wave". Finally, only the dominant contributions to the charge density are tabulated below even though the calculations were performed for $\ell = 0, \ldots, 12$.

LOWEST CONDUCTION BAND

4k	Symmetry	APW Energy (in Rydbergs)
0,0,0	Г	.1569
0,2,0	$\Delta_{\tt l}$.2200
0,4,0	\triangle_{l}	.3029
0,6,0	$\triangle_{\texttt{l}}$	•3199
0,8,0	Xl	.3005
2,2,0	Σ_{l}	•2599
4,4,0	Σι	.4063
6,6,0	Kl	•3723
2,2,2	Λ_{L}	.2791
4,4,4	L ₂ '	.4088

Venilter	60	
-	09	-

TABLE A1-3 (continued)

SECOND LOWEST CONDUCTION BAND

4k.	Symmetry	APW Energy (in Rydbergs)
0,0,0		.8351
0,4,0	Δ_2 '	.6871
0,8,0	X3	.6625
6,6,0	Kl	.5864
4,4,4	L _l	.5202

- 70 -TABLE Al-3 (continued)

"p" bands

4k	Symmetry	APW Energy	Plane Wave Charge	Charge In Chlorine Sphere	Charge In Silver Sphere
0,0,0	Π15	2182	.068	.897, <i>L</i> = 1	.023, <i>l</i> = 1
0,2,0	Δ_{l}	2091			
0,4,0	Δ_{l}	2116	.113	.019, $\ell = 0$.482, $\ell = 1$.003, $\ell = 2$.048, $\ell = 0$.003, $\ell = 1$.328, $\ell = 2$
0,6,0	Δ_{l}	2466			
0,8,0	Xı	3042	.019	.024, x = 1 .001, x = 2	•953, <i>l</i> = 2
0,2,0	Δ_5	2192			
0,4,0	Δ_5	2255	.072	.818, _l = 1	.018, ~= 1 .085, L = 2
0,6,0	Δ_5	2422			
0,8,0	X' 5	2521	.110	.858, $\ell = 1$.027, <i>l</i> = 1
2,2,0	Σι	2360			
4,4,0	Σι	2394	.088	.009, <i>l</i> = 0 .415, <i>l</i> = 1 .007, <i>l</i> = 2	.049, _l = 0 .429, _l = 2
6,6,0	Kı	2419	.085	$.006, \ l = 0$ $.514, \ l = 1$ $.004, \ l = 2$.029, $\ell = 0$.010, $\ell = 1$.349, $\ell = 2$
2,2,0	Σβ	2195			
4,4,0	Σβ	2354	.075	.690, <i>l</i> = 1	.022, <i>l</i> = 1 .209, <i>l</i> = 2
6,6,0	K3	2724	.086	.481, <i>l</i> = 1	.025, <i>l</i> = 1 .405, <i>l</i> = 2
2,2,0	Σ4	1779			
4,4,0	Σ4	1271	.027	.321, <i>l</i> = 1	.648, <i>L</i> = 2
TABLE A1-3 (continued)

4k	Symmetry	APW Energy	Plane Wave Charge	Charge In Chlorine Sphere	Charge In Silver Sphere
				.671, <i>L</i> = 1	.015, 1 = 1
6,6,0	K4	1993	.065	$.006, \ell = 2$.039, l = 2
4,8,0	Wl	1547			
	W3	2644			
2,2,2	Λ_{l}	2591			
	Λ_{3}	1794			
4,4,4	L	2668	.062	.334, <i>l</i> = 1	.042, <i>l</i> = 0 .560, <i>l</i> = 2
	L_3	1281	.019	.314, 1 = 1	.666, <i>l</i> = 2
			d bands	3	
0,0,0		3263	.029	.019, 1= 2	.952, 1= 2
0,2,0	Δ_{l}	3550			
0,4,0	Δ_{l}	3835	.084	.336, <i>l</i> = 1	.012, <i>l</i> = 0 .002, <i>l</i> = 1 .563, <i>l</i> = 2
0,6,0	\triangle_{l}	3689			
0,8,0	X_{4}^{\prime}	3200	.186	.764, <i>l</i> = 1	.049, <i>l</i> = 1
0,2,0	Δ_2	3250			
0,4,0	Δ_2	3224	.025	.018, <i>l</i> = 2	.956, <i>x</i> = 2
0,6,0	Δ_2	3198			
0,8,0	X2	3186	.002	.016, 1 = 2	.960, <i>l</i> = 2
0,0,0		3270	.046	.007, <i>l</i> = 2	.947, <i>l</i> = 2
0,2,0	Δ'_2	3283			
0,4,0		3323	.055	.008, <i>L</i> = 2	.936, <i>l</i> = 2
0.6.0		3361			

- 72 -

TABLE A1-3	(continued)
------------	-------------

4k	Symmetry	APW Energy	Plane Wave Charge	Charge In Chlorine Sphere	Charge In Silver Sphere
0,8,0	Хз	3375	.065	.010, <i>l</i> = 2	.925, <i>L</i> = 2
0,2,0	Δ_5	3271		000 4 3	000
0,4,0	Δ_5	3257	.051	.090, <i>l</i> = 1 .002, <i>l</i> = 2	.002, l = 1 .853, l = 2
0,6,0	Δ_5	3159			1
0,8,0	X.5	3086	.026		•973, <i>l</i> = 2
2,2,0	Σ_{l}	3484			
4,4,0	Σι	3835	.115	.367, <i>l</i> = 1	.027, <i>l</i> = 0 .488, <i>l</i> = 2
6,6,0	Kl	3543	.100	.279, <i>L</i> = 0	.011, l = 0 .006, l = 1 .596, l = 2
2,2,0	$\Sigma_{ m l}$	3182			
4,4,0	Σ_{l}	3119	.028	.003, <i>L</i> = 0 .001, <i>L</i> = 1 .003, <i>L</i> = 2	.962, L= 2
6,6,0	Κĩ	3133	.035	.034, <i>l</i> = 1	.915, <i>l</i> = 2
2,2,0	Σ2	3234			
4,4,0	Σε	3116	.035	.002, <i>l</i> = 2	.961, <i>l</i> = 2
6,6,0	K2	3105	.029		.970, <i>l</i> = 2
2,2,0	Σα	3343			
4,4,0	$\Sigma_{\mathbf{G}}$	3452	.088	.192, <i>l</i> = 1 .003, <i>l</i> = 2	.008, <i>L</i> = 1 .708, <i>L</i> = 2
6,6,0	K3	3406	.115	.337, <i>l</i> = 1	.020, L= 1 .526, L= 2
2,2,0	Σ4	3611			
4,4,0	Σ4	3847	.058	.258, l = 1	.653, L= 2

- 73 -

TABLE A1-3 (continued)

4k	Symmetry	APW Energy	Plane Wave Charge	Charge In Chlorine Sphere	Charge In Silver Sphere
6,6,0	K4	3623	.055	.260, <i>l</i> = 1	.004, L = 1 .075, L = 2
4,8,0	Wl	3534			
	W2	3078			
	Wi	3083			
	W3	3427			
2,2,2	Λ_{l}	3519			
	Λ ₃	3622			
	Λ ₃	3185			
4,4,4	Lı	3946	.167	.412, /= 1	.047, <i>l</i> = 0 .372, <i>l</i> = 2
	L3	3891	.063	.282, <i>l</i> = 1	.653, <i>l</i> = 2
	L3	3137	.029	.002, <i>l</i> = 1	.967, L= 2

AgBr Calculation

Cube edge, a = 10.926 atomic units Madelung potential, $V_M = \frac{\pm}{a} \frac{2\alpha}{a/2} = \frac{\pm}{a} \frac{4\alpha}{a} = \frac{\pm}{a} .654423576$ Sphere radii are: $(Rs)_{Ag}^{+} = 2.6105 \text{ a.u.}$ $(Rs)_{Br}^{-} = 2.8525$ ionicities are: $Ag^{\pm} : \pm 1$; $Br : \pm 1$ Vo= .69465

TABLE A1-4

Numerical potential used to obtain energy bands for silver-bromide. Potential used is tabular value - V_{Shift} , where $V_{Shift} = V_{M} - V_{O}$. For bromine $V_{Shift} = .0402300$, for silver $V_{Shift} = 1.34907000$

r	Silver	r	Bromine
1	POTENCIAL	1	POCEILLTAL
0.001226619	76221.2714844	0.001353279	51458.8803711
0.002453253	37901.7529297	0.002706580	25593.8713379
0.003679894	25127.2478027	0.004059874	16971.2055664
0.004906528	18739.4462891	0.005413160	12659.3913574
0.006133154	14906.6660156	0.006766446	10072.1009521
0.007359788	12351.5981445	0.008119840	8347.1942139
0.008586422	10526.7927246	0.009473041	7115.1671753
0.009813063	9158.4963379	0.010826327	6191.2527466
0.011039697	8094.5987549	0.012179621	5472.7929077
0.012266323	(243.0256226	0.013532907	4898.1845095
0.013492937	5068 6107818	0.014006200	4420.2191/2
0.014 (19)90	5178 6001821	0.017500788	4030. (31000)
0.017172866	5058 0168001	0.01/992/00	2102.01014728
0.018300/02	1605 1506836	0.010940074	3176 1015088
0.010626126	1377 6776733	0.021652651	2061 636003/
0.020852767	4097, 5325317	0.023005955	2772 2655640
0.022079401	3848.7419739	0.024359249	2604.0711670
0.023306035	3626.3529358	0.025712535	2453.7120667
0.024532661	3426.4010315	0.027065821	2318.5105896
0.026985936	3081.5674438	0.029772416	2085.3107605
0.029439196	2794.8447266	0.032478996	1891.3712006

TABLE A1-4 (continued)

	Silver		Bromine
r	Potential	r	Potential
0 031802464	2552 8117676	0 035185583	1727 6218262
0.034345739	2345.8832703	0.037892163	1587 5860748
0.036708000	2167 0331116	0.010508713	1166 5110076
0.070790999	2010 0013025	0.040/90/4/	1400. 11400 10
0.079272279	1873 7060135	0.045505550	1900.0490099
0.041 (00004	10 [3. [20913]	0.048011910	120 (.0790071
0.044100194	1 ()2.1020290	0.040/10490	1107.45 (1940
0.040012002	1043.03901 (9	0.051425077	1111.910/056
0.049067557	1040.001 (101	0.054151057	1045.9450542
0.051510597	1470.6299096	0.050050252	906.4518738
0.0539/10/2	15 (9.1501504	0.059544652	952.5500575
0.056425132	1306.0414307	0.062251419	003.5079498
0.0500 (040 (1240. (((1)))	0.064957999	030. (114060
0.061331667	1100.2032920	0.067665479	191.6413001
0.063784935	1124.4744720	0.070371166	759.8796921
0.066238210	1073.0437775	0.07307746	725.0369415
0.068691470	1025.4428406	0.075784326	692.8004532
0.071144730	981.2686539	0.078490913	662.8954239
0.073598005	940.1729889	0.081197943	635.0838013
0.078504533	866.0449371	0.086610660	584.9391479
0.083411068	801.0629425	0.092023835	540.9999084
0.088317603	743.6798782	0.097437002	502.2084160
0.093224138	692.6789466	0.102850169	467.7335472
0.098130681	647.0874100	0.108263329	436.9139366
0.103037201	606.1197433	0.113676496	409.2166367
0.107943736	569.1331253	0.119089663	384.2070427
0.112850279	535.5987701	0.124502838	361.5272636
0.117756814	505.0748444	0.129916005	340.8795433
0.122663349	477.1917229	0.135329165	322.0150108
0.127569877	451.6385078	0.140742339	304.7227592
0.132476412	428.1489754	0.146155499	288.8235130
0.137382947	406.4972382	0.151568659	274.1633911
0.142289475	386.4880676	0.156981841	260.6103592
0.147196017	367.9537277	0.162394993	248.0500317
0.152102545	350.7477188	0.167808175	236.3829498
0.157009087	334.7429733	0.173221335	225.5222321
0.161915623	319.8269997	0.178634502	215.3918247
0.166822158	305.9013290	0.184047677	205.9247189
0.171728693	292.8784409	0.189460844	197.0619106
0.181541756	269.2388268	0.200287171	180.9469128
0.191354819	248.3766289	0.211113505	166.6930752
0.201167889	229.8634224	0.221939839	154.0190144
0.210980959	213.3494549	0.232766174	142.6975994
0.220794030	198.5481701	0.243592501	132.5428543
0.230607100	185.2233200	0.254418835	123.4003258
0.240420163	173.1795063	0.265245177	115.1403875
0.250233233	162.2538338	0.276071511	107.6528263
0.260046303	152.3100491	0.286897846	100.8437424
0.269859366	143.2328358	0.297724180	94.6324692

TABLE A1-4 (continued)

	Silver		Bromine
r	Potential	r	Potential
0.279672429	134,9241047	0.308550514	88,0405407
0.289485507	127 2006350	0.319376834	83 7352304
0.200208570	120 2867231	0.330203183	78 0370807
0.300111640	113 8220320	0.341020510	70.5131715
0.318020710	107 8502203	0 351855852	70 1031180
0.328737773	102 3225965	0.362832186	66 63) 6307
0.338550851	07 1062032	0.373508506	63 1182076
0.3/1836301/1	02 11320672	0.38/133/1855	50 8/017/0
0.358176084	87 0001108	0 305161182	56 8051538
0.367000054	83 8645573	0 405087523	53 0666767
0.387616105	76 3002225	0 427640185	118 8300660
0.107212328	60.8267384	0 110202853	40.0090000
0.407242920	64 0288830	0 470945530	40 3087737
0.420000401	58 8800192	0 402508101	36 0121356
0.440494002	5/ 286/1010	0.514250860	33 8230706
0.400120())	50 1720153	0.535003521	31 0768130
0.505373001	16 176000	0.557556190	28 6270083
0.5210001/12	13 1160117	0.579208858	26 113/16728
0.511625267	1387682	0.600861527	20.4040120
0.561251115	37 1179116	0.62251/1106	22 6020703
0.583877510	31 0105107	0.622714190	21 0008067
0.603503682	32 7063808	0.665819533	19 6387401
0.623120822	30 6612208	0.687/1721.0/1	18 3188715
0.612755055	28 7000672	0 7001 20871	17 115820
0.662382080	27 0751070	0.730777532	16 0163610
0.682008237	25 1062100	0.752/(3020)	15 0000005
0.70163/1370	2/1 0300600	0.771082877	1/1 08/11008
0.721260510	22 6006250	0.795735531	13 2331501
0.710886611	21 11300511	0.817388214	12 4486718
0.760512777	20 2775328	0.839040875	11 72/10320
0.700765050	18 1863356	0.882346220	10 11336/132
0.830017332	16 3641756	0.025651558	0 32/10875
0.878260605	14 7701148	0.968956888	8 3652111
0.017521870	13 3713800	1 012262210	7 53/10076
0.91/210/9	12 1)100510	1 0555675/18	6 8105017
0.990114190	11 0560338	1 008872870	6 1780811
1 035278603	10.0080206	1 1/10178003	5 6221/110
1.07/1530050	0.0900240	1 185/183560	5 1300130
1 113783200	8 1073800	1 228788882	J. 60/1/700
1 153035477	7 8285376	1 27200/220	1. 30/15700
1 102287773	7 2327107	1 315300557	3 05/15000
1.231540024	6.7006604	1.358704805	3.6387040
1.270792305	6.2244602	1,402010232	3.3526863
1.310044587	5.7972141	1,445315555	3.0027204
1.349296853	5.4129696	1,488620907	2.8556074
1.388549149	5.0665382	1.531926244	2.6390250
	/ / /		

TABLE A1-4 (continued)

	Silver		Bromine
r	Potential	r	Potential
1.427801400	4.7534295	1.575231582	2.4405118
1.467053682	4.4697595	1.618536904	2.2582954
1.506365963	4.2121184	1.661842242	2.0907371
1.545558214	3.9775616	1.705147594	1.9364346
1.624062777	3.5678524	1.791758269	1.6628587
1.702567324	3.2234192	1.878368914	1.4291870
1.781071872	2.9312140	1.964979589	1.2287914
1.859576404	2.6812400	2.051590264	1.0563051
1.938080952	2.4656413	2.138200939	0.9073308
2.016585499	2.2782515	2.224811614	0.7782427
2.095090032	2.1442354	2.311422259	0.6660390
2.173594564	1.9697405	2.398032933	0.5682079
2.252099127	1.8416888	2.484643608	0.4826654
2.330603629	1.7276102	2.571254253	0.4076546
2.409108192	1.6603654	2.65/864958	0.341/04/
2.487612754	1.6079673	2.744475635	0.2035/01
2.566117257	1.5587752	2.831086248	0.232226(
2.644521849	1.5125036	2.91/696903	0.100/009
2.723126352	1.4688998	5.00450 (590	0.1404402
2.801630914	1.4277590	5.090910505	0.1100344
2.000135506	1.3000235	3.1(1)209(1	0.010110
2.958640009	1.3717025	2.204129022	0.0004112
5.05 (144601	1.01(020)	2.127761000	0.0201090
5.115649104	1.2030410	2.42 (201002	0.0020110

TABLE A1-5

$R_1 = .001226619$	$R_2 = .002453253$
$P_{\mathcal{A}}(R_{1})$	$P_{f}(R_{2})$
0.11336545E-02 0.13999555E-05 0.16957746E-08 0.20444263E-11 0.24601492E-14 0.29576492E-17 0.35538675E-20 0.42688610E-23 0.51265719E-26 0.61556672E-29 0.73905125E-32 0.88723274E-35 0.10650562E-37	0.21398334E-02 0.54440691E-05 0.13312540E-07 0.32246228E-10 0.77817373E-13 0.18744398E-15 0.45103516E-18 0.10845897E-20 0.26069453E-23 0.62642142E-26 0.15048931E-28 0.36147066E-31 0.86813138E-34

Starting Values for Bromine Potential

 $R_1 = .001353279$

l 0

12345678

0

 $P_{l}(R_{1})$

~	×	
0	0.12418757E-02	
l	0.16519856E-05	j l
2	0.21638519E-08	3
3	0.28234833E-11	
4	0.36789075E-14	
5	0.47897289E-17	7
6	0.62332861E-20)
7	0.81097445E-23	;
8	0.10549212E-25	5
9	0.13720781E-28	3
10	0.17844255E-31	_
11	0.23205376E-3L	÷
12	0.30175614E-3	7

 $R_2 = .002706580$

 $P_{g}(R_{2})$

0.24539369E-02 0.69535451E-05 0.19069694E-07 0.51886594E-10 0.14073923E-12 0.38115773E-15 0.10313664E-17 0.27892264E-20 0.75404397E-23 0.20379768E-25 0.55070835E-28 0.14879354E-30 0.40197628E-33

TABLE A1-6

Silver Bromide Energy Band States and Charge Densities

Here we list the values of $\underline{\epsilon}(\vec{k})$ calculated by the APW method $(\vec{k}$ is given in units of $\frac{\pi}{4}$). Also, for points of major interest in the valence band the "charge density" within each sphere and between spheres is given. This "charge density" within a given sphere is the total amount of charge in that sphere which can be associated with a particular $\underline{\ell}$ value. The charge between spheres is labeled "plane wave". Finally, only the dominant contributions to the charge density are tabulated below even though the calculations were performed for $\underline{\ell} = 0, \ldots, 12$.

LOWEST CONDUCTION BAND

4k	Symmetry	APW Energy (in Rydbergs)
0,0,0	- Г <u>.</u>	.2396
0,2,0	Δ_1	.2961
0,4,0	Δ_{l}	.4000
0,6,0	Δ_{l}	.3708
0,8,0	Xı	•3552
2,2,0	Σ	.3380
4,4,0	. Σ1	.4984
6,6,0	Kl	.4323
2,2,2	L.	•3799
4,4,4	L'2	.4277

TABLE A1-6 (continued)

SECOND LOWEST CONDUCTION BAND

4k	Symmetry	APW Energy (in Rydbergs)
0,0,0	25	.8366
0,2,0	Δ_2	.7486
0,4,0	Az	.6663
0,6,0	Δ_2	.6179
0,8,0	X ₃	.6020
2,2,0	Σ	.7507
4,4,0	Σ_{l}	•5699
6,6,0	Kı	.6044
4,4,4	Lı	.6300

- 81 -

TABLE A1-6 (continued)

"p" bands

4k	Symmetry	APW Energy	Plane Wave Charge	Charge In Bromine Sphere	Charge In Silver Sphere
0,0,0	Γ_{15}	0782	.077	.901, <i>i</i> = 1	.014, $\ell = 1$
0,2,0	Δ_1	0893			
0,4,0	\triangle_1	0995	.153	$.031, \ell = 0$ $.534, \ell = 1$.049, <i>l</i> = 0 .224, <i>l</i> = 1
0,6,0	Δ_{l}	1430			
0,8,0	Xı	2048	.019	.027, <i>l</i> = 1	.950, b= 2
0,2,0	Δ_5	0827			
0,4,0	Δ_5	0958	.093	.857, <i>l</i> = 1	.021, l = 1 .023, l = 2
0,6,0	Δ_5	1001			
0,8,0	X' 5	1247	.131	.834, l = 1	.031, $L = 1$
2,2,0	Σ_1	1198			
4,4,0	Σ_{l}	1362	.125	.012, $\ell = 1$.442, $\ell = 2$.058, l = 1 .351, l = 2
6,6,0	Kl	1345	.119	.558, ℓ = 1	.038, $\mathcal{L} = 0$.011, $\mathcal{L} = 1$.259, $\mathcal{L} = 2$
2,2,0	Σ _B	0881			
4,4,0	Σ3	1180	.106	.726, l = 1 .001, l = 2	.028, <i>l</i> = 1 .135, <i>l</i> = 2
6,6,0	K3	1652	.134	.544 <i>, l</i> = 1	.033, <i>l</i> = 1 .287, <i>l</i> = 2
2,2,0	Σ4	0250			
4,4,0	Σ4	0184	.030	.397, <i>l</i> = 1	.571, <i>l</i> = 2
6,6,0	K4	0779			
4,8,0	Wl	0182			

- 82 -

TABLE A1-6 (continued)

4k	Symmetry	APW Energy	Plane Wave Charge	Charge In Bromine Sphere	Charge In Silver Sphere
	W3	1518			
2,2,2	Λι	1444			
	Λз	0500			
4,4,4	Lı	1644			
	L3	0007	.043	.515, l = 1	.440, &= 2
	-		d bands		
0,0,0	12	2275			
0,2,0	\triangle_{l}	2483			
					$.010, \ell = 0$
0,4,0	\triangle_{l}	2730	.087	.278, $\ell = 1$.619, <i>L</i> = 2
0,6,0	\triangle_{l}	2601			
0,8,0	X'4	2105	.230	.719, l = 1	.051, l = 1
0,2,0	42	2263			
0,4,0	42	2240	.028	.020, <i>l</i> = 2	.952, <i>L</i> = 2
0,6,0	Δ_2	2216			
0,8,0	X2	2206	.024	.027, <i>l</i> = 1	.950, <i>l</i> = 2
0,0,0	C 25	2282	.050	.008, ℓ = 2	.941, <i>l</i> = 2
0,2,0	∆' 2	2294			
0,4,0	Δ'_{2}	2330	.061	.010, <i>l</i> = 2	.929, <i>l</i> = 2
0,6,0	Δ'2	2364			
0,8,0	X3	2378	.071	.012, <i>l</i> = 2	.917, <i>l</i> = 2
0,2,0	Δ_5	2277			
					.001, l = 1
0,4,0	Δ_5	2254	.052	.050, l = 1	.892, l = 2

- 83 -

TABLE A1-6 (continued)

4k	Symmetry	APW Energy	Plane Wave Charge	Charge In Bromine Sphere	Charge In Silver Sphere
0,6,0	Δ_5	2177			
0,8,0	X ₅	2119	.030		.968, <i>l</i> = 2
2,2,0	Σ_{l}	2196			
4,4,0	Σ_{l}	2140	.032		.958, <i>l</i> = 2
6,6,0	Kı	2154	.035	.011, ℓ = 0 .032, ℓ = 2	.915, <i>l</i> = 2
2,2,0	Σ_{l}	2430			
4,4,0	Σ_{l}	2731	.148	.355, <i>l</i> = 1	.032, l = 0 .458, l = 2
6,6,0	Kı	2468	.109	.223, <i>l</i> = 1	.008, <i>l</i> = 0 .005, <i>l</i> = 1 .645, <i>l</i> = 2
2,2,0	Σ2	2249			
4,4,0	Σε	2190	.039	.002, & = 2	·956, l = 2
6,6,0	K2	2135	.033		.965, <i>L</i> = 2
2,2,0	Σα	2335			
4,4,0	Σβ	2421	.090	.132, l = 1 .004, = 2	.006, l = 1 .766, l = 2
6,6,0	K3	2396	.121	.260, l = 1 .001, l = 2	.016, l = 1 .600, l = 2
2,2,0	Σ4	2527			
4,4,0	Σ4	2729			
6,6,0	K4	2536			
4,8,0	Wl	2334			
	W'2	2068			
	W!	2116			
	Wa	2405			

TABLE A1-6 (continued)

4k	Symmetry	APW Energy	Plane Wave Charge	Charge In Bromine Sphere	Charge In Silver Sphere
2,2,2	Λı	2468			
	Λз	2199			
	Λ ₃	2513			
4,4,4	L _l	2872			
	L3	2160	.033	$.001, \ell = 1$.962, <i>l</i> = 2
	L3	2761	.063	.226, 1 = 1	.708, <i>L</i> = 2

- 85 -

Appendix Two

Coefficients of the Spherical Harmonics for the Scalar APW Wave Functions

at Γ_{15}			$S_{1-1}^{(1)}$	=	iS	$(1) C_{1-1}$	=	-iC			
	AgCl		(1) S10	=	0	$c_{lo}^{(l)}$	=	0			
			s _{ll}	=	-iS	$C_{ll}^{(l)}$	=	iC		where	
									S C	= .69156 = 1.5125	066 040
			(2) S ₁₋₁		- S	(2) C _{l-l}	=	С			
			(2) S10	=	0	c ⁽²⁾	=	0			
			(2) S ₁₁	=	-S	c ₁₁ ⁽²⁾	=	С			
			(3) S1-1	=	0	$\binom{(3)}{C_{1-1}}$	=	0			
			(3) S10	=	i√2s	(3)	=	- i√2	C		
			(3) S11	=	0	(3)	=				
	2.				1. a						
			(l) S ₁₋₁	=	iS	(l) B1-1	=	-iB			
	AgBr		(1) S ₁₋₁ (1) S ₁₀	=	iS 0	(1) B ₁₋₁ B ₁₀	=	-iB O			
	AgBr	-1	$(1) \\ S_{1-1} \\ (1) \\ S_{10} \\ S_{11} $	= =	iS 0 -iS	(1) B ₁₋₁ B ₁₀ B ₁₀ B ₁₁	-	-iB O iB	_	where	
	AgBr		$(1) \\ S_{1-1} \\ (1) \\ S_{10} \\ S_{11} \\ (1) \\ S_{11} $	= =	iS 0 -iS	(1) B1-1 B10 B10 B11	-	-iB O iB	S = B =	where 5.40922 13.5207	276
	AgBr		$(1) \\ S_{1-1} \\ (1) \\ S_{10} \\ S_{11} \\ (2) \\ S_{1-1} \\ (2) \\ S_{1-1} \\ (3) \\ (3) \\ S_{1-1} \\ (3) \\ $	=	iS 0 -iS -S	(1) B ₁₋₁ (1) B ₁₀ B ₁₁ B ₁₁ B ₁₁	=	-iB O iB B	S = B =	where = 5.40922 = 13.5207	276
	AgBr		$(1) \\ S_{1-1} \\ (1) \\ S_{10} \\ S_{11} \\ (2) \\ S_{1-1} \\ S_{10} \\ (2) \\ S_{10} \\ (2) \\ S_{10} \\ (2) \\ S_{10} \\ (2) \\ S_{10} \\ (3) \\$	-	iS 0 -iS -S 0	(1) B1-1 (1) B10 B11 B11 B11 B1-1 B10 B1-1 B10		-iB O iB B O	S = B =	where 5.40922 13.5207	276
	AgBr		$(1) \\ S_{1-1} \\ (1) \\ S_{10} \\ S_{11} \\ (2) \\ S_{1-1} \\ (2) \\ S_{10} \\ (2) \\ S_{11} \\ (2) \\ S_{11} \\ (2) \\ S_{11} \\ (2) \\ S_{11} \\ (3) \\$	= = =	iS 0 -iS -S 0 -S	(1) B ₁₋₁ (1) B ₁₀ B ₁₁ (2) B ₁₀ B ₁₀ (2) B ₁₀ B ₁₀ (2) B ₁₀		-iB O iB B O B	S = B =	where = 5.40922 = 13.5207	276
	AgBr		$(1) \\ S_{1-1} \\ (1) \\ S_{10} \\ S_{11} \\ (2) \\ S_{1-1} \\ (2) \\ S_{10} \\ (2) \\ S_{11} \\ S_{11} \\ (3) \\ S_{1-1} \\ (3) \\ (3) \\ S_{1-1} \\ (3) \\$	= = = =	iS 0 -iS -S 0 -S 0	$(1) B_{1-1} \\ (1) B_{10} \\ B_{11} \\ (2) B_{1-1} \\ B_{10} \\ B_{10} \\ B_{10} \\ B_{10} \\ B_{11} \\ B_{11$		-iB O iB B O B	S = B =	where 5.40922 13.5207	276
	AgBr		$(1) \\ S_{1-1} \\ (1) \\ S_{10} \\ S_{11} \\ (2) \\ S_{1-1} \\ S_{10} \\ (2) \\ S_{11} \\ S_{10} \\ S_{11} \\ S_{1-1} \\ S_{10} \\ S_{10} \\ (3) \\ ($		iS 0 -iS -S 0 -S 0 i√2S	$(1) B_{1-1} \\ B_{10} \\ B_{10} \\ B_{11} \\ B_{11} \\ B_{11} \\ B_{11} \\ B_{11} \\ B_{10} \\ B_{10} \\ B_{11} \\ B_{10} \\ B_{10$	-	-iB O iB B O B O i \2B	S = B =	where 5.40922 13.5207	276

AgCl

$S_{2-2}^{(1)}$	=	$-\frac{15}{\sqrt{2}}$ s				
(1) S ₂₋₁	=	(l-i) 3S	$C_{1-1}^{(1)}$	Ξ	-(l + i) √3c	
$s_{20}^{(1)}$	н	0	$C_{10}^{(1)}$ $C_{11}^{(1)}$	1	$(-1 + i)\sqrt{3}c$	
$S_{21}^{(\perp)}$	=	-(l + i)√3s				
S22	-	- <u>15</u> s			where S = .02096977 C = 1.0860413	2
(2) S <mark>2-</mark> 2	11	-2iS	a(2)			
(2) S ₂₋₁	=	(l + i)S	C_{1-1}	8	(-1 + i) C	
(2) S ₂₀	=	-15S	$C_{10}^{(2)}$	=	-2V2C	
(2) S ₂₁	=	(-l + i)S	C11	н	-(l + i)C	
(2) S22	H	2 iS				
(1) S ₂₋₂	=	<u>-12</u> s	(1)			
(1) S ₂₋₁	=	(1-i) √ 3S	B_{1-1} (1)	=	-(l + i)√3B	
(1) S ₂₀	=	0	$B_{10}^{(1)}$	Ξ	0	
s21)	=	-(l + i)	B11	=	(-l + i)√3B	
(1) S ₂₂	н	- <u>12</u> s		S =	where .046648408	
				B =	1.0447396	

AgBr

$S_{2-2}^{(2)}$	=	-2is	(2)		
s(2)	=	(1 + i)S	B_{1-1}	=	(-l + i)B
(2)		(1 1 1)5	$B_{10}^{(2)}$	=	-21/2B
S_{20}^{\prime}	=	-125	(2) B11	=	-(1 + i)B
S ₂₁	=	(-l + i)S			(/ 2
(2) S ₂₂	=	21 S			

- 87 -

Appendix Three - Operations of the Cubic Group, O_h .

The operations of the cubic group listed here are those defined by Slater in "Quantum Theory of Molecules and Solids, Volume One".

Rı	$\psi(x,y,z)$	=	$\psi(x,y,z)$
R_2	$\psi(x, y, z)$	=	$\psi(x, -y, -z)$
R3	$\psi(x, y, z)$	=	$\psi(-x,y,z)$
R_4	$\psi(x,y,z)$	=	$\psi(-x, -y, z)$
R5	$\psi(x,y,z)$	=	$\psi(y, z, x)$
R ₆	$\psi(x, y, z)$	=	$\psi(-y,z,-x)$
R7	$\psi(x,y,z)$	=	$\psi(-y,-z,x)$
Ra	$\psi(x,y,z)$	=	$\psi(y, -z, -x)$
Rg	$\psi(x,y,z)$	=	$\psi(z, x, y)$
Rio	y(x,y,z)	=	$\psi(-z,-x,y)$
R ₁₁	$\psi(x,y,z)$	=	$\psi(z, -x, -y)$
R12	$\psi(x, y, z)$	=	$\psi(-z, x, -y)$
R13	$\psi(x,y,z)$	=	$\psi(-x,z,-y)$
R14	y(x,y,z)	=	$\psi(-x,-z,y)$
R15	$\psi(x,y,z)$	=	$\psi(-z,-y,x)$
R16	$\psi(x,y,z)$	=	(z,-y,-x)
R17	ψ(x,y,z)	=	$\psi(y, -x, -z)$
R18	$\psi(x,y,z)$	=	$\psi(-y,x,-z)$
R19	$\psi(x,y,z)$	-	$\psi(x,z,y)$
R20	$\psi(x,y,z)$	=	$\psi(x, -z, -y)$
R21	$\psi(x,y,z)$	=	$\psi(z,y,x)$
R22	$\psi(x,y,z)$	=	$\psi(-z,y,-x)$
R23	$\psi(x,y,z)$	=	$\psi(y, x, z)$
R24	$\psi(x, y, z)$	- =	$\psi(-y,-x,z)$

R25	$\psi(x, y, z)$	=	$\psi(-x, -y, -z)$
R26	$\psi(x, y, z)$	=	$\psi(-x, y, z)$
R27	$\psi(x,y,z)$	=	$\psi(x, -y, -z)$
R28	$\psi(x,y,z)$	==	$\psi(x,y,-z)$
R29	$\psi(x,y,z)$	=	$\psi(-y, -z, -x)$
R30	$\psi(x,y,z)$	=	$\psi(y, -z, x)$
R31	$\psi(x,y,z)$	=	$\psi(y,z,x)$
R32	$\psi(x, y, z)$	=	$\psi(-y,z,x)$
R33	$\psi(x, y, z)$	=	$\psi(-z, -x, -y)$
R34	$\psi(x,y,z)$	=	$\psi(z, x, -y)$
R35	$\psi(x,y,z)$	=	$\psi(-z, x, y)$
R36	$\psi(x,y,z)$	=	$\psi(z, -x, y)$
R37	$\psi(x, y, z)$	=	$\psi(x, -z, y)$
R38	$\psi(x, y, z)$	=	$\psi(x, z, -y)$
R39	$\psi(x,y,z)$	=	$\psi(z, y, -x)$
R40	$\psi(x,y,z)$	=	$\psi(-z,y,x)$
R41	$\psi(x,y,z)$		$\psi(-y, x, z)$
R42	$\psi(x,y,z)$	=	$\psi(y, -x, z)$
R43	$\psi(x,y,z)$	-	$\psi(-x, -z, -y)$
R44	$\psi(x,y,z)$	=	$\psi(-x, z, y)$
R45	$\psi(x,y,z)$	=	$\psi(-z, -y, -x)$
R46	$\psi(x,y,z)$	=	$\psi(z, -y, x)$
R47	$\psi(x,y,z)$	=	$\psi(-y, -x, -z)$
R48	$\psi(x, y, z)$	=	W(y,x,-z)

Appendix Four - Interband Transitions

A- IV-1 Introduction

The transition probability for an electronic transition from an initial state \underline{i} to a final state \underline{f} is proportional to $|H'_{fi}|^2$ where

$$H_{fi}' = \int \psi_{\vec{k}_{f}}^{*} H' \psi_{\vec{k}_{i}} dv \qquad (A^{4}-1)$$

Here $\psi_{\vec{k}_{f}}$ and $\psi_{\vec{k}_{1}}$ are the final and initial Bloch wave functions for the electron in the cyrstal. H' is the interaction that mixes the two states.

For direct optical transitions, H' is the electric dipole operator

$$H' = \frac{-ieh}{mc} \vec{A} \cdot \vec{\nabla} .$$

Writing the vector potential in the form

$$\vec{A} = \vec{Ao} e^{i \vec{k} \cdot \vec{r}}$$
 $(\vec{Ao} = \text{constant vector in}$
the direction of polarization)

we obtain

$$H' = \frac{-ieh}{mc} e^{i \overrightarrow{k} \cdot \overrightarrow{r}} \overrightarrow{Ao} \cdot \overrightarrow{\nabla}$$
(A4-2)

which has the form of a Bloch wave.

The interaction for the scattering of an electron by a phonon is

 $V(\vec{r}) = crystalline$

potential

and also has the Bloch form.

Thus for either type of transition, the matrix element is

$$H'_{f_{1}} = \int \psi_{\vec{k}f}^{*} H'_{\vec{k}} \psi_{\vec{k}i} dv \qquad (A^{l_{1}-l_{1}})$$

where $H'_{\overrightarrow{k}}$ is a Bloch wave. As a consequence of translational invariance we have the usual selection rule:

$$\vec{k_{f}} + \vec{k} + \vec{k_{i}} = \begin{cases} 0 \\ \text{or} \\ \text{a vector of the} \\ \text{reciprocal lattice} \end{cases}$$

We now discuss the selection rules that follow from the rotational invariance of the crystal.

 (α) $\psi \stackrel{(\alpha)}{\xrightarrow{}}$ transform as a basis partner for the $\alpha^{ ext{th}}$ irreducible representation of the group of $\vec{k_f}$.

 $(\beta)_{k_{f}}$ transform as a basis partner for the β irreducible representation of the group of \vec{k} .

 $\stackrel{(\mathcal{T})}{\underset{k_{f}}{\forall}}$ transform as a basis partner for the \mathcal{T}^{th} irreducible representation of the group of \vec{k}_i .

Then from group theoretical arguments it may be deduced that the matrix element H'_{f_i} vanishes unless the direct product representation

$$\Gamma^{*(\alpha)} \times \Gamma^{(\beta)} \times \Gamma^{(\gamma)}$$
(A4-6)

contains the identity representation in its decomposition. Since $\vec{k}_{f'}$, \vec{k} , and \vec{k}_{i} will in general belong to different groups, the direct product group contains only their common elements. The number of times that the identity representation is contained in the decomposition of the direct product is given by

$$\frac{1}{g} \sum_{\ell=1}^{g} \chi^{*(\alpha)}(\mathbf{R}_{\ell}) \chi^{(\beta)}(\mathbf{R}_{\ell}) \chi^{(\delta)}(\mathbf{R}_{\ell}) \qquad (A4-7)$$

where $R_{\ell} = \ell^{\text{th}}$ common element of the groups \vec{k}_i, \vec{k} , and \vec{k}_f

$$\mathbf{X}^{(\alpha)}(\mathbf{R}_{\boldsymbol{\ell}}) = \text{character of the element } \mathbf{R}_{\boldsymbol{\ell}} \text{ for the } \alpha^{\text{th}} \text{ irreducible representation.}$$
 (Similarly for $\mathbf{X}^{(\beta)}(\mathbf{R}_{\boldsymbol{\ell}})$ and $\mathbf{X}^{(\overline{\boldsymbol{J}})}(\mathbf{R}_{\boldsymbol{\ell}})$).

g = number of common elements, R_{ℓ} ,

Note that the order of the factors in either A4-6 or A4-7 is immaterial. If the sum A4-7 is zero, then the matrix element H_{fi} vanishes and the corresponding transition is forbidden. Otherwise the transition is allowed.

In general, to perform the sum on group elements (equation A4-7), one must consider the representations of the entire space groups, but if (as in the present case of the NaCl structure) the space groups do not contain glide planes or screw displacements (i.e. symmorphic space groups), only the appropriate point group representations are required. Thus for the three main symmetry directions we need only the character tables for the groups O_h (for the point Γ), C_{2V} (for the Σ direction and the point K), C_{3V} (for the Λ direction), D_{3d} (for the point L), C_{4V} (for the Λ direction), and D_{4h} (for the point X). The character tables for these groups are given at the end of this appendix in tables A4-1 to A4-6. In these tables barred operations correspond to an additional rotation by 2π . After each character table we give the multiplication table for the direct products of the different irreducible representations of that group.

For the groups that contain the inversion operation (O_h, D_{4h}, D_{3d}) the multiplication table is given only for those representations even on inversion. To determine the decomposition of the direct product of $\Gamma_i^{\pm} \propto \Gamma_j^{\pm}$ (where the plus sign means even on inversion, the minus sign means odd on inversion), we use the rule that the product of two even (or two odd) representations is even; the product of an even representation and an odd representation is odd. For example, from table A4-1 we have: $\Gamma_{12} \propto \Gamma_8^+ = \Gamma_6^+ + \Gamma_7^+ + \Gamma_8^+$; therefore $\Gamma_{12} \propto \Gamma_8^- =$ $\Gamma_6^- + \Gamma_7^- + \Gamma_8^-$.

Before proceeding with the calculations, it is important to remember that in general the addition of spin in the Hamiltonian and wave functions will sometimes alter selection rules. For this reason, we consider the problem of determining the selection rules in both cases: first without spin, and then with spin added.

A- IV-2 - Selection Rules Without Spin

(a) Vertical Transitions

For vertical (or direct optical) transitions we have, to excellent approximation, $\vec{k_f} = \vec{k_i}$, or $\vec{k} = 0$ in equation A⁴-5. Thus one studies the direct product $\Gamma^{(\alpha)} \propto \Gamma_{15} \propto \Gamma^{(\beta)}$ since the interaction (light) behaves like an ordinary vector. Because spin is ignored, we use only single valued representations in our calculations.

Point [] (Group O_h).

Here all three vectors belong to the same group. Hence, from the multiplication table A^4 -1 we have:

transition	$\Gamma_1 \rightarrow$	15:	Гі х Г	15 X	∏ ₁₅ = ∏ ₁ + ∏	2 + 15 + 25
	Contai	ns ide	entity	repres	entation \prod_{1} and	is therefore allowed
$\Gamma_1 \longrightarrow \Gamma_1$	2:	∏₁ x	☐ ₁₅ x	12	= 15 + 25	forbidden
$\Gamma_1 \longrightarrow \Gamma_2$	/ 5 :	∏₁ x	15 x	25	$= \boxed{2'}_{2} + \boxed{1'}_{12} + \boxed{1'}_{12}$	15 + 25
						forbidden
$\Gamma_1 \longrightarrow \Gamma_1$	5 :	15 x	15 x	1 15	= 1' + 22' + 1	12 + 3 15 + 3 25
						· forbidden
$\Gamma_{15} \longrightarrow \Gamma_{2}$	5:	15 2	x 115 x	25	= 1 + 2 2 +	3 115 + 3 125
						: allowed

Along \triangle (Group C_{4V}

Using equation A4-7 and table A4-2, we find that only the direct products $\Delta_1 \ x \ \Gamma_{15}$ and $\Delta_5 \ x \ \Gamma_{15}$ contain the identity representation Δ_1 . Thus, the transition $\Delta_i \longrightarrow \Delta_j$ is allowed only if $\Delta_i \ x \ \Delta_j$ contains either Δ_1 or Δ_5 . From the multiplication table A4-2 we find that the allowed transitions are:

All other direct transitions $\Delta_i \longrightarrow \Delta_j$ are forbidden

At X (Group D_{4h})

From equation A4-7 and Table A4-3 we find that only the direct products $\prod_{15} x X'_4$ and $\prod_{15} x X'_5$ contain the identity representation, X_1 . The allowed transitions $X_1 \longrightarrow X_j$ must contain either X'_4 or X'_5 in the direct product $X_i \times X_j$. By inspection of Table A4-3, we obtain:

$$X_{1} \longrightarrow X'_{4}$$

$$X_{1} \longrightarrow X'_{5}$$

$$X_{2} \longrightarrow X'_{5}$$

$$X_{3} \longrightarrow X'_{5}$$

$$X'_{4} \longrightarrow X_{5}$$

$$X_{4} \longrightarrow X'_{5}$$

$$X_{4} \longrightarrow X'_{5}$$

$$X_{5} \longrightarrow X'_{5}$$

Allowed transitions at X

All other direct transitions at X are forbidden

- 94 -

Along Σ and at K (Group C_{2V})

Only the direct products $\Sigma_1 \times \Gamma_{15}$, $\Sigma_3 \propto \Gamma_{15}$, and $\Sigma_4 \propto \Gamma_{15}$ contain the identity representation, Σ_1 . Thus, allowed transitions $\Sigma_1 \longrightarrow \Sigma_j$ must contain Σ_1 , Σ_3 or Σ_4 in the direct product $\Sigma_1 \propto \Sigma_j$. From table A4-4, we have:

Also, the only forbidden transitions are:

$$\begin{array}{c} \Sigma_1 \longrightarrow \Sigma_2 \\ \Sigma_3 \longrightarrow \Sigma_4 \end{array} \end{array} \xrightarrow{\text{forbidden}} \begin{cases} K_1 \longrightarrow K_2 \\ K_3 \longrightarrow K_4 \end{cases}$$

Along Λ (Group C_{3v})

Here only the direct product $\Lambda_3 \propto \prod_{15}$ contains the identity representation Λ_1 . The allowed transitions $\Lambda_1 \longrightarrow \Lambda_j$ must contain Λ_3 in the direct product $\Lambda_i \propto \Lambda_j$. By inspection of table A4-5 we find the allowed transitions are:

but

 $\Lambda_1 \longrightarrow \Lambda_1$ forbidden

At L (Group Dad)

At the point L, only the direct products $L'_2 \propto \prod_{15}$ and $L'_3 \propto \prod_{15}$ contain the identity representation L_1 . As in the previous cases, the transition $L_1 \longrightarrow L_j$ will be allowed only if the direct product $L_1 \propto L_j$ contains L'_2 or L'_3 . From table A4-6, we find that the allowed transitions are:

 $\begin{array}{c} L_{1} \longrightarrow L'_{2} \\ L_{1} \longrightarrow L'_{3} \\ L_{2} \longrightarrow L'_{3} \\ L_{3} \longrightarrow L'_{2} \\ L_{3} \longrightarrow L'_{3} \end{array} \right) \text{ allowed}$

(b) Indirect Transitions

Indirect transitions are the result of an electron being scattered by a phonon from an initial state $\vec{k_{i}}$, to an intermediate state \vec{k} and then emitting or absorbing a photon to arrive at a final state $\vec{k_{f}}$. The second step of the process is a direct transition $(\vec{k_{f}} = \vec{k})$ and governed by the selection rules determined in the previous section. We now study the phonon assisted transitions, i.e. those transitions in which an electron along a particular band is scattered by a phonon either to the point \square or to the edge of the Brillcuin zone.

Yanagawa¹² has shown that the only allowed phonons for an NaCl structure are:

Δ_1 and Δ_5	in	the	Δ	direction
Σ_1 , Σ_3 , and Σ_4	in	the	Σ	direction
Λ_1 and Λ_3	in	the	٨	direction

In order to determine whether or not an electron-phonon interaction is possible along a particular direction, we again inspect the decomposition of the direct product $["(\alpha) \times \square^{(\beta)} \times \square^{(3)}]$ and see if it contains the identity representation. However, for the electron-phonon interaction we really have very little work to do. In each direction, one of the allowed phonons has the identity representation for that particular direction. Therefore the representation of the direct product of (electron representation) \times (phonon representation) will always contain the irreducible representation of the electron along a given band. Since the symmetry of the electron band must be compatible with that of the associated state at \square or the zone edge, the decomposition of the direct product will always contain the identity representation. Thus we may conclude that the electron-phonon interaction is allowed for all bands; selection rules for the total indirect transition being those of the "direct" portion of the two step process.

- 97 -

A- IV-3 Transitions when Hamiltonian is spin dependent

(a) Direct Transitions

We now consider the transitions when the Hamiltonian is spin dependent because of the addition of spin-orbit coupling. The wave functions are two component spinors formed from linear combinations of the unperturbed APW functions each multiplied by a spinor, α or β (where $\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\beta = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$). Defining $D_{1/2}$ as the spinor representation, we find that the direct product $D_{1/2} \propto \Gamma^{(\delta)}$ may be decomposed into a sum of irreducible representations of the double group¹³.

at []:	$D_1 _2$	х	Γı	=	Г6 ⁺		
	D1/2	х	Пг	п	$\lceil 7^+ \rceil$		
	$D_1 _2$	x	<u>[12</u>	=	\Box		
	D1/2	x	٦ś	=	6+	+	Гв ⁺
	Dila	х	25	=	F7 ⁺	+	Гв ⁺
	D1/2	x	Γí	- 11	le_		
	D1 2	x	Γź	1	[7 ⁻		
	Dı 2	х	[]2	H	โอ		
	$D_1 _2$	x	15	н	6	+	Г 8 [−]
	D1 2	x	25	=	F	+	Гв
					3		

+ means that the representation has even parity - means that the representation has odd parity along Δ :

$$D_{1}/2 \quad x \quad \Delta_{1} = \Delta_{6}$$

$$D_{1}/2 \quad x \quad \Delta'_{1} = \Delta_{6}$$

$$D_{1}/2 \quad x \quad \Delta_{2} = \Delta_{7}$$

$$D_{1}/2 \quad x \quad \Delta'_{2} = \Delta_{7}$$

$$D_{1}/2 \quad x \quad \Delta_{5} = \Delta_{6} + \Delta_{7}$$

at X:

D1/2	x	Xl	=	X6 ⁺	$D_1/2$	х	Xl	ш	X6
Dı/2	x	X2	=	X7 ⁺	D1/2	х	X_2'	=	X7 ⁻
D1/2	x	X3	=	X7 ⁺	$D_1/2$	х	X3'	Ŧ	X7
D1/2	х	X4	н	X ₆ +	D1/2	x	X4 '	Ξ	X6 ⁻
$D_1/2$	x	X ₅	=	$X_{6}^{+} + X_{7}^{+}$	D1/2	х	X5'	=	X ₆ + X ₇

along Σ and at K:

D1/2	х	Σι	=	Σ5	D1/2	х	Kl	Н	K ₅
D1/2	х	Σ_2	=	Σ_5	D1/2	х	K ₂	H	K ₅
D1/2	X.	Σз	=	Σ_5	D1/2	Х	Кз	П	K ₅
Dıle	х	Σ_4	=	Σ5	$D_1/2$	х	K4	8	K ₅

along A:

Dı/2	Х	Λı	=	Λ_6				
D1/2	x	Λ_2	н	Λ_6				
D1/2	х	٨з	=	Λ_4	+	Λ_5	+	٨ ₆

The APW bands will be altered when spin-orbit coupling is included in the Hamiltonian. At some points in the Brillouin zone, an unperturbed band will be split into several distinct bands; in some cases the original APW states are only shifted slightly because of the spin-orbit interaction. The upper valence and lower conduction bands (for AgCl) with and without spin orbit coupling included are sketched in Figure A⁴-1 for the three symmetry directions. Note that the drawing is not to scale and the spin orbit splittings have been greatly magnified.

The addition of spin-orbit coupling has reduced the number of possible symmetries in our bands. Consequently, since more bands have like symmetry, there is a great deal more mixing of states than before. We now show that because of this additional mixing of states, almost all direct transitions are allowed. The only forbidden direct transitions are those between states of the same parity (at the points \Box , X, and L which are parity eigenstates) and the transition $\Box_6^{t} \longrightarrow \Box_7^{\dagger}$. At \Box . The representations at \Box are \Box_6^{t} , \Box_7^{t} , \Box_8^{t} . Since the parity

of the electric dipole interaction is odd, we can have non-zero matrix elements only between states of opposite parity.

The direct products $\Gamma_i^{\pm} \propto \Gamma_j^{\mp}$ (i, j = 6, 7, 8) may be decomposed into the irreducible representations of the single group (see Table A4-1). In order that the transition $\Gamma_i^{\pm} \longrightarrow \Gamma_j^{\mp}$ be allowed, this decomposition of this direct product must contain the representation Γ_{15} since the interaction has symmetry Γ_{15} . From Table A4-1 we find that;

- 102 -Figure A4-1

UPPER VALENCE AND LOWEST CONDUCTION BANDS WITH AND WITHOUT SPIN-ORBIT INTERACTION

allowed					15	+	L'	=	6	x	
forbidden	2				25	+	2	=	7	x	ſ₀ [±]
allowed			25	+	[15	+	[12'		[₽±	x	∏e [±]
allowed					R 5	+	ſī'	=	$\lceil 7^{\mp} \rceil$	x	Г [±]
allowed			25	+	15	+	[]2'	-		x	F ⁺
allowed	2 25	+	2 15	+	2'	+	l'	н	18	x	18 [±]

along Δ

Here the possible symmetries are now Δ_6 and Δ_7 . Since the direct products $\Delta_6 \propto \Delta_6$, $\Delta_6 \propto \Delta_7$ and $\Delta_7 \propto \Delta_7$ all contain Δ_1 or Δ_5 , every transition is allowed.

at X.

The decomposition of the direct product $X_{ij}^{\pm} \times X_{jj}^{\mp}$ must contain either X_{4} ' or X_{5} '. From Table A4-3, we see that the direct products $\chi_{6}^{\pm} \times \chi_{5}^{\mp}, \chi_{6}^{\pm} \times \chi_{7}^{\mp}, \chi_{7}^{\pm} \times \chi_{7}^{\mp}$ all contain χ_{4} ' or χ_{5} ' and therefore every parity allowed transition is possible.

along Σ and K

Here the only possible symmetry is Σ_5 (or K_5). Since $\Sigma_5 \propto \Sigma_5 = \Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4$, all transitions are allowed.

along A

The allowed symmetries are Λ_4 , Λ_5 , and Λ_6 , and the decomposition of the direct products $\Lambda_i \propto \Lambda_j$ (i,j = 4, 5, 6) must contain either $\Lambda_1 \text{ or } \Lambda_3$. From Table A4-5, the allowed transitions are:

and

 $\Lambda 4 \longrightarrow \Lambda_4$ forbidden $\Lambda 5 \longrightarrow \Lambda_5$

Note that in the absence of a magnetic field, Λ_4 and Λ_5 are degenerate bands. Therefore, in this case all direct transitions between bands with distinct eigenvalues are possible.

at L.

The symmetries of bands with distinct energies are L_4^{\pm} (or L_5^{\pm}) and L_6^{\pm} . Since the direct products $L_6^{\pm} \times L_6^{\mp}$, $L_4^{\pm} \times L_6^{\pm}$ and $L_5^{\pm} \times L_6^{\mp}$ all contain L_3' , every transition between distinct states of opposite parity is allowed.

In order to see more clearly how the addition of spin-orbit coupling changes some of the selection rules for direct transitions, we study a particular case in detail: the transition $\Sigma_3 \longrightarrow \Sigma_4$. As we have seen, without spin this transition is forbidden; with spin-orbit coupling the transition is allowed. For simplicity, in this example, we ignore all other bands.

Let the unperturbed (spin-independent) Hamiltonian be $H^{(0)}$ with eigenfunctions $\mathcal{P}_3^{(0)}$ and $\mathcal{P}_4^{(0)}$ (transforming like Σ_3 and Σ_4 , respectively) and eigenvalues $\epsilon_3^{(0)}$ and $\epsilon_4^{(0)}$. Call the eigenfunctions under

- 104 -

the double group $\psi_3^{(o)}$ and $\psi_4^{(o)}$ before the spin-orbit perturbation is introduced (note that there are really two eigenfunctions for each band, but because each band is doubly degenerate we only use one function for each band). When spin-orbit coupling is added to the Hamiltonian, we find that the diagonal matrix elements $\langle \psi_i^{(o)} | H_{so} | \psi_i^{(o)} \rangle$ vanish (proven in Chapter III), and the off diagonal elements $\langle \psi_i^{(o)} | H_{so} | \psi_j^{(o)} \rangle$ are proportional to a spin orbit parameter λ . For $| \epsilon_3^{(o)} - \epsilon_4^{(o)} | \gg \lambda$, the energies of the bands will be:

$$\epsilon_{3} \stackrel{\sim}{=} \epsilon_{3}^{(0)} - \frac{\lambda^{2}}{\epsilon_{3} - \epsilon_{4}}$$

$$\epsilon_{2}^{(0)} \stackrel{\sim}{=} \epsilon_{2}^{(0)} + \frac{\lambda^{2}}{\epsilon_{3} - \epsilon_{4}}$$

and the wave functions become (to first order in λ):

$$\psi_{3} = \psi_{3}^{(0)} + \frac{\lambda}{\epsilon_{3}^{(0)} - \epsilon_{4}^{(0)}} \psi_{4}^{(0)}$$

$$\psi_{4} = \psi_{4}^{(0)} + \frac{\lambda}{\epsilon_{4}^{(0)} - \epsilon_{3}^{(0)}} \psi_{3}^{(0)}$$

The matrix element for a direct transition from band three to band four is

$$\begin{array}{rcl} H_{34}^{\prime} & = & <\psi_{4} \left| H^{\prime} \right| \psi_{3} > \\ & = & \underbrace{\begin{array}{c} & & \\ \hline & & \\ \end{array}}_{\epsilon_{4}}^{\prime} & \underbrace{\begin{array}{c} & & \\ \end{array}}_{- & \epsilon_{3}}^{\prime} & \left[<\psi_{3}^{(0)} \right| H^{\prime} \left| \psi_{3}^{(0)} > \\ & & \\ \end{array}}_{+ & \psi_{4}^{(0)} \left| H^{\prime} \right| \psi_{4}^{(0)} > \end{array} \right]$$

since the matrix elements $< \psi_3^{(0)} \mid H' \mid \psi_4^{(0)} > \text{vanish by symmetry}$. Thus the transition probability for the transition will be proportional to $\left(\frac{\lambda}{(0)} - (0)\right)^2$ and therefore the corresponding intensity will

be much less than that of a transition allowed without spin (assuming that the density of states is the same).

(b) Indirect Transitions with Spin

Since the addition of spin in the Hamiltonian serves to bring about more mixing of the unperturbed functions, the matrix elements for the electron-phonon interaction can only increase when spin is added. Because all such interactions were permissible without spin, the transitions are still allowed. In fact, the arguments that were given for the spinindependent situation may be applied here without any changes.
	E	Ē	8C3	8C3	304 ² 304 ²	6C4	<u>604</u>	602 602	J	J	8JC3	8JCs	3JC4 ² 3JC4 ²	6JC ₄	6JC4	6JC2 6JC2	
	1	1	l	l	1	1	l	1	l	l	l	l	l	l	1	l	
Π2	l	1	l	l	l	-1	-1	-1	1	l	l	l	l	-1	-1	-1	
12	2	2	-1	-1	2	0	0	0	2	2	-1	-1	2	0	0	0	
15	3	3	0	0	-1	l	l	-1	3	3	0	0	-1	l	l	-1	
25	3	3	0	0	-1	-1	-1	l	3	3	0	0	-1	-1	-1	l	
\Box'_{i}	l	l	l	l	l	l	l	l	-1	-1	-1	-1	-1	-1	-1	-1	
Γ_2'	l	l	l	l	l	-l	-1	-1	-1	-l	-1	-1	-1	l	l	l	CHAR
	2	2	-1	-1	2	0	0	0	-2	-2	1	l	-2	0	0	0	ACTE
15	3	3	0	0	-1	l	l	-1	-3	-3	0	0	l	-1	-1	l	R TA
25	3	3	0	0	-1	-1	-1	l	-3	-3	0	0	l	l	l	-1	BLE
∏e [±]	2	-2	l	-1	0	12	-12	0	<u>+</u> 2	- 2	<u>+</u> 1	∓l	0	=12	+ √2	0	FOR
Γ_7^{\pm}	2	-2	l	-1	0	-12	12	0	±2	- 72	±1	Ŧı	0	- 12	±12	0	GROU
∏ª [±]	4	-4	-1	l	0	0	0	0	± 4	- 14	- 1	±1	0	0	0	0	P G

- 107 -TABLE Alt-1

TONTE Witted and the week	Table	A4-1,	Continued
---------------------------	-------	-------	-----------

MULTIPLICATION TABLE FOR EVEN REPRESENTATIONS

	1	12	Γ_{15}	25	Гē⁺	17+	
Γι		[]2	D 5	25	6		∏a ⁺
	[]	12	25	lis	$\lceil 7^+ \rceil$	Гб ⁺	∏a ⁺
<u>[12</u>		[1 + [2 + [12	15 + 125	[15 + [25	₽+	Г 8 ⁺	$\begin{bmatrix} 1 \\ 6 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 8 \end{bmatrix}$
L's			1 + 12 + 15	$\Gamma_2 + \Gamma_{12}$	[a ⁺ + [a ⁺	[7 ⁺ + [8 ⁺	
			+ 25	+ 15 + 25			
25				1 + 12 + 15	$\boxed{7}^+ + \boxed{8}^+$	$\begin{bmatrix} 6^+ + \end{bmatrix} = \begin{bmatrix} 8^+ \end{bmatrix}$	$\boxed{10^{+} + \boxed{7^{+} + 2}}$
				+ 125			
6+					1 + 115	2 + 25	12 + 15 + 125
74						Fi + Fis	12 + 115 + 125
6 ⁺							2 + 12 + 12
							+ 15 + 2 25

- 108

CHARACTER TABLE FOR GROUP C4V

					14		
	Е	Ē	2C4	2C4	C2 C2	200	2 0d 2 0d
Δ_1	l	l	l	l	l	l	l
∆'ı	l	l	l	1	l	-1	-1
Δ_2	l	l	-1	-1	l	l	-1
Δ'2	l	l	-l	-1	l	-1	l
Δ_5	2	2	0	0	-2	0	0
Δ_6	2	-2	12	-12	0	0	0
Δ_7	2	-2	-12	12	0	0	0

MULTIPLICATION TABLE

	Δ_{l}	∆'ı	Δ_2	∆'2	Δ_5	Δ_{6}	Δ_7
\triangle_{l}	Δ_{l}	∆'ı	Δ <u>2</u>	Δ'2	Δ_5	Δ_6	Δ_7
∆'ı		\triangle_1	Δ'2	Δ_2	Δ_5	Δ_{6}	Δ_7
Δ_2			Δ_{l}	∆'ı	Δ_5	Δ_7	Δ_6
∆'2				Δ_1	Δ_5	Δ_7	Δ_{6}
Δ_5					$\Delta_1 + \Delta_5$	$\Lambda_{c} + \Lambda_{7}$	$\Delta_{\alpha} + \Delta_{\alpha}$
					+ 42 + 4'2		<u> </u>

Δ_{6}	$\Delta_1 + \Delta'_1 + \Delta_5$	Δ_2 + Δ'_2 + Δ_5
Δ_7		$\Delta_1 + \Delta'_1 + \Delta_5$

CHARACTER TABLE FOR GROUP D_{4h}

	E	Ē		2C4	2C4		202' 202'	202" 202"	J	J	$2S_4$	254	Sh Sh	20v 20v	2°d
Xı	1	l		l	l	l	l	l	l	l	l	1	l	l	l
X2	l	1		l	l	l	-1	-1	l	l	l	l	l	- 1	-1
X3	l	l		-1	-1	1	l	-1	l	l	-1	-1	l	l	-1
X_4	1	1		-1	l	l	-1	l	1	l	-1	-1	l	- 1	l
X ₅	2	2		0	0	-2	0	0	2	2	0	0	-2	0	0
X'ı	l	1		l	l	l	l	l	-1	-1	-1	-1	-1	-1	-1
X'2	l	1		l	l	l	-1	-1	-1	-1	-1	-1	-1	l	l
Х'з	l	1		-1	-1	l	l	-l	-1	-1	l	l	-1	-1	l
X'4	l	1		-1	l	l	-1	l	-1	-1	l	-1	-1	l	-1
X'5	2	2		0	0	-2	0	0	-2	-2	0	0	2	0	0
X6 [±]	2	-2		12	- 12	0	0	0	±2	1 2	± 12	∓√2	0	0	0
X7 [±]	2	-2		- 12	12	0	0	0	<u>+</u> 2	1 2	∓ √2	<u>+15</u>	0	0	0
				MULT	IPLIC	ATIC	N TABI	E FOR	EVE	N RE	PRESEN	TATIC	ONS		
	Xı		X2	X3	X4	Х	5				X ₆ +			X7 ⁺	
Xı	Xı		X2	Xa	X4	Х	5				X ₆ +			X7	
X2			Xı	X4	Xa	Х	5			ß	X ₆			X7	
Хз				Xı	Xz	e X	5				X7			Х _б	
X4					Xı	X	5				X7			Х _б	
X ₅						Х	(1 + X2	2 + X3	+ X	4	X ₆ + X	7		X ₆ + X	7
X ₆ +											X ₁ + X	2 + X	K5	X3 + X	1 + X5
X_7^+														$X_1 + X_2$	2 + X5

		CHARACTER	TABLE FOR GROU	P C _{2V}	
	E	E	C2 C2	JC_4^2 JC_4^2	JC2
Σι	l	l	l	l	l
Σ2	l	l	l	-1	-1
Σз	l	l	-l	-1	l
Σ4	l	l	-1	l	-1
Σ5	2	-2	0	0	0

MULTIPLICATION TABLE

	Σι	Σ2	Σз	Σ4	Σ_5
Σι	Σı	Σ2	Σз	Σ4	Σ5
Σ_2		Σı	Σ4	Σз	Σ_5
Σз			Σι	Σ2	Σ5
Σ_{4}				Σ_4	Σ ₅
Σ5					$\Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4 + \Sigma_5$

CHARACTER TABLE FOR GROUP C3V

	E	E	2C3	203	35v	30V
Λl	l	l	l	l	l	l
Λ_2	l	l	1	l	-1	-1
Λ ₃	2	2	-1	_ 1	0	0
Λ_4	l	-l	-1	l	i	-i
Λ_5	l	-1	-1	l	-i	ľ
Λ_6	2	-2	l	-1	0	0
			MULTIPLICATIO	N TABLE		
	Λı	Λ ₂	Λ_{3}	Λ4	Λ_5 Λ_6	
Λı	Λı	Λ2	Λ_{3}	Λ_4	Λ_5 Λ_6	
Λ_2		Λ_{l}	Λ ₃	Λ_5	Λ4 Λ6	
Λ ₃			$\Lambda_1 + \Lambda_2 + \Lambda_3$	Λ_6	Λ ₆ Λ ₄	+ Λ ₅ + Λ ₆
Λ_4				Λ ₂	Λι Λ3	
Λ5					Λ2 Λ3	

 $\Lambda_1 + \Lambda_2 + \Lambda_3$

1

 Λ_6

CHARACTER	TABLE	FOR	GROUP	Dad	

	Е	Ē	2C3	203	302	3C2	J	J	2JC3	2JC3	3JC2	JC2
Lı	l	l	l	l	l	l	l	l	l	l	l	l
L ₂	l	l	l	ı	-1	-l	l	l	l	l	-l	-1
L3	2	2	-1	-1	0	0	2	2	-1	-1	0	0
L'ı	l	l	l	l	l	l	-1	-1	-1	-1	-1	-1
L'2	l	l	l	l	-1	-1	-l	-1	- 1	-l	l	l
L'3	2	2	-1	-1	0	0	-2	-2	l	l	0	0
L_4 [±]	l	-1	-1	l	i	-i	±ı	Ŧl	Ŧl	±l	±i.	∔i
L_5^{\pm}	l	-1	-1	l	-i	i	±1	Ŧl	Ŧl	<u>+</u> 1	Ŧi	±i
L_6^{\pm}	2	-2	l	-1	0	0	±2	1 2	±1	Ŧl	0	0

MULTIPLICATION TABLE FOR EVEN REPRESENTATIONS

	Lı	L2	L3	L_4^+	L_5^+	L ₆	
Lı	Ll	L2	L3	L4	L_5^+	L_6^+	
L_2		Lı	L ₃	L_5^+	L4	L ₆ ⁺	
L3			L ₁ + L ₂ + L ₃	L ₆ ⁺	L_6^+	$L_{4}^{+} + L_{5}^{+}$	+ Le
+ L4				L2	Lı	L3	
L_5^+					L2	L3	
L_1^+						$L_1 + L_2$	+ La

Appendix Five - Use of Projection Operators to Classify Spin Eigenstates

As mentioned in Chapter III, at the point $L_{\rm 3}$ the spin-orbit matrix is:

$$H_{so} = \begin{bmatrix} 0 & i & 0 & \sqrt{2}\omega \\ -i & 0 & -\sqrt{2}\omega & 0 \\ 0 & -\sqrt{2}\omega^* & 0 & -i \\ \sqrt{2}\omega^* & 0 & i & 0 \end{bmatrix}$$
(A5-1)
Where $\omega = e^{i\frac{\pi}{4}}$

This matrix has four eigenvalues: λ , λ , $-\lambda$, $-\lambda$. One pair of these eigenvalues must correspond to the degenerate states L_4^+ and L_5^+ ; the other pair is associated with the doubly degenerate state L_6^+ .

One could determine the eigenvectors for these states by applying projection operators to the four functions

 $(\psi_1 = \varphi_1 \alpha, \psi_2 = \varphi_2 \alpha, \psi_3 = \varphi_1 \beta, \psi_4 = \varphi_2 \beta)$ that form a basis for the product representation of space and spin at L. However, it is unnecessary to use projection operators for all three states L_4^+ , L_5^+ , and L_6^+ because once the eigenvalue for any one state, say L_4^+ , is determined, the eigenvalues for the other two states are known.

A projection operator for the $\alpha^{ ext{th}}$ irreducible representation is defined as:

 $P_{ij}(\alpha) = \sum_{R} \left[\Gamma_{ij}(R) \right]^{*} R \qquad (A5-2)$

here the summation is over the elements R in the group, and i, j = 1, ..., n_{α}

where n_{α} = dimension of the α irreducible representation.

Thus, for a given value of j, the n_{α} functions $P_{ij}^{(\alpha)}\psi$ (where ψ is any arbitrary function) transform as a basis set for the α^{th} irreducible representation of the group.

The double group at L (group D_{3d}) contains $2 \times 12 = 24$ operations. Six of these operations are R₁, R₅, R₉, R₁₉, R₂₁, and R₂₃ (see Appendix Three). To each of these operations we add the inversion, which makes a total of twelve operations. Finally, because of spin, to each of these twelve operations, we apply an additional rotation of 2π which gives us a final total of 24 operations in all.

Now let us determine the projection operator for the representation L_4^+ . Since this is a one dimensional representation the projection operator applied to a function, ψ , is

$$P_{\Psi} = \sum_{R} \chi^{*}(R)R_{\Psi}$$

But L_4^+ is even on inversion, so that adding this operation gives nothing new. Similarly, because spinors and the characters of the doublevalued representations go into their negative upon rotations through 2π , these additional twelve operations may be ignored. Thus the final form of the projection operator for L_4^+ is

(A5-3)
$$P = \sum_{R} \chi^{*}(R)R$$
 (sum on only six elements:
R₁, R₅, R₉, R₁₉, R₂₁, R₂₃)

The characters $\chi(R)$ for the representation L_4^+ are:

	R _l	R ₅	Rg	R ₁₉	R21	R23	
L4	l	-1	-1	i	i	i	

 $\Upsilon(JR_1) = \Upsilon(R_1)$ J = inversion $\chi(\overline{R_1}) = - \gamma(R_1)$

To determine the effect of an operation on a spinor we use the matrices found by Slater.¹⁴ The matrices for the spatial functions are generated by the APW wave functions at L_3 . These matrices are given in Table A5-1.

TABLE A5-1

Basis functions for spinor operations are $S_1 = \alpha$, $S_2 = \beta$. Basis functions for spatial operations are the APW functions φ_1 and φ_2 at L_3 .

Spinor Matrices

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} \frac{\omega^*}{\sqrt{2}} & \frac{-\omega}{\sqrt{2}} \\ \frac{\omega}{\sqrt{2}} & \frac{\omega}{\sqrt{2}} \end{pmatrix}$

Spatial Matrices

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$

 $\begin{pmatrix} -1 & -\sqrt{3} \\ 2 & 2 \\ \sqrt{3} & -1 \\ 2 & 2 \end{pmatrix}$

 $\frac{-\sqrt{3}}{2}$

 $\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$

 $\left(\begin{array}{cc}
-1 & 0\\
0 & 1
\end{array}\right)$

R1

R5

Rg

R19

 $\left(\frac{\omega}{\sqrt{2}}, \frac{\omega}{\sqrt{2}}\right)$

-ω [*]	ω^*
10	TE
15	N5 /

<u>-i</u> √2	$\frac{1}{\sqrt{2}}$	$\left(\frac{1}{2}\right)$
-1 12	$\left(\frac{1}{\sqrt{2}}\right)$	$\left(\frac{-\sqrt{3}}{2}\right)$

R21

R23

$$\begin{pmatrix} \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$$

where
$$\omega = e^{i}$$

 $\pi/4$

-ω*

0

The matrices in Table A5-1 are defined by

$$Rf_{i} = \sum_{j} \prod_{ji} (R) f_{j}$$
 where $f_{i} = i^{th}$ basis function

For example, consider operation R_5 :

Spinors

$$R_{5}\alpha = \frac{\omega^{*}\alpha}{\sqrt{2}} + \frac{\omega^{*}}{\sqrt{2}}\beta$$
$$R_{5}\beta = \frac{-\omega}{\sqrt{2}}\alpha + \frac{\omega}{\sqrt{2}}\beta$$

Space

$$R_5 \mathcal{Q}_1 = \frac{1}{2} \mathcal{Q}_1 - \frac{\sqrt{3}}{2} \mathcal{Q}_2$$
$$R_5 \mathcal{Q}_2 = \frac{\sqrt{3}}{2} \mathcal{Q}_1 - \frac{1}{2} \mathcal{Q}_2$$

thus

$$R_5(\mathcal{Q}_1 \alpha) = (R_5 \mathcal{Q}_1) \cdot (R_5 \alpha)$$

$$= \left(-\frac{1}{2}\mathcal{Q}_{1} - \frac{\sqrt{3}}{2}\mathcal{Q}_{2}\right) \cdot \left(\frac{\omega^{*}\alpha}{\sqrt{2}} + \frac{\omega^{*}}{\sqrt{2}}\beta\right)$$
$$= \frac{-\omega^{*}}{2\sqrt{2}}\mathcal{Q}_{1} \alpha - \frac{\sqrt{3}}{2\sqrt{2}}\mathcal{Q}_{2} \alpha - \frac{-\omega^{*}}{2\sqrt{2}}\mathcal{Q}_{1} \beta - \frac{\sqrt{3}}{2\sqrt{2}}\omega^{*}\mathcal{Q}_{2}\beta$$

After performing these calculations for all six operations, and using equation A5-3 with the character table for L_4^+ , we find that

$$P(\mathcal{P}_{1}\alpha) = P\psi_{1} = \frac{3}{2} \psi_{1} + b\psi_{2} - \frac{3}{2} \omega^{*}\psi_{3} + b\omega^{*}\psi_{4} = \underline{\Psi}$$

$$P(\mathcal{P}_{2}\alpha) = P\psi_{2} = \frac{3}{2} b^{*}\underline{\Psi}$$

$$P(\mathcal{P}_{1}\beta) = P\psi_{3} = -\omega\underline{\Psi}$$

$$P(\mathcal{P}_{2}\beta) = P\psi_{4} = b^{*}\underline{\Psi}$$

$$where b = \sqrt{\frac{3}{2}} - \sqrt{\frac{3}{2}} i$$

Thus, application of the projection operator for L_4^+ on any of our original functions ψ_1 , ψ_2 , ψ_3 , ψ_4 gives us only one new function (within a constant factor). This is because the irreducible representation L_4^+ is one dimensional. The column vector corresponding to $\overline{\psi}$

$$\begin{pmatrix} 3/2 \\ b \\ -3 & \omega^* \\ 2 & \omega^* \\ b & \omega^* \end{pmatrix}$$

is an eigenvector of the spin orbit matrix (equation A5-1) with eigenvalue $+ \lambda$. Since L_4^+ and L_5^+ are degenerate by time reversal, L_5^+ also has energy $+ \lambda$. Consequently the doubly degenerate state L_6^+ has energy $- \lambda$.

As a check on our results, we can apply the time reversal operator

$$K = -i \quad \forall y \quad Ko$$
where $\forall y = \begin{pmatrix} 0 & -i \\ & \\ i & 0 \end{pmatrix}$

Ko = complex conjugation

to our eigenfunction for $L_4^+.$ The new function $K\overline{\psi}$ is the eigenfunction for $L_5^+.$ We find that

$$K \overline{\Psi} = \begin{pmatrix} \frac{3}{2} & \omega \\ -b^* \omega \\ \frac{3}{2} \\ b^* \end{pmatrix}$$

is an eigenvector of the spin-orbit matrix with eigenvalue + λ as required. We also verify that $\overline{\Psi}$ and $K_{\overline{\Psi}}$ are orthogonal since they transform as basis functions for different irreducible representations:

$$(\underline{\overline{\psi}}, K\underline{\overline{\psi}}) = \begin{bmatrix} \underline{3} \\ \underline{2} \\ b^{*} \\ \underline{3} \\ \underline{2} \\ b^{*} \end{bmatrix} \begin{pmatrix} \underline{3} \\ \underline{2} \\ \omega \\ \underline{3} \\ \underline{2} \\ b^{*} \end{pmatrix} = \begin{pmatrix} \underline{9} \\ \underline{4} \\ \omega \\ \underline{3} \\ \underline{4} \\ \underline$$

References

- 1. J. C. Slater, Phys. Rev., 51, 846 (1937).
- 2. J. H. Wood, Phys. Rev., 126, 517 (1962).
- 3. A. C. Switendick, M. I. T. Solid-State and Molecular Theory Group Quarterly Progress Report No. <u>49</u>, July 15, 1962.
- 4. F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, Inc. (1963).
- 5. A. C. Switendick, Doctoral Thesis M. I. T. (1963).
- 6. J. C. Slater and G. F. Koster, Phys. Rev., 94, 1498 (1954).
- 7. F. C. Brown, J. of Phys. Chem., 66, 2368 (1962).
- 8. Y. Okamoto, Nachrichten der Akadamie der Wissenschaften in Göttingen, 275 (1956).
- 9. J. Waber (Private Communication).
- 10. F. C. Brown, Op. Cit.
- 11. J. Zak, J. of Math. Phys., 3, 1278 (1962).
- 12. S. Yanagawa, Prog. of Theor. Phys., 10, 83 (1953).
- 13. R. J. Elliott, Phys. Rev., 96, 260, 280 (1954).
- 14. J. C. Slater, M. I. T. Solid-State and Molecular Theory Group Quarterly Progress Report No. 49, July 15, 1963.

Biographical Sketch

The author was born at Lakewood, New Jersey on March 8, 1938. He attended the public schools there, graduating from Lakewood High School in June of 1955. He majored in physics at M. I. T. and received the degree of Bachelor of Science in June of 1959. In the Fall of 1959 he entered the Graduate School of M. I. T. and began his graduate study.