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ABSTRACT

This dissertation contains three chapters that analyze how algorithms on social media
platforms influence the content that users engage with and how individuals incorporate
algorithmic predictions in their decision-making. In Chapter 1, I study how engagement
maximizing news feed algorithms on social media affect the credibility of news content with
which users engage. This allows me to estimate the extent to which engagement-maximizing
algorithms promote and incentivize low-quality content. In addition, I evaluate how the
ranking algorithm itself can be designed to promote and encourage engagement with high
quality content. In Chapter 2, I analyze how the introduction of a new non-personalized news
feed impacts user engagement quantity, quality, and diversity on the Reddit platform. I find
that this auxiliary feed increases the share of users that engage with news-related content and
the diversity of engagement within news categories and within articles from publishers across
the political spectrum increases as a result of the feed. In Chapter 3, in collaboration with
Nikhil Agarwal, Tobias Salz, and Pranav Rajpurkar, we study human-AI collaboration using
an information experiment with professional radiologists. Results show that providing (i) AI
predictions does not always improve performance, whereas (ii) contextual information does.
Radiologists do not realize the gains from AI assistance because of errors in belief updating
– they underweight AI predictions and treat their own information and AI predictions as
statistically independent.

Thesis supervisor: Catherine Tucker
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Chapter 1

Personalized Rankings and User
Engagement: An Empirical
Evaluation of the Reddit News Feed

1.1 Introduction

Digital platforms curate content for their users because of limited user attention and the
vast amount of available content. The advertising business model adopted by many plat-
forms creates an incentive to promote content through ranking algorithms that predict what
content users are most likely to act on via clicking, liking, or commenting [Narayanan, 2023,
Thorburn et al., 2022]. Personalized ranking algorithms that optimize for such engagement
metrics may also promote low-quality or problematic content [Orlowski, 2020], which can
negatively impact platforms if concerns over brand safety lead advertisers to respond by
reducing advertising spending [Ahmad et al., 2023] or if there is a disconnect between short-
term engagement metrics and long-term user welfare [Agan et al., 2023, Allcott et al., 2022,
Kleinberg et al., 2022, Spence and Owen, 1977]. Moreover, concerns that ranking algorithms
promote and incentivize low-quality content have prompted policy makers around the world
to consider regulating ranking algorithms. Therefore, managers must balance maximizing
engagement with the health of the platform ecosystem to satisfy both internal and external
stakeholders.

There is an active debate surrounding the benefits and potential risks of personalized
rankings that optimize for engagement. Platform managers often contend that ranking al-
gorithms act as agents for users by promoting a user’s preferred content and reducing search
frictions on the platform [Dorsey, 2022]. Critics, however, frequently raise concerns that
optimizing for engagement can incentivize low-quality content and reduce the diversity of
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viewpoints to which users are exposed [Orlowski, 2020, Pariser, 2011]. Despite these compet-
ing narratives, the impact of personalized news feeds on the quality of content users engage
with remains an important and largely unresolved question. The lack of evidence regarding
these issues primarily stems from the substantial challenges to studying ranking algorithms
on social media platforms, including platforms’ hesitance to share data and experiments with
external researchers [Eckles, 2022].

This paper studies the impact personalized ranking algorithms that optimize for engage-
ment have on the quality of content that is promoted to users and with which users engage. I
explore this question in the context of political news on Reddit. In particular, I focus on the
platform’s largest politics community that centers on sharing and discussing news articles
about US political news. In this community, users share news articles about US politics and
then engage in discussion and commentary in comment threads alongside each article. I use
the number of comments an article receives as the primary measure of engagement.

Reddit is among the ten most popular social media platforms in the world [SimilarWeb,
2024]. In addition, Reddit is an important component of the digital ecosystem playing an
influential role in both web search and a source of training data for large language models
[Patel, 2024]. The Reddit politics community I study also provides an ideal laboratory to
analyze the types of content that are promoted under alternative ranking algorithms. The
community is important to the platform due its size and the strong preferences of advertisers
to not appear alongside low-quality news content [Ahmad et al., 2023].1 In addition, it is
often challenging to evaluate the quality of content on social media. Studying the politics
community, which focuses on discussing news articles, allows me to use established measures
of publisher credibility as a neutral measure of quality [Lin et al., 2022]. Many platform
stakeholders, including advertisers, employees, and policymakers, have demonstrated an in-
terest in the credibility of news content that appears on platforms which motivates the focus
on publisher credibility in this analysis. Moreover, this community contains substantial het-
erogeneity in content quality – the credibility rating of the article’s publisher – and horizontal
differentiation in content based on the political slant of the article’s publisher. There is also
substantial heterogeneity in user preferences. Taken together, these sources of heterogeneity,
which are common on many social media platforms, make it difficult to predict ex-ante what
impact personalization and optimizing for engagement will have on the credibility of content
that is promoted.

Throughout the analysis, a central challenge will be that a post’s rank – its position
in the feed – is endogenous. One should be concerned that a post’s potential outcomes are
correlated with its position in the feed, as I expect the existing feed to promote posts that are

1The politics community is consistently ranked as one of the most active communities on the platform.

16



more ‘commentable’ relative to posts that are not promoted. Therefore, to identify position
effects – the causal effect a post’s position has on the number of comments it receives – I
exploit a novel regression discontinuity revealed in an open-source mirror of the platform’s
code base. This open-source mirror allows me to inspect the ranking algorithm and recreate
the numerical score that is used to rank posts. Consequently, this permits using a regression
discontinuity design to identify the local average treatment effect of a post’s rank on the
number of comments it receives in a period. As the ranking score of a focal post passes the
score of a competing post, there is a discontinuous jump in the probability the focal post is
ranked lower on the page.2 The treatment effect estimates suggest that the causal effect of
a post being promoted from the second position in the feed to the first position results in a
42.5% increase in the number of comments the post receives in a period. The effect of being
promoted declines further down the feed, as the causal effect of moving one position higher
on the feed is largest for the first position.

With an identification strategy for position effects, I turn to understanding the impact of
optimizing for engagement with personalized rankings on the type of content to which users
are exposed and with which they engage. To do so, I estimate a micro-founded model of
user comment decisions. I model engagement decisions based on two components: whether
a user is exposed to a post and whether, conditional on exposure, their utility from com-
menting exceeds the utility of the outside option. Post rank impacts engagement in this
model only through the exposure component, where the probability of being exposed to a
post depends on the post’s rank. Conditional on exposure, users then have heterogeneous
preferences to comment on posts depending on the political slant and credibility rating of
the publisher. This model is identified using the reduced form position effect estimates and
individual engagement choices. I use the model to estimate engagement patterns under coun-
terfactual ranking algorithms including both personalized and non-personalized engagement
maximization. In addition, I evaluate alternative credibility-aware ranking algorithms that
optimizes for an objective function that balances total engagement and engagement with
high-credibility publishers.

I find that a personalized engagement maximizing algorithm exacerbates differences in
the share of user engagement with high-credibility publishers. An engagement maximizing
algorithm tends to promote high-credibility publishers to users engaging with high-credibility
publishers under Reddit’s actual ranking algorithm and promotes lower-credibility publishers
to users engaging with less-credible publishers under the actual ranking algorithm. This

2This identification strategy is most closely related to Narayanan and Kalyanam [2015], where data on
the AdRank scores in Google auctions are used to estimate the position effects on Google advertisements,
though to my knowledge this is the first application of such a strategy to a social media setting.
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result indicates that personalization and engagement maximization increase heterogeneity
in news diet quality – the share of a user’s engagement with high-credibility publishers – and
can lead to a subset of users being responsible for much of the engagement with low-credibility
content on the platform. Moreover, I find that personalized engagement maximization leads
to engagement with publishers that are less politically diverse and more similar to publishers
the user has engaged with previously.

I also use the model of engagement decisions to analyze engagement patterns under
counterfactual ranking algorithms that optimize alternative objective functions that explic-
itly trade-off total engagement and engagement with high-credibility publishers. At one
extreme, this nests a credibility-maximizing algorithm that maximizes engagement with
high-credibility publishers. This algorithm leads to a meaningful 5.0% decline in total user
engagement. That said, platforms can achieve over half of the increase in news diet qual-
ity from the credibility-maximizing algorithm for a more modest 1.9% decrease in engage-
ment. This change in engagement is similar in magnitude to the difference between the
personalized and non-personalized engagement-maximizing algorithms. However, the non-
personalized algorithm does not meaningfully improve the quality of user news diets, while
the credibility-aware algorithm increases the average user’s share of engagement with high-
credibility publishers by 5.9 percentage points. This suggests there is room for managers
to balance the competing objectives of maximizing total engagement and improving the
health of the platform’s ecosystem, and the ranking algorithm appears to be a useful tool to
achieve such balance. Moreover, these findings highlight the potential benefits of personal-
ization, as the personalized credibility-aware algorithm permits the platform to substantially
increase the credibility of publishers promoted for the same quantity of engagement as the
non-personalized engagement-maximizing algorithm.

An additional benefit of focusing on comments as the measure of engagement is the ability
to analyze the text content to evaluate how comment sentiments change under counterfactual
ranking algorithms. The results suggest that both the personalized and non-personalized
engagement-maximizing algorithms slightly elevate the share of negative comments for the
average user. Personalization, however, increases the dispersion of negative comment shares
relative to the non-personalized algorithm. On average, users who prefer low-credibility
publishers have the largest increases in their negative-sentiment engagement shares under
the personalized algorithm. Given that negative comments contain strong negative emotions
such as disgust and anger and are more likely to be classified as toxic, this finding suggests
when low-credibility outlets drive user engagement it increases the likelihood of low-quality
discussion.
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Related Literature

This paper contributes primarily to two strands of the literature. A large literature has
studied the impact of algorithmic recommendations on consumers. This literature consid-
ers algorithmic recommendations’ impact on product sales [Donnelly et al., 2023, Fleder
and Hosanagar, 2009, Ghose et al., 2014, Hosanagar et al., 2014, Lee and Hosanagar, 2019,
Oestreicher-Singer and Sundararajan, 2012, Wang et al., 2023], content consumption [Aridor
et al., 2022, Chen et al., 2023, Claussen et al., 2021, Holtz et al., 2020], the informational
content of recommendations [Aridor et al., 2022], and consumer welfare [Chaney et al.,
2018, Donnelly et al., 2023, Ghose et al., 2014]. In addition, this literature investigates how
ranked feeds on social media platforms impact individual well-being [Kramer et al., 2014],
media consumption [Bakshy et al., 2015a, Dujeancourt et al., 2021, Guess et al., 2023, Levy,
2021], and exposure to content from politicians [Huszár et al., 2022]. Much of this literature
explores the impact of algorithmic ranking on the diversity of consumption [Berman and
Katona, 2020, Chen et al., 2023, Claussen et al., 2021, Fleder and Hosanagar, 2009, Holtz
et al., 2020, Van Alstyne and Brynjolfsson, 2005] or product sales [Hosanagar et al., 2014,
Lee and Hosanagar, 2019, Oestreicher-Singer and Sundararajan, 2012] and how likely users
are to be exposed to cross-cutting news publishers [Bakshy et al., 2015a, Levy, 2021]. Most
related to this paper, Huszár et al. [2022] analyzes an experiment on Twitter and Guess
et al. [2023] analyze an experiment on Facebook and Instagram that randomly assigns users
to receive a reverse chronological ranking algorithm compared to those that received the ex-
isting personalized algorithm. Huszár et al. [2022] find that Twitter’s personalized algorithm
amplified right-leaning publishers. This is consistent with my finding that right leaning pub-
lishers see the largest increase in engagement in the personalized engagement-maximizing
algorithm. Guess et al. [2023] find that the reverse chronological feed increases exposure to
political and content from untrustworthy sources. While I find that a personalized engage-
ment maximizing algorithm has little effect on average on the credibility of news content
users are exposed to, I do find that for the majority of users engagement maximization
slightly increases the share of engagement with high credibility sources. A contribution of
this analysis is to unpack the heterogeneous effect of engagement maximizing algorithms
on the credibility of content with which users engage. An additional contribution of the
modeling-based approach taken here is that it allows me to evaluate alternative algorithms
including a credibility-aware algorithm that balances optimizing for total engagement with
engagement with high-credibility publishers.

Second, this paper contributes to the large and growing literature studying interventions
to improve the quality of information people consume online. This literature both documents
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the reach of misinformation on social media and how it spreads [Allcott and Gentzkow,
2017, Grinberg et al., 2019, Guess et al., 2019, 2020, Vosoughi et al., 2018a] and evaluates
interventions to curb the spread of misinformation (see Pennycook and Rand [2021] and
Lazer et al. [2018] for a review). My findings are consistent with the literature showing that a
minority of users account for a large share of consumption of low-credibility news content, and
I contribute to the literature by finding that personalized engagement-maximizing algorithms
exacerbate this difference [Allcott and Gentzkow, 2017, Grinberg et al., 2019, Guess et al.,
2019, 2020]. In addition, this literature assesses many behavioral interventions through both
lab and field experiments. That said, empirical evaluations of algorithmic interventions have
been more difficult given limited access to platform data. I contribute to this literature by
exploring how ranking algorithms affect the credibility of news with which users engage.
More specifically, I study how personalization heterogeneously impacts the quality of users’
news diets and consider the impact of algorithmic interventions on the credibility of news
users engage with in addition to estimating the cost to the platform of foregone engagement
of such interventions.

Implications for Managers and Policy Makers

These findings have important managerial implications. Given advertiser concerns over
brand safety and a reluctance to appear alongside low-credibility news publishers [Ahmad
et al., 2023], platform managers must balance total engagement with the credibility of content
being promoted to users. Additional internal and external stakeholders, including policy
makers and platform employees, have also demonstrated interest in reducing the spread
of low-credibility content on digital platforms [Haugen, 2021, Warner, 2023]. The results
presented here suggest codifying the trade-off explicitly in the objective function of the
ranking algorithm is an effective method for limiting the spread of low-credibility news
content. I estimate the cost of including credibility in the objective function and find that
platforms willing to accept a modest decline in total engagement can substantially increase
the share of engagement with high-quality publishers.

The findings also have important implications for policy makers. Concerns regarding
ranking algorithms promoting and incentivizing low-quality content have prompted policy
makers around the world to consider regulation that can address these issues. A common
regulatory approach is to require platforms to allow users to opt out of personalized rec-
ommendations. The European Union’s Digital Services Act includes such provisions, as do
proposed laws in the United States such as the Filter Bubble Transparency Act. Related
proposals in the United States that limit Section 230 protections for personalized recom-
mendations would likely have a similar effect (e.g. Justice Against Malicious Algorithms
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Act, and the Protecting Americans from Dangerous Algorithms Act). The implications of
this study are clear: ranking algorithms can be designed to improve the credibility of the
news content users engage with, and personalization is a valuable tool to mitigate the cost of
moving away from optimizing only for engagement. A solution that takes advantage of the
benefits of personalization, while protecting individual autonomy, would be to allow users to
adjust the weights on different components within the ranking algorithm objective function,
including the weight placed on publisher credibility. What weights users would choose and
the results of such a design remain open questions and merit future work. Alternatively,
regulators could incentivize platforms to align their ranking objective function with the pref-
erences of society to take advantage of personalized ranking algorithms’ substantial benefits
while mitigating potential negative effects.

1.2 Background and Data

Reddit is a large social news aggregator with over 50 million daily active users as of January
2020 and was valued at approximately $6.5 billion in 2024 shortly after its initial public
offering.3 The platform is organized into over 100,000 virtual communities called subreddits
that are focused on sharing and discussing content related to the community’s topic. In this
study, I focus on a subset of communities that are centered around sharing and discussing
news articles. In these communities, users share news articles and then discuss the articles
in comment threads as seen in Figure 1.1. Reddit is structured such that users can submit
two types of content, submissions and comments. In the communities studied, submissions
must contain a link to a news article and I therefore use the terms submissions, articles, and
posts interchangeably. Users then discuss articles by posting comments – this commenting
activity is the primary engagement measure I study.

1.2.1 Algorithmic Feeds on Reddit

Users interact with content on the platform via algorithmic feeds of a few different forms.
Any user who visits a community page will see submissions from the community ranked by
the platform’s default ranking algorithm.4 This algorithm sorts submissions according to the
post’s age and vote score – the net number of upvotes minus downvotes on a post – and is
described in more detail in Section 1.3. In addition to the default algorithm, users can choose

3https://www.redditinc.com/
4On the platform, this default algorithm is called the hot algorithm. I refer to the hot algorithm as the

actual ranking algorithm throughout.
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to rank posts according to several alternative algorithms. The new algorithm implements
a reverse chronological ranking; the top algorithm ranks posts according to the vote score
in a given period; the rising algorithm favors recent posts; and the controversial algorithm
promotes posts that have received more votes, either up or down, regardless of their direction.
This paper focuses on the default algorithm’s impact on engagement. All analyses presented
here condition on the alternative algorithm rankings remaining unchanged. That is, when
estimating the impact of post rank on engagement I estimate counterfactuals where post
rank changes in the default feed but not in the alternative feeds.

In addition, Reddit users can join communities. Posts from these communities are dis-
played on a user’s Home feed, the default feed users encounter when visiting the platform.
The Home feed sorts posts according to the same default algorithm used by individual com-
munities but ranks posts from all communities that a user is a member of rather than only
posts from a single community.5 The Home feed has important implications for this analy-
sis, as I estimate the effect a post’s rank in the subreddit feed has on its future engagement
and how alternative ranking algorithms on the subreddit feed impact engagement patterns.
Importantly, this captures both the direct effect of changing a post’s rank on the subreddit
feed and the indirect effect of changing the rank on the Home feed, holding fixed posts from
other communities. For example, if two posts from the politics feed (A and B) and one post
from another community (C) are ranked A, C, B on the Home feed, then counterfactuals
where post B is promoted on the politics community correspond to the counterfactual rank-
ing B, C, A on the Home feed. Given the prominence of the Home feed, it is important that
the position effect estimates and counterfactual analyses include the effect of post rank in
the Home feed.

1.2.2 Data

Ranking and Engagement

I merge data from several sources in this study. First, I scrape subreddit landing pages from
the Internet Archive’s Wayback Machine for each subreddit in the study. These data provides
historical snapshots of subreddit feeds, allowing me to collect the top 25 ranked posts, their
position in the feed, and post features. A snapshot from the politics community following
the 2016 election is shown in Figure 1.1. Alongside the post position in the feed, parsing
the Wayback Machine snapshots provides the age of a post, number of existing comments,
vote score of each post (net number of upvotes minus downvotes), post title, and domain

5In 2018, after the period studied, Reddit changed the default algorithm used by the Home feed to
the Best algorithm, as described in https://www.reddit.com/r/changelog/comments/7spgg0/best_is_the_
new_hotness/.
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Figure 1.1: Snapshot of Politics Community

Note: A Wayback Machine snapshot of the politics subreddit from November 2016. Posts
pinned by moderators are shown in green and are typically threads created to discuss major
events or frequent discussion topics such as polling. Posts in blue are algorithmically ranked
organic posts that are the focus of this study.

the post links to, if any. In addition, each snapshot reveals the number of subscribers each
community has and the number of users online at the time of the snapshot.

Submissions on Reddit are either pinned to the top of the feed by community moderators
or ranked organically.6 I will focus on organic posts displayed in blue in Figure 1.1. These
posts are submitted by users and ranked according to the algorithms described in Section
1.2.1. In the politics community considered here, posts are required to follow strict commu-
nity guidelines: they must be on topic for the community, they must link to an article from
a news publisher, and the post title must exactly match the headline of the article to which
the post links. Any commentary on the article must be added in the comment sections,
which I turn to next.

The primary engagement metric I consider is comments on articles. Reddit is a platform
centered around sharing and discussing user-generated content. Comments themselves are a

6Posts pinned by moderators are shown in green and are typically threads created to discuss the major
events of the day. Importantly, these are not algorithmically ranked and I condition on these posts remaining
in their position on the feed. That is, I only consider counterfactuals where the organic post positions change.
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form of user-generated content that bring people to the platform, and encouraging additional
comments is of direct interest to the platform [Burke et al., 2009]. In addition, experimental
evidence suggests users who receive comments on their posts are more likely to generate
content in the future, a finding that further supports the premise that encouraging more
comments is desirable for Reddit [Eckles et al., 2016, Mummalaneni et al., 2022]. Moreover,
there is correlational evidence that users who comment more also spend more time on social
media platforms – a metric that more closely approximates the amount of advertisements
the user sees [Wojcik and Hughes, 2019]. I merge data from Baumgartner et al. [2020]
that contain a near-universe of submissions and comments to public Reddit communities
to generate the engagement outcomes. These data contain user-level commenting behavior,
where each comment includes a time-stamp, a user identifier of the comment author, the
full text of the comment, the post the comment is responding to, and the vote-score the
comment received, among other observables. This information allows me to reconstruct a
post’s full comment history, including the comments that occurred immediately following
each of the Wayback Machine’s snapshots.

These data on user comments serve several purposes. First, they allow me to construct
the number of comments each post received in a window following each snapshot. This will
be critical for estimating position effects on the platform. Second, individual-level comment
decisions are used to estimate a choice model of user engagement in Section 1.4. Here,
the panel nature of the data allows me to identify rich user-level heterogeneity in comment
preferences. Finally, studying comments allows me to analyze the text content to provide
additional insight into user preferences and to understand how optimizing for engagement
impacts the sentiment of comments submitted to the platform.

Publisher Ratings

I also collect publisher ratings that capture various aspects of an article’s publisher. I use
two sets of ratings. First are measures of a publisher’s political slant [Robertson et al., 2018]
that represent the relative propensity of a publisher domain being shared on Twitter by
known Democratic party members relative to known Republican members, ranging from -1
to 1. A slant rating of -1 represents a domain that is only shared by Democrats while a
slant rating of 1 represents a domain that is only shared by Republicans. Robertson et al.
[2018] demonstrate this measure is consistent with a number of other expert, crowd-sourced,
and audience-based ratings [Bakshy et al., 2015a, Budak et al., 2016]. A primary benefit
of the Robertson et al. [2018] scores compared to other measures of publisher slant is the
high coverage, as the data set includes ratings for over 19,000 domains. This results in high
coverage in our data, with over 90% of posts in the politics community containing a link to
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a publisher matching a domain in the Robertson et al. [2018] data. The coverage is lower for
other news categories, as some categories have less strict rules around sharing news articles
and allow links to smaller websites such as sports blogs. The politics community, however, is
the focus of this study and the other categories are only used to improve power in identifying
position effects.

I also use credibility ratings, described in Lin et al. [2022], for over 11,520 news publishers.
Lin et al. [2022] aggregate individual ratings from six rating organizations and demonstrate
substantial agreement among individual sources. Importantly, the ratings released alongside
Lin et al. [2022] show an extremely high correlation with NewsGuard ratings, a proprietary
set of publisher ratings that employ extensive criteria including accuracy and balance of
reporting, a process of publishing corrections, clear separation of opinion articles, and trans-
parency of perceived conflicts. Figure 1.2 plots the joint distribution of publisher slant score
and credibility rating for publishers that appear in at least 1% of the snapshots in the politics
community. Table A.1 shows these ratings for six example domains. In evaluating user news
diets, I will discretize the credibility ratings into high- and low-quality publishers for ease of
interpretation. When doing so, I classify publishers as high quality if their credibility rating
is greater than 0.65 and I show robustness of key results to other thresholds in Appendix
Section A.3.4.7

1.2.3 Textual Analysis of Comment Text

A unique benefit of studying comments as the focal measure of engagement is that I can an-
alyze the textual content in order to understand the types of comments users are submitting
to the platform and how this varies depending on article features. This sentiment analysis
is used in the model of user engagement decisions as I allow users to choose the sentiment of
their comment conditional on article features. I use these estimates to evaluate the extent
to which optimizing for engagement leads to deterioration in discussion quality.

I analyze the sentiment and emotional content of comments using a pre-trained neural
network for sentiment analysis and emotion detection. The pre-trained neural network,
which is described in Pérez et al. [2021], uses embeddings generated using the language model
BERTweet [Nguyen et al., 2020]. For each comment in the data, this model constructs a set
of scores for predicted sentiment and emotion.

I focus on comment sentiment as the primary quality measure of a comment’s text. Ap-
pendix Figure A.1 shows the correlation between text sentiment, predicted toxicity, and the
comment’s emotional content. Negative-sentiment comments are more likely to be classified

7The threshold of 0.65 is chosen as it is the median Lin et al. [2022] credibility rating within the Medium
credibility category of Media Bias Fact Check, a professional rating organization.
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Figure 1.2: Joint Distribution of Publisher Credibility and Slant Scores
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Note: This figure plots the joint distribution of publisher slant score and credibility rating for
the set of publishers that appear in at least 1% of the snapshots in the politics community.
The dotted line displays the cutoff for high-credibility publishers. The regression line is a
fourth-order polynomial fit. Confidence bands represent 95% confidence intervals.
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Table 1.1: Summary Statistics

Number Share of Posts Missing Number of Comments
Snapshots Domain Slant Credibility 5 Min 10 Min 20 Min 60 Min

Politics 2105 0.01 0.07 0.11 2.98 5.97 11.93 35.76
US/World 5735 0.00 0.07 0.14 2.10 4.21 8.43 25.22
Sports 6390 0.22 0.66 0.85 0.78 1.53 3.01 8.51
Entertainment 3450 0.21 0.53 0.69 0.61 1.21 2.43 7.23
Gaming 2080 0.31 0.70 0.95 0.47 0.95 1.90 5.67
Technology 5912 0.06 0.43 0.66 0.28 0.57 1.13 3.41
Crypto 1267 0.38 0.77 0.87 0.23 0.45 0.90 2.60
Science 3561 0.10 0.37 0.49 0.10 0.20 0.41 1.20
Business 1632 0.08 0.27 0.38 0.05 0.09 0.19 0.58

Note: Summary statistics for the communities included in the study. Each row represents
a category of news. The Number of Snapshots column contains the number of Wayback
Machine snapshots for all communities in each category. The columns labeled Share of Posts
Missing denote the share of submissions that lack information on publisher domain, slant
score, and credibility rating. The columns labeled Number of Comments show the average
number of comments a submission receives in the 5, 10, 20, and 60 minute periods following
a snapshot. These columns average over both periods (i.e. snapshots) and positions in the
feed.

as toxic, more likely to contain strong negative emotions such as disgust and anger, and less
likely to exhibit joy. Moreover, inspection reveals comments labeled as negative by the Pérez
et al. [2021] model are often extremely vulgar and unlikely to contribute productively to the
discussion.

1.3 Estimating Position Effects

In this section, I estimate the causal effect post rank has on the number of comments the
post receives. Recall I ultimately want to understand how engagement-maximizing ranking
algorithms impact the type of content to which users are exposed and with which they
engage. A key challenge in this analysis is the endogeneity of post rank, where the rank of
a post is correlated with its potential outcomes. This section introduces the identification
strategy I use to overcome this challenge by estimating position effects – the causal effect of
post rank on engagement. This serves two purposes. First, the treatment effect estimates
provide important motivation for the analysis, given that I find post rank has a large causal
effect on engagement, meaning the ranking algorithm plays an important role in shaping the
posts with which users eventually engage. Second, the causal estimates from this section
will be utilized directly in identifying the choice model of user engagement that is employed
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in the analysis of counterfactual ranking algorithms.
Naive comparisons between posts with lower ranks (higher on the page) and posts with

higher ranks (lower on the page) are unlikely to identify the causal effect of rank as I expect
potential outcomes to be correlated with post rank [Narayanan and Kalyanam, 2015, Ursu,
2018]. It is likely that posts with high potential outcomes, or latent commentability, are
more likely to be shown higher on the page. This dependence would be severed if Reddit
ranked posts in random order and the effect of rank on engagement could be identified using
the simple comparison [Ursu, 2018]. However, this is rarely the case in observational settings
containing ranked content like the one studied here.

Therefore, I exploit a regression discontinuity to identify the causal effect of rank on
engagement. Until 2017, Reddit maintained an open-sourced mirror of its code base, which
allows me to directly inspect the algorithm used to sort posts [reddit.com, 2017]. The
algorithm assigns a ranking score to each post and ranks posts in descending order of these
scores. Formally, a post’s ranking score is defined as

sjt = sign (ujt) log10 (max {|ujt| , 1}) − ajt

45, 000 (1.1)

where ujt is the net number of upvotes minus downvotes that post j had at time t and ajt

is the age of the post in seconds.8 This requires that for the ranking score of a post with a
positive vote score to remain constant, every 12.5 hours the net number of upvotes minus
downvotes must increase by a factor of 10 to offset the age penalty. Importantly, this defines
a continuous score that determines post rank, creating a regression discontinuity that can
be used to identify position effects [Narayanan and Kalyanam, 2015].

To give a concrete example of the regression discontinuity I exploit, consider two adjacent
posts i, j with ranking scores si, sj and observed ranks ri, rj. There is a discontinuous jump
in the probability of post i being ranked lower than post j when the continuous forcing
variable si − sj crosses zero. I take advantage of this discontinuity to identify the effect of
rank on future engagement, under the assumption that potential outcomes (i.e. latent post
quality) are continuous across the zero threshold of the forcing variable (si − sj).

1.3.1 Implementation Details of the Regression Discontinuity Design

I now discuss the implementation details of the regression discontinuity used to estimate
the causal effect of post rank on future engagement. In particular, I focus on estimating the
causal effect of moving up from position r+1 to position r on the feed. To simplify notation,

8I normalize the post’s timestamp by the period to interpret the second term as age. This is equivalent
to adding a constant to all posts in a period and does not affect the ranking, but does make the ranking
score more interpretable.
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let Di be a treatment indicator (i.e. Di = 1[si > s−i]), and the forcing variable is denoted
∆si = si − s−i.

In this setting, the running variable is a composition of two scores, the ages and vote
scores of the posts. This creates a cutoff frontier, shown in Appendix Figure A.6, analogous
to geographic regression discontinuity designs. I take advantage of the multiple score nature
of the problem and estimate the treatment effect at the origin, which ensures that posts are
balanced on both post age and vote score, as described in Cattaneo et al. [2023].

The primary results use a local-linear approximation to the conditional expectation func-
tions on either side of the discontinuity and a uniform kernel. I will show the estimates are
similar under alternative specifications. I restrict to observations within a bandwidth λ

of the cutoff chosen to minimize the mean squared error of the treatment effect estimator
[Calonico et al., 2014, Cattaneo et al., 2020] and demonstrate the results are not sensitive
to this choice (Appendix A.2.2).

For each of the 24 positions on the first page of the feed, I estimate the treatment effect
of moving from position r + 1 to position r as

τ̂r = µ̂+
r − µ̂−

r (1.2)

where µ̂+
r is the estimated intercept from the local linear regression to the right of the

discontinuity and µ̂−
r is the intercept to the left of the discontinuity [Cattaneo et al., 2020]. I

estimate the treatment effect separately for each position in the feed, allowing the treatment
effect of being promoted from position r + 1 to position r to vary by position. In Table
1.2 and Appendix A.2.2, I show the results are not sensitive to the degree of polynomial
approximation or the choice of kernel. Following best practices [Cattaneo et al., 2020],
statistical inference uses robust bias-corrected standard errors that are clustered at the period
level.

Measurement Error in the Running Variable

A challenge in this setting is that the running variable is constructed using data scraped
from the Internet Archive’s WayBack Machine and the reconstructed ranking scores do not
completely determine the rank of a post. This is a result of several factors. First, Reddit
explicitly adds noise to the vote scores shown to users to combat vote manipulation [Muchnik
et al., 2013].9 Second, Reddit caches votes and rankings for performance purposes due to the
large amount of traffic the platform receives.10 Caching means the ranking score and actual

9https://www.reddit.com/wiki/faq
10https://web.archive.org/web/20170121192832/https://redditblog.com/2017/1/17/caching-at-reddit/

29

https://www.reddit.com/wiki/faq
https://web.archive.org/web/20170121192832/https://redditblog.com/2017/1/17/caching-at-reddit/


ranks are not continuously updated. This makes it possible for the observed ranks to differ
from what is implied by the relative ranking scores as either the scores or observed rankings
are a cached version.

Adding noise to the vote score introduces measurement error into the running variable
and can bias traditional regression discontinuity estimates. To estimate the local average
treatment effect of rank in the presence of measurement error in the running variable I follow
Dong and Kolesár [2021] by excluding posts within a doughnut around the discontinuity. I
manually select a doughnut width of 0.05 on either side of the cutoff and show in Appendix
A.2.2 that the results are robust to the choice of doughnut width. Under the assumption that
the doughnut excludes all periods where the posts are misclassified due to measurement error,
Dong and Kolesár [2021] show that the usual regression discontinuity estimators identify a
local average treatment effect.

After excluding posts within a doughnut of the discontinuity, I assume the remaining
mismatch between post rank and the relative ranking scores is not due to measurement
error. This assumption appears justified, as the probability of mismatch is constant as one
moves away from the discontinuity (Figure A.2). If this were driven by the noise added to
vote scores, the probability of mismatch would decline further away from the discontinuity
as the probability the noise added is sufficiently large to misclassify the posts declines.
Therefore, estimating the local average treatment effects using local linear regression results
in conservative estimates of position effects.

1.3.2 Testing the Validity of the Regression Discontinuity Design

I now show evidence that Reddit ranks posts according to the algorithm I describe to establish
a first stage in the regression discontinuity analysis. For each position on the feed r ∈
{1, . . . , 24}, I consider the two posts ranked in position r and r + 1 and plot the probability
that a post is in position r against the running variable (the difference in ranking scores
of the two competing posts). Figure 1.3a shows the discontinuity between position 1 and
position 2; the plots for the remaining positions are shown in Appendix A.2.1. There is
a clear discontinuity in the probability of being ranked lower when a post’s ranking score
surpasses the competing post’s ranking score in a period.

In addition, to test that post observables are balanced across the discontinuity, Figure
A.11 plots the estimated treatment effect of rank on pre-treatment covariates including pub-
lisher slant, publisher credibility, post vote score, and post age. Nearly all estimates are
insignificant at the 5% level, suggesting post observables are balanced across the discontinu-
ity. While it is not possible to test the identifying assumption that potential outcomes are
continuous through the discontinuity, this result is consistent with such an assumption hold-
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ing. Appendix A.2.2 presents plots of the non-parametric conditional expectation functions
of these covariates around the discontinuity.

1.3.3 Position Effect Estimates

I now turn to estimating how post rank affects the engagement a post receives in the window
following the snapshot. Figure 1.3b plots a binned scatter plot of the log of one plus the
number of comments a post receives in the 20 minutes following the snapshot against the
running variable (∆si) to visualize the discontinuity in the outcome variable. There is a clear
discontinuity in engagement when a post is promoted to position 1 from position 2. Appendix
A.2.1 shows the same plots for the remaining positions on the feed and the discontinuity in
engagement quickly disappears further down the feed, suggesting treatment effects of rank
are largest at the top of the feed.

I estimate the local average treatment effect using local linear regression, and present
treatment effect estimates in Table 1.2, which shows the effect of moving from rank r + 1
to rank r on the log of one plus the number of comments a post receives in the 20 minutes
following a snapshot. Being promoted to the first position has a large effect, with the
treatment effect estimate suggesting a 42.5% increase in the number of comments received
immediately following a snapshot relative to the second post. The importance of rank quickly
dissipates further down the feed. Table 1.2 also shows the results are robust to the polynomial
choice and choice of kernel. Table 1.2 includes naive OLS estimates of position effects. As
expected, OLS substantially overestimates the effect of position on engagement, and this is
particularly severe towards the top of the feed.

These treatment effect estimates demonstrate that the ranking algorithm has an impor-
tant effect in determining the posts with which users engage. This in turn motivates further
investigation of what content is promoted when rankings are designed to optimize for en-
gagement, since the platform has substantial power in determining what content users are
exposed to and ultimately engage with.
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Figure 1.3: Regression Discontinuity Plots
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Note: Regression discontinuity plots for the discontinuity around being promoted to the top
position on the feed from the second position on the feed. Here, the x-axis is the running
variable – the difference in the focal post’s ranking score from that of the adjacent post –
and the y-axis is (a) the probability a post is ranked lower on the page and (b) the log
number of comments received in the 20 minutes following a snapshot plus one. This figure
excludes posts within the doughnut which includes posts where the absolute value of the
running variable is less than 0.05. Fourth order polynomial fits are plotted alongside the
binned mean values. The corresponding figures for the remaining positions on the feed are
shown in Appendix A.2.1.
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Table 1.2: Position Effect Estimates

Regression Discontinuity
Rank OLS Local Linear Local Constant Triangular Kernel
1 0.904 0.354 0.208 0.365

(0.012) (0.142) (0.318) (0.164)
2 0.249 0.244 0.204 0.250

(0.010) (0.045) (0.093) (0.050)
3 0.145 0.156 0.120 0.160

(0.009) (0.033) (0.068) (0.037)
4 0.097 0.123 0.128 0.113

(0.009) (0.032) (0.066) (0.036)
5 0.073 0.107 0.088 0.111

(0.009) (0.038) (0.079) (0.042)
6 0.067 0.116 0.140 0.106

(0.008) (0.037) (0.077) (0.040)
7 0.056 0.077 0.062 0.067

(0.008) (0.035) (0.074) (0.039)
8 0.043 0.071 0.077 0.052

(0.008) (0.036) (0.075) (0.040)
9 0.043 0.027 0.004 0.028

(0.007) (0.031) (0.064) (0.034)
10 0.039 0.063 0.075 0.065

(0.007) (0.025) (0.051) (0.027)
11 0.040 0.055 0.079 0.054

(0.007) (0.027) (0.056) (0.030)
12 0.016 0.047 0.054 0.054

(0.007) (0.035) (0.074) (0.038)

Note: Estimates of the local average treatment effect from a post moving from position r +1
to position r on the feed on the log of one plus the number of comments a post receives in
the 20 minutes following a snapshot. Robust bias-corrected standard errors that allow for
misspecification of the conditional expectation function and that are clustered at the period
level are shown in parentheses. Estimates exclude posts within the doughnut which includes
posts where the absolute value of the running variable is less than 0.05. The bandwidths for
each rank are not varied across the various regression discontinuity specifications to isolate
the difference due to the different specifications. The corresponding table for positions 13-24
is shown in Appendix A.2.1.
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1.4 Model of Individual Engagement Decisions

I now estimate a model of user engagement that allows me to estimate engagement patterns
under counterfactual ranking algorithms. Section 1.4.1 introduces the model of individual
decisions, Section 1.4.2 describes identification and the estimation approach, and Section
1.4.3 summarizes the model estimates and fit.

1.4.1 Model

Users indexed by i visit the platform in periods indexed by t and are exposed to a ranked
feed of posts indexed by j. In each period, users are exposed to a post in position rjt if
vijt = 1, which is an independent Bernoulli random variable equal to one with probability
p (r, t). I use a parsimonious parameterization of the exposure probability, p (r, t) = ptpr,
where pt is the probability of accessing the platform in period t and pr is the probability
of being exposed to a post in position r conditional on accessing the platform. Section
1.5.4 endogenizes the search process and demonstrates the main findings are not sensitive to
allowing users to reallocate attention across the feed in equilibrium. If exposed to a post,
users receive utility

uijt = δijt + εijt (1.3)

if they comment on post j in period t, which I denote dijt. Consumers comment if they are
exposed to the post and the utility from commenting exceeds the utility from the outside
option (ui0t)11

dijt = 1 [vijt = 1] 1 [uijt ≥ ui0t] . (1.4)

I model δijt = x′
jt

(
β̄ + βi

)
+ ξjt = δjt + x′

jtβi where xjt is a vector of observable article
features, β̄ represents average preferences, and βi is a vector of the deviation of user i’s
preferences from the mean. Finally, ξjt is a article-period fixed effect that represents latent
article commentability. This fixed effect captures anything users have vertical preferences
over. For example, if users prefer to comment on articles with many existing comments, this

11A key simplification is the stylized process by which users form consideration sets. A more flexible model
that allows users to consider a subset of posts and comment on their most preferred post introduces substan-
tial computational challenges as the number of potential consideration sets grows combinatorially. These
models would likely yield similar results given users are highly unlikely to comment on more than one post in
either the data or in the counterfactual simulations. Therefore, given the substantial computational benefits
of assuming independence between comment decisions, I assume that users make engagement decisions on
posts independently. The independence assumption between posts also prohibits preferences that depend
on features of other posts on the feed such as a preference for a diverse feed. Experimental evidence from a
music recommender system found little evidence of a preference for diversity consistent with the approach
taken here [Chen et al., 2023].
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would load onto the ξjt term.12 Post rank is excluded from utility in this model, implying
that rank does not impact choice conditional on exposure to a post.13 Finally, normalize
δi0t = 0 and assume εijt is an independent and identically distributed Type 1 Extreme
Value preference shock. This results in the mixed logit choice probabilities multiplied by the
exposure parameter p (·).

Pijt = P (vijt = 1, uijt ≥ ui0t) = p (rjt, t) exp δijt

1 + exp δijt

(1.5)

Conditional on commenting on a post, users choose the sentiment of the comment to
submit. Users can either submit a comment with negative sentiment or neutral sentiment.
Users choose the probability with which their comment will be perceived negatively based
on the user-specific and vertical components of comment utility. That is, conditional on
commenting users choose the probability that comment ijt will be a negative comment as
follows

log bijt

1 − bijt

= βs
i0 + βs

i1 (δijt − ξjt) + βs
i2ξjt + εs

ijt (1.6)

where bijt is the probability user i’s comment on post jt is a negative comment, δijt − ξjt

is the user-specific component of comment utility user i receives when commenting on post
jt, ξjt is the vertical commentability component of post jt, βs

i = ⟨βs
i0, βs

i1, βs
i2⟩ is a vector of

individual i’s sentiment preferences, and εs
ijt is an independent error term.

1.4.2 Identification and Estimation

Identification of Model Parameters

The key identification challenge in this model is that observed post ranks are correlated with
latent commentability, or E [ξjtrjt] ̸= 0. I now describe how this model is identified using
the regression discontinuity from Section 1.3 and user-level engagement decisions.

I first describe how the exposure parameters (pt, pr) are identified. I assume that each
user logs on to the platform with probability pt, independent of article features or preference
shocks. This probability is identified via the share of users who visit the platform in each

12The latent commentability term ξjt is often referred to as latent quality in the literature estimating
demand systems. To avoid confusion with publisher credibility, I refer to ξjt as latent commentability, where
this captures a vertical component making all users more likely to comment on the article.

13This assumption is motivated by the findings of Ursu [2018] that demonstrates empirically that rankings
impact search probabilities but, conditional on search, do not affect purchase probabilities in an online travel
platform. This is also consistent with recent work modeling personalized rankings in e-commerce [Donnelly
et al., 2023]

35



period which I estimate using data on the share of users online at the start of each period.
Conditional on accessing the platform, I assume all users are exposed to the top post on the
feed implying that p1 = 1.14 The remaining exposure parameters pr are identified by the
reduced form treatment effects after I impose constant treatment effects15

τr = log E [dijt(r)]
E [dijt(r + 1)] = log pr

pr+1
. (1.7)

The assumption of constant treatment effects could in principle be relaxed to allow for
arbitrary individual heterogeneity and heterogeneity along observed article features, though
the demands on the data grow substantially if this type of heterogeneity are included. For
example, allowing for arbitrary individual heterogeneity would require estimating the reduced
form treatment effects separately for each user.

Given exposure parameters, individual preference parameters and mean preference pa-
rameters are identified from the assumption that article features are exogenous E [xjtεijt] = 0
and E [xjtξjt] = 0. Finally, the parameters in the sentiment model are identified by the as-
sumption that εs

ijt is mean-independent of εijt, ξjt, and xjt.

Estimation

I estimate the choice model using data from the politics community given the relevance
of this community to managers, policy makers, and users. I use individual-level comment
decisions and restrict the sample to users who comment on at least 25 articles in the periods
I study, where a period consists of the 60 minutes following a Wayback Machine snapshot. In
Appendix A.4, I show the results are similar using an approach that trains a recommender
system on a larger and more representative sample of users, thereby providing confidence
that the results generalize to a broader set of users. Nonetheless, this sample of highly
active users is also of direct interest to the platform because user-generated content is vital
to platform’s business model.

I take this model to the data using a two step procedure that simplifies the computation
given the large number of periods, users, and posts. In the first step, I estimate the exposure
parameters pt and pr. I estimate pt by combining data on the number of users online at the
start of each period, which are observed in the Wayback Machine snapshots, with public
statements by the platform on the average session duration to estimate the number of users
who log on to the platform during each period using Little’s law [Little, 1961]. I then use

14The results are robust to other choices of p1 as shown in Appendix Section A.3.4.
15That is, I assume E [Yjt(1)] = eτr E [Yjt(0)] where Yjt(D) is the potential outcome under treatment D

for the number of comments post j in period t received following a snapshot.
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public usage statistics again to estimate the number of active community members and
calculate the share of active community members who log on in each period. Finally, I
smooth estimates of pt by taking the fitted values of a regression of the raw values of pt

on quarter and day of week fixed effects. The full details of this process are described in
Appendix A.3.3. I then estimate the remaining exposure parameters using an empirical
analog of Equation 1.7 (pr = exp {− ∑

r′>1 τr′−1}).
Second, given the estimates of pt and pr I estimate the individual preference parameters

βi using maximum likelihood

L =
∑

t

∑
i

∑
j

dijt log Pijt + (1 − dijt) log (1 − Pijt) . (1.8)

Finding the maximum likelihood estimate involves solving a high-dimensional optimization
procedure due to the large number of individuals and posts. Therefore, I use the following
iterative algorithm. First, I initialize a guess of ξjt and, conditional on these unobserved com-
mentability parameters, estimate the individual-level preference parameters using maximum
likelihood. I then invert observed engagement shares [Berry, 1994] using the Berry et al.
[1995] contraction mapping to find the values of ξjt such that predicted market shares equal
observed market shares.16 I iterate between these two steps until convergence. Splitting the
estimation algorithm into these two steps allows the maximum likelihood parameters to be
estimated in parallel vastly reducing the required computation. Inference on the preference
parameters uses cluster-robust standard errors.

The preference estimates of any individual user will contain substantial sampling error
given the limited number of periods and comment decisions. This implies that the distribu-
tion of preference estimates will be a convolution of the true distribution of preferences and
sampling error, leading the distribution of estimates to be over-dispersed relative to the true
distribution. To correct for this over dispersion, I shrink all preference estimates towards
the grand-mean using the empirical Bayes procedure described in Appendix A.3.2.

1.4.3 Model Estimates

To assess the fit of the model, Table 1.3 presents summary statistics of actual engagement
and engagement predicted by the model. The distribution of actual engagement with en-
gagement predicted by the model is also shown graphically in Figure A.17. Figure A.17a
demonstrates the correlation between actual user engagement and predicted user engage-
ment. The correlation is high, though the model tends to overestimate total engagement

16There are instances in the data where a post receives zero comments. I assume that ξjt is bounded below
such that the minimum predicted market share is equal to 0.01% in these situations.
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for users with the highest engagement. Figure A.17b shows the correlation between actual
and predicted user engagement by publisher credibility and the model again has a high
correlation between actual and predicted engagement by group.

Table C.32 summarizes the distribution of individual preference estimates (β̄ + βi) . It is
helpful to summarize preferences for publisher slant through each user’s bliss point, which
is defined as the slant the user most prefers

b∗
i =


sign (βis) if βis2 ≥ 0

min
{
1, max

{
−1, − βis

2βis2

}}
if βis2 < 0

(1.9)

where βis (βis2) is user i’s taste parameter on post slant (slant squared). The marginal
distribution of slant bliss points is shown in Figure 1.4. It is evident there is substantial
heterogeneity within preferences in the politics community. Just over half of users prefer
more credible publishers, while the remaining users prefer less credible publishers. Regarding
political slant, there is also substantial heterogeneity, with a large mass of users preferring
outlets slightly left of center. There are also mass points at each political extreme, with
nearly 20% of users preferring outlets that are strongly left leaning and over 25% of users
preferring outlets that are strongly right leaning.

Table 1.4b summarizes the estimates of individual-level preferences to submit a nega-
tive comment based on the vertical- and individual-specific components of comment utility
(Equation 1.6). There is substantial heterogeneity in user preferences to submit a negative
comment with 51.6% of users more likely to comment negatively on posts in which they are
more likely to comment. Figure A.18 reveals this is especially true for users more likely to
comment on left-leaning posts (i.e. they have a negative bliss point) and users who prefer to
comment on less credible publishers. Ranking algorithms that optimize solely for engagement
will increase the share of negative posts for these users.
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Table 1.3: Summary of Model Fit

Actual Model
Mean Std Mean Std

Total 52.39 38.85 54.05 35.31

Credibility High 41.55 30.73 42.72 27.88
Low 10.84 9.62 11.33 8.26

Slant Partition

Strongly Left 13.38 11.86 14.04 10.42
Left 7.99 6.75 8.14 5.31

Middle 13.44 10.60 13.63 8.88
Right 13.63 10.78 13.93 9.15

Strongly Right 3.95 3.87 4.31 3.32

Note: Summary of the model fit. The Actual columns report the average and standard
deviation of the total number of comments posted by each user and the number of comments
by publisher rating. The Model columns report the model’s predicted values for the same
quantities under the existing ranking algorithm.

1.5 Counterfactual Ranking Algorithms

1.5.1 Background on Engagement Based Feeds

While it is beyond the scope of this article to provide a comprehensive review of the ar-
chitectures and implementations of news feed algorithms deployed in practice, I will give a
high-level description that abstracts away from many of the low-level platform-specific im-
plementation details. See Thorburn et al. [2022] and Narayanan [2023] for more thorough
reviews. At a high level, social media ranking algorithms can typically be decomposed into
two primary components: candidate generation and ranking.

In candidate generation, the algorithm usually selects a set of posts that are eligible to
be shown to a user. As described in Thorburn et al. [2022], this is often either a computa-
tionally efficient algorithm that filters posts based on a user’s network – examples include
the Facebook News Feed [Lada et al., 2021] and Twitter Timeline [Twitter, 2023] – or a bare
bones implementation of the ranking algorithm, as in the YouTube homepage [Covington
et al., 2016]. Candidate generation also generally includes content moderation filters that
remove posts deemed ineligible to be promoted.
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Table 1.4: Distribution of Individual Preference Estimates

Mean Std 1% 25% 50% 75% 99%
Constant -4.55 0.75 -6.09 -5.06 -4.62 -4.11 -2.49
Slant Score -0.20 0.64 -1.60 -0.65 -0.20 0.23 1.27
Slant Score2 -0.30 0.82 -2.10 -0.88 -0.30 0.27 1.59
Credibility Rating -0.02 0.86 -2.30 -0.53 0.03 0.56 1.86
ξjt -0.00 0.93 -2.22 -0.61 0.02 0.61 2.12

(a) Individual Comment Preference Estimates

Mean Std 1% 25% 50% 75% 99%
Intercept 0.20 7.25 -18.46 -3.88 0.20 4.26 18.78
Heterogeneous component 0.04 1.53 -3.93 -0.82 0.06 0.90 3.94
Vertical component 0.03 0.08 -0.19 -0.01 0.03 0.08 0.23

(b) Individual Sentiment Preference Estimates

Note: This table shows the user-level distribution of preference estimates. Panel (a) presents
the distribution of comment preferences (Equation 1.4). The values for Constant, Slant Score,
Slant Score2, and Credibility Rating contain the user-level comment preferences. The values
of ξjt are at the article level and show the distribution of latent article commentability. Panel
(b) presents the distribution of sentiment preferences (Equation 1.6). The heterogeneous
component captures how the likelihood of a user to submit a negative comment changes in
response to changes in the user-specific component of post comment utility. The vertical
component captures how the likelihood of a user to submit a negative comment changes in
response to a change in the latent commentability term (ξjt). All preference parameters are
shrunk to the grand mean using empirical Bayes.
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Figure 1.4: Distribution of Slant Bliss Points
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Note: This figure plots the marginal distribution of user-level slant bliss points. The bliss
point is the slant score for which a user is most likely to comment, all else being equal. A
bliss point of -1 implies the user is most likely to comment on left-leaning articles and a bliss
point of 1 implies the user is most likely to comment on right-leaning articles.

In the ranking step, platforms typically employ a more complicated model that orders
posts based on predicted engagement – often implemented as a weighted average of predicted
clicks, time spent, comments, and votes [Lada et al., 2021, Thorburn et al., 2022, Twitter,
2023]. Additional higher-level signals such as predicted survey responses are occasionally
included in the ranking objective function as well. Finally, the ranking step often includes
a post-processing procedure that adjusts the ranking to avoid, for example, showing users
only posts from a single highly engaging account.

1.5.2 Description of Counterfactual Rankings

In this study, I focus on the implications of different objective functions in the algorithmic
ranking step conditional on candidate generation. Therefore, the counterfactuals considered
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here only re-rank the top 25 posts in each period, which I treat as the set of candidate posts
to be ranked. This decision is relatively innocuous for analyzing the impact of optimizing
for engagement, as latent post commentability is highly correlated with post rank in the
data (Figure A.15). Latent post commentability is an important factor in optimizing for
engagement, meaning posts that are not in the top 25 posts would be less likely to be ranked
high on the feed even if they were included in the candidate posts.17

I assume that the platform has high quality estimates of user preferences given their access
to rich user-level behavioral data and therefore assume the platform observes β̂i in the coun-
terfactuals. I assume the platform does not, however, observe latent article commentability
(ξjt) and must estimate this through observable article features. I model the platform’s esti-
mates of ξjt as a supervised learning problem where the platform forms estimates of the true
latent article commentability (ξ̂jt) based on article observables. I operationalize this using a
random forest that predicts ξjt using observable post features including the stock of total and
top-level comments, vote score, post age, publisher slant, and publisher credibility rating.
This model performs well in the prediction task as demonstrated in Appendix Figure A.19,
where it achieves an R2 of 0.42. With estimates of article commentability, observed post fea-
tures, and observed user preferences, the platform can estimate engagement probabilities for
each user and article conditional on exposure P̂ijt = exp δ̂ijt

1+exp δ̂ijt
where δ̂ijt = x′

jt

(
β̄ + βi

)
+ ξ̂jt.

With predicted engagement probabilities for each user-article, I estimate what content
users would have engage with if the platform used the algorithms described below to re-
rank posts according to observable post features and estimated engagement probabilities.
To calculate engagement under a counterfactual algorithm, I calculate engagement proba-
bilities for each post and user by multiplying the exposure probability for the post under
the counterfactual ranking with the true estimated engagement probability conditional on
exposure.

Non-personalized engagement maximizing: The non-personalized engagement maximiz-
ing algorithm solves the following maximization problem

rN
t = arg max

r∈R

J∑
j=1

p (rj, t) E
[
P̂ijt

]
(1.10)

where R is the set of possible rankings, r = ⟨r1, . . . , rJ⟩ ∈ R is a vector of possible article
ranks, and P̂ijt is the platform’s estimate of the probability that user i engages with article j

in period t conditional on exposure. It is straightforward to show that when p (r, t) is weakly
17This assumption does preclude analyzing simple proposed algorithms such as reverse chronological, as

the restricted set of candidate posts excludes the high volume of low-quality posts that are often promoted
under a reverse-chronological ranking.
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decreasing in r, the optimal ranking sorts articles in descending order of E
[
P̂ijt

]
.18

Personalized engagement maximizing: The leading counterfactual considered is person-
alized engagement maximization. The personalized engagement-maximizing ranking solves

rP
it = arg max

r∈R

J∑
j=1

p (rj, t) P̂ijt (1.11)

which by a similar argument ranks articles in descending order of P̂ijt for each user.
Credibility-aware algorithm: While short-term engagement is often used as a proxy for

consumer welfare, a growing literature has emerged to study situations where these measures
may differ. This disconnect can arise for rational economic agents [Spence and Owen, 1977]
and in models with behavioral biases, including agents with present bias [Kleinberg et al.,
2022], dual self models, [Agan et al., 2023, Kahneman, 2011], and digital addiction [Allcott
et al., 2022]. Moreover, the platform may want to avoid promoting low-credibility publishers
for brand-safety purposes or to prevent potential regulatory actions. These factors could lead
the platform to consider publisher credibility in the ranking objective function. Therefore, I
consider credibility-aware algorithm that maximizes an objective function that balances two
competing objectives: total engagement and engagement with high credibility publishers

Sijt = E [dijt] ((1 − λ) + λ1 [cjt ≥ c]) (1.12)

where λ reflects the weight on engagement above a minimum credibility threshold c. Note
that this nests the personalized engagement-maximizing algorithm when λ = 0 and a
credibility-maximizing algorithm when λ = 1. The credibility-aware algorithm solves

rO
it = arg max

r∈R

J∑
j=1

Ŝijt = arg max
r∈R

J∑
j=1

p (rj, t) ((1 − λ) + λ1 [cjt ≥ c]) P̂ijt (1.13)

and is solved by ranking articles in descending order of ((1 − λ) + λ1 [cjt ≥ c]) P̂ijt for each
user.

Benchmarks: I compare the engagement patterns under the counterfactual algorithms
described above to two benchmark algorithms, the ranking employed by the platform (Ac-

18To show this, assume for contradiction there exists an optimal ranking with two posts j and j′ such
that rj < rj′ and E

[
P̂ijt

]
< E

[
P̂ij′t

]
. Note that the objective under this ranking is weakly less than the

objective if the positions of the two posts are swapped(
E

[
P̂ij′t

]
− E

[
P̂ijt

])
(p (rj , t) − p (rj′ , t)) ≥ 0

because p (·) is weakly decreasing in r. Therefore, this ranking is not optimal, thus providing a contradiction.
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tual) and a random benchmark that randomly shuffles the articles shown on the page for
each user (Random).

1.5.3 Counterfactual Ranking Algorithm Results

Summaries of engagement patterns under the different counterfactual ranking algorithms are
shown in Table 1.5. I now turn to describing the quantity, credibility, diveristy, and sentiment
of engagement in addition to studying how the various algorithms impact publisher market
shares.

Impact on Engagement Quantity

The counterfactual analysis suggests that the algorithm employed by the platform, which
prioritizes simplicity and transparency, is far from engagement maximizing. That said,
the actual algorithm does substantially increase engagement relative to the random bench-
mark. As expected, optimizing explicitly for engagement leads to a substantial increase
in engagement quantity. Much of the benefit comes from ranking articles according to ex-
pected engagement without personalization, which is evidenced by the 19.1% increase in
engagement under the non-personalized engagement-maximizing algorithm. Personalizing
user feeds increases engagement by 21.0% relative to the existing algorithm, providing a
modest increase in engagement relative to the non-personalized engagement-maximizing al-
gorithm. While modest in size, this lift does demonstrate the platform has an incentive to
personalize rankings to drive engagement. Optimizing for engagement with high-credibility
publishers also leads to a substantial increase in engagement relative to the actual algorithm
employed (15.0%), but represents a substantial cost in terms of lost engagement relative to
the engagement-maximizing algorithms.

44



Table 1.5: Counterfactual Engagement Summaries

Engagement Distance from Uniform Max Partition Share Credibility Negative Engagement Share
Intercept 54.048 0.280 0.290 0.790 0.512

(0.387) (0.001) (0.000) (0.001) (0.002)
Random -6.468 -0.004 -0.001 -0.001 -0.001

(0.043) (0.000) (0.000) (0.000) (0.000)
Non-Personalized 10.309 -0.008 -0.004 0.008 0.001

(0.062) (0.000) (0.000) (0.000) (0.000)
Personalized 11.357 0.030 0.021 -0.001 0.002

(0.072) (0.001) (0.000) (0.000) (0.000)
Credibility Maximizing 8.118 0.008 0.018 0.107 0.001

(0.054) (0.000) (0.000) (0.000) (0.000)
Observations 41675 41675 41675 41675 41675
R-Squared 0.031 0.031 0.084 0.405 0.000

Note: This table reports estimates of a panel regression of each counterfactual outcome on counterfactual algorithm dummy
variables. The intercept is the average quantity under the existing algorithm. (1) Engagement represents the total number
of articles a user comments on. (2) Diversity represents the first Wasserstein distance of engagement shares across publisher
slant partitions from the uniform distribution. Recall distributions closer to uniform will have smaller distances, meaning they
represent more diverse engagement. (3) Max partition share represents the max share of engagement in across publisher slant
partitions. (4) Credibility represents the share of a users engagement with high-quality publishers. (5) Negative engagement
share represents the share of comments that are negative sentiment. Standard errors are clustered at the user level.
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Impact on Engagement with Publishers by Credibility

Reddit’s algorithm does not materially impact the share of engagement with high-credibility
publishers relative to a random ordering of posts, with both algorithms resulting in 79.0% of
the average user’s engagement being with high-credibility publishers. Optimizing for engage-
ment also does not lead to a substantial change for the average user, with an average high-
credibility engagement share of 79.9% for the non-personalized engagement-maximizing al-
gorithm and 79.0% for the personalized engagement-maximizing algorithm. The credibility-
maximizing algorithm does lead to a substantial increase in the share of engagement with
high-quality publishers, with the average user’s high quality engagement share rising to
89.7%.

Focusing on average changes masks important heterogeneity. Figure 1.5a plots the em-
pirical CDF of the change in high-credibility shares relative to the existing algorithm. The
non-personalized algorithm has little impact on the quality of news diets as the share of
engagement with high-quality publishers does not change substantially for any user. The
personalized engagement-maximizing algorithm, however, does have substantial impacts for
many users despite the negligible average effect. The majority of users experience a modest
improvement in the quality of their news diets, as a slightly larger share of their engagement
is with high-credibility publishers. However, 41.5% of users experience a deterioration in the
quality of their news diets, with a subset of these users seeing the share of their engagement
with high quality publishers falling by over 10 percentage points. To better understand
what users experience these declines, Figure 1.5b plots the relationship between news diet
quality under the existing algorithm against news diet quality under the counterfactual al-
gorithms. It is clear that users engaging with less credible publishers under Reddit’s actual
algorithm experience large declines in the quality of their news diets under the personalized
engagement-maximizing algorithm. This suggests the engagement maximizing algorithm
exacerbates differences in the quality of user news diets by promoting high-credibility pub-
lishers to the majority of users who typically engage with high-credibility publishers and
promoting low-credibility publishers to users who have engaged with these publishers in the
past. Moreover, the results are robust to the choice of threshold for high-credibility publish-
ers (Appendix Section A.3.4) and I find personalization exacerbates differences in the quality
of user news diets even for very low thresholds for high-credibility publishers.

Turning to the credibility-maximizing algorithm, I find that optimizing for engagement
with high-credibility publishers leads to substantial increases in the share of engagement with
high-credibility publishers across all users. Importantly, though, Figure 1.5b shows that the
users experiencing the largest increases are those who engage more with low-credibility pub-
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lishers under Reddit’s actual algorithm. This indicates that including publisher credibility in
the objective function narrows the disparity between users with high- and low-quality news
diets, a difference that was exacerbated when optimizing only for engagement.

Impact on Engagement Diversity

I now study the impact the counterfactual algorithms have on the diversity of engagement
across the political spectrum. To do so, I discretize publisher slant into quintiles and calculate
the first-order Wasserstein distance of engagement or promotion shares across these five bins
of publisher slant relative to a uniform distribution. This distance metric is better suited to
this setting relative to other common measures of diversity used in the literature, including
the Herfindahl-Hirschman Index and Shannon Entropy, due to the ordered nature of slant
partitions. For example, the Wasserstein distance between a user’s engagement and the
uniform distribution is larger (i.e. less diverse) for a user who engages only with publishers
from a politically slanted partition versus a user only engaging with moderate publishers.
The distance is minimized when users engage equally with publishers from all slant partitions
and is largest when only engaging with publishers from a politically extreme partition.

The counterfactuals suggest that the random and non-personalized engagement max-
imizing algorithms lead to slight increases in engagement diversity relative to the actual
algorithm. That said, the personalized algorithm results in a decline in engagement diver-
sity, with the average Wasserstein distance of individual engagement shares relative to a
uniform distribution increasing by 10.5%. This increase occurs for a large majority of users,
with 71.6% of users experiencing a decline in their engagement diversity in the personalized
engagement-maximizing counterfactual. To put this into perspective, under the actual rank-
ing the maximum share of user engagement within a single slant partition averages 29.0%.
This rises to 31.1% in the personalized engagement-maximizing algorithm, a relative increase
of 7.3%. Turning to the credibility-maximizing algorithm, I also find a decrease in the diver-
sity of engagement as the average distance to uniform engagement shares rose by 3.0% and
the average user’s share of engagement in their maximal publisher slant partition increased
to 30.8%.

Impact on Discussion Quality

I now turn to studying the impact optimizing for engagement has on discussion quality, as
measured through the sentiment of comments submitted to the platform. Table 1.5 demon-
strates that both the non-personalized and personalized algorithms slightly elevate the share
of negative-sentiment comments submitted by the average user relative to the existing algo-
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Figure 1.5: Impact of Algorithm on Share of Engagement with High-Credibility Publishers

(a) Distribution of Change in High-Credibility Share
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Note: (a) Plots the empirical CDF of the change in the share of engagement with high cred-
ibility publishers under the counterfactual algorithms relative to the existing algorithm. (b)
Plots binned mean credibility shares under the counterfactual algorithm against credibility
shares under the existing algorithm. Regression line is a fourth-order polynomial fit.
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rithm. Recall a negative-sentiment comment is significantly more likely to contain strongly
negative emotions such as anger and disgust and more likely to be classified as toxic. More-
over, inspecting negative comments reveals they are often extremely vulgar and unlikely to
contribute to the discussion in a meaningful way.

While the effect on the sentiment of the average user is small, personalization increases
the variance in sentiment leading to some users commenting more positively while others
are shown content that makes them respond negatively (Figure A.20a). Figure A.20b plots
the relationship between the change in the negative-sentiment share of users against user
preferences for publisher credibility and I find that users who prefer less-credible publishers
have a larger increase in their negative-sentiment share. The same is true of users who prefer
left-leaning outlets, consistent with the sentiment preference estimates in Figure A.18.

Impact on Publishers

Thus far, I have focused on the impact that different ranking algorithms have on users and
the types of publishers with which they engage. Here, I change the unit of analysis to the
publisher and summarize how the counterfactual ranking algorithms impact different types
of publishers.

Figure A.21 plots the change in publisher market share by publisher slant (Figure A.21a)
and publisher credibility (Figure A.21b).19 Optimizing solely for engagement leads to a
reallocation of market share from left-leaning publishers to right-leaning publishers and a
slight increase in the market shares of low-credibility publishers. Optimizing for engage-
ment with high-credibility publishers leads to a reallocation of engagement from politically
slanted publishers to more neutral publishers and a reallocation from low- to high-credibility
publishers.

Engagement-Credibility Trade-Off

The results thus far have compared engagement-maximizing algorithms with a credibility-
maximizing algorithm. That said, platforms or society may balance these competing objec-
tives in a more nuanced manner rather than preferring either extreme. I now describe the
frontier of possible outcomes as λ, the weight placed on engagement with high-credibility
publishers, is varied. Figure 1.6 plots this trade-off along with points corresponding to the
total engagement-maximizing algorithm, credibility-maximizing algorithm, non-personalized
engagement-maximizing algorithm, and non-personalized credibility-maximizing algorithm.

19Here, publisher market share is defined as a publisher’s share of total engagement in the counterfactuals.
This differs from how publisher market share would traditionally be defined, and one should think of market
share in this context as the share of traffic from the platform.
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As can be seen, moving to the credibility maximizing algorithm reduces engagement by 5.0%.
Nevertheless, platforms can achieve over half of the increase in news diet quality from the
credibility-maximizing algorithm for a 1.9% decrease in engagement. This change in engage-
ment is similar in magnitude to the difference between the non-personalized engagement-
maximizing algorithm and the personalized engagement-maximizing algorithm. However,
the non-personalized algorithm does not meaningfully improve the quality of users’ news
diets, while the credibility-aware algorithm increases the average share of engagement with
high-credibility publishers by 5.9 percentage points for approximately the same total quantity
of engagement.

The shape of this frontier is also important, as the gradient is relatively flat around the
engagement maximizing algorithms. This suggests that, for small decreases in engagement,
the platform can drastically increase the share of engagement with high-quality publishers.
However, this also means that small differences in preferences between the platform and
society can lead to large discrepancies in outcomes along the credibility dimension – again
highlighting the importance of aligning the ranking algorithm’s objective function.

1.5.4 Robustness of Findings

Robustness to Alternative Method of Personalization and External Validity

The results in this section are based on a micro-founded model of user engagement decisions.
This approach requires many assumptions and here I seek to show the results are not sen-
sitive to the assumptions made. To do so, I summarize the findings of an analysis reported
in Appendix A.4 that analyzes the type of publishers that are promoted when personalizing
the ranking algorithm to maximize engagement using a reduced form collaborative-filtering
based recommender system. The recommender system then recommends publishers on which
a user is most likely to comment in a period. I validate this recommender system by esti-
mating heterogeneous treatment effects when the regression discontinuity experiments align
with the recommender system’s predictions. I find that the recommender system effectively
predicts treatment effects, a result that suggests the model has learned important aspects of
user preferences. I then study the types of content that gets promoted under this simple rec-
ommender system to understand the extent to which personalized engagement maximization
impacts individual news diets.

This approach has two advantages over the discrete choice model and counterfactual
analysis I study in Section 1.4 and Section 1.5. First, this model is trained using comment
decisions from over 500,000 users and is evaluated on comment decisions of over 180,000
users. This is a much larger sample than that used in the choice model approach, as I

50



Figure 1.6: Engagement-Quality Frontier

0.80 0.82 0.84 0.86 0.88 0.90
Credibility

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Av
er

ag
e 

En
ga

ge
m

en
t

Personalized Engagement Max
Personalized Credibility Max
Non-Personalized Engagement Max
Non-Personalized Credibility Max
Personalized
Non-Personalized

Note: This figure plots the frontier of possible outcomes when varying λ in the credibility
aware algorithm. The y axis is average total engagement and the x axis is the average share
of engagement with high credibility publishers. The y-axis is normalized to 1 at its maximal
value. Points indicate outcomes under the counterfactual algorithms described in Section
1.5.2.
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can use comment decisions on articles during periods not captured in Wayback Machine
snapshots during the training process. Second, this approach relies on a different set of
assumptions than the model of engagement decisions and can be validated by predicting
treatment effects of which the model is predictive. I find consistent results across both
approaches when comparable, which gives confidence that the findings of the choice model
approach can be generalized to a broader set of users. That said, I emphasize the model-based
approach as the main findings given it allows me to study in more detail the implications of
various algorithm designs, including the credibility-aware ranking algorithms, on engagement
rather than simply studying what content the algorithm would have recommended.

Robustness to Endogenous Search

A limitation of the analysis of counterfactual ranking algorithms presented above is the
partial equilibrium nature of the analysis. That is, in equilibrium many things might adjust
including user attention, the supply of articles, and the slate of existing comments on each
article. Here we demonstrate the findings are not sensitive to endogenous attention allocation
by microfounding the reduced form search process and allowing for endogenous search.

Recall in Section 1.4.1, a user is exposed to an article if vijt = 1 where vijt is an inde-
pendent Bernoulli draw with probability p (r, t). Here, we allow for a more flexible model of
exposure where we model vijt as the composite of two random variables

vijt = vit1
[
ūirj

> cirj
+ ηijt

]
where vit is an independent Bernoulli draw equal to one if user i is active in period t,
ūir = E [max {uijt, ui0t} |rj = r] is the expected utility from viewing an article in position r,
cir is the mean search cost of viewing an article in position r, and ηijt is an idiosyncratic search
cost. I assume that ηijt ∼ N (0, 1) and ηijt ⊥ vit, xjt, ξjt, εijt. I further assume for simplicity
that search costs are such that there is no heterogeneity in user exposure probabilities (i.e.
cir = ūir − Φ−1 (pr)). In equilibrium, this model of exposure is equivalent to the model in
Section 1.4.1 but it allows for users to reoptimize pr – the probability of being exposed to
an article in position r conditional on being active – in the new equilibrium .

Under this model of exposure, the treatment effect of rank on engagement could come
from two channels. First, articles in different positions have different search costs (i.e. cir ̸=
cir+1). For example, one may expect it to be more costly for users to view articles ranked
lower on the page. Second, an article being promoted from position r + 1 to position r

would induce an update in user beliefs about the expected utility from viewing that article
(i..e ūir ̸= ūir+1). Under a counterfactual ranking algorithm, only this latter channel would
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change in equilibrium as users rationally update their beliefs about the expected utility they
would receive from viewing articles in different positions. Therefore, understanding which
channel drives the treatment effects we observe is important for understanding how attention
may adjust in equilibrium.

Figure 1.7 plots the components of the search model with panel 1.7a showing the average
ūir by article position and counterfactual ranking algorithm and panel 1.7b showing the aver-
age cir by article position. As expected, both channels contribute to the estimated treatment
effects with the average ūir declining with rank and the average search cost increasing with
rank. Moreover, for the various counterfactual ranking algorithms we also observe changes
to ūir as one would expect. The personalized engagement maximizing algorithm by con-
struction has the sharpest decline in ūir given the algorithm is explicitly promoting articles
with high utility and therefore users update their beliefs about the quality of article they
encounter. Also of note is that the credibility maximizing algorithm is non-monotonic. This
is because a subset of users prefer low-credibility publishers and these are moved to the
bottom of the page by this algorithm. Therefore, the expected quality of articles in these
positions is higher for these users.

However, the magnitudes of the changes in ūir are small relative to the search costs
(Figure 1.7b). Therefore, the search costs are the primary driver of the treatment effects
and allowing users to update reoptimize their attention across the feed has little impact on
the counterfactual results. Figure A.23 plots the average pir = P

(
ūirj

> cirj
+ ηijt

)
by rank

and counterfactual algorithm and it is clear there is little change in the exposure probabilities
and thus the main findings are robust to endogenous attention allocation within the feed.

1.6 Discussion and Conclusion

In this study, I evaluate the impact of optimizing for engagement in social media news feed
algorithms on the quantity, credibility, and diversity of publishers with which users engage.
To address this question, I exploit a regression discontinuity design revealed in the platform’s
code to identify the causal effect of rank on engagement and use these causal estimates to
identify a model of user engagement. Using this model, I estimate engagement patterns under
counterfactual ranking algorithms including personalized and non-personalized engagement-
maximizing and a credibility-aware algorithm that explicitly trades-off total engagement and
engagement with high-quality publishers.

The counterfactual analysis demonstrates that social media platforms have a strong in-
centive to optimize their ranking algorithms for engagement. Optimizing for engagement
leads to a dramatic increase in the quantity of engagement and much of this results from
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Figure 1.7: Decomposing Treatment Effects in Endogenous Search Model
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Note: (a) Average expected utility from viewing an article by position (ūir) and counterfac-
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promoting posts with which all users are likely to engage. The marginal benefit of person-
alizing feeds is modest in terms of engagement quantity but has substantial impacts on the
credibility and diversity of publishers with which users engage. In particular, personalized
engagement maximization exacerbates differences in the quality of user news diets. That
is, the personalized engagement-maximizing ranking expands the difference in the share of
high-credibility engagement between users engaging with lower-credibility publishers and
those engaging with higher-credibility publishers under the existing algorithm. In addition,
personalization nearly uniformly decreases the diversity of publishers with which users en-
gage.

Advertiser concerns about brand safety give platform managers a direct motive to pro-
mote credible publishers. Many advertisers seek to avoid advertising on platforms that
promote content that is inconsistent with their values or that would create backlash from
their consumers. For example, the #StopHateForProfit movement led over 1,000 large ad-
vertisers to halt or reduce advertising on Facebook to pressure the platform to expand its
efforts to combat hate speech and misinformation [Hsu and Friedman, 2020, Hsu and Lutz,
2020]. There is also evidence suggesting that firms advertising on platforms alongside mis-
information often experience customer backlash [Ahmad et al., 2023]. The credibility-aware
algorithm demonstrates one method managers can use to improve the credibility of news
content that is promoted on their platforms. The gradient of the engagement-credibility
frontier indicates that moving away from the engagement-maximizing algorithm and towards
the credibility-maximizing algorithm incurs a relatively small cost in terms of lost engage-
ment. However, this also implies that small differences in the preferences of the platform
and society can generate large changes in the amount of engagement with low-credibility
publishers despite reasonably small changes to total engagement.

In addition, these results are also relevant for managers of publishers and the incentives
they face when advertising revenue on traffic originating from social media referrals comprises
an important component of their income. I find that personalized engagement maximization
benefits publishers with a strong conservative slant and those producing low-quality jour-
nalism. This introduces an incentive for publishers to change their coverage to match the
increased demand for politically slanted and low-credibility journalism.

Finally, these results have implications for regulating digital platforms. A growing regu-
latory trend is to require or incentivize platforms to allow users to opt-out of personalized
recommendations or feeds. Examples include the European Union’s Digital Services Act
or proposed legislation (such as the Filter Bubble Transparency Act, Justice Against Ma-
licious Algorithms Act, and the Protecting Americans from Dangerous Algorithms Act) in
the United States. The findings presented here suggest the emphasis on allowing users to
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opt out of personalization may be misguided. Rather, as the results show, personalization
has substantial benefits when the objective function aligns with social preferences. Recall
that for approximately the same level of engagement as the non-personalized engagement-
maximizing algorithm, the credibility-aware algorithm can increase the share of the average
user’s engagement with high-credibility publishers by 5.9 percentage points. To the extent
that the platform’s objective function differs from user preferences or those of society, a more
efficient path forward would allow users to adjust the ranking objective function to align with
their preferences or incentivize platforms to place the socially optimal weight on credibility.
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Chapter 2

News Feeds and User Engagement:
Evidence from the Reddit News Tab

2.1 Introduction

Social media platforms play an important role in everyday life, with the average person with
access to the internet spending over two hours daily on social media [Kemp, 2020]. The
prevalence of social media in modern life has important implications for individual well-
being [Allcott et al., 2020], the quality of news people consume [Vosoughi et al., 2018b], and
political polarization [Levy, 2021]. Perhaps the most common way users interact with many
of the most popular social media platforms is through a news feed that aggregates content
from across the platform (e.g. Facebook News Feed and Twitter timeline). A growing body
of research has demonstrated the importance of news feed algorithms on individual well-
being [Kramer et al., 2014], platform engagement [Dujeancourt et al., 2021], and exposure to
counter-attitudinal news [Bakshy et al., 2015b, Huszár et al., 2021, Levy, 2021]. This paper
studies the effects of a large social media platform introducing a popularity-driven news
feed on engagement quantity, quality, and diversity. We find that the introduction of the
feed increases engagement in some, but not all, featured communities and the engagement
induced by the feed is heterogeneous in quality, with many communities seeing a larger
relative increase in low-quality engagement compared to high-quality engagement. We also
find suggestive evidence that the communities that saw the largest increases in engagement
were communities most often featured in the new feed. Moreover, the introduction of the
feed increases individual engagement diversity, suggesting non-personalized news feeds can
be an important tool in mitigating algorithmic filter bubbles [Pariser, 2011].

This study leverages a natural experiment on the Reddit platform where a News tab
offering popular content from a curated list of communities was introduced on iOS devices
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but not desktop or Android devices. At the time, Reddit statements indicated the iOS only
roll out was to test and improve the feed and the platform had plans to introduce this feature
across all devices. Therefore, we view this as an exogenous change to the app and argue
that, absent the introduction of the News tab, Reddit engagement trends would have been
similar across Android and iOS users. This allows us to identify the causal effect of the News
Tab using a difference-in-differences strategy.

We find that the introduction of the news feed induces a statistically significant increase
in the probability of posting any content on a news-related community. This increase is
concentrated in the Politics, Technology, Entertainment, and Business related communi-
ties that were featured in the News tab. The News tab caused the monthly probability
of posting by iOS users to increase by 19.6% (0.69 percentage points) in the Politics com-
munity, 17.3% (0.50 percentage points) in Technology communities, 7.0% (0.35 percentage
points) in Entertainment communities, and 106.0% (0.21 percentage points) in Business
communities. However, this new engagement that was caused by the News Tab is of het-
erogeneous quality. We find a statistically significant and economically meaningful increase
in low-quality engagement as measured by voting on the platform in the Politics (36.0%,
0.23 percentage points) and Technology (13.1%, 0.08 percentage points) communities, and
a non-statistically significant decline in Science and US & World communities. While the
probability of posting a high quality comment also increased in the Politics and Technology
communities, the increase was smaller in relative terms. Notably, the non-personalized feed
also increases individual engagement diversity as implemented through the Shannon Entropy
[Holtz et al., 2020, Shannon, 1948] and Herfindahl–Hirschman Index [Claussen et al., 2019,
Rhoades, 1993]. This is true both for the diversity of engagement across the communities
included in the News tab as well as for the diversity of engagement across articles from
publishers of different political slant.

These results have important managerial and policy implications. In particular, we high-
light the effects of social media news feed algorithms on engagement quantity, quality, and
diversity. Despite the increase in engagement, the relative rise in low-quality engagement
has the potential to make the platform less valuable to existing members by increasing the
costs of finding high quality discussion and information [Gu et al., 2007]. This presents a
trade-off, as prior work suggests the increase in engagement diversity caused by the News
tab may have positive implications for user retention [Anderson et al., 2020, Oestreicher-
Singer and Zalmanson, 2013]. While the increase in engagement diversity across categories
of news has important managerial implications, from a policy perspective, the increase in
the diversity of engagement across publishers from various political viewpoints suggests that
non-personalized feeds can be an important tool to mitigate algorithmic filter bubbles.
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2.2 Related Literature

In this paper we contribute to several streams of existing literature. First, we add to the
literature studying the impacts of social media feed algorithms on users and society. This
includes work studying the impact of social media feeds on individual well-being [Allcott
et al., 2020, Kramer et al., 2014], media consumption [Allcott et al., 2020, Bakshy et al.,
2015b, Levy, 2021], exposure to content from politicians [Huszár et al., 2021], and user
engagement [Dujeancourt et al., 2021]. Kramer et al. [2014] find that changes to the Facebook
News Feed that promote (or suppress) posts containing positive expressions cause users to
post more (less) positive posts and less (more) negative posts, highlighting the importance of
the News Feed algorithm in determining the content that users interact with and downstream
effects on user behavior. Similarly, Bakshy et al. [2015b], Allcott et al. [2020], and Levy
[2021] find that the news feed impacts the news people read, and in particular, exposure to
counter-attitudinal sources. We contribute to this literature by further demonstrating the
importance of news feed design on user behavior. In particular, the addition of the news
feed we consider increases user engagement, and the diversity of user engagement, suggesting
that non-personalized feeds can help mitigate filter bubbles that are often generated by social
media feeds.

Second, we contribute to the growing literature studying the impacts of news feeds and
algorithmic recommendations on consumer behavior. This has been studied in the context
of product sales [Hosanagar et al., 2014, Lee and Hosanagar, 2019, Oestreicher-Singer and
Sundararajan, 2012] as well as content consumption [Bakshy et al., 2015b, Claussen et al.,
2019, Dujeancourt et al., 2021, Holtz et al., 2020]. The existing work find that personal-
ized algorithms increase content consumption relative to manually curated recommendations
[Claussen et al., 2019, Holtz et al., 2020] and chronologically ordered news feeds [Dujean-
court et al., 2021]. In addition, Bakshy et al. [2015b], Claussen et al. [2019] and Holtz et al.
[2020] find (to varying extents) that personalized recommendations decrease individual con-
sumption diversity, supporting the notion of algorithmic recommendations leading to filter
bubbles. We contribute to this body of work by studying the causal effects of a new non-
personalized feed on engagement and engagement diversity. In contrast to the work studying
personalized feeds [Bakshy et al., 2015b, Claussen et al., 2019, Holtz et al., 2020], we find
the non-personalized news feed increases individual engagement diversity and this increase
in diversity does not come at the expense of decreased engagement. Moreover, this paper
is among the first to study the impacts of a new feed at a major social media outlet on
engagement quantity, quality, and diversity.

Finally, we add to the literature studying motivations for user generated content. Past
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research has investigated numerous interventions to induce additional user generated con-
tent. These interventions include financial incentives with mixed results [Burtch et al., 2018,
Cabral and Li, 2015, Khern-am nuai et al., 2018], successful social norm interventions [Burtch
et al., 2018, Chen et al., 2010], and status or rewards [Burtch et al., 2021, Gallus, 2017, Goes
et al., 2016, Restivo and Van De Rijt, 2012]. Of particular relevance to this work are the
trade-offs faced in stimulating additional user generated content. For example, Khern-am
nuai et al. [2018] find that financial incentives can increase the quantity of online reviews,
though these incentives result in the marginal reviews being of lower quality. Gu et al.
[2007] emphasize this tradeoff explicitly and study the competing positive network exter-
nalities, stemming from additional engagement providing more information, and negative
externalities, if additional low-quality engagement distracts members of the community and
increases costs of finding relevant information. We contribute to this literature by asking if
additional news feeds can stimulate user-generated content, in addition to the impacts these
have on the quality of this engagement.

2.3 Setting

Reddit is a popular social media platform founded in 2005 with over 52 million daily active
users as of January 2020.1 The platform consists of over 100,000 active communities called
subreddits, which host user-generated content focused on a particular topic. Within a com-
munity, users can post new submissions or comment on others’ submissions. By default,
content is presented to users using a proprietary algorithm that favors upvotes and fresher
content.2

Voting on content is an important part of Reddit both practically, as it is a key driver of
content promotion, and as a method of rewarding content that contribute to the community
and demoting those that do not.3 While norms vary within communities, Reddit guidelines
are explicit that voting should reflect contributions to the community and conversation.4 In
particular, downvoting only because you disagree with the content is explicitly discouraged
and downvoting should be reserved for content that is not contributing to the community’s
conversation. Therefore, in this study we will use voting data to infer post quality as judged

1https://www.redditinc.com/press
2The exact details of this algorithm were publicly available until 2017 but are now proprietary.
3Upvoting (downvoting) a user’s post or comment impacts their Karma score, which is a publicly available

number summarizing “how much good the user has done for the reddit community” (https://www.reddit.
com/wiki/faq).

4“Vote. If you think something contributes to conversation, upvote it. If you think it does not contribute
to the subreddit it is posted in or is off-topic in a particular community, downvote it.” (https://www.
reddithelp.com/hc/en-us/articles/205926439)
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by members of the community.
Reddit is accessible to users through web browsers or mobile apps. In April 2016 Reddit

launched their official mobile apps for Android and iOS devices. Before the official Reddit
apps were supported, there were a number of third party apps that allowed users to browse
the site and many unofficial apps are still available today, though the official Reddit app is
the dominant app in the market.5 Users of the official mobile app are able to access three
primary sections of the app through a navigation bar at the top of the screen: “Popular”,
“Home”, and “News”, though the latter News section is only available to users with iOS
devices. The Popular tab aggregates popular content from across the site and the Home tab
aggregates content from communities in which the user is a member. The News tab is the
focus of this study and is discussed in detail in Section 2.3.1.

2.3.1 Natural Experiment

In June 2018, Reddit introduced an update to its mobile app on Apple (iOS) devices that
introduced the News tab, which provided a feed of content from communities that focus
on discussion and sharing of news related content. The tab is displayed prominently in the
mobile app alongside the Home tab that shows submissions from communities a user is a
member of and the Popular tab that shows popular content from across the platform (Figure
2.1). Within the News tab, users first view a feed containing posts from all news categories.
Users may then select individual topics to view more focused feeds that display posts related
to the selected topic. The communities that are displayed in the News tab are chosen to
be those that most often engage with news, who are actively moderated and in compliance
with Reddit policies on acceptable content and guidelines for healthy communities, and who
require the title of posts linking to news articles to be an accurate reflection of the article
title. These guidelines result in most posts in the News tab following a common structure,
where the post title is an article headline and the body links to the full article (Figure 2.1).

In Reddit’s public comments at the time, they announced that the News tab was orig-
inally being released on iOS, but would eventually be available on most devices.6 Our
empirical strategy, which will be discussed in greater detail in Section 2.4.3, relies on the
assumption that, absent the introduction of the News tab, engagement trends of iOS users
in our sample would have followed engagement trends of Android users in our sample.7 We

5While data on installs is not publicly available, the official Reddit applications have received more than
2 million reviews on both the Apple App Store and the Google Play Store. The next closest competitor has
roughly 400,000 reviews.

6https://www.reddit.com/r/announcements/comments/8sth30/extra_extra_were_launching_a_
news_tab_as_a_beta

7Our preferred results require a slightly weaker assumption that common trends hold conditional on
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Figure 2.1: Screenshot of Reddit News Tab
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provide evidence consistent with such an assumption in Section 2.4.4, though the assumption
cannot be explicitly tested empirically.

2.4 Data

The data for this study are based on a dataset of public Reddit submissions and comments
described in Baumgartner et al. [2020].8 We focus on posts between June 2017 and June
2019 which contain a total of 349 million submissions and 3.0 billion comments during this
period. We restrict our sample to the subset of users for whom we can infer their mobile
device, and this sample has 28.0 million total comments across all communities during the
period. We also focus on comments rather than submissions, as comments make up the
majority of posts and this is particularly evident in communities promoted on the News
tab. In our sample of users, comments on communities featured in the News tab account for
97.89% of all posts. Table 2.1 below shows descriptive statistics for our sample.

observed pre-treatment engagement. This is because we use Coarsened Exact Matching weights in the
analysis [Iacus et al., 2012], described in Appendix B.1.

8Gaffney and Matias [2018] find evidence of missing data in this dataset. In particular, they find that
less than 0.04% of comments and 0.65% of submissions are missing from the dataset in the early years. We
believe missing data on this scale is unlikely to be driving our results for two reasons. First, as discussed in
Baumgartner et al. [2020], the data collection process has improved as a result of the flaws highlighted in
Gaffney and Matias [2018] which analyze data before the period studied here. Second, Gaffney and Matias
[2018] find that heavy users are more likely to be impacted than light users. Our primary outcomes are
indicators if a user posted any posts in a month. Therefore, for the outcome to be changed we would have
to be missing all of a users posts in a given month which is less likely.
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Table 2.1: Summary Statistics

Any Post Number of Posts Any Neg Score Any Pos Score
Mean Mean Min Max Mean P(any|posting) Mean P(any|posting)

All Posts 0.625 541.057 0 91,681 0.464 0.742 0.624 0.998
All News 0.374 40.856 0 12,927 0.166 0.444 0.369 0.985
US/World 0.213 5.641 0 4,298 0.074 0.349 0.206 0.969
Politics 0.106 6.277 0 9,369 0.036 0.338 0.102 0.960
Technology 0.142 1.444 0 2,253 0.031 0.217 0.137 0.965
Science 0.117 1.128 0 2,182 0.019 0.160 0.113 0.965
Sports 0.131 16.624 0 12,740 0.045 0.346 0.127 0.973
Gaming 0.178 6.389 0 4,289 0.051 0.287 0.173 0.976
Entertainment 0.172 3.227 0 3,063 0.042 0.242 0.167 0.969
Business 0.014 0.126 0 264 0.003 0.181 0.014 0.951
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Figure 2.2: Screenshot of Reddit Mobile Feed Used to Identify User Devices

2.4.1 Inferring Device Type

A drawback of the Baumgartner et al. [2020] data relative to the proprietary data collected
by the platform is that we only observe publicly available information, which does not include
the device a user was using when making a post. As a result, we must infer device type
from posts on the platform. To do so, we consider the subset of users who have posted
in the RedditMobile community, which is an official Reddit community for announcements,
discussion, and feedback on the official Reddit mobile apps. When posting in this community,
users are often posting feedback about the mobile apps and typically include explicit tags
about the device and version of the mobile app they are giving feedback (Figure2.2). We infer
user device using the following procedure. First, if the user tagged a particular operating
system in their post we assign their device accordingly. Second, if the user has tagged their
operating system on the community through author ‘flair’ (for example, the first post in
Figure 2.2 has tagged iOS 14 as their author flair), we assign them to that device. Finally, if
both of these methods fail and the post is a comment, we assign the commenter the device
of the post they are commenting on. This procedure allowed us to identify 18,274 Android
users and 19,127 iOS users. There were an additional 1,579 users who authored posts that
would have been classified as both Android and iOS devices, and these users are excluded
from all analyses.

The process of inferring device operating systems limits our sample substantially. As a
result, we include all users who have posted on the RedditMobile community rather than
only those posting before the News tab was introduced. The primary risk of inferring device
type from posts after the News tab was introduced is a bias if users select devices based on
this intervention, but we believe this is unlikely to be driving our results.9 A more likely

9When the News tab was announced, Reddit administrators were explicit that they in-
tended to make this feature available across all devices which should mitigate switching im-
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issue is device switching that is independent of the Reddit News tab. This should bias our
estimates of engagement toward zero as long as the News tab did not induce some users to
engage less with news related communities.

2.4.2 Communities of Interest

The News tab includes 54 communities (subreddits) that are structured into 8 higher-level
categories of news.10 In this study we aggregate engagement to the category level and
focus on heterogeneity along news categories rather than individual communities. We do
this because the News tab is structured around these categories and the smaller number of
categories facilitates comparisons of heterogeneous effects.

We exclude a handful of communities due to concerns about the common trends assump-
tion. First, we exclude technology communities that specifically reference Apple or Google
as we are conditioning on users having an Apple or Android device and expect these users to
have different engagement patterns on these communities. Second, we exclude all communi-
ties in the Crypto category. This is because of the massive increase in traffic in late 2017 that
resulted in differential engagement by iOS and Android users. In the end, we focus on the
following 8 categories of news: US/World, Politics, Technology, Science, Sports, Business,
Gaming, and Entertainment.

2.4.3 Empirical Strategy

We estimate the effect of the News tab on Reddit activity using a difference-in-differences
design that makes a common trends assumptions. Formally, we model outcomes Yit using a
two-way fixed effects panel regression model

Yit = αi + λt + τPosttDi + εit (2.1)

where Yit is the outcome of interest, Di is an indicator equal to one if user i has an iOS
device, Postt is an indicator for the post-treatment period, and αi (λt) represent unobserved

mediately following the release. The announcement referenced specific plans for availability on
desktop and a top comment from an administrator stated the intention to make this available
across all platforms (https://www.reddit.com/r/announcements/comments/8sth30/extra_extra_were_
launching_a_news_tab_as_a_beta/e12auz7?utm_source=share&utm_medium=web2x&context=3). As
it became evident that this feature was not planned to be released on Android, selective switching is more
plausible, though we find it unlikely that a substantial share of our sample is choosing a smartphone operating
system because of this particular Reddit feature.

10When Reddit launched the News tab in 2018, the list of communities that were referenced were not
made public. To approximate the list of communities that are promoted by the News tab we consider the
communities that are present as of August 2021.
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individual (time) fixed effects. Identification of this model comes from a common trends
assumption that assumes, absent the introduction of the News tab, the average outcome for
iOS and Android users would have had the same variation over time [Abadie and Cattaneo,
2018].

In addition to average effects, we study dynamic treatment effects by estimating event-
study models of the form

Yit = αi + λt + τtDit + εit. (2.2)

We then can interpret τt as the average treatment effect on iOS users in period t to understand
how the treatment effect varies over time. In addition, this specification forms the basis for
our test of pre-trends discussed in more detail in the following section. All statistical inference
on estimates of Equation 2.1 and Equation 2.2 use cluster robust standard errors clustered
at the user level [Liang and Zeger, 1986].

Before estimating Equation 2.1 and Equation 2.2 we perform a Coarsened Exact Matching
(CEM) procedure that accounts for imbalance in baseline engagement in the pre-period
through re-weighting [Gertler et al., 2016, Iacus et al., 2012]. The matching procedure is
explained in detail in Appendix B.1. This weakens the identification assumption required,
as we now only need common trends to hold conditional on the covariates used in matching.
Results of the analysis without using the CEM weights are shown in Appendix B.7 and the
results are largely consistent.

2.4.4 Testing for Pre-Trends

To have a causal interpretation, the empirical strategy described in Section 2.4.3 relies on a
common trends assumption. To be explicit, our identifying assumption is that, absent the
introduction of the News tab, iOS and Android engagement would have followed the same
time trends conditional on pre-treatment covariates used in matching. While this cannot be
tested empirically, we can test for common trends in the pre-treatment period that would
be consistent with this assumption. To do so, we perform the joint test that pre-treatment
coefficients in Equation 2.2 are equal to zero.

When considering if a user posted in any news related community, we fail to reject
the null hypothesis of common pre-trends (p=0.36). Moreover, when looking at specific
topics we fail to reject the null of common pre-trends at the 5% level in all cases except for
entertainment related communities, which we can reject with a p-value of 0.05 (Figure B.2).
For the outcome of an indicator of any low-quality post, we fail to reject the null hypotheses
of common pre-trends for all 8 categories of news (Figure B.3) and the same is true for the
high-quality post analysis (Figure B.4).
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Figure 2.3: Treatment Effect Estimates on Probability of Posting a Comment

Note: Coefficients from estimates of Equation 2.1 on an indicator if a user posted in the
community in a given month. Each point represents the estimated average treatment effect
on iOS users on probability of engagement for the 8 categories of news. Bars represent 95%
confidence intervals.

2.5 Results

2.5.1 Effect on Engagement Quantity

To study the impact of the News tab on engagement with news related communities, we
first estimate Equation 2.1 where the outcome is an indicator equal to one if a user posts
on any community suggested by the News tab. In aggregate, we find the News tab increases
the probability of posting on any news related community by 3.5% (0.61 percentage points
percentage points, p=<0.01).

This aggregate view, however, masks substantial variation in effect sizes by the topic of
news (Figure 2.3). Recall there are 8 categories of news included in the News tab (US/World,
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Politics, Technology, Business, Science, Sports, Gaming, and Entertainment) and we can
estimate the effect of the News tab on the monthly engagement probability for each category.
Figure 2.3 plots the estimates of the average treatment effect on iOS users of the News tab
on engagement with each of the 8 news categories. In all categories, the treatment effect
point estimates are positive, though some are statistically indistinguishable from 0. This
suggests the News tab increases total engagement, but this increase is concentrated in a
subset of news categories. There is a statistically significant treatment effect for the Politics
(p=<0.001), Technology (p=<0.001), Entertainment (p=<0.01), and Business (p=<0.001)
categories that are also significant when correcting for multiple hypothesis testing [Holm,
1979].

Recall these effect sizes represent the share of individuals induced by the News tab to post
in each particular community in a given month. Baseline engagement rates are relatively low
in this sample, with on average only 3.5% of iOS users posting in the Politics community in
the year leading up to the introduction of the News tab. Therefore, a treatment effect of 0.69
percentage points represents a 19.6% increase in the monthly share of iOS users who post in
the Politics community. There is also a 17.3% increase in the share posting in Technology
communities, a 7.0% increase in the share posting in Entertainment communities, and a
106.0% increase in the share posting in Business communities.

The above analysis focuses on the extensive margin of engagement, showing that the News
tab induces additional iOS users to post on news related communities relative to Android
users. Next, we consider how the News tab impacts the intensive margin by estimating
Equation 2.1 on a series of additional outcomes. Specifically, we estimate Equation 2.1
where the outcome is a series of indicators equal to one if total engagement in a category is
above a threshold ranging from 0 to 50. This estimates the treatment effect for iOS users
on the probability of a user having more posts in a month than the threshold.11 The results
of this analysis are shown in Figure B.7 and Figure B.8. There is a clear pattern, where the
absolute treatment effects of the News tab are largest for lower thresholds suggesting the
News tab induces new users to post a few times rather than inducing users to post more
regularly.

11A natural outcome for the extensive margin analysis would be the log-transformed number of posts,
though the log-transformation suffers two pitfalls. First, given the sparsity of our dataset the arbitrary
choice of how to handle zeros would be consequential. Second, and more importantly, common trends in the
extensive margin (probability of posting) is inconsistent with common trends in the log-transformed outcome
unless we make further strong assumptions that are rejected in the data.
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Figure 2.4: Dynamic Treatment Effect Estimates on Probability of Posting a Comment

(a) All News Communities (b) All Non-News Communities

(c) Politics (d) Technology

(e) Entertainment (f) Business

Note: Dynamic treatment effect estimates on probability of posting in community, estimated
using Equation 2.2. Bars represent 95% confidence intervals.
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Figure 2.5: Dynamic Treatment Effect Estimates on Probability of Posting a Comment

(a) Gaming (b) Sports

(c) US & World (d) Science

Note: Dynamic treatment effect estimates on probability of posting in community, estimated
using Equation 2.2. Bars represent 95% confidence intervals.
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Figure 2.6: Treatment Effect on Probability of a Post by Post quality

Note: Coefficients from estimates of Equation 2.1 on an indicator if a user posted a positive
(negative) post in a given month. Each point represents the estimated average treatment
effect on iOS users on the probability of posting a positive or negative comment for the 8
categories of news. Bars represent 95% confidence intervals.

2.5.2 Effect on Engagement Quality

In addition to the quantity of engagement, we also observe the quality of engagement from
upvotes and downvotes by participants in the communities. Recall that votes on Reddit
are intended to be a mechanism to signal if a comment or submission contributes to the
conversation or not, which we are interpreting as a signal of post quality as judged by the
participants in the community.

To study the impact of the News tab on engagement quality, we again estimate Equation
2.1 with an indicator if any of an author’s posts were ‘negative’ or ‘positive’. Here, we
define a negative post to be a comment that received more downvotes than upvotes and
a positive post to be a comment that received more upvotes than downvotes. Results of
these regressions are plotted in Figure 2.6. We find that there is a heterogeneous effect on
engagement quality by topic. For example, while the Politics and Technology communities
see an increase in the number of users with both positive and negative posts, there is a
relatively larger increase in the share of users with negative posts suggesting the marginal
comments induced by the News tab are lower quality in these communities.
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Figure 2.7: Distribution of Posts in Hard-News Communities Across Domain Slant Partitions
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Note: For the set of hard news communities (US & World, Politics, Business), this figures
plots the share of engagement on posts started by a publisher across the political spectrum.

2.5.3 Effect by Domain

Focusing on news categories we classify as “hard news”, which includes US & World, Politics,
and Business, we now investigate the effect of the News tab on the political slant of the
news publishers that users engage with. In particular, we consider heterogeneous effects
on engagement with news articles by publishers of varying political slant. Appendix B.2
explains in detail how political slant is measured for each publisher.

The vast majority of threads in the news communities are started by someone sharing an
article related to the community’s topic. For this analysis, we drop the 4.2% of posts that link
to Reddit (this is primarily general discussion threads) and YouTube (<0.1% of posts). We
match publisher domains to the domain political slant measures of Robertson et al. [2018],
who calculate domain level political slant of 19,022 of the most popular domains. Additional
details about these data can be found in Appendix B.2. Over 94% of the remaining posts
in hard news communities by our sample were on a thread started by a link to a publisher
domain contained in the Robertson et al. [2018] slant data. We then partition the publishers
into five equally sized bins based on their slant. The majority of engagement is on articles
from left-leaning publishers, with less than 20% of posts on threads initiated by articles from
right-leaning outlets and over half of posts on threads initiated by articles from left-leaning
outlets (Figure 2.7).

Next we investigate how the News tab differentially impacts engagement on the various
partitions. We find that the News tab increases engagement across the political spectrum,
though point effects are largest among strongly left and moderate publishers. The increase
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Figure 2.8: Treatment Effects on Probability of Posting on a Thread by Publisher Political
Slant

Note: This figure plots estimates of Equation 2.1 where the outcome is an indicator if the
user posts on a thread in a hard news community discussing an article from a publisher
within each slant partition.

among conservative-leaning publishers are statistically indistinguishable from zero (Figure
2.8).

2.5.4 Effect on Individual Engagement Diversity

Turning toward the diversity of engagement, we find that the News tab induces individuals
to engage with more diverse content. This is true both among the topics included in the
News tab and among publisher slant partitions within “hard news” communities (Figure
2.9). Diversity here is operationalized as the Shannon Entropy [Holtz et al., 2020, Shannon,
1948] of engagement shares by news category and publisher slant partition, respectively. Full
details of the diversity measure can be found in Appendix B.3 where we also demonstrate
the robustness of this result to other diversity measures, including the Herfindahl-Hirschman
Index.

We find that the Shannon Entropy of diversity across categories of news included in
the News tab increased by 12.0% and the News tab increased the Shannon Entropy of
diversity across publishers from different political slants by 8.2%. To try and contextualize
the magnitude of this increase in diversity, we calculated what share of the maximum possible
increase in diversity we observed from the News tab. Specifically, for iOS users in the post-
treatment period, we calculated the maximum possible Shannon Entropy of engagement
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Figure 2.9: Effect of News Tab on Engagement Diversity

Note: Treatment effect estimates of Equation 2.1 of individual engagement diversity by
device, as measured through the Shannon entropy. The News Category estimate reflects the
treatment effect on diversity of engagement across the \ncats \ categories of communities
on the news tab. The Political Slant estimate reflects the treatment effect on engagement
diversity across political slant partitions within hard news communities.

given the total engagement amount and estimated Equation 2.1 on this new outcome. This
provides an upper bound on the potential increase in engagement diversity holding total
engagement fixed. We find that the increase in engagement caused by the News tab represent
3.8% of the maximum increase for diversity across news categories and 7.7% of the maximum
increase for diversity across publishers of varying political slant.

2.6 Heterogeneity and Robustness

As shown in Section 2.5.1, there is substantial heterogeneity in the impact of the News tab
on engagement with the various categories of news, with the Politics community seeing the
largest increase in engagement. A potential explanation for this heterogeneity could be a
result of the design of the News tab itself. While the News tab does have subsections for
each of the 8 different categories of news content, the feed individuals first interact with
aggregates popular content from across all categories of news content (Figure 2.1). It is
plausible that users are more likely to engage with content promoted on this page. To
evaluate this hypothesis, we create a monthly index of popularity for each news category
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Figure 2.10: Individual Engagement Diversity Time Series

(a) Across Community Engagement Diversity (b) Political Slant Engagement Diversity

Note: These plot the estimates of Equation 2.2 of individual engagement diversity by device,
as measured through the Shannon entropy. Figure 2.10a plots diversity of engagement across
the 8 categories of communities on the news tab. Figure 2.10b plots engagement diversity
across political slant partitions within hard news communities.

and predict monthly treatment effect estimates with this index.12 We find that this measure
of popularity is correlated with the monthly treatment effect estimates on the probability of
posting. While this cannot be interpreted causally, as popularity is endogenous, this evidence
is consistent with the hypothesis that the heterogeneous effects of the News tab are a result
of the underlying popularity of the different categories. An important implication of this
hypothesis is that the choice of the popularity algorithm is critical. If this hypothesis were
correct, it would mean promoting content from a different category of news would increase
engagement with that category, More important, it would also suggest an algorithm that
favored content slanted towards a particular political party would increase engagement with
this content (e.g. Huszár et al. [2021]), further highlighting the importance of the choice of
algorithm in influencing the content individuals see and ultimately engage with.

A competing hypothesis that could explain why the largest treatment effects are in the
Politics category is that the News tab was introduced in the months leading up to a U.S.
midterm election. To address the concern that the our results are confounded by the elec-
tion, we estimated the effect of the News tab on placebo communities that are focused on
discussing politics but were not included in the News tab politics section. We find precise
null effects for these communities suggesting that the effect we find for the Politics commu-

12Unfortunately, historical data on which posts were promoted are unavailable. Therefore, we scrape a
Reddit page that shows the most popular posts from a given day. See https://www.reddit.com/r/changelog/
comments/k663qy/introducing_rereddit_go_back_in_time_to_see_top/ for a description of this page.
We then define the popularity index as the monthly average share of posts in the top 50 most popular news
posts that came from each category of news.
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Table 2.2: Correlation in Community Popularity and Treatment Effects

(1)
Popularity 0.049

(0.010)
Constant 0.003

(0.000)
p-value <0.001
Obs 56
Adj. R2 0.232
F-stat 21.827

Note: Coefficients from the regression of monthly treatment effect estimate on community
popularity. Model (2) adds community fixed effects. Model (3) adds community fixed effects
and the interaction of centered community fixed effects with popularity. This results is
equivalent to averaging the estimates.

nity included in the News tab is in fact a result of the News tab and not a result of the
introduction of the News tab coinciding with an election cycle (Figure B.6).

2.7 Discussion and Conclusion

We find that the News tab increased engagement with news related content, though the
marginal content induced by the News tab was of heterogeneous quality. In addition, the
News tab increases the diversity of engagement across news categories and content from
outlets with different political leanings.

This study, however, is not without limitations. First, our analysis relies on publicly
observed information which requires us to limit our sample to individuals who reveal their
device through the RedditMobile community. While we believe this does not impact the
internal validity of our results, we must be cautious when generalizing these results as this
sample of users may not be representative of the broader population. In addition, our data
only contain engagement measured by posting to the communities and we do not observe
content consumption.

Our findings have several important takeaways. First, we highlight the heterogeneous
increase in engagement that was induced by the News tab. We found heterogeneity in two
dimensions. Not all communities saw significant increases in engagement with only Politics,
Technology, Entertainment, and Business related communities seeing significant increases.
In addition, the increased engagement was of heterogeneous quality as some communities
(namely, Politics), also saw a significant increase in the number of users posting low-quality
content. This highlights an important trade-off in platform design. Existing work suggests
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design changes that increase engagement, in particular the diversity of engagement, in virtual
communities may improve retention of the affected users [Anderson et al., 2020]. However,
the new engagement may be inconsistent with the norms of the community which could have
a negative externality on existing users [Gu et al., 2007].

In addition, our findings on the diversity of engagement have important policy and social
implications. Previous work has found that personalized news feed algorithms and personal-
ized recommendations have led to filter bubbles and decreased content consumption diversity
[Allcott et al., 2020, Bakshy et al., 2015b, Claussen et al., 2019, Holtz et al., 2020, Levy, 2021].
Moreover, these studies have found a tradeoff in engagement quantity and diversity that led
\cite{holtz2020engagement} to introduce the concept of the “Engagement-Diversity Connec-
tion.” We demonstrate that augmenting personalized feed algorithms with non-personalized
feeds of news related content can increase both engagement and engagement diversity. This
is true both for engagement among different categories of news as well as for the diversity
of engagement among publishers of different political slant. From a managerial perspec-
tive, more diverse engagement has been shown to positively impact user retention [Anderson
et al., 2020]. From a policy perspective, users consuming and engaging with a more diverse
set of political viewpoints has important positive implications for civic life [Sunstein, 2003].
This suggests that non-personalized feeds can be an important tool in mitigating algorithmic
filter bubbles and should be studied further to assess the robustness of these findings.
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Chapter 3

Combining Human Expertise with
Artificial Intelligence: Experimental
Evidence from Radiology1

“We should stop training radiologists now. Its just completely obvious that within five years,
deep learning is going to do better than radiologists."

– Geoffrey Hinton (in 2016)

3.1 Introduction

Artificial intelligence (AI) is a general-purpose technology with transformative potential
similar to that of the steam engine and electricity [Acemoglu and Johnson, 2023, Agrawal
et al., 2018, Brynjolfsson and Mitchell, 2017, Brynjolfsson et al., 2017, Frank et al., 2019,
Goldfarb et al., 2023]. But, in contrast to the innovations of the industrial revolutions, AI can
perform tasks that require complex reasoning (Webb, 2019; Felten et al., 2019; Brynjolfsson
and Mitchell, 2017). Indeed, a growing literature shows that AI can outperform humans in a
host of predictive tasks, including those typically performed by experts (Liu et al. 2019; Lai
et al. 2021; Mullainathan and Obermeyer 2019; Kleinberg et al. 2017; Agrawal et al. 2018).2

Radiology is as an iconic example of this development. Yet, many disagree with Hinton’s
proclamation that AI will replace radiologists.3 These skeptics argue that instead of human

1This chapter is written in collaboration with Nikhil Agarwal, Tobias Salz, and Pranav Rajpurkar [Agar-
wal et al., 2023].

2We will use the term AI to refer to a neural net-based image classifier. The term artificial intelligence
is typically reserved for a system of different prediction tasks to mimic a more complex set of behaviors,
whereas machine learning is concerned with one specific prediction task. For a detailed discussion of this
distinction see [Taddy, 2018], among others.

3A more nuanced but qualitatively similar prediction that machine learning tools will displace radiologists
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radiologists being replaced by AI, it is optimal for them to use AI assistance [Agrawal et al.,
2019, Langlotz, 2019]. In addition to considerable legal and regulatory challenges that stand
in the way of full automation, combining human expertise with AI input has potential gains
that cannot be realized by exclusively relying on one or the other. For example, radiologists
may correct mistaken AI predictions or may have access to information about the clinical
context on which the AI is not yet trained. Current regulatory practice by the FDA is
consistent with these arguments: approved AI tools for clinical decision-making typically
play a supporting role rather than operating autonomously [see Harvey and Gowda, 2020,
Norden and Shah, 2022, for example]. Similar arguments can be made in many other settings
where AI approaches or exceeds the abilities of human experts.

This paper investigates the optimal form of collaboration between humans and AI. That
is, should AI predictions that surpass human performance be used to automate decisions or
to assist humans? The answer to this question depends on our three broad questions. First,
do humans hold valuable information not included in AI predictions? If yes, then one would
like to harness this information by using AI to augment humans instead of fully automating
decisions. However, a substantial literature in economics suggests that humans may err
when making probabilistic judgments by deviating from the benchmark model of Bayesian
updating with correct beliefs [see Benjamin et al., 2019, for a review]. In the presence of such
mistakes, it may not be optimal to always give the human access to the AI’s information.
This brings us to the next two questions: How do humans combine AI predictions with
their own information? And how do potential mistakes shape the optimal form of human-AI
collaboration?

We design and run an experiment with professional radiologists and develop an empiri-
cal methodology that aims to answer these questions.4 Our experimental design compares
human and AI performance, quantifies the predictive value of the information that humans
hold but AI tools do not (henceforth termed contextual information), and tests whether AI
assistance improves human performance. We then develop a method to estimate a model of
(potentially imperfect) belief updating, analyze what this model implies about the optimal
form of collaboration between AI and humans, and apply it to our experimental data.

The experiment includes 227 professional radiologists recruited through teleradiology
companies to diagnose retrospective patient cases. Radiology offers an environment that is
both naturalistic and allows us control similar to that in a laboratory experiment. As in
our experiment, radiologists often work remotely, and our interface resembles the one they
typically use. Our treatments vary the information set radiologists have access to when

is conveyed in Obermeyer and Emanuel [2016].
4We will use the terms ‘humans’, ‘radiologists’, and ‘participants’ interchangeably.
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making decisions, in a two-by-two factorial design. In the minimal information environment,
we provide only the chest X-ray image to which we add either AI predictions, contextual
information, or both. Using an algorithm trained on about 250,000 X-rays with correspond-
ing disease labels, the AI information treatment provides probabilities that a patient case
is positive for a potential chest pathology [Irvin et al., 2019]. This algorithm was shown to
perform comparably to board-certified radiologists. The contextual information treatment
provides clinical history information that radiologists typically have available but, for data
privacy reasons, is difficult to obtain to train the AI. This information includes the treating
doctors’ indications, the patient’s vitals, and the patient’s labs.

We will evaluate the quality of assessments by both AI and our participants against a
diagnostic standard for each patient case. We follow the machine learning literature [Sheng
et al., 2008] and construct a diagnostic standard by aggregating the assessments of five
board-certified radiologists practicing at a highly reputed hospital with at least ten years of
experience and chest radiology as a sub-specialty.5 We also assess the robustness of all our
results by constructing a (leave-one-out) diagnostic standard using the assessments of our
experimental participants and by varying the aggregation method. Although this standard
may not perfectly capture a “ground truth,” patients would likely benefit from a system that
brings diagnoses closer to the aggregate opinion of several highly qualified and experienced
experts.6

We use the experimental data to estimate the value of contextual information and AI
assistance, unpack biases in how humans use AI assistance, and analyze the optimal delega-
tion problem. First, we estimate the treatment effects of our informational interventions on
radiologists’ prediction quality and the probability of making a correct decision. Next, we
analyze whether and how humans deviate from a Bayesian benchmark when incorporating
AI predictions. For example, humans may suffer from automation bias, a tendency to place
more weight on machine-provided predictions than on one’s own information.7 Additionally,
humans may treat AI predictions as independent of their own information [Enke and Zim-
mermann, 2019]. We show what different types of deviations from Bayesian updating imply
for the collaboration between humans and AI. Finally, we quantitatively evaluate the opti-
mal human-AI collaboration in terms of diagnostic performance and costs of human time.
We assume that the AI signal can always be obtained at zero marginal cost and implement

5Unfortunately, medical records are of limited value because definitive diagnostic tests do not exist for
most thoracic pathologies and, even when they do exist, are selectively performed depending on a radiologist’s
recommendation.

6A similar motivation justifies the use of second opinions in medical care.
7This terminology is borrowed from the literature that dates to the proliferation of computerized auto-

mated support systems in aviation, research which raised concerns about human complacency or automation
bias [see Alberdi et al., 2009, for an overview].
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a classifier that decides, as a function of the AI prediction, to delegate a case to either a
human, a human with access to the AI, or the AI alone.

There are two key empirical challenges that we address through a combination of ex-
perimental designs. First, due to the high cost of recruiting radiologists at market rates,
an across-participant design is impractical to power, except for very large effect sizes. We
address this issue by adopting a within-participant design, where participants are random-
ized to experience four informational environments in random order, avoiding repeated case
encounters. Second, to estimate a model of belief updating, it is important to obtain radiol-
ogists’ diagnoses with and without AI assistance. Our second experimental design therefore
asks participants to assess each case in each of the four information environments, with at
least a two-week pause between repetitions of a case to minimize memory and anchoring
biases. To ensure that our results do not rely on this “wash-out” being successful, a third
design obtains an assessment with AI assistance only after assessments without AI assistance
have been obtained. However, this third treatment is subject to order effects. We find no
evidence of order effects on diagnostic quality although there is evidence that familiarity
with the interface increases the speed with which participants go through patient cases. Our
treatment effect analysis uses data from all designs whereas our model estimate of belief
updating only uses data in which a radiologist reads the same case both with and without
AI assistance.

We find that AI assistance does not improve humans’ diagnostic quality on average even
though the AI predictions are more accurate than approximately 75% of the participants
in our experiment. Moreover, the zero average effect cannot be explained by the partici-
pants ignoring these predictions – we observe that radiologists’ reported probabilities move
significantly towards AI predictions when AI assistance is provided. Instead, the zero effect
of AI assistance is driven by heterogeneous treatment effects: diagnostic quality increases
when the AI is confident (i.e. the predicted probability is close to zero or one) but decreases
when the AI is uncertain. In parallel, AI assistance improves diagnostic quality for patient
cases in which our participants are uncertain, but decreases quality for patient cases in which
our participants are certain. In contrast, providing clinical history does improve diagnostic
quality, a result that suggests humans have additional valuable information that has not yet
been incorporated into AI predictions.

An upshot of the results is that information available only to radiologists is useful, but hu-
mans do not correctly combine their information with AI predictions. In fact, AI predictions
reduce predictive preformance for a range of signals. This result cannot be rationalized if
our participants are Bayesians with correct beliefs because the AI assistance provides weakly
more information to the decision-maker.
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Motivated by these findings, we analyze two types of deviations from the benchmark
model with correct updating to link errors in probabilistic judgement and optimal deploy-
ment of AI assistance.8 The first type of deviation occurs when agents do not put the correct
relative weight on the AI information. We describe this deviation using the approach intro-
duced in Grether [1980, 1992] [see Benjamin, 2019, for a review] to define biases in belief
updating. We say that an agent exhibits automation bias if they over-weight the AI infor-
mation relative to their own and automation neglect if they under-weight it. The second
type of deviation occurs if agents utilize an incorrect joint distribution of their own infor-
mation and AI information; an example of such a deviation is correlation neglect [Enke and
Zimmermann, 2019]. Our theoretical analysis shows that if agents exhibit only automation
neglect, then AI assistance unambiguously increases diagnostic quality. All other forms of
biases we consider result in AI assistance reducing diagnostic quality for certain realizations
of AI and own information.

We then develop a method and use the data from our experiment to estimate empirical
analogs of the deviations described above and select the model that best describes the treat-
ment effects we document. This exercise requires us to solve several challenges unique to a
naturalistic setting. One of the hurdles in our setting is that we, unlike in a laboratory game,
cannot control the distribution of AI predictions and human information in our experiment,
which differs from prior empirical applications of Grether’s model of which we are aware.

In the model that best describes the data, agents exhibit automation neglect and act as
if their own information and AI predictions are independent (conditional on the truth), even
though this is not the case. Although parsimonious, we find that this model replicates the
empirical patterns observed in the data. An important implication of the model is that it is
not optimal to always provide AI assistance.

Thus, we turn our attention to designing a human-AI collaborative system that can
selectively use AI predictions. We start by estimating the trade-off between diagnostic
quality and radiologist time when, as a function of AI predictions, the diagnosis of a case’s
pathology can either be delegated to a human with or without AI assistance or be fully
automated. The data from our experiment allow us to compute both of these quantities for
each mode of diagnosis.

The results from this exercise mirror our treatment effect analysis: because radiologists
take more time with AI assistance and do not correctly incorporate the AI’s information,
the majority of cases are optimally decided either by the radiologist or the AI alone but not
by the radiologist with access to AI. We also find that signficantly more cases would have

8We will remain agnostic about whether the deviations we consider are due to non-Bayesian updating or
can be explained by Bayesian updating with an incorrect mental model of AI predictions.

83



been optimally diagnosed by a human with AI assistance if humans correctly combined AI
predictions with their own information, thus pointing to the potential importance of learning
or further training.

Related Literature
A growing body of literature in computer science has explored the predictive performance

of humans versus machine learning algorithms, with radiology often serving as a key area
of application [Rajpurkar et al., 2017, 2018]. The study of human-AI collaboration has
also become an increasingly important facet of medical AI research [Reverberi et al., 2022,
Tschandl et al., 2020]. For comprehensive overviews of these areas, see Hosny et al. [2018],
Lai et al. [2021], Rajpurkar et al. [2022], Zhou et al. [2021]. Research on the effectiveness of
human-AI collaboration is evolving, with notable studies in radiology including Fogliato et al.
[2022], Kim et al. [2020], Park et al. [2019], Rajpurkar et al. [2020], Seah et al. [2021]. An
active literature studies whether AI assistance benefits radiologists, and which radiologists
benefit the most [Ahn et al., 2022, Gaube et al., 2023, Rajpurkar et al., 2020, Seah et al.,
2021, Sim et al., 2020]. Another set of papers build delegation algorithms to predict the types
of cases for which human performance exceeds machine performance [e.g. Bansal et al.,
2021, Mozannar and Sontag, 2020, Raghu et al., 2019]. In contrast to prior studies, we
recruit a large group of high-skilled experts under contracts that allow us to incentivize
our participants. A key conceptual difference is that, unlike previous studies which are
mainly concentrated on performance, our work emphasizes behavioral biases, how they can
be measured in a naturalistic setting, and their impact on human-AI interaction and optimal
AI deployment.

A rapidly growing literature in economics also compares human and AI performance.
Within economics, these studies tend to rely on observational approaches, with examples
addressing issues in medicine [Mullainathan and Obermeyer, 2019, Ribers and Ullrich, 2022]
and bail decisions [Angelova et al., 2022, Kleinberg et al., 2015], amongst others. How-
ever, analyses based on observational data face critical identification challenges, such as the
selective labels problem [see Kleinberg et al., 2017, Mullainathan and Obermeyer, 2019, Ram-
bachan, 2021]). A limited set of studies use quasi-experimental approaches (e.g., Angelova
et al., 2022, Stevenson and Doleac, 2019) or randomized controlled trials (e.g., Bundorf et al.
[2020], Grimon et al. [2022], Imai et al. [2020], Noy and Zhang [2023]) to investigate human
use of AI tools, typically focusing on overall performance or variability in participant re-
sponse. We add to this literature by developing an experimental approach that manipulates
the information environment that calculates and compares behavior with a Bayesian bench-
mark to document systematic biases and demonstrate that these biases lead to a non-trivial
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delegation problem.9

While several studies in behavioral economics have documented errors in probabilistic
judgment and belief formation, they do not consider the consequences for AI deployment
[c.f. Benjamin et al., 2019, Conlon et al., 2022, Enke and Zimmermann, 2019, Tversky and
Kahneman, 1974, for example]. Our definitions of automation bias builds on the framework
in Grether [1980]. We contribute to this literature in two ways. First, we develop an approach
to estimate the parameters of the model in Grether [1992] in an environment where the joint
distribution of the signals cannot be controlled (or partialled out) by the researcher.10 This
methodological advance is necessary because we cannot modify the signal within medical
images. Second, we link the design of AI information provision to the (biased) updating rule
that humans use. This link shows that utilizing AI information by humans is an important
and practical application of the ideas in this literature.

Finally, our work also adds to the literature on decision-making, particularly in the
health care context [e.g. Abaluck et al., 2016, Chan et al., 2022, Chandra and Staiger,
2020, Currie and MacLeod, 2017, Gruber et al., 2021]. Such efforts use observational data
on medical decisions to understand predictions and payoffs, objectives that are achievable
under less stringent functional form restrictions in our experimental approach. An important
distinguishing feature is that none of these papers consider the effects of AI predictions.

Overview
The rest of the paper is organized as follows. Section 3.2 introduces our model of a

decision-maker in a diagnostic setting. Section 3.3 describes the necessary details of the
setting and our experimental design. Section 3.4 discusses the treatment effects. Section 3.5
estimates a descriptive model of deviations from Bayesian updating. Section 3.6 shows the
gains achievable under the optimal collaboration between radiologists and AI.

3.2 Conceptual Model

Our study focuses on classification problems and prediction algorithms intended for these
tasks. These algorithms are designed to predict the appropriate classification for a given
case and may assist a human decision-maker. This decision-maker, indexed by h, must

9Our finding that radiologists exhibit automation neglect is related to those in Dietvorst et al. [2015],
which shows that humans are averse to following algorithmic recommendations as compared to human recom-
mendations. This aversion can be reduced if humans are allowed to modify the algorithm’s recommendation
[Dietvorst et al., 2018].

10Most applications that we are aware of rely on one of two experimental approaches. In the first approach,
the researcher can partial out either the prior information or the likelihood ratio of the signal provided, for
example in the classic bookbag-and-poker-chip experiments (see Benjamin et al. 2019, Benjamin 2019, for
reviews). In the second approach, the researcher directly provides signals from a known joint distribution
(see Conlon et al. [2022]).
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take a binary action aih ∈ {0, 1} on case i based on a prediction of a binary class ωi ∈
{0, 1}. The realized payoff uh (aih, ωi) from an action depends both on the correct class
and the action. The human does not know ωi but observes a subset of two signals that are
potentially informative about the state depending on the information environment. The first
signal is generated by a prediction algorithm (AI), with realizations sA

i ∈ SA. The second
signal is directly obtained by the human, with a realization sH

ih ∈ SH . These signals are of
arbitrary dimension. The joint distributions of the signals conditional on the state is given
by πh (·|ω) ∈ ∆

(
SA, SH

)
, with prior probabilities over the class π (ω). We do not place any

restrictions on πh (·|ω) – the signals need not be independent conditional on the state of the
world, the signal distribution may depend on the human to capture skill heterogeneity [Chan
et al., 2022], and one of the signals could be more informative than the other [Blackwell,
1953].

Assume that the human’s objective is to correctly classify each case. It is without loss
of generality to normalize the payoff from taking the action that matches the correct class
to zero. Let cF P,h be the disutility of human h if they set a = 1 when ω = 0 (false positive)
and cF N,h be the disutility if they set a = 0 when ω = 1 (false negative). The payoff of the
human is therefore

uh (a, ω) = −1 · {a = 1, ω = 0} · cF P,h − 1 · {a = 0, ω = 1} · cF N,h. (3.1)

We allow the human’s posterior belief given the observed signals to deviate from those
implied by the true probability law πh (·|ω). Specifically, let sih ⊂

{
sA

i , sH
ih

}
be the subset

of signal realizations observed by the human h and ph (ω |sih ) ∈ [0, 1] be the human’s belief
when they observe sih. Suppressing the dependence of signals on the pair (i, h), the human’s
action given the signal s is

a∗
h (s; ph) = 1 ·

{
ph (ω = 1 |s)
ph (ω = 0 |s) > crel,h ≡ cF P,h

cF N,h

}
. (3.2)

The expected payoff from following a∗ (s) is

Vh (s; ph) = E [uh (a∗
h (s; ph) , ω) |s ] =

∑
ω

u (a∗
h (s; ph) , ω) πh (ω |s) ,

where decisions are based on the human’s belief ph, but are evaluated according to the true
law πh. Because we allow for ph to differ from πh, the action a∗

h (s; ph) can deviate from the
optimal action a∗

h (s; πh) given the signal s =
(
sA, sH

)
. Except in knife-edge cases, Vh (s; ph)

is lower than V (s; πh) whenever a∗ (s; ph) ̸= a∗ (s; πh).
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The discussion above shows that the effect of AI assistance on decision quality depends on
whether humans’ beliefs with AI assistance deviate from the benchmark given by Bayesian
updating with correct beliefs (about the joint distribution of the signals and the correct
class). Bayes’ rule implies that, given the signals

(
sA

i , sH
ih

)
, the decision-relevant log-odds is

given by

log
πh

(
ωi = 1

∣∣∣sA
i , sH

ih

)
πh (ωi = 0 |sA

i , sH
ih ) = log

πh

(
sA

i

∣∣∣ωi = 1, sH
ih

)
πh (sA

i |ωi = 0, sH
ih ) + log

πh

(
ωi = 1

∣∣∣sH
ih

)
πh (ωi = 0 |sH

ih ) , (3.3)

where the second term on the right-hand side is the posterior log-odds ratio for the two
states ωi = 1 to ωi = 0 given that the human’s signal is sH

ih. Thus, one goal of our exercise
is to estimate the left hand side and compare it with the analogous quantity for ph (·).

Estimating the benchmark odds ratio above is empircally is challenging even if ph (·) can
be elicited because of two conceptually important reasons. The first challenge is that signals
sH

ih and (correct) beliefs πh (·) differ across patient cases i and across humans h because of
patient and radiologist skill heterogeneity respectively.

The second challenge arises because constructing the terms on the right hand side of
equation (3.3) requires a conditioning on sH

ih. In fact, even though the first term on the right
hand side is an update due to the AI signal, accounting for potential correlation with sH

ih

requires controlling for it. Unlike in some laboratory settings, we do not directly observe
humans’ signals. Our econometric approach, which is discussed in section 3.5, will construct
controls from reported beliefs without AI assistance.

The ideal dataset for addressing these challenging would elicit beliefs given a human h

and a case i both with and without the AI signal. However, empirically implementing this
strategy requires us to eliminate concerns about anchoring and order effects when eliciting
beliefs about the same case twice. We thus turn our attention to the experimental design
that is aimed at solving these issues.

3.3 Setting and Experiment

Our experiment elicits the probability of a pathology’s presence ph (ωi = 1 |sih ) and a rec-
ommended treatment/follow-up decision aih under varying information treatments. There
are four information treatments in the experiment. In the minimal information environment
participants only observe the chest X-ray, to which we add AI assistance, contextual infor-
mation, or both. Next, we describe the experimental context and interface before presenting
the design of our experiments.
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3.3.1 Experimental Context

Radiology

Radiologists diagnose the presence of a given pathology at the request of a treating physician.
The information available to a radiologist consists of diagnostic images (e.g. chest X-rays),
any relevant medical history (e.g. laboratory results), and clinical indication notes of the
treating physician. The treating physician’s notes are of varying detail levels – they may
provide no clinical information or guidance, request the analysis of a specific pathology, or
only list the patient’s primary symptom (see appendix C.2.2 for examples). Radiologists are
expected to report all pathological findings irrespective of the pathology suspected by the
treating physicians.

Because image-based classification is a core task performed by radiologists AI tools have
made significant inroads in the field. Recent advances in deep learning methods for image
recognition have yielded algorithms that can match or surpass the performance of human
radiologists [Langlotz, 2019, Obermeyer and Emanuel, 2016]. As of 2020, 55 companies
offered a total of 119 algorithmic products of which 46 have FDA approval [Tadavarthi
et al., 2020]. Most products related to clinical decision-making are marketed as support
tools as opposed to autonomous tools, partly due to regulatory and liability issues [Harvey
and Gowda, 2020].

CheXpert

We provide AI assistance using predictions from the CheXpert model, which is a deep learn-
ing prediction algorithm for chest X-rays [Irvin et al., 2019]. This model is trained on a
dataset of 224,316 chest radiographs of 65,240 patients labeled for the presence of fourteen
common chest radiographic pathologies. The algorithm does not use any other patient infor-
mation, such as the clinical history or vitals.11 Nonetheless, a prior version of this algorithm
was shown to match or surpass the performance of board-certified radiologists from Stanford
Hospital on five pathologies [Patel et al., 2019]. These results are also presented to our par-
ticipants when introducing the AI tool. Section 3.4 confirms that the algorithm outperforms
a majority of radiologists in our experiment. We relegate additional details about the algo-
rithm to appendix C.2.3. The algorithm assistance to our participants will be in the form of
a vector of probabilities for the presence of each CheXpert pathology.12

11While large datasets of images are increasingly available (e.g. Kramer et al. 2011, Johnson et al. 2016,
Irvin et al. 2019) it is significantly more difficult to construct such datasets for other patient information due
to the compulsory manual review of textual data for HIPPA compliance.

12Some algorithms attempt to make their predictions explainable to a human by highlighting the parts of
the image that drive a specific prediction. However, prior studies show that providing such localization in
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3.3.2 Experimental Designs

Our experiment varies the information available to diagnose patient cases—participants may
or may not receive AI assistance and may or may not have access to the clinical history. The
X-ray is shown under all information conditions. We expose our participants to all four
possible information conditions: X-ray only, henceforth XO; clinical history without AI,
henceforth CH ; AI without clinical history, henceforth AI ; and both clinical history and AI,
henceforth AI+CH.

There are two objectives of our experiment. The first is to compute the treatment effects
of AI and CH on diagnostic quality and radiologist time. The second is to analyze how
radiologists update when receiving the AI signal and compare it to a Bayesian benchmark.

Both these objectives are complicated by the likely heterogeneity in radiologist skills. For
estimating treatment effects, radiologist heterogeneity implies that a design that randomizes
treatments only across radiologists will require a large participant pool except for extremely
large effect sizes. Our participants are highly paid, making this approach expensive. And,
as explained in section 3.2, across-radiologist variation in information treatments is not
tailored for the second objective. We would ideally know how a given radiologist changes
her assessment for the same case under a different information condition.

Our approach to address these challenges is to use a combination of three different exper-
imental designs, each with certain advantages and disadvantages. Appendix C.2.1 illustrates
the three design variations.

Design 1 (Figure C.1)

In the first design, participants are assigned to a random sequence of the four information
treatments. Each information condition is assigned fifteen cases at random without repe-
tition. Participants read all 15 cases in one information environment before moving to the
next one.

This design builds in both across- and within-participant variation in information treat-
ments. The within-participant variation has greater power because it controls for partici-
pant heterogeneity at the potential cost of order effects. The concern of order effects is both
testable and mitigated by the randomization of treatment sequence across subjects.

This first design is well-suited to estimate treatment effects of our information environ-
ments. However, as mentioned earlier, it is not ideal for estimating an empirical analog to
equation (3.5) because no case is encountered twice.

addition to the numeric output does not improve the accuracy of radiologists [Gaube et al., 2022]. Moreover,
a quantitative output allows us to compute a Bayesian benchmark to the radiologist’s prediction, which is
otherwise difficult.
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Design 2 (Figure C.2)

Radiologists diagnose each patient case in each of the four information environments in the
second design. For the moment, set aside concerns arising from the feature that the same
radiologist encounters the same case multiple times. This design will allow us to estimate
an empirical analog to equation (3.5). It also has the added benefit of controlling for both
case-radiologist heterogeneity because, unlike in the previous design, we can conduct within-
case-radiologist comparisons across treatments.

Because radiologists repeatedly encounter cases, we need to address the potential for order
effects due to memory. For example, radiologists might anchor on their previous assessment
using AI predictions or contextual information and might remember this information the
next time the same case is encountered. We, therefore, limit radiologists’ ability to remem-
ber either their diagnosis or previously provided information by using a “washout” interval
between two encounters of the same case.13 Specifically, radiologists complete the experi-
ment in four sessions that are separated by at least two weeks. Each session is similar to the
first design: radiologists diagnose fifteen cases in each of the four information environments
with no case repeated within a session. Across sessions, the information environment under
which a given case is diagnosed is permuted. Thus, by the end of the fourth session, each of
the sixty cases is diagnosed exactly once in each information environment. Our results are
consistent with the washout being effective – radiologists’ predictions do not move towards
the AI prediction if it was provided in a prior session but do if it is provided in the current
session (see figure C.37).

Design 3 (Figure C.3)

In the third design, we address residual concerns about the order effects of radiologists
diagnosing cases with AI before those without AI–whether due to anchoring, memory, or
experimenter demand–by having participants diagnose fifty cases, first without and then
with AI assistance. Within each block, clinical history is randomly provided in either the
first or second half of images.

This design also allows us to conduct within case-radiologist comparisons. The potential
disadvantage of this design is that we cannot distinguish order effects from the effect of
providing AI. This issue is unavoidable given the guiding principle that participants receive
weakly more information about a case during a repeat encounter. However, we can test for
and do rule out order effects on accuracy based on the first two designs.

13This principle has been used in computer science [Conant et al., 2019, Pacilè et al., 2020, Seah et al.,
2021].
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Participant Recruitment

Participants for the first and third designs, which constitute the majority, were recruited
through teleradiology companies. Most healthcare providers in the US rely on these compa-
nies’ services, even those that have on-call radiologists [Rosenkrantz et al., 2019]. We work
with teleradiology companies that serve US hospitals and offer the services of both US-based
and non-US-based radiologists. Our contract specifies a piece-rate, and the companies, in
turn, compensate the participants with a piece-rate.14 In addition, we provided monetary
incentives for accuracy to a subset of radiologists, as described in the next section.

The second design required us to work with a partner who could guarantee subjects’ par-
ticipation over several months. We collaborated with VinMac healthcare system in Vietnam
to recruit their staff radiologists to ensure continued participation. VinMac is in the process
of developing its own in-house AI capabilities and was willing to assist with our experiment
in exchange for recognition in a publication of the resulting dataset. The VinMac radiolo-
gists did not receive receive any payments to participate in the experiment but we find that
their perfomance is very close to the performance of the tele-radiologists.

In total, 227 radiologists participated in our experiment. Approximately 14% of our
participants are US-based, 15% have a degree from a US institution, 44% are affiliated with
a large clinic, and 63% with an academic institution. As demonstrated in appendix C.3.4,
the quality of the assessments made by the radiologists in our study is comparable to that of
the staff radiologists from Stanford University Hospital, who originally diagnosed the patient
case.

Incentives

We cross-randomize incentives for accuracy in the first and third designs but not the second
because of the specific ways in which our partner’s radiologists are employed. Payments were
determined following the binarized scoring rule in Hossain and Okui [2013], where truth is
determined as described in section 3.3.3 below. This incentive scheme uses a loss function
of the mean squared prediction error, averaging over patient cases and pathologies, and the
respondents earn a fixed bonus of $120 if a random draw is less than the loss function.
This bonus is more than 20% of the base payment to teleradiology firms. We explain to
the participants that expected payments are maximized if they provide their best estimates
using a non-mathematical description of the payment rule. We specify the distribution so
that 30% of pilot participants would earn the bonus, cross-randomized with the other two
treatment arms.

14The piece-rate we pay the teleradiology companies range from $7.50 to $13.00.
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3.3.3 Implementation and Data Collection

Patient Cases and Diagnostic Standard

The experiment uses 324 historical patient cases with potential thoracic pathologies from
Stanford University’s healthcare system. For each case, we have access to the chest X-ray
and the clinical history in the form of the primary provider’s written notes, the patient
vitals, and demographics.15 The use of retrospective cases allows us to avoid ethical and
other issues that would arise when experimenting in high-stakes settings.

Our analysis requires constructing the correct class ωi for each patient case and pathology.
We construct ωi by aggregating the assessment of a group of expert radiologists, an approach
common in computer science [Mccluskey et al., 2021, Sheng et al., 2008]. We asked five
board certified radiologists from Mount Sinai with chest specialty to read each of the 324
cases using the interface described above with the available X-ray and clinical history. For
each case-pathology i and radiologist h, we obtain πh

(
ωi = 1

∣∣∣sH
i,h

)
. We classify ωi = 1 if∑

h πh

(
ωi = 1

∣∣∣sH
i,h

)
/5 > 0.5. We interpret ωi as the diagnostic standard for a case-pathology

given all available information at the time of diagnosis.
The diagnostic standard may differ from the “ground truth” presence of a pathology.

However, obtaining such “ground truth” for an unselected sample of patient cases is infeasible
in most diagnostic settings. Additional information in medical records are often inconclusive
because definitive tests do not always exist, and follow up patient care and outcomes are
selected based on the assessed presence of a pathology.16 This issue is referred to as the
selective labels problem [e.g. Mullainathan and Obermeyer, 2019]. Recent literature has
suggested instrumental variables approaches for solving this selective labels problem, but
this work targets population quantities and not a “ground truth” on each case [e.g. Chan
et al., 2022, Mullainathan and Obermeyer, 2019].

In comparison, the diagnostic standard immediately addresses the selective labels prob-
lem because the availability of assessments is not selected on the likelihood of a pathology
being present. Results in Wallsten and Diederich [2001] suggest that, under weak conditions
that allow for measurement error in the reports and correlations across reports, the aggregate
opinion of several experts is highly diagnostic as long as the experts are median unbiased.17

15All cases are first encounters with no prior X-ray as a comparison. We started with 500 cases that
fit these primary criteria. We omitted pediatric cases from this set. Finally, a radiologist reviewed the
cases to remove instances with poor image quality. The clinical history was manually reviewed to remove
patient-identifiable information and cleared for public release.

16Many pathologies do not have commonly used non-imaging-based diagnostic tools. For instance, the
presence of cardiomegaly – an enlarged heart – can only be determined using imaging tools, thoracic surgery
or an autopsy.

17Previous work cautions that physician opinions could reflect systematic underlying physican racial and
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To assess robustness of our results, we consider several alternative constructions of the
diagnostic standard and analyze a subsample of cases for which the standard is not ambigious.
These variations are discussed after the baseline results.

Experimental Interface and Data Collected

We developed the experimental interface to present the patient cases and to collect radiolo-
gists’ predictions and decisions in collaboration with board certified radiologists at Stanford
University Hospital and Mt. Sinai Hospital. In contrast to free-text reports, we designed it
to generate structured and quantitative data that resemble a typical radiological report. We
briefly describe this interface and provide images and further details in appendix C.2.

On the landing page of each case, a high-resolution image of a patient’s X-ray is pre-
sented to the radiologist, with the functionality to zoom and adjust brightness and contrast.
When the experiment calls to show the clinical history, the interface presents clinical notes,
vitals, and laboratory results available at the time the X-ray was originally ordered. If the
experiment provides AI assistance, participants are shown AI predictions.

The probability that a pathology is present given the available information is elicited using
a continuous slider. We visually subdivide possible responses into five intervals with standard
language labels used in written radiological reports to aid the participants.18 We also collect
a binary “treatment/follow-up” recommendation for each pathology that is not definitively
ruled out.19 We will interpret this input as a∗

h (s). In a real clinical setting, a recommendation
to follow-up could trigger the treating physician to prescribe additional medical tests or
interventions with potential costs and benefits. Thus, an optimal recommendation trades
off the cost of false positives and false negatives when recommending an action as in section
3.2. The probabilistic assessments with the follow-up decision will allow us to estimate
radiologists’ relative cost of false positives and false negatives.

We elicit responses for pathologies in a hierarchical structure designed by our collabo-
rating radiologists.20 There are eight mutually exclusive top-level pathologies. For instance,
“airspace opacity” is distinct from a “cardiomediastinal abnormality.” Each of these top-level

other biases (see Mullainathan and Obermeyer, 2017, for example).
18The specific labels are “Not present”,“Very Likely”, “Unlikely”, “Possible”, “Likely”, and “Highly Likely”.

Several radiological publications have suggested such standardized language for radiological reports. See for
instance Panicek and Hricak [2016].

19The binary treatment/follow-up decision is only asked for pathologies where a follow-up is clinically
relevant. This includes all pathologies with AI assistance.

20The hierarchical structure reduced the data entry burden on our participants, and we piloted the interface
with several radiologists specializing in the interpretation of chest X-rays. The groups all correspond to a
standard class of pathologies and prior clinical research on AI in chest X-Ray image classification has used
similar hierarchies [see Seah et al., 2021, for example].
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pathologies has children that are more specific, which may be further subdivided in some
cases. In addition, we elicited an overall assessment of whether the radiologists considers the
case normal or not. In the main text we focus on analyzing the two top-level pathologies
with AI predictions and drop further subdivisions from the analysis. Our results are robust
to including the lower-level pathologies in the analysis as we show in appendix C.3.5.

In addition to ph (ω = 1 |s) and a∗
h (s), we record active time, response times, and any

clickstream data that results from the interaction with the interface.21 The participants are
not explicitly informed about this monitoring, and there are no explicit time limits. Our
experiment runs remotely, and participants connect to a server, which hosts the interface
and records responses.22

Participant Training

We train the participants using a combination of written instructions and a video. The
materials provide an overview of the experimental tasks, the interface, and information about
the AI assistance tool. The firms and the participants know that the research study involves
retrospective patient cases. To train participants on the AI tool, we provide them with
materials that explain the development of the algorithm, present metrics of its performance
on various diseases, and summarize the algorithm’s performance relative to radiologists based
on prior research. In addition, we show the participants fifty example cases that show the
X-ray and clinical history next to the AI output. The participants are informed that the
algorithm only uses the chest X-ray to form predictions, and this knowledge is later tested in
a comprehension question. After the instructions, participants answer eight comprehension
questions, which they must answer correctly before proceeding to the experiment. We also
include an endline survey. We do not directly interact with the subjects except to field
questions about the experiment or provide tech support. The complete set of instructions is
provided in appendix C.2.2.

21Active time is calculated based on the clickstream data to approximate the time spent actively working
on the study. We exclude instances where a participant pauses the study which would substantially increase
the noise in the time measures.

22This interface is browser-based and built using the o-tree framework Chen et al. [2016]. Since we
are not directly communicating with our participants we also deploy a device fingerprinting service from
fingerprint.com to ensure that there are no repeat participants.
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3.4 Estimated Treatment Effects

3.4.1 Overall Performance of AI and Radiologists

This section focuses on measures of performance (deviation from diagnostic standard, incor-
rect decision), deviation from AI prediction, and measures of effort. Table 3.1 summarizes
the data on these measures and sample sizes from our experiment. The main text focuses
on the two top-level pathologies with AI predictions (Cardiomediastinal Abnormality and
Airspace Opacity) but our results are qualitatively robust to the inclusion of all pathologies
with AI predictions (see appendix C.3.5).23 A unit of observation is a radiologist decision
(or prediction) for a given patient and pathology.

Radiologists give the correct follow-up/treatment recommendation in 70% of case patholo-
gies. On average, they spend ~2.8 minutes per case with large variability across cases.
All summary statistics are very similar across the three expertimental designs. For in-
stance, the average deviation from the diagnostic standard, which is defined as Yiht =
|ph (ωi = 1| siht) − ωi|, for the three designs ranges from 0.212 to 0.232, and average active
time ranges from 2.58 to 2.88 minutes. Other measures, such as the share of correct decisions
(aih = ωi) and the deviation from AI assessments (Yiht =

∣∣∣ph (ωi = 1| siht) − π
(

ωi = 1| sA
i

)∣∣∣)
are also similar across designs.

Before discussing the treatment effects, we compare the performance of the AI to the dis-
tribution of baseline performance of participating radiologists using two different measures.
The first measure (AUROC) is derived from the receiver operating characteristic (ROC)
curve, which measures the trade-off between the false positive and the true positive rate of
a classifier. It is an ordinal measure whose value ranges from 0.5 for a classifier that guesses
randomly to 1 representing perfect classification. The second measure is the root mean
squared error (RMSE), which is cardinal and a lower value indicates higher performance.
To compute these, we pool the data for top-level pathologies with AI for each radiologist’s
reports and for the AI’s prediction (see appendix C.3.2 for pathology-specific comparisons).

The results are shown in figure 3.1 and indicate significant heterogeneity in performance
across radiologists as well as the scope for AI assistance to improve radiologist performance.
The heterogeneity across radiologists aligns with findings from observational data [e.g. Chan
et al., 2022]. According to the AUROC, the AI is more predictive than 78% of radiologists
and according to the RMSE more predictive than 90% of radiologists. Thus, there is ample
room for AI assistance to improve the performance of radiologists. In fact, a majority of

23These pathology groups and, unless otherwise noted, the subsequent analyses were pre-registered (see
SSR Registration 9620).
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Table 3.1: Summary statistics

All Designs Design 1 Design 2 Design 3
Mean SD Mean SD Mean SD Mean SD
(1) (2) (3) (4) (5) (6) (7) (8)

Reported Probability 0.229 0.289 0.211 0.285 0.245 0.278 0.240 0.322
Decision 0.311 0.463 0.268 0.443 0.400 0.490 0.231 0.421
Deviation from Diagnostic Standard 0.223 0.284 0.220 0.294 0.232 0.265 0.212 0.297
Deviation from AI 0.192 0.169 0.200 0.170 0.172 0.159 0.216 0.182
Correct Decision 0.704 0.456 0.745 0.436 0.620 0.485 0.785 0.411
Active Time 167.4 156.0 172.8 178.2 165.6 115.8 154.8 168.0
Observations 41, 920 19, 080 15, 840 7, 000
Radiologists 227 159 33 35
Reads per Radiologist 92.3 60 240 100

Note: Summary statistics of the experimental data. Decision and accuracy statistics are for the two top-level pathologies with
AI predictions (Cardiomediastinal Abnormality and Airspace Opacity) Columns (1) and (2) present the mean and standard
deviation for all designs while Columns (3) and (4) present the same statistics for design 1 only, Columns (5) and (6) for design
2 only, and Columns (7) and (8) for design 3 only. Decision is an indicator for whether treatment/follow-up is recommended.
Correct decision is an indicator for whether the decision matches the diagnostic standard. Deviation from diagnostic standard
is the absolute difference between the reported probability and the diagnostic standard. Deviation from AI is the absolute
difference between the human’s reported probability and the AI’s reported probability. Active time is measured in seconds.

radiologists would do better on average by simply following the AI prediction.24

24These results also align with Irvin et al. [2019], which shows that the CheXpert model yields a better
classifier than two out of three radiologists on five pathologies and all three on three pathologies. Our results
may differ from that because we use a different pool of radiologists, a different sample of cases, and reads
with contextual information (clinical history) to construct the diagnostic standard. The latter two differences
raise the bar for the AI because they reflect differences in the data-generating process.
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Figure 3.1: Comparing AI performance to radiologists
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(b) AUROC radiologists and AI
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Note: Distributions of two different accuracy measures of radiologist assessments alongside the AI’s accuracy. Both distributions
are shrunk to the grand mean using empirical Bayes. The histograms include the two top-level pathologies with AI predictions
(Cardiomediastinal Abnormality and Airspace Opacity) and each observation represents a measure calculated at the radiologist
level. The dotted line is the measure of the AI algorithm for the corresponding distribution, where “ptile” is short for “percentile.”
Only the assessments where contextual history information is available for the radiologists but not the AI prediction are
considered. AUROC is only defined for radiologists who encounter some positive cases, which includes the large majority of
radiologists. Robustness by design and diagnostic standard definition can be found in appendix C.3.5 & C.3.5.

We also compare the performances of our participants and the radiologist who originally
diagnosed each patient case in appendix C.3.4.25 There is no discernible difference between
the two groups, which is consistent with the hypothesis that radiologists participating in
the study were of similar skill and exerted similar effort as the radiologists completing the
original reads.

3.4.2 How do Radiologists Respond to AI and Contextual Information?

We now describe the effects of our information treatments estimated using the following
specification:

Yiht = γgi
+ γCH · dCH(t) + γAI · dAI(t) + γAI×CH · dCH(t) · dAI(t) + εiht, (3.4)

where Yiht is an outcome variable of interest for radiologist h diagnosing patient case-
pathology i and treatment t, and γgi

are pathology fixed effects since there are multiple
pathologies gi for each case in this pooled analysis. Treatments t vary by whether or not
clinical history is provided dCH(t) ∈ {0, 1} and whether or not AI information is provided

25We classified the original free text radiology reports associated with each case as positive, negative, or
uncertain for each pathology using the CheXbert algorithm described in Smit et al. [2020]. To facilitate
comparisons, we also discretized the probability assessments elicited during the experiment into positive
and negative assessments. Then, we compared the accuracy of the original reads against the radiologists
participating in the experiment.
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Figure 3.2: Treatment effects of informational interventions

(a) Deviation from AI

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

A
ve

ra
ge

tr
ea

tm
en

t
eff

ec
t

AI CH AI×CH

All Designs

Design 1

Design 2

Design 3

All Designs, 95% CI

(b) Deviation from diagnostic standard
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Note: ATE of information treatments estimated using equation (3.4), on the deviation from AI (panel (a)) and the deviation
from the diagnostic standard (panel (b)). Results are for the two top-level pathologies with AI predictions, airspace opacity
and cardiomediastinal abnormality; separated by design and pooled across all designs. Standard errors are two-way clustered
at the radiologist and patient-case level.

dAI(t) ∈ {0, 1}. We report two-way clustered standard errors at the radiologist and patient-
case level. The estimates are robust to the inclusion of radiologist and patient-case fixed
effects (appendix C.3.5). Cases are also balanced across treatments (see appendix C.3.1),
which suggests that case randomization was successful. We will also compute conditional
treatment effects given ranges of the AI signal sA

i that are grouped based on π
(

ωi = 1| sA
i

)
.

Do Radiologists Utilize AI Predictions?

We begin by testing whether radiologists respond to the information that the AI provides.
Panel (a) of figure 3.2 shows how the different information environments affect the dis-
agreement of the radiologists’ report with the AI’s assessment measured using the deviation
from AI. In calculating this deviation (Yiht =

∣∣∣ph (ωi = 1| siht) − π
(

ωi = 1| sA
i

)∣∣∣), the term
ph (ωi = 1| siht) is the elicited probability whereas π

(
ωi = 1| sA

i

)
is the AI’s predicted prob-

ability that ωi = 1. When AI assistance is provided, then siht =
(
sH

ih, sA
i

)
, and otherwise

siht = sH
ih. The signal sH also depends on whether contextual information is provided.

The results show that radiologists respond to AI assistance. Their predictions move
significantly closer to the AI when receiving access to the AI prediction. To see this, observe
that the control means for the deviation from the AI are approximately 0.21 for both when
we pool designs and for design 1 only. Treatments where AI is provided reduce this baseline
average deviation by 18%. We do not find a significant effect of clinical history on the
deviation from the AI prediction nor do we find one from the interaction between AI and
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CH.

Treatment Effects on Diagnostic Performance

Next, we ask whether the information treatments affect radiologists’ diagnostic performance
measured using the deviation from the diagnostic standard. Recall that lower values imply
better performance. Panel (b) of figure 3.2 also shows the average treatment effects on
performance.

Access to contextual information improves performance on average. We find that access
to clinical history reduces the deviation from the diagnostic standard by 4.0% (p < 0.05) of
the control mean. This result suggests that one would like to utilize this information.

In contrast, AI assistance does not significantly improve average performance. The inter-
action between contextual information and AI assistance is also statistically indistinguishable
from zero.

In light of the findings — that the AI is more accurate than most radiologists and that
radiologists move their assessments toward the AI — it may seem puzzling that the AI
information does not improve accuracy on average. This apparent contradiction occurs be-
cause the average treatment effects mask significant heterogeneity in treatment effects. Our
within-participant designs — designs 2 and 3 — allow us to estimate conditional treatment
effects given radiologists’ predictions without AI assistance. Specifically, we partition cases
based on the human’s signal into five equally spaced bins of ph

(
ωi = 1|sH

ih

)
. Figure 3.3 shows

the conditional treatment effects (pooled for design 2 and 3) of providing AI assistance on
diagnostic performance. Panel (a) shows the deviation from the diagnostic standard and
panel (b) shows the probability of incorrect decision. We find that providing AI assistance
in cases when the radiologist is uncertain (i.e. the probability reported is not close to either
zero or one) improves performance on both metrics, whereas AI assistance is harmful when
the radiologist is close to certain that the pathology is not present for a given case.
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Figure 3.3: Effect of AI by radiologist prediction without AI

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Panel (a) shows the conditional ATE of providing AI information on the deviation from diagnostic standard. Panel
(b) shows analogous treatment effects on incorrect diagnosis. Standard errors are two-way clustered at the radiologist and
patient-case level, with 95% confidence intervals depicted. Robustness to experimental design is in appendix C.3.5.

While AI assistance can help uncertain humans, we find that providing uncertain AI
predictions reduces performance. As with the analysis of conditional treatment effects given
human predictions, we estimate conditional treatment effects given AI predictions by parti-
tioning cases into five bins based on π

(
ωi = 1|sA

i

)
. Figure 3.4 presents the estimates, pooling

data from all three experimental designs. When the AI provides a confident prediction (e.g.
either close to zero or close to one) performance is significantly improved. We see that in
the lowest bins of AI signals, the deviation from the diagnostic standard is reduced. In the
second highest bin we also see a marked, though not statistically significant, improvement
in performance. However, in the middle range of signals, where the confidence of the AI
is low (meaning the AI signal is not close to either zero or one), radiologists’ diagnostic
performance and probability of making a correct decision is lower when AI information is
provided.
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Figure 3.4: Effect of AI by AI prediction

(a) Deviation from diagnostic standard

-.1

-.05

0

.05

.1

.15

A
ve

ra
ge

 tr
ea

tm
en

t e
ff

ec
t

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]
AI prediction bins

(b) Incorrect decision
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Note: Panel (a) shows the conditional ATE of providing AI information on the deviation from diagnostic standard. Panel
(b) shows analogous treatment effects on incorrect diagnosis. Standard errors are two-way clustered at the radiologist and
patient-case level, with 95% confidence intervals depicted. Robustness to experimental design is in appendix C.3.5 and C.3.5.

The results that AI assistance can decrease performance rejects a model in which radi-
ologists are Bayesians with correct beliefs. Figures 3.3 and 3.4 showed that AI assistance
reduces performance either if the radiologist was confident a pathology is not present or if
the AI prediction is uncertain (i.e. the prediction is not close to either zero or one). Neither
result can be rationalized in the benchmark model, suggesting that radiologists err when
using AI predictions.

Treatment Effects on Time Per Case and Proxies of Effort

Finally, we turn our attention to the effects of AI assistance on time taken and the number
of unique interactions (clicks) as proxies for effort. One hypothesis is that AI assistance
could economize on costly human effort without sacrificing overall performance by enabling
quicker assessments. Alternatively, it is possible that humans take more time because they
are provided with more information to process. Which of these effects dominate determines
the effect on labor costs when humans use AI assistance, and therefore the optimality of
delegating cases versus a collaborative setup.

Our results indicate that radiologists are slower when provided with AI assistance. Figure
3.5 shows the treatment effects on time spent per case. These outcomes are measured at
the case level. In the X-Ray Only treatment, radiologists spend about 2.6 minutes per case.
Both AI and CH increase the time spend per case by a statistically significant amount of
approximately 4%. The interaction term γAI×CH is not significant for either of the two
outcome variables. These effects suggest that decisions where both radiologists and the AI
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Figure 3.5: Effect of informational interventions on time
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Note: ATE of the information treatments, estimated using equation (3.4), on radiologist effort measured in terms of active
time (in seconds). Results exclude five patient-cases with an unaccounted time measure, and observations from design three
because of potential order effects. Active time is winsorized to the 95th percentile. Standard errors are two-way clustered at
the radiologist and patient-case level.

are involved come at a non-trivial increase in time spent per case. Treatment effects for
clicks are displayed in appendix C.3.5. This result further undercuts the potential benefits
in performance from including humans assisted with AI predictions “in the loop.”

3.4.3 Robustness

Appendix C.3.5 shows that the results are qualitatively robust to a variety of alternative
analyses. The treatment effect analysis in this section does not condition on the sequence
in which subjects encounter information treatments. Reassuringly, they are statistically
indistinguishable from those that use only an across participant comparison from the first
treatment encountered in designs 1 and 2 (appendix C.3.5). Appendix also C.3.5 shows that
our results are robust to including controls for order effects.

Alternative methods for constructing the diagnostic standard or focusing on cases with
greater consensus also yield similar conclusions. The variations we consider include (i) using a
leave-one-out diagnostic standard based on the assessments of our experimental participants,
(ii) using a continuous measure of disease likelihood that simply averages the assessments of
the Mount Sinai labelers, (iii) restricting to cases where the diagnostic standard is definitive,26

and (iv) a diagnostic standard that uses a lower threshold for determining a positive case
26Here, we restrict to cases where we can reject that the average assessment of the five Mount Sinai

radiologists used to construct the diagnostic standard is equal to 0.5 at the 5% level (i.e., cases where we
can reject the null hypothesis that

∑
h πh

(
ωi = 1|sH

i,h

)
/5 = 0.5).
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(i.e. ωi = 1
[∑

h πh

(
ωi = 1|sH

i,h

)
/5 > 0.3

]
).

We also investigated the potential for mis-calibrated reports and experimental incentives
biasing our results. The qualitative patterns of the treatment effects are unchanged if we
calibrate each radiologists’ assessments to the diagnostic standard before conducting the
analysis. Incentives for accuracy, which are cross-randomized in designs 1 and 3, also do
not have significantly different effects. Recall that our participants perform on par with the
radiologists originally assigned to diagnose the patient cases.

Finally, this section treats pathologies are separable and does not account for potential
interactions across pathologies for a given case. In section 3.5, we will present evidence show-
ing that the model with the best fit has radiologists updating their beliefs as if pathologies
are considered independently.

3.5 Automation Bias/Neglect and Signal-Dependence Neglect

An upshot of the results in section 3.4 is that our participants have valuable information,
but they deviate from the benchmark of a Bayesian with correct beliefs about the joint
distribution of their own information and the AI signal. These biases undercut the potential
information advantage in a setup that involves AI assistance.

In this section, we theoretically model and estimate systematic deviations from this
benchmark – which we will refer to as Bayesian for short – and determine the implications
of these deviations for utilizing human expertise and AI predictions.27 The next section
empirically studies the optimal policy.

3.5.1 A Model of Deviations from Bayesian Updating

The framework in section 3.2 shows that a key question is whether the odds-ratios

ph

(
ωi = 1|sA

i , sH
ih

)
ph (ωi = 0|sA

i , sH
ih) and

πh

(
ωi = 1|sA

i , sH
ih

)
πh (ωi = 0|sA

i , sH
ih)

differ from each other. We now consider a set of models of belief-updating to describe
systematic deviations from the Bayesian benchmark. In our model, the human correctly
interprets their own signal when AI assistance is not available but errs when both sA

i and sH
ih

are observed. As we will show below, whether or not AI assistance improves performance
depends on the type of error humans make.

27The omission of the qualifier “with correct beliefs” slightly abuses terminology because a possible expla-
nation of the deviations we have documented is that our participants are Bayesians but update their beliefs
using an incorrect model for the joint distribution of sA, sH , and ω. We will entertain this possibility below.

103



The first class of biases that we consider arises when the two terms on the right-hand side
of equation (3.5) are incorrectly weighted. Following Grether [1980, 1992], we parametrize
this type of error using the following parsimonious functional form:

log
ph

(
ωi = 1|sA

i , sH
ih

)
ph (ωi = 0|sA

i , sH
ih) = bh log

πh

(
sA

i |ωi = 1, sH
ih

)
πh (sA

i |ωi = 0, sH
ih) + dh log

πh

(
ωi = 1|sH

ih

)
πh (ωi = 0|sH

ih) , (3.5)

where bh, dh ≥ 0. The Bayesian is a special case with bh = dh = 1. While this linear
form is restrictive, it has been useful for documenting several empirical regularities showing
deviations from Bayesian updating, like base-rate neglect and under inference [see Benjamin,
2019, for a review].

We will say that the human exhibits automation bias if bh > dh and automation neglect if
bh < dh. As a motivation for this nomenclature, observe that when bh > dh, the human over-
weights the AI signal relative to their own. Our theoretical analysis will focus on the case
when dh = 1, which is the empirically relevant case. The agent overshoots when updating the
posterior odds relative to a Bayesian. Analogously, if bh < dh, then the human under-weights
the AI signal relative to their own.28

A second class of deviations we consider will allow for models in which decision-makers do
not account for the dependence between sA

i and sH
ih, which we call signal dependence neglect.

For example, if humans act as if sA
i and sH

ih are independent conditional on ωi even if they
are not, then their posterior beliefs can be written as

log
ph

(
ωi = 1|sA

i , sH
ih

)
ph (ωi = 0|sA

i , sH
ih) = bh log

πh

(
sA

i |ωi = 1
)

πh (sA
i |ωi = 0) + dh log

πh

(
ωi = 1|sH

ih

)
πh (ωi = 0|sH

ih) , (3.6)

where bh and dh are allowed to differ from 1 as above. In the case when the signals are jointly
multivariate normal and bh = dh = 1, signal dependence neglect yields correlation neglect
as defined in [Enke and Zimmermann, 2019].29 More generally, we will consider models that
vary the conditioning set in the first term on the right-hand side and the dimension of sA

i

in the first term on the right-hand side. The specific examples are motivated and discussed
further in section 3.5.3 below.

We intend for the models above to capture “as if” descriptions of humans’ updating rules
28It is conceptually possible for dh to differ from 1, which are similar in spirit to base-rate biases but apply

to beliefs given the expert’s signals instead of unconditional population rates [see Griffin and Tversky, 1992,
Kahneman and Tversky, 1973]. This case is theoretically analyzed in a prior working paper version. Details
are available on request.

29If sA
i and sH

ih are unidimensional with
(
sA

i , sH
ih

)
∼ N (0, Σh), then the covariance matrix Σh is a sufficient

statistic for the posterior probability that ωi = 1 given the signals if ωi = 1
{

sA
i + sH

ih ≥ εi

}
and εi is

independent of
(
sA

i , sH
ih

)
.
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and will remain agnostic about underlying mechanisms and micro-foundations. In particular,
we remain silent on whether our participants are Bayesians who are utilizing the incorrect
joint distribution of

(
ωi, sA

i , sH
ih

)
when updating their beliefs or if they are non-Bayesians.

The former type of model, known as a quasi-Bayesian model,30 can generate automation bias
or neglect as well as correlation biases.31 An implicit assumption in our model, and likely
other micro-foundations for the functional forms above as well, is that the signal acquired
by the human is invariant to the provision of AI assistance. Whether additional training
or experience with the AI can correct deviations from the benchmark model is therefore
something that we leave for future work.

Nonetheless, the models above will prove useful for our purposes. From a theoretical
perspective, the models will help outline the types of deviations that potentially decrease
decision quality. From an empirical perspective, the models help clarify the drivers of the
treatment effects documented earlier and turn out to be a good approximation to the data
from the experiment.

3.5.2 Implications for Human-AI Collaboration

We now show that the types of deviations described above have implications for when AI
assistance unambiguously improves human performance. The results will also illustrate the
benefit of the simple functional forms in equations (3.5) and (3.6). This subsection drops
the i and h indices for simplicity of notation.

It is useful to start by considering the decisions with and without AI assistance for a
Bayesian decision-maker. Figure 3.6 illustrates the realizations of sA for which the optimal
decision with AI assistance differs from the the decision without AI assistance for a fixed
crel. The horizontal and vertical axes respectively represent log π(ω=1|sH)

π(ω=0|sH) and log π(sA|ω=1,sH)
π(sA|ω=0,sH)

. As shown by the vertical dashed line, the decision-maker would take action 1 if and only if
log π(ω=1|sH)

π(ω=0|sH) exceeds log crel. The solid line represents the analogous boundary for a Bayesian
who has access to AI assistance. Observe that the decisions a Bayesian makes as a function of
the signals sA and sH cannot be improved without additional information. Thus, a Bayesian
and access to both signals improves upon the no-AI action in the vertically shaded region.

Now consider humans who may deviate from this benchmark model. A human who
takes a given action without AI assistance a∗

No AI = a∗
(
sH ; ph

)
but a different action with AI

30See Rabin [2013] for a definition and Barberis et al. [1998], Rabin [2002], Rabin and Vayanos [2010] for
examples.

31To see this, assume that ph

(
sA

i |ωi, sH
ih

)
= π

(
sA

i |ωi, sH
ih

)b and ph

(
sH

ih, ωi

)
= πh

(
sH

i , ωi

)
to generate the

functional form in equation (3.5) for any bh as long as dh = 1. The derivation of equation (3.6) is similar. In
contrast to automation bias/neglect and correlation biases, own-information bias/neglect cannot be derived
in a quasi-Bayesian model because we assume that ph

(
ωi|sH

ih

)
= πh

(
ωi|sH

ih

)
.
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Figure 3.6: Comparing decisions with and without AI assistance – Bayesian
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Note: Decision criterion of a Bayesian with and without AI assistance and where their decisions align. Shaded regions show
the regions in which AI improves or worsens decision making.

assistance (so that a∗
No AI ̸= a∗

AI) makes a worse decision if a∗
AI = a∗

(
sA, sH ; ph

)
disagrees with

a Bayesian’s decision a∗
Bayesian = a∗

(
sA, sH ; πh

)
with AI assistance. This follows because, in

the binary action setup, only one of the decisions can agree with the Bayesian decision. In
all other cases, the human’s decision is weakly improved for the signal realization

(
sA, sH

)
.

In other words, a human whose decision changes upon receiving the AI signal sA is better
off with AI assistance only if the change agrees with the Bayesian decision. The human is
unambiguously better off if this property holds for all signals.

Our first result states that a human who exhibits automation neglect and no other devi-
ation from the Bayesian model is unambiguously better off with AI assistance.

Proposition 3.5.1. Suppose that the human’s posterior is described by equation (3.5) and
d = 1.

(i) If the human exhibits automation neglect (b < d = 1), then for all pairs of signal
realizations

(
sA, sH

)
, and any crel, the human attains weakly higher expected payoff V (s)

with AI assistance.
(ii) If the human exhibits automation bias (b > d = 1), for any crel, there exist log-

likelihood ratios log π(sA|ω=1,sH)
π(sA|ω=0,sH) and log π(ω=1|sH)

π(ω=0|sH) such that the human attains lower expected
payoff V (s) with AI assistance.

See appendix C.1 for the proof.
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Figure 3.7: Automation bias and neglect

log π(ω=1|sH)
π(ω=0|sH)

log π(sA|ω=1,sH)
π(sA|ω=0,sH)

Bayesian

log(crel)

N
o

A
I

Autom
ation

N
eglect:

b
<

1, d
=

1

Automation Bias: b > 1, d = 1

No AI > Automation Bias
Automation Bias > No AI
Automation Neglect > No AI

Note: Where the decisions of an expert as a function of the signals disagree with a Bayesian in cases with and without AI
assistance in the presence of automation bias or neglect when d = 1.

Figure 3.7 illustrates the result. The two dashed lines represent cutoffs analogous to those
in figure 3.6 for humans with automation bias and automation neglect. Although a human
who only exhibits automation neglect under-responds to the AI information, their beliefs
move towards those of a Bayesian decision-maker but do not overshoot them. Whenever
their decision changes, it agrees with the Bayesian’s. In contrast, if the human exhibits
automation bias, they err for moderately informative AI signals with intermediate values of
log π(sA|ω=1,sH)

π(sA|ω=0,sH) because they over-react. At high enough values of this log-likelihood ratio,
both the Bayesian and the human exhibiting automation bias would take the same action.

We next consider a decision-maker with a different type of bias, namely, one in which the
decision-maker exhibits signal dependence neglect. Perhaps not surprisingly, our next result
shows that this type of bias on its own can result in worse decisions with AI assistance:

Proposition 3.5.2. Suppose that the human exhibits signal dependence neglect so that the
posterior belief is described by equation (3.6). For any value of b > 0, d > 0, and crel > 0,
there exist log-likelihood ratios log π(sA|ω=1,sH)

π(sA|ω=0,sH) and log π(sA|ω=1)
π(sA|ω=0) such that the human attains

lower expected payoff V (s) with AI assistance.

See appendix C.1 for the proof.
Thus, signal dependence neglect adds another dimension of potential mistakes to those

illustrated in the figures above. In its presence, there may be a joint distribution of signals
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for which AI assistance reduces performance. Even when b = d = 1 so that automation bi-
as/neglect are not relevant, an examination of equations (3.5) and (3.6) reveals that whether
or not a decision-maker exhibits under- or over-updating depends on the difference between
log π(sA|ω=1,sH)

π(sA|ω=0,sH) and log π(sA|ω=1)
π(sA|ω=0) .

The result bears resemblance to those in Enke and Zimmermann [2019], which shows that
in a multivariate normal model with positively correlated signals, correlation neglect results
in over-reaction to signals and verified this hypothesis in lab experiments. Proposition 3.5.2
differs in that it allows for general signal distributions and for signal dependence neglect to co-
exist with automation bias/neglect. This extension is essential for a naturalistic environment
like ours because the experimenter does not have full control over the signal structure. The
general signal structure makes it difficult to characterize mistakes in terms of over or under-
updating, unlike in the case of a multivariate normal model.

The propositions above have important implications for the design of human-AI collab-
oration, which we consider in section 3.6. Specifically, we study an AI designer who only
has access to the AI signal sA and must decide on one of the three modes of delegation:
utilize only the AI prediction, delegate the case to the human, or provide AI assistance to a
human expert. The results show that other than in the case when automation neglect is the
only relevant bias, the designer must learn the types of biases as well as the distribution of
π

(
sA, sH |ω

)
to determine which delegation modality yields the best decision.

3.5.3 Estimating Deviations from Bayesian Updating

We now turn to an empirical implementation of the model above. The analysis in this section
will be based on designs 2 and 3 because they allow us to observe the same participant make
decisions under all information-conditions on a given case. Consider the empirical analog to
equation (3.5):

log
ph

(
ωi = 1|sA

i , sH
ih

)
ph (ωi = 0|sA

i , sH
ih) = a + b · log

πh

(
sA

i |ωi = 1, sH
ih

)
πh (sA

i |ωi = 0, sH
ih) + d · log

πh

(
ωi = 1|sH

ih

)
πh (ωi = 0|sH

ih) + εih, (3.7)

where we have omitted heterogeneity across radiologists in bh and dh (appendix C.3.6 dis-
cusses radiologist heterogeneity in these estimates). Two of the terms in this equation are
directly elicited: the probability in the second term on the right-hand side, πh(ωi = 1|sH

ih),
is set to the radiologists’ assessment without AI assistance and the term ph

(
ω = 1

∣∣∣sA
ih, sH

ih

)
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in the dependent variable is the assessment in the treatment arm with AI.32 The “update
term,” given by log πh(sA

ih|ωi=1,sH
ih)

πh(sA
ih

|ωi=0,sH
ih) will be estimated and substituted into the equation above.

There are three challenges in estimating the update term. The first challenge is that it
is a ratio of conditional densities. We address this issue by rewriting it using Bayes’ rule as
follows:

log
πh

(
sA

i |ωi = 1, sH
ih

)
πh (sA

i |ωi = 0, sH
ih) = log

πh

(
ωi = 1|sA

i , sH
ih

)
πh (ωi = 0|sA

i , sH
ih) − log

πh

(
ωi = 1|sH

ih

)
πh (ωi = 0|sH

ih) .

If sH
ih can be constructed or controlled for, then we can estimate the first term on the right-

hand side using data on ωi and sA
ih via a binary response model. Observing sA

i is immediate
because the signal from the AI given to humans is isomorphic to the vector of predicted
probabilities for the various pathologies. The second term in this equation has been elicited.

This brings us to the second challenge, which is controlling for sH
ih when estimating

πh

(
ωi = 1|sA

i , sH
ih

)
because we do not observe it directly, unlike in a laboratory setting (c.f.

Conlon et al., 2022). If sH
ih is unidimensional and πh

(
ωi| sH

ih

)
is monotonic in sH

ih, then
πh

(
ωi| sH

ih

)
is a valid control variable. However, we want to allow for the possibility that

the radiologist evaluates a case holistically and uses signals across pathologies. Our em-
pirical specifications will therefore employ multivariate proxy controls for sH

ih using elicited
probability assessments for multiple pathologies.33

To allow for flexible interactions between sA
i and sH

ih while avoiding over-fitting, we es-
timate πh

(
ωi = 1|sA

i , sH
ih

)
using a pathology-specific random forest that predicts ωi using

the vector of predicted probabilities for all pathologies for case ci reported by radiologist
h without AI assistance, the vector of predicted probabilities for case ci the AI algorithm
produces, summaries of the patient clinical history when made available to the radiologist,
and participant-specific fixed-effects.34

The third challenge is the potential for measurement error, particularly of the form that
radiologists’ signal sH

ih when elicited without AI might differ from their signal when given AI
assistance. Classical measurement error arising from this source would lead to attenuation
bias in the coefficient estimates. To address this issue, we will construct instruments for sH

ih

32To avoid undefined terms in calculating log-odds ratios we take the minimum of all probability assess-
ments and 0.95 and the maximum of all probability assessments and 0.05.

33Specifically, we will use the vector of probabilities for all pathologies reported by h for case i,(
πh

(
ωi′ | sH

i′h

))
i′∈I(ci), as the control variable. Here, ci is the patient case associated with case-pathology i

and I (ci) is the set of case-pathologies considered when deciding case ci. This control variable is valid under
the assumption that sA

i ⊥ sH
ih

∣∣ ωi,
(
πh

(
ωi′ | sH

i′h

))
i′∈I(ci).

34The hyper-parameters of the random forest are chosen by grouped k-fold cross-validation, where we
ensure that each patient case appears in only one fold to avoid overfitting to the patient case. Further
details of the training procedure are described in appendix C.3.6.
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using the reported probabilities of the other radiologists in our experiment.
With these solutions in hand, we would like to assess whether humans exhibit signal

dependence neglect when updating beliefs. As prefaced earlier, although the human and AI
signals are not conditionally independent given the diagnostic standard, humans may act as
if they are. We will therefore estimate and select between models that vary the set of signals
conditioned on in the update term. For example, in the case when radiologists behave as if
sA

i and sH
ih are independent conditional on ωi, the update term in equation (3.7) drops the

conditioning on sH
ih.35

The correct model of behavior satisfies the moment restriction E
[
εiht| sH

i,−h, sA
i

]
= 0,

where sH
i,−h collects the signals of the radiologists other than h in our experiment. For

estimation, we utilize unconditional moment restrictions based on functions of sH
i,−h and

sA
i that closely mimic the terms in equation (3.7). Our instruments include log π(ωi=1|sA

i )
π(ωi=0|sA

i )
and leave-one-out averages of log π(ωi=1|sA

i ,sH
ih′)

π(ωi=0|sA
i ,sH

ih′) for radiologists other than h that use various
proxies for sH

ih using assessments from different sets of pathologies obtained without AI
assistance.36 Empirical analogs of the resulting moment conditions are used to estimate the
model using GMM.

We will employ the model-selection procedure proposed in Andrews and Lu [2001] to
select between non-nested models. The method uses a selection criterion, the MMSC-BIC,
which is constructed from the J-statistic of the GMM objective function with an aditional
term that penalizes models that reject a greater number of moment restrictions.

3.5.4 Results

Our results indicate that while there are large potential gains from combining radiologists’
assessments with AI predictions, biases in radiologists’ use of AI assistance undercuts these
gains. We find that radiologists exhibit both automation neglect and signal dependence
neglect. These mistakes prevent AI assistance from improving diagnostic performance.

Table 3.2 presents estimates from six “as if” models of participant behavior.37 According
35We can vary the pathologies across the set of models considered when constructing I (ci). The condi-

tionally independent case corresponds to the extreme case in which I (ci) = ∅, whereas the Bayesian model
includes all pathologies.

36Specifically, we construct 14 instruments. The first is a constant and the second is the average of
log π( ωi=1|sH

ih′)
π( ωi=0|sH

ih′) for all h′ ̸= h. The remaining 12 construct the average of log π( ωi=1|sih′ )
π( ωi=0|sih′ ) for all h′ ̸= h by

varying the conditioning variables sih. The different sets of conditioning variables in sih are presented in the
second panel of appendix table C.26. These sets are used because they are the relevant terms in at least one
of the models that we consider in the testing procedure.

37These are a subset of the full set that we consider. See table C.26 in the appendix for the results from
all models. Results from all pathologies with AI are qualitatively similar (see table C.27). These analyses
were pre-registered except for the model selection exercise, which was not included in the pre-analysis plan.
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to the first model, participants act as if sA
i and sH

ih are conditionally independent given ωi

and consider each pathology separately. The second model accounts for dependence between
sA

i and sH
ih but maintains the assumption that pathologies are considered separately. The

third model accounts for dependence across pathologies in diagnosis by including signals
from other pathologies in sA

i and sH
ih. The next three models are identical to the first three

but include clinical history information (when provided) in sH
ih. Setting b = d = 1 and the

constant to 0 in the last model corresponds to Bayesian updating with correct beliefs.
The results from this exercise point to two types of errors in radiologists’ use of AI

signals. The first type of error is that radiologists neglect signal dependence even though AI
predictions and radiologists’ signals are highly correlated after conditioning on the diagnostic
standard (see appendix table C.24). This conclusion follows because we select the model in
column 1 as it has the lowest value of the MMSC-BIC statistic. Another implication of the
selected model is that radiologists do not incorporate information across different pathologies
since only the focal pathology is relevant. This result validates our previous analysis that
evaluates each pathology separately. The second type of error is that radiologists exhibit
automation neglect, and we estimate a value of d that is close to 1 across all models we
consider.

Connecting these observations back to our theoretical discussion in section 3.2, the pa-
rameters are such that access to the AI signal may not improve performance, primarily
because of signal dependence neglect.
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Table 3.2: Selecting between models of belief updating: top level pathologies with AI

(1) (2) (3) (4) (5) (6)
Automation bias (b) 0.27 0.33 0.12 0.19 0.21 0.12

(0.02) (0.03) (0.02) (0.03) (0.03) (0.02)
Own information bias (d) 1.11 1.09 1.05 1.07 1.07 1.05

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Constant 0.39 0.39 0.25 0.32 0.32 0.25

(0.04) (0.04) (0.03) (0.03) (0.04) (0.03)
No signal dependence ✓ ✓
No pathology dependence ✓ ✓ ✓ ✓
No clinical history dependence ✓ ✓ ✓
Correct updating ✓
J-Statistic 13.08 11.63 8.85 7.53 8.55 7.72
MMSC-BIC -29.11 -26.34 -8.03 -13.57 -12.55 -9.16
Selected moments 13 12 7 8 8 7
Possible moments 14 14 14 14 14 14
Observations 11420 11420 11420 11420 11420 11420
R-Squared 0.49 0.48 0.42 0.45 0.45 0.42

Note: Estimates of b and d for different specifications of the update term. The models differ by whether the update term
conditions on the signal sH of the pathology at hand, the AI and the radiologist signals for other pathologies, and the information
provided in the clinical history of a patient. Each model is estimated via GMM. The reported MMSC-BIC statistic adjusts the
J-statistic for the number of included parameters and moments, awarding bonus terms for models with fewer parameters and
fewer rejected moments (see Andrews and Lu [2001] for details). The full set of models in the selection procedure are presented
in table C.26. The update term is estimated via random forest as described in appendix section C.3.6. Standard errors are
clustered at the radiologist level. This table uses data from designs 2 and 3 where we observe the same human’s assessment of
each case both with and without AI assistance.

These deviations also explain the heterogeneous conditional average treatment effects
documented in section 3.4. Figure 3.8 shows the estimated conditional average treatment
effect of AI alongside model-implied treatment effects from three scenarios: a Bayesian
benchmark, the model in column (6) where radiologists only exhibit automation neglect,
and the selected model from table 3.2. As expected, a Bayesian performs significantly better
when given the AI signal. In fact, as indicated by the large reductions in the deviation
from the diagnostic standard, there is significant potential value in combining the human
and AI signals. The model that only features automation neglect – column (6), equation
(3.5) – reduces these improvements and moves the implied treatment effects closer to the
data. However, throughout the entire signal range of AI predictions, the performance of
such a decision-maker would still unambiguously increase with AI assistance, consistent
with our theoretical model’s prediction. Only when we use the selected model, under which
radiologists neglect signal dependence, can we replicate the worsening of assessments with
AI in the middle of the signal range.

Although the specifications above replicate the pattern of conditional treatment effects,
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Figure 3.8: Data versus model implied treatment effects
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Note: Observed conditional treatment effects of providing radiologists access to AI compared to three different model-implied
treatment effects: giving AI access to a Bayesian decision-maker, giving AI access to a decision-maker who acts according to
the empirical version of equation 3.5 both under the correct update term and when the decision-maker treats the AI signal as
conditionally independent. Standard errors are two-way clustered at the radiologist and patient-case level, with 95% confidence
intervals depicted. Standard errors on model based treatment effects are conditional on the model of behavior. We first generate
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)
based on the model in Equation 3.7 and then estimate the treatment effect and standard error of these

model-based posteriors (ph

(
ωi = 1|sA

i , sH
i

)
).

one may still be concerned about mis-specification of the model of belief-updating or about
heterogeneity in b and d across radiologists. For example, a model of updating in which
radiologists’ beliefs move to the maximum of their own predictions and AI predictions would
not be linear in log-odds. Appendix C.3.6 uses a non-parametric model to show that the
relevant boundary of the decision-regions depicted in figure 3.7 is well approximated using
the linear specifications considered. Appendix C.3.6 investigates heterogeneity by allowing
b and d to vary with radiologists. We find that the estimated distributions of bh and dh

are centered close to the point estimates above, with most of the estimated distributions of
bh and dh in the range [0.1, 0.4] and [1.0, 1.2], respectively. Together, these results suggest
the specification in column (1) of table 3.2 represents a good approximation to data we
collected.
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3.6 Designing Human-AI Collaboration

We now consider the design of collaborative systems between AI and humans. Because the
AI signal can be obtained at zero marginal cost we consider a policy τ(·) that chooses between
full automation (AI), humans with access to AI (H + AI), or humans without access to AI
(H), as a function of the AI signal sA

i . We then compare this policy in terms of human time
cost and decision loss to policies where all cases are exclusively decided by either the AI,
humans, or humans with access to AI.

As a warm-up for this exercise, it is useful to examine the predictive performance of the
different modalities, conditional on sA (see figure 3.9). Recall from the conditional treatment
effect analysis that human assessments improve with AI in the lowest and second-highest
bins of AI signals. Figure 3.9 also shows that even when the AI improves human decision-
making (in the lowest bin), AI alone outperforms humans with AI. Although this figure
does not account for differences in the human time costs across modalities, our analysis of
the estimated treatment effects shows that humans take more time when provided with AI
predictions. This points to the conclusion that in most cases where AI improves decision-
making, one is at least as well off relying exclusively on AI predictions because humans do
not incoporate the information effectively and are slower when deciding with AI. However,
automating all cases is not necessarily optimal either because humans perform better than
AI when the AI is uncertain.

Motivated by these observations, we now examine if there is a trade-off between the
marginal costs of human effort and diagnostic performance.

3.6.1 Computing the Trade-off Between Decision Loss and Costs of Human
Effort

The optimal policy which minimizes the sum of the expected decision-loss (costs of false
positives and false negatives) and the monetized time cost of using humans solves:

τ ∗(sA
i ) = arg min

τ∈{H,H+AI,AI}
m · Vτ

(
sA

i

)
+ w · Cτ

(
sA

i

)
. (3.8)

The first term contains the expected decision-loss from a modality given by Vτ

(
sA

i

)
=

E
[
Vihτ | sA

i

]
, which is the expected diagnostic quality given the AI signal. The expectation

is taken over both cases and radiologists. The parameter m is the dollar cost of a false
negative (e.g., a missed diagnosis). We allow preferences for false positives and false negatives
to vary by pathology. We estimate these preferences using data on the binary treatment
recommendations of the participants in our experiment, given their probability assessments.
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Figure 3.9: Model deviation from diagnostic standard
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Note: Performance of the different modalities that we consider for the optimal collaborative system. Cases are decided by either
only the human, only the AI, or the human with access to the AI. The performance measures for Human Only and Human +
AI are constructed from our treatment effect analysis. Standard errors are two-way clustered at the radiologist and patient-case
level, with 95% confidence intervals depicted.

According to the model in section 3.2, human h’s choice ahi of recommending treatment or
follow-up on patient case i is given by

ahi = 1
[

phi

1 − phi

− ch
rel + εhi > 0

]
,

where phi is the human’s belief about pathology presence, ch
rel is the relative cost of false

positives and false negatives, and εhi captures idiosyncratic unobserved preference hetero-
geneity. We allow the parameters of this model to vary by pathology, but we suppress this
dependence for notational simplicity. The full set of results of this exercise are presented in
Table C.32. The median cost of a false positive across both top-level pathologies with AI
assistance is one half the cost of a false negative. Since we do not know the dollar cost of a
false negative, we will present results for a range of values for m.

The second term in the objective function contains Cτ

(
sA

i

)
= E

[
Cihτ | sA

i

]
, which is the

expected time cost for a given modality τ . If the case is fully automated, this time cost is
zero. Otherwise, the time costs are based on our experimental estimates, which show that
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radiologists spend more time on cases when presented with AI predictions. For the costs of
human radiologist time, we set w = $4 per minute based on a payment of $10 per case and
the observed average time per read of approximately 2.5 minutes.

Next, we solve the problem in equation (3.8) by first estimating the conditional mean
functions Vτ

(
sA

i

)
and Cτ

(
sA

i

)
using random forest regressions. We tune the random forest

hyperparameters by using grouped cross-validation where observations are grouped by their
patient case to avoid over-fitting to specific cases. Given estimates of expected diagnostic
quality and the expected time cost for each modality on a given case, we assign the case to
be read by the modality that minimizes Equation 3.8. We repeat this exercise for a range of
values of m. In our discussion of the results we focus on airspace opacity but the qualitative
findings remain unchanged if we consider other pathologies (appendix C.3.8).

3.6.2 Results

There are large potential gains from optimally delegating cases. Figure 3.10 shows a possi-
bilities frontier for the trade-off between diagnostic quality against decision time, calculated
by varying the social cost of false negatives m. One extreme on this frontier is the point
where the AI decides all cases, thus minimizing the time costs. The figure shows that one
can substantially reduce both time costs and decision loss by moving from H or H + AI to
the frontier. Table 3.3 provides an overview comparing H and H + AI to the two extreme
points of the frontier (i.e., AI only and the delegation policy that minimizes decision loss)
along with a comparison to a Bayesian decision-maker. For each of those, the table com-
pares the expected decision loss, the time cost (in minutes and dollars), and the fraction of
false positives/negatives. An unassisted radiologist (H) takes 2.8 minutes minutes per case,
or about $11, and incurs a relative decision loss of approximately 12.8. By moving to the
frontier point that minimizes decision loss, one can reduce decision loss while also saving
$6.3 in time costs. Similar gains can be achieved from H + AI. A Bayesian decision-maker
incurs the lowest decision loss but faces the same time costs as H + AI.
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Figure 3.10: Loss-time frontier
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Note: Human radiologists and AI performance relative to the optimal delegation system on the frontier of the cost of human
time versus decision loss. This analysis excludes data from design 3 because of learning effects in this setup.

Table 3.3: Airspace opacity delegation results

Time Cost Pr(Fp) Pr(Fn) Decision Loss
Minutes Dollars

Bayesian 2.8 11.4 6.4 1.6 4.1
AI Only 0.0 0.0 32.4 1.2 13.5
Human Only 2.8 11.2 17.0 6.3 12.8
Human + AI 2.8 11.4 21.6 4.2 12.4
Min. Decision Loss 1.2 4.9 12.7 3.4 10.2

Note: Time taken and decision loss of delegation strategies for Airspace Opacity. The average time per case is shown in both
minutes and dollars using a wage of $4 per minute. The table also reports the share of false positives (P r(F P )), the share
of false negatives (P r(F N)), and decision loss calculated as P r(F N) + crelP r(F P ) where crel =0.38 – the median crel for
Airspace Opacity. The Bayesian row shows results for the Bayesian decision-maker. AI Only shows results for full delegation
to the AI. Human Only shows results if humans read cases without AI assistance. Human + AI shows results if humans with
access to the AI read all cases. Min. Decision Loss shows results for the optimal delegation strategy that minimizes decision
loss and highlights the potential improvement in decisions from delegating to the AI. This analysis excludes data from design
3 because of learning effects.

Next, we investigate what share of cases is decided by the three modalities under the
optimal delegation policy as we vary m (figure 3.11). For both a Bayesian and the observed
behavior in our experiment, we find that the AI decides almost all cases if the cost of a false
negative is less than $100 per case. For Bayesians, the share of cases that involve human-AI
collaboration rises markedly above a cost of $100, but even for costs as high as $10,000, 45%
of cases are delegated to the AI. Moreover, under Bayesian decision-making, the share of

117



cases where only the human decides the case without access to the AI signal is negligible
and the only reason for using an unassisted human in this case is to save on time costs.
When we conduct the same exercise and use the observed behavior of human radiologists,
we find that humans are involved in 38% of cases if the cost of a false positive is sufficiently
large. Moreover, the majority of cases where a human is involved have the human make
decisions without AI assistance. A more complete assessment of the optimal combination
of human and machine decisions, therefore, confirms the intuition from above that cases are
either decided by humans or the AI but not by both of them together.

Figure 3.11: Airspace opacity modality shares
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Note: Share of cases decided by each modality (humans, AI, humans+AI) conditional on the cost of a false negative in dollars,
denoted m in the text, for airspace opacity. Panel (a) focuses on a Bayesian decision-maker. Panel (b) focuses on a human
decision-maker with decisions and time taken as in our experiment. This analysis excludes data from design 3 because of
learning effects.

3.6.3 Caveats

There are several caveats to our analysis. The first is that we consider AI assistance for a
single pathology at a time. This approach abstracts away from interactions between patholo-
gies. It is best suited to contexts in which the focal pathology of interest for a case is clear
to a treating physician. Given our results in section 3.5, it appears that physicians do
not account for cross-pathology interactions, thereby complicating attempts to infer such
interactions from radiologist assessments and behavior. The second caveat is that any col-
laborative system may change humans’ expectations about the difficulty of cases and adjust
strategically to those changing expectations. Our approach abstracts away from endogenous
information acquisition, for example, rational inattention as in Sims [2003]. A potentially
interesting aspect is whether a designer can leverage such endogenous responses by designing
an information revelation policy that induces effort. We leave such extensions that leverage
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insights from information design [Bergemann and Morris, 2019, Kamenica and Gentzkow,
2011] to future work, but we do measure the total amount of time taken by the experts in
our experiment with and without AI assistance.

3.7 Conclusion

AI is predicted to profoundly reshape the nature of work [see Felten et al., 2023]. Humans
are likely to use AI as a decision aid for many tasks not only in the long run but also in
the medium run for tasks that will ultimately be fully automated. A central question is
therefore how humans use AI tools and how tasks should be assigned. Radiology is an iconic
example, one that employes a large number of professionals whose main job is a high-stakes
classification task.

To understand the benefits and pitfalls of human-machine collaboration, we conduct an
experiment in which AI assistance for radiologists is randomized. We also randomize the
availability of contextual information that is typically available to radiologists but is not
used to train AI prediction tools for chest X-rays. Since we can simulate radiologists’ normal
workflow, this is an ideal setting for conducting such an experiment. We then devise a
methodology to estimate the radiologists’ deviation from Bayesian updating, an approach
which needs to deal with the challenge that we do not directly control the information
structure that radiologists face when making decisions.

While deploying AI assistance in our setting has large potential benefits, biases in humans’
use of AI assistance eliminate these gains. Even though the AI tool in our experiment
performs better than two-thirds of radiologists, we find that giving radiologists access to
AI predictions does not, on average, lead to higher performance. This average treatment
effect, however, masks systematic heterogeneity: providing AI does improve radiologists’
predictions and decisions for cases where the AI is certain (e.g., predicted probability is close
to zero or one) but not when it is uncertain. This latter result – that prediction quality
can be reduced for some range of AI signals – rejects Bayesian updating We also identify
systematic errors in belief updating; specifically radiologists exhibit automation neglect (e.g.,
radiologists underweight the AI prediction relative to their own) and treat the AI prediction
and their own signals as independent conditional on the correct class even though they
are not. Moreover, radiologists take significantly more time to make a decision when AI
information is provided.

Together, these results have important implications for how to design collaborations be-
tween humans and machines. Increased time costs and sub-optimal use of the AI information
both work against having radiologists make decisions with AI assistance. In fact, an optimal
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delegation policy that utilizes heterogeneity in treatment effects given the AI prediction sug-
gests that cases should either be decided by the AI alone or by the radiologist alone. Only a
small share of cases are optimally delegated to radiologists with access to AI. In other words,
we find that radiologists should work next to as opposed to with AI. To the extent that expert
decision-makers generally under-respond to information other than their own [Conlon et al.,
2022] and incorporating additional information is cognitively costly, these insights may hold
in other settings where experts’ main job is a classification task.

There are several important considerations that are outside the scope of this work. One
question motivated by the unrealized potential gains of AI assistance concerns the benefits
from AI-specific training for radiologists and/or experience with AI. This and related ques-
tions require different experimental designs or longer-run studies. Other open questions are
whether the heterogeneity in the value of AI assistance is correlated with a human’s base-
line skill or other characteristics and whether such correlation can be predicted to target
assistance. The organization of human-AI collaboration also raises questions about whether
the form of collaboration influences humans’ incentives to respond strategically. The use
of AI in practice will also be mediated by other organizational incentives and the regula-
tory environment. Organizations may set guidelines on how to use AI or provide feedback,
and regulations may influence liability implications. These issues are interesting avenues for
future work.

AI continues to evolve rapidly. While economists are unlikely to have a major role in the
technical development of AI tools, our comparative advantage lies in studying how humans
interact with these tools and thereby helping shape the institutions that guide their use to
ensure that this development is beneficial to society. Empirical analysis is a particularly
useful tool in this endeavor, especially if the algorithms themselves are a black-box and
cannot be understood from first principles.
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Appendix A

Appendix: Personalized Rankings and
User Engagement: An Empirical
Evaluation of the Reddit News Feed

A.1 Data Appendix

Table A.1: Summary of Publisher Ratings

Slant Score Credibility
msnbc.com -0.62 0.59
huffpost.com -0.31 0.57
nytimes.com -0.26 0.86
wsj.com 0.01 0.80
foxnews.com 0.61 0.53
breitbart.com 0.74 0.30

Note: Publisher slant and credibility ratings for six widely known publishers.
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Figure A.1: Correlation Matrix of Text Features
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Note: This figure plots the correlation matrix of comment text features. Negative corre-
sponds to negative sentiment, Toxicity corresponds to the predicted toxicity of the comment,
while the remaining 6 features correspond to the emotional content of the post.
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A.2 Reduced Form Appendix

A.2.1 Additional Figures and Tables

Table A.2: Position Effect Estimates

Regression Discontinuity
Rank OLS Local Linear Local Constant Triangular Kernel
13 0.022 0.014 -0.007 0.019

(0.007) (0.029) (0.061) (0.032)
14 0.037 0.033 0.015 0.026

(0.006) (0.027) (0.057) (0.029)
15 0.022 0.049 0.082 0.045

(0.006) (0.023) (0.047) (0.025)
16 0.025 0.033 0.042 0.032

(0.006) (0.020) (0.040) (0.022)
17 0.018 0.024 0.054 0.022

(0.006) (0.022) (0.045) (0.024)
18 0.015 0.018 0.029 0.021

(0.006) (0.022) (0.047) (0.024)
19 0.023 0.006 0.001 0.017

(0.005) (0.023) (0.049) (0.026)
20 -0.001 -0.035 -0.081 -0.037

(0.005) (0.019) (0.040) (0.021)
21 0.018 0.024 0.018 0.019

(0.005) (0.019) (0.041) (0.021)
22 -0.002 -0.007 -0.000 -0.010

(0.005) (0.020) (0.042) (0.022)
23 0.010 0.020 0.040 0.007

(0.005) (0.022) (0.047) (0.025)
24 0.016 0.015 0.032 0.024

(0.005) (0.023) (0.049) (0.025)

Note: Estimates of the local average treatment effect from a post moving from position
r + 1 to position r on the feed on the log-number of comments a post receives. Robust
bias-corrected standard errors that allow for misspecification of the conditional expectation
function and that are clustered at the period level are shown in parenthesis. Estimates
exclude posts within the doughnut which includes posts where the absolute value of the
running variable is less than 0.05.
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Figure A.2: Regression Discontinuity Plots: First Stage
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Note: Regression discontinuity first stage plots of the probability a post is ranked lower on
the feed against the running variable. This figure excludes posts within the doughnut which
includes posts where the absolute value of the running variable is less than 0.05. Fourth
order polynomial is plotted alongside the binned mean values.
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Figure A.3: Regression Discontinuity Plots: First Stage
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Note: Regression discontinuity first stage plots of the probability a post is ranked lower on
the feed against the running variable. This figure excludes posts within the doughnut which
includes posts where the absolute value of the running variable is less than 0.05. Fourth
order polynomial is plotted alongside the binned mean values.
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Figure A.4: Regression Discontinuity Plots: Engagement
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Note: Regression discontinuity outcome plots of the log number of comments received in
the 20 minutes following a snapshot against the running variable. This figure excludes posts
within the doughnut which includes posts where the absolute value of the running variable
is less than 0.05. Fourth order polynomial is plotted alongside the binned mean values.
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Figure A.5: Regression Discontinuity Plots: Engagement
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Note: Regression discontinuity outcome plots of the log number of comments received in
the 20 minutes following a snapshot against the running variable. This figure excludes posts
within the doughnut which includes posts where the absolute value of the running variable
is less than 0.05. Fourth order polynomial is plotted alongside the binned mean values.
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A.2.2 Robustness of Regression Discontinuity

Regression Discontinuity with Two-Dimensional Score

Recall the running variable in the regression discontinuity analysis is a composition of two
continuous scores, the difference in vote scores and the difference in post age. Figure A.6
plots the joint distribution of these two scores along the discontinuity frontier.

Balance of Covariates

Here, I show evidence that pre-treatment observable post features are continuous through
the discontinuity. I show the full regression discontinuity plots for the top 12 positions on
the feed for post vote score (Figure A.7), post age (Figure A.8), publisher slant (Figure A.9),
and publisher credibility (Figure A.10). Estimates of the local average treatment effect on
each of these covariates using local linear regression are displayed in Figure A.11.

Robustness of Bandwidth, Donut, and Comment Window

Here, I show the position effect estimates are robust to researcher choices regarding the
regression discontinuity bandwidth (Figure A.12), the donut of data excluded around the
discontinuity (Figure A.13), and the window of comments included after a post snapshot
(Figure A.14).

A.2.3 Recommender System Appendix

Table A.3 shows the projection of the first 3 principal components of the publisher features
learned in the collaborative filtering model onto the vector of publisher ratings. These
regressions demonstrate that the publisher ratings do explain some of the variation in the
publisher features learned by the recommender system.
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Figure A.6: Regression Discontinuity with Multiple Scores

Note: This plot shows the regression discontinuity in two dimensions. The. x axis plots
the difference in the normalized post vote scores and the y axis plots the difference in the
normalized post ages. The discontinuity frontier corresponds to the 45 degree line. To
make the charts easier to view, I only plot posts that are correctly classified by the running
variable.
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Figure A.7: Balance of Vote Score
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Note: This plot shows the binned means of post vote score against the running variable
on the top 12 positions on the feed. This figure excludes posts within the doughnut which
includes posts where the absolute value of the running variable is less than 0.05. The line
represents the fourth order polynomial fit.
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Figure A.8: Balance of Post Age
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Note: This plot shows the binned means of post age against the running variable on the
top 12 positions on the feed. This figure excludes posts within the doughnut which includes
posts where the absolute value of the running variable is less than 0.05. The line represents
the fourth order polynomial fit.
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Figure A.9: Balance of Slant Score
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Note: This plot shows the binned means of publisher slant score against the running variable
on the top 12 positions on the feed. This figure excludes posts within the doughnut which
includes posts where the absolute value of the running variable is less than 0.05. The line
represents the fourth order polynomial fit.
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Figure A.10: Balance of Credibility Rating
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Note: This plot shows the binned means of publisher credibility rating against the running
variable on the top 12 positions on the feed. This figure excludes posts within the doughnut
which includes posts where the absolute value of the running variable is less than 0.05. The
line represents the fourth order polynomial fit.
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Figure A.11: Regression Discontinuity Placebo Tests

(a) Publisher Slant

1 2 3 4 5 6 7 8 9101112131415161718192021222324
Rank

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Es
tim

at
e

(b) Hour Posted

1 2 3 4 5 6 7 8 9101112131415161718192021222324
Rank

0.010

0.005

0.000

0.005

0.010

0.015

Es
tim

at
e

1 2 3 4 5 6 7 8 9101112131415161718192021222324
Rank

200

100

0

100

200

300

400

Es
tim

at
e

(c) Vote Score

1 2 3 4 5 6 7 8 9101112131415161718192021222324
Rank

4

2

0

2

4

Es
tim

at
e

(d) Post Age (hours)

Note: Placebo test for discontinuity of observable pre-treatment covariates. Each figure plots
local average treatment effect estimates of moving from rank r + 1 to rank r using a local
linear regression for publisher slant score, hour posted, vote score, and post age.
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Figure A.12: Robustness of Position Effect Estimates to Bandwidth
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Note: This plot shows the robustness of the position effect estimate to bandwidth size. Each
point represents the treatment effect estimate of being promoted to the top position on the
feed relative to the second position on the log number of comments a post receives. Error
bars represent 95% confidence intervals using robust bias-corrected standard errors.

Table A.3: Recommender System Publisher Factors

(1) (2) (3)
Slant Score -0.19∗∗∗ -0.01 -0.07∗∗

(0.03) (0.03) (0.03)
Credibility Rating -0.00 -0.00 -0.01

(0.04) (0.03) (0.03)
Average Rank 0.00 -0.01 -0.02

(0.02) (0.01) (0.02)
Quantity 0.05∗∗∗ 0.58∗∗∗ 0.17∗∗

(0.02) (0.20) (0.08)
Intercept -0.07∗∗ -0.04 0.20∗∗∗

(0.03) (0.02) (0.03)
Obs 1378 1378 1378
R2 0.04 0.34 0.04

Note: This table shows estimates from a regression of the first 3 principal components of
publisher features on publisher observables.
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Figure A.13: Robustness of Position Effect Estimates to Donut Width
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Note: This plot shows the robustness of the position effect estimate to donut size. Each
point represents the treatment effect estimate of being promoted to the top position on the
feed relative to the second position on the log number of comments a post receives. Error
bars represent 95% confidence intervals using robust bias-corrected standard errors.
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Figure A.14: Robustness of Position Effect Estimates to Comment Window
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Note: This plot shows the robustness of the position effect estimate to window length. Each
point represents the treatment effect estimate of being promoted to the top position on the
feed relative to the second position on the log number of comments a post receives in the
window following a snapshot. Error bars represent 95% confidence intervals using robust
bias-corrected standard errors.
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A.3 Choice Model Appendix

A.3.1 Additional Figures and Tables

Figure A.15: pt and Average Top-Post Engagement
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Note: This plot shows the time series of the raw and smoothed pt estimates (left axis). The
right axis shows the average number of comments the top post on the feed receives from the
users in the sample.

Figure A.16: Average ξjt by Rank
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Note: This plot shows the average ξjt value by post rank for the posts in the sample. Bars
represent 95% confidence intervals.
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Figure A.17: Summary of Model Fit
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Note: This plot shows additional summaries of the model fit. (a) The relationship between
the actual number of comments a user posts against the model fitted number of comments
the user submitted. (b) The same relationship, broken out by publisher credibility.

139



Figure A.18: Correlation of Sentiment Preferences with Comment Preferences
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(b) Credibility Preferences
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Note: This figure plots binned mean sentiment preferences against (a) user bliss points and
(b) credibility preferences. The heterogeneous component captures how the likelihood of
a user to submit a negative comment changes in response to changes in the user-specific
component of post comment utility. The vertical component captures how the likelihood of
a user to submit a negative comment changes in response to a change in the latent com-
mentability term (ξjt). Positive values mean the user is more likely to submit a negative
comment on articles they are likely to comment on. Regression line is a fourth-order poly-
nomial fit. Confidence bands represent 95% confidence intervals.
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Figure A.19: Summary of ξjt Model
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Note: This plot shows a summary of the random forest model used in the counterfactuals
to estimate ξjt in each period. (a) shows the joint distribution between ξjt and ξ̂jt and (b)
shows binned means of this relationship along with a linear fit.
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Figure A.20: Impact of Algorithm on Negative-Sentiment Share

(a) Distribution in Change in Negative-Sentiment Share
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(b) Change in Negative-Sentiment Share by Credibility
Preference
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Note: (a) Plots the empirical CDF of the change in the share of users’ comments that are
negative sentiment under the counterfactual algorithms relative to the existing algorithm. (b)
Plots the binned mean in users’ change in negative sentiment score against their preferences
for publisher credibility. Regression line is a fourth-order polynomial fit. Confidence bands
represent 95% confidence intervals.
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Figure A.21: Change in Publisher Market Shares

(a) Publisher Slant
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(b) Publisher Credibility
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Note: Figure A.21a plots the binned mean change in publisher market share by publisher
slant and Figure A.21b plots the binned mean change in publisher market share by publisher
credibility rating. In both figures, the regression lines are fourth-order polynomial fits.
Confidence bands represent 95% confidence intervals.
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A.3.2 Empirical Bayes Shrinkage

To shrink individual preference estimates towards the grand mean and adjust for the over-
dispersion due to sampling error I use the following empirical Bayes procedure. I assume
that the true individual preference parameters are drawn independently and identically dis-
tributed from a multivariate normal distribution

βi ∼ N (µ, Σ)

and we observe noisy estimates of these parameters β̂i = βi + νi where νi ∼ N (0, Σi) is
independent sampling error and Σi are estimated covariance matrices of preferences for each
user. I form estimates of the grand-mean and covariance matrix using empirical analogs of
the following expectations.1

µ = E
[
β̂i

]
Σ = E

[(
β̂i − µ

) (
β̂i − µ

)′
]

− E [Σi]

and then form estimates of the posterior mean for each βi as

E
[
βi|β̂i, Σi, µ, Σ

]
=

(
Σ−1 + Σ−1

i

)−1 (
Σ−1µ + Σ−1

r β̂i

)
.

This shrinks each estimated preference parameter towards the grand mean and corrects for
the over-dispersion created by sampling error.

A.3.3 Estimating the Share of Users Accessing the Platform

Little’s law shows that in a stationary system, the average number of users on the platform
can be expressed as

Lt = λtW (A.1)

where Lt is the average number of users on the platform at any point during period t, λt is
the arrival rate of customers during period t, and W is the average session length [Little,
1961]. I assume W = 10.82 given that the average session length on Reddit in 2016 lasted 10
minutes and 49 seconds.2 I assume that the number of users A0

t = Lt: the number of users
online at the start of each period is equal to the average over the period. I can re-arrange
equation A.1 to show that At = l

W
A0

t which says the total number of users to visit the
platform during period t (At) equals the length of the period in minutes (l) divided by the

1When estimating the grand mean, I use inverse variance weights to improve precision of the estimated
mean.

2https://web.archive.org/web/20161203082123/https://www.similarweb.com/website/reddit.com/
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session length (W ) multiplied by the number of users online at any given time. To calibrate
the number of active community members in a subreddit, I use two snapshots of the politics
community’s usage statistics from 2015 and 2016 to calculate the average number of unique
users per day.3 When combined with the number of subscribers a community has, I can
estimate the share of subscribers that are active in a given day which averages 0.071 over
the months covered in the two snapshots. I then calculate Nt = 0.071 × St where St is the
number of subscribers the community has at period t. Robustness to the scaling factor is
shown in Appendix Section A.3.4. Finally, I smooth estimates of pt by taking the fitted
values of the following regression model

At

Nt

= γ0 + γquarter + γday + ηt (A.2)

where γquarter and γday are quarter and day of week fixed effects, respectively.

A.3.4 Choice Model and Counterfactual Robustness

Robustness to Scaling p(·)

First, I show that the counterfactual results are robust to scaling the exposure probability
p(·) in the choice model. This shows the results are robust to the decision to scale the number
of active users in Section A.3.3 and to the assumption that all users are exposed to the first
post in the feed (p1 = 1) as both simply multiply either pt or pr by a constant, so showing
p(·) is robust to being multiplied by a constant demonstrates robustness to both.

3https://web.archive.org/web/20160905095430/https://www.reddit.com/r/politics/about/traffic
https://web.archive.org/web/20150513102644/http://www.reddit.com/r/politics/about/traffic/
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Table A.4: Counterfactual Engagement Summaries Robustness: p′(·) = 0.5p(·)

Engagement Diversity Max Partition Share Credibility Negative Engagement Share
Intercept 53.537 1.519 0.290 0.791 0.512

(0.376) (0.000) (0.000) (0.000) (0.002)
Random -6.144 0.005 -0.001 -0.000 -0.001

(0.037) (0.000) (0.000) (0.000) (0.000)
Non-personalized 11.211 0.003 -0.005 0.010 0.002

(0.057) (0.000) (0.000) (0.000) (0.000)
Personalized 12.270 -0.017 0.021 0.000 0.002

(0.066) (0.000) (0.000) (0.000) (0.000)
Observations 33340 33340 33340 33340 33340
R-Squared 0.043 0.048 0.074 0.006 0.000

Note: This table reports estimates of a panel regression of each counterfactual outcome on counterfactual algorithm dummy
variables in the robustness exercise where p(·) is multiplied by a factor of 0.5. The intercept is the average quantity under the
existing algorithm. Standard errors are clustered at the user level.
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Robustness to Choice of c

I replicate the quality analysis for various choices of c and find the results are qualitatively
similar (Figure A.22). For values of c as low as 0.4, I find the personalized engagement
maximizing exacerbates differences in users along the credibility dimension. As the threshold
for credibility is lowered, by definition the share of high quality engagement rises as the
threshold does not impact the counterfactuals directly, only how the counterfactuals are
evaluated.
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Figure A.22: High-Credibility Share by Baseline Credibility: Robustness

(a) c = 0.4
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(b) c = 0.5
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Note: This figure plots binned mean credibility shares under the counterfactual algorithm
against credibility shares under the existing algorithm for various thresholds of high-quality
publishers. Regression line is a fourth-order polynomial fit. Confidence bands represent 95%
confidence intervals.
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Figure A.23: Reoptimized Exposure Probabilities
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A.4 A Recommender System Approach to Personalization

In this section, I study the types of content that are promoted when personalizing the
ranking algorithm to maximizing engagement using a reduced form approach. To explore
this, I train a collaborative-filtering based recommender system using the matrix of user-level
comment counts by publishers. The recommender system then recommends publishers on
which a user is most likely to comment in a period. I validate this recommender system by
estimating heterogeneous treatment effects when the regression discontinuity experiments
align with the recommender system’s predictions. I find that the recommender system
effectively predicts treatment effects, a result that suggests the model has learned important
aspects of user preferences. I then study the types of content that gets promoted under this
simple recommender system to understand the extent to which personalized engagement
maximization impacts individual news diets.

The primary purpose of this section is to provide reduced-form evidence that personalizing
content to maximize engagement promotes low-credibility content to a subset of users and
lowers the diversity of publishers that are promoted. This approach has two advantages
over the discrete choice model and counterfactual analysis I study in Section 1.4 and Section
1.5. First, this model is trained using comment decisions from over 500,000 users and is
evaluated on comment decisions of over 180,000 users. This is a much larger sample than
that used in the choice model approach, as I can use comment decisions on articles during
periods not captured in Wayback Machine snapshots during the training process. I find
consistent results across both approaches, which gives confidence that the findings of the
choice model approach can be generalized to a broader set of users. Second, I can evaluate
this simple approach by predicting treatment effects to give confidence that the model has
learned important aspects of preferences.

A.4.1 Training and Validating the Recommender System

To train the recommender system, I split user-level comment data into training and test sets.
The test set consists of comments on articles that appear in Wayback Machine snapshots and
the training set consists of comments on articles that do not appear in Wayback Machine
snapshots. The test set is used to evaluate the recommendations through heterogeneous
treatment effects. I focus this analysis on the politics community because of its importance
to managers, policy makers, and users. In the training set, I generate a matrix of user
comment counts by publisher domain, where each row represents a user and each column a
publisher. I use this matrix to train a collaborative filtering model for implicit data, following
Hu et al. [2008]. This simple model assumes that user preferences for a publisher can be
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represented by the dot product of low-rank vectors of latent user and publisher features.
Appendix A.2.3 shows the publisher embeddings learned by the model are correlated with
observable features. More specifically, publisher popularity and slant are the observable
publisher features most correlated with the latent embeddings. Given the publisher and user
features, the recommender system then recommends publishers that a user is more likely to
prefer.

To evaluate the recommender system, I estimate heterogeneous treatment effects com-
paring periods when the model predicts a user’s preferred publisher was promoted to the
top of the feed in the regression discontinuity experiments relative to when the non-preferred
publisher was promoted. For each period and user, I determine if the preferred post of a user
is promoted, the preferred post is demoted, or the user is indifferent. A user is indifferent in
a period if the two publishers are within 1 percentile of one another in the model’s recom-
mendations for that user. The preferred publisher is promoted for a user in a period if the
publisher of the first post is at least 1 percentile higher than the publisher of the second post
in the model’s recommendations for the user. Likewise, the preferred publisher is demoted if
the publisher of the first post is at least 1 percentile lower than the publisher of the second
post. I then sum the total number of comments for each post and period across users based
on whether the user-period is classified as the preferred post being promoted, demoted, or
indifferent. Finally, I estimate the regression discontinuity heterogeneous treatment effects
through local linear regression. Given the reduced power in identifying heterogeneous treat-
ment effects, I inflate the bandwidth used in Section 1.3.3 by a factor of two and use cluster
robust standard errors rather than standard errors that are robust to misspecification of the
conditional expectation function.4

Heterogeneous treatment effect estimates are shown in Table A.5 and suggest that the
recommender system effectively predicts treatment effects for the top position in the feed.
The treatment effect is substantially – 13 percentage points – larger when a user’s preferred
publisher is promoted versus when the user’s preferred publisher is demoted. That the
recommender system is able to predict treatment effects confirms that the recommender
system has learned important aspects of user preferences.

A.4.2 Recommender System Results

I now turn to summarizing the properties of the recommender system to understand the types
of content promoted when personalizing rankings and to motivate the choice model presented
in Section 1.4. For each user-period, I determine the most preferred publisher according to

4This assumes that the conditional expectation function is linear within the bandwidth and does not
account for misspecification.
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Table A.5: Validating the Recommender System

Preferred Promoted Preferred Demoted Indifferent
D 0.80 0.67 0.62

(0.04) (0.04) (0.04)
∆sjt 0.62 0.49 0.72

(0.12) (0.12) (0.13)
∆sjt × D -0.97 -0.57 -1.44

(0.25) (0.25) (0.28)
Intercept 2.14 2.14 1.95

(0.06) (0.06) (0.07)
Obs 3538 3538 3538
R2 0.09 0.08 0.04

Note: This table shows regression discontinuity heterogeneous treatment effect estimates
using a local linear regression. Each column presents estimates of the local linear regression of
the outcome (log of one plus the number of comments of each type) on an intercept, treatment
indicator, running variable, and running variable interacted with the treatment indicator.
The first row contains the coefficient on treatment, which is the local average treatment
effect of being promoted to the first position on the feed from the second position. The
treatment effect is estimated separately depending on whether a user’s preferred publisher
is promoted (first column), demoted (second column), or the user is indifferent between the
publishers (third column) in the given period.
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the recommender system and calculate the share of promoted publishers that are classified
as highly credible. I also calculate the primary measure of slant diversity, which is the
first Wasserstein distance between the share of publishers promoted in each slant partition
and the uniform distribution. The distributions of these summaries are shown in Figure
A.24 alongside the quantity under the existing ranking. The distributions indicate that the
majority of users experience improved news diet quality in terms of publisher credibility,
though an important minority of users experience a material deterioration in the quality of
their news diets. In terms of diversity, a large majority of users are recommended a less
diverse set of publishers.

While these results suggest that optimizing for engagement using personalized rankings
has a heterogeneous impact on the credibility of publishers that are promoted and a near-
uniform decrease in slant diversity, this approach has important limitations. First, the rec-
ommender system is trained on observational data without accounting for endogenous post
rank [Chaney et al., 2018]. The simple collaborative filtering model trained here also differs
substantially from the more advanced models – which often employ deep learning – used in
practice (see Zhang et al. [2019] for an overview of current deep learning based approaches
to recommendation systems). In addition, this approach does not allow for within-publisher
article heterogeneity, wherein certain articles are likely to garner more attention irrespective
of the publisher. Finally, this approach is limited to analyzing the type of content promoted
rather than modeling the content users eventually engage with under counterfactual rank-
ings. Because it allows me to quantify the counterfactual ranking algorithms’ impact on
engagement – an outcome that serves as a closer proxy to advertising revenue – modeling
engagement is critical to understanding the implications for the platform. The choice model
and counterfactual analysis presented in Section 1.4 and Section 1.5 address these limitations
directly.

Despite these limitations, that this model can accurately predict treatment effects in-
dicates the model has learned useful information about user preferences. Moreover, this
model can be estimated using data from a larger set of users since engagement on posts
not included in the Wayback Machine snapshots can be included in training. This allows
the recommender system approach to encompass over 180,000 users while the choice model
is estimated on a smaller set of highly active users. As I will argue, the results from both
analyses are similar and give confidence that the results generalize to a broader set of users.
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Figure A.24: Summary of Promoted Publishers in Recommender System Approach
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Note: This figure summarizes the user-level distribution of promoted publishers in the rec-
ommender system approach to personalization. In each user-period, I find the publisher out
of the top 25 posts that the recommender system would promote first. These figures plot
the user-level distribution of the high-credibility publisher share and the first Wasserstein
distance between the share of promoted publishers from each slant partition and the uniform
distribution. The distance is zero when a user is equally likely to be promoted a publisher
from each partition of publisher political slant. Higher values of the Wasserstein distance
indicate the user is being promoted a less diverse set of publishers. The maximum distance
is 2, which would only occurs when a user is promoted entirely publishers from either the
extreme left or extreme right publisher partitions.
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Appendix B

Appendix: News Feeds and User
Engagement: Evidence from the
Reddit News Tab

B.1 Matching Procedure

Our analysis of the impact of the News tab relies on a common trends assumption to have
a causal interpretation. Non-weighted engagement trends, i.e. those estimating Equation
2.2 without the Coarsened Exact Matching (CEM) procedure are largely consistent with
this hypothesis with one notable exception where the probability of posting on any non-
news community shows a clear pre-trend (Figure B.11 and Figure B.12). We use the CEM
procedure outlined in Iacus et al. [2012] to mitigate this imbalance.

There are 12 pre-treatment periods in our analysis and we match on the first 6 of these
pre-treatment periods, holding out the following 6 to provide further evidence our common
trends assumption is plausible. We define Xi = (xi,−12, . . . , xi,−7)′ as a vector of dummy
variables xi,t equal to one if user i made any posts (on any community, not just news) in
period t. We then generate weights from CEM following Iacus et al. [2012]. Given the
relatively low-dimensionality of this matching exercise we are able to find exact matches
and this is equivalent to subclassification. We then use these weights in our difference-
in-differences framework, which requires the assumption of common trends conditional on
the covariates used in matching. In other words, we assume that iOS engagement trends
would have followed Android engagement trends absent the introduction of the News tab,
conditional on Xi.

To demonstrate the effectiveness of the matching procedure, we can plot the unweighted
and weighted probability of posting any post on Reddit over time by treatment group (Figure
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Figure B.1: Probability of Any Post by Treatment Group

(a) Unweighted (b) Weighted

B.1). While difficult to see in the raw time series figure below, there is clear evidence of
differential pre-trends between iOS and Android users (Figure B.11). Re-weighting eliminates
this imbalance and it does so even in the periods before treatment that are not used in
weighting.
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B.2 Data on Domain Political Slant

We obtain political slant by domain from the data provided alongside Robertson et al. [2018].
To generate this score, Robertson et al. [2018] collect recent tweets containing links from
known Democrats and Republicans. The slant measure is then calculated as the difference
in the probability of a sharing a domain conditioned on being republican who has shared
at least one domain less the same conditional probability for democrats, normalized to be
between -1 and 1. Formally, the slant measure is define as

bias-score(i) =
ri∑

j∈I
rj

− di∑
j∈I

dj

ri∑
j∈I

rj
+ di∑

j∈I
dj

where rj (dj) is the number of unique Republicans (Democrats) who shared domain j and I is
the set of all domains. This measure is equal to 0 if shared by equal shares of Republicans and
Democrats and equal to 1 (-1) if it was shared only by Republicans (Democrats). Robertson
et al. [2018] demonstrate their measure of domain slant agrees with several existing measures
of publisher slant [Bakshy et al., 2015b, Budak et al., 2016].
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B.3 Measures of Information Diversity

Our measures of engagement diversity first partitions engagement into K bins based on either
the category of news community or the political slant of the publisher within hard-news
communities as calculated in Robertson et al. [2018]. We then operationalize the diversity
of engagement following Holtz et al. [2020], measuring individual-level engagement diversity
using Shannon entropy [Shannon, 1948]. The Shannon entropy of user i’s engagement is
defined as

idi = −
K∑

k=1
ski ln(ski)

where ski is the share of user i’s posts on a thread based on an article from publishers in
partition k ∈ {1, . . . , K}. If ski = 0, the partition’s contribution to the Shannon entropy is
zero which implies users who do not engage with any posts have idi = 0 [Holtz et al., 2020].

We also operationalize engagement diversity using the Herfindahl–Hirschman Index (HHI)
[Rhoades, 1993]. This measure is defined as the sume of squared engagement shares:

HHIi =
K∑

k=1
s2

ki.

When an individual has no consumption in a period, we define the HHI to be equal to one
which is equivalent to engaging entirely with content from a single category.
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Figure B.2: Common Pre-Trends p-Values for Indicator of Any Post

Note: Plot of p-values of test of common pre-trends after CEM matching. The test is the
joint test that all pre-period treatment effect coefficients in Equation 2.2 are equal to 0.

B.4 Testing for Common Pre-Trends

159



Figure B.3: Common Pre-Trends p-Values for Indicator of Low Quality Post

Note: Plot of p-values of test of common pre-trends after CEM matching. The test is the
joint test that all pre-period treatment effect coefficients in Equation 2.2 are equal to 0.

Figure B.4: Common Pre-Trends p-Values for Indicator of High Quality Post

Note: Plot of p-values of test of common pre-trends after CEM matching. The test is the
joint test that all pre-period treatment effect coefficients in Equation 2.2 are equal to 0.
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Figure B.5: Common Pre-Trends p-Values for Intensive Margin Analysis

Note: Plot of p-values of test of common pre-trends after CEM matching. The test is the
joint test that all pre-period treatment effect coefficients in Equation 2.2 are equal to 0. The
figure plots the p-values for all thresholds shown in Figure B.7 and Figure B.8 across all of
the categories included in the News tab.
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Figure B.6: Election Placebo Tests

Here we show results of a placebo test on political communities not included in the News
tab (red) compared to the Politics community included in the News tab (blue). We find
no treatment effect on communities excluded from the News tab suggesting the effect is not
confounded by the 2018 midterm election.

B.5 Robustness Checks
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B.6 Effect on Intensive Margin of Engagement

Figure B.7: Treatment Effect Estimates on Probability of Posting More than k Posts

(a) All News Communities (b) All Communities

(c) Politics (d) Technology

(e) Entertainment (f) Business

Note: Each plot shows the treatment effect estimate from Equation 2.1 where the outcome
is an indicator if the user posted more than a threshold posts in a month (within each com-
munity). The thresholds are shown on the y-axis. Horizontal bars represent 95% confidence
intervals.
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Figure B.8: Treatment Effect Estimates on Probability of Posting More than k Posts

(a) Gaming (b) Sports

(c) US & World (d) Science

Note: Each plot shows the treatment effect estimate from Equation 2.1 where the outcome
is an indicator if the user posted more than a threshold posts in a month (within each com-
munity). The thresholds are shown on the y-axis. Horizontal bars represent 95% confidence
intervals.
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Figure B.9: Common Pre-Trends p-values without Matching

Note: Plot of p-values of test of common pre-trends without CEM matching. The test is the
joint test that all pre-period treatment effect coefficients in Equation 2.2 are equal to 0.

B.7 Analyses Without CEM Weights

Figure B.10: Treatment Effect Estimates on Probability of Posting
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Figure B.11: Dynamic Treatment Effect Estimates on Probability of Posting without Match-
ing

(a) All News Communities (b) All Non-News Communities

(c) Politics (d) Technology

(e) Entertainment (f) Business

Note: Dynamic treatment effect estimates on probability of posting in community, estimated
using Equation 2.1 without the Coarsened Exact Matching weights.
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Figure B.12: Dynamic Treatment Effect Estimates on Probability of Posting without Match-
ing

(a) Gaming (b) Sports

(c) US & World (d) Science

Note: Dynamic treatment effect estimates on probability of posting in community, estimated
using Equation 2.1 without the Coarsened Exact Matching weights.
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Appendix C

Appendix: Combining Human
Expertise with Artificial Intelligence:
Experimental Evidence from
Radiology

C.1 Appendix of Proofs

C.1.1 Proof of Proposition 3.5.1

Case b < 1 and d = 1: Suppose a∗
(
sH ; p

)
= 0 and a∗

(
sA, sH ; p

)
= 1. Equivalently, log crel >

log π(ω=1|sH)
π( ω=0|sH) and log crel ≤ b log π( sA|ω=1,sH)

π( sA|ω=0,sH) +log π(ω=1|sH)
π( ω=0|sH) . Since b ∈ (0, 1), it must be that

log π( sA|ω=1,sH)
π( sA|ω=0,sH) > 0 and log crel < log π( sA|ω=1,sH)

π( sA|ω=0,sH) + log π(ω=1|sH)
π( ω=0|sH) so that a∗

(
sA, sH ; π

)
= 1. Hence, if 0 = a∗

(
sH ; p

)
̸= a∗

(
sA, sH ; p

)
then a∗

(
sA, sH ; p

)
= a∗

(
sA, sH ; π

)
and

V
(
sH ; p

)
≤ V

(
sA, sH ; π

)
= V

(
sA, sH ; p

)
, with strict inequality if the measure on

(
sA, sH

)
under π (·) such that 0 = a∗

(
sH ; p

)
̸= a∗

(
sA, sH ; π

)
is strictly positive. The proof of the

case when a∗
(
sH ; p

)
= 1 and a∗

(
sA, sH ; p

)
= 0 is analogous. If a∗

(
sH ; p

)
= a∗

(
sA, sH ; p

)
then V

(
sH ; p

)
= V

(
sA, sH ; p

)
.

Case b > 1 and d = 1: If log crel − log π(ω=1|sH)
π( ω=0|sH) > 0, then for log π( sA|ω=1,sH)

π( sA|ω=0,sH)

∈
(

1
b

log crel − 1
b

log π(ω=1|sH)
π( ω=0|sH) , log crel − log π(ω=1|sH)

π( ω=0|sH)

)
we have both log crel > log π( sA|ω=1,sH)

π( sA|ω=0,sH)

+ log π(ω=1|sH)
π( ω=0|sH) and log crel < b log π( sA|ω=1,sH)

π( sA|ω=0,sH) + log π(ω=1|sH)
π( ω=0|sH) . Thus, 0 = a∗

(
sH ; p

)
̸= a∗

(
sH , sA; p

)
̸= a∗

(
sH , sA; π

)
. An analogous argument for the case when log crel ≤

log π(ω=1|sH)
π( ω=0|sH) completes this case.
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Case d ̸= 1: We analyze this in two subcases.

• (1 − d) log crel > 0: We show that there exist values of
(

log π(ω=1|sH)
π( ω=0|sH) , log π( sA|ω=1,sH)

π( sA|ω=0,sH)

)
such that a∗

(
sA, sH ; p

)
= 0, a∗

(
sH ; p

)
= 1, and a∗

(
sA, sH ; π

)
= 1. Equivalently, we

need to find values such that log crel > b log π( sA|ω=1,sH)
π( sA|ω=0,sH) + d log π(ω=1|sH)

π( ω=0|sH) , log crel <

log π(ω=1|sH)
π( ω=0|sH) and log crel < log π( sA|ω=1,sH)

π( sA|ω=0,sH) + log π(ω=1|sH)
π( ω=0|sH) if d ̸= 1. Re-write this

system as y = log π(ω=1|sH)
π( ω=0|sH) −log crel and x = log π( sA|ω=1,sH)

π( sA|ω=0,sH) , we need to find a solution
to the system y > 0, x + y > 0 and bx + dy < (1 − d) log crel. Since (1 − d) log crel > 0,
there exist small enough values of x, y > 0 such that the solution exists.

• (1 − d) log crel < 0: An argument analogous of case 1 shows that there exist values
of

(
log π(ω=1|sH)

π( ω=0|sH) , log π( sA|ω=1,sH)
π( sA|ω=0,sH)

)
such that a∗

(
sA, sH ; p

)
= 1, a∗

(
sH ; p

)
= 0, and

a∗
(
sA, sH ; π

)
= 0.

C.1.2 Proof of Proposition 3.5.2

Consider log crel > log π(ω=1|sH)
π( ω=0|sH) and log crel < b log π( sA|ω=1)

π( sA|ω=0) + d log π(ω=1|sH)
π( ω=0|sH) so that 0 =

a∗
(
sH ; p

)
̸= a∗

(
sA, sH ; p

)
= 1. For small enough log π( sA|ω=1,sH)

π( sA|ω=0,sH) , log crel > log π( sA|ω=1,sH)
π( sA|ω=0,sH) +

log π(ω=1|sH)
π( ω=0|sH) so that a∗

(
sA, sH ; π

)
= 0. The case in which log crel < log π(ω=1|sH)

π( ω=0|sH) is
analagous.
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C.2 Appendix of Experimental Interface and Instructions

C.2.1 Design

Figure C.1: Design 1

XO

Set 1

CH

Set 2

AI

Set 3
AI + CH

Set 4
Track 1

CH

Set 1
...Track 2

AI

Set 1
Track 3

AI + CH

Set 1

Track 24

Initial randomization into tracks

60 reads per track

15 reads per set

Within subject comparison,

no image encountered twice

... ...

... ... ...

... ... ...

Random assignment to

remaining treatments and sets.
.
.

Note: In this design, radiologists are assigned to a randomized sequence of the four information environments., resulting in 24
possible tracks. Under each information environment they read 15 cases. Radiologists encounter each patient case at most once.
At the beginning of the experiment every radiologist reads eight practice cases. Furthermore, a random half of the participating
radiologists receive incentives for accuracy.
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Figure C.2: Design 2

Session 1

XO AI AI+CH CH

Session 2

XO AI AI+CH CH

Session 3

XO AI AI+CH CH

Session 4

XO AI AI+CH CH

2 week
washout

2 week
washout

2 week
washout

60 reads per session

15 reads per set
read in batches of 5

Session 1

AI AI+CH XO CH

Session 2

AI AI+CH XO CH

Session 3

AI AI+CH XO CH

Session 4

AI AI+CH

2 week
washout

2 week
washout

2 week
washout XO CH

Each case randomly assigned to new condition

Note: In this design, radiologists diagnose 60 patient cases each under the four information environments. Radiologists read every
case under every information environment across four sessions, separated by a washout period. Each case is only encountered
once per session and to ensure that radiologists do not recall their/AI predictions from previous reads of the same cases,
we ensure a minimum two-week washout period between subsequent sessions. Within every experimental session radiologists
therefore read 15 under each information environment. The randomization occurs at the track-level where every track has a
different sequence of the information environments. (Example tracks shown here.)
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Figure C.3: Design 3

XO
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CH
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Set 1

AI

Set 2

Initial randomization into tracks

Same sets

Same sets

Note: In this design, radiologists diagnose 50 cases, first without and then with AI assistance. Clinical history is randomly
provided in either the first or second half of images forming the basis of the randomization. The cases diagnosed with and
without clinical history are different.

C.2.2 Instructions

Below are the instructions the subjects received along with the interface-based treatment.
Comments on the instructions are provided in italics and were not seen by subjects.

Instructions

You are about to participate in a study on medical decision making. You may pause the
study at any time. To resume, revisit the link you were given and your progress will have
been saved.

We will present you with adult patients with potential thoracic pathologies. These pa-
tients will be presented under the following four scenarios:

1. Only a chest X-ray is shown.

2. An X-ray is accompanied with additional information about the clinical history.

3. An X-ray is shown along with Artificial Intelligence (AI) support. This AI tool is
described in further detail below.

4. An X-ray is shown along with both additional information on clinical history and the
AI support.

The patients are randomly assigned to each of these scenarios. That is, availability of clinical
history and/or AI support is unrelated to the patient.

Clinical History: includes available lab results or indications by the treating physician, if
any.
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AI support: This tool uses only the X-ray image to predict the probability of each poten-
tial pathology of interest. The tool is based on state-of-the-art machine learning algorithms
developed by a leading team of researchers at Stanford University.

Responses
For each patient and pathology, we will ask for both an assessment and a treatment

decision:

1. We will first ask for your assessment of the probability that each condition is present in
a patient. Please consider all pathologies and findings that would be relevant
in a radiology report for the patient. You should express your uncertainty
about the presence of one or many conditions by appropriately choosing the
probability. Note that it is possible that the patient has multiple such conditions or
none of them.

2. If you determine that a pathology may be present, we may ask you to rate the severity
and/or extent of the disease on a scale.

3. Finally, when relevant we will ask whether you would recommend treatment or follow-
up according to the clinical standard of care if you determine that the pathology may
be present. The first two responses are diagnostic while the third is a clinical decision.
We are aware that a single physician or radiologist typically does not perform both
tasks. However, for this study, we ask that you respond to the best of your ability in
both of these roles.

Browser Compatibility
This platform supports desktop versions of Chrome, Firefox, and Edge. Important fea-

tures on non-supported browsers (including Safari) are missing and we discourage their use
for this experiment. In addition, the platform does not support any mobile devices and the
platform will perform poorly on mobile. If you encounter any issues during the experiment,
please send an email to DiagnosticAI@mit.edu and we will follow-up quickly.

Hierarchy

The interface uses a hierarchy to categorize various thoracic conditions. It will be useful to
familiarize yourself with this hierarchy before you start, but you may also revisit the hierarchy
at any time throughout the experiment by clicking the help tab in the upper right corner.
[The probability for the sub-pathologies is required only if the parent pathology prevalence is
greater than 10%.]
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Figure C.4: Pathology hierarchy

AI Support Tool

The AI support tool that is provided uses only the X-ray image to predict the probability of
each potential pathology of interest. The tool is based on state-of-the-art machine learning
algorithms developed by a leading team of researchers at Stanford University. The tool is
trained only on X-ray images, meaning it does not incorporate the clinical history of the
patients.

Performance of the AI Support
The AI tool is described in Irvin et al. [2019], which showed the AI tool performed at or

near expert levels across the pathologies studied. Below we plot two measures of performance
of the AI tool. We plot in blue the accuracy of the tool, defined as the share of cases correctly
diagnosed when treating false positives and false negatives equally. In red, we plot the Area
Under the ROC curve (AUC), which is another measure of AI classification performance.
The AUC is a number between 0 and 100%, with numbers close to 100% representing better
algorithm performance. The AUC is equal to the probability that a randomly chosen positive
case is ranked higher than a randomly chosen negative case.
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Figure C.5: Performance of AI tool

Example Images
Below are 50 example images with the associated AI tool predictions. These images

are randomly chosen to allow you to familiarize yourself with the AI support tool and its
accuracy. [Here we only provide two out of the 50 images. Notice that these assessments
need not sum to 100% as a case can have more than one pathology. The sum of assessments
among pathologies that are nested within a top-level pathology also may be less than the top-
level pathology’s assessment as a case could have the top-level pathology but none of the child
pathologies with an AI prediction.]
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Figure C.6: Example images
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Demonstration
The brief video below walks you through the interface and a few examples. [At this stage

participants saw an instructional video which can be found here.]
Consent
You have been asked to participate in a study conducted by researchers from the Mas-

sachusetts Institute of Technology (M.I.T.) and Harvard University.
The information below provides a summary of the research. Your participation in this

research is voluntary and you can withdraw at any time.

1. Study procedure: We will ask you to examine a number of chest x-rays. We will vary
both the amount of information provided about the patient and the availability of an
AI support tool.

2. Potential Risks & Benefits: There are no foreseeable risks associated with this study
and you will receive no direct benefit from participating.

Your participation in this study is completely voluntary and you are free to choose whether
to be in it or not. If you choose to be in this study, you may subsequently withdraw from it
at any time without penalty or consequences of any kind. The investigator may withdraw
you from this research if circumstances arise.

Privacy & Confidentiality
The only people who will know that you are a research subject are members of the research

team which might include outside collaborators not affiliated with MIT. No identifiable
information about you, or provided by you during the research, will be disclosed to others
without your written permission, except: if necessary to protect your rights or welfare,
or if required by law. In addition, your information may be reviewed by authorized MIT
representatives to ensure compliance with MIT policies and procedures.

When the results of the research are published or discussed in conferences, no information
will be included that would reveal your identity.

Questions
If you have any questions or concerns about the research, please feel free to contact us

directly at diagnosticAI@mit.edu.
Your Rights
You are not waiving any legal claims, rights, or remedies because of your participation in

this research study. If you feel you have been treated unfairly, or you have questions regarding
your rights as a research subject, you may contact the Chairman of the Committee on the
Use of Humans as Experimental Subjects, M.I.T., Room E25-143B, 77 Massachusetts Ave,
Cambridge, MA 02139, phone 1-617-253 6787.
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I understand the procedures described above. By clicking next, I am acknowledging my
questions have been answered to my satisfaction, and I agree to participate in this study.

Interface questions
[Each of these questions has a true or false response which was entered through a radio

button. Participants are not able to start the experiment without answering each question
correctly.]

Before beginning the experiment, we would like to confirm a few facts through the fol-
lowing comprehension questions. Please answer True or False to the following questions.

1) The algorithm’s prediction is based on information from both the X-ray scan as well
as the clinical history.

2) When the algorithm does not show a prediction, it is because the algorithm thinks the
pathology is not present.

3) The follow-up decision refers to any treatment or additional diagnostic procedures that
one would conduct based on the findings of the report.

4) Two patients with the same probability score for a condition ought to always receive
the same “follow-up” recommendation.

5) When a condition at a higher level of the hierarchy receives a less than ten percent
chance of being present then all the lower level conditions within this branch automatically
receive a zero probability of being present.

6) If the algorithm says that the probability of a pathology is present with 80% probability,
it means that the AI predicts 80 cases out of 100 have the pathology present.

7) Suppose your assessment is that the patient definitely has either edema or consolida-
tion, and you believe that edema is twice as likely as consolidation. Then you would assign
66.67% to edema and 33.33% to consolidation.

8) I should only indicate pathologies and findings that would be relevant in a radiology
report for the patient.

Interface

Figure C.7 is an example of the clinical history indications available to the participating
radiologists under the relevant treatment condition. The thoroughness of the information
varies across available information for every patient. Some examples of varying clinical
history information are:

1. 68 years of age, Female, chest pain

2. Unknown age, Unknown, trauma
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3. 55 years of age, Male, Order History: Relevant PMH gastroparesis. Presents with vom-
iting, retching chest discomfort for a duration of today. Concern for PTX, perforated
viscus, pneumomediastinum

4. 74 years of age, Female, s/p unwitnessed fall, r/o rib fx, pna or effusion

5. Trauma

6. 56 years of age, Male, S/P ICD/ Pacemaker insertion / Complete X-ray without lifting
arms above shoulders..
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Figure C.7: Clinical history information

Note: The clinical history information environment in the experiment had information on patient indications, vitals, and
abnormal labs.
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Figure C.8: Interface slider

Note: The participants use the slider to indicate the probability of a pathology being present for a given patient based on the
treatment offered. For prevalence greater than 10% the participants are required to indicate the prevalence of a sub-pathology
(if it exists) and whether a follow-up is recommended.
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C.2.3 Additional Details on the AI Algorithm

The training data is a set of tuples of images and labels. These training datasets typically
rely on human input to assign the labels, which indicate whether or not a specific pattern or
object is present in the image. Training is conducted through stochastic gradient descent.
These algorithms build on the nested structure of the neural net to compute gradients com-
putationally efficiently via the chain rule. Each training step is performed on a small batch
of data so that the algorithm does not have to consider the entire dataset for each opti-
mization step. After each round of optimization on the training set, the model performance
is assessed through predictions on a hold-out validation sample. Most humans are able to
recognize cars, pedestrians, and traffic lights, which means that training datasets for com-
mon classification tasks are easy to come by. The same is not true for medical imaging.
Classifying disease based on X-rays, CT scans, and retina scans requires the input of highly
trained experts. Recently, several researchers have released large training datasets of medical
images with disease labels that are extracted from written clinical descriptions [Irvin et al.,
2019]. The neural net has a DenseNet121 architecture. A DenseNet is a type of convolu-
tional neural network that utilizes dense connections between layers through Dense Blocks;
in these blocks, we connect all layers with matching feature-map sizes directly with each
other. Images are supplied in a standardized format of 320 × 320 pixels. For optimization
the researchers use the Adam optimizer with default b-parameters of b1 = 0.9, b2 = 0.999
and learning rate 1 × 10−4. The batch size is fixed at 16 images. The training is performed
for 3 epochs. The full training procedure is described in [Irvin et al., 2019].

C.3 Data Appendix

C.3.1 Balance Tests

We verify that the randomization occurred as expected through various balance and ran-
domization tests. Figure C.9 plots the distribution of treatment probabilities by patient-case
in Design 1. We also plot a placebo distribution that samples from the null distribution to
support the claim that the randomization occurred as expected. To test this formally, we
present balance tests for Design 1 and Design 2 in Table C.1 and Table C.2 , respectively.1

For these balance tests, we calculate the average covariates across the four treatment arms
and report p-values from the test of the joint null that the four means are equal. For Design
2, these are done within sessions as patients are balanced by design across all sessions.

1Design 3 is balanced by design, as each radiologist reads the same cases with and without AI assistance.
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Figure C.9: Distribution of patient treatment probabilities in design 1
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Note: The cumulative distribution functions of patient treatment probabilities by treatment for design 1. The placebo distri-
bution is calculated based on 100,000 draws from the null distribution. For each draw from the null distribution, we sample
the number of reads the case receives from the empirical distribution and then draw the number of treatments from a binomial
distribution with probability 1/4.
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Table C.1: Covariate balance in design 1

Control CH AI AI x CH p-value
sA 0.309 0.301 0.310 0.306 0.310
Airspace Opacity 0.163 0.149 0.166 0.159 0.404
Cardiomediastinal Abnormality 0.131 0.130 0.138 0.131 0.832
Support Device Hardware 0.176 0.169 0.176 0.190 0.292
Abnormal 0.187 0.179 0.195 0.189 0.545
Weight 185.24 185.87 185.20 185.17 0.942
Temp 99.02 99.04 99.05 99.06 0.230
Pulse 92.26 92.72 92.55 92.92 0.074
Age 56.80 56.55 56.42 56.87 0.858
Number Labs 34.61 34.23 34.54 34.29 0.372
Number Flagged Labs 5.907 5.862 6.061 6.053 0.349
Female 0.416 0.409 0.389 0.388 0.101

Note: Balance tests of patient covariates for patients assigned to the four treatments in Design 1. Missing clinical history variables are mean-imputed. The p-values come from
the joint test the mean covariates are equal across the four treatments.
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Table C.2: Covariate balance in design 2

Session 1 Session 2 Session 3 Session 4
sA 0.381 0.625 0.381 0.447
Airspace Opacity 0.243 0.368 0.141 0.483
Cardiomediastinal Abnormality 0.164 0.834 0.088 0.716
Support Device Hardware 0.760 0.770 0.714 0.794
Abnormal 0.265 0.624 0.722 0.330
Weight 0.461 0.597 0.878 0.735
Temp 0.107 0.245 0.437 0.654
Pulse 0.242 0.578 0.764 0.772
Age 0.559 0.220 0.082 0.898
Number Labs 0.075 0.348 0.581 0.768
Number Flagged Labs 0.297 0.189 0.935 0.738
Female 0.067 0.052 0.225 0.075

Note: Balance test p-values that the covariate means are equal across the four treatments within each session (column). Missing clinical history variables are mean-imputed.
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C.3.2 Quality of Diagnostic Standard

Here, we summarize evidence that the diagnostic standard measure we construct is high
quality and robust to various decisions an analyst could make. Recall that the preferred
diagnostic standard used throughout the paper is defined using the reads of five board-
certified radiologists from Mount Sinai, who each read all 324 patient cases in the study in a
random order. For each pathology, we aggregate these reports into the diagnostic standard
for a patient case i as

ωi = 1
[ 5∑

r=1

πr(ωi = 1|sE
i,r)

5 >
1
2

]

where we suppress the pathology index for simplicity and r indexes the radiologist. This
method of aggregating reports is robust to certain types of measurement error and depen-
dence across reports as discussed in Wallsten and Diederich [2001]. Table C.3 contains
summary statistics for the diagnostic standard created using the Mount Sinai radiologists
and a leave-one-out internal diagnostic standard calculated using the reads collected during
the experiment under the treatment arm with clinical history but no AI assistance. Table C.4
contains additional summary statistics for the five Mount Sinai diagnostic standard labelers,
including their average time and number of clicks. We also show the average agreement of
the labels with the original radiologist’s read. Taken together, these analyses demonstrate,
for the majority of cases, that the diagnostic standard labelers agree with the assessment
of the radiologist who originally read the report in a clinical setting and we can reject that
the average probability assessment is equal to 0.5 at the 5% level. Moreover, in Section
C.3.5 we show that our results are robust to many different methods of calculating diagnos-
tic standard, including using the experiment leave-one-out diagnostic standard and various
aggregation methods of the Mount Sinai reports.
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Table C.3: Diagnostic standard quality

Prevalence Share Rejecting 0.5 Average Number of Rads
Sinai Experiment Sinai Experiment Sinai Experiment

Top-Level with AI 0.147 0.110 0.696 0.795 5.00 16.22
Pooled with AI 0.043 0.028 0.892 0.940 5.00 16.22
Abnormal 0.194 0.506 0.583 0.565 5.00 16.22
All Pathologies 0.013 0.009 0.953 0.980 5.00 16.22

Note: For each of the pre-registered pathology groups, this table shows the average prevalence, the share of cases where we can reject that
∑R

r=1
πr(ωi=1|sE

i,r)
R

= 0.5 at the 5%
level, and the average number of reads per case for both the Mount Sinai diagnostic standard and the experiment leave-one-out diagnostic standard.

Table C.4: Diagnostic standard effort

Active Time Clicks Agreement with Original
Mean SD Mean SD

0 77.24 42.78 34.30 17.93 0.868
1 76.44 54.71 32.30 18.24 0.851
2 25.55 30.34 10.84 12.29 0.876
3 79.94 80.22 21.79 20.59 0.866
4 112.96 82.96 26.14 20.12 0.863

Note: For each of the five Mount Sinai radiologists we compute the average and standard deviation of time spent per case and the number of clicks per case. In addition, we
compute the average agreement with the original read as labeled by the CheXbert algorithm.
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C.3.3 Performance Distributions by Pathology

This section presents distributions for two different accuracy measures for radiologists and
the AI across different pathology groups. These figures allow for a comparison between the
accuracy of the AI relative to the mean radiologist.
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Figure C.10: AUROC

(a) Airspace Opacity
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(b) Edema
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(c) Consolidation
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(d) Bacterial / Lobar Pneumo-
nia
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(e) Atelectasis
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(f) Pneumothorax
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(g) Pleural Effusion
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(h) Cardiomediastinal Ab-
norm.
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(i) Cardiomegaly
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(j) Fracture
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(k) Support Devices & Hard-
ware
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(l) Abnormal
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Note: This figure summarizes the distribution of radiologist AUROCs across different pathologies, as well as the AUROC of
the AI algorithm for the corresponding pathology. Only the cases where contextual history information is available for the
radiologist but not the AI prediction were considered. AUROC is only defined for radiologists who encounter some positive
cases.
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Figure C.11: RMSE
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(b) Edema
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(c) Consolidation
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(d) Bacterial / Lobar Pneumo-
nia
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(e) Atelectasis
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(f) Pneumothorax
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(g) Pleural Effusion
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(h) Cardiomediastinal Ab-
norm.
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(i) Cardiomegaly
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(j) Fracture
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(k) Support Devices & Hard-
ware
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(l) Abnormal
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Note: This figure summarizes the distribution of radiologist RMSE across different pathologies, as well as the RMSE of the AI
algorithm for the corresponding pathology. Only the cases where contextual history information is available for the radiologist
but not the AI prediction were considered.
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C.3.4 Comparison of Radiologists to Original Reads

The reports from the radiologists who originally read the patient cases included in our
sample were classified as positive/negative/uncertain for each pathology using AI predictions
generated by the CheXbert algorithm described in Smit et al. [2020]. We compare the
accuracy of the original reads relative to the diagnostic standard with the radiologists in
our sample under the treatment arm with clinical history and no AI assistance. We do this
for each pathology by converting the probability reports elicited during the experiment to
positive/negative assessments, where positive is defined as having a probability greater than
50%. We convert the CheXbert labels to positive/negative assessments by including the
uncertain cases as positive.2 We then calculate the accuracy of the experiment reads and
the CheXbert labels for groups of pathologies focused on in this study and test the null
hypothesis that the accuracy of the radiologists is the same. The results of this analysis are
in Table C.5, and those for when treating uncertain cases negative are in Table C.6.

Table C.5: Comparing experiment assessments to original reads

Top-Level
with AI

Pooled
with AI Abnormal

(1) (2) (3)
Experiment -0.000 -0.004 -0.086

(0.016) (0.006) (0.025)
Constant 0.194 0.090 0.466

(0.016) (0.006) (0.028)
Observations 11128 61204 5564
R-Squared 0.000 0.000 0.002

*p < 0.1; **p < 0.05, ***p < 0.01

Note: Regression of indicator equal to one if binarized assessment is equal to the diagnostic standard from both the original
reads and experiment reads onto a constant and an indicator equal to one if the radiologist was in the experiment. Standard
errors are clustered at the patient-case level.

2For all pathologies but bacterial pneumonia and atelectasis, fewer than 5% of patients have uncertain
cases. For abnormal and all of the top-level pathologies with AI, there are no cases with uncertain labels.

192



Table C.6: Comparing experiment to original reads: uncertain as not present

Top-Level
with AI

Pooled
with AI Abnormal

(1) (2) (3)
Experiment -0.000 0.021 -0.086

(0.016) (0.004) (0.025)
Constant 0.194 0.065 0.466

(0.016) (0.005) (0.028)
Observations 11128 61204 5564
R-Squared 0.000 0.000 0.002

*p < 0.1; **p < 0.05, ***p < 0.01
Note: Regression of indicator equal to one if binarized assessment is equal to the diagnostic standard from both the original
reads and experiment reads onto a constant and an indicator equal to one if the radiologist was in the experiment. Standard
errors are clustered at the patient-case level.
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C.3.5 Robustness

In this section, we show the robustness of the results from Section 3.4.2. We first present
a table version of the results presented in figure 3.2 including various combinations of fixed
effects (tables C.7-C.9). We next present robustness of the results in Section 3.4.2 by ex-
periment design and by definition of the diagnostic standard. In addition, we test for order
effects and test the impact of incentives.
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Table C.7: Average treatment effects

Deviation from AI Deviation from Diagnostic Standard Effort Measures
All Designs Design 1 All Designs Design 1 All Designs Design 1

Active Time Clicks Active Time Clicks

Treatment (1) (2) (3) (4) (5) (6) (7) (8)

AI × CH 0.002 0.002 0.001 −0.003 −1.21 0.07 −0.89 0.01
(0.003) (0.005) (0.005) (0.010) (3.60) (0.76) (5.94) (1.29)

AI −0.040 −0.041 0.003 0.004 5.94 1.22 4.94 1.27
(0.004) (0.005) (0.004) (0.007) (2.44) (0.54) (4.06) (0.89)

CH −0.001 −0.003 −0.009 −0.010 8.12 0.24 8.15 0.26
(0.002) (0.004) (0.004) (0.007) (2.50) (0.52) (4.15) (0.89)

Control Mean 0.212 0.222 0.226 0.223 154.32 42.65 154.47 38.88
(0.006) (0.007) (0.010) (0.011) (4.18) (1.15) (6.05) (1.36)

Pathology FE Yes Yes Yes Yes – – – –
Radiologist FE No No No No No No No No
Case FE No No No No No No No No
Observations 41920 19080 41920 19080 17455 17455 9538 9538

Note: This table summarizes the average treatment effects (ATE) of different information environments on the absolute value of the difference between the radiologist probability
and AI probability (column (1) and (2)); absolute value of the difference between the radiologist probability and the diagnostic standard (columns (3) and (4)); and radiologists’
effort measured in terms of active time and clicks (columns (5), (6), (7) and (8)). We either pool across all designs (All Designs) or condition on only design 1. Results on
effort measure excludes five patient-cases with unaccounted time measure, and observations from design 3 because of learning effects in this set-up. Active time is winsorized
to the 95th percentile. The results are for the two top-level pathologies with AI predictions, airspace opacity and cardiomediastinal abnormality. Standard errors are two-way
clustered at the radiologist and patient-case level in parenthesis. Robustness by design can be found in section C.3.5.
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Table C.8: Average treatment effects

Deviation from AI Deviation from Diagnostic Standard Effort Measures
All Designs Design 1 All Designs Design 1 All Designs Design 1

Active Time Clicks Active Time Clicks

Treatment (1) (2) (3) (4) (5) (6) (7) (8)

AI × CH 0.002 0.002 0.001 −0.003 −1.22 0.07 −0.90 0.00
(0.003) (0.005) (0.005) (0.010) (3.60) (0.76) (5.95) (1.29)

AI −0.040 −0.041 0.003 0.004 5.94 1.23 4.94 1.27
(0.003) (0.005) (0.004) (0.007) (2.44) (0.54) (4.06) (0.89)

CH −0.001 −0.003 −0.009 −0.010 8.12 0.24 8.17 0.26
(0.002) (0.004) (0.004) (0.007) (2.50) (0.52) (4.15) (0.89)

Control Mean 0.212 0.222 0.226 0.223 154.31 42.64 154.46 38.88
(0.005) (0.006) (0.009) (0.010) (1.44) (0.31) (2.35) (0.51)

Pathology FE Yes Yes Yes Yes - - - -
Radiologist FE Yes Yes Yes Yes Yes Yes Yes Yes
Case FE No No No No No No No No
Observations 41920 19080 41920 19080 17455 17455 9538 9538

Note: This table summarizes the average treatment effects (ATE) of different information environments on the absolute value of the difference between the radiologist probability
and AI probability (column (1) and (2)); absolute value of the difference between the radiologist probability and the diagnostic standard (columns (3) and (4)); and radiologists’
effort measured in terms of active time and clicks (columns (5), (6), (7) and (8)). We either pool across all designs (All Designs) or condition on only design 1. Results on
effort measure excludes five patient-cases with unaccounted time measure, and observations from design 3 because of learning effects in this set-up. Active time is winsorized
to the 95th percentile. The results are for the two top-level pathologies with AI predictions, airspace opacity and cardiomediastinal abnormality. Standard errors are two-way
clustered at the radiologist and patient-case level in parenthesis. Robustness by design can be found in section C.3.5.
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Table C.9: Average treatment effects

Deviation from AI Deviation from Diagnostic Standard Effort Measures
All Designs Design 1 All Designs Design 1 All Designs Design 1

Active Time Clicks Active Time Clicks

Treatment (1) (2) (3) (4) (5) (6) (7) (8)

AI × CH 0.002 0.004 0.001 −0.003 −1.18 0.01 −0.58 −0.05
(0.003) (0.005) (0.004) (0.007) (3.48) (0.69) (5.74) (1.16)

AI −0.041 −0.043 0.002 0.002 5.55 1.11 3.70 1.00
(0.003) (0.004) (0.004) (0.006) (2.30) (0.49) (3.79) (0.79)

CH −0.002 −0.003 −0.008 −0.005 8.38 0.41 8.65 0.51
(0.002) (0.003) (0.003) (0.005) (2.43) (0.46) (4.05) (0.78)

Control Mean 0.213 0.222 0.226 0.222 154.37 42.63 154.76 38.91
(0.002) (0.002) (0.002) (0.003) (1.39) (0.27) (2.26) (0.44)

Pathology FE Yes Yes Yes Yes - - - -
Radiologist FE Yes Yes Yes Yes Yes Yes Yes Yes
Case FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 41920 19080 41920 19080 17455 17455 9538 9538

Note: This table summarizes the average treatment effects (ATE) of different information environments on the absolute value of the difference between the radiologist probability
and AI probability (column (1) and (2)); absolute value of the difference between the radiologist probability and the diagnostic standard (columns (3) and (4)); and radiologists’
effort measured in terms of active time and clicks (columns (5), (6), (7) and (8)). We either pool across all designs (All Designs) or condition on only design 1. Results on
effort measure excludes five patient-cases with unaccounted time measure, and observations from design 3 because of learning effects in this set-up. Active time is winsorized
to the 95th percentile. The results are for the two top-level pathologies with AI predictions, airspace opacity and cardiomediastinal abnormality. Standard errors are two-way
clustered at the radiologist and patient-case level in parenthesis. Robustness by design can be found in section C.3.5.
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By Design

Design 1

This section presents summaries of radiologist accuracy and treatment effect estimates using
data from design 1. We do not present treatment effects conditional on radiologist prediction
as same cases are not read in the design.

Figure C.12: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that observations are from design 1 only.

Figure C.13: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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Note: Main specifications similar to figure 3.4 with the exception that observations are from design 1 only.
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Design 2

This section presents summaries of key variables, radiologist accuracy and treatment effect
estimates using data from design 2.

Table C.10: Summary statistics

Mean SD
(1) (2)

Reported Probability 0.245 0.278
Decision 0.400 0.490
Deviation from Diagnostic Standard 0.232 0.265
Deviation from AI 0.172 0.159
Correct Decision 0.620 0.485
Active time 165.6 115.8
Observations 15, 840
Radiologists 33

Note: This table presents summary statistics of design 2 similar to table 3.1.

Figure C.14: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that observations are from design 2 only.
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Figure C.15: Conditional treatment effect given radiologist prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3.3 with the exception that observations are from design 2 only.

Figure C.16: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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Note: Main specifications similar to figure 3.4 with the exception that observations are from design 2 only.
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Table C.11: Average treatment effects

Deviation Deviation from Effort Measures
from AI Diagnostic Standard Active Time Clicks

Treatment (1) (2) (3) (4)

AI × CH −0.001 0.003 −1.61 0.15
(0.003) (0.004) (3.46) (0.64)

AI −0.034 0.004 7.14 1.17
(0.004) (0.004) (2.25) (0.53)

CH 0.001 −0.008 8.08 0.21
(0.002) (0.003) (2.36) (0.44)

Control Mean 0.189 0.234 154.14 47.18
(0.009) (0.013) (5.72) (1.75)

Pathology FE Yes Yes - -
Observations 15840 15840 7917 7917

Note: Main specifications similar to table C.7 with the exception that observations are from design 2 only.
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Design 3

This section presents summaries of key variables, radiologist accuracy and treatment effect
estimates using data from design 3.

Table C.12: Summary statistics

Mean SD
(1) (2)

Reported Probability 0.240 0.322
Decision 0.231 0.421
Deviation from Diagnostic Standard 0.212 0.297
Deviation from AI 0.216 0.182
Correct Decision 0.785 0.411
Active time 154.8 168.0
Observations 7, 000
Radiologists 35

Note: This table presents summary statistics of design 3 similar to table 3.1.

Figure C.17: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that observations are from design 3 only.
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Figure C.18: Conditional treatment effect given radiologist prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3.3 with the exception that observations are from design 3 only.

Figure C.19: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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Note: Main specifications similar to figure 3.4 with the exception that observations are from design 3 only.
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Table C.13: Average treatment effects

Deviation Deviation from
from AI Diagnostic Standard

Treatment (1) (2)

AI × CH 0.009 0.010
(0.008) (0.012)

AI −0.050 −0.003
(0.010) (0.008)

CH −0.003 −0.010
(0.009) (0.013)

Control Mean 0.241 0.216
(0.011) (0.015)

Pathology FE Yes Yes
Observations 7000 7000

Note: Main specifications similar to table C.7 with the exception that observations are from design 3 only.
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By Definition of Diagnostic Standards

Experiment leave-one-out Diagnostic Standard

This section computes the main results using a diagnostic standard constructed using a
leave-one-out average of assessments by radiologists participating in the experiment in the
treatment arm with clinical history but no AI assistance. Specifically, for each radiologist r

and patient case i we construct ωir = 1
[∑

r′ ̸=r
π(ωi=1|sE

ir)
Ni−1 > 0.5

]
.

Figure C.20: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that diagnostic standard is constructed using experiment
leave-one-out average.

Figure C.21: Conditional treatment effect given radiologist prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3.3 with the exception that the diagnostic standard is constructed using experiment
leave-one-out average.
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Figure C.22: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3.4 with the exception that the diagnostic standard is constructed using experiment
leave-one-out average.

Table C.14: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH 0.004
(0.005)

AI 0.009
(0.004)

CH −0.012
(0.004)

Control Mean 0.220
(0.010)

Pathology FE Yes
Observations 41920

Note: Main specifications similar to table C.7 with the exception that the diagnostic standard is constructed using experiment
leave-one-out average.
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Continuous Diagnostic Standard

This section computes the main results using a continuous diagnostic standard constructed
using a simple average of the diagnostic standard labelers’ probability assesment.

Figure C.23: RMSE radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that the diagnostic standard is constructed using continuous
values.

Figure C.24: Conditional treatment effect given radiologist prediction
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Note: Main specifications similar to figure 3.3 with the exception that the diagnostic standard is constructed using continuous
values.
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Figure C.25: Conditional treatment effect given AI prediction

-.1

-.05

0

.05

.1

A
TE

 o
n 

de
vi

at
io

n 
fr

om
 d

ia
gn

os
tic

 st
an

da
rd

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]
AI prediction bins

Note: Main specifications similar to figure 3.4 with the exception that the diagnostic standard is constructed using continuous
values.

Table C.15: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH 0.002
(0.004)

AI −0.006
(0.003)

CH −0.007
(0.003)

Control Mean 0.183
(0.007)

Pathology FE Yes
Observations 41920

Note: Main specifications similar to table C.7 with the exception thatthe diagnostic standard is constructed using continuous
values.
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Excluding Cases where the Diagnostic Standard is Uncertain

This section computes the main results using only cases where we can reject that the average
of the diagnostic standard assessments equals 0.5 at the 0.05 significance level.

Figure C.26: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that sample excludes cases where we fail to reject the null
hypothesis that the US Mount Sinai constructed diagnostic standard is equal to 0.5.

Figure C.27: Conditional treatment effect given radiologist prediction

-.3

-.2

-.1

0

.1

A
TE

 o
f A

I o
n 

de
vi

at
io

n 
fr

om
 d

ia
gn

os
tic

 st
an

da
rd

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]
Radiologist probability bins without AI

Note: Main specifications similar to figure 3.1 with the exception that sample excludes cases where we fail to reject the null
hypothesis that the US Mount Sinai constructed diagnostic standard is equal to 0.5.
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Figure C.28: Conditional treatment effect given AI prediction
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Note: Main specifications similar to figure 3.4 3.3 with the exception that sample excludes cases where we fail to reject the null
hypothesis that the US Mount Sinai constructed diagnostic standard is equal to 0.5.

Table C.16: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH −0.004
(0.005)

AI 0.007
(0.004)

CH −0.004
(0.004)

Control Mean 0.138
(0.008)

Pathology FE Yes
Observations 27703

ote: Main specifications similar to table C.7 with the exception that sample excludes cases where we fail to reject the null
hypothesis that the US Mount Sinai constructed diagnostic standard is equal to 0.5.
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Conservative Diagnostic Standard

This section computes the main results using a binary diagnostic standard with a lower,
more conservative cutoff of 0.3 instead of 0.5. That is, ωi = 1

[∑
r πr

(
ωi = 1|sE

i,r

)
/5 > 0.3

]
Figure C.29: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that binary diagnostic standard uses a lower cutoff at 0.3.

Figure C.30: Conditional treatment effect given radiologist prediction
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Note: Main specifications similar to figure 3.3 with the exception that the binary diagnostic standard uses a lower cutoff at 0.3.

211



Figure C.31: Conditional treatment effect given AI prediction
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Note: Main specifications similar to figure 3.4 with the exception that the binary diagnostic standard uses a lower cutoff at 0.3.

Table C.17: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH 0.004
(0.005)

AI −0.001
(0.004)

CH −0.012
(0.005)

Control Mean 0.248
(0.011)

Pathology FE Yes
Observations 36280

Note: Main specifications similar to table C.7 with the exception that the binary diagnostic standard uses a lower cutoff at 0.3.
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Internally Constructed Diagnostic Standard Excluding Cases with AI and Clinical History

This section computes the main results using a internally constructed diagnostic standard
which excludes cases where the radiologist received AI support or clinical history.

Figure C.32: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that the internal diagnostic standard constructed without AI
and clinical history is used.

Figure C.33: Conditional treatment effect given radiologist prediction
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Note: Main specifications similar to figure 3.3 with the exception that the internal diagnostic standard constructed without AI
and clinical history is used.
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Figure C.34: Conditional treatment effect given AI prediction
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Note: Main specifications similar to figure 3.4with the exception that the internal diagnostic standard constructed without AI
and clinical history is used.

Table C.18: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH −0.007
(0.005)

AI 0.016
(0.004)

CH 0.003
(0.004)

Control Mean 0.214
(0.009)

Pathology FE Yes
Observations 41920

Note: Main specifications similar to table C.7 with the exception that the internal diagnostic standard constructed without AI
and clinical history is used.
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Testing for Order Effects

First Treatment (only Design 1 and Design 2)

The following graphs contain only those cases from the treatment group that the subjects
encountered first. This includes the first 15 reads from design 1 and the first 5 reads from
design 2. This exercise is to check if the treatment effects for all the reads is different than
for the first reads.

Figure C.35: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that observations are from the first treatment received in
designs 1 and 2 only.

Figure C.36: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3.4 with the exception that observations are from the first treatment received in
designs 1 and 2 only.
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Table C.19: Average treatment effects

Deviation Deviation from Effort Measures
from AI Diagnostic Standard Active Time Clicks

Treatment (1) (2) (3) (4)

AI × CH −0.020 −0.015 6.29 0.97
(0.018) (0.024) (24.80) (5.56)

AI −0.040 0.011 −6.34 1.48
(0.013) (0.018 (16.06) (3.77)

CH −0.014 −0.004 25.73 2.04
(0.013) (0.017) (19.25) (4.27)

Control Mean 0.235 0.231 180.48 42.49
(0.009) (0.015) (13.39) (2.76)

Pathology FE Yes Yes - -
Observations 5100 5100 2550 2550

Note: Main specifications similar to table C.7 with the exception that observations are from the first treatment received in
designs 1 and 2 only.

Previous Exposure to AI (Design 2)

Figure C.37: Conditional treatment effect given AI prediction
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Note: This graph shows the treatment effects of the deviation from AI in the second session because of receiving AI signal in the
first session conditional on receiving AI signal in the second session (Lagged Effect). On the other hand, the contemporaneous
effects show the deviation from AI in the second session given the participants receive AI in the second session, conditional on
receiving AI signal in the second session. These graphs are valid only for design 2 as participants see the same image but in a
different information environment.
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Incentives

This section tests if incentives for assessment accuracy promote radiologists to make more
accurate assessments. We find that the incentives do not play a significant role in getting
a correct response. The effect of incentives are estimated using the following regression
specification and the results are shown in Table C.20.

Yirt =γhi
+ γINC · dINC(r)

+ γCH · dCH(t) + γCH×INC · dCH(t).dINC(r)

+ γAI · dAI(t) + γAI×INC · dAI(t).dINC(r)

+ γAI×CH · dCH(t) · dAI(t) + γAI×CH×INC · dCH(t) · dAI(t).dINC(r) + εirt

where Yirt is an outcome variable of interest for radiologist r diagnosing patient case-
pathology i and treatment t, and γhi

are pathology fixed effects. Here CH refers to cases
with access to clinical history information, AI to cases with AI predictions and INC refers
to incentivized cases.

217



Table C.20: Effect of incentives

Deviation from AI Deviation from Diagnostic Standard Effort Measures

Top-Level Pooled Top-Level Pooled Active Time Clicks
with AI with AI with AI with AI

Treatment (1) (2) (3) (4) (5) (6)

AI × CH −0.001 −0.003 −0.002 −0.002 −9.37 −1.50
(0.006) (0.002) (0.012) (0.004) (7.45) (1.73)

AI −0.033 −0.013 0.003 0.001 11.26 2.44
(0.006) (0.003) (0.009) (0.003) (5.54) (1.32)

CH −0.000 0.001 −0.012 −0.004 11.10 0.87
(0.005) (0.002) (0.008) (0.003) (5.07) (1.28)

Control Mean 0.223 0.112 0.221 0.083 156.22 39.27
(0.008) (0.003) (0.012) (0.005) (8.80) (1.94)

AI × CH × Incentives 0.010 0.006 0.004 0.002 17.08 3.04
(0.009) (0.003) (0.016) (0.006) (11.83) (2.57)

AI × Incentives −0.021 −0.007 −0.002 0.001 −12.72 −2.37
(0.008) (0.003) (0.012) (0.004) (8.06) (1.78)

CH × Incentives −0.006 −0.003 0.004 0.003 −5.95 −1.22
(0.007) (0.003) (0.013) (0.005) (8.30) (1.77)

Control Mean × Incentives 0.006 0.002 −0.000 −0.003 −3.53 −0.77
(0.009) (0.003) (0.011) (0.004) (12.10) (2.72)

Pathology FE Yes Yes Yes Yes - -
Observations 26080 169520 26080 169520 9538 9538
F-stat 1.61 1.35 .18 .59 1.08 .71
P>F-stat .17 .25 .95 .67 .37 .58

Note: This table summarizes the average treatment effects (ATE) of different information environments on the (1) absolute value of the difference between the radiologist
probability and AI algorithm probability (Columns (1) and (2)), absolute value of the difference between the radiologist probability and the diagnostic standard (Columns
(3) and (4)) and radiologists’ effort measured in terms of active time and clicks for all and the second-half images (Columns (5) and (6)). The F-statistic tests for the joint
significance of the four incentivized groups. Top-level specification includes two pathologies: airspace opacity and cardiomediastinal abnormality while Pooled AI includes all
the pathologies with AI predictions excluding abnormality and support device hardware. Only cases in design 1 and design 3 are considered. Two-way clustered standard errors
at the radiologist and patient-case level are in parenthesis.
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Controlling for sequence number and session

Figure C.38 uses the following specification that controls for the sequence number in which
the participants saw a particular case within one experiment session and the session dummies
for the different designs and experiment sessions to estimate the heterogeneous treatment
effects. There are four sessions in Design 2, whereas Design 1 and 3 have only one session.

Yirt = γhi
+ γAI · dAI(t) +

∑
g

[
γg · dg(sA

i ) + γAI×g · dAI(t).dg(sA
i )

]
+ γwirt

+ γmirt
+ εirt

where Yirt is an outcome variable of interest for radiologist r diagnosing patient case-
pathology i and treatment t, γhi

are pathology fixed effects, γwirt
are sequence number

dummies and γmirt
are session dummies. Here, g is defined as an index for an interval of the

AI signal range where 1 ≤ g ≤ 5. A case is said to be in an interval g conditional on the
signal value for the given patient-case.

Figure C.38: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard

-.1

-.05

0

.05

.1

.15

A
ve

ra
ge

 tr
ea

tm
en

t e
ff

ec
t

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]
AI prediction bins

(b) Incorrect decision
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Note: Main specifications similar to figure 3.4 with additional controls for rounds and session.
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Table C.21: Average treatment effects

Deviation Deviation Effort Measures
from AI from Diagnostic Standard Active Time Clicks

Sessions (1) (2) (3) (4)
Design 2: Session 1 −0.018 0.027 47.44 16.34

(0.010) (0.013) (10.61) (2.56)
Design 2: Session 2 −0.035 0.012 2.54 8.33

(0.010) (0.011) (9.28) (2.36)
Design 2: Session 3 −0.033 0.002 −18.90 5.37

(0.010) (0.011) (9.13) (2.46)
Design 2: Session 4 −0.037 0.004 −32.53 3.06

(0.009) (0.011) (7.07) (2.25)
Design 3 0.019 −0.008 - -

(0.009) (0.011) - -
Control Mean 0.220 0.218 158.54 39.01

(0.006) (0.010) (5.78) (1.33)
Design 2: Session 1 × AI 0.001 0.007 6.87 0.89

(0.006) (0.009) (5.80) (1.25)
Design 2: Session 2 × AI 0.007 −0.004 0.11 −0.50

(0.007) (0.009) (5.32) (1.21)
Design 2: Session 3 × AI 0.002 0.003 0.70 −0.61

(0.008) (0.009) (4.54) (1.25)
Design 2: Session 4 × AI 0.010 0.005 −0.21 0.12

(0.007) (0.011) (4.59) (1.15)
Design 3 × AI −0.006 −0.000 - -

(0.009) (0.008) - -
Control Mean × AI −0.040 0.002 4.49 1.27

(0.004) (0.005) (3.08) (0.66)
Pathology FE Yes Yes - -
Observations 41920 41920 17455 17455
F-stat .71 .29 .48 .33
P>F-stat .62 .92 .75 .86

Note: Main specifications similar to table C.7 with additional control variables for sequence number of a particular case and
the experiment session. Due to the high volume of sequence numbers, we do not show them in this table but account for them.
Design 1 session dummy is ommitted due to collinearity and is thus the control mean.
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Calibrated radiologist probability

Figure C.39: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that reported probability of the radiologists is calibrated to
the diagnostic standard.

Figure C.40: Deviation from diagnostic standard

(a) Conditional on radiologist signal
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(b) Conditional on AI signal
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Note: Main specifications similar to figure 3.3 and figure 3.4 with the exception that reported probability of the radiologists is
calibrated to the diagnostic standard and there are no separate results for ATE on incorrect decision.
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Table C.22: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH −0.001
(0.004)

AI −0.000
(0.003)

CH −0.002
(0.003)

Control Mean 0.187
(0.010)

Pathology FE Yes
Observations 41917

Note: Main specifications similar to table C.7 with the exception that reported probability of the radiologists is calibrated to
the diagnostic standard and hence only the ATE on deviation from the diagnostic standard is reported.

All Pathologies and Abnormal with AI

All Pathologies with AI

Figure C.41: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 3.1 with the exception that all patholgies with AI are considered.
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Figure C.42: Conditional treatment effect given radiologist prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3.4 with the exception that all patholgies with AI are considered.

Figure C.43: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3.4 with the exception that all patholgies with AI are considered.
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Abnormal

Figure C.44: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI

0.0 0.2 0.4 0.6 0.8 1.0
AUC

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Sh
ar

e 
of

 ra
di

ol
og

is
ts

AI (Ptile. 74)

Note: Main specifications similar to figure 3.1 with the exception that only the abnormal pathology is considered.

Figure C.45: Conditional treatment effect given radiologist prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3.4 with the exception that only the abnormal pathology is considered.
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Figure C.46: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision

-.1

-.05

0

.05

A
ve

ra
ge

 tr
ea

tm
en

t e
ff

ec
t

[0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]
AI prediction bins

Note: Main specifications similar to figure 3.4 with the exception that only the abnormal pathology is considered.
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Table C.23: Average treatment effects

Deviation from AI Deviation from Diagnostic Standard
Pooled Abnormal Pooled Pooled Abnormal
with AI with AI

Treatment (1) (2) (3) (4) (5)
AI × CH 0.000 0.010 0.000 −0.000 0.002

(0.001) (0.005) (0.001) (0.002) (0.008)
AI −0.016 −0.062 −0.001 0.001 0.013

(0.001) (0.005) (0.001) (0.001) (0.007)
CH −0.000 −0.003 −0.001 −0.002 −0.005

(0.001) (0.004) (0.001) (0.001) (0.006)
Control Mean 0.109 0.279 0.032 0.085 0.419

(0.003) (0.009) (0.002) (0.004) (0.012)
Pathology FE Yes No Yes Yes No
Observations 272480 20960 2137920 272480 20960

Note: Main specifications similar to table C.7 with the exception that only the abnormal pathology is considered.
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C.3.6 Automation Bias Appendix

Conditional Independence

Table C.24 presents evidence that human and AI signals are not conditionally independent.
To test the hypothesis of conditional independence, we regress the human report in the
treatment arm without AI assistance on the diagnostic standard, the AI score, and the in-
teraction between the diagnostic standard and the AI score. If the signals were conditionally
independent, we would observe the AI score to offer no predictive power on the human report
after conditioning on the diagnostic standard. As shown in Table C.24 we can reject this
null hypothesis.

Table C.24: Test of conditionally independent signals

Top Level with AI Pooled with AI Abnormal
Diagnostic Standard 0.318 0.265 -0.049

(0.042) (0.033) (0.078)
AI Score 0.536 0.620 0.815

(0.046) (0.035) (0.052)
Diagnostic Standard × AI -0.244 -0.217 0.205

(0.082) (0.066) (0.090)
Constant 0.089 0.044 -0.058

(0.011) (0.003) (0.039)
Observations 11420 57100 5710
R-Squared 0.260 0.301 0.316

Note: Estimates of a regression of the human report in the treatment without AI assistance on the diagnostic standard interacted
with the AI score. This table uses data from designs 2 and 3. Standard errors are two-way clustered at the radiologist and
patient case level.
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Estimating Bayesian Update Terms

Here, we describe the method we use to estimate the Bayesian benchmark π(ωi = 1|sH
ih, sA

i ).
This procedure is done separately for each pathology. We train a random forest classifier
that predicts the diagnostic standard based on features including the vector of a radiologist’s
reported probabilities in the non-AI treatment and the vector of AI predictions. Additional
features include radiologist identifiers to allow for heterogeneity in radiologists’ assessments,
an indicator equal to one if the case was read with clinical history, and summaries of the
patient clinical history. We estimate this quantity for various parameterizations of sH

ih and sA
i

described in Section 3.5. These are used in the model testing exercise to understand if radi-
ologists account for the joint distribution of signals when forming their posterior beliefs. The
hyperparameters of the model are tuned using grouped cross-validation where observations
were grouped by patient id to avoid overfitting with five folds. We impose monotonicity
constraints on the model to impose that π(ωi = 1|sH

ih, sA
i ) is monotonically increasing in

all probability inputs. When the model includes clinical history, we provide a summarized
patient’s clinical record with their sex, weight, temperature, pulse, age, and the number of
available and flagged labs. We mean impute these variables when the radiologist does not
have access to the clinical history and include an indicator equal to one if the radiologist had
access to the clinical history as an additional feature. Below we summarize the performance
of these models and the relative value of increasing the dimension of sH

ih and sA
i .
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Table C.25: Summary of Bayesian models

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Airspace Opacity Accuracy 0.88 0.91 0.88 0.89 0.90 0.90 0.89 0.90 0.89 0.89 0.91 0.90
AUC 0.89 0.96 0.91 0.92 0.96 0.96 0.94 0.96 0.93 0.93 0.96 0.96

Cardiomediastinal Abnorm. Accuracy 0.90 0.92 0.90 0.91 0.93 0.92 0.92 0.92 0.91 0.91 0.93 0.93
AUC 0.90 0.96 0.91 0.93 0.96 0.96 0.94 0.96 0.94 0.94 0.96 0.96

Abnormal Accuracy 0.88 0.91 0.88 0.89 0.91 0.91 0.90 0.91 0.90 0.90 0.92 0.91
AUC 0.91 0.96 0.91 0.93 0.96 0.96 0.95 0.96 0.94 0.94 0.96 0.96

Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sE ✓ ✓ ✓ ✓
Clinical History sE ✓ ✓ ✓ ✓ ✓ ✓

Note: This table summarizes the models used to estimate the Bayesian benchmark. Each column corresponds to a random forest classification tree with varying signal structures.
The rows Focal sA, Other sA, Focal sH , Other sH , and Clinical History sH indicate what features are included in the tree. Focal sA corresponds to the focal pathology’s
AI score, Other sA corresponds to vector of AI scores for all pathologies, Focal (Other) sH includes the radiologist’s report without AI assistance on the focal pathology (all
pathologies), and Clinical History sH contains summaries of the patient’s clinical history when available to the radiologist.
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Model Selection on Additional Pathology Groups

Here, we present the model selection results for the remaining pre-registered pathology
groups.
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Table C.26: Model selection: top level with AI

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.27 0.12 0.33 0.29 0.12 0.12 0.19 0.12 0.21 0.23 0.12 0.12

(0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.02) (0.02)
Own information bias (d) 1.11 1.05 1.09 1.08 1.05 1.05 1.07 1.05 1.07 1.08 1.05 1.05

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Constant 0.39 0.25 0.39 0.38 0.25 0.25 0.32 0.25 0.32 0.35 0.25 0.25

(0.04) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.03)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 13.08 7.68 11.63 15.4 7.59 8.85 7.53 6.25 8.55 9.34 6.72 7.72
MMSC-BIC -29.11 -9.19 -26.34 -18.36 -9.29 -8.03 -13.57 -10.63 -12.55 -11.76 -10.16 -9.16
Selected moments 13 7 12 11 7 7 8 7 8 8 7 7
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420
R-Squared 0.49 0.42 0.48 0.48 0.42 0.42 0.45 0.42 0.45 0.46 0.42 0.42

Note: This table presents results of the model selection exercise as described in Table 3.2, including the full set of models that were included in the selection procedure.
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Table C.27: Model selection: pooled with AI

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.17 0.09 0.19 0.14 0.10 0.10 0.12 0.10 0.14 0.14 0.10 0.10

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)
Own information bias (d) 1.12 1.10 1.12 1.12 1.10 1.10 1.11 1.10 1.11 1.11 1.10 1.10

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Constant 0.37 0.31 0.38 0.36 0.31 0.30 0.33 0.31 0.34 0.35 0.31 0.30

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 11.16 6.44 12.05 4.11 3.62 4.53 5.8 5.22 5.32 4.77 4.43 4.68
MMSC-BIC -14.16 -10.44 -13.26 -12.77 -13.25 -12.35 -11.07 -11.65 -11.56 -12.11 -12.45 -12.2
Selected moments 9 7 9 7 7 7 7 7 7 7 7 7
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100
R-Squared 0.46 0.42 0.44 0.43 0.42 0.42 0.43 0.42 0.43 0.43 0.42 0.42

Note: This table presents results of the model selection exercise as described in Table 3.2, though this table only includes all pathologies with AI assistance.
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Table C.28: Model selection: abnormal

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.09 0.06 0.08 0.09 0.06 0.07 0.05 0.07 0.05 0.07 0.06 0.07

(0.03) (0.02) (0.03) (0.03) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.02) (0.02)
Own information bias (d) 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.08 1.07 1.07 1.07 1.08

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Constant 0.36 0.30 0.33 0.37 0.30 0.31 0.26 0.31 0.26 0.32 0.30 0.31

(0.07) (0.06) (0.07) (0.08) (0.06) (0.06) (0.06) (0.06) (0.07) (0.07) (0.06) (0.06)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 11.99 11.02 12.87 11.1 11.02 10.95 14.45 11.03 14.48 12.64 11.04 11.05
MMSC-BIC -25.98 -26.95 -25.1 -26.88 -26.95 -27.03 -23.52 -26.94 -23.49 -25.33 -26.93 -26.92
Selected moments 12 12 12 12 12 12 12 12 12 12 12 12
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710
R-Squared 0.35 0.32 0.32 0.34 0.32 0.32 0.30 0.32 0.30 0.32 0.32 0.32

Note: This table presents results of the model selection exercise as described in Table 3.2, though this table only includes Abnormal.
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Model Selection Without Adjusting for Measurement Error

This section presents the results of the model selection exercise not accounting for measure-
ment error in the human signal. In these analyses, the instruments are constructed using
the radiologist’s report on the case in the treatment arm without AI assistance. Note that
some time elapses between the reads, so the radiologist likely observes a different draw of
sE introducing measurement error into the right-hand side variables of equation 3.7. This
is why the preferred method uses instruments constructed using a leave-one-out average of
reports for the case. Table C.29 presents results for top-level pathologies with AI, Table C.30
presents results for all pathologies with AI, and Table C.31 presents results for abnormal.
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Table C.29: Model selection: top level with AI without accounting for measurement error

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.50 0.36 0.58 0.51 0.38 0.36 0.42 0.38 0.48 0.50 0.37 0.37

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)
Own information bias (d) 1.00 0.90 0.95 0.94 0.90 0.90 0.93 0.90 0.92 0.94 0.90 0.90

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Constant 0.34 0.13 0.30 0.28 0.14 0.12 0.21 0.14 0.20 0.28 0.13 0.13

(0.05) (0.04) (0.04) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 0.61 8.05 0.0 0.0 0.0 8.55 0.04 4.09 0.0 0.08 6.33 5.89
MMSC-BIC -3.61 -8.82 0.0 0.0 0.0 -8.33 -4.18 -12.79 0.0 -4.14 -10.55 -6.77
Selected moments 4 7 3 3 3 7 4 7 3 4 7 6
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420
R-Squared 0.58 0.55 0.56 0.56 0.55 0.55 0.56 0.55 0.56 0.57 0.55 0.55

Note: This table presents results of the model selection exercise as described in Table 3.2 for top-level pathologies with AI assistance without accounting for measurement error
in the radiologist reports.
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Table C.30: Model selection: pooled with AI without accounting for measurement error

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.46 0.35 0.46 0.44 0.36 0.35 0.39 0.36 0.41 0.43 0.36 0.36

(0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01)
Own information bias (d) 1.01 0.94 0.97 0.98 0.94 0.94 0.96 0.94 0.95 0.97 0.95 0.95

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Constant 0.21 0.00 0.10 0.13 0.02 0.02 0.06 0.01 0.04 0.11 0.03 0.03

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 12.06 0.0 0.0 3.42 8.92 10.23 0.0 8.95 0.0 0.0 4.39 7.06
MMSC-BIC -13.26 0.0 0.0 -0.8 -7.96 -10.86 0.0 -7.93 0.0 0.0 -16.71 -14.04
Selected moments 9 3 3 4 7 8 3 7 3 3 8 8
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100
R-Squared 0.58 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Note: This table presents results of the model selection exercise as described in Table 3.2 for all pathologies with AI assistance without accounting for measurement error in
the radiologist reports.
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Table C.31: Model selection: abnormal without accounting for measurement error

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.48 0.36 0.43 0.43 0.36 0.36 0.35 0.37 0.36 0.39 0.36 0.37

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Own information bias (d) 0.94 0.86 0.84 0.88 0.87 0.86 0.84 0.88 0.81 0.85 0.88 0.87

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Constant 1.23 1.01 1.12 1.19 1.01 1.01 0.98 1.04 0.99 1.11 1.03 1.02

(0.07) (0.06) (0.08) (0.07) (0.06) (0.06) (0.06) (0.06) (0.07) (0.07) (0.06) (0.06)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 4.85 8.9 0.0 3.33 7.86 12.55 0.0 10.65 0.0 2.17 8.2 10.85
MMSC-BIC -7.81 -7.97 0.0 -9.33 -13.24 -12.77 0.0 -14.66 0.0 -2.05 -12.9 -14.46
Selected moments 6 7 3 6 8 9 3 9 3 4 8 9
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710
R-Squared 0.56 0.54 0.53 0.54 0.54 0.54 0.54 0.54 0.52 0.53 0.54 0.54

Note: This table presents results of the model selection exercise as described in Table 3.2 for abnormal without accounting for measurement error in the radiologist reports.
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Linearity of the Update Model

To assess the appropriateness of linear relationship in the model of radiologist updating
with AI we estimate non-parametric versions of the model and plot the empirical analog
of Figure 3.7 along with the joint distribution of signals. To do so, we estimate a boosted
tree that estimates the radiologist’s reported ph(ωi=1|sA

ih,sH
ih)

ph(ωi=0|sA
ih

,sH
ih) as a non-parametric function of a

constant, the update term, and the reported probability without AI assistance. We impose
monotonicity constraints on the update term and the reported probability without AI. We
then plot the frontier in which radiologists are indifferent between following up on the case-
pathology and not following up. We compare this frontier to the cutoff frontier of a Bayesian
decision maker, the radiologist without AI assistance, and the radiologist with AI assistance
under the linear model.

Figure C.47: Empirical analog of figure 3.7

(a) Airspace opacity
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(b) Cardiomediastinal Abnormality

Note: For the two top-level pathologies with AI assistance, we plot estimates of the indifference frontier where radiologists are
indifferent between following up on a patient-case and not following up on a patient-case for a Bayesian decision maker, the
linear model estimated in equation 3.7, a non-parametric version of equation 3.7, and the human only without AI assistance.
In addition, we plot the joint distribution of the signals log-likelihoods.

Individual Heterogeneity

Here we show the distribution of individual estimates of equation (3.7). Each estimate
contains sampling error, as each radiologist is only reading a subset of cases. Therefore, the
unadjusted distribution of individual-level estimates is overdispersed as it is a convolution
of the true individual-level parameters and the sampling noise. We adjust for this over-
dispersion using a Bayesian hierarchical model, where we model the individual parameter
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vector θh as follows.
θh ∼N (µ, Σ)

µ ∼N (0, 100I)

Σ =diag (τ) Ωdiag (τ)

τk ∼Cauchy (0, 2.5)

Ω ∼LKJCorr (10)

We sample from the posterior of this model and plot the marginal distribution of the
posterior means of θh below.

Figure C.48: Individual heterogeneity in b and d
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(b) Pooled with AI
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Note: Marginal distributions of individual b and d estimates by radiologist for top level pathologies with AI and all pathologies
with AI.

C.3.7 Preference Estimation

In the experiment we elicit both probability assessment and treatment decisions, allowing us
to identify the relative costs of false positives and false negatives the radiologists are using.
Recall that radiologist h chooses to treat or follow-up on pathology p in patient case i under
treatment t if ahitp = 1 where ahitp is given by

ahitp = 1
[

phitp

1 − phitp

− chp
rel + εhitp > 0

]

where phitp is the radiologist’s probability assessment, chp
rel is the relative cost of false positives

and false negatives for radiologist h and pathology p, and εhitp captures unobserved preference
heterogeneity. If εhitp follows a Logistic distribution, we can estimate chp

rel through a logistic
regression. We impose a low-dimensional structure on chp

rel to improve statistical precision
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and estimate the following logistic regression

log P (ahitp = 1)
1 − P (ahitp = 1) = β0 + β log phitp

1 − phitp

+ αp + γh (C.1)

where αp are pathology fixed effects and γh are radiologist fixed effects. The relative costs
of false positives to false negatives for radiologist h and pathology p can then be found as
chp

rel = exp
[
−β0+γh+αp

β

]
. For each pathology, we winsorize radiologists’ relative costs at the

5th and 95th percentile. The results of this exercise are presented in Table C.32.

Table C.32: Preference estimates

Mean Std Min 25% 50% 75% Max
All 3.696 5.278 0.243 0.663 1.513 3.913 20.884
Top (with AI) 1.164 1.522 0.155 0.271 0.489 1.263 5.849
AI 2.139 3.058 0.193 0.383 0.891 2.179 12.287
Abnormal 2.223 2.952 0.331 0.519 0.966 2.379 11.667

Note: Distribution of chp
rel

for each of the four pre-registered pathology groups calculated from the estimates of equation C.1.
The distribution of chp

rel
is winsorized for each pathology at the 5th and 95th percentile.

C.3.8 Delegation Results for Cardiomediastinal Abnormality

Here we show the results of Section 3.6 for the other top-level pathology with AI assistance,
Cardiomediastinal Abnormality. Table C.33 shows the decision loss and time cost for various
delegation strategies, Figure C.49 plots the possibilities frontier between human time and
decision loss, and Figure C.50 plots the share of cases assigned to each modality under the
optimal delegation strategy for a range of values of the social cost of a false negative.
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Table C.33: Cardiomediastinal Abnormality delegation results

Time Cost Pr(Fp) Pr(Fn) Decision Loss
Minutes Dollars

Bayesian 2.8 11.4 3.2 6.3 8.4
AI Only 0.0 0.0 4.4 7.6 10.5
Human Only 2.8 11.2 20.5 3.6 17.2
Human + AI 2.8 11.4 18.4 3.2 15.5
Min. Decision Loss 0.5 2.1 3.3 6.4 10.5

Note: This table shows the time taken and decision loss of various delegation strategies for Cardiomediastinal Abnormality.
The average time per case is shown in both minutes and dollars using a wage of $4 per minute. The table also reports the share
of false positives (P r(F P )), the share of false negatives (P r(F N)), and decision loss calculated as P r(F N)+crelP r(F P ) where
crel =0.66 – the median crel for Cardiomediastinal Abnormality. The Bayesian row shows results for the Bayesian decision
maker. AI Only shows results for full delegation to the AI. Human Only shows results if humans read cases on their own
without AI assistance. Human + AI shows results if humans read all cases with access to the AI. Min. Decision Loss shows
results for the optimal delegation strategy that minimizes decision loss and highlights the potential improvement in decisions
from delegating to the AI. This analysis excludes data from design 3 because of learning effects in this setup.

Figure C.49: Loss-time frontier: Cardiomediastinal Abnormality
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Note: This graph shows how human radiologists and the AI perform relative to the optimal delegation system on the frontier of

the cost of human time versus decision loss. This analysis excludes data from design 3 because of learning effects in this setup.
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Figure C.50: Cardiomediastinal Abnormality modality shares
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(b) Humans
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Note: The graphs show the share of cases decided by each modality (humans, AI, humans+AI) conditional on the cost of a

false negative in dollars, denoted m in the text, for airspace opacity. Panel (a) focuses on a Bayesian decision maker. Panel

(b) focuses on a human decision-maker with decisions and time-taken as in our experiment. This analysis excludes data from

design 3 because of learning effects in this setup.

242



References

Alberto Abadie and Matias D Cattaneo. Econometric methods for program evaluation.
Annual Review of Economics, 10:465–503, 2018.

Jason Abaluck, Leila Agha, Chris Kabrhel, Ali Raja, and Arjun Venkatesh. The determinants
of productivity in medical testing: Intensity and allocation of care. Am. Econ. Rev., 106
(12):3730–3764, December 2016.

Daron Acemoglu and Simon Johnson. Power and progress: Our Thousand-Year struggle
over technology and prosperity. Public Affairs, New York, 2023.

Amanda Y Agan, Diag Davenport, Jens Ludwig, and Sendhil Mullainathan. Automating
automaticity: How the context of human choice affects the extent of algorithmic bias.
Working Paper 30981, National Bureau of Economic Research, February 2023. URL
http://www.nber.org/papers/w30981.

Nikhil Agarwal, Alex Moehring, Pranav Rajpurkar, and Tobias Salz. Combining human
expertise with artificial intelligence: Experimental evidence from radiology. Technical
report, National Bureau of Economic Research, 2023.

Ajay Agrawal, Joshua Gans, and Avi Goldfarb. Prediction Machines: The Simple Economics
of Artificial Intelligence. Harvard Business Press, April 2018.

Ajay Agrawal, Joshua S Gans, and Avi Goldfarb. Artificial intelligence: The ambiguous labor
market impact of automating prediction. J. Econ. Perspect., 33(2):31–50, May 2019.

Wajeeha Ahmad, Ananya Sen, Charles Eesley, and Erik Brynjolfsson. The role of advertis-
ers and platforms in monetizing misinformation: Descriptive and experimental evidence.
Technical report, Working Paper, 2023.

Jong Seok Ahn, Shadi Ebrahimian, Shaunagh McDermott, Sanghyup Lee, Laura Naccarato,
John F Di Capua, Markus Y Wu, Eric W Zhang, Victorine Muse, Benjamin Miller, Farid
Sabzalipour, Bernardo C Bizzo, Keith J Dreyer, Parisa Kaviani, Subba R Digumarthy,
and Mannudeep K Kalra. Association of artificial Intelligence–Aided chest radiograph
interpretation with reader performance and efficiency. JAMA Netw Open, 5(8):e2229289–
e2229289, August 2022.

243

http://www.nber.org/papers/w30981


Eugenio Alberdi, Lorenzo Strigini, Andrey A Povyakalo, and Peter Ayton. Why are people’s
decisions sometimes worse with computer support? In Lecture Notes in Computer Sci-
ence, Lecture notes in computer science, pages 18–31. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

Hunt Allcott and Matthew Gentzkow. Social media and fake news in the 2016 election.
Journal of Economic Perspectives, 31(2):211–236, 2017.

Hunt Allcott, Luca Braghieri, Sarah Eichmeyer, and Matthew Gentzkow. The Welfare
Effects of Social Media. American Economic Review, 110, 2020. ISSN 0002-8282.
doi:10.1257/aer.20190658.

Hunt Allcott, Matthew Gentzkow, and Lena Song. Digital addiction. American Economic
Review, 112(7):2424–63, 2022.

Ashton Anderson, Lucas Maystre, Ian Anderson, Rishabh Mehrotra, and Mounia Lalmas.
Algorithmic effects on the diversity of consumption on spotify. In Proceedings of The Web
Conference 2020, pages 2155–2165, 2020.

Donald W K Andrews and Biao Lu. Consistent model and moment selection procedures for
GMM estimation with application to dynamic panel data models. J. Econom., 101(1):
123–164, March 2001.

Victoria Angelova, Will Dobbie, and Crystal Yang. Algorithmic recommendations and hu-
man discretion. 2022.

Guy Aridor, Duarte Gonçalves, Daniel Kluver, Ruoyan Kong, and Joseph Konstan. The
economics of recommender systems: Evidence from a field experiment on movielens. arXiv
preprint arXiv:2211.14219, 2022.

Eytan Bakshy, Solomon Messing, and Lada A Adamic. Exposure to ideologically diverse
news and opinion on facebook. Science, 348(6239):1130–1132, 2015a.

Eytan Bakshy, Solomon Messing, and Lada A. Adamic. Exposure to ideologically diverse
news and opinion on Facebook. Science, 348(6239):1130–1132, June 2015b. ISSN 0036-
8075, 1095-9203. doi:10.1126/science.aaa1160.

Gagan Bansal, Besmira Nushi, Ece Kamar, Eric Horvitz, and Daniel S Weld. Is the most
accurate AI the best teammate? optimizing AI for teamwork. AAAI, 35(13):11405–11414,
May 2021.

Nicholas Barberis, Andrei Shleifer, and Robert Vishny. A model of investor sentiment. J.
financ. econ., 49(3):307–343, September 1998.

Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn.

244

https://doi.org/10.1257/aer.20190658
https://doi.org/10.1126/science.aaa1160


The pushshift reddit dataset. In Proceedings of the international AAAI conference on web
and social media, volume 14, pages 830–839, 2020.

Dan Benjamin, Aaron Bodoh-Creed, and Matthew Rabin. Base-rate neglect: Foundations
and implications. 2019.

Daniel J Benjamin. Chapter 2 - errors in probabilistic reasoning and judgment biases. In
Handbook of Behavioral Economics: Applications and Foundations 1, volume 2, pages
69–186. January 2019.

Dirk Bergemann and Stephen Morris. Information design: A unified perspective. J. Econ.
Lit., 57(1):44–95, March 2019.

Ron Berman and Zsolt Katona. Curation algorithms and filter bubbles in social networks.
Marketing Science, 39(2):296–316, 2020.

Steven Berry, James Levinsohn, and Ariel Pakes. Automobile prices in market equilibrium.
Econometrica: Journal of the Econometric Society, pages 841–890, 1995.

Steven T Berry. Estimating discrete-choice models of product differentiation. The RAND
Journal of Economics, pages 242–262, 1994.

David Blackwell. Equivalent comparisons of experiments. Ann. Math. Stat., 24(2):265–272,
1953.

Erik Brynjolfsson and Tom Mitchell. What can machine learning do? workforce implications.
358(6370):1530–, 2017.

Erik Brynjolfsson, Daniel Rock, and Chad Syverson. Artificial intelligence and the modern
productivity paradox: A clash of expectations and statistics. November 2017.

Ceren Budak, Sharad Goel, and Justin M Rao. Fair and balanced? quantifying media bias
through crowdsourced content analysis. Public Opinion Quarterly, 80(S1):250–271, 2016.

Kate Bundorf, Maria Polyakova, and Ming Tai-Seale. How do humans interact with algo-
rithms? experimental evidence from health insurance. June 2020.

Moira Burke, Cameron Marlow, and Thomas Lento. Feed me: motivating newcomer contri-
bution in social network sites. In Proceedings of the SIGCHI conference on human factors
in computing systems, pages 945–954, 2009.

Gordon Burtch, Yili Hong, Ravi Bapna, and Vladas Griskevicius. Stimulating online reviews
by combining financial incentives and social norms. Management Science, 64(5):2065–2082,
2018.

Gordon Burtch, Qinglai He, Yili Hong, and Dokyun Lee. How do peer awards motivate
creative content? experimental evidence from reddit. Management Science, 2021.

245



Luis Cabral and Lingfang Li. A dollar for your thoughts: Feedback-conditional rebates on
ebay. Management Science, 61(9):2052–2063, 2015.

Sebastian Calonico, Matias D Cattaneo, and Rocio Titiunik. Robust nonparametric confi-
dence intervals for regression-discontinuity designs. Econometrica, 82(6):2295–2326, 2014.

Matias D. Cattaneo, Nicolás Idrobo, and Rocío Titiunik. A Practical Introduction
to Regression Discontinuity Designs: Foundations. Elements in Quantitative and
Computational Methods for the Social Sciences. Cambridge University Press, 2020.
doi:10.1017/9781108684606.

Matias D. Cattaneo, Nicolas Idrobo, and Rocio Titiunik. A practical introduction to regres-
sion discontinuity designs: Extensions, 2023.

David C Chan, Matthew Gentzkow, and Chuan Yu. Selection with variation in diagnostic
skill: Evidence from radiologists. Q. J. Econ., 137(2):729–783, May 2022.

Amitabh Chandra and Douglas O Staiger. Identifying sources of inefficiency in healthcare.
Q. J. Econ., 135(2):785–843, May 2020.

Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. How algorithmic con-
founding in recommendation systems increases homogeneity and decreases utility. In Pro-
ceedings of the 12th ACM conference on recommender systems, pages 224–232, 2018.

Daniel L Chen, Martin Schonger, and Chris Wickens. oTree—An open-source platform for
laboratory, online, and field experiments. Journal of Behavioral and Experimental Finance,
9:88–97, March 2016.

Guangying Chen, Tat Chan, Dennis Zhang, Senmao Liu, and Yuxiang Wu. The effects of
diversity in algorithmic recommendations on digital content consumption: A field experi-
ment. Available at SSRN 4365121, 2023.

Yan Chen, F Maxwell Harper, Joseph Konstan, and Sherry Xin Li. Social comparisons
and contributions to online communities: A field experiment on movielens. American
Economic Review, 100(4):1358–98, 2010.

Jörg Claussen, Christian Peukert, and Ananya Sen. The editor vs. the algorithm: Returns
to data and externalities in online news. Working Paper, 2019.

Jörg Claussen, Christian Peukert, and Ananya Sen. The editor and the algorithm: Returns
to data and externalities in online news. Available at SSRN 3479854, 2021.

Emily F Conant, Alicia Y Toledano, Senthil Periaswamy, Sergei V Fotin, Jonathan Go,
Justin E Boatsman, and Jeffrey W Hoffmeister. Improving accuracy and efficiency with
concurrent use of artificial intelligence for digital breast tomosynthesis. Radiol Artif Intell,
1(4):e180096, July 2019.

246

https://doi.org/10.1017/9781108684606


John J Conlon, Malavika Mani, Gautam Rao, Matthew W Ridley, and Frank Schilbach. Not
learning from others. August 2022.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recom-
mendations. In Proceedings of the 10th ACM conference on recommender systems, pages
191–198, 2016.

Janet Currie and W Bentley MacLeod. Diagnosing expertise: Human capital, decision
making, and performance among physicians. J. Labor Econ., 35(1), 2017.

Berkeley J Dietvorst, Joseph P Simmons, and Cade Massey. Algorithm aversion: people
erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen., 144(1):114–
126, February 2015.

Berkeley J Dietvorst, Joseph P Simmons, and Cade Massey. Overcoming algorithm aversion:
People will use imperfect algorithms if they can (even slightly) modify them. Manage. Sci.,
64(3):1155–1170, March 2018.

Yingying Dong and Michal Kolesár. When can we ignore measurement error in the running
variable? arXiv preprint arXiv:2111.07388, 2021.

Robert Donnelly, Ayush Kanodia, and Ilya Morozov. Welfare effects of personalized rankings.
Marketing Science, 2023.

Jack Dorsey. They simply try to put the tweets that you’re *most likely* to engage with at
the top... https://twitter.com/jack/status/1525662031440924672, May 2022. Tweet.

Erwan Dujeancourt, Marcel Garz, Anindya Ghose, Johannes Hagen, Juliane Lischka, Mat-
tias Nordin, Jonna Rickardsson, and Marco Schwarz. The effects of algorithmic content
selection on user engagement with news on twitter. Technical report, Working Paper,
2021.

Dean Eckles. Algorithmic transparency and assessing effects of algorithmic ranking. 2022.

Dean Eckles, René F Kizilcec, and Eytan Bakshy. Estimating peer effects in networks with
peer encouragement designs. Proceedings of the National Academy of Sciences, 113(27):
7316–7322, 2016.

Benjamin Enke and Florian Zimmermann. Correlation neglect in belief formation. The
Review of Economic Studies, 86(1):313–332, 2019.

Ed Felten, Manav Raj, and Robert Seamans. How will language modelers like ChatGPT
affect occupations and industries? March 2023.

Edward W Felten, Manav Raj, and Robert Seamans. The occupational impact of artificial
intelligence: Labor, skills, and polarization. September 2019.

247

https://twitter.com/jack/status/1525662031440924672


Daniel Fleder and Kartik Hosanagar. Blockbuster culture’s next rise or fall: The impact of
recommender systems on sales diversity. Management science, 55(5):697–712, 2009.

Riccardo Fogliato, Shreya Chappidi, Matthew Lungren, Paul Fisher, Diane Wilson, Michael
Fitzke, Mark Parkinson, Eric Horvitz, Kori Inkpen, and Besmira Nushi. Who goes first?
influences of Human-AI workflow on decision making in clinical imaging. In Proceedings
of the 2022 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’22,
pages 1362–1374. Association for Computing Machinery, June 2022.

Morgan R Frank, David Autor, James E Bessen, Erik Brynjolfsson, Manuel Cebrian, David J
Deming, Maryann Feldman, Matthew Groh, José Lobo, Esteban Moro, Dashun Wang,
Hyejin Youn, and Iyad Rahwan. Toward understanding the impact of artificial intelligence
on labor. Proc. Natl. Acad. Sci. U. S. A., 116(14):6531–6539, April 2019.

Devin Gaffney and J Nathan Matias. Caveat emptor, computational social science: Large-
scale missing data in a widely-published reddit corpus. PloS one, 13(7):e0200162, 2018.

Jana Gallus. Fostering public good contributions with symbolic awards: A large-scale natural
field experiment at wikipedia. Management Science, 63(12):3999–4015, 2017.

Susanne Gaube, Harini Suresh, Martina Raue, Eva Lermer, Timo Koch, Matthias Hude-
cek, Alun D Ackery, Samir C Grover, Joseph F Coughlin, Dieter Frey, Felipe Kitamura,
Marzyeh Ghassemi, and Errol Colak. Who should do as AI say? only non-task expert
physicians benefit from correct explainable AI advice. June 2022.

Susanne Gaube, Harini Suresh, Martina Raue, Eva Lermer, Timo K Koch, Matthias F C
Hudecek, Alun D Ackery, Samir C Grover, Joseph F Coughlin, Dieter Frey, Felipe C
Kitamura, Marzyeh Ghassemi, and Errol Colak. Non-task expert physicians benefit from
correct explainable AI advice when reviewing x-rays. Sci. Rep., 13(1):1383, January 2023.

Paul J Gertler, Sebastian Martinez, Patrick Premand, Laura B Rawlings, and Christel MJ
Vermeersch. Impact evaluation in practice. World Bank Publications, 2016.

Anindya Ghose, Panagiotis G Ipeirotis, and Beibei Li. Examining the impact of ranking
on consumer behavior and search engine revenue. Management Science, 60(7):1632–1654,
2014.

Paulo B Goes, Chenhui Guo, and Mingfeng Lin. Do incentive hierarchies induce user effort?
evidence from an online knowledge exchange. Information Systems Research, 27(3):497–
516, 2016.

Avi Goldfarb, Bledi Taska, and Florenta Teodoridis. Could machine learning be a general
purpose technology? a comparison of emerging technologies using data from online job
postings. Res. Policy, 52(1):104653, January 2023.

248



David M Grether. Bayes rule as a descriptive model: The representativeness heuristic. Q.
J. Econ., 95(3):537–557, November 1980.

David M Grether. Testing bayes rule and the representativeness heuristic: Some experimental
evidence. J. Econ. Behav. Organ., 17(1):31–57, January 1992.

Dale Griffin and Amos Tversky. The weighing of evidence and the determinants of confidence.
Cogn. Psychol., 24(3):411–435, July 1992.

Grimon, Marie-Pascale, and Christopher Mills. The impact of algorithmic tools on child
protection: Evidence from a randomized controlled trial. 2022.

Nir Grinberg, Kenneth Joseph, Lisa Friedland, Briony Swire-Thompson, and David Lazer.
Fake news on twitter during the 2016 us presidential election. Science, 363(6425):374–378,
2019.

Jonathan Gruber, Benjamin R Handel, Samuel H Kina, and Jonathan T Kolstad. Managing
intelligence: Skilled experts and decision support in markets for complex products. 2021.

Bin Gu, Prabhudev Konana, Balaji Rajagopalan, and Hsuan-Wei Michelle Chen. Com-
petition among virtual communities and user valuation: The case of investing-related
communities. Information systems research, 18(1):68–85, 2007.

Andrew Guess, Jonathan Nagler, and Joshua Tucker. Less than you think: Prevalence and
predictors of fake news dissemination on facebook. Science Advances, 5(1):eaau4586, 2019.

Andrew M Guess, Brendan Nyhan, and Jason Reifler. Exposure to untrustworthy websites
in the 2016 us election. Nature Human Behaviour, 4(5):472–480, 2020.

Andrew M Guess, Neil Malhotra, Jennifer Pan, Pablo Barberá, Hunt Allcott, Taylor Brown,
Adriana Crespo-Tenorio, Drew Dimmery, Deen Freelon, Matthew Gentzkow, et al. How
do social media feed algorithms affect attitudes and behavior in an election campaign?
Science, 381(6656):398–404, 2023.

H Benjamin Harvey and Vrushab Gowda. How the FDA regulates AI. Acad. Radiol., 27(1):
58–61, January 2020.

Frances Haugen. Statement of frances haugen. United States Senate Committee on Com-
merce, Science and Transportation, 2021.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal
of statistics, pages 65–70, 1979.

David Holtz, Ben Carterette, Praveen Chandar, Zahra Nazari, Henriette Cramer, and Sinan
Aral. The engagement-diversity connection: Evidence from a field experiment on spotify.
In Proceedings of the 21st ACM Conference on Economics and Computation, pages 75–76,
2020.

249



Kartik Hosanagar, Daniel Fleder, Dokyun Lee, and Andreas Buja. Will the global village
fracture into tribes? recommender systems and their effects on consumer fragmentation.
Management Science, 60(4):805–823, 2014.

Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H Schwartz, and Hugo J W L
Aerts. Artificial intelligence in radiology. Nat. Rev. Cancer, 18(8):500–510, August 2018.

Tanjim Hossain and Ryo Okui. The binarized scoring rule. Rev. Econ. Stud., 80(3):984–1001,
February 2013.

Tiffany Hsu and Gillian Friedman. Facebook boycott: Starbucks and diageo to pull ads. The
New York Times, 2020. URL https://www.nytimes.com/2020/06/26/business/media/
Facebook-advertising-boycott.html.

Tiffany Hsu and Eleanor Lutz. More than 1,000 companies boycotted facebook. did it
work? The New York Times, 2020. URL https://www.nytimes.com/2020/08/01/
business/media/facebook-boycott.html.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages 263–272.
Ieee, 2008.

Ferenc Huszár, Sofia Ira Ktena, Conor O’Brien, Luca Belli, Andrew Schlaikjer, and Moritz
Hardt. Algorithmic amplification of politics on twitter. arXiv preprint arXiv:2110.11010,
2021.

Ferenc Huszár, Sofia Ira Ktena, Conor O’Brien, Luca Belli, Andrew Schlaikjer, and Moritz
Hardt. Algorithmic amplification of politics on twitter. Proceedings of the National
Academy of Sciences, 119(1):e2025334119, 2022.

Stefano M Iacus, Gary King, and Giuseppe Porro. Causal inference without balance checking:
Coarsened exact matching. Political analysis, 20(1):1–24, 2012.

Kosuke Imai, Zhichao Jiang, James Greiner, Ryan Halen, and Sooahn Shin. Experimental
evaluation of Algorithm-Assisted human Decision-Making: Application to pretrial public
safety assessment. December 2020.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute,
Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins,
David A Mong, Safwan S Halabi, Jesse K Sandberg, Ricky Jones, David B Larson, Cur-
tis P Langlotz, Bhavik N Patel, Matthew P Lungren, and Andrew Y Ng. CheXpert: A
large chest radiograph dataset with uncertainty labels and expert comparison. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33, pages 590–597, July
2019.

250

https://www.nytimes.com/2020/06/26/business/media/Facebook-advertising-boycott.html
https://www.nytimes.com/2020/06/26/business/media/Facebook-advertising-boycott.html
https://www.nytimes.com/2020/08/01/business/media/facebook-boycott.html
https://www.nytimes.com/2020/08/01/business/media/facebook-boycott.html


Alistair E W Johnson, Tom J Pollard, Lu Shen, Li-Wei H Lehman, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark.
MIMIC-III, a freely accessible critical care database. Sci Data, 3:160035, May 2016.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Daniel Kahneman and Amos Tversky. On the psychology of prediction. Psychol. Rev., 80
(4):237–251, July 1973.

Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. Am. Econ. Rev., 101(6):
2590–2615, October 2011.

Simon Kemp. Digital 2020 reports. "wearesocial.com/digital-2020, 2020.

Warut Khern-am nuai, Karthik Kannan, and Hossein Ghasemkhani. Extrinsic versus intrin-
sic rewards for contributing reviews in an online platform. Information Systems Research,
29(4):871–892, 2018.

Hyo Eun Kim, Hak Hee Kim, Boo Kyung Han, Ki Hwan Kim, Kyunghwa Han, Hyeonseob
Nam, Eun Hye Lee, and Eun Kyung Kim. Changes in cancer detection and False-Positive
recall in mammography using artificial intelligence: a retrospective, multireader study.
The Lancet Digital Health, 2(3):e138–e148, March 2020.

Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ziad Obermeyer. Prediction policy
problems. Am. Econ. Rev., 105(5):491–495, May 2015.

Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mul-
lainathan. Human decisions and machine predictions. Q. J. Econ., 133(1):237–293, August
2017.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. The challenge of understanding
what users want: Inconsistent preferences and engagement optimization. arXiv preprint
arXiv:2202.11776, 2022.

Adam DI Kramer, Jamie E Guillory, and Jeffrey T Hancock. Experimental evidence of
massive-scale emotional contagion through social networks. Proceedings of the National
Academy of Sciences, 111(24):8788–8790, 2014.

Barnett S Kramer, Christine D Berg, Denise R Aberle, and Philip C Prorok. Lung cancer
screening with low-dose helical CT: results from the national lung screening trial (NLST).
J. Med. Screen., 18(3):109–111, 2011.

Akos Lada, Meihong Wang, and Tak Yan. How machine learning powers facebook’s news
feed ranking algorithm. Facebook Engineering, 2021.

Vivian Lai, Chacha Chen, Q Vera Liao, Alison Smith-Renner, and Chenhao Tan. Towards
a science of Human-AI decision making: A survey of empirical studies. December 2021.

251



Curtis P Langlotz. Will artificial intelligence replace radiologists? Radiology: Artificial
Intelligence, 1(3):e190058, May 2019.

David MJ Lazer, Matthew A Baum, Yochai Benkler, Adam J Berinsky, Kelly M Greenhill,
Filippo Menczer, Miriam J Metzger, Brendan Nyhan, Gordon Pennycook, David Roth-
schild, et al. The science of fake news. Science, 359(6380):1094–1096, 2018.

Dokyun Lee and Kartik Hosanagar. How do recommender systems affect sales diversity?
a cross-category investigation via randomized field experiment. Information Systems Re-
search, 30(1):239–259, 2019.

Ro’ee Levy. Social media, news consumption, and polarization: Evidence from a field exper-
iment. American Economic Review, 111(3):831–70, 2021.

Kung-Yee Liang and Scott L Zeger. Longitudinal data analysis using generalized linear
models. Biometrika, 73(1):13–22, 1986.

Hause Lin, Jana Lasser, Stephan Lewandowsky, Rocky Cole, Andrew Gully, David Rand,
and Gordon Pennycook. High level of agreement across different news domain quality
ratings. 2022.

John DC Little. A proof for the queuing formula: L= λ w. Operations research, 9(3):383–387,
1961.

Xiaoxuan Liu, Livia Faes, Aditya U Kale, Siegfried K Wagner, Dun Jack Fu, Alice Bruynseels,
Thushika Mahendiran, Gabriella Moraes, Mohith Shamdas, Christoph Kern, Joseph R
Ledsam, Martin K Schmid, Konstantinos Balaskas, Eric J Topol, Lucas M Bachmann,
Pearse A Keane, and Alastair K Denniston. A comparison of deep learning performance
against health-care professionals in detecting diseases from medical imaging: a systematic
review and meta-analysis. The Lancet Digital Health, 1(6):e271–e297, October 2019.

Robert Mccluskey, A Enshaei, and B A S Hasan. Finding the Ground-Truth from multiple
labellers: Why parameters of the task matter. ArXiv, 2021.

Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an
expert. In Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 7076–7087. PMLR, 2020.

Lev Muchnik, Sinan Aral, and Sean J Taylor. Social influence bias: A randomized experi-
ment. Science, 341(6146):647–651, 2013.

S Mullainathan and Z Obermeyer. A machine learning approach to low-value health care:
wasted tests, missed heart attacks and mis-predictions. 2019.

Sendhil Mullainathan and Ziad Obermeyer. Does machine learning automate moral hazard
and error? American Economic Review, 107(5):476–480, 2017.

252



Simha Mummalaneni, Hema Yoganarasimhan, and Varad V Pathak. Producer and consumer
engagement on social media platforms. Available at SSRN 4173537, 2022.

Arvind Narayanan. Understanding social media recommendation algorithms. Knight
First Amendment Institute, 2023. URL https://knightcolumbia.org/content/
understanding-social-media-recommendation-algorithms.

Sridhar Narayanan and Kirthi Kalyanam. Position effects in search advertising and their
moderators: A regression discontinuity approach. Marketing Science, 34(3):388–407, 2015.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen. Bertweet: A pre-trained language
model for english tweets. arXiv preprint arXiv:2005.10200, 2020.

Justin G Norden and Nirav R Shah. What AI in health care can learn from the long road
to autonomous vehicles. NEJM Catalyst Innovations in Care Delivery, 3(2), 2022.

Shakked Noy and Whitney Zhang. Experimental evidence on the productivity effects of
generative artificial intelligence. March 2023.

Ziad Obermeyer and Ezekiel J Emanuel. Predicting the future — big data, machine learning,
and clinical medicine. N. Engl. J. Med., 375(13):1216–1219, September 2016.

Gal Oestreicher-Singer and Arun Sundararajan. Recommendation networks and the long
tail of electronic commerce. MIS Quarterly, pages 65–83, 2012.

Gal Oestreicher-Singer and Lior Zalmanson. Content or community? a digital business
strategy for content providers in the social age. MIS quarterly, pages 591–616, 2013.

Jeff Orlowski. The social dilemma. Netflix, 2020. URL https://www.thesocialdilemma.com/.

Serena Pacilè, January Lopez, Pauline Chone, Thomas Bertinotti, Jean Marie Grouin, and
Pierre Fillard. Improving breast cancer detection accuracy of mammography with the
concurrent use of an artificial intelligence tool. Radiol Artif Intell, 2(6):e190208, November
2020.

David M Panicek and Hedvig Hricak. How sure are you, doctor? a standardized lexicon
to describe the radiologist’s level of certainty. AJR Am. J. Roentgenol., 207(1):2–3, July
2016.

Eli Pariser. The filter bubble: How the new personalized web is changing what we read and
how we think. Penguin, 2011.

Allison Park, Chris Chute, Pranav Rajpurkar, Joe Lou, Robyn L Ball, Katie Shpanskaya,
Rashad Jabarkheel, Lily H Kim, Emily McKenna, Joe Tseng, Jason Ni, Fidaa Wishah,
Fred Wittber, David S Hong, Thomas J Wilson, Safwan Halabi, Sanjay Basu, Bhavik N
Patel, Matthew P Lungren, Andrew Y Ng, and Kristen W Yeom. Deep Learning-Assisted

253

https://knightcolumbia.org/content/understanding-social-media-recommendation-algorithms
https://knightcolumbia.org/content/understanding-social-media-recommendation-algorithms
https://www.thesocialdilemma.com/


diagnosis of cerebral aneurysms using the HeadXNet model. JAMA network open, 2(6):
e195600, June 2019.

Bhavik N Patel, Louis Rosenberg, Gregg Willcox, David Baltaxe, Mimi Lyons, Jeremy Irvin,
Pranav Rajpurkar, Timothy Amrhein, Rajan Gupta, Safwan Halabi, Curtis Langlotz,
Edward Lo, Joseph Mammarappallil, A J Mariano, Geoffrey Riley, Jayne Seekins, Luyao
Shen, Evan Zucker, and Matthew Lungren. Human–Machine partnership with artificial
intelligence for chest radiograph diagnosis. npj Digital Medicine, 2(1):111, December 2019.

Rajan Patel. Google expands partnership with reddit, 2024. URL https://blog.google/
inside-google/company-announcements/expanded-reddit-partnership/.

Gordon Pennycook and David G Rand. The psychology of fake news. Trends in cognitive
sciences, 25(5):388–402, 2021.

Juan Manuel Pérez, Juan Carlos Giudici, and Franco Luque. pysentimiento: A python
toolkit for sentiment analysis and socialnlp tasks. arXiv preprint arXiv:2106.09462, 2021.

M Rabin. Inference by believers in the law of small numbers. Q. J. Econ., 2002.

M Rabin and D Vayanos. The gambler’s and hot-hand fallacies: Theory and applications.
Rev. Econ. Stud., 2010.

Matthew Rabin. Incorporating limited rationality into economics. J. Econ. Lit., 51(2):
528–543, June 2013.

Maithra Raghu, Katy Blumer, Greg Corrado, Jon Kleinberg, Ziad Obermeyer, and Sendhil
Mullainathan. The algorithmic automation problem: Prediction, triage, and human effort.
arXiv, March 2019.

Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan,
Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, Matthew P Lungren, and
Andrew Y Ng. CheXNet: Radiologist-Level pneumonia detection on chest X-Rays with
deep learning. (1711.05225), December 2017.

Pranav Rajpurkar, Jeremy Irvin, Robyn L Ball, Kaylie Zhu, Brandon Yang, Hershel Mehta,
Tony Duan, Daisy Ding, Aarti Bagul, Curtis P Langlotz, Bhavik N Patel, Kristen W Yeom,
Katie Shpanskaya, Francis G Blankenberg, Jayne Seekins, Timothy J Amrhein, David A
Mong, Safwan S Halabi, Evan J Zucker, Andrew Y Ng, and Matthew P Lungren. Deep
learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt
algorithm to practicing radiologists. PLoS Med., 15(11):e1002686, November 2018.

Pranav Rajpurkar, Chloe O’Connell, Amit Schechter, Nishit Asnani, Jason Li, Amirhos-
sein Kiani, Robyn L Ball, Marc Mendelson, Gary Maartens, Daniël J van Hoving, Rulan
Griesel, Andrew Y Ng, Tom H Boyles, and Matthew P Lungren. CheXaid: Deep learning

254

https://blog.google/inside-google/company-announcements/expanded-reddit-partnership/
https://blog.google/inside-google/company-announcements/expanded-reddit-partnership/


assistance for physician diagnosis of tuberculosis using chest X-Rays in patients with HIV.
npj Digital Medicine, 3:115, December 2020.

Pranav Rajpurkar, Emma Chen, Oishi Banerjee, and Eric J Topol. AI in health and medicine.
Nat. Med., 28(1):31–38, January 2022.

Ashesh Rambachan. Identifying prediction mistakes in observational data. 2021.

reddit.com. Reddit, 11 2017. URL https://github.com/reddit-archive/reddit.

Michael Restivo and Arnout Van De Rijt. Experimental study of informal rewards in peer
production. PloS one, 7(3):e34358, 2012.

Carlo Reverberi, Tommaso Rigon, Aldo Solari, Cesare Hassan, Paolo Cherubini, and Andrea
Cherubini. Experimental evidence of effective human–AI collaboration in medical decision-
making. Sci. Rep., 12(1):1–10, September 2022.

Stephen A Rhoades. The herfindahl-hirschman index. Fed. Res. Bull., 79:188, 1993.

Michael Allan Ribers and Hannes Ullrich. Machine predictions and human decisions with
variation in payoff and skills: the case of antibiotic prescribing. 2022.

Ronald E Robertson, Shan Jiang, Kenneth Joseph, Lisa Friedland, David Lazer, and Christo
Wilson. Auditing partisan audience bias within google search. Proceedings of the ACM on
Human-Computer Interaction, 2(CSCW):1–22, 2018.

Andrew B Rosenkrantz, Tarek N Hanna, Scott D Steenburg, Mary Jo Tarrant, Robert S
Pyatt, and Eric B Friedberg. The current state of teleradiology across the united states: A
national survey of radiologists’ habits, attitudes, and perceptions on teleradiology practice.
J. Am. Coll. Radiol., 16(12):1677–1687, December 2019.

Jarrel C Y Seah, Cyril H M Tang, Quinlan D Buchlak, Xavier G Holt, Jeffrey B Ward-
man, Anuar Aimoldin, Nazanin Esmaili, Hassan Ahmad, Hung Pham, John F Lambert,
Ben Hachey, Stephen J F Hogg, Benjamin P Johnston, Christine Bennett, Luke Oakden-
Rayner, Peter Brotchie, and Catherine M Jones. Effect of a comprehensive deep-learning
model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, mul-
tireader multicase study. Lancet Digit Health, 3(8):e496–e506, August 2021.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system tech-
nical journal, 27(3):379–423, 1948.

Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. Get another label? improv-
ing data quality and data mining using multiple, noisy labelers. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’08, pages 614–622, New York, NY, USA, August 2008. Association for Computing
Machinery.

255

https://github.com/reddit-archive/reddit


Yongsik Sim, Myung Jin Chung, Elmar Kotter, Sehyo Yune, Myeongchan Kim, Synho Do,
Kyunghwa Han, Hanmyoung Kim, Seungwook Yang, Dong-Jae Lee, and Byoung Wook
Choi. Deep convolutional neural network–based software improves radiologist detection of
malignant lung nodules on chest radiographs. Radiology, 294(1):199–209, January 2020.

SimilarWeb. Top social media networks websites ranking in march 2024, 2024.
URL https://www.similarweb.com/top-websites/computers-electronics-and-technology/
social-networks-and-online-communities/.

Christopher A Sims. Implications of rational inattention. J. Monet. Econ., 50(3):665–690,
April 2003.

Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pareek, Andrew Y Ng, and Matthew P
Lungren. CheXbert: Combining automatic labelers and expert annotations for accurate
radiology report labeling using BERT. April 2020.

Michael Spence and Bruce Owen. Television programming, monopolistic competition, and
welfare. The Quarterly Journal of Economics, 91(1):103–126, 1977.

Megan Stevenson and Jennifer L Doleac. Algorithmic risk assessment in the hands of humans.
December 2019.

Cass Sunstein. R. 2007. republic. com 2.0, 2003.

Yasasvi Tadavarthi, Brianna Vey, Elizabeth Krupinski, Adam Prater, Judy Gichoya, Nabile
Safdar, and Hari Trivedi. The state of radiology AI: Considerations for purchase decisions
and current market offerings. Radiol Artif Intell, 2(6):e200004, November 2020.

Matt Taddy. The technological elements of artificial intelligence. February 2018.

Luke Thorburn, Priyanjana Bengani, and Jonathan Stray. How platform recom-
menders work. Medium, 2022. URL https://medium.com/understanding-recommenders/
how-platform-recommenders-work-15e260d9a15a.

Philipp Tschandl, Christoph Rinner, Zoe Apalla, Giuseppe Argenziano, Noel Codella, Allan
Halpern, Monika Janda, Aimilios Lallas, Caterina Longo, Josep Malvehy, John Paoli,
Susana Puig, Cliff Rosendahl, H Peter Soyer, Iris Zalaudek, and Harald Kittler. Human–
computer collaboration for skin cancer recognition. Nat. Med., 26(8):1229–1234, June
2020.

A Tversky and D Kahneman. Judgment under uncertainty: Heuristics and biases. Science,
185(4157):1124–1131, September 1974.

Twitter. Twitter’s recommendation algorithm. Twitter Engineering Blog,
2023. URL https://blog.twitter.com/engineering/en_us/topics/open-source/2023/
twitter-recommendation-algorithm.

256

https://www.similarweb.com/top-websites/computers-electronics-and-technology/social-networks-and-online-communities/
https://www.similarweb.com/top-websites/computers-electronics-and-technology/social-networks-and-online-communities/
https://medium.com/understanding-recommenders/how-platform-recommenders-work-15e260d9a15a
https://medium.com/understanding-recommenders/how-platform-recommenders-work-15e260d9a15a
https://blog.twitter.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm
https://blog.twitter.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm


Raluca M Ursu. The power of rankings: Quantifying the effect of rankings on online consumer
search and purchase decisions. Marketing Science, 37(4):530–552, 2018.

Marshall Van Alstyne and Erik Brynjolfsson. Global village or cyber-balkans? modeling and
measuring the integration of electronic communities. Management Science, 51(6):851–868,
2005.

Soroush Vosoughi, Deb Roy, and Sinan Aral. The spread of true and false news online.
science, 359(6380):1146–1151, 2018a.

Soroush Vosoughi, Deb Roy, and Sinan Aral. The Spread of True and False News Online.
Science, 359(6380):1146–1151, 2018b.

Thomas S Wallsten and Adele Diederich. Understanding pooled subjective probability esti-
mates. Math. Soc. Sci., 41(1):1–18, January 2001.

Yuyan Wang, Long Tao, and Xing Zhang. Recommending for a three-sided food delivery
marketplace: A multi-objective hierarchical approach. Technical report, Working Paper,
2023.

Mark R. Warner. Warner presses meta on facebook’s role in inciting violence and spreading
misinformation around the world. Press Release, 2023.

Michael Webb. The impact of artificial intelligence on the labor market. 158713(November),
2019.

Stefan Wojcik and Adam Hughes. Sizing up twitter users, April 2019. URL https://www.
pewresearch.org/internet/2019/04/24/sizing-up-twitter-users/.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system:
A survey and new perspectives. ACM computing surveys (CSUR), 52(1):1–38, 2019.

S Kevin Zhou, Hayit Greenspan, Christos Davatzikos, James S Duncan, Bram Van Ginneken,
Anant Madabhushi, Jerry L Prince, Daniel Rueckert, and Ronald M Summers. A review
of deep learning in medical imaging: Imaging traits, technology trends, case studies with
progress highlights, and future promises. Proc. IEEE, 109(5):820–838, May 2021.

257

https://www.pewresearch.org/internet/2019/04/24/sizing-up-twitter-users/
https://www.pewresearch.org/internet/2019/04/24/sizing-up-twitter-users/

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Personalized Rankings and User Engagement: An Empirical Evaluation of the Reddit News Feed
	1.1 Introduction
	1.2 Background and Data
	1.3 Estimating Position Effects
	1.4 Model of Individual Engagement Decisions
	1.5 Counterfactual Ranking Algorithms
	1.6 Discussion and Conclusion

	2 News Feeds and User Engagement: Evidence from the Reddit News Tab
	2.1 Introduction
	2.2 Related Literature
	2.3 Setting
	2.4 Data
	2.5 Results 
	2.6 Heterogeneity and Robustness
	2.7 Discussion and Conclusion

	3 Combining Human Expertise with Artificial Intelligence: Experimental Evidence from Radiology
	3.1 Introduction
	3.2 Conceptual Model
	3.3 Setting and Experiment
	3.4 Estimated Treatment Effects
	3.5 Automation Bias/Neglect and Signal-Dependence Neglect
	3.6 Designing Human-AI Collaboration
	3.7 Conclusion

	A Appendix: Personalized Rankings and User Engagement: An Empirical Evaluation of the Reddit News Feed
	A.1 Data Appendix
	A.2 Reduced Form Appendix
	A.3 Choice Model Appendix
	A.4 A Recommender System Approach to Personalization

	B Appendix: News Feeds and User Engagement: Evidence from the Reddit News Tab
	B.1 Matching Procedure
	B.2 Data on Domain Political Slant 
	B.3 Measures of Information Diversity
	B.4 Testing for Common Pre-Trends
	B.5 Robustness Checks
	B.6 Effect on Intensive Margin of Engagement
	B.7 Analyses Without CEM Weights

	C Appendix: Combining Human Expertise with Artificial Intelligence: Experimental Evidence from Radiology
	C.1 Appendix of Proofs
	C.2 Appendix of Experimental Interface and Instructions
	C.3 Data Appendix

	References

