
Advances in Symbolic Regression: From Generalized Formulation
to Density Estimation and Inverse Problem

by

Tony Tohme

B.Eng., American University of Beirut, 2018
S.M., Massachusetts Institute of Technology, 2020

Submitted to the Department of Mechanical Engineering
and the Center for Computational Science & Engineering
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Tony Tohme. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Tony Tohme
Department of Mechanical Engineering
Center for Computational Science & Engineering
May 3, 2024

Certified by: Kamal Youcef-Toumi
Professor of Mechanical Engineering
Thesis Supervisor

Accepted by: Nicolas G. Hadjiconstantinou
Professor of Mechanical Engineering
Graduate Officer, Department of Mechanical Engineering
Co-Director, Center for Computational Science & Engineering

Accepted by: Youssef M. Marzouk
Professor of Aeronautics and Astronautics
Co-Director, Center for Computational Science & Engineering



2



Advances in Symbolic Regression: From Generalized Formulation
to Density Estimation and Inverse Problem

by

Tony Tohme

Submitted to the Department of Mechanical Engineering
and the Center for Computational Science & Engineering

on May 3, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

In this thesis, we explore the field of Symbolic Regression (SR), a middle ground be-
tween simple linear regression and complex inscrutable black box regressors such as neural
networks. In essence, SR searches the space of mathematical expressions to find a model
that best captures the relationship between inputs and outputs of a given dataset. While
SR has not gained mainstream popularity due to its computational intricacy and reliance
on heuristics, its potential for generating explicit, concise, and interpretable mathematical
models deserves further attention. This work presents a series of advancements in Sym-
bolic Regression, extending its applicability and demonstrating its potential across diverse
domains and problem settings.

Initially, we introduce GSR, a Generalized Symbolic Regression method that redefines the
traditional SR optimization problem to discover analytical mappings from the input space to
a transformed output space. The proposed GSR approach achieves promising performance
compared to existing SR methods across established benchmark datasets, as well as a more
challenging dataset introduced in this study, called SymSet.

Next, we delve into the task of recovering underlying partial differential equations (PDEs)
from data through the use of the adjoint method. We begin by considering a family of
parameterized PDEs encompassing linear, nonlinear, and spatial derivative candidate terms.
We then formulate a PDE-constrained optimization problem aimed at minimizing the error
of the PDE solution from data, and elegantly derive the corresponding adjoint equations.
We showcase the efficacy of the proposed approach in selecting the appropriate candidate
terms, thereby discovering the governing PDEs from data. We also compare its performance
with a commonly employed method for PDE discovery.

Furthermore, we introduce MESSY Estimation, a Maximum-Entropy based Stochastic
and Symbolic densitY estimation method. The proposed approach infers probability den-
sity functions symbolically from samples by leveraging the Maximum Entropy Distribution
(MED) principle. We uncover three key contributions: (i) the Lagrange multipliers, in-
herent in the MED ansatz, can be efficiently computed by simply solving a linear system
of equations, (ii) the density recovery task is enhanced through matching more unconven-
tional low-order (symbolic) moments, rather than necessarily matching higher-order (raw)
moments, and (iii) the proposed symbolic density estimation framework leads to increased
interpretability and better conditioning.

3



Finally, we introduce ISR, an Invertible Symbolic Regression (ISR) approach, which
bridges the concepts of SR and invertible maps. Specifically, ISR seamlessly combines the
principles of Invertible Neural Networks (INNs) and Equation Learner (EQL), a neural
network-based symbolic architecture for function learning. Demonstrating its versatility,
ISR also serves as a symbolic normalizing flow for density estimation tasks. Additionally,
we showcase its applicability in solving inverse problems, including a benchmark inverse
kinematics problem, and notably, a geoacoustic inversion problem in oceanography aimed at
inferring posterior distributions of underlying seabed parameters from acoustic signals.

The diverse findings of this thesis not only contribute to advancing the field of Symbolic
Regression, but also underscore its versatility and potential across various domains. A shift
to explicit symbolic models, as demonstrated in this thesis, could unveil hidden patterns
within the plethora of datasets available today, offering new insights and directions in the
evolving field of machine learning and data analysis.

Thesis supervisor: Kamal Youcef-Toumi
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

In the era of big data, the importance of computing, artificial intelligence (AI), machine
learning (ML), and data analysis cannot be overstated. These technologies have revolution-
ized numerous fields, driving advancements in science, engineering, medicine, and beyond.
AI and ML, in particular, have seen tremendous progress, with cutting-edge developments
such as transformers and generative AI models pushing the boundaries of what machines
can achieve. Transformers, introduced in [1], have become the foundation for many state-
of-the-art models, including BERT [2], GPT [3], and T5 [4], due to their ability to handle
long-range dependencies in data and perform exceptionally well on tasks such as natural
language processing. Generative AI, epitomized by models like DALL-E [5] and ChatGPT
[6], has demonstrated remarkable capabilities in generating human-like text and images,
showcasing the power and versatility of modern AI systems.

Despite these advancements, a critical challenge persists: the interpretability of machine
learning models. As ML models become more complex, their decision-making processes often
become opaque, leading to the notorious “black box” problem. This lack of transparency
can hinder trust and accountability, particularly in high-stakes domains such as healthcare,
finance, and autonomous systems. Consequently, there is a growing demand for models that
are not only accurate but also interpretable. Interpretability allows for greater confidence in
model predictions, supporting more reliable and ethical deployment of AI systems.

This is where Symbolic Regression (SR) finds its niche. SR stands out by generating
explicit mathematical expressions that describe the relationships within data, offering a
level of interpretability that is often absent in traditional ML models. SR searches the
space of mathematical expressions to find models that best capture the underlying patterns
in the data, thus providing clear and concise representations of these relationships. This
characteristic makes SR particularly valuable in scientific research, where the ability to
derive interpretable models aligns with the core objective of uncovering fundamental laws
and principles.
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Figure 1.1: Complexity spectrum of regression models.

1.1 Background and Overview

Machine learning (ML) fundamentally revolves around the concept of learning. Learning
problems in ML are typically categorized into three main types: (i) supervised learning,
which involves training a model to map input examples to a target variable (e.g. regres-
sion and classification), (ii) unsupervised learning, which focuses on identifying patterns and
relationships in datasets without labeled responses (e.g. clustering and dimensionality re-
duction), and (iii) reinforcement learning, where an agent interacts with an environment and
learns to make decisions, using feedback from its actions to maximize a cumulative reward.
In this thesis, we focus on the regression task.

Regression models range from simple linear regression to complex, often inscrutable black
box neural networks (see Figure 1.1). While linear regression offers simplicity and inter-
pretability, it often lacks the flexibility to model complex nonlinear relationships. On the
other hand, neural networks, with their capacity to capture intricate patterns, often sacrifice
transparency. This thesis explores Symbolic Regression (SR), a methodology that represents
a middle ground between these two extremes and which has not received commensurate
scholarly attention. In essence, SR searches the space of mathematical expressions to find
a model that best captures the relationship between inputs and outputs of a given dataset.
Unlike traditional regression models that fit data to predefined model structures, SR discov-
ers the underlying mathematical structures themselves, offering unparalleled insight into the
intrinsic relationships within the data. This pursuit aligns with the core scientific endeavor
of formulating theories and laws that explain observable phenomena.

Historically, the concept of SR is rooted in the advent of genetic algorithms and genetic
programming in the late 20th century, where the idea was to simulate the process of natural
evolution to solve optimization problems, including the discovery of mathematical expres-
sions. This marked a significant departure from conventional model-fitting practices, opening
new avenues for automated scientific discovery. Over the years, SR has been instrumental
in identifying complex relationships in fields as diverse as physics, where it has been used to
derive new formulations of physical laws, and biology, where it has helped model the intricate
dynamics of biological systems. The historical journey of SR from a novel computational
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technique to a powerful tool for scientific discovery underscores its transformative potential
in unraveling the complexities of the natural world.

In recent years, the methodology underpinning Symbolic Regression has witnessed a
remarkable diversification. Traditionally anchored in genetic algorithms and programming,
the field has seen an infusion of novel computational approaches that have enriched the
SR landscape. Techniques such as mixed integer optimization, neural network integration,
and the application of transformer models have opened new pathways for SR applications.
This broadening of techniques has enhanced the capability of SR to operate within more
complex and computationally demanding environments, expanding its utility, and enabling
researchers to tackle a broader array of problems with increased sophistication and efficacy.

While SR has not gained mainstream popularity due to its computational intricacy and
reliance on heuristics, its potential for generating explicit, concise, and interpretable math-
ematical models deserves further attention. This work presents a series of advancements
in Symbolic Regression, extending its applicability and demonstrating its potential across
diverse domains and problem settings.

1.2 Contributions

Traditionally, SR has been predominantly utilized as a tool for fitting data to mathematical
models, thereby facilitating regression tasks across various scientific and engineering disci-
plines. However, the inherent potential of SR extends far beyond mere curve fitting. In this
thesis, we aim to broaden the horizons of SR by applying it to a variety of domains, including
density estimation, inverse problems, and the discovery of partial differential equations.

In this section, we outline the key contributions of each chapter.

Generalized Symbolic Regression.
In Chapter 2, we present GSR, a Generalized Symbolic Regression approach, by modifying
the conventional SR optimization problem formulation, while keeping the main SR objective
intact. In GSR, we infer mathematical relationships between the independent variables and
some transformation of the target variable. We constrain our search space to a weighted
sum of basis functions, and propose a genetic programming approach with a matrix-based
encoding scheme. We show that our GSR method is competitive with strong SR benchmark
methods, achieving promising experimental performance on the well-known SR benchmark
problem sets. Finally, we highlight the strengths of GSR by introducing SymSet, a new SR
benchmark set which is more challenging relative to the existing benchmarks.

Data-Driven Discovery of Partial Differential Equations via the Adjoint Method.
In Chapter 3, we present an adjoint-based method for discovering the underlying governing
partial differential equations (PDEs) given data. The idea is to consider a parameterized
PDE in a general form, and formulate a PDE-constrained optimization problem aimed at
minimizing the error of the PDE solution from data. Using variational calculus, we obtain an
evolution equation for the Lagrange multipliers (adjoint equations) allowing us to compute
the gradient of the objective function with respect to the parameters of PDEs given data
in a straightforward manner. In particular, we consider a family of parameterized PDEs
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encompassing linear, nonlinear, and spatial derivative candidate terms, and elegantly de-
rive the corresponding adjoint equations. We show the efficacy of the proposed approach in
identifying the form of the PDE up to machine accuracy, enabling the accurate discovery
of PDEs from data. We also compare its performance with the famous PDE Functional
Identification of Nonlinear Dynamics method known as PDE-FIND [7], on both smooth and
noisy data. Even though the proposed adjoint method relies on forward/backward solvers, it
outperforms PDE-FIND for large data sets thanks to the analytic expressions for gradients
of the cost function with respect to each PDE parameter.

Maximum-Entropy based Stochastic and Symbolic densitY Estimation.
In Chapter 4, we introduce MESSY Estimation, a Maximum-Entropy based Stochastic and
Symbolic densitY Estimation method. The proposed approach recovers probability density
functions symbolically from samples using moments of a Gradient flow in which the ansatz
serves as the driving force. In particular, we construct a gradient-based drift-diffusion process
that connects samples of the unknown distribution function to a guess symbolic expression.
We then show that when the guess distribution has the maximum entropy form, the pa-
rameters of this distribution can be found efficiently by solving a linear system of equations
constructed using the moments of the provided samples. Furthermore, we use Symbolic
regression to explore the space of smooth functions and find optimal basis functions for the
exponent of the maximum entropy functional leading to good conditioning. The cost of the
proposed method for each set of selected basis functions is linear with the number of samples
and quadratic with the number of basis functions. However, the underlying acceptance/re-
jection procedure for finding optimal and well-conditioned bases adds to the computational
cost. We validate the proposed MESSY estimation method against other benchmark meth-
ods for the case of a bi-modal and a discontinuous density, as well as a density at the limit
of physical realizability. We find that the addition of a symbolic search for basis functions
improves the accuracy of the estimation at a reasonable additional computational cost. Our
results suggest that the proposed method outperforms existing density recovery methods in
the limit of a small to moderate number of samples by providing a low-bias and tractable
symbolic description of the unknown density at a reasonable computational cost.

ISR: Invertible Symbolic Regression.
In Chapter 5, we introduce an Invertible Symbolic Regression (ISR) method. It is a machine
learning technique that generates analytical relationships between inputs and outputs of a
given dataset via invertible maps (or architectures). The proposed ISR method naturally
combines the principles of Invertible Neural Networks (INNs) and Equation Learner (EQL), a
neural network-based symbolic architecture for function learning. In particular, we transform
the affine coupling blocks of INNs into a symbolic framework, resulting in an end-to-end
differentiable symbolic invertible architecture that allows for efficient gradient-based learning.
The proposed ISR framework also relies on sparsity promoting regularization, allowing the
discovery of concise and interpretable invertible expressions. We show that ISR can serve
as a (symbolic) normalizing flow for density estimation tasks. Furthermore, we highlight its
practical applicability in solving inverse problems, including a benchmark inverse kinematics
problem, and notably, a geoacoustic inversion problem in oceanography aimed at inferring
posterior distributions of underlying seabed parameters from acoustic signals.
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1.3 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 presents a Generalized Symbolic Regression (GSR) method that redefines the
traditional SR optimization problem to discover analytical mappings from the input space
to a transformed output space. The material presented in this chapter is based on joint work
with Dehong Liu and Kamal Youcef-Toumi [8].

Chapter 3 proposes an adjoint-based method for discovering governing laws/equations from
data. The material presented in this chapter is based on joint work with Mohsen Sadr and
Kamal Youcef-Toumi [9].

Chapter 4 introduces a Maximum-Entropy based Stochastic and Symbolic densitY (MESSY)
Estimation method. The proposed approach infers probability density functions symbolically
from samples by leveraging the Maximum Entropy Distribution (MED) principle. The mate-
rial presented in this chapter is based on joint work with Mohsen Sadr, Kamal Youcef-Toumi,
and Nicolas G. Hadjiconstantinou [10].

Chapter 5 introduces ISR, an Invertible Symbolic Regression method, which bridges the
concepts of SR and invertible maps to produce invertible analytical models. The material
presented in this chapter is based on joint work with Mohammad Javad Khojasteh, Mohsen
Sadr, Florian Meyer, and Kamal Youcef-Toumi [11].

Each chapter is fairly self-contained, allowing readers to navigate the chapters independently.
To maintain conciseness within the main body of the text, supplementary materials related
to each chapter are provided in the appendices.

Finally, Chapter 6 summarizes the results of this work, and discusses some ideas for future
research.
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Chapter 2

GSR: A Generalized Symbolic
Regression Approach

In this chapter, we present GSR, a Generalized Symbolic Regression approach, by modifying
the conventional SR optimization problem formulation, while keeping the main SR objective
intact. In GSR, we infer mathematical relationships between the independent variables and
some transformation of the target variable. We constrain our search space to a weighted
sum of basis functions, and propose a genetic programming approach with a matrix-based
encoding scheme. We show that our GSR method is competitive with strong SR benchmark
methods, achieving promising experimental performance on the well-known SR benchmark
problem sets. Finally, we highlight the strengths of GSR by introducing SymSet, a new SR
benchmark set which is more challenging relative to the existing benchmarks.

2.1 Introduction

Symbolic regression (SR) aims to find a mathematical expression that best describes the
relationship between the independent variables and the target (or dependent) variable based
on a given dataset. By inspecting the resulting expression, we may be able to identify
nontrivial relations and/or physical laws which can provide more insight into the system
represented by the given dataset. SR has gained tremendous interest and attention from
researchers over the years for many reasons. First, many rules and laws in natural sciences
(e.g. in physical and dynamical systems [12], [13]) are accurately represented by simple
analytical equations (which can be explicit [14] or implicit [15], [16]). Second, in contrast
to neural networks that involve complex input-output mapping, and hence are often treated
as black boxes which are difficult to interpret, SR is very concise and interpretable. Finally,
symbolic equations may outperform neural networks in out-of-distribution generalization
(especially for physical problems) [17].

SR does not require a priori specification of a model. Conventional regression methods
such as least squares [18], likelihood-based [19]–[21], and Bayesian regression techniques [22]–
[26] use fixed-form parametric models and optimize for the model parameters only. SR seeks
to find both a model structure and its associated parameters simultaneously.
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Related Work. The SR problem has been widely studied in the literature [27], [28].
SR can be a very challenging problem and is thought to be NP-hard [29]–[32]. It can
also be computationally expensive as the search space is very wide (or complex) containing
expressions of any size and length [33], this issue being exacerbated with the dimension of the
input feature vector (i.e. the number of independent variables). Several approaches have been
suggested over the years. Most of the methods use genetic (or evolutionary) algorithms [12],
[34]–[36]. Some more recent methods are Bayesian in nature [37], some are physics-inspired
[30], and others use divide-and-conquer [38] and block building algorithms [39]–[41]. Lately,
researchers proposed using machine learning algorithms and neural networks to solve the
SR problem [31], [42]–[57]. Furthermore, some works suggested constraining the search
space of functions to generalized linear space [58] (e.g. Fast Function eXtraction [59], Elite
Bases Regression [60], etc.) which proved to accelerate the convergence of genetic algorithms
significantly (at the expense of sometimes losing the generality of the solution [38]). Most of
the SR methods use a tree-based implementation, where analytical functions are represented
(or encoded) by expression trees. Some approaches suggested encoding functions as an
integer string [61], others proposed representing them using matrices [33], [60], [62], [63]. As
we will discuss in later sections, our implementation relies on matrices to encode expressions.

Our Contribution. We present Generalized Symbolic Regression (GSR), by modifying
the conventional SR optimization problem formulation, while keeping the main SR objective
intact. In GSR, we identify mathematical relationships between the independent variables
(or features) and some transformation of the target variable. In other words, we learn the
mapping from the feature space to a transformed target space (where the transformation
applied to the target variable is also learned during this process). To find the appropriate
functions (or transformations) to be applied to the features as well as to the targets, we
constrain our search space to a weighted sum of basis functions. In contrast to conventional
tree-based genetic programming approaches, we propose a matrix-based encoding scheme to
represent the basis functions (and hence the full mathematical expressions). We run a series
of numerical experiments on the well-known SR benchmark datasets and show that our pro-
posed method is competitive with many strong SR methods. Finally, we introduce SymSet,
a new SR benchmark problem set that is more challenging than existing benchmarks.

2.2 Notation and Problem Formulation

Consider the following regression task. We are given a dataset D = {xi, yi}Ni=1 consisting
of N i.i.d. paired examples, where xi ∈ Rd denotes the ith d-dimensional input feature
vector and yi ∈ R represents the corresponding continuous target variable. The goal of SR
is to search the space of all possible mathematical expressions S defined by a set of given
mathematical functions (e.g., exp, ln, sin, cos) and arithmetic operations (e.g., +, −, ×, ÷),
along with the following optimization problem:

f ∗ = argmin
f∈S

N∑
i=1

[
f(xi)− yi

]2 (2.1)

where f is the model function and f ∗ is the optimal model.
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2.3 Generalized Symbolic Regression (GSR)

In this section, we introduce our Generalized Symbolic Regression (GSR) approach. We
present its problem formulation, and discuss its solution and implementation.

2.3.1 Modifying the goal of symbolic regression

As highlighted in Section 2.2, the goal of SR is to search the function space to find the
model that best fits the mapping between the independent variables and the target variable
(i.e. the mapping between xi and yi, for all i). Since the main objective of SR is to
recognize correlations and find non-trivial interpretable models (rather than making direct
predictions), we modify the goal of SR; we instead search the function space to find the model
that best describes the mapping between the independent variables and a transformation of
the target variable (i.e. the mapping between xi and some transformation or function of yi,
for all i). Formally, we propose modifying the goal of SR to search for appropriate (model)
functions from a space of all possible mathematical expressions S defined by a set of given
mathematical functions (e.g., exp, ln, sin, cos) and arithmetic operations (e.g., +, −, ×, ÷),
which can be described by the following optimization problem:

f ∗, g∗ = arg min
f, g ∈S

N∑
i=1

[
f(xi)− g(yi)

]2 (2.2)

where f ∗ and g∗ are the optimal analytical functions. In other words, instead of searching for
mathematical expressions of the form y = f(x) as is usually done in the SR literature, the
proposed GSR approach attempts to find expressions of the form g(y) = f(x). We illustrate
this concept in Table 2.1.

Table 2.1: GSR finds analytical expressions of the form g(y) = f(x) instead of y = f(x).

Ground Truth Expression Learned Expression

y =
√
x+ 5 y2 = x+ 5

y = 1/(3x1 + x32) y−1 = 3x1 + x32
y = (2x1 + x2)

− 2
3 ln(y) = −2

3
ln(2x1 + x2)

y = ln(x31 + 4x1x2) ey = x31 + 4x1x2
y = ex

3
1+2x2+cos(x3) ln(y) = x31 + 2x2 + cos(x3)

Although the main goal of GSR is to find expressions of the form g(y) = f(x), we may
encounter situations where it is best to simply learn expressions of the form y = f(x) (i.e.
g(y) = y). For instance, consider the ground truth expression y = sin(x1)+2x2. In this case,
we expect to learn the expression exactly as is (i.e. g(y) = y and f(x) = sin(x1) + 2x2) as
long as the right basis functions (i.e. sin(x) and x in this case) are within the search space,
as we will see in the next sections.
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Making predictions. Given a new input feature vector x∗, predicting y∗ with GSR is
simply a matter of solving the equation g(y) = f(x∗) for y, or equivalently, g(y)− f(x∗) = 0.
Note that f(x∗) is a known quantity and y is the only unknown. If g(·) is an invertible
function, then y∗ can be easily found using y∗ = g−1

(
f(x∗)

)
. If g(·) is not invertible, then

y∗ will be the root of the function h(y) = g(y) − f(x∗). Root-finding algorithms include
Newton’s method. Whether the function g(·) is invertible or not, we might end up with
many solutions for y∗ (an invertible function, which is not one-to-one, can lead to more than
one solution). In this case, we choose y∗ to be the solution that belongs to the range of y
which can be determined from the training dataset.

2.3.2 A new problem formulation for symbolic regression
Now that we have presented the goal of our proposed GSR approach (summarized by
Eq. (2.2)), we need to constrain the search space of functions S to reduce the computa-
tional challenges and accelerate the convergence of our algorithm. Inspired by [59], [60] as
well as classical system identification methods [14], we confine S to generalized linear models,
i.e. to functions that can be expressed as a linear combination (or as a weighted sum) of
basis functions (which can be linear or nonlinear). In mathematical terms, for a given input
feature vector xi and a corresponding target variable yi, the search space S is constrained
to model functions of the form:

f(xi) =

Mϕ∑
j=1

αjϕj(xi), g(yi) =

Mψ∑
j=1

βjψj(yi) (2.3)

where ϕj(·) and ψj(·) are the basis functions applied to the feature vector xi and the target
variable yi, respectively, Mϕ and Mψ denote the corresponding number of basis functions
involved, respectively. In matrix form, the minimization problem described in Eq. (2.2) is
equivalent to finding the vectors of coefficients α = [α1 · · · αMϕ

]T and β = [β1 · · · βMψ
]T

such that:

α∗,β∗ = argmin
α,β
||Xα−Yβ||2 (2.4)

where

X =

ϕ1(x1) ϕ2(x1) · · · ϕMϕ
(x1)

...
... · · · ...

ϕ1(xN) ϕ2(xN) · · · ϕMϕ
(xN)

 , Y =

ψ1(y1) ψ2(y1) · · · ψMψ
(y1)

...
... · · · ...

ψ1(yN) ψ2(yN) · · · ψMψ
(yN)

 . (2.5)

Note that if we examine the minimization problem as expressed in Eq. (2.4), we can indeed
minimize ||Xα − Yβ||2 by simply setting α∗ = 0 and β∗ = 0 which will not lead to a
meaningful solution to our GSR problem. In addition, to avoid reaching overly complex
mathematical expressions for f(·) and g(·), we are interested in finding sparse solutions for
the weight vectors α∗ and β∗ consisting mainly of zeros which results in simple analytical
functions containing only the surviving basis functions (i.e. whose corresponding weights
are nonzero). This is closely related to sparse identification of nonlinear dynamics (SINDy)
methods [14]. To this end, we apply L1 regularization, also known as Lasso regression [64],
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by adding a penalty on the L1 norm of the weights vector (i.e. the sum of its absolute
values) which leads to sparse solutions with few nonzero coefficients. In terms of our GSR
method, Lasso regression automatically performs basis functions selection from the set of
basis functions that are under consideration.
Putting the pieces together, we reformulate the minimization problem in Eq. (2.4) as a
constrained Lasso regression optimization problem defined as

w∗ = argmin
w
||Aw||22 + λ||w||1

s.t. ||w||2 = 1
(2.6)

where λ > 0 is the regularization parameter, and

A =
[
X −Y

]
, w =

[
α

β

]
= [α1 · · · αMϕ

β1 · · · βMψ
]T . (2.7)

2.3.3 Solving the GSR problem

To solve the GSR problem, we first present our approach for solving the constrained Lasso
problem in Eq. (2.6), assuming some particular sets of basis functions are given. We then
outline our genetic programming (GP) procedure for finding the appropriate (or optimal) sets
of these basis functions, before discussing our matrix-based encoding scheme (to represent
the basis functions) that we will use in our GP algorithm.

Solving the Lasso optimization problem given particular sets of basis functions

We assume for now that, in addition to the dataset D = {xi, yi}Ni=1, we are also given the
sets of basis functions {ϕj(xi)}

Mϕ

j=1 and {ψj(yi)}
Mψ

j=1 used with the input feature vector xi and
its corresponding target variable yi, respectively, for all i. In other words, we assume for
now that the matrix A in Eq. (2.7) is formed based on particular sets of basis functions(
i.e. {ϕj(xi)}

Mϕ

j=1 and {ψj(yi)}
Mψ

j=1

)
, and we are mainly interested in solving the constrained

optimization problem in Eq. (2.6). Applying the alternating direction method of multipliers
(ADMM) [65], the optimization problem in Eq. (2.6) can be written as

w∗ = argmin
w
||Aw||22 + λ||z||1

s.t. ||w||2 = 1

w − z = 0

(2.8)

where λ > 0 is the regularization parameter. The scaled form of ADMM (see [65] for details)
for this problem is

wk ← argmin
||w||2=1

Lρ(w, zk−1,uk−1)

zk ← Sλ/ρ
(
wk + uk−1

)
uk ← uk−1 +wk − zk

(2.9)
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Algorithm 1: Solving the constrained Lasso optimization problem using ADMM
Input: A, λ, ρ, w0, z0, u0

Output: w
function SolveADMM(A, λ, ρ, w0, z0, u0)

Initialization: w ← w0, z ← z0,u← u0;
while Not Converge do

w ←
(
2ATA+ ρI

)−1 · ρ (z − u);
w ← w/||w||2;
z ← Sλ/ρ

(
w + u

)
;

u ← u+w − z;
end

end function

where u is the scaled dual vector, and

Lρ(w, z,u) = ||Aw||22 +
ρ

2

∣∣∣∣w − z + u
∣∣∣∣2
2

(2.10)

where ρ > 0 is the penalty parameter and the soft thresholding operator S is defined as

Sκ(a) =


a− κ a > κ

0 |a| ≤ κ

a+ κ a < −κ
(2.11)

To find the minimizer wk in the first step of the ADMM algorithm above (in Eq. (2.9)), we
first compute the gradient of the function Lρ(w, zk−1,uk−1) with respect to w, set it to zero,
and then normalize the resulting vector solution:

0 =∇wLρ(w, zk−1,uk−1)
∣∣
w=wk

=2ATAwk + ρ (wk − zk−1 + uk−1)
(2.12)

It follows that
wk =

(
2ATA+ ρI

)−1 · ρ (zk−1 − uk−1)

wk = wk/||wk||2
(2.13)

Algorithm 1 outlines the overall process for solving the constrained Lasso optimization prob-
lem in Eq. (2.6), for a given matrix A, regularization parameter λ, penalty parameter ρ, and
initial guesses w0, z0, u0.

Finding the appropriate sets of basis functions using genetic programming

Now that we have presented Algorithm 1 that solves the constrained Lasso optimization
problem in Eq. (2.6) for particular sets of basis functions, we go through our procedure for
finding the optimal sets of basis functions

(
and hence, the optimal analytical functions f(·)

and g(·)
)
.
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Encoding Scheme
Most of the SR methods rely on expression trees in their implementation. That is, each
mathematical expression is represented by a tree where nodes (including the root) encode
arithmetic operations (e.g. +, −, ×, ÷) or mathematical functions (e.g. cos, sin, exp, ln),
and leaves contain the independent variables (i.e. x1, . . . , xd) or constants. Inspired by [60],
[62], we use matrices instead of trees to represent the basis functions. However, we propose
our own encoding scheme that we believe is general enough to handle/recover a wide range
of expressions.

We introduce the basis matrices Bϕ and Bψ to represent the basis functions ϕ(·) and ψ(·)
used with the feature vector x and the target variable y, respectively. The basis matrices
Bϕ and Bψ are of sizes nBϕ ×mBϕ and nBψ × 1 respectively (i.e. Bψ is a column vector),
and take the form

Bϕ =

 bϕ1,1 . . . bϕ1,m
Bϕ... · · · ...

bϕn
Bϕ

,1 . . . bϕn
Bϕ

,m
Bϕ

 , Bψ =

 bψ1,1
...

bψn
Bψ

,1

 , (2.14)

where the entries bϕi,j and bψi,1 are all integers. The first column bϕ•,1 of Bϕ and the first (and
only) column bψ•,1 of Bψ indicate the mathematical function (or transformation) to be applied
(on the input feature vector x and the target variable y, respectively). In Bϕ, the second
column bϕ•,2 specifies the type of argument (see Table 2.2), and the remaining nv = mBϕ − 2

columns bϕ•,3, · · · , bϕ•,m
Bϕ

indicate which independent variables (or features) are involved (i.e.
the active operands). The quantity nv represents the maximum total multiplicity of all the
independent variables included in the argument. Note that nBϕ and nBψ specify the number
of transformations to be multiplied together (i.e. each basis function ϕ(·) and ψ(·) will be a
product of nBϕ and nBψ transformations, respectively).

The encoding/decoding process happens according to a table of mapping rules that is
very straightforward to understand and employ. For instance, consider the mapping rules
outlined in Table 2.2, where d is the dimension of the input feature vector. As we will
see in our numerical experiments in Section 2.4, we will adopt this table for many SR
benchmark problems. Other mapping tables are defined according to different benchmark
problems1 (more details about the SR benchmark problem specifications can be found in
Appendix A.3). The encoding from the analytical form of a basis function to the ba-
sis matrix is straightforward. For example, for d = 3, nBϕ = 4 and mBϕ = 5 (i.e.
nv = 3), the basis function ϕ(x) = x2 cos(x

2
1x2) ln(x1 + x3) can be generated according

to the encoding steps shown in Table 2.3.

1Each SR benchmark problem uses a specific set (or library) of allowable mathematical functions (e.g.
cos, sin, exp, log), and hence, we mainly modify the first two rows of the mapping tables.
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Table 2.2: Example table of mapping
rules for a basis function. The identity
operator is denoted by •1.

b•,1 0 1 2 3 4 5
Transformation (T ) 1 •1 cos sin exp ln

b•,2 0 1 2
Argument Type (arg) x

∑ ∏
b•,3, · · · , b•,mB 0 1 2 3 · · · d
Variable (v) skip x1 x2 x3 · · · xd

Table 2.3: Encoding steps corresponding to the
basis function ϕ(x) = x2 cos(x

2
1x2) ln(x1 + x3).

Step T arg v1 v2 v3 Update

1 •1 x x2 — — T1(x) = x2

2 cos
∏

x1 x1 x2 T2(x) = cos(x2
1x2)

3 ln
∑

x1 x3 skip T3(x) = ln(x1 + x3)
4 1 — — — — T4(x) = 1

Final Update: ϕ(x) = T1(x) · T2(x) · T3(x) · T4(x)

Based on the mapping rules in Table 2.2 and the encoding steps in Table 2.3, the basis
function ϕ(x) = x2 cos(x

2
1x2) ln(x1 + x3) can be described by a 4× 5 matrix as follows:

Bϕ =


1 0 2 • •
2 2 1 1 2
5 1 1 3 0
0 • • • •

 (2.15)

Remark 2.3.1. In Table 2.3, — denotes entries that are ignored during the construction of
the basis function. The argument type in Step 1 is x which implies that we only select
the first variable (encoded by b•,3) out of the nv variables as an argument, and hence the
entries corresponding to v2 and v3 are ignored. Similarly, the transformation in Step 4 is
T = 1 which implies that the argument type and the nv variables are all ignored. These
are the only two cases where some entries are ignored during the construction process. The
same ignored entries are reflected in the matrix Bϕ using •. More encoding examples can
be found in Appendix A.2.

Remark 2.3.2. The term ‘skip’ can be thought of as 0 or 1 when the argument type is
summation

∑
or multiplication

∏
respectively. To account for the case where the argument

type is x, we let b•,3 ∈ {1, . . . , d} (i.e. we exclude 0) as b•,3 is the only entry considered in
this case (see Remark 2.3.1).

Remark 2.3.3. The same basis function can be represented by several matrices for three
reasons:
i) Each basis function is a product of transformations where each transformation is repre-
sented by a row in the basis matrix. Hence, a new basis matrix for the same basis function
is formed by simply swapping rows.
ii) When the argument type is

∑
or
∏

, the order of the nv variables (including ‘skip’)
starting from the third column of the matrix Bϕ does not affect the expression. Hence a
new basis matrix for the same basis function is formed by simply swapping these columns.
iii) As mentioned in Remark 2.3.1, some entries are ignored in some cases. Hence a new
basis matrix for the same basis function is formed by simply modifying these entries.

Remark 2.3.4. In the example above, we showed how we can produce the matrix Bϕ to
represent a basis function ϕ(x). A similar (and even simpler) procedure can be applied to
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No

Figure 2.1: A flowchart of a generic evolutionary algorithm.

produce the matrix Bψ that represents a basis function ψ(y); we only need a mapping table
corresponding to the set of allowable transformations (e.g. the first two rows of Table 2.2).

Note that the decoding from the basis matrix to the expression of a basis function is trivial;
we go through the rows of the basis matrix and convert them into transformations according
to a mapping table (e.g. Table 2.2), before finally multiplying them together. Also note that
the search space of basis functions

(
mainly ϕ(·)

)
is huge in general which makes enumeration

impractical, and hence, we will rely on GP for effective search process.

Genetic Programming (Evolutionary Algorithm)
The SR problem has been extensively studied in the literature, and a wide variety of methods
has been suggested over the years to tackle it. Most of these methods are based on genetic
programming (GP) [12], [34]–[36]. This is a heuristic search technique that tries to find the
optimal mathematical expression (in the SR context) among all possible expressions within
the search space. The optimal (or best) expression is found by minimizing some objective
function, known as the fitness function.

GP is an evolutionary algorithm that solves the SR problem. It starts with an initial
population (or first generation) of Np randomly generated individuals (i.e. mathematical
expressions), then recursively applies the selection, reproduction (crossover), and mutation
operations until termination (see a generic flowchart of a genetic algorithm in Fig. 2.1).
During the selection operation, the fitness of each of the Np individuals of the current gen-
eration is evaluated (according to the fitness function), and the np fittest (or best) indi-
viduals are selected for reproduction and mutation (the selected individuals are part of the
new generation and can be thought of as parents). The reproduction (crossover) operation
generates new individuals (offsprings) by combining random parts of two parent individ-
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uals. The mutation operation produces a new individual by changing a random part of
some parent individual. We illustrate the crossover and mutation operations in Fig. 2.2.
Finally, the recursion terminates, when some individual reaches a predefined fitness level
(i.e. until some stopping criterion is satisfied).

In our GSR approach, we use a slightly modified version of the GP algorithm described
above. Each individual in the population initially consists of two sets ofMϕ andMψ randomly
generated basis functions encoded by basis matrices. Such matrices will form the functions
f(·) and g(·) to be used with the input feature vector x and the target variable y, respectively.
This is different from the GP algorithm described above where individuals typically represent
the full mathematical expression or function as a whole. In addition, the Np individuals
in the population of a new generation consist of the np fittest individuals of the current
generation in addition to Np − np individuals generated as follows. With probability 1

4
,

a new individual is generated (reproduced) by randomly combining basis functions (i.e.
basis matrices) from two parent individuals (i.e. crossover) selected from the np surviving
individuals. With probability 1

4
, a new individual is generated by randomly choosing one

of the np surviving individuals, and replacing (mutating) some of its basis functions (i.e.
basis matrices) with completely new ones (i.e. randomly generated). With probability
1
2
, a completely new individual is randomly generated (in the same way we generate the

individuals of the initial population). Randomly generating individuals enhances diversity
in the basis functions and avoids reaching a plateau. Indeed, this is just one of many ways
that can be followed to apply some sort of crossover/mutation on individuals defined by their
sets of basis functions instead of their full mathematical expression. A pseudocode of our
proposed GSR algorithm is provided in Appendix A.1.

Figure 2.2: Illustration of the genetic programming mutation and crossover operations.
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2.4 Experimental Results

We evaluate our proposed GSR method through a series of numerical experiments on a num-
ber of common SR benchmark datasets. In particular, we compare our approach to existing
state-of-the-art methods using three popular SR benchmark problem sets: Nguyen [66], Jin
[37], and Neat [67]. In addition, we demonstrate the benefits of our proposed method on
the recently introduced SR benchmark dataset called Livermore [43], which covers problems
with a wider range of difficulty compared to the other benchmarks. Finally, we introduce a
new and more challenging set of SR benchmark problems, which we call SymSet, mainly for
two reasons: i) Our GSR algorithm achieves perfect scores on Nguyen, and almost perfect
scores on Jin, Neat, and Livermore, and hence we introduced a benchmark problem set that
is more challenging, ii) The existing SR benchmark problem sets do not really reflect the
strengths of our proposed method, and thus we designed SymSet to explicitly highlight the
benefits we gain from using our proposed approach. SymSet contains benchmark problems
with similar properties as Nguyen, Jin, Neat, and Livermore benchmarks, but with an ad-
ditional function composition (or symbolic layer). Each SR benchmark problem consists of
a ground truth expression, a training and test dataset, and a set (or libary) of allowable
arithmetic operations and mathematical functions. Specifications of all the SR benchmark
problems are described in Appendix A.3. Hyperparameters and additional experiment de-
tails are provided in Appendix A.1.

Across our experiments, we compare our GSR approach against several strong SR bench-
mark methods:
Neural-guided genetic programming population seeding (NGGPPS): A hybrid ap-
proach of neural-guided search and GP, which uses a recurrent neural network (RNN) to seed
the starting population for GP [43]. NGGPPS achieves strong results on the well-known SR
benchmarks.
Deep Symbolic Regression (DSR): A reinforcement learning method that proposes a
risk-seeking policy gradient to train an RNN to produce better-fitting expressions [31]. DSR
is the “RNN only” version of NGGPPS, and is also considered a strong performer on the
common SR benchmarks.
Bayesian Symbolic Regression (BSR): A Bayesian framework which carefully designs
prior distributions to incorporate domain knowledge (e.g. preference of basis functions or
tree structure), and which employs efficient Markov Chain Monte Carlo (MCMC) methods
to sample symbolic trees from the posterior distributions [37].
Neat-GP: A GP approach which uses the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm that greatly reduces the effects of bloat (i.e. controls growth in program size) [67].
PSTree: A piece-wise non-linear SR method based on decision tree and GP techniques
[46]. PSTree can generate explainable models with high accuracy in a short period of time.
PSTree is the current top performer on SRBench datasets [28], achieving state-of-the-art
performance and beating other competitive SR methods such as Operon [55], [56] and AI
Feynman [51].
PySR: A fast and parallelized SR method in Python/Julia [68], which uses evolutionary al-
gorithms to search for symbolic expressions by optimizing a particular objective; the metric
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Table 2.4: Recovery rate comparison of GSR against several algorithms on the Nguyen
benchmark set over 100 independent runs. The formulas for these benchmarks are shown in
Appendix Table A.11.

Recovery Rate (%)
Benchmark Expression GSR NGGPPS DSR Eureqa

Nguyen-1 y = x3 + x2 + x 100 100 100 100
Nguyen-2 y = x4 + x3 + x2 + x 100 100 100 100
Nguyen-3 y = x5 + x4 + x3 + x2 + x 100 100 100 95
Nguyen-4 y = x6 + x5 + x4 + x3 + x2 + x 100 100 100 70
Nguyen-5 y = sin(x2) cos(x)− 1 100 100 72 73
Nguyen-6 y = sin(x) + sin(x+ x2) 100 100 100 100
Nguyen-7 y = ln(x+ 1) + ln(x2 + 1) 100 97 35 85
Nguyen-8 y =

√
x 100 100 96 0

Nguyen-9 y = sin(x1) + sin(x2
2) 100 100 100 100

Nguyen-10 y = 2 sin(x1) cos(x2) 100 100 100 64
Nguyen-11 y = xx21 100 100 100 100

Average 100 99.73 91.18 80.64

used for scoring equations is based on the work in [17].
gplearn: A Koza-style SR method in Python, which starts with a random population of
models, and then iteratively performs tournament selection, crossover, and mutation [34].

We first compare GSR against NGGPPS, DSR, as well as Eureqa (a popular GP-based
commercial software proposed in [12]) on the Nguyen benchmarks. We follow their experi-
mental procedure and report the results in Table 2.4. We use recovery rate as our performance
metric, defined as the fraction of independent training runs in which an algorithm’s resulting
expression achieves exact symbolic equivalence compared to the ground truth expression (as
verified using a computer algebra system such as SymPy [69]). Table 2.4 shows that GSR sig-
nificantly outperforms DSR and Eureqa in exactly recovering the Nguyen benchmark expres-
sions. As NGGPPS achieves nearly perfect scores on the Nguyen benchmarks, GSR shows
only a slight improvement (on Nguyen-7) compared to NGGPPS. However, GSR exhibits
faster runtime than NGGPPS; by running each benchmark problem, GSR takes an average
of 2.5 minutes per run on the Nguyen benchmarks compared to 3.2 minutes for NGGPPS.
Runtimes on individual Nguyen benchmark problems are shown in Appendix Table A.3.

We next evaluate GSR on the Jin and Neat benchmark sets. The results are reported
in Tables 2.5 and 2.6 respectively. A RMSE value of 0 indicates exact symbolic equiv-
alence. From Table 2.5, we can clearly observe that GSR outperforms DSR and BSR
and performs nearly as good as NGGPPS recovering all the Jin problems (accross all in-
dependent runs) except Jin-6. Table 2.6 shows that GSR outperforms all other methods
(NGGPPS, DSR, and Neat-GP) on the Neat benchmarks. Note that expressions con-
taining divisions (i.e. Neat-6, Neat-8, and Neat-9) are not exactly recovered by GSR
(i.e. only approximations are recovered) since the division operator is not included in
our scheme (see Appendix A.5 for details).
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Table 2.5: Comparison of mean root-
mean-square error (RMSE) for GSR
against several methods on the Jin
benchmark problem set over 50 inde-
pendent runs. The formulas for these
benchmarks are shown in Appendix
Table A.11.

Mean RMSE
Benchmark GSR NGGPPS DSR BSR

Jin-1 0 0 0.46 2.04

Jin-2 0 0 0 6.84

Jin-3 0 0 0.00052 0.21

Jin-4 0 0 0.00014 0.16

Jin-5 0 0 0 0.66

Jin-6 0.018 0 2.23 4.63

Average 0.0030 0 0.45 2.42

Table 2.6: Comparison of median RMSE for GSR
against several methods on the Neat benchmark
problem set over 30 independent runs. The for-
mulas for these benchmarks are shown in Ap-
pendix Table A.11.

Median RMSE
Benchmark GSR NGGPPS DSR Neat-GP

Neat-1 0 0 0 0.0779

Neat-2 0 0 0 0.0576
Neat-3 0 0 0.0041 0.0065

Neat-4 0 0 0.0189 0.0253

Neat-5 0 0 0 0.0023
Neat-6 2.0× 10−4 6.1× 10−6 0.2378 0.2855

Neat-7 0.0521 1.0028 1.0606 1.0541
Neat-8 4.0× 10−4 0.0228 0.1076 0.1498

Neat-9 8.1× 10−9 0 0.1511 0.1202

Average 0.0059 0.1139 0.1756 0.1977

We then run experiments on the Livermore benchmark set which contains problems with
a large range of difficulty. In addition to NGGPPS and DSR, we compare against NG-
GPPS using the soft length prior (SLP) and hierarchical entropy regularizer (HER) recently
introduced in [70]. We also compare against a recently proposed method, known by ge-
netic expert-guided learning (GEGL) [52], which trains a molecule-generating deep neural
network (DNN) guided with genetic exploration. Table 2.7 shows that our GSR method
outperforms all other methods on both the Nguyen and Livermore benchmark sets, beating
NGGPPS+SLP/HER which was the top performer on these two benchmark sets.

We highlight the strengths of GSR on the new SymSet benchmark problem set, and
show the benefits of searching for expressions of the form g(y) = f(x) instead of y =
f(x). Typical expressions, with exact symbolic equivalence, recovered by GSR are shown in
Appendix Table A.18. The key feature of GSR lies in its ability to recover expressions of
the form g(y) = f(x). To better highlight the benefits offered by this feature, we disable
it by constraining the search space in GSR to expressions of the form y = f(x) (which is
the most critical ablation). We refer to this special version of GSR as s-GSR. Note that
most of the SymSet expressions cannot be exactly recovered by s-GSR (i.e. they can only
be approximated). We compare the performance of GSR against s-GSR on the SymSet
benchmarks in terms of accuracy and runtime (see Table 2.8). The results clearly show that
GSR is faster than s-GSR, averaging around 2 minutes per run on the SymSet benchmarks
compared to 2.27 minutes for s-GSR (i.e. ∼ 11% runtime improvement). In addition, GSR
is more accurate than s-GSR by two orders of magnitude. This is due to the fact that GSR
exactly recovers the SymSet expressions across most of the runs, while s-GSR only recovers
approximations for most of these expressions. This reflects the superiority of GSR over s-
GSR, which demonstrates the benefits of learning expressions of the form g(y) = f(x) in
SR tasks. We further compare GSR against several strong SR methods with similar (or
better) expression ability. In particular, we experiment on SymSet with NGGPPS, PSTree,
PySR, and gplearn (see Table 2.8). GSR is more accurate than all these methods by three
orders of magnitude, which further demonstrates the advantage of our proposed approach.
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Table 2.7: Recovery rate comparison of
GSR against several algorithms on the
Nguyen and Livermore benchmark sets
over 25 independent runs. Recovery rates
on individual benchmark problems are
shown in Appendix Table A.2.

Recovery Rate
(
%
)

All Nguyen Livermore

GSR 90.59 100.00 85.45

NGGPPS+SLP/HER 82.59 92.00 77.45

NGGPPS 78.59 92.33 71.09

GEGL 66.82 86.00 56.36

DSR 49.18 83.58 30.41

Table 2.8: Average performance in mean
RMSE and runtime, along with their stan-
dard errors, for GSR against s-GSR and
several strong SR methods on the SymSet
benchmark problem sets over 25 independent
runs. Mean RMSE and runtime values on
individual benchmark problems are shown
in Appendix Table A.4.

SymSet Average
Mean RMSE Runtime (sec)

GSR 2.66× 10−4 ± 1.59× 10−4 120.84 ± 4.22
s-GSR 2.56× 10−2 ± 5.27× 10−3 136.19 ± 4.56

PSTree 4.57× 10−1 ± 7.98× 10−2 16.23 ± 0.67
NGGPPS 4.65× 10−1 ± 1.24× 10−1 158.57 ± 2.59

PySR 4.99× 10−1 ± 1.76× 10−1 87.07 ± 21.6
gplearn 7.22× 10−1 ± 1.64× 10−1 163.86 ± 2.94

As for the runtime, PSTree is the fastest method, averaging around 16 seconds per run on
the SymSet expressions, while maintaining solid accuracies. This comes as no surprise given
its state-of-the-art performance on SRBench datasets [28].

2.5 Discussion

Limitations. GSR, including state-of-the-art methods, have difficulty with expressions con-
taining divisions. For GSR, this is due to the way we define our encoding scheme. Other
methods fail even though the division is included in their framework. GSR can overcome this
issue by modifying its encoding scheme to include divisions within the basis functions (at
the expense of significantly increasing the complexity of the search space). Another limiting
factor to GSR is that it cannot recover expressions containing composition of functions, such
as y = ecos(x) + ln(x). This could be overcome by modifying the search space (e.g. one could
expand the definition of a basis function to account for composition of functions up to some
number of layers, or completely modify the search space to a symbolic neural network as in
[42], [50], [54]). Another challenging task for GSR is to reach, although expressible, expres-
sions containing multiple complex basis functions simultaneously. This can be due to the
choice of the hyperparameters or the GP search process. A more elaborate discussion about
the limitations of GSR can be found in Appendix A.5. These limitations will be addressed
in future work. Indeed, there are plenty of expressions that still cannot be fully recovered
by GSR. This is the case for all other SR methods as well.
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Closely related work. There has been growing attention on the SR task with non ex-
plicit (or implicit) mathematical equations and several works have been attempted to ad-
dress this interesting task. In particular, implicit sparse identification of nonlinear dynamics
(implicit-SINDy) [15], [16] introduces the concept of identifying implicit expressions of the
form f(x, y) = 0 in the context of differential equations

(
i.e. y = ẋi =

dxi
dt

for i ∈ {1, . . . , d}
where x ∈ Rd

)
. Further, Eureqa [12], a well-established baseline SR algorithm, focuses on

discovering invariants rather then trying to perform prediction directly. Inspired by the two
aforementioned methods, and by the fact that the main objective of SR is to recognize cor-
relations and define non-trivial interpretable models, GSR identifies relations between the
input and a transformed output through searching for expressions of the form g(y) = f(x),
which keeps the possibility open for predicting the output y in a straightforward manner.

Computational complexity. Although genetic algorithms are inherently heuristic, un-
derstanding how our GSR algorithm operates and scales could still be valuable. Following
Algorithm 7 from Appendix A.1, we can approximate the time complexity of GSR as:

O
(
Nϵ ·Np ·

(
Mϕ · nBϕ ·mBϕ +Mψ · nBψ +Nδ +N + logNp

))
(2.16)

where Nϵ is the number of generations until the GP algorithm converges, and Nδ is the
number of iterations until the ADMM algorithm converges. Recall that Np is the population
size, Mϕ and Mψ denote the number of nBϕ ×mBϕ and nBψ × 1 basis matrices applied to
x and y, respectively, and N is the number of paired training examples. More details about
GSR’s computational complexity can be found in Appendix A.1.

Compared to GSR, the special version s-GSR adopts a vanilla SR (where g(y) is simply
y) with the same GP algorithm and coefficient optimization process (through ADMM) as
GSR. Hence, s-GSR’s time complexity can be approximated as:

O
(
Nϵ ·Np ·

(
Mϕ · nBϕ ·mBϕ +Nδ +N + logNp

))
(2.17)

Although GSR’s computational complexity contains an extra term of O (Nϵ ·Np ·Mψ · nBψ),
the number of GP generations Nϵ produced by GSR is often much less than that of s-GSR,
which explains the runtime advantage of GSR over s-GSR shown in Table 2.8.

GSR’s expression ability. The term Generalized in GSR mainly stands for its ability to
discover analytical mappings from the input space to a transformed output space through
expressions of the form g(y) = f(x). This generalizes the classical SR task of identifying ex-
pressions of the form y = f(x) (i.e. the latter is simply a special case of GSR with g(y) = y).
In addition, the term Generalized can denote the fact that we constrain the search space to
generalized linear models, keeping in mind that the search space could be confined to other
generalized spaces. Note that, by finding relations of the form g(y) = f(x), the expression
ability of GSR could resemble that of classical SR tasks which search for relations y = fc(x)
where the composition function fc(·) is defined as fc(·) := h◦f(·) = h(f(·)) with h(·) = g−1(·)
if g(·) is invertable, or a function class of similar expression ability as g−1(·) if g(·) is not
invertable. However, GSR takes advantage of the fact that the target y is a scalar, and
hence, we can apply many basis functions to y (through g(·)) without much increasing the
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complexity of the expression. In other words, we can avoid searching for functions equivalent
to g−1(·) in a space that could grow exponentially with the dimension of the input feature
vector by simply searching for their corresponding inverse transformations applied to the
scalar target variable. This concept, which happens implicitly in our algorithm provides an
edge for GSR over traditional SR methods in terms of runtime, complexity, and smoothness
of the search space. In short, GSR discovers simplified expressions by reducing redundancies
in the search space, which greatly saves the computational complexity of the search process.
It is worth mentioning that, in principle, GSR’s concept of fitting g(y) = f(x) (instead of
y = f(x)) could be applied in conjunction with other classical SR methods; this may require
some modifications to their parameter/coefficient optimization process.

GSR: a simple yet promising algorithm. GSR combines features and benefits from the
usually disparate fields of system identification and genetic programming. On the one hand,
SINDy methods use some LASSO-like approaches (or sequential thresholded least squares) to
conduct their sparse non-linear regression for finding solutions that take the form of a linear
combination of basis functions. On the other hand, evolutionary algorithms are effective
in finding basis functions that achieve optimal solution. In other words, GSR combines
well established evolutionary methods with more classical system identification methods.
Although each of the algorithm components are relatively simple, the overall GSR algorithm
achieves promising experimental performance, highlighting new insights, which can open up
new research directions for future improvement.

2.6 Conclusion

We introduce GSR, a Generalized Symbolic Regression approach by modifying the formu-
lation of the conventional SR optimization problem. In GSR, we identify mathematical
relationships between the input features and some transformation of the target variable.
That is, we infer the mapping from the feature space to a transformed target space, by
searching for expressions of the form g(y) = f(x) instead of y = f(x). We confine our search
space to a weighted sum of basis functions and use genetic programming with a matrix-based
encoding scheme to extract their expressions. We perform several numerical experiments on
well-known SR benchmark datasets and show that our GSR approach is competitive with
strong SR benchmark methods. We further highlight the strengths of GSR by introducing
SymSet, a new SR benchmark set which is more challenging relative to the existing bench-
marks. In principle, GSR’s concept of fitting g(y) = f(x) could be extended to existing SR
methods and could boost their performance.
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Chapter 3

Data-Driven Discovery of Partial
Differential Equations via the Adjoint
Method

In this chapter, we present an adjoint-based method for discovering the underlying governing
partial differential equations (PDEs) given data. The idea is to consider a parameterized
PDE in a general form, and formulate a PDE-constrained optimization problem aimed at
minimizing the error of the PDE solution from data. Using variational calculus, we obtain an
evolution equation for the Lagrange multipliers (adjoint equations) allowing us to compute
the gradient of the objective function with respect to the parameters of PDEs given data
in a straightforward manner. In particular, we consider a family of parameterized PDEs
encompassing linear, nonlinear, and spatial derivative candidate terms, and elegantly derive
the corresponding adjoint equations. We show the efficacy of the proposed approach in
identifying the form of the PDE up to machine accuracy, enabling the accurate discovery
of PDEs from data. We also compare its performance with the famous PDE Functional
Identification of Nonlinear Dynamics method known as PDE-FIND [7], on both smooth and
noisy data. Even though the proposed adjoint method relies on forward/backward solvers, it
outperforms PDE-FIND for large data sets thanks to the analytic expressions for gradients
of the cost function with respect to each PDE parameter.

3.1 Introduction

A large portion of data-driven modelling of physical processes in literature is dedicated
to deploying Neural Networks to obtain fast prediction given the training data set. The
data-driven estimation methods include Physics-Informed Neural Networks [71], Pseudo-
Hamiltonian neural networks [72], structure preserving [73], [74], and reduced order mod-
elling [75]. These methods often provide efficient and somewhat “accurate” predictions when
tested as an interpolation method in the space of input or boundary parameters. Such fast
estimators are beneficial when many predictions of a dynamic system is needed, for example
in the shape optimization task in fluid dynamics.
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However, the data-driven estimators often fail to provide accurate solution to the dynamical
system when tested outside the training space, i.e. for extrapolation. Furthermore, given
the regression-based nature of these predictors, often they do not offer any error estimator in
prediction. Since we already have access to an arsenal of numerical methods in solving tradi-
tional governing equations, it is attractive to learn the underlying governing equation given
data instead. Once the governing equation is found, one can use the standard and efficient
numerical methods for prediction. This way we guarantee the consistency with observed
data, estimator for the numerical approximation, and interoperability. Hence, learning the
underlying physics given data has motivated a new branch in the scientific machine learning
for discovering the mathematical expression as the governing equation given data.

The wide literature of data-driven discovery of dynamical systems includes equation-free
modeling [76], artificial neural networks [77], nonlinear regression [78], empirical dynamic
modeling [79], [80], modeling emergent behavior [81], automated inference of dynamics [82]–
[84], normal form identification in climate [85], nonlinear Laplacian spectral analysis [86]
and Koopman analysis [87] among others. There has been a significant advancement in this
field by combining symbolic regression wtih the evolutionary algorithms [8], [12], [88], which
enable the direct extraction of nonlinear dynamical system information from data. Further-
more, the concept of sparsity [64] has recently been employed to efficiently and robustly
deduce the underlying principles of dynamical systems [14], [15].

Related work. Next, we review several relevant works that have shaped the current land-
scape of discovering PDEs from data:
PDE-FIND [7]. This method has been developed to discover underlying partial differential
equation by minimizing the L2

2-norm point-wise error of the parameterized forward model
from the data. Estimating all the possible derivatives using finite difference, PDE-FIND
constructs a dictionary of possible terms and finds the underlying PDE by performing a
sparse search using ridge regression problem with hard thresholding, also known as STRidge
optimization method. Several further developments in the literature has been carried out
based on this idea, namely [16], [89]. In these methods, as the size (or dimension) of the data
set increases, the PDE discovery optimization problem based on point-wise error becomes
extremely expensive, forcing the user to arbitrarily reduce the size of data by resampling, or
compress the data using proper orthogonal decomposition. Needles to say, in case of non-
linear dynamics, such truncation of data can introduce bias in prediction leading to finding
a wrong PDE.
PDE-Net [90], [91]. In this method, the PDE is learned from data using convolution kernels
rather than brute-force use of finite differences, and apply neural networks to approximate
nonlinear responses. Similar to PDE-FIND, the loss function of PDE-Net is the point-wise
error from data which leads to a regression task that does not scale well with the size of the
data set.
Hidden Physics Models [92]. This method assumes that the relevant terms of the gov-
erning PDE are already identified and finds its unknown parameters using Gaussian process
regression (GPR). While GPR is an accurate interpolator which offers an estimate for the
uncertainty in prediction [93], its training scales poorly with the size of the training data set
as it requires inversion of the covariance matrix.
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PINN-SR [94]. One of the issues with the PDE-FIND is the use of finite difference in
estimating the derivatives. The idea of PINN-SR is to extend PDE-FIND’s optimization
problem to also find a PINN fit to the data in order to find smooth estimates for spatial
derivatives. In particular, the training of PINN-SR combines the search for weights/biases
of PINN approximation of the PDE with the sparse search in the space of possible terms to
find the coefficients of the PDE given data. However, similar to PDE-FIND, the point-wise
error from data is used as the loss for the regression task which does not scale well with the
size of the data set.

Contributions. In this work, we introduce a novel approach for discovering PDEs from
data based on the well-known adjoint method, i.e. PDE-constrained optimization method.
The idea is to formulate the objective (or cost) functional such that the estimate function f
minimizes the L2

2-norm error from the data points f ∗ with the constraint that f is the solu-
tion to a parameterized PDE using the method of Lagrange multipliers. Here, we consider
a parameterized PDE in a general form and the task is to find all the parameters including
irrelevant ones. By finding the variational extremum of the cost functional with respect to
the function f , we obtain a backward-in-time evolution equation for the Lagrange multipliers
(adjoint equations). Next, we solve the forward parameterized PDE as well as the adjoint
equations numerically. Having found estimates of the Lagrange multipliers and solution to
the forward model f , we can numerically compute the gradient of the objective function with
respect to the parameters of PDEs given data in a straightforward manner. In particular,
for a family of parameterized and nonlinear PDEs, we show how the corresponding adjoint
equations can be elegantly derived. We note that the adjoint method has been successfully
used before as an efficient method for uncertainty quantification [95], shape optimization
and sensitivity analysis method in fluid mechanics [96], [97] and plasma physics [98], [99].
Unlike the usual use of PDE-constrained adjoint optimization where the governing equation
is known, in this work we are interested in finding the form along with the coefficients of the
PDE given data.

The rest of the chapter is organized as follows. First in Section 3.2, we introduce and
derive the proposed adjoint-based method of finding the underlying system of PDEs given
data. Next in Section 3.3, we present our results on a wide variety of PDEs and compare
the solution with the celebrated PDE-FIND in terms of error and computational/training
time. In Section 3.6, we discuss the limitations for the current version of our approach and
provide concluding remarks in Section 3.7.

3.2 Adjoint method for finding PDEs

In this section, we introduce the problem and derive the proposed adjoint method for finding
governing equations given data.

Problem setup. Assume we are given a data set on a spatial/temporal grid G =
⋃Nt
j=0 G(j)

with G(j) = {(x(k), t(j)) | k = 1, ..., Nx} for the vector of functions f ∗ where k is the spatial
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index and j the time index with t(Nt) = T being the final time. Here, x(k) ∈ Ω ⊂ Rn is
coordinates inside the solution domain Ω, t(j) denotes the j-th time that data is available,
and output is a discrete map f ∗ : G → RN . The goal is to find the governing equations that
accurately estimates f ∗ at all points on G. In order to achieve this goal, we formulate the
problem using the method of Lagrange multipliers.

Adjoint method. For simplicity, let us first consider only the time interval t ∈ [t(j), t(j+1)].
Consider a general a forward model L[·] that evolves an N -dimensional vector of continuous
functions f(x, t = t(j)) in t ∈ (t(j), t(j+1)] and x ∈ Ω where the i-th PDE is given by

Li[f ] := ∂tfi +
∑
d,p

αi,d,p∇(d)
x [fp] = 0 (3.1)

for i = 1, . . . , N , resulting in a system of N-PDEs, i.e. the i-th PDE Li predicts fi. Here,
x = [x1, x2, . . . , xn] is an n-dimensional (spatial) input vector, and f = [f1, f2, . . . , fN ] is
an N-dimensional vector of functions. We use the shorthand fi = fi(x, t) and f = f(x, t).
Furthermore, p = [p1, . . . , pN ] and d = [d1, d2, . . . , dn] are non-negative index vectors such
that fp = fp11 f

p2
2 · · · f

pN
N and

∇(d)
x = ∇(d1)

x1
∇(d2)
x2
· · · ∇(dn)

xn , (3.2)

where ∇(di)
xi for i = 1, ..., n indicates di-th derivative in xi dimension, and ∂tfi denotes

the time derivative of the i-th function. We denote the vector of unknown parameters by
α = [αi,d,p](i,d,p)∈D, where D represents the domain of all valid combinations of i, d, and p.

Having written the forward model (3.1) as general as possible, the goal is to find the pa-
rameters α such that f approximates the data points of f ∗ at t = t(j+1) given the solution
f = f ∗ at t = t(j). To this end, we formulate a semi-discrete objective (or cost) functional
that minimizes the L2

2-norm error between what the model predicts and the data f ∗ on
G(j+1), with the constraint that f solves the forward model in Eq. (3.1), i.e.

C =
N∑
i=1

(∑
k

(f ∗
i (x

(k), t(j+1))− fi(x(k), t(j+1)))
2

+
1

∆x∆t

∫
λi(x, t)Li[f(x, t)]dxdt

)
+ ϵ0||α||22 . (3.3)

where ∆x and ∆t denotes grid spacing in Ω and step size in t, respectively, ||.||2 denotes
L2-norm, and ϵ0 is the regularization factor. We note that PDE discovery task is ill-posed
since the underlying PDE is not unique and the regularization term helps us find the PDE
with the least possible coefficients.

Clearly, given estimates of f and Lagrange multipliers λ = (λ1, λ2, . . . , λN), the gradient
of the cost function with respect to model parameters can be simply computed via

∂C
∂αi,d,p

= (−1)|d| 1

∆x∆t

∫
fp∇(d)

x [λi]dxdt+ 2ϵ0αi,d,p (3.4)
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where i = 1, ..., N and |d| = d1 + ... + dn, where | · | denotes L1-norm. Here, we used
integration by parts and imposed the condition that λ → 0 on the boundaries of Ω at all
time t ∈ [0, T ]. The analytical expression (3.4) can be used for finding the parameters of
PDE using in the gradient descent method with update rule

αi,d,p ← αi,d,p − η
∂C

∂αi,d,p
(3.5)

for i = 1, . . . , N , where η = βmin(∆x)|d|−dmax is the learning rate which includes a free
parameter β and scaling coefficient for each term of the PDE, and dmax = max(|d|) for all
considered d. Let us also define pmax = max(|p|) as the highest order in the forward PDE
model. We note that since the terms of the PDEs may have different scaling, the step size
for the corresponding coefficient must be adjusted accordingly.

However, before we can use Eq. (3.4) and (3.5), we need to find λ, hence the adjoint
equation. This can be achieved by finding the functional extremum of the cost functional C
with respect to f . First, we note that the semi-descrete total variation of C can be derived as

δC =
N∑
i=1

(
−
∑
k

2(f ∗
i (x

(k), t(j+1))− fi(x(k), t(j+1)))δfi,x(k),t(j+1)

+
1

∆x∆t

∫ (
− ∂λi

∂t
+
∑
d,p

(−1)|d|αi,d,p∇fi [f
p]∇(d)

x [λi]

)
δfidxdt

+
∑
k

λi(x(k), t(j+1))δfi,x(k),t(j+1)

)
(3.6)

where δfi denotes variation with respect to fi(x, t), and δfi,x(k),t(j+1) variation with respect
to fi(x = x(k), t = t(j+1)). In this derivation, we descretized the last integral resulting from
integration by parts in time using the same mesh as the one of data G(j+1). Here again, we
used integration by parts and imposed the condition that λ→ 0 on the boundaries of Ω at
all time t ∈ [t(j), t(j+1)] for i = 1, ..., N . Note that fi(x, t) is the output of i-th PDE.

Next, we find the optimums of C (and hence the adjoint equations) by taking the varia-
tional derivatives with respect to fi and fi,x(k),t(j+1) , i.e.

δC
δfi

= 0 =⇒ ∂λi
∂t

=
∑
d,p

(−1)|d|αi,d,p∇fi [f
p]∇(d)

x [λi] (3.7)

and
δC

δfi,x(k),t(j+1)

= 0 =⇒ λi(x(k), t(j+1)) = 2(f ∗
i (x

(k), t(j+1))− fi(x(k), t(j+1))) (3.8)

for i = 1, ..., N and j = 0, ..., Nt−1. We note that the adjoint equation (3.7) for the system of
PDEs is backward in time with the final condition at the time t = t(j+1) given by Eq. (3.8).
In order to make the notation clear, we present examples for deriving the adjoint equations
in Appendix B.1. The adjoint equation is in the continuous form, while the final condition is
on the discrete points, i.e. on the grid G(j+1). In order to obtain the Lagrange multipliers in
t ∈ [t(j+1), t(j)), a numerical method appropriate for the forward (3.1) and adjoint equation
(3.7) should be deployed. Furthermore, the adjoint equation should have the same or coarser
spatial discretization as G(j+1) to enforce the final condition (3.8).
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Training with smooth data set. The training procedure follows the standard gradient
descent method. We start by taking an initial guess for parameters α, e.g. here we take
α = 0 initially. For each time interval t ∈ [t(j), t(j+1)], first we solve the forward model (3.1)
numerically to estimate f(x(k), t(j+1)) given the initial condition

f(x(k), t(j)) = f ∗(x(k), t(j)) . (3.9)

Then, the adjoint Eq. (3.7) is solved backwards in time with the final time condition (3.8).
Finally, the estimate for parameters of the model is updated using Eq. (3.5). We repeat this
for all time intervals j = 0, ..., Nt − 1 until convergence. In order to improve the search for
coefficients and enforce the PDE identification, we also deploy thresholding, i.e. set αi,d,p = 0
if |αi,d,p| < σ where σ is a user-defined threshold, during and at the end of training, respec-
tively. In Algorithm 2, we present a pseudocode for finding the parameters of the system of
PDEs using the Adjoint method, as shown in the flowchart of Fig. 3.1.

We note that the type of guessed PDE may change during the training, which adds nu-
merical complexity to the optimization and motivates the use of an appropriate solver for
each type of guessed PDE, e.g. Finite Volume method for hyperbolic and Finite Element
method for Elliptic PDEs. For simplicity, in this work we use the second order Finite Differ-
ence method across the board to estimate the spatial and Euler for the time derivative with
small enough time step sizes in solving the forward/backward equations to avoid blowups
due to possible instabilities.

Algorithm 2: Finding a system of PDEs using Adjoint method. Default threshold
σ = 10−3 applied after Nthr = 100 iterations, with tolerance γ = 10−9 and regular-
ization factor ϵ0 = 10−9.
Input: data f ∗, learning rate η, tolerance γ, threshold σ applied after Nthr, and ϵ0
Initialize the parameters α = 0;
repeat

for j = 0, . . . , Nt − 1 do
Estimate f in t ∈ (t(j), t(j+1)] by solving the forward model in Eq. (3.1) given
the initial condition Eq. (3.9);

Find λ in t ∈ [t(j), t(j+1)) by solving the adjoint equation in Eq. (3.7);
Compute the gradient using Eq. (3.4);
Update parameters α using Eq. (3.5);

end
if Epochs > Nthr then

Thresholding: set αi = 0 for all i that |αi| < σ;
end

until Convergence in α with tolerance γ;
Thresholding: set αi = 0 for all i that |αi| < σ;
Output: α
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Training with noisy data set. Often the data set comes with some noise. There are
several pre-processing steps that can be done to reduce the noise at the expense of introduc-
ing bias, for example removing high frequencies using Fast Fourier Transform or removing
small singular values from data set using Singular Value Decomposition. However, we can
also reduce the sensitivity of the training algorithm to the noise by averaging the gradients
before updating the parameters. Assuming that the noise is martingale, the Monte Carlo
averaging gives us the unbiased estimator for the expected value of the gradient over all the
data set. We adapt the training procedure by averaging gradients over all available data
points and then updating the parameters (see Algorithm 3 and the flowchart in Fig. 3.1 for
more details). Clearly, this will make the algorithm more robust at higher cost since the
update happens only after seeing all the data.

Algorithm 3: Finding a system of PDEs using Adjoint method with averaging for
the computation of gradients over data set. Default threshold σ = 10−3 applied after
Nthr = 100 iterations, with tolerance γ = 10−9 and regularization factor ϵ0 = 10−9.
Input: data f ∗, learning rate η, tolerance γ, threshold σ applied after Nthr, and ϵ0
Initialize the parameters α = 0;
repeat

for j = 0, . . . , Nt − 1 do
Estimate f in t ∈ (t(j), t(j+1)] by solving the forward model in Eq. (3.1) given
the initial condition in Eq. (3.9);

Find λ in t ∈ [t(j), t(j+1)) by solving the adjoint equation in Eq. (3.7);
Compute the gradient g(j) = ∂C(j)/∂α using Eq. (3.4);

end
Average the gradient E[∂C/∂α] =

∑
j g

(j)/Nt;
Update parameters α with Eq. (3.5) using E[∂C/∂α];
if Epochs > Nthr then

Thresholding: set αi = 0 for all i that |αi| < σ;
end

until Convergence in α with tolerance γ;
Thresholding: set αi = 0 for all i that |αi| < σ;
Output: α
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Figure 3.1: Training flowchart of the Adjoint method in finding PDEs (a) without and (b)
with gradient averaging.

3.3 Results

We demonstrate the validity of our proposed adjoint-based method in discovering PDEs
given measurements on a spatial-temporal grid. We consider data collected from a variety
of systems. We mainly compare our approach to PDE-FIND in terms of error and time to
convergence. All the results are obtained using a single core-thread of a 2.3 GHz Quad-Core
Intel Core i7 CPU. We report the execution time τ obtained by averaging over 10 indepen-
dent runs along with their error bars.

3.3.1 Heat equation

As a first example, let us consider measured data collected from the solution to the heat
equation, i.e.

∂f

∂t
+D

∂2f

∂x2
= 0, (3.10)
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Figure 3.2: The estimated coefficient corresponding to D (left) and the L1-norm error of all
considered coefficients (right) given the discretized data of the heat equation during training.

with D = −1. The data is constructed using finite difference with initial condition f(x, 0) =
5 sin(2πx)x(x − L) and a mesh with Nx = 100 nodes in x covering the domain Ω = [0, L]
with L = 1 and Nt = 100 steps in t with final time T = Nt∆t where ∆t = 0.05∆x2/(1+ |D|)
is the step size and ∆x = L/Nx is the mesh size in x.

We consider a system consisting of a single PDE (i.e. N = 1, f = f , and p = p) with
one-dimensional input, i.e. n = 1 and x = x ⊂ R, and d = d ∈ N. In order to con-
struct a general forward model, here we consider derivatives and polynomials with indices
d, p ∈ {1, 2, 3} as the initial guess for the forward model. This leads to 9 terms with unknown
coefficients α that we find using the proposed adjoint method (an illustrative derivation of
the candidate terms can be found in Appendix B.1.1). While we expect to recover the coef-
ficient that corresponds to D, we expect all the other coefficients (denoted by α∗) to become
negligible. That is what we indeed observe in Fig. 3.2 where the error of the coefficient for
each term is plotted against the number of epochs.
Next, we compare the solution obtained via the adjoint method against PDE-FIND with
STRidge optimization method. Here, we test both methods in recovering the Heat equation
given data on the grid with discretization (Nt, Nx) ∈ {(100, 100), (500, 100), (1000, 100), (1000,
1000)}. As shown in Fig. 3.3, the proposed adjoint method provides more accurate results
across all data sizes. We also point out that as the size of the data set increases, PDE-FIND
with STRidge regression method becomes more expensive, e.g. one order of magnitude more
expensive than the adjoint method for the data on a grid size (Nt, Nx) = (1000, 1000).

3.3.2 Burgers’ equation

As a nonlinear test case, let us consider the data from Burgers’ equation given by

∂f

∂t
+
∂(Af 2)

∂x
= 0 (3.11)

where A = −1. The data is obtained with similar simulation setup as for Heat equation
(Section 3.3.1) except for the time step, i.e. ∆t = 0.05∆x/(1 + |A|).

Similar to Section 3.3.1, we adopt a system of one PDE with one-dimensional input. We
also consider derivatives and polynomials with indices d, p ∈ {1, 2, 3} in the construction of
the forward model. This leads to 9 terms whose coefficients we find using the proposed adjoint
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Figure 3.3: L1-norm error of the estimated coefficients (left) and the execution time (right)
for discovering the heat equation equation using the proposed Adjoint method (blue) and
PDE-FIND method (red), given data on a grid with Nt ∈ {100, 500, 1000} steps in t, and
Nx ∈ {100, 1000} nodes in x.
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Figure 3.4: The estimated coefficient corresponding to A (left) and the L1-norm error of all
considered coefficients (right) given the discretized data of Burgers’ equation during training.

method. As shown in Fig. 3.4, the proposed adjoint method finds the correct coefficients,
i.e. αd=1,p=2 that corresponds to D as well as all the irrelevant ones denoted by α∗, up to
machine accuracy in O(10) epochs.

Next, we compare the solution obtained from the adjoint method to the one from PDE-
FIND using STRidge optimization method. Here, we compare the error on coefficients and
computational time between the adjoint and PDE-FIND by repeating the task for the data
set with increasing size, i.e. (Nt, Nx) ∈ {(100, 100), (1000, 100), (1000, 1000)}. As depicted
in Fig. 3.5, the adjoint method provides us with more accurate solution across the different
discretization sizes. Regarding the computational cost, while PDE-FIND seems faster on
smaller data sets, as the size of the data grows, it becomes increasingly more expensive than
the adjoint method. Similar to the heat equation, for the mesh size (Nt, Nx) = (1000, 1000)
we obtain one order of magnitude speed up compared to PDE-FIND.
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Figure 3.5: L1-norm error of the estimated coefficients (left) and the execution time (right) for
discovering the Burgers’ equation equation using the Adjoint method (blue) and PDE-FIND
method (red), given data on a grid with Nt ∈ {100, 1000} steps in t, and Nx ∈ {100, 1000}
nodes in x.

3.3.3 Kuramoto Sivashinsky equation

As a more challenging test case, let us consider the recovery of the Kuramoto-Sivashinsky
(KS) equation given by

∂f

∂t
+ A

∂f 2

∂x
+B

∂2f

∂x2
+ C

∂4f

∂x4
= 0 (3.12)

where A = −1, B = 0.5 and C = −0.5. The data is generated similar to previous sections
except for the grid (Nt, Nx) = (64, 256) and the time step size ∆t = 0.01∆x4/(1 + |C|).

Here again, we adopt a system of one PDE with one-dimensional input. As a guess for
the forward model, we consider terms consisting of derivatives with indices d ∈ {1, 2, 3, 4}
and polynomials with indices b ∈ {1, 2}, leading to 8 terms whose coefficients we find using
the proposed adjoint method. As shown in Fig. 3.6, the adjoint method finds the coefficient
with error of O(10−5), yet achieving machine accuracy seems not possible.

Again, in Fig. 3.7 we make a comparison between the predicted PDE using the adjoint
method against PDE-FIND. In particular, we consider a data set on a temporal/spatial
mesh of size (Nt, Nx) = {(64, 256), (128, 512), (256, 1024)} and compare how the error and
computational cost vary. Similar to previous sections, the error is reported by comparing
the obtained coefficients against the coefficients of the exact PDE in L1-norm. Interestingly,
the PDE-FIND method has 3 to 4 orders of magnitude larger error compared to the adjoint
method. Also, in terms of cost, the training time for PDE-FIND seems to grow at a higher
rate than the adjoint method as the (data) mesh size increases.
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Figure 3.6: The estimated coefficients corresponding to A,B,C (left) and the L1-norm error
of all considered coefficients (right) given the discretized data of the KS equation during
training without (top) and with (bottom) active thresholding for Epochs > Nthr = 100.
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Figure 3.7: L1-norm error of the estimated coefficients (left) and the execution time (right)
for discovering the KS equation using the Adjoint method (blue) and PDE-FIND method
(red), given data on a grid with Nt ∈ {64, 128, 256} steps in t, Nx ∈ {256, 512, 1024} nodes
in x.
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Figure 3.8: The estimated coefficients corresponding to A and D (left) and the L1-norm
error of all considered coefficients (right) of the Fokker-Planck equation as the governing law
for the PDF associated with the random walk during training.

3.3.4 Random Walk

Next, let us consider the recovery of the governing equation on probability density function
(PDF) given samples of its underlying stochastic process. As an example, we consider the
Itô process

dX = Adt+
√
2DdW (3.13)

where A = 1 is drift and D = 0.5 is the diffusion coefficient, and W denotes the standard
Wiener process with Var(dW ) = ∆t. We generate the data set by simulating the random
walk using Euler-Maruyama scheme starting from X(t = 0) = 0 for Nt = 50 steps with a
time step size of ∆t = 0.01. We estimate the PDF using histogram with Nx = 100 bins and
Ns = 1000 samples.

Let us denote the distribution of X by f . Itô’s lemma gives us the Fokker-Planck equa-
tion

∂f

∂t
+ A

∂f

∂x
−D∂

2f

∂x2
= 0 . (3.14)

Given the data set for f on a mesh of size (Nt, Nx), we can use finite difference to compute the
contributions from derivatives of f in the governing law. Since this is one of the challenging
test cases due to noise, here we only consider three possible terms in the forward model,
consisting of derivatives with indices d ∈ {1, 2, 3} and polynomial power p = 1. In Fig. 3.8,
we show how the error of finding the correct coefficients evolves during training for the
adjoint method. Clearly, the adjoint method seems to recover the true PDE with L1 error
of O(10−2) in its coefficients.

In Fig. 3.9, we make a comparison with PDE-FIND for the same number and order of
terms as the initial guess for the PDE. We compare the two methods for a range of grid
and sample sizes, i.e. Nt ∈ {50, 100}, Nx = 100, and Ns ∈ {103, 104}. It turns out that
the proposed adjoint method overall provides more accurate estimate of the coefficients than
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Figure 3.9: L1-norm error of the estimated coefficients (left) and the execution time (right) for
discovering the Fokker-Planck equation using the proposed Adjoint method (blue) and PDE-
FIND method (red), given samples of its underlying stochastic process with Nt ∈ {50, 100}
steps in t, Nx = 100 histogram bins, and Ns ∈ {103, 104} samples.

PDE-FIND, though at a higher cost. In Table 3.1, we show the discovered PDEs for both
methods across the different discretizations.

Table 3.1: Recovery of the Fokker-Planck equation, i.e. ft + fx − 0.5fxx = 0, using the pro-
posed adjoint method against PDE-FIND method given samples of the underlying stochastic
process for various discretization parameters.

Nt Nx Ns Method Recovered PDE

50 100 1000 Adjoint ft + 1.025fx − 0.465fxx = 0
PDE-FIND ft + 0.798fx − 0.454fxx = 0

10000 Adjoint ft + 1.022fx − 0.495fxx = 0
PDE-FIND ft + 0.818fx − 0.496fxx = 0

100 100 1000 Adjoint ft + 1.010fx − 0.543fxx = 0
PDE-FIND ft + 0.863fx − 0.560fxx = 0

10000 Adjoint ft + 1.015fx − 0.589fxx = 0
PDE-FIND ft + 0.894fx − 0.612fxx = 0

3.3.5 Reaction Diffusion System of Equations

In order to show scalability and accuracy of the adjoint method for a system of PDEs in a
higher dimensional space, let us consider a system of PDEs given by

∂u

∂t
+ cu0∇2

x1
[u] + cu1∇2

x2
[u] +Ru(u, v) = 0, (3.15)

∂v

∂t
+ cv0∇2

x1
[v] + cv1∇2

x2
[v] +Rv(u, v) = 0 (3.16)
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Figure 3.10: Solution to the reaction diffusion system of PDEs at time t = T for u (left) and
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where

Ru(u, v) = cu2u+ cu3u
3 + cu4uv

2 + cu5u
2v + cu6v

3 (3.17)
Rv(u, v) = cv2v + cv3v

3 + cv4vu
2 + cv5v

2u+ cv6u
3 (3.18)

We construct the data set by solving the system of PDEs Eqs. (3.15)-(3.16) using a 2nd
order finite difference scheme with initial values

u0 = a sin

(
4πx1
L1

)
cos

(
3πx2
L2

)(
L1x1 − x21

) (
L2x2 − x22

)
v0 = a cos

(
4πx1
L1

)
sin

(
3πx2
L2

)(
L1x1 − x21

) (
L2x2 − x22

)
where a = 100, and the coefficients

cu = [cui ]
6
i=0 = [−0.1,−0.2,−0.3,−0.4, 0.1, 0.2, 0.3]

cv = [cvi ]
6
i=0 = [−0.4,−0.3,−0.2,−0.1, 0.3, 0.2, 0.1].

We generate data by solving the system of PDEs Eqs. (3.15)-(3.16) using the finite difference
method and forward Euler scheme for Nt = 25 steps with a time step size of ∆t = 10−6, and
in the domain Ω = [0, L1] × [0, L2] where L1 = L2 = 1 which is discretized using a uniform
grid with Nx1 × Nx2 = 502 nodes leading to mesh size ∆x1 = ∆x2 = 0.02. In Fig. 3.10 we
show the solution to the system at time T = Nt∆t for u and v.

We consider a system consisting of two PDEs, i.e. N = dim(f) = dim(p) = 2, with
two-dimensional input, i.e. n = dim(x) = dim(d) = 2. Here, dim(f) = dim(Ima(f)), where
Ima(·) denotes the image (or output) of a function.

In order to use the developed adjoint method, we construct a guess forward system of
PDEs (or forward model) using derivatives up to 2nd order and polynomials of up to 3rd
order. That is, dmax = 2 and pmax = 3. This leads to 90 terms whose coefficients we find
using the proposed adjoint method (an illustrative derivation of the candidate terms can be
found in Appendix B.1.2). The solution to the constructed model f ≈ [u, v] as well as the
adjoint equation for λ is found using the same discretization as the data set.
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Figure 3.11: L1-norm error in the estimated coefficients of the reaction diffusion system of
PDEs during training.
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Figure 3.12: L1-norm error in the estimated coefficients of the irrelevant terms compared to
the true reaction diffusion system of PDEs during training, i.e. ||e(α∗)||1 = ||α∗||1.

As shown in Fig. 3.11, the adjoint method finds the correct equations with error up to
O(10−12). Furthermore, the coefficients corresponding to the irrelevant terms α∗ tend to
zero with error of O(10−11), see Fig. 3.12.

Furthermore, we have compared the adjoint method against PDE-FIND for a range of
grid sizes in Fig. 3.13. We observe that the cost of PDE-FIND grows with higher rate than
adjoint method as the size of the data set increases.

3.4 Partial observations in time

Here, we investigate how the error of the discovery task increases when only a subset of
the fine data set is available. Consider the heat equation presented in section 3.3.1 and
consider a data set created by solving the exact PDE using the Finite Difference method
with ∆t = T/Nt where Nt = 1000 and ∆x = L/Nx and Nx = 1000.

Let us assume that we are only provided with a subset of this data set. As a test, let us
take every α time step as the input for the PDE discovery task, where α ∈ {1, 2, 4, 8, 16}.
This corresponds to using {100, 50, 25, 12.5, 6.25}% of the total data set. By doing so, the
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Figure 3.13: Reaction diffusion system of PDEs. Comparing the error and execution time
of the adjoint method (blue) to PDE-FIND method (red) against the size of the data set for
the tolerance of 10−7 in the discovered coefficients.

0 20 40
Epochs

10 11

10 8

10 5

10 2

Er
ro

r

e(D)
||e( * )||1

0 25 50 75
Epochs

10 12

10 9

10 6

10 3

Er
ro

r

e(D)
||e( * )||1

Figure 3.14: Heat equation. Evolution of the L1-norm error in coefficients of all consid-
ered terms using adjoint method when only 50% (left) and 6.25% (right) of the data set is
available. Even with fewer time observations, the proposed method accurately recovers the
appropriate coefficients, though it requires more epochs.

accuracy of the Finite Difference method in estimating the time derivatives using the available
data deteriorates, leading to large error in PDE discover task for PDE-FIND method.

However, the adjoint method can use a finer mesh in time compared to the data set in
computing the forward and backward equations and only compare the solution to the data
on the coarse mesh where data is available. We use Nt = 1000 for the forward and backward
solvers in the adjoint method, and impose the final time condition where data is available.
As shown in Table 3.2, Fig. 3.14, and Fig. 3.15, the proposed adjoint method is able to
recover the exact PDE regardless of how sparse the data set is in time.

We emphasize that while adjoint method can use a finer discretization in time than the
one for data on G in solving forward and backward equations, it is bound to use similar
or coarser spatial discretization as G. This is due to the fact that the data points f ∗ are
used for the initial condition of the forward model eq. (3.9), and the final condition of the
backward adjoint equation eq. (3.8).
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Figure 3.15: Error and execution time of the adjoint method (blue) and PDE-FIND method
(red) in finding the coefficients of true heat equation given sparse data set in time. The
proposed adjoint method consistently recovers the correct coefficients, even with limited
observations in time.

Table 3.2: Comparing the proposed adjoint method and PDE FIND in recovering the Heat
equation given sparse data set in time. Here we rounded the coefficients up to three decimal
places. The proposed method consistently recovers the true PDE, even with fewer time
observations.

%Nt Method Recovered PDE

100 Adjoint ft − fxx = 0
PDE-FIND ft − fxx = 0

50 Adjoint ft − fxx = 0
PDE-FIND ft − 0.999fxx + 0.177f − 0.261f 3 − 0.089ffx − 0.011f 3fx − 0.003f 2fxx − 0.001ffxxx = 0

25 Adjoint ft − fxx = 0
PDE-FIND ft − 0.999fxx + 0.532f − 0.778f 3 − 0.268ffx − 0.035f 3fx − 0.010f 2fxx − 0.003ffxxx = 0

12.5 Adjoint ft − fxx = 0
PDE-FIND ft − 0.999fxx + 1.264f − 1.863f 3 − 0.638ffx − 0.081f 3fx − 0.025f 2fxx − 0.007ffxxx − 0.001f 3fxxx = 0

6.25 Adjoint ft − fxx = 0
PDE-FIND ft − 0.999fxx + 2.769f − 4.051f 3 − 1.398ffx − 0.185f 3fx − 0.055f 2fxx − 0.016ffxxx − 0.002f 3fxxx = 0

3.4.1 Sensitivity to noise

Here, we investigate how the error increases once noise is added to the data set. In particular,
we add noise ϵ ∼ N (0, σ2) to each point of the data set for f ∗, where N (0, σ2) denotes a
normal distribution with zero mean and standard deviation σ. As test cases, we revisit the
heat equation (Section 3.3.1) and Burgers’ equation (Section 3.3.2) with added noise of ϵ
with σ ∈ {0.001, 0.005, 0.01, 0.1} %. Before searching for the PDE, we first denoise the
data set using Singular Value Decomposition and drop out terms with singular value below
a threshold of O(10−4).

As shown in Figure 3.16, adding noise to the data set deteriorates the accuracy in finding
the correct coefficients of the underlying PDE for both the adjoint method and PDE-FIND
method. We observe that the adjoint method, both with and without gradient averaging,
is less susceptible to noise compared to PDE-FIND, albeit at a higher computational cost.
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Figure 3.16: Error and execution time of the adjoint method with (green) and without aver-
aging the gradients (blue), along with the PDE-FIND method (red) in finding the coefficients
of the true PDE, i.e. the heat equation (left) and Burgers’ equation (right), given noisy data.
The adjoint method with gradient averaging is more robust to noise, though it comes at a
higher computational cost.

Additionally, averaging the gradients in the adjoint method improves the accuracy around
two orders of magnitude at higher computational cost.

3.5 Addressing ill-posedness

There may exist more than one PDE that replicates the data set. Therefore, the PDE
discovery task is ill-posed due to the lack of uniqueness in the solution. This is an indication
that further physically motivated constraints are needed to narrow the search space to find
the desired PDE. However, among all possible PDEs, which PDE is found by the Adjoint
method with the loss function defined as (3.3)?
To answer this question, let us consider a simple example of the wave equation

f(x, t) = sin(x− t) (3.19)
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which is a solution to infinite PDEs. For example, one class of PDEs with solution f is

ft + kfx + (k − 1)fxxx + c(fxx + fxxxx) = 0 ∀k ∈ N and c ∈ R , (3.20)

defined in a domain x ∈ [0, 2π] and T = 1. We create a data set using the exact f on a grid
with Nt = 10 time intervals and Nx = 100 spatial discretization points. Let us consider a
similar setup as the heat equation example 3.3.1 with derivatives and polynomials indices
d ∈ {1, ..., 6} and p = 1 as the initial guess for the forward model. This leads to 6 terms
with unknown coefficients α. Here, we enable averaging and use a finer discretization in
time (100 steps for forward and backward solvers in each time interval) to cope with the
instabilities of the Finite Difference solver due to the inclusion of the high-order derivatives.
We also disable thresholding except at the end of the algorithm.
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Figure 3.17: Profile of f at t = 0 and t = 1 (left) and the evolution of considered coefficients
during adjoint optimization (right)

As shown in Fig. 3.17, the proposed Adjoint method returns the solution

ft + fx = 0 (3.21)

which is the PDE with the least number of terms compared to all possible PDEs. We note
that for the same problem setting, PDE-FIND identifies the same form of the PDE, i.e.

ft + 0.9897fx = 0 . (3.22)

The identified form of PDE can be explained by the use of regularization term in the cost
function 3.3, which enforces the minimization of the PDE coefficients. Clearly, the regular-
ization term may be changed to find other possible solutions of this ill-posed problem.
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3.6 Discussion

Below we highlight and discuss strengths and weaknesses of the proposed adjoint method.

Strengths. The proposed method has several strengths:

1. The proposed adjoint-based method of discovering PDEs can provides coefficients of
the true governing equation with significant accuracy.

2. Since the gradient of the cost function with respect to parameters are derived ana-
lytically, the optimization problem converges fast. In particular, the adjoint method
becomes cheaper than PDE-FIND as the size of the data set increases.

3. Since the adjoint method uses a PDE solver to find the underlying governing equation,
there is a guarantee that the found PDE can be solved numerically with the same PDE
solver as the one used by the adjoint method.

4. The adjoint method can use a finer mesh in time compared to the available discretiza-
tion of the data set. This allows an accurate recovery of the underlying PDE compared
to the PDE-FIND, where the error in the latter increases as the data set gets coarser
since it estimates derivatives directly (either with Finite Difference or a polynomial fit)
using the given data set.

Weaknesses. Our proposed method has some limitations:

1. In order to use the proposed adjoint method for discovering PDEs, a general solver
of PDEs needs to be implemented. Here, we used Finite Differences which can be
replaced with more advance solvers.

2. In this work, we used the same spatial discretization as the input data. If the spatial
grid of input data is too coarse for the PDE solver, one has to use interpolation to
estimate the data on a finer spatial grid that is more appropriate for the PDE solver.

3. In this work, we made the assumption that the underlying PDE can be solved numer-
ically. This can be a limitation when there are no stable numerical methods to solve
the true PDE. In this scenario, the proposed method may find another PDE that is
solvable and fits to the data with a notable error.
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3.7 Conclusion

In this work, we introduce a novel mathematical method for the discovery of partial dif-
ferential equations given data using the adjoint method. By formulating the optimization
problem in the variational form using the method of Lagrange multipliers, we find an ana-
lytic expression for the gradient of the cost function with respect to the parameters of the
PDE as a function of the Lagrange multipliers and the forward model estimate. Then, using
variational calculus, we find a backwards-in-time evolution equation for the Lagrange mul-
tipliers which incorporates the error with a source term (the adjoint equation). Hence, we
can use the same solver for both forward model and the backward Lagrange equations. Here
we used Finite Differences to estimate the spatial derivatives and forward Euler for the time
derivatives, which indeed can be replaced with more stable and advanced solvers.

We compared the proposed adjoint method against PDE-FIND on several test cases.
While PDE-FIND seems to be faster for small size problems, we observe that the adjoint
method equipped with forward/backward solvers becomes faster than PDE-FIND as the
size of the data set increases. Also, the adjoint method can provide machine-accuracy in
identifying and finding the coefficients when the data set is noise-free. Furthermore, in the
case of discovering PDEs for PDFs given its samples, both methods seem to suffer enormously
form noise/bias associated with the finite number of samples and the Finite Difference on
histogram. This motivates the use of smooth and least biased density estimator in these
methods such as [10] in future work. In the future work, we intend to combine the adjoint-
based method for the discovery of PDE with PINNs as the solver instead of Finite Difference
method. This would allow us to handle noisy and sparse data as well as deploying larger
time steps in estimating the forward and backward solvers.
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Chapter 4

MESSY Estimation: Maximum-Entropy
based Stochastic and Symbolic densitY
Estimation

In this chapter, we introduce MESSY Estimation, a Maximum-Entropy based Stochastic and
Symbolic densitY Estimation method. The proposed approach recovers probability density
functions symbolically from samples using moments of a Gradient flow in which the ansatz
serves as the driving force. In particular, we construct a gradient-based drift-diffusion process
that connects samples of the unknown distribution function to a guess symbolic expression.
We then show that when the guess distribution has the maximum entropy form, the pa-
rameters of this distribution can be found efficiently by solving a linear system of equations
constructed using the moments of the provided samples. Furthermore, we use Symbolic
regression to explore the space of smooth functions and find optimal basis functions for the
exponent of the maximum entropy functional leading to good conditioning. The cost of the
proposed method for each set of selected basis functions is linear with the number of samples
and quadratic with the number of basis functions. However, the underlying acceptance/re-
jection procedure for finding optimal and well-conditioned bases adds to the computational
cost. We validate the proposed MESSY estimation method against other benchmark meth-
ods for the case of a bi-modal and a discontinuous density, as well as a density at the limit
of physical realizability. We find that the addition of a symbolic search for basis functions
improves the accuracy of the estimation at a reasonable additional computational cost. Our
results suggest that the proposed method outperforms existing density recovery methods in
the limit of a small to moderate number of samples by providing a low-bias and tractable
symbolic description of the unknown density at a reasonable computational cost.

4.1 Introduction

Recovering probability density functions from samples is one of the fundamental problems
in statistics with many applications. For example, the traditional task of discovering the
underlying dynamics governing the corresponding distribution function is strongly dependent
on the quality of the density estimator [7]. Applications include particle physics [100],
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boundary conditions for multi-scale kinetic problems [101], [102], and machine learning [103].
Broadly speaking, two categories of methods have been developed for this task: paramet-

ric and non-parametric estimators. While parametric methods assume a restrictive ansatz
for the underlying distribution function, non-parametric methods provide a more flexible
density estimate by performing a kernel integration locally using nearby samples. Although
non-parametric methods do not need any prior knowledge of the underlying distribution,
they suffer from the unclear choice of kernel and its support leading to bias and lack of
moment matching. Examples of non-parametric density estimators include histogram and
Kernel Density Estimation (KDE) [104]–[106].

On the other hand, parametric density estimators may allow matching of moments while
introducing modeling error, since a guess for the distribution is required. Parametric dis-
tributions include Gaussian, orthogonal expansion with respect to Gaussian using Hermite
polynomials (also known as Grad’s ansatz in kinetic theory) [107]–[109], wavelet density
estimation [110], and Maximum Entropy Distribution (MED) [111]–[114] function among
others. Given only the mean and variance, information theory provides us with the Gaus-
sian distribution function as the least biased density, which has been used extensively in the
literature. However, including higher order moments in a similar way, i.e. moment problem,
raises further complications. For example in the context of kinetic theory, Grad proposed
a closure that incorporates higher-order moments by considering a deviation from Gaussian
using Hermite polynomials. Even though the information from higher moments is incorpo-
rated as the parameters of the polynomial expansion in Grad’s ansatz, such a formulation
suffers from not guaranteeing positivity of the estimated density along with the introduction
of bias.

Among parametric density estimators, the Maximum Entropy Distribution (MED) func-
tion has been proposed in information theory as the least biased density estimate given
a number of moments of the unknown distribution [111]. While MED provides the least
biased density estimate, it suffers from two limitations. First, the distribution parameters
(Lagrange multipliers) can only be found by solving a convex optimization problem with
ill-conditioned Hessian [115], [116]. The condition number increases either by increasing
the order of the matching moments or approaching the limit of physical realizability which
motivated the use of adaptive basis functions [117], [118]. Second, MED only exists and is
unique in bounded domains. While existence/uniqueness is guaranteed for recovering the
distribution in the subspace occupied by the samples, the computational complexity asso-
ciated with the direct computation of Lagrange multipliers has prevented researchers from
deploying MED in practice.

Related methods. The problem of recovering a distribution function from samples has
been investigated and studied before. We briefly review some of the work most relevant to
ours:

Data-driven maximum entropy distribution function: Several attempts have been made
in the literature to speed up the computation of Lagrange multipliers for MED using
Neural Networks [119]–[121] and Gaussian process regression [122]. Unfortunately, these
approaches are data-dependent with support only on the trained subspace of distributions.
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Similar to the standard MED and other related closures, the data-driven MED can only
handle polynomial moments as input, even though the data may be better represented with
moments of other basis functions.

Learning an invertible map: The idea is to train an invertible neural network that maps
the samples to a known distribution function. Then the unknown distribution function
is found by inverting the trained map with the known distribution as the input. This
procedure is called the normalizing flow technique [123]–[129]. This method has been used
for re-sampling unknown distributions, e.g. Boltzmann generators [130], as well as density
recovery such as AI-Feynmann [131], [132]. We note that AI-Feynman does not obtain
the density from the samples directly; instead it first fits a density to the samples using
the normalizing flow technique, constructs an input/output data set, then finds a simpler
expression using symbolic regression. While invertible maps can be used to accurately
predict densities, they can become expensive since for each problem one has to learn the
parameters of the considered map via optimization.

Diffusion map: Instead of training for an invertible map, the diffusion map [133], [134]
constructs coordinates using eigenfunctions of Markov matrices. Using pairwise distances
between samples, in this method a kernel matrix is constructed as a generator of the
underlying Langevin diffusion process. As shown by [135], one can generate samples
of the target distribution using Laplacian-adjusted Wasserstein gradient descent [136].
Unfortunately, this approach can become computationally expensive since it requires
singular value decomposition of matrices of size equal to the number of samples.

Gradient flow : The gradient flow method has gained attention in recent years [103], [137],
[138]. In particular, a class of sampling methods has been devised for drawing samples from
a given distribution function using Langevin dynamics with the gradient of log-density as
the driving force [139]–[141]. Yet, this approach does not provide the density of the samples
by itself. In this work, we benefit from this formulation to recover the parameters of a
density ansatz.

Stein Variational Gradient Descent method (SVGD): Given a target density function,
the SVGD method as a deterministic and non-parameterized Gradient method generates
samples of the target by carrying out a dynamic system on particles where the velocity field
includes the grad-log of the target density (similar to the Gradient flow) and a kernel over
particles [142]. SVGD has been derived by approximating a kernelized Wasserstein gradient
flow of KL divergence [139]. While further steps have been taken to improve this method,
e.g. SVGD with moment matching [143], similar to Gradient flow, this class of method
cannot be used for estimating the density itself from samples.

Wavelet and Conditional Renormalization Group method: One of the powerful methods in
signal processing is the wavelet method [144], which may be considered as an extension of
the Fourier method and domain decomposition. The basic idea is to consider the data on
a multiple grids/scales, where the contribution from the smallest frequencies are found on
the coarsest mesh and the highest frequencies on the finest mesh. While this method has
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been extended to finding high dimensional probability density functions [145], [146], it is
not clear how much bias is introduced by the orthogonal wavelet bases.

KDE via diffusion: In this method, the bandwidth of the kernel density estimation is
computed using the minimum of mean integrated squared error and the fact that the KDE
is the fundamental solution to a heat (more precisely Fokker-Planck) equation [147], [148].
While improvement has been achieved in this direction, we note that the KDE-diffusion
method suffers from smoothing effects which introduce bias. Moreover moments of the
unknown distribution are not necessarily matched.

Symbolic Regression: Symbolic Regression (SR) is a challenging task in machine learning that
aims to identify analytical expressions that best describe the relationship between inputs and
outputs of a given dataset. SR does not require any prior knowledge about the model struc-
ture. Traditional regression methods such as least squares [18], likelihood-based [19], [20],
and Bayesian regression techniques [22], [23], [25] use a fixed parametric model structure
and only optimize for model parameters. SR optimizes for model structure and parameters
simultaneously and hence is thought to be NP-hard, i.e. Non-deterministic Polynomial-time
hard, [31], [32], [131]. The SR problem has gained significant attention over recent years
[27], [28], and several approaches have been suggested in the literature. Most methods adopt
genetic algorithms [8], [12], [34]. Lately, researchers proposed using machine learning algo-
rithms (e.g. Bayesian optimization, nonlinear least squares, neural networks, transformers,
etc.) to solve the SR problem [17], [31], [37], [43], [44], [46], [48], [50], [55]–[57], [132]. While
most SR methods are concerned with finding a map from the input to the output, very few
have addressed the problem of discovering probability density functions from samples [132].

Our Contributions. Our work improves the efficiency in determining the maximum
entropy result for the unknown distribution. We specifically develop a new method for
determining the unknown parameters (Lagrange multipliers) of this distribution without
solving the optimization problem associated with this approach. This is achieved by
relating the samples to the MED using Gradient flow, with the grad-log of the MED guess
distribution serving as the drift. This results in a linear inverse problem for the Lagrange
multipliers that is significantly easier to solve compared to the aforementioned optimization
problem. We also propose a Monte Carlo search in the space of smooth functions for
finding an optimal basis function for describing (the exponent of) the maximum entropy
ansatz. As a selection criterion, we rate randomly created basis functions according to the
condition number associated with the coefficient (Hessian) matrix of the inverse problem
for the Lagrange multipliers. This helps to maintain good conditioning, which allows
us to incorporate more degrees of freedom and recover the unknown density accurately.
Discontinuous density functions are treated by considering only the domain supported by
data and using a multi-level solution process.

The chapter is organized as follows. In Section 4.2 we review the concept of Gradient flow
with grad-log of a known density as the drift. In Section 4.3, we show how parameters of a
guess MED may be found by computing the relaxation rates of the corresponding Gradient
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flow. Using the maximum entropy ansatz, in Section 4.4 we derive a linear inverse problem
for finding the Lagrange multipliers without the need for solving an optimization problem.
In Section 4.5, we propose a symbolic regression method for finding basis functions that can
be used to increase degrees of freedom while maintaining good conditioning of the problem
by construction. In Section 4.6, we propose a generalization of the maximum entropy ansatz
that allows including further degrees of freedom in a multi-level fashion. Section 4.7 presents
the complete MESSY algorithm. In Section 4.8, we validate MESSY by comparing its
predictions to those of benchmark density estimators in recovering distributions featuring
discontinuities and bi-modality, as well as distributions close to the limit of realizability.
Finally, in Section 4.9, we offer our conclusions and outlook.

4.2 Gradient flow and theoretical motivation

Consider a set of samples of a random variable X from an unknown density distribution
function f(x). Let our guess for this distribution function, the “ansatz”, be denoted by
f̂(x).

Instead of constructing a non-parametric approximation of the target density numeri-
cally from samples of X (like histogram or KDE) and then calculating its difference from
the guess density f̂ , in this work we suggest measuring the distance using transport. In
particular, we use the fact that the steady-state distribution of X(t) which follows the
stochastic differential equation (SDE)

dX = ∇x

[
log
(
f̂
)]
dt+

√
2dWt (4.1)

is the distribution f̂ . Here, Wt is the standard Wiener process of dimension dim(x). We
note that Eq. (4.1) is known as the gradient flow (or Langevin dynamics) with grad-log of
density as the force. We note that this drift differs from the score-based generative model
in [103] where the drift is a function of time, i.e. ∇x

[
log(f̂(t))

]
.

The distance of f from f̂ may be measured by the time required for the SDE with
X(t = 0) ∼ f to reach steady state. Alternatively, one may compare the moments
computed from the solution to X(t) against the input samples to measure this distance.
Both these approaches are subject to numerical and statistical noise associated with the
numerical scheme deployed in integrating Eq. (4.1). In the next section, we derive an
efficient way of computing the parameters of our approximation f̂ based on these ideas. We
also show that the transition from f to f̂ is monotonic.
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4.3 Ansatz as the target density of Gradient flow

According to Ito’s lemma [149] the transition of f to f̂ is governed by the Fokker-Planck
equation

∂f

∂t
= ∇x

[
f̂ ∇x

[
f/f̂

]]
(4.2)

= −∇x ·
[
∇x

[
log
(
f̂
)]
f
]
+∇2

x

[
f
]
. (4.3)

Proposition 4.3.1. The distribution function f(t) governed by the Fokker-Planck Eq. (4.2)
converges to f̂ as t → ∞. Furthermore, the cross entropy distance between f and f̂ mono-
tonically decreases during this transition.

Proof. Let us multiply both sides of Eq. (4.2) by log(f/f̂) and take the integral with respect
to x in order to obtain the evolution of the cross-entropy S =

∫
f log(f/f̂)dx. It follows

that

dS

dt
=

∫
log(f/f̂)∇x

[
f̂ ∇x[f/f̂ ]

]
dx

=

∫
∇x

[
f̂ log(f/f̂)∇x[f/f̂ ]

]
dx−

∫
f̂ ∇x[log(f/f̂)] · ∇x[f/f̂ ]dx

=

∫
∇x

[
f̂ log(f/f̂)

f

f̂
∇x[log(f/f̂)]

]
dx︸ ︷︷ ︸

=0

−
∫
f̂ ∇x[log(f/f̂)] ·

f

f̂
∇x[log(f/f̂)]dx

= −
dim(x)∑
i=1

∫
f
(
∇xi [log(f/f̂)]

)2
dx ≤ 0 . (4.4)

Here, we use the regularity condition that f log(f/f̂)∇x log(f/f̂) → 0 as |x| → ∞. There-
fore, given any initial condition for f at t = 0, the cross-entropy distance between f and f̂
following the Fokker-Planck in Eq. (4.2) monotonically decreases until it reaches the steady-
state with the trivial fixed point f → f̂ as t→∞. For details, see [139].

Instead of seeking solutions of Eq. (4.2), our approach focuses on working with appropriate
empirical moments of this equation, which can be evaluated from the available samples.
As will be demonstrated below, this approach lends itself to a very effective method for
determining f̂ .

Let us denote a vector of basis functions in Rdim(x) by H(x). By multiplying both
sides of Eq. (4.3) by H(x) and integrating with respect to x, we obtain the evolution
equation for the moments, also known as the relaxation rates,

d

dt

[ ∫
Hfdx

]
= −

∫
H∇x ·

[
∇x[log(f̂)]f

]
dx+

∫
H∇2

x

[
f
]
dx . (4.5)
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Assuming that the underlying density f is integrable in Rdim(x) and fH → 0 as x → ∞,
which is implied by the existence of moments, we use integration by parts to obtain

d

dt

[ ∫
Hfdx

]
=

∫
∇x[H ] · ∇x[log(f̂)]fdx+

∫
∇2

x[H ]fdx . (4.6)

Given samples of f , one can compute the relaxation rates of moments represented by Eq. (4.6)
as a measure of the difference between f̂ and f . These relaxation rates can be used as the
gradient in the search for parameters of a given ansatz, i.e.

g(t) =
d

dt

〈
H(X(t))

〉
=
〈
∇x[H(X(t))] · ∇x[log(f̂(X(t)))]

〉
+
〈
∇2

x[H(X(t))]
〉
. (4.7)

In the above, ⟨ϕ(X)⟩ denotes the unbiased empirical measure for the expectation of ϕ(X)
which is computed using samples of Xi, for i = 1, ..., N via ⟨ϕ(X)⟩ = 1

N

∑N
i=1 ϕ(Xi).

In what follows we develop an approach that uses g(t) as the gradient of an optimization
problem to bring computational benefits to the solution of the maximum entropy problem.

4.4 Maximum Entropy Distribution as an ansatz for the
gradient flow

In this work, we use the maximum entropy distribution function as our parameterized ansatz
for f̂ , i.e.

f̂(x) = Z−1 exp
(
λ ·H(x)

)
(4.8)

where Z =
∫
exp(λ ·H(x))dx is the normalization constant. The motivation for choosing

this family of distributions is the fact that this is the least-biased distribution for the moment
problem, provided the given moments are matched.

Definition 4.4.1. Moment problem

The problem of finding a distribution function f(x) given its moments
∫
H(x)f(x)dx = µ

for the vector of basis functions H(x) will be referred to as the moment problem.

In particular, the density in Eq. (4.8) is the extremum of the loss functional that mini-
mizes the Shannon entropy with constraints on moments µ using the method of Lagrange
multipliers, i.e.

f̂(x) = argmin
F∈K

C[F(x)] (4.9)

where C[F(x)] :=
∫
F(x) log(F(x))dx−

Nb∑
i=1

λi

(∫
Hi(x)F(x)dx− µi(x)

)
. (4.10)

Here K denotes the space of probability density functions with measurable moments; see
[111] and Appendix C.1 for more details. In this work, we denote the number of considered
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basis functions by Nb, while Nm denotes the highest order of these basis functions. For
instance, in the case of traditional one-dimensional random variable where polynomial basis
functions are deployed, i.e. H =

[
x, x2, ..., xNm

]
, we have Nm = Nb.

Here, we use the following definition for the growth rate of a basis function.

Definition 4.4.2. Growth rate of n-th order

A function ψ(x) has the growth-rate of n-th order if |ψ(x)| ≤ Cxn for all x ≥ x0 where
C ∈ R+ and x0 ∈ R. This is often denoted by ψ(x) = O(xn).

We note that the moment problem for the MED is reduced to the following optimization prob-
lem by substituting the extremum in Eq. (4.8) back in the objective functional of Eq. (4.10),
see e.g. [150].

Definition 4.4.3. Standard dual optimization problem of Maximum entropy distribution func-
tion

Given moments µ, the Lagrange multipliers λ of the maximum entropy distribution are the
solution to the following unconstrained optimization problem

λ =λ̂∈RNb

{
log

[∫
exp(λ̂ ·H(x))dx

]
− λ̂ · µ

}
. (4.11)

Clearly, the standard optimization problem for finding Lagrange multipliers is nonlinear
and requires deploying iterative methods, such as the Newton-Raphson method detailed in
Appendix C.1.

Instead, using the Gradient flow, we find an alternative optimization problem for
finding Lagrange multipliers which is linear and simple to compute from given samples.
Substituting Eq. (4.8) for f̂ in Eq. (4.7) results in the relaxation rate

g(t) =

dim(x)∑
i=1

〈
∇xi

[
H
(
X(t)

)]
⊗∇xi

[
H
(
X(t)

)]〉
λ+

dim(x)∑
i=1

〈
∇2
xi

[
H
(
X(t)

)]〉
, (4.12)

where ⊗ indicates the outer product. Let us define the matrix LME as

LME(t) :=

dim(x)∑
i=1

〈
∇xi

[
H
(
X(t)

)]
⊗∇xi

[
H
(
X(t)

)]〉
. (4.13)

Definition 4.4.4. Optimization problem of Maximum entropy distribution function via Gra-
dient flow

Given samples X of the target distribution f , Lagrange multipliers λ of maximum entropy
distribution estimate f̂ is the solution to the following unconstrained optimization problem

λ =λ̂∈RNb

{
LME(t) :

λ̂⊗ λ̂

2
+

dim(x)∑
i=1

〈
∇2
xi

[
H
(
X(t)

)]〉
· λ̂
}
, (4.14)

where (:) denotes the Frobenius inner (or double dot) product, i.e. A : B =
∑

i,j AijBij for
given two-dimensional tensors A and B.
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We note that the matrix LME is the Hessian of the optimization problem with gradient given
by Eq. (4.12) which is positive definite, making the underlying optimization problem convex.

Proposition 4.4.5. The Hessian matrix LME is symmetric positive definite. As a result,
the optimization problem with gradient given by Eq. (4.12) and Hessian matrix given by
Eq. (4.13) is strictly convex.

Proof. Clearly, the Hessian matrix defined by Eq. (4.13) is symmetric, i.e. LME
i,j = LME

j,i ∀i, j =
1, ..., Nb. We further note that this matrix is positive definite, i.e. for any non-zero vector
w ∈ RNb we can write

wTLME(t)w =

dim(x)∑
i=1

〈
wT∇xi

[
H
(
X(t)

)]
∇xi

[
H
(
X(t)

)]T
w
〉

(4.15)

=

dim(x)∑
i=1

〈(
wT∇xi

[
H
(
X(t)

)])2〉
> 0 . (4.16)

Given the Hessian is symmetric positive definite, we conclude that the underlying optimiza-
tion problem is convex [151].

When the matrix LME is well-conditioned, we can directly compute the Lagrange multipliers
using samples, i.e. a linear solution to the optimization problem in Def. 4.4.4. This can be
achieved by solving Eq. (4.12) for the Lagrange multipliers

LME(t)λ = g(t)−
dim(x)∑
i=1

〈
∇2
xi

[
H
(
X(t)

)]〉
(4.17)

for a given relaxation rate g.
We proceed by noting that a convenient way for determining the parameters of f̂ is to

set f̂ = f(t = 0) in the above formulation, or in other words, require that the given samples
are also samples of f̂ as given. This corresponds to the steady solution of Eq. (4.12), namely
g → 0, which implies the remarkably simple result

λ =− (LME)−1

dim(x)∑
i=1

〈
∇2
xi

[
H
(
X(t = 0)

)]〉 , (4.18)

which implies a closed-form solution for the Lagrange multipliers through the above linear
problem.

While Eq. (4.18) analytically recovers the Lagrange multipliers λ directly from samples
of X, it still requires inverting the matrix LME which may be ill-conditioned [152], [153].
This means that the resulting Lagrange multipliers may become sensitive to noise in the
samples and the choice of the basis functions. In order to cope with this issue, we propose
computing λ as outlined below.
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Orthonormalizing the basis functions. We construct an orthonormal basis function
with respect to X ∼ f using the modified Gram-Schmidt algorithm as described in Algo-
rithm 4. We deploy the orthonormal basis functions from the Gram-Schmidt procedure to
construct ∇x[H ]⊥, i.e. ∇x[H ] is the input to Algorithm 4, and by integration we obtain
H⊥. This leads to a well-conditioned matrix LME, since the resulting matrix should be close
to identity LME ≈ I with condition number cond

(
LME

)
≈ 1 subject to round-off error. We

note that the cost of this algorithm is quadratic with the number of basis functions and
linear with the number of samples.
Algorithm 4: Modified Gram-Schmidt: Given a vector of basis functions ϕ, this
algorithm constructs an orthonormal basis functions ϕ⊥ with respect to f such that
⟨ϕ⊥(X)⊗ ϕ⊥(X)⟩ ≈ I using the modified Gram-Schmidt procedure [152], [154].
Input: ϕ
Initialize ϕ⊥ ← ϕ;
for i = 1, ..., dim(ϕ) do

ϕ⊥
i = ϕ⊥

i /
√
⟨(ϕ⊥

i (X))2⟩;
for j = i+ 1, ..., dim(ϕ) do

ϕ⊥
j ← ϕ⊥

j − ⟨ϕ⊥
i (X)ϕ⊥

j (X)⟩ϕ⊥
i ;

end
end
Return ϕ⊥

4.4.1 Comparing the proposed formulation to standard Maximum
Entropy Distribution

Here we point out several advantages of using the proposed loss function compared to the
standard maximum entropy closure.

• A closed-form solution. By setting the relaxation rate of the moments to zero, the
Lagrange multipliers can be computed directly from samples X ∼ f , i.e. by solving the
system in Eq. (4.18), without the need for the line-search associated with the Newton
method of solving the optimization problem of standard MED, i.e. Def. 4.4.3. This
is a significant improvement compared to standard MED, where Lagrange multipliers
are estimated iteratively — see Eq. (C.5) and Algorithm 8 in Appendix C.1.

• Avoiding the curse of dimensionality in integration. In the proposed method,
the computational complexity associated with the integration only depends on the
number of samples, and not on the dimension of the probability space. The proposed
method takes full advantage of having access to the samples of the unknown distribu-
tion function. This is in contrast to the standard Newton-Raphson method of solving
optimization problem 4.4.3 where samples of the initial guessed MED corresponding
to the initial guessed λ is not available and one runs to the curse of dimensionality in
computation of gradient and Hessian.

In particular, we compute the orthonormal basis function, gradient, and Hes-
sian using the samples of X. This use of the Monte Carlo integration method
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avoids the curse of high dimensionality associated with the conventional method for
computing Lagrange multipliers. By deploying the Law of Large Numbers (LLN) in
computing integrals, the proposed method benefits from the well-known result that
the error of Monte Carlo integration is independent of dimension. In particular, given
N independent, identically distributed d-dimensional random variables X1, ...,XN

with probability density f(x), where X ∼ f , the variance of the empirical estimator
of a moment ϕ(x) of f , i.e. E∆[ϕ(X)] =

∑N
i=1 ϕ(Xi)/N , is

Var(E∆[ϕ(X)]) =
Var(ϕ(x))

N
(4.19)

which is independent of the dimension d = dim(x). Therefore, for a required
ratio of variance in prediction and variance of the underlying random variable, i.e.
Var(E∆[ϕ(X)])/Var(ϕ(x)), the cost of integration is O(sN). The factor s denotes the
cost of computing ϕ(X) for one sample.

This is a considerable advantage compared to the standard approach of finding
the Lagrange multipliers of MED where the cost associated with integration is of order
O(Nd) where N is the number of discretization points in each dimension. We remind
the reader that in the standard Newton-Raphson method of finding the Lagrange
multipliers, one updates the guessed λ by

λ← λ−L−1(λ)g(λ) (4.20)

where the gradient g and Hessian L need to be computed during each iteration, see
Section C.1 and reference therein for details. Since samples of the guessed distribution,
i.e. guessed λ, are not available, computation of the gradient and Hessian can become
expensive. Specifically, one has to either generate samples of the guess distribution
in each intermediate step of the Newton-Raphson method which adds complexity, or
deploy a deterministic integration method with cost O(Nd) where N is the number of
discretization points in each dimension and d = dim(x).

We further point out that since in both the proposed solution and the standard
iterative method a matrix needs to be inverted, the cost in both algorithms scales
O(N3

b ) with number of basis functions (moments) regardless of the cost associated with
integration. For example, in case of using monomials up to 2nd order in all dimensions
as basis functions i.e. H = [x1, ..., xd, x

2
1, x1x2, ..., x

2
d], there are |H| = d + d(d + 1)/2

unique bases, leading to complexity O ((d+ d(d+ 1)/2)3) for solving the linear system
given by Eq. (4.18).

• Relaxed existence requirements. Since the proposed approach directly finds the
Lagrange multipliers for the realizable moment problem linearly using Eq. (4.18), it
avoids the problem of possible non-realizable distribution estimate with intermediate
Lagrange multipliers that is present in the iterative methods. This is another advan-
tage compared to the standard MED optimization problem, Eq. (4.4.3), where the line
search Eq. (4.20) may fail as the distribution associated with the intermediate λ may
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not exist (not integrable). This is a common problem when finding Lagrange multi-
pliers for the moment problem close to the limit of realizability when the condition
number of the Hessian becomes large and the iterative Newton-Raphson method fails,
e.g. see [153].

4.5 Symbolic-Based Maximum Entropy Distribution

In the standard moment problem it is common to consider polynomials for the moment
functions in H , i.e. H = [x, x2, . . .], even though other basis functions may better represent
the unknown distribution. Additionally, such polynomial basis functions are notorious for
resulting in ill-conditioned solution processes. For these reasons, we introduce a symbolic
regression approach to introduce some diversity and ultimately optimize over our use of
basis functions. As we will see in the next section, adding the symbolic search to our
MED description improves the accuracy, convergence, and robustness of the density recovery
problem.

Before diving into the proposed method, we first briefly review the general task of sym-
bolic regression.

Definition 4.5.1. Symbolic Regression (SR) problem

Given a metric L and a dataset D = {xi, yi}Ni=1 consisting of N independent identically
distributed (i.i.d.) paired samples, where xi ∈ Rdim(x) and yi ∈ R, the SR problem searches
in the space of functions S defined by a set of given mathematical functions (e.g., cos, sin,
exp, ln) and arithmetic operations (e.g., +, −, ×, ÷), for a function ψ∗(x) which minimizes∑N

i=1 L
(
yi, ψ(xi)

)
where ψ ∈ S.

In order to deploy the SR method for the density recovery, we need to restrict the space
of functions S to those which satisfy non-negativity, normalization and existence of moments
with respect to the vector of linearly independent (polynomial) basis functions R. The space
of such distributions can be defined as

Sf |R :=

{
f(x) ∈ S

∣∣∣∣ f(x) ≥ 0 ∀x ∈ Rdim(x),

∫
Rdim(x)

f(x) dx = 1,

∫
Rdim(x)

R(x)f(x) dx < +∞
}
. (4.21)

In order to ensure non-negativity, motivated by the MED formulation, we consider f̂ to
be exponential, i.e.

f̂(x) ∝ exp
(
G(x)

)
⇐⇒ log

(
f̂(x)

)
∝ G(x) , (4.22)

where G(x) is an analytical (or symbolic) function of x =
[
x1, x2, . . . , xdim(x)

]
. While the

non-negativity is guaranteed, existence of moments needs to be verified when a test function
for G(x) is considered. As our focus in this work is on the maximum entropy distribution
function given by Eq. (4.8), we consider G(x) to have the form

G(x) = λ ·H(x) =

Nb∑
i=1

λiHi(x) . (4.23)

Now we proceed to provide a modified formulation for SR tailored to our MED problem.
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Definition 4.5.2. Symbolic Regression for the Maximum Entropy Distribution (SR-MED)
problem

Given a measure of difference between distributions L (e.g. KL Divergence) and a dataset
D = {Xi}Ni=1 consisting of N i.i.d. samples, where Xi ∈ Rdim(x), the SR-MED problem
searches in the space SNb for Nb basis functions subject to f̂ ∈ Sf |R which minimizes L.

Figure 4.1: Expression tree for x2 × cos(x).

Here, we deploy continuous functions consisting of binary operators (e.g. +, −, ×, ÷)
or unary functions (e.g. cos, sin, exp, log) to fill the space SNb . As in most of the SR
methods, we encode mathematical expressions using symbolic expression trees, a type of
binary tree, where internal nodes contain operators or functions and terminal nodes (or
leaves) contain input variables of constants. For instance, the expression tree in Figure 4.1
represents x2 cos(x). In this work, we perform a Monte Carlo symbolic search in the space of
smooth functions (by generating random expression trees) to find a vector of basis functions
H that guarantees acceptable cond(LME), by rejecting candidates that do not satisfy this
condition. In our search, we do not consider test basis functions with odd growth rates which
lead to non-realizable distributions.

4.6 Multi-level density recovery

We further improve our proposed method by introducing a multi-level process that improves
our prediction as the distribution becomes more detailed. The goal is to obtain a more
generalized MED estimate with the form

f̂(x) =

NL∑
l=1

m[l] f̂ [l](x) (4.24)

where f̂ [l](x) =
1

Z [l]
exp

(
λ[l] ·H [l](x)

)
, (4.25)

(.)[l] denotes the level index, Z [l] is the normalization factor of density at level l, NL is the
number of levels considered and m[l] indicates the portion of total mass that is covered by
f̂ [l]. We note that this multi-level approach is recursive and can be described as follows:

• Step 1: Find MED estimate f̂ [l] at level l. At level l, first we pick a basis function
H [l] by solving the SR-MED problem detailed in Def. 4.5.2. Then, we orthonormalize
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the basis function with respect to the distribution of the samples using Gram–Schmidt’s
procedure as outlined in Algorithm 4.

• Step 2: Removing subset of samples covered by f̂ [l]. Here, we attempt to
find and remove a subset of samples D[l]

mask – representing a fraction of the mass, i.e.
m[l] = |D[l]

mask|/|D| – that can be estimated by our estimated f̂ [l] at this level. To
this end, we deploy acceptance/rejection with probability f̂ [l]/f̂hist to find and remove
D[l]

mask from the remaining samples D[l].

• Step 3: Repeat steps 1-2 for the next level l + 1 until almost no samples
are left. Repeat steps 1-2 with the remaining uncovered samples (which constitutes
the next level) until there are (almost) no uncovered samples. The resulting total
distribution is a weighted sum of the estimates from each level.

In Algorithm 5, we detail a pseudocode for our devised multi-level process. As we will see in
the next section, our proposed multi-level recursive mechanism improves overall performance,
and elegantly describe details of multi-mode distributions.
Algorithm 5: Multi-level, symbolic and recursive algorithm for density recovery.
Here, D[l] denotes the set of samples at level l and u is a random variable that is
uniformly distributed in (0, 1), i.e. u ∼ U([0, 1]).
Input: D[1] = D = {Xi}Ni=1, N tot

L = NL

for l = 1, ..., NL do
Sample random basis functions H [l] that satisfies Def. 4.5.2 starting from
polynomials in level l = 1;

Compute f̂ [l](x) given D[l] using Algorithm 4;
D[l]

mask ← {D[l] | f̂ [l](X)/f̂hist(X) > u} where u ∼ U([0, 1]);
m[l] ← |D[l]

mask|/|D|;
if
∑l

j=1 |D
[j]
mask| ≈ |D| then

D[l]
mask ← D[l]; // Mask all available samples

m[l] ← |D[l]
mask|/|D|;

N tot
L ← l;

break; // Terminate the process
else
D[l+1] ← D[l]\D[l]

mask; // The uncovered samples are left for the next level
end

end

Return f̂(x) =
∑Ntot

L
l=1 f̂ [l](x) |D[l]

mask|/|D|; // N tot
L : total number of recursive calls

4.7 Algorithm for MESSY estimation

The complete MESSY estimation algorithm is summarized in Algorithm 6. Within the
iteration loop, following each application of the multi-level, symbolic, and recursive density
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recovery summarized in Algorithm 5, we introduce a maximum-cross entropy distribution
(MxED) correction step (see Appendix C.2 for details) to reduce any bias in our prediction
for f̂ from the former.

Finally, after completing the desired number of iterations, the algorithm returns the
candidate density with the smallest KL Divergence given by

KL
(
f || f̂

)
=

∫
f(x) log

(
f(x)

f̂(x)

)
dx (4.26)

= −
∫
f(x) log

(
f̂(x)

)
dx+

∫
f(x) log

(
f(x)

)
dx (4.27)

≈ −
〈
log
(
f̂(X)

)〉
+

∫
f(x) log

(
f(x)

)
dx︸ ︷︷ ︸

constantwith respect to f̂

. (4.28)

In other words, we use −
〈
log
(
f̂(X)

)〉
as our selection criterion.

Algorithm 6: Pseudocode of the proposed MESSY estimation method. Here, R is
the vector of linearly independent (polynomial) basis functions used in the moment
matching procedure of MxED. Here, for MESSY-S the number of basis functions Nb

is sampled uniformly from the sample space ΩNb , e.g. here we use ΩNb = {2, ..., 8}
unless mentioned otherwise.
Input: D = {Xi}Ni=1, ΩNb , Nm, Niters

Initialize f̂ (i) = 0 for i = 1, ..., Niters;
for i = 1 to Niters do

if i > 1 then
Sample Nb ∼ U(ΩNb);

end
Find f̂ using multi-level, symbolic and recursive Algorithm 5 for density
recovery;

Generate samples of Y ∼ f̂ ;
Apply boundary condition (bounded/unbounded) to f̂ ;
Correct f̂ using MxED (Algorithm 9) given samples Y as prior and E[R(X)] as
target moments;
f̂ (i) ← f̂ ;

end
f̂MESSY−P = f̂ (1);

f̂MESSY−S =
f̂∈{f̂ (i)}Niters

i=1

(
KL(f || f̂)

)
;

Return f̂MESSY−P and f̂MESSY−S.

The MESSY algorithm comes in two flavors: MESSY-P, which considers only polynomial
basis functions for H , and MESSY-S which includes optimization over basis functions using
the SR algorithms outlined above. In fact, by convention, the SR algorithm in MESSY-
S starts its first iteration using polynomial basis functions up to order Nm as the sample
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space of smooth functions. In other words, MESSY-P is a special case of MESSY-S with
Niter = 1. In the remaining iterations of MESSY-S, we perform the symbolic search in the
space of smooth functions of order Nm to find Nb bases that provide manageable cond(LME),
as discussed in Section 4.6.

In addition, we provide the option to enforce boundedness of f̂ on the support that is
specified by the user, i.e. letting f̂(x) = 0 for all x outside the domain of interest. This allows
us to recover distributions with discontinuity at the boundary which may have application
in image processing.

We also provide an option to further reduce the bias by minimizing the cross-entropy
given samples of bounded/unbounded multi-level estimate as prior and moments of input
samples as the target moments (see Appendix C.2 for more details on the cross-entropy
calculation). For this optional step, we generate samples of f̂ and match the moments of
polynomial basis functions up to order Nm. Since the solution at each level of f̂ is close to
the exact MED solution, the optimization problem associated with the moment matching
procedure of the cross-entropy algorithm converges very quickly, i.e. in a few iterations,
providing us with a correction that minimizes bias along with the weighted samples of our
estimate as the by-product. We note that in general the order of the randomly created
basis function during the MESSY-S procedure may be different from the one used in the
cross-entropy moment matching procedure.

4.8 Results
In this section we demonstrate the effectiveness of the proposed MESSY estimation method in
recovering distributions given samples, using a number of numerical experiments, involving a
range of distributions ranging from multi-mode to discontinuous. For validation, we provide
comparisons with the standard KDE with an optimal bandwidth obtained using K-fold
cross-validation with K = 5. We consider a uniform grid with 20 elements for the cross-
validation in a range that spans from 0.01 to 10 on a logarithmic scale. We also compare
with cross-entropy closure with Gaussian as the prior (MxED) using Newton’s method. We
note that while the standard maximum entropy distribution function differs from MxED as
the latter incorporates a prior, we intentionally use MxED as a benchmark instead because
the standard approach can be extremely expensive.

Unless mentioned otherwise, we report error, time, and KL Divergence by ensemble
averaging over 25 for different sets of samples. Furthermore, in the case of MESSY-S we
perform Niters = 10 iterations, and we consider (+,−,×) operators and (cos, sin) functions.
Here we report the execution time using a single-core CPU for each method. Typical symbolic
expressions of density functions recovered by MESSY for the test cases considered here can
be found in Appendix C.5. Furthermore, in Appendix C.3, we perform an ablation study
that shows the importance of each component of the MESSY algorithm.
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4.8.1 Bi-modal distribution function

For our first test case, we consider a one-dimensional bi-modal distribution function con-
structed by mixing two Normal distribution functions N (x |µ, σ), i.e.

f(x) = αN (x |µ1, σ1) + (1− α)N (x |µ2, σ2), (4.29)

with α = 0.5, means µ1 = −0.6 and µ2 = 0.7, and standard deviations σ1 = 0.3 and σ2 = 0.5.

Figure 4.2 compares results from MESSY, KDE and MxED for three different sam-
ple sizes, namely 100, 1000, and 10, 000 samples of f . For MxED and MESSY-P, we use
Nb = Nm = 4. In the case of MESSY-S, we randomly create Nb basis functions which are
O(x4) (where Nb is sampled uniformly within {2, . . . , 8}). Both MESSY results are subject
to a cross-entropy correction step with Nb = 4 polynomial moments. Clearly, the MxED
and MESSY methods provide a reasonable estimate when a small number of samples is
available; where KDE may suffer from bias introduced by the smoothing kernel. As a refer-
ence for the reader, we also compared the outcome density with a histogram in Appendix C.4.

In order to analyze the error further, Fig 4.3 presents the relative error in low and
high order moments, KL Divergence, and single-core CPU time as the measure of computa-
tional cost for considered methods. Given optimal bandwidth is found, the KDE error can
only be reduced by increasing the number of samples. However, maximum entropy based
estimators such as MxED and MESSY provide more robust estimate when less samples
are available. We point out that the convergence of the cases where only moments of
polynomial basis functions are considered, i.e. MxED and MESSY-P, relies on the degree of
the polynomials and not the number of samples. On the other hand, the additional search
associated with MESSY-S returns more appropriate basis functions for a given upper bound
on the order of the basis functions.
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Figure 4.2: Density estimation using KDE, MxED, MESSY-P, and MESSY-S given (a) 100,
(b) 1,000, and (c) 10,000 samples.

Next, we perform a convergence study on 10,000 samples and show that the parametric
description converges to the solution when its degrees of freedom are increased. In
Fig. 4.4, we show that both MESSY-P and MESSY-S converge to the true solution by
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Figure 4.3: Comparing the relative error in (a) the first four moments, (b) two higher order
moments (i.e. fifth and sixth moments), (c) KL Divergence, and (d) the execution time
for KDE, MxED, MESSY-P, and MESSY-S in recovering distribution function for different
sample sizes. Here, the error bar (in black) corresponds to the standard error of the empirical
measurements.

increasing either the order of polynomial basis function, or the number of basis functions,
respectively. In the case of MESSY-S, we generated symbolic expressions that are O(x2).
The improved agreement compared to the MESSY-P case highlights the benefit derived
from non-traditional basis functions that may better represent the data.

As shown in Fig. 4.5, the MESSY-S procedure results in better-conditioned LME ma-
trices than the MESSY-P for the same degrees of freedom. However, the search for a
good basis function increases the computational cost. In each iteration of the search for
basis functions, the MESSY-S algorithm may reject symbolic basis candidates based on the
condition number of the matrix LME. In other words, the improved performance associated
with MESSY-S comes at some increased computational cost.

4.8.2 Limit of realizability

One of the challenging moment problems for maximum entropy methods is the one involving
distributions near the border of physical realizability. In the one-dimensional case with
moments of the first four monomials [x, x2, x3, x4] as the input, the moment problem is
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Figure 4.4: Convergence of MESSY estimation to target distribution function by (a) increas-
ing the order of polynomial basis functions for MESSY-P or (b) increasing the number of
randomly selected symbolic basis functions with Nm = 2 for MESSY-S.

physically realizable when ∫
x4f(x)dx ≥

(∫
x3f(x)dx

)2

+ 1. (4.30)

The moment problem with moments approaching the equality in Eq. (4.30) is called limit
of realizablity [155], [156]. We consider samples from a distribution in this limit as our test
case here, since the standard MED cannot be solved due to an ill-conditioned Hessian (see
[117], [153]).

In Fig. 4.6, we depict the estimated density of a bi-modal distribution in this limit
given its samples with moments ⟨X⟩ = 0, ⟨X2⟩ = 1, ⟨X3⟩ = −2.10 and ⟨X4⟩ = 5.42. Here,
we compare the density obtained using KDE, MxED, MESSY-P, and MESSY-S to the
histogram of samples. In this example, we obtained the MESSY-S estimate by searching in
the space of smooth functions with Nb ∈ {2, ..., 8} basis functions and compare polynomial
and symbolic basis functions of order 2 and 4.

In Fig. 4.7, we compare the KL Divergence, the execution time, and the condition number
for each method. While KDE suffers from over-smoothing and MxED/MESSY-P require at
least Nb = 4 (and consequently Nm = 4, resulting in a stiff problem with large condition
number), MESSY-S can obtain accurate density estimates by using unconventional basis
functions with Nm = 2, thus maintaining a manageable condition number.
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Figure 4.5: KL Divergence, execution time, and condition number against the degrees of
freedom, i.e. the order of polynomial basis functions for MESSY-P or the number of symbolic
basis functions with Nm = 2 for the MESSY-S estimate.

4.8.3 Discontinuous distributions

We now highlight the benefits of using MESSY estimation with piecewise continuous
capability for recovering distributions with a discontinuity at the boundary. As an example,
let us consider the exponential distribution with a probability density function given by

f(x) =

{
ae−ax if x ≥ 0

0 otherwise
(4.31)

with a = 1.

Given 10, 000 samples of this distribution, in Fig. 4.8 we compare KDE, MxED, and
the proposed MESSY-P and MESSY-S methodologies. In the case of MxED and MESSY-P
we consider second-order polynomial basis functions, and for MESSY-S we search the
space of smooth functions for Nb ∈ {2, ..., 8} symbolic basis functions of order O(x2). For
MESSY-P and MESSY-S, we apply the boundary condition

f̂(x) = 0 ∀x < min(X). (4.32)

By providing information about the boundedness of the expected distribution, we enable
MESSY to accurately predict densities with discontinuity near the boundary. As it can be
seen clearly from Fig. 4.8, in contrast to MxED, both MESSY-P and MESSY-S provide
accurate predictions by taking advantage of the information about the boundedness of the
target density.

The KL Divergence score and execution time for each method is shown in Fig. 4.9. These
figures show that MESSY-P and MESSY-S provide a more accurate description compared
to the KDE estimate, albeit at a higher computational cost.

4.8.4 Two-dimensional distributions

In this section the proposed MESSY methodology is applied to the estimation of 2-
dimensional distributions. Let us consider a multivariate Gaussian distribution in two di-
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Figure 4.6: Estimating density for a case of distribution near the limit of realizability using
KDE, MxED, MESSY-P, and MESSY-S. The solutions of MxED, MESSY-P, and MESSY-S
are obtained using basis functions of second (left) and fourth (right) order.

mensions, i.e. X = (X1, X2) ∼ N (µ,Σ) with probability density

N (x;µ,Σ) =
1

(2π)d/2
√

det(Σ)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(4.33)

where d = 2, x = (x1, x2) ∈ R2, µ is the mean vector, and Σ is the covariance matrix. In
this example,

µ =

[
0
0

]
, Σ =

[
1 0.5
0.5 1

]
. (4.34)

Let us also consider a more complex 2D distribution by multiplying two independent 1D
distributions, namely the exponential and Gamma distributions, i.e. X1 ∼ Exp(λ), X2 ∼
Γ(k, θ), and X = (X1, X2) ∼ Exp(λ)Γ(k, θ). In particular, we consider samples of the joint
pdf given by

f(x1, x2;λ, k, θ) = f(x1;λ)f(x2; k, θ) =

{
λe−λx1 · x

k−1
2 e−x2/θ

Γ(k)θk
x1 ≥ 0, x2 ≥ 0

0 otherwise
(4.35)

where λ > 0 is the rate parameter, k > 0 is the shape parameter, θ > 0 is the scale
parameter, and Γ(·) is the gamma function. In our example, we use λ = 2, k = 3, and
θ = 0.5.

Fig. 4.10 compares the true distribution against the KDE, MESSY-P and MESSY-S
estimate given 104 samples of the distribution. In cases of MESSY-P and MESSY-S, we
consider basis functions up to 2nd order in each dimension. The figure shows that KDE,
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Figure 4.7: Comparing KL Divergence, execution time, and condition number of KDE,
MxED, MESSY-P, and MESSY-S for an unknown distribution near the limit of the realiz-
ability. Here, we consider polynomial basis functions of second and fourth order for MxED
and MESSY-P denoted by MxED (2), MxED (4), MESSY-P (2) and MESSY-P (4), respec-
tively. In MESSY-S, we consider symbolic basis functions of second order only which we
denote by MESSY-S (2).

MESSY-P and MESSY-S provide a reasonable estimate for the multivariate normal distri-
bution. However, among all considered estimators for the case of the Gamma-exponential
distribution, MESSY-S seems to provide a slightly better estimate, i.e. it captures the peak
in the most probable region of the distribution.

4.8.5 Cost of MESSY-P with respect to dimension

As discussed in section 4.4.1, for a given moment problem (fixed vector of basis functions),
the cost of evaluating Lagrange multipliers in the proposed method is linear with respect to
number of samples and independent of dimension — a benefit of Monte Carlo integration.
However, similar to the standard MED approach, the proposed MESSY estimate requires
the inversion of a Hessian matrix L ∈ RNb×Nb . Therefore, in addition to integration, a
MESSY cost estimate also includes solution of a linear system of equations with cost of
order O(N3

b ). In this example, we consider the MESSY-P estimator with basis functions
H =

[
x1, ..., xd, x

2
1, x1x2, ..., x

2
d

]
for estimating a target d-dimensional multivariate normal

distribution Eq. (4.33) with mean µ

µ ∼ N (0,
1

2
I) (4.36)

and covariance matrix Σ

Σ = I +UUT (4.37)

where Ui,j =

{
0 i < j
ξ otherwise and ξ ∼ N

(
0,

1

2

)
. (4.38)

Using 2nd order polynomial basis functions, the number of unique basis functions is
Nb = d + d(d + 1)/2, leading to a cost of order O((d + d(d + 1)/2)3) for a d-dimensional
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Figure 4.8: Estimating density of exponential distribution function from its samples using
KDE, MxED, MESSY-P, and MESSY-S. For MxED, MESSY-P and MESSY-S, withNm = 2.
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Figure 4.9: KL Divergence and execution time for KDE, MxED, MESSY-P, and MESSY-S
estimation of exponential distribution function given 10,000 samples.

probability space. In Fig. 4.11-(a), we illustrate this by showing the normalized execution
time (normalized by the time for d = 1 and given sample size) against the dimension of the
target density given N ∈ {100, 200, 400, 800, 1600, 3200} samples. Furthermore, in order
to highlight the linear dependence of cost with number of samples N for a fixed moment
problem, in Fig. 4.11-(b) we also report the normalized execution time of computing
Lagrange multipliers (normalized by the time for N = 100 and dimension d of target
density) as a function of number of samples.

Since the most expensive component of MESSY, i.e. the computation of Lagrange
multipliers, has been carried out on a single computer core with a direct solver, we confirm
that MESSY algorithm can be used for density recovery in large number of dimensions at
a feasible computational cost, regardless of the scaling with dimension. The limiting factor
appears to be the storage associated with solving the linear system. In case a larger system
than the one studied here are of interest, one may use iterative solvers, see [157].
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Figure 4.10: Estimating the density of samples in two dimensions using KDE, MESSY-P,
and MESSY-S. We use 10,000 samples from a Gaussian (top) and the Gamma-exponential
density defined in Eq. (4.35) (bottom). For better visualization, we only show 100 random
samples. We also report that the KL-divergence for MESSY-S, MESSY-P and KDE are on
the same order.

4.9 Conclusion and Outlook

We present a new method for symbolically recovering the underlying probability density
function of a given finite number of its samples. The proposed method uses the maximum
entropy distribution as an ansatz thus guaranteeing positivity and least bias. We devise a
method for finding parameters of this ansatz by considering a Gradient flow in which the
ansatz serves as the driving force. One main takeaway from this work is that the parameters
of the MED ansatz can be computed efficiently by solving a linear problem involving moments
calculated from the given samples. We also show that the complexity associated with finding
Lagrange multipliers, the most expensive part of the algorithm, scales linearly with the
number of samples in all dimensions. On the other hand, the cost of inverting the Hessian
matrix with dimension RNb×Nb is O(N3

b ), where the number of basis functions Nb grows
with dimension. Overall, our numerical experiments show that densities of dimension 10 can
be recovered using a single core of a typical workstation. It is worth noting that since the
whole probability space is represented with a few parameters, the MESSY representation
can reduce the training cost associated with the PDE-FIND [7] and SINDy [14] method,
where in the latter the regression is done on a data set that discretizes the whole space with
a large number of parameters that need to be fit. Further detailed analysis of the trade-off
between cost and accuracy in inferring densities in high-dimensional probability spaces will
be addressed in future work.

The second main takeaway from this work is that accurate density recovery does not
necessarily require the use of high-order moments. In fact, increasing the number of complex
but low-order basis functions leads to superior expressiveness and better assimilation of the
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Figure 4.11: Relative execution time τ of computing Lagrange multipliers given N ∈
{100, 200, 400, 800, 1600, 3200} samples of d-dimensional multivariate normal distribution
function where d = 1, ..., 10. Left (a) shows the normalized execution time versus dimension
and right (b) the normalized execution time versus number of samples. The execution time
is computed on a single core and single thread of 2.3GHz Quad-Core Intel Core i7 processor
and averaged over 5 ensembles.

data. For this reason, the proposed method is equipped with a Monte Carlo search in
the space of smooth functions for finding basis functions to describe the exponent of the
MED ansatz, using KL Divergence, calculated from the unknown-distribution samples, as an
optimality criterion. Discontinuous densities are treated by considering piece-wise continuous
functions with support on the space covered by samples.

We validate and test the proposed MESSY estimation approach against benchmark non-
parametric (KDE) and parametric (MxED) density estimation methods. In our experiments,
we consider three canonical test cases; a bi-modal distribution, a distribution close to the limit
of realizability, and a discontinuous distribution function. Our results suggest that MESSY
estimation exhibits several positive attributes compared to existing methods. Specifically,
while retaining some of the most desirable features associated with MED, namely non-
negativity, least bias, and matching the moments of the unknown distribution, it outperforms
standard maximum-entropy-based approaches for two reasons. First, it uses samples of the
target distribution in the evaluation of the Hessian, which has a linear cost with respect to
the dimension of the random variable. Second, the resulting linear problem for finding the
Lagrange multipliers from moments is significantly more efficient than the Newton line search
used by the classical MED approach. Moreover, our multi-level algorithm allows for recovery
of more complex distributions compared to the standard MED approach. Combining the
efficient approach of finding maximum entropy density via a linear system with the symbolic
exploration for the optimal basis functions paves the way for achieving low bias, consistent,
and expressive density recovery from samples.
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Although the proposed MESSY estimate alleviates a number of numerical challenges
associated with finding the MED given samples, it cannot expand the space of the MED
solution. In other words, if the moment problem does not permit any MED solutions, e.g.
[158], the MESSY estimate of MED fails to infer any densities since there is no MED solution
to be found. Secondly, there are no guarantees that the coefficient of the leading term in
the exponent of the MED will be negative. Hence, in unbounded domains the MESSY
estimate may diverge in the tails of the distribution. Both of these issues can be resolved
by regularizing the MED ansatz, e.g. via incorporating a Wasserstein distance from a prior
distribution as suggested by [159].

The most important, perhaps, distinguishing characteristic of the proposed methodology
from non-parametric approaches, such as KDE, is the ability to recover a tractable symbolic
estimator of the unknown density. This can be beneficial in a number of applications, such
as, for example, finding the underlying dynamics of a stochastic process. In such a case,
where it is known that the transition probability takes an exponential form, this method
can be used for recovering the drift and diffusion terms of an Ito process given a sequence
of random variables, see e.g. [160], [161]. Furthermore, the proposed method may be used
to find a relation between moments of interest which could be helpful in determining the
parameters of a statistical model, such as a closure for a hierarchical moment description of
fluid flow far from equilibrium. That said, exploring the efficiency of our algorithm in high-
dimensional contexts is a critical next step, considering the complexity of modern machine
learning datasets. Other possible directions for future work include: (i) data-driven discovery
of governing dynamical laws from samples; and (ii) applications to variance reduction.
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Chapter 5

ISR: Invertible Symbolic Regression

In this chapter, we introduce an Invertible Symbolic Regression (ISR) method. It is a machine
learning technique that generates analytical relationships between inputs and outputs of a
given dataset via invertible maps (or architectures). The proposed ISR method naturally
combines the principles of Invertible Neural Networks (INNs) and Equation Learner (EQL), a
neural network-based symbolic architecture for function learning. In particular, we transform
the affine coupling blocks of INNs into a symbolic framework, resulting in an end-to-end
differentiable symbolic invertible architecture that allows for efficient gradient-based learning.
The proposed ISR framework also relies on sparsity promoting regularization, allowing the
discovery of concise and interpretable invertible expressions. We show that ISR can serve
as a (symbolic) normalizing flow for density estimation tasks. Furthermore, we highlight its
practical applicability in solving inverse problems, including a benchmark inverse kinematics
problem, and notably, a geoacoustic inversion problem in oceanography aimed at inferring
posterior distributions of underlying seabed parameters from acoustic signals.

5.1 Introduction

In many applications in engineering and science, experts have developed theories about how
measurable quantities result from system parameters, known as forward modeling. In con-
trast, the Inverse Problem aims to find unknown parameters of a system that lead to desirable
observable quantities. A typical challenge is that numerous configurations of these param-
eters yield the same observable quantity, especially with underlying complicated nonlinear
governing equations and where hidden parameters outnumber the observable variables. To
tackle challenging and ill-posed inverse problems, a common method involves estimating a
posterior distribution on the unknown parameters, given the observations. Such a probabilis-
tic approach facilitates the uncertainty quantification by analyzing the diversity of potential
inverse solutions.

An established computationally expensive approach in finding the posterior distribution
is to directly generate samples using acceptance/rejection. In this scope, the Markov Chain
Monte Carlo (MCMC) methods [162]–[169] offer a strong alternative for achieving near-
optimum Bayesian estimation [170]–[172]. However, MCMC methods can be inefficient [173]
as the number of unknown parameter increases.
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When the likelihood is unknown or intractable, the Approximate Bayesian Computation
(ABC) [174] is often used to estimate the posterior distribution. However, similar to MCMC,
this method also suffers from poor scalability [175], [176]. A more efficient alternative is to
approximate the posterior using a tractable distribution, i.e. the variational method [177]–
[179]. However, the performance of the variational method deteriorates as the true posterior
becomes more complicated.

Since direct sampling of the posterior distribution requires many runs of the forward
map, often a trained and efficient surrogate model is used instead of the exact model. Surro-
gate models are considered as an efficient representation of the forward map trained on the
data. Popular approaches include recently introduced Physics-Informed Neural Networks
[71]. However, due to the black-box nature of neural networks, it is beneficial to express
the forward map symbolically instead for several reasons. First, Symbolic Regression (SR)
can provide model interpretability, while understanding the inner workings of deep Neural
Networks is challenging [54], [180]. Second, studying the symbolic outcome can lead to valu-
able insights and provide nontrivial relations and/or physical laws [131], [132], [181], [182].
Third, they may achieve better results than Neural Networks in out-of-distribution gener-
alization [17]. Fourth, unlike conventional regression methods, such as least squares [18],
likelihood-based [19]–[21], and Bayesian regression techniques [22]–[26], SR does not rely on
a fixed parametric model structure.

The attractive properties of SR, such as interpretability, often come at high computa-
tional cost compared to standard Neural Networks. This is because SR optimizes for model
structure and parameters simultaneously. Therefore, SR is thought to be NP-hard [31], [32].
However tractable solutions exist, that can approximate the optimal solution suitable for
applications. For instance, genetic algorithms [8], [12], [27], [28], [34] and machine learning
algorithms, such as neural networks, and transformers [17], [31], [37], [43], [44], [46], [48],
[50], [55]–[57], [132], are used to solve SR efficiently.

Related Works. In recent years, a branch of Machine Learning methods has emerged and
is dedicated to finding data-driven invertible maps. While they are ideal for data generation
and inverse problem, they lack interpretablity. On the other hand, several methods have
been developed to achieve interpretablity in representing the forward map via Symbolic
Regression. Hence, it is natural to incorporate SR in the invertible map for the inverse
problem. Next, we review the related works in the scope of this work.
Normalizing Flows: The idea of this class of methods is to train an invertible map such that
in the forward problem, the input samples are mapped to a known distribution function,
e.g. the normal distribution function. Then, the unknown distribution function is found
by inverting the trained map with the normal distribution as the input. This procedure is
called the normalizing flow technique [123]–[129]. This method has been used for re-sampling
unknown distributions, e.g. Boltzmann generators [130], as well as density recovery such as
AI-Feynmann [131], [132].
Invertible Neural Networks (INNs): This method can be categorized in the class of normal-
izing flows. The invertibility of INN is rooted in their architecture. The most popular design
is constructed by concatenating affine coupling blocks [124], [125], [183], which limits the
architecture of the neural network. INNs have been shown to be effective in estimating the
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posterior of the probabilistic inverse problems while outperforming MCMC, ABC, and varia-
tional methods. Applications include epidemiology [184], astrophysics [185], medicine [185],
optics [186], geophysics [187], [188], and reservoir engineering [189]. However, similar to
standard neural networks, INNs lead to a model that cannot be evaluated with interpretable
mathematical formula.
Equation Learner (EQL): Among SR methods, the EQL network is one of the attractive
methods since it incorporates gradient descent in the symbolic regression task for better
efficiency [42], [50], [54]. EQL devises a neural network-based architecture for SR task by
replacing commonly used activation functions with a dictionary of operators and use back-
propagation for training. However, in order to obtain a symbolic estimate for the inverse
problem efficiently, it is necessary to merge such efficient SR method with an invertible
architecture, which is the goal of this work.

Our Contributions. We present Invertible Symbolic Regression (ISR), a machine
learning technique that identifies mathematical relationships that best describe the forward
and inverse map of a given dataset through the use of invertible maps. ISR is based on
an invertible symbolic architecture that bridges the concepts of Invertible Neural Networks
(INNs) and Equation Learner (EQL), i.e. a neural network-based symbolic architecture for
function learning. In particular, we transform the affine coupling blocks of INNs into a
symbolic framework, resulting in an end-to-end differentiable symbolic inverse architecture.
This allows for efficient gradient-based learning. The symbolic invertible architecture is
easily invertible with a tractable Jacobian, which enables explicit computation of posterior
probabilities. The proposed ISR method, equipped with sparsity promoting regulariza-
tion, captures complex functional relationships with concise and interpretable invertible
expressions. In addition, as a byproduct, we naturally extend ISR into a conditional
ISR (cISR) architecture by integrating the EQL network within conditional INN (cINN)
architectures present in the literature. We further demonstrate that ISR can also serve as
a symbolic normalizing flow (for density estimation) in a number of test distributions. We
demonstrate the applicability of ISR in solving inverse problems, and compare it with INN
on a benchmark inverse kinematics problem, as well as a geoacoustic inversion problem in
oceanography (see [190] for further information). Here, we aim to characterize the undersea
environment, such as water-sediment depth, sound speed, etc., from acoustic signals. To
the best of our knowledge, this work is the first attempt towards finding interpretable
solutions to general nonlinear inverse problems by establishing analytical relationships
between measurable quantities and unknown variables via symbolic invertible maps.

The remainder of the chapter is organized as follows. In Section 5.2, we go through an
overall background about Symbolic Regression (SR) and review the Equation Learner (EQL)
network architecture. In Section 5.3, we introduce and present the proposed Invertible
Symbolic Regression (ISR) method. We then show our results in Section 5.4, where we
demonstrate the versatility of ISR as a density estimation method on a variety of examples
(distributions), and then show its applicability in inverse problems on an inverse kinematics
benchmark problem and through a case study in ocean geoacoustic inversion. Finally in
Section 5.5, we provide our conclusions and outlook.
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Figure 5.1: EQL network architecture for symbolic regression. For visual simplicity, we
only show 2 hidden layers and 5 activation functions per layer (identity or “id”, square, sine,
exponential, and multiplication).

5.2 Background

Before diving into the proposed ISR method, we first delve into a comprehensive background
of the Symbolic Regression (SR) task, as well as the Equation Learner (EQL) network
architecture.

Symbolic Regression. Given a dataset D = {xi,yi}Ni=1 consisting of N independent and
identically distributed (i.i.d.) paired examples, where xi ∈ Rdx represents the input variables
and yi ∈ Rdy the corresponding output for the i-th observation, the objective of SR is to
find an analytical (symbolic) expression f that best maps inputs to outputs, i.e. yi ≈ f(xi).
SR seeks to identify the functional form of f from the space of functions S defined by
a set of given arithmetic operations (e.g. +, −, ×, ÷) and mathematical functions (e.g.
sin, cos, exp, etc.) that minimizes a predefined loss function L(f,D), which measures the
discrepancy between the true outputs yi and the predictions f(xi) over all observations in
the dataset. Unlike conventional regression methods that fit parameters within a predefined
model structure, SR dynamically constructs the model structure itself, offering a powerful
means to uncover underlying physical laws and/or nontrivial relationships.

Equation Learner Network. The Equation Learner (EQL) network is a multi-layer feed-
forward neural network that is capable of performing symbolic regression by substituting
traditional nonlinear activation functions with elementary functions. The EQL network was
initially introduced by [42] and [50], and further explored by [54]. As shown in Figure 5.1,
the EQL network architecture is based on a fully connected neural network where the ouput
h(i) of the i-th layer is given by

g(i) = W(i)h(i−1) (5.1)

h(i) = f(g(i)) (5.2)
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where W(i) is the weight matrix of the i-th layer, f denotes the nonlinear (symbolic) acti-
vation functions, and h(0) = x represents the input data. In regression tasks, the final layer
does not typically have an activation function, so the output for a network with L hidden
layers is given by

y = h(L+1) = g(L+1) = W(L+1)h(L). (5.3)

In traditional neural networks, activation functions such as ReLU, tanh, or sigmoid are typ-
ically employed. However, for the EQL network, the activation function f(g) may consist
of a separate primitive function for each component of g (e.g. the square function, sine,
exponential, etc.), and may include functions that take multiple arguments (e.g. the multi-
plication function). In addition, the primitive functions may be duplicated within each layer
(to reduce the training’s sensitivity to random initializations).

It is worth mentioning that, for visual simplicity, the schematic shown in Figure 5.1,
shows an EQL network with only two hidden layers, where each layer has only five primitive
functions, i.e., the activation function

f(g) ∈
{
identity, square, sine, exponential, multiplication

}
.

However, the EQL network can in fact include other functions or more hidden layers to fit
a broader range (or class) of functions. Indeed, the number of hidden layers can dictate the
complexity of the resulting symbolic expression and plays a similar role to the maximum
depth of expression trees in genetic programming techniques. Although the EQL network
may not offer the same level of generality as traditional symbolic regression methods, it
is adequately capable of representing the majority of functions commonly encountered in
scientific and engineering contexts. Crucially, the parametrized nature of the EQL network
enables efficient optimization via gradient descent (and backpropagation).

After training the EQL network, the identified equation can be directly derived from the
network weights. To avoid reaching overly complex symbolic expressions and to maintain
interpretability, it is essential to guide the network towards learning the simplest expression
that accurately represents the data. In methods based on genetic programming, this simpli-
fication is commonly achieved by restricting the number of terms in the expression. For the
EQL network, this is attained by applying sparsity regularization to the network weights,
which sets as many of these weights to zero as possible (e.g. L1 regularization [64], L0.5

regularization [191]). In this work, we use a smoothed L0.5 regularization [192], [193], which
was also adopted by [54].

5.3 Invertible Symbolic Regression

In this section, we delineate the problem setup for inverse problems, and then describe the
proposed ISR approach.

5.3.1 Problem Specification

In various engineering and natural systems, the theories developed by experts describe how
measurable (or observable) quantities y ∈ Rdy result from the unknown (or hidden) prop-
erties x ∈ Rdx , known as the forward process x → y. The goal of inverse prediction is to
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Figure 5.2: (Left) The proposed ISR framework learns a bijective symbolic transformation
that maps the (unknown) variables x to the (observed) quantities y while transforming the
lost information into latent variables z. (Right) The conditional ISR (cISR) framework
learns a bijective symbolic map that transforms x directly to a latent representation z given
the observation y. As we will show, both the forward and inverse mappings are efficiently
computable and possess a tractable Jacobian, allowing explicit computation of posterior
probabilities.

predict the unknown variables x from the observable variables y, through the inverse process
y → x. As critical information is lost during the forward process (i.e. dx ≥ dy), the inver-
sion is usually intractable. Given that f−1(y) does not yield a uniquely defined solution, an
effective inverse model should instead estimate the posterior probability distribution p(x |y)
of the hidden variables x, conditioned on the observed variable y.

Invertible Symbolic Regression (ISR). Assume we are given a training dataset D =
{xi,yi}Ni=1, collected using forward model y = s(x) and prior p(x). To counteract the loss
of information during the forward process, we introduce latent random variables z ∈ Rdz

drawn from a multivariate standard normal distribution, i.e. z ∼ p
Z
(z) = N (0, Idz), where

dz = dx − dy. These latent variables are designed to capture the information related to
x that is not contained in y [185]. In ISR, we aim to learn a bijective symbolic function
f : Rdx → Rdy ×Rdz from the space of functions defined by a set of mathematical functions
(e.g. sin, cos, exp, log) and arithmetic operations (e.g. +, −, ×, ÷), and such that

[y, z] = f(x) =
[
fy(x), fz(x)

]
, x = f−1(y, z) (5.4)

where fy(x) ≈ s(x) is an approximation of the forward process s(x). As discussed later, we
will learn f (and hence f−1) through an invertible symbolic architecture with bi-directional
training. The solution of the inverse problem (i.e. the posterior p(x |y∗)) can then be found
by calling f−1 for a fixed observation y∗ while randomly (and repeatedly) sampling the latent
variable z from the same standard Gaussian distribution.

Conditional Invertible Symbolic Regression (cISR). Inspired by works on condi-
tional invertible neural networks (cINNs) [186], [194]–[196], instead of training ISR to predict
y from x while transforming the lost information into latent variables z, we train them to
transform x directly to latent variables z given the observed variables y. This is achieved
by incorporating y as an additional input within the bijective symbolic architecture during
both the forward and inverse passes (see Figure 5.2). cISR works with larger latent spaces
than ISR since dz = dx regardless of the dimension dy of the observed quantities y. Further
details are provided in the following section.
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Figure 5.3: The proposed ISR method integrates EQL within the affine coupling blocks of the
INN invertible architecture.1 This results in a bijective symbolic transformation that is both
easily invertible and has a tractable Jacobian. Indeed, the forward and inverse directions
both possess identical computational cost. Here, ⊙ and ⊘ denote element-wise multiplication
and divison, respectively.

In addition to approximating the forward model via mathematical relations, ISR also iden-
tifies an interpretable inverse map via analytical expressions (see Figure 5.2). Such inter-
pretable mappings are of particular interest in physical sciences, where an ambitious objec-
tive involves creating intelligent machines capable of generating novel scientific findings[131],
[132], [181], [182], [197]. As described next, the ISR architecture is both easily invertible and
has a tractable Jacobian, allowing for explicit computation of posterior probabilities.

5.3.2 Invertible Symbolic Architecture

Inspired by the architectures proposed by [124], [125], [185], we adopt a fully invertible
architecture mainly defined by a sequence of n reversible blocks where each block consists
of two complementary affine coupling layers. In particular, we first split the block’s input
u ∈ Rdu into u1 ∈ Rdu1 and u2 ∈ Rdu2 (where du1+du2 = du), which are fed into the coupling
layers as follows:[

v1

v2

]
=

[
u1 ⊙ exp (s1(u2)) + t1(u2)

u2

]
,

[
o1

o2

]
=

[
v1

v2 ⊙ exp (s2(v1)) + t2(v1)

]
, (5.5)

where ⊙ denotes the Hadamard product or element-wise multiplication. The outputs [o1,o2]
are then concatenated again and passed to the next coupling block. The internal mappings
s1 and t1 are functions from Rdu2 → Rdu1 , and s2 and t2 are functions from Rdu1 → Rdu2 .
In general, si and ti can be arbitrarily complicated functions (e.g. neural networks as in
[185]). In our proposed ISR approach, they are represented by EQL networks (see Figure
5.3), resulting in a fully symbolic invertible architecture. Moving forward, we shall refer to
them as EQL subnetworks of the block.

1As direct division can lead to numerical issues, we apply the exponential function to si (after clipping
its extreme values) in the formulation described in Eq. (5.5). This also guarantees non-zero diagonal entries
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The transformations above result in upper and lower triangular Jacobians:

Ju 7→v =

[
diag( exp (s1(u2))) ∂v1

∂u2

0 I

]
, Jv 7→o =

[
I 0
∂o2

∂v1
diag( exp (s2(v1)))

]
. (5.6)

Hence, their determinants can be trivially computed:

det
(
Ju 7→v

)
=
∏du1

i=1 exp ( [s1(u2)]i ) = exp(∑du1
i=1 [s1(u2)]i ),

det
(
Jv 7→o

)
=
∏du2

i=1 exp ( [s2(v1)]i ) = exp(∑du2
i=1 [s2(v1)]i ) . (5.7)

Then, the resulting Jacobian determinant of the coupling block is given by

det
(
Ju 7→o

)
= det

(
Ju 7→v

)
· det

(
Jv 7→o

)
= exp(∑du1

i=1 [s1(u2)]i ) · exp(
∑du2

i=1 [s2(v1)]i )
= exp(∑du1

i=1 [s1(u2)]i +
∑du2

i=1 [s2(v1)]i )
= exp(∑du1

i=1 [s1(u2)]i +
∑du2

i=1 [s2(u1 ⊙ exp (s1(u2)) + t1(u2))]i) (5.8)

which can be efficiently calculated. Indeed, the Jacobian determinant of the whole map
x → [y, z] is the product of the Jacobian determinants of the n underlying coupling blocks
(see Figure 5.3).
Given the output o = [o1,o2], the expressions in Eqs. (5.5) are clearly invertible:

u2 =
(
o2 − t2(o1)

)
⊘ exp (s2(o1)), u1 =

(
o1 − t1(u2)

)
⊘ exp (s1(u2)) (5.9)

where ⊘ denotes element-wise division. Crucially, even when the coupling block is in-
verted, the EQL subnetworks si and ti need not themselves be invertible; they are only
ever evaluated in the forward direction. We denote the whole ISR map x → [y, z] as
f(x; θ) =

[
fy(x; θ), fz(x; θ)

]
parameterized by the EQL subnetworks parameters θ, and the

inverse as f−1(y, z; θ).

Remark 5.3.1. The proposed ISR architecture consists of a sequence of these symbolic re-
versible blocks. To enhance the model’s predictive and expressive capability, we can: i)
increase the number of reversible coupling blocks, ii) increase the number of hidden layers in
each underlying EQL network, iii) increase the number of hidden neurons per layer in each
underlying EQL network, or iv) increase the complexity of the symbolic activation functions
used in the EQL network. However, it is worth noting that these enhancements come with
a trade-off, as they inevitably lead to a decrease in the model’s interpretability.

Remark 5.3.2. To further improve the model capacity, as in [185], we incorporate (random,
but fixed) permutation layers between the coupling blocks, which shuffles the input elements
for subsequent coupling blocks. This effectively randomizes the configuration of splits u =
[u1,u2] across different blocks, thereby enhancing interplay between variables.

in the Jacobian matrices.
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Remark 5.3.3. Inspired by [185], we split the coupling block’s input vector u ∈ Rdu into two
halves, i.e. u1 ∈ Rdu1 and u2 ∈ Rdu2 where du1 =

du
2

and du2 = du − du1 . In the case where
u is one-dimensional (or scalar), i.e. du = 1 and u ∈ R, we pad it with an extra zero (so
that du = 2) along with a loss term that prevents the encoding of information in the extra
dimension (e.g. we use the L2 loss to maintain those values near zero).

Remark 5.3.4. The proposed ISR architecture is also compatible with the conditional ISR
(cISR) framework proposed in the previous section. In essence, cISR identifies a bijective
symbolic transformation directly between x and z given the observation y. This is attained
by feeding y as an extra input to each coupling block, during both the forward and inverse
passes. In particular, and as suggested by [194]–[196], we adapt the same coupling layers
given by Eqs. (5.5) and (5.9) to produce a conditional coupling block. Since the subnetworks
si and ti are never inverted, we enforce the condition on the observation by concatenating
y to their inputs without losing the invertibility, i.e. we replace s1(u2) with s1(u2,y), etc.
In complex settings, the condition y is first fed into a separate feed-forward conditioning
network, resulting in higher-level conditioning features that are then injected into the con-
ditional coupling blocks. Although cISR can have better generative properties [196], it leads
to more complex symbolic expressions and less interpretability as it explicitly conditions the
map on the observation within the symbolic formulation. We denote the entire cISR forward
map x→ z as f(x;y, θ) parameterized by θ, and the inverse as f−1(z;y, θ).

5.3.3 Maximum Likelihood Training of ISR

We train the proposed ISR model to learn a bijective symbolic transformation f : Rdx →
Rdy × Rdz . There are various choices to define the loss functions with different advantage
and disadvantages [185], [195], [196], [198], [199]. As reported in [196], there are two main
training approaches:

i) A standard supervised L2 loss for fitting the model’s y predictions to the training data,
combined with a Maximum Mean Discrepancy (MMD) [185], [200] for fitting the latent
distribution p

Z
(z) to N (0, Idz), given samples.

ii) A Maximum Likelihood Estimate (MLE) loss that enforces z to be standard Gaussian,
i.e. z ∼ p

Z
(z) = N (0, Idz) and by approximating the distribution on y with a Gaussian

distribution around the ground truth values ygt with very low variance σ2 [124], [196], [199].
Given that MLE is shown to perform well as reported in the literature [185], we ap-

ply it here. Next, we demonstrate how this approach is equivalent to minimizing the for-
ward Kullback-Leibler (KL) divergence as the cost (cf. [201]). We note that given the map
f(x; θ) 7→ [z,y], parameterized by θ, and assuming y and z are independent, the density p

X

relates to p
Y

and p
Z

through the change-of-variables formula

p
X
(x; θ) = p

Y

(
y = fy(x; θ)

)
p
Z

(
z = fz(x; θ)

)
·
∣∣det

(
Jx 7→ [z,y](x; θ)

)∣∣ . (5.10)

where Jx 7→ [z,y](x; θ) denotes the Jacobian of the map f parameterized by θ. This expression
is then used to define the loss function, which we derive by following the work in [201].
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In particular, we aim to minimize the forward KL divergence between a target distribution
p∗
X
(x) and our flow-based model p

X
(x; θ), given by

L(θ) = DKL
[
p∗
X
(x)
∣∣∣∣ p

X
(x; θ)

]
= −Ep∗X(x)

[
log p

X
(x; θ)

]
+ const.

= −Ep∗X(x)

[
log p

Y

(
fy(x; θ)

)
+ log p

Z

(
fz(x; θ)

)
+ log

∣∣det
(
Jx 7→ [z,y](x; θ)

)∣∣ ]+ const.
(5.11)

The forward KL divergence is particularly suitable for cases where we have access to samples
from the target distribution, but we cannot necessarily evaluate the target density p∗

X
(x).

Assuming we have a set of samples {xi}Ni=1 from p∗
X
(x), we can approximate the expectation

in Eq. (5.11) using Monte Carlo integration as

L(θ) ≈ − 1

N

N∑
i=1

(
log p

Y

(
fy(xi; θ)

)
+ log p

Z

(
fz(xi; θ)

)
+ log

∣∣det
(
Jx 7→ [z,y](xi; θ)

)∣∣+ const.
)
.

(5.12)

As we can see, minimizing the above Monte Carlo approximation of the KL divergence is
equivalent to maximizing likelihood (or minimizing negative log-likelihood). Assuming p

Z

is standard Gaussian and p
Y

is a multivariate normal distribution around ygt, the negative
log-likelihood (NLL) loss in Eq. (5.12) becomes

LNLL(θ) =
1

N

N∑
i=1

(
1

2
·
(
fy(xi; θ)− ygt

)2
σ2

+
1

2
· fz(xi; θ)2 − log

∣∣det
(
Jx 7→ [z,y](xi; θ)

)∣∣) .

(5.13)

In other words, we find the optimal ISR parameters θ by minimizing the NLL loss in
Eq. (5.13), and the resulting bijective symbolic expression can be directly extracted from
the these optimal parameters.

Remark 5.3.5. We note that cISR is also suited for maximum likelihood training. Given the
conditioning observation y, the density p

X |Y relates to p
Z

through the change-of-variables
formula

p
X |Y(x |y, θ) = p

Z

(
z = f(x;y, θ)

)
·
∣∣det

(
Jx 7→ z(x;y, θ)

)∣∣ , (5.14)

where Jx 7→ z(x;y, θ) indicates the Jacobian of the map f conditioned on y and parameterized
by θ. Following the same procedure as above, the cISR model can be trained by minimizing
the following NLL loss function

LNLL(θ) =
1

N

N∑
i=1

(
1

2
· f(xi;yi, θ)2 − log

∣∣det
(
Jx 7→ z(xi;yi, θ)

)∣∣) . (5.15)

As we will show in the next section, if we ignore the condition on the observation y, the loss in
Eq. 5.15 can also be used for training ISR as a normalizing flow for the unsupervised learning
task of approximating a target probability density function from samples (cf. Eq. 5.18).
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5.4 Results

We evaluate our proposed ISR method on a variety of problems. We first show how ISR can
serve as a normalizing flow for density estimation tasks on several test distributions. We then
demonstrate the capabilities of ISR in solving inverse problems by considering two synthetic
problems and then a more challenging application in ocean acoustics [172], [202]–[207]. We
mainly compare our ISR approach against INN [185] throughout our experiments. Further
experimental details can be found in Appendix D.2.

5.4.1 Leveraging ISR for Density Estimation via Normalizing Flow

Given N independently and identically distributed (i.i.d.) samples, i.e. {Xi}Ni=1 ∼ ptarget
X

,
we would like to estimate the target density ptarget

X
and generate new samples from it. This

problem categorizes as the density estimation where non-parametric, e.g. Kernel Density
Estimation [106], and parametric estimators, e.g. Maximum Entropy Distribution as the
least biased estimator [10], are classically used. In recent years, this problem has been
approached using normalizing flow equipped with invertible map, which has gained a great
deal of interest in the generative AI task. In an attempt to introduce interpretability in
the trained model, we extend invertible normalizing flow to symbolic framework using the
proposed ISR architecture.

In order to use the proposed ISR method as the normalizing flow for the unsupervised task
of resampling from an intractable target distribution, we drop out y and enforce dx = dz.2
In this case, we aim to learn a an invertible and symbolic map f : Rdx → Rdz , parameterized
by θ such that

z = f(x; θ), x = f−1(z; θ), (5.16)

where z ∼ p
Z

is the standard normal distribution function, which is easy to sample from.
Using the change-of-variables formula, the density p

X
relates to the density p

Z
via

p
X
(x; θ) = p

Z

(
z = f(x; θ)

)
·
∣∣det

(
Jx 7→ z(x; θ)

)∣∣ , (5.17)

where Jx 7→ z indicates the Jacobian of the map f parameterized by θ. Following the same
procedure outlined in Section 5.3.3, the model can be trained by minimizing the following
NLL loss function

LNLL(θ) =
1

N

N∑
i=1

(
1

2
· f(xi; θ)2 − log

∣∣det
(
Jx 7→ z(xi; θ)

)∣∣) . (5.18)

We compare the proposed ISR approach with INN in recovering several two-dimensional
target distributions (i.e. dx = dz = 2). First, we consider a fairly simple multivariate
normal distribution N

(
µ,Σ

)
with mean µ = [0, 3] and covariance matrix Σ = 1

10
· I2

as the target density. Then, we consider more challenging distributions: the “Banana,”
2In the absence of y, cISR and ISR are equivalent, so we simply refer to them as ISR. Similarly, INN and

cINN become equivalent, and we simply refer to them as INN.
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Figure 5.4: Samples from four different target densities (first row), and their estimated
distributions using INN (second row) and the proposed ISR method (third row).

“Mixture of Gaussians (MoG),” and “Ring” distributions that are also considered in [208],
[209]. For each of these target distributions, we draw Ns = 104 i.i.d. samples and train an
invertible map that transport the samples to a standard normal distribution. This is called
normalizing flow, where we intend to compare the standard INN with the proposed ISR
architecture. Here, we use a single coupling block for the Gaussian and banana cases, and
two coupling blocks for the ring and MoG test cases.

As shown in Figure 5.4, the proposed ISR method finds and generates samples of
the considered target densities with slightly better accuracy than INN. We report the
invertible symbolic expressions in Table D.1 of Appendix D.1. For instance, the first
target distribution considered in Figure 5.4 is the two-dimensional multivariate Gaussian
distribution N

(
µ,Σ

)
with mean µ = [0, 3] and covariance matrix Σ = 1

10
· I2. This is

indeed a shifted and scaled standard Gaussian distribution where we know the analytical
solution to the true map:

X =

[
X1

X2

]
∼ N

(
µ,

1

10
· I2
)

∼ µ+

√
1

10
· N (0, I2)

= µ+
1√
10
· Z =

[
0
3

]
+ 0.316 ·

[
Z1

Z2

]
=

[
0.316Z1

3 + 0.316Z2

]
. (5.19)

As shown in Table D.1 of Appendix D.1, for this Gaussian distribution example, the proposed
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Figure 5.5: Results for the inverse kinematics benchmark problem. The faint colored lines
indicate sampled arm configurations x taken from each model’s predicted posterior p̂(x |y∗),
conditioned on the target end point y∗, which is indicated by a gray cross. The contour lines
around the target end point enclose the regions containing 97% of the sampled arms’ end
points. We emphasize the arm with the highest estimated likelihood as a bold line.

ISR method finds the following bijective expression:

z1 = x1 · e1.16 = 3.19x1 ⇐⇒ x1 =
1

3.19
z1 = 0.313 z1

z2 = x2 · e1.14 − 9.39 = 3.13x2 − 9.39 ⇐⇒ x2 =
1

3.13
(z2 + 9.39) = 0.319 z2 + 3.00

In other words, the proposed ISR method identifies the true underlying transformation given
by Eq. (5.19) with a high accuracy.

5.4.2 Inverse Kinematics

We now consider a geometrical benchmark example used by [185], [196], which simulates
an inverse kinematics problem in a two-dimensional space: A multi-jointed 2D arm moves
vertically along a rail and rotates at three joints. In this problem, we are interested in the
configurations (i.e. the four degrees of freedom) of the arm that place the arm’s end point
at a given position. The forward process computes the coordinates of the end point y ∈ R2,
given a configuration x ∈ R4 (i.e. dx = 4, dy = 2, and hence dz = 2). In particular, the
forward process takes x = [x1, x2, x3, x4] as argument, where x1 denotes the arm’s starting
height, and x2, x3, x4 are its three joint angles, and returns the coordinates of its end point
y = [y1, y2] given by

y1 = ℓ1 sin(x2) + ℓ2 sin(x2 + x3) + ℓ3 sin(x2 + x3 + x4) + x1

y2 = ℓ1 cos(x2) + ℓ2 cos(x2 + x3) + ℓ3 cos(x2 + x3 + x4) (5.20)
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where the segment lengths ℓ1 = 0.5, ℓ2 = 0.5, and ℓ3 = 1. The parameters x follow a Gaussian
prior x ∼ N

(
0,σ2 ·I4

)
with σ2 = [0.252, 0.25, 0.25, 0.25], which favors a configuration with a

centered origin and 180◦ joint angles (see Figure 5.5). We consider a training dataset of size
106, constructed using this Gaussian prior and the forward process in Eq. (5.20). The inverse
problem here asks to find the posterior distribution p(x |y∗) of all possible configurations
(or parameters) x that result in the arm’s end point being positioned at a given y∗ location.
This inverse kinematics problem, being low-dimensional, offers computationally inexpensive
forward (and backward) process, which enables fast training, intuitive visualizations, and an
approximation of the true posterior estimates via rejection sampling.3

An example of a challenging end point y∗ is shown in Figure 5.5, where we compare
the proposed ISR method against the approximate true posterior (obtained via rejection
sampling), as well as INN. The chosen y∗ is particularly challenging, since this end point
is unlikely under the prior p(x), and results in a strongly bi-modal posterior p(x |y∗) [185],
[196]. As we can observe in Figure 5.5, compared to rejection sampling, all the considered
architectures (i.e. INN, cINN, ISR, and cISR) are able to capture the two symmetric modes
well. However, we can clearly see that they all generate x-samples such that their resulting
end points miss the target y∗ by a wider margin. Quantitative results are also provided in
Appendix D.3.

5.4.3 Application: Geoacoustic Inversion

Predicting acoustic propagation at sea is vital for various applications, including sonar per-
formance forecasting and mitigating noise pollution at sea. The ability to predict sound
propagation in a shallow water environment depends on understanding the seabed’s geoa-
coustic characteristics. Inferring those characteristics from ocean acoustic measurements (or
signals) is known as geoacoustic inversion (GI). GI involves several components: (i) rep-
resentation of the ocean environment, (ii) selection of the inversion method, including the
forward propagation model implemented, and (iii) quantification of the uncertainty related
to the parameters estimates.

We start by describing the ocean environment. We consider the setup of SWellEx-96 [210],
[211], which was an experiment done off the coast of San Diego, CA, near Point Loma. This
experimental setting is one of the most used, documented, and understood studies in the
undersea acoustics community.4 As depicted in Figure 5.6, the data is collected via a vertical
line array (VLA). The specification of the 21 hydrophones of the VLA and sound speed
profile (SSP) in the water column is provided in the SWellEx-96 documentation. The SSP
and sediment parameters are considered to be range-independent. Water depth refers to the
depth of the water at the array. The source is towed by a research vessel which consists

3Rejection sampling. Assume we require Ns samples of x from the posterior p(x |y∗) given some
observation y∗. After setting some acceptance threshold ϵ, we iteratively generate x-samples from the prior.
For each sample, we simulate the corresponding y-values and only keep those with dist(y,y∗) < ϵ. The
process is repeated until Ns samples are collected (or accepted). Indeed, the smaller the threshold ϵ, the
more x-samples candidates (and hence the more simulations) have to be generated. Hence, we adopt this
approach in this low-dimensional inverse kinematics problem, where we can afford to run the forward process
(or simulation) a huge number of times.

4see http://swellex96.ucsd.edu/
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Figure 5.6: The SWellEx-96 experiment environment. The acoustic source is towed by a
research vessel and transmits signals at various frequencies. The acoustic sensor consists of
a vertical line array (VLA). Based on the measurements collected at the VLA, the objective
is to estimate posterior distributions over parameters of interest (e.g. water depth, sound
speed at the water-sediment interface, source range and depth, etc.).

of a comb signal comprising frequencies of 49, 79, 112, 148, 201, 283, and 388 Hz. While in
the SWellEx-96 experiment the position of the source changes with time, for this task we
consider the instant when the source depth is 60 m and the distance (or range) between the
source and the VLA is 3 km.

The sediment layer is modeled with the following properties. The seabed consists initially
of a sediment layer that is 23.5 meters thick, with a density of 1.76 g/cm3, and an attenuation
of 0.2 dB/kmHz. The sound speed at the bottom of this layer is assumed to be 1593 m/s.
The second layer is mudstone that is 800 meters thick, possessing a density of 2.06 g/cm3,
and an attenuation of 0.06 dB/kmHz. The top and bottom sound speeds of this layer
are 1881 m/s and 3245 m/s respectively. The description of the geoacoustic model of the
SWellEx-96 experiment is complemented by a half-space featuring a density of 2.66 g/cm3,
an attenuation of 0.020 dB/kmHz, and a sound speed of 5200 m/s.

Here, we consider two geoacoustic inversion tasks:

Task 1. Based on the measurements at the VLA, the objective of this task is to infer the
posterior distribution over the water depth as well as the sound speed at the water-sediment
interface. For this task, we assume all the quantities above to be known. The unknown
parameters m1 (the water depth) and m2 (the sound speed at the water-sediment interface)
follow a uniform prior in [200.5, 236.5] m and [1532, 1592] m/s, i.e. m1 ∼ U([200.5, 236.5])
and m2 ∼ U([1532, 1592]), where U(Ω) denotes a uniform distribution in the domain Ω.

Task 2. In addition to the two parameters considered in Task 1 (i.e. the water depth m1

and the sound speed at the water-sediment interface m2), we also estimate the posterior
distribution over the VLA tilt m3, as well as the thickness of the first (sediment) layer m4.
All other quantities provided above are assumed to be known. As in Task 1, the unknown
parameters follow a uniform prior, i.e. m1 ∼ U([200.5, 236.5]), m2 ∼ U([1532, 1592]), m3 ∼
U([−2, 2]), and m4 ∼ U([18.5, 28.5]).
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Figure 5.7: A conceptual figure of ISR (left) and cISR (right) for the geoacoustic inversion
task. The posterior distribution of the parameters of interest m can be obtained by sampling
z (e.g. from a standard Gaussian distribution) for a fixed observation y∗ and running the
trained bijective model backwards. To appropriately account for noise in the data, we include
random data noise ϵ as additional model parameters.

The received pressure y on each hydrophone and for each frequency is a function of unknown
parameters m (e.g. water depth, sound speed at the water-sediment interface, etc.) and
additive noise ϵ as follows

y = s(m, ϵ) = F (m) + ϵ, ϵ ∼ N (0,Σ) (5.21)

where Σ is the covariance matrix of data noise. Here, s(m, ϵ) is a known forward model that,
assuming an additive noise model, can be rewritten as F (m) + ϵ, where F (m) represents
the undersea acoustic model [202]. The SWellEx-96 experiment setup involves a complicated
environment and no closed from analytical solution is available for F (m). In this case, F (m)
can only be evaluated numerically, and we use the normal-modes program KRAKEN [212]
for this purpose.

Recently, machine learning algorithms have gained attention in the ocean acoustics com-
munity [205] for their notable performance and efficiency, especially when compared to tra-
ditional methods such as MCMC. In this work, for the first time, we use the concept of
invertible networks to estimate posterior distributions in GI. Particularly appealing is that
invertible architectures can replace both the forward propagation model as well as the inver-
sion method.

We now discuss the training of the invertible architectures. We use the uniform prior on
parameters m (described in Task 1 and Task 2 above) and the forward model in Eq. (5.21)
to construct a synthetic data set for the SWellEx-96 experimental setup using the normal-
modes program KRAKEN. For each parameter m, we have 7 × 21 = 147 values for the
pressure y received at hydrophones corresponding to the source’s 7 different frequencies and
the 21 active hydrophones. For inference, we use a test acoustic signal y∗ that corresponds
to the actual parameters values from the SWellEx-96 experiment, where the source is 60 m
deep and its distance from the VLA is 3 km (i.e. m∗

1 = 216.5, m∗
2 = 1572.368, m∗

3 = 0,
m∗

4 = 23.5). Also, the signal-to-noise ratio (SNR) is 15 dB.
Inspired by [187], for the invertible architectures, we include data noise ϵ as additional

model parameters to be learned. In this context, as depicted in the Figure 5.7, the input
of the network is obtained by augmenting the unknown parameters m with additive noise
ϵ. There are several ways to use the measurements collected across the 21 hydrophones
for training. For instance, one can stack all hydrophones’ data and treat them as a single
quantity at the network’s output. Alternatively, one can treat each hydrophone measurement
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Figure 5.8: Task 1. For a fixed observation y∗, we compare the estimated posteriors p̂(x |y∗)
of INN, cINN, and the proposed ISR and cISR methods. Vertical dashed red lines show the
ground truth values x∗.

independently as an individual training example. For the former, the additive noise will
be learned separately for each hydrophone pressure y, while for the latter, we essentially
learn the effective additive noise over all hydrophones simultaneously. In this experiment,
we adopt the latter training approach, which disregards the inter-hydrophone variations,
thereby reducing computational overhead.

The pressures received on the hydrophones are considered in the frequency domain, and
hence they can be complex numbers. While the invertible architectures can be constructed
to address complex numbers, in this case study, we stack the real and imaginary parts of
the pressure field at the network’s output. That is, the pressure y = Re{y} + i Im {y}
will be represented as

[
Re{y}, Im {y}

]
at the network’s output. In short, the 7 pressures

(corresponding to the 7 source’s frequencies) received at each hydrophone are replaced by
14 real numbers at the output of the network. Also, the 14 corresponding additive noises
are concatenated with the parameters m at the network’s input. Since the dimension of the
network’s input is 14+dm, the latent variables z at the network output will be dm-dimensional
for ISR and INN, and (14+dm)-dimensional for cINN and cISR. We compare the performance
of the proposed ISR and cISR algorithms against INN and cINN in solving GI.

The inferred posterior distributions via INN, cINN, ISR, and cISR, for the GI Task 1
and Task 2 are depicted in Fig. 5.8 and Fig. 5.9, respectively. The performance of the ISR
and cISR architectures is similar to that of the INN and cINN architectures. All methods
produce point estimates – Maximum a Posteriori (MAP) estimates – close to the ground
truth values, showcasing the efficacy of invertible architectures in addressing cumbersome
inversion tasks.
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Figure 5.9: Task 2. For a fixed observation y∗, we compare the estimated posteriors p̂(x |y∗)
of INN, cINN, and the proposed ISR and cISR methods. Vertical dashed red lines show the
ground truth values x∗.
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5.5 Conclusion

In this work, we introduce Invertible Symbolic Regression (ISR), a novel technique that iden-
tifies the relationships between the inputs and outputs of a given dataset using invertible
architectures. This is achieved by bridging and integrating concepts of Invertible Neural
Networks (INNs) and Equation Learner (EQL). This integration transforms the affine cou-
pling blocks of INNs into a symbolic framework, resulting in an end-to-end differentiable
symbolic inverse architecture that allows for efficient gradient-based learning. The proposed
ISR method, equipped with sparsity promoting regularization, has the ability to not only
capture complex functional relationships but also yield concise and interpretable invertible
expressions. We demonstrate the versatility of ISR as a normalizing flow for density esti-
mation and its applicability in solving inverse problems, particularly in the context of ocean
acoustics, where it shows promising results in inferring posterior distributions of underlying
parameters. This work is a first attempt toward creating interpretable symbolic invertible
maps. While we mainly focused on introducing the ISR architecture and showing its appli-
cability in density estimation tasks and inverse problems, an interesting research direction
would be to explore the practicality of ISR in challenging generative modeling tasks (e.g.
image or text generation, etc.).
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

This thesis presents a series of advancements in the field of Symbolic Regression (SR), ex-
tending its applicability beyond traditional regression tasks and demonstrating its potential
across diverse domains and problem settings.

We first propose a Generalized Symbolic Regression (GSR) method, which reformulates
the traditional SR optimization problem to discover analytical mappings from the input space
to a transformed output space. The proposed GSR approach achieves promising performance
compared to existing SR methods across well-known benchmark datasets, as well as the more
challenging SymSet dataset that we introduce in this study.

We then present an adjoint-based method for discovering the underlying partial dif-
ferential equations (PDEs) given data. We consider a family of parameterized PDEs in
general form, and formulate a PDE-constrained optimization problem that minimizes the
error between the PDE solution and the data. We then show how the corresponding adjoint
equations can be elegantly derived. We show the effectiveness of the proposed approach in
accurately discovering the governing PDEs from data. We also compare its performance
with a commonly used method for PDE discovery, on both smooth and noisy data.

Furthermore, we introduce MESSY Estimation, a Maximum-Entropy based Stochastic
and Symbolic densitY estimation method. In this work, we explore the task of inferring
probability density functions symbolically from samples by leveraging the Maximum En-
tropy Distribution (MED) principle. We uncover three main contributions: (i) the Lagrange
multipliers, inherent in the MED ansatz, can be efficiently computed by simply solving a
linear system of equations, (ii) the density recovery task improves by matching more uncon-
ventional low-order (symbolic) moments, rather than necessarily matching higher-order (raw)
moments, and (iii) the proposed symbolic density estimation framework leads to enhanced
interpretability and better conditioning.

Finally, we propose ISR, an Invertible Symbolic Regression (ISR) approach that bridges
the concepts of SR and invertible architectures. In particular, ISR naturally combines the
principles of Invertible Neural Networks (INNs) and Equation Learner (EQL), a neural
network-based symbolic architecture for function learning. In addition, ISR serves as a
symbolic normalizing flow for density estimation tasks. We show ISR’s applicability in
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solving inverse problems, including a benchmark inverse kinematics problem, and notably,
a geoacoustic inversion problem for inferring posterior distributions of underlying seabed
parameters from acoustic signals.

In conclusion, this thesis not only expands the toolkit of SR but also sets the stage for
new research directions in SR and its application to diverse scientific disciplines.

6.2 Recommendations

We offer recommendations for researchers interested in building upon the contributions of
this thesis to further advance this field of study. The following directions are proposed to
expand the scope and enhance the efficacy of Symbolic Regression (SR) approaches.

For Generalized Symbolic Regression (GSR), we primarily explored its performance on
noise-free datasets. Future work should investigate its robustness and adaptability to noisy
data, which is prevalent in real-world scenarios. Additionally, GSR’s utility for identifying
physical and dynamical systems governed by implicit laws could be further explored. Ex-
tending the GSR concept of mapping inputs to transformed outputs to existing SR methods
could potentially enhance their overall performance and applicability.

In the area of PDE discovery using adjoint methods, an exciting research direction
would involve integrating the adjoint-based method with Physics-Informed Neural Networks
(PINNs) as the solver, rather than relying solely on the finite difference method. This
integration could improve the handling of noisy and sparse data and facilitate the use of
larger time steps in the estimation processes of both forward and backward solvers, thereby
enhancing computational efficiency and accuracy.

For MESSY Estimation, further research could delve into optimizing the algorithm’s
efficiency in high-dimensional contexts, a critical aspect considering the complexity of modern
machine learning datasets. Other possible direction includes the application of MESSY
Estimation to variance reduction tasks. Additionally, investigating the integration of the
maximum entropy formalism instead of the maximum likelihood approach in the training
of transport-based density estimation methods could open new avenues for research and
application.

The Invertible Symbolic Regression (ISR) presents a promising framework for challeng-
ing generative modeling tasks, such as image or text generation. Exploring the practical
application of ISR in these areas could provide significant insights in generative techniques.

Moreover, a broader research direction would involve developing SR techniques compati-
ble with real-time (or online) learning. Bridging the concepts between parametrized symbolic
methods (e.g. Equation Learners [42], [50], [54], Symbolic Metamodels [213] based on the
Kolmogorov-Arnold representation theorem [214] and the Meijer G-function [215], etc.) with
dynamic approaches like the nonlinear recursive least squares technique, could significantly
advance real-time adaptive and interpretable modeling.

To further bridge the gap between theoretical advancements and practical applications, it
is crucial to consider the deployment of SR methods in real-world domains such as robotics,
control, oceanography, mechatronics, etc. Immediate applications could involve using SR
to derive control laws for robotic systems or model ocean dynamics based on sensor data.
Challenges in these applications include handling noisy, incomplete, and high-dimensional
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data, as well as ensuring computational efficiency in real-time environments. Future work
should focus on developing robust methods for learning from real-world data, including
advanced data preprocessing techniques and domain-specific adaptations of SR algorithms.
Identifying the types of data that best support SR, such as high-fidelity sensor measurements
and extensive simulation data, will be crucial for successful implementation. Collaborations
with domain experts will also be essential to tailor SR approaches to the unique requirements
and constraints of these fields, ultimately enhancing the practical utility and impact of SR
in solving cumbersome, real-world tasks.

These recommendations aim to extend the reach and deepen the impact of SR in scientific
research and practical applications, pushing the boundaries of current methodologies and
introducing novel approaches to solving complex, real-world problems.
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Appendix A

Supplementary Material for Chapter 2

A.1 Implementation, Hyperparameters, and Additional
Experiment Details

Implementation. Our GSR method discovers expressions of the form g(y) = f(x) where
y ∈ R, x ∈ Rd, and where the search space for f(·) and g(·) is constrained to a weighted sum
of Mϕ and Mψ basis functions

(
namely ϕ(·) and ψ(·)

)
, respectively. We use a matrix-based

encoding scheme to represent ϕ(·) and ψ(·) using basis matrices Bϕ and Bψ of sizes
nBϕ × mBϕ and nBψ × 1, respectively (where mBϕ = nv + 2 and nv is defined in Section
2.3.3). Hence, in addition to the number of basis functions Mϕ and Mψ, the parameters nBϕ ,
nv, and mBϕ affect the complexity of the evolved expressions, and hence can be controlled to
confine the search space (although d also affects the complexity of the expression, it is given
by the problem and cannot be controlled). Although more than one basis matrix can lead
to the same basis function (see Remark 2.3.3), the search space of basis functions

(
mainly

ϕ(·)
)

is still huge in general, and thus, enumerating all the possible basis functions is not
practical. Hence, we will rely on genetic programming (GP) for effective search process. A
pseudocode of our GP-based GSR algorithm is outlined in Algorithm 7.

The main inputs to our GP-based algorithm are Np, np, Mϕ, Mψ, Lx, and Ly. Recall
that Np is the population size and np is the number of surviving individuals per genera-
tion. Lx and Ly are the libraries of allowable transformations that can be used with x
and y, respectively. These libraries form the first two rows of mapping tables, e.g. Table
A.5, and are defined by the benchmark problem. Note that the division operator is not
part of our GSR architecture. That is, the main arithmetic operations used by GSR are
{+,−,×}. For example, for the Nguyen benchmark dataset, the library of allowable oper-
ations is L0 = {+,−,×,÷, cos, sin, exp, ln} as shown in Table A.11. In this case, we define
Lx = {1, •1, cos, sin, exp, ln} (resulting in the mapping Table 2.2) and Ly = {1, •1, exp, ln}.
Regarding the stopping criterion, common terminating conditions for GP include: i) a so-
lution reaches minimum criterion (e.g. error threshold), ii) the algorithm reaches a fixed
number of generations (or iterations), iii) the algorithm generates a fixed number of in-
dividuals (or candidates expressions), iv) the algorithm reaches a plateau such that new
generations no longer improve results, v) combinations of the above conditions. In our case,
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the algorithm terminates when the solution hits a minimum root-mean-square error (RMSE)
threshold. To accelerate termination, we slowly relax the error threshold by gradually in-
creasing it. To avoid reaching a plateau and since we are dealing with a small population
size as shown in Table A.1, we enhance diversity (in the basis functions) by producing com-
pletely new individuals with probability 1/2 per generation (while performing crossover and
mutation with probability 1/4 each per generation). To speed up the search process, we em-
ploy sublibraries Lsx ⊆ Lx and Lsy ⊆ Ly of allowable transformations, used when generating
completely new individuals (or completely new basis functions in the case of mutation). For
x, we mainly rely on three sublibraries which are the most common: a polynomial sublibrary
Lpoly, a trigonometric sublibrary Ltrig, and the original library Lx itself. For the Nguyen
benchmark example above, Lpoly = {1, •1} and Ltrig = {1, •1, cos, sin}. Note that power
operators such as •2, •3 would be included in these sublibraries if they were part of the orig-
inal library defined by the benchmark problem. The function ChooseSublibrary( ) works
according to some cycle. For example, assuming k is the generation (or iteration) counter, if
k ≤ 1, 500, each cycle consists of 70 iterations broken into three stages, the first stage consists
of 15 iterations and assigns Lsx ← Lx, the second stage consists of 25 iterations and assigns
Lsx ← Lpoly, and the third and final stage consists of the remaining 35 iterations and assigns
Lsx ← Ltrig. This cycle repeats until k = 1, 500, after which the cycle’s size becomes 1, 500
iterations broken into three equal stages (i.e. 500 iterations per sublibrary). For y, the cycle
consists of 20 iterations, in which we equally alternate between the polynomial sublibrary
Lpoly and the original library Ly itself (i.e. 10 iterations for each sublibrary). Indeed, the use
of sublibraries is only possible when the corresponding operations are included in the original
library defined by the benchmark problem (e.g. Neat-6 and Neat-8 cannot use trigonomet-
ric sublibraries since {cos, sin} are not included in their corresponding original libraries, as
shown in Table A.11). In addition, it is up to the user to specify the cycle’s size and how to
alternate between sublibraries, or even decide whether to use sublibraries in the first place.

Hyperparameters. Throughout our experiments, we adopt the following hyperparameter
values. For GP, we use a population size Np = 30, and we allow for np = 10 surviving
individuals per generation. We perform crossover with probability Pc = 1

4
and allow for

only 2 parents to be involved in the process (i.e. new individuals are formed by combing
basis functions from two randomly chosen parent individuals). We apply mutation with
probability Pm = 1

4
and allow for 3 basis functions (randomly selected from an individual)

to be mutated (i.e. to be discarded and replaced by completely new basis functions). We
generate a (completely new) random individual with probability Pr = 1

2
. For ADMM, we

use a regularizer λ = 0.4, a penalty ρ = 0.1. The algorithm terminates when the ℓ2-norm
of the difference between the weight vectors from two consecutive iterations falls below a
threshold of δ = 10−5. Regarding initial conditions, we use w0 = 1̂

2
=

[ 1
2
··· 1

2
]T√

1
4
+···+ 1

4

(where

“ ̂ ” denotes a normalized vector), z0 = 1 = [1 · · · 1]T , u0 = 0 = [0 · · · 0]T . For GSR, we
allow for a maximum of Mϕ = 15 basis functions ϕ(·) for each expression of f(·) (this is
the maximum number since some of the Mϕ basis functions will be multiplied by 0, i.e. at
most we get Mϕ nonzero coefficients multiplying the basis fcuntions). To avoid overfitting
and overly complex expressions, we allow for a maximum of Mψ = 1 basis function ψ(·)
for each expression of g(·) (in this case the maximum and minimum are both 1 and g(·)
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will consist of a single basis function). It is worth noting that we use Mψ = 2 for SymSet-
11. Each basis ψ(·) will consist of a single transformation nBψ = 1. Each basis ϕ(·) will
be a product of Nt transformations, where Nt is a random integer between 1 and 3, i.e.
nBϕ ∈ {1, 2, 3}. For each of these Nt transformations, the maximum total multiplicity of
all the independent variables (or features) in an argument is a random integer between 2
and 5, i.e. nv ∈ {2, 3, 4, 5}. GSR terminates when a candidate expression achieves a RMSE
lower than a threshold with a starting value of ϵ = 10−6 (recall that this threshold is slowly
relaxed during the process, e.g. by progressively multiplying it by a factor of

√
10 for every

1, 500 iterations). All hyperparameter values are summarized in Table A.1.

Computational complexity. Although genetic algorithms are inherently heuristic, un-
derstanding how our GSR algorithm operates and scales could still be valuable. Following
Algorithm 7 above, we can approximate the time complexity of GSR as:

O

(
Np ·

(
Mϕ · nBϕ ·mBϕ +Mψ · nBψ · 1 +Nδ +O (fitness)

)
+O (Np logNp)

+Nϵ ·
(
(Np − np) ·

(
Pc ·O (crossover) + Pm ·O (mutation)

+Pr · (Mϕ · nBϕ ·mBϕ +Mψ · nBψ · 1) +Nδ +O (fitness)
)
+O (Np logNp)

))
(A.1)

where Nϵ is the number of generations until the GP algorithm hits the tolerance ϵ, and
Nδ is the number of iterations until the ADMM algorithm hits the tolerance δ. Note that
performing crossover or mutation operations takes O(1) time (i.e. a constant amount of
time), and computing the fitness (which calculates RMSE on N paired training examples)
takes O(N) time. Also note that Pc, Pm, and Pr are probabilities which can be treated as
constants. Hence, GSR’s time complexity reduces to:

O
(
Nϵ ·Np ·

(
Mϕ · nBϕ ·mBϕ +Mψ · nBψ +Nδ +N + logNp

))
(A.2)

Compared to GSR, the special version s-GSR adopts a vanilla SR (where g(y) is simply y)
with the same GP algorithm and coefficient optimization process (through ADMM) as GSR.
Thus, s-GSR’s time complexity can be approximated as:

O
(
Nϵ ·Np ·

(
Mϕ · nBϕ ·mBϕ +Nδ +N + logNp

))
(A.3)

Although GSR’s computational complexity contains an extra term of O (Nϵ ·Np ·Mψ · nBψ),
the number of GP generations Nϵ produced by GSR is often much less than that of s-GSR,
which explains the runtime advantage of GSR over s-GSR shown in Table A.4.
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Algorithm 7: GP Procedure for GSR
Input: Np, np, Mϕ, Mψ, Lx, Ly
Output: I∗
function SolveGSR(Np, np, Mϕ, Mψ, Lx, Ly)

Initialize population:
// I(k)← {I1(k), I2(k), . . . , INp

(k)}
k ← 0; // Initialize the generation (or iteration) counter
for i = 1 to Np do
Ii(k)← GenerateRandomIndividual(Mϕ,Mψ,Lx,Ly);
/* Each individual Ii(k) contains two randomly generated sets of Mϕ and Mψ

basis matrices respectively */
end
Evaluate each individual Ii(k) with respect to the fitness function;
/* For each individual Ii(k), form the matrix Ai(k), solve for the optimal

coefficients vector wi(k)← SolveADMM(Ai(k), · · · ), then compute its fitness */
I(k)← sorted(I(k)); // in ascending order of fitness
while Stopping Criterion not Satisfied do

k ← k + 1; // Increment the generation (or iteration) counter
UpdateCriterion( );
/* Start with a strict stopping criterion (e.g. very low error threshold)

and slowly relax it (e.g. gradually increase the error threshold) */
Lsx,Lsy ← ChooseSublibrary(Lx,Ly);
/* Choose sublibraries Lsx ⊆ Lx and Lsy ⊆ Ly of allowable operations to be

used with x and y respectively */
I [1:np](k)← I [1:np](k − 1);
/* The np fittest individuals of the previous generation are copied to the

current new one */
for i = np + 1 to Np do

u← GenerateRandomInteger(1, 4);
if u = 1 then
Ii(k)← Reproduce(I [1:np](k),Lsx,Lsy);
/* Crossover based on the surviving individuals */

else if u = 2 then
Ii(k)←Mutate(I [1:np](k),Lsx,Lsy);
/* Mutation based on the surviving individuals */

else
Ii(k)← GenerateRandomIndividual(Mϕ,Mψ,Lsx,Lsy);
/* Randomly generate a completely new individual */

end
end
Evaluate each individual Ii(k) with respect to the fitness function;
I(k)← sorted(I(k)); // in ascending order of fitness

end
I∗ ← I1(k); // return the fittest individual

end function
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Table A.1: Hyperparameter values for GSR for all experiments, unless otherwise specified.

Hyperparameter Symbol Value

GP Parameters

Population size Np 30
Number of survivors per generation np 10
Crossover probability Pc 1/4
Number of parents involved in crossover — 2
Mutation probability Pm 1/4
Number of bases to mutate — 3
Randomly generated individual probability Pr 1/2

ADMM Parameters

Regularization parameter λ 0.4
Penalty parameter ρ 0.1
Tolerance on the solution error δ 10−5

Initial guesses w0, z0, u0
1̂
2
,1,0

GSR Parameters

Maximum number of basis functions ϕ(·) for each expression of f(·) Mϕ 15
Maximum number of basis functions ψ(·) for each expression of g(·) Mψ 1
Maximum total multiplicity of all features in an argument nv {2, 3, 4, 5}
Number of tranformations multiplied together per basis ϕ(·) nBϕ {1, 2, 3}
Number of tranformations multiplied together per basis ψ(·) nBψ 1
Tolerance on the solution error (RMSE) ϵ 10−6
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Additional experiment details. For all benchmark problems, we run GSR for multiple
independent trials using different random seeds (following the experimental procedure in
[31], [43]). Table A.2 shows the recovery rates of GSR against literature-reported values
from several algorithms on the Nguyen and Livermore individual benchmark problems. We
first note that, due to the wide domain of sampled input points imposed by Livermore-1 (i.e.
[−10, 10]), we observed some instabilities in the solution due to the presence of the exponen-
tial function, which we decided to exclude from the library of allowable operations during the
search process for this benchmark. In what follows, we provide explanations for the results
shown in Table A.2. Note that Livermore-5 is difficult to recover by NGGPPS+SLP/HER
and the remaining methods as it contains subtractions. Subtraction is more difficult than
addition since it is not cumulative. This is not an issue for GSR since both additions and
subtractions are equally recovered through the sign of the optimal coefficients multiplying
the basis functions. Livermore-10 and Livermore-17 are more challenging than Nguyen-
10 since they require adding the same basis function many more times (which is apparent
through the poor recovery rates of the different methods). Fortunately, this is also not a
problem for GSR since it can be easily solved by finding the right coefficient multiplying
the basis function. Livermore-18 is more challenging than Livermore-2 and Nguyen-5 since
it requires recovering the constant 5 without a constant optimizer

(
which can be recovered

as x+x+x+x+x
x

)
. For GSR, this can be recovered by naturally solving for the real-valued co-

efficient. The problem of the different methods on Livermore-22 lies in the constant 0.5,
which requires finding x

x+x
compared to GSR which simply solves for the optimal parameter

multiplying x2. We observe that GSR performs poorly on Livermore-9 and Livermore-21
compared to NGGPPS+SLP/HER. This can be due to the choice of hyperparameters (e.g.
Mϕ, nBϕ , and nv) as well as the GP-based search process. These two benchmarks require
finding the first 9 and 8 powers of x simultaneously, respectively, which can be difficult to
achieve by GSR, especially that we only consider Mϕ = 15 basis functions ϕ(·) per expres-
sion of f(·), as mentioned earlier. Note that polynomials were not an issue for GSR up
to the 6th order (i.e. Nguyen-4). We also tried experimenting with a 7th order polynomial
(i.e. y = x7 + x6 + x5 + x4 + x3 + x2 + x) and GSR achieved 100% recovery rate. We
started observing a decline in the recovery rate when we added the 8th power of x. In other
words, Livermore-21 (the 8th order polynomial) seems to be the limit that GSR can reach
with polynomials while Livermore-9 (the 9th order polynomial) becomes very difficult to re-
cover. It is worth noting that if the libraries for the Livermore-9 and Livermore-21 problems
contained the square and cube operators {•2, •3} (as is the case for the Jin benchmarks
described in Table A.11), then GSR would easily recover these two problems. Finally, GSR
is not able to recover Livermore-7

(
y = sinh(x)

)
and Livermore-8

(
y = cosh(x)

)
since both

benchmarks require finding the basis function e−•,1 which cannot be expressed using our
current encoding scheme unless it is available as a transformation by itself. That is, the ex-
ponential operator e• is not enough to recover 1

e•
= e−• using our current encoding scheme.

Had the negative exponential operator e−• been part of the library of allowable operations
defined by Livermore-7 and Livermore-8, GSR would easily recover these two benchmarks.
As we can see for SymSet-1

(
y = x sinh(x) − 4

5

)
, we added the operator e−• to the library

of allowable operations (see Table A.12), which made GSR’s mission much simpler and it

1Livermore-7 and Livermore-8 can be expressed as sinh(x) = ex−e−x

2 and cosh = ex+e−x

2 respectively.
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was able to recover the corresponding ground truth expression as shown in Table A.18. It
is worth mentioning that, although ground truth expressions are not expressible, GSR was
naturally able to recover the best approximations possible for Livermore-7 and Livermore-8,
which turned out to be their Taylor expansions around 0. GSR’s typical output expressions
were as follows:
Livermore-7:

0.51655 y = +0.51655x+ 0.48165x(x× x) + 0.48165x(x× x)
− 0.048738(x+ x+ x)(x+ x+ x)(x+ x) + 0.0022335(x+ x)(x)(x× x× x)

⇐⇒ y ≈ x+ 0.166x3 + 0.00865x5

≈ x+
x3

3!
+
x5

5!

(
the first three terms of the Taylor series of sinh(x) around 0

)
≈ sinh(x)

Livermore-8:

−0.8616 y = −0.2154− 0.042956(x+ x)x− 0.035877(x× x)(x× x)− 0.2154− 0.2154

− 0.0012368(x× x)(x× x× x× x)− 0.042956x(x+ x)− 0.25898x(x)− 0.2154

⇐⇒ y ≈ 1 + 0.5x2 + 0.0416x4 + 0.00144x6

≈ 1 +
x2

2!
+
x4

4!
+
x6

6!

(
the first four terms of the Taylor series of cosh(x) around 0

)
≈ cosh(x)

We next perform a runtime comparison between GSR and NGGPPS on the Nguyen bench-
mark problem set. We run each benchmark problem and report the runtimes in Table A.3.
We find that GSR exhibits faster runtime than NGGPPS, averaging 2.5 minutes per run
on the Nguyen benchmarks compared to 3.2 minutes for NGGPPS. It is worth noting that
although GSR is, on average, faster than NGGPPS, it still exhibits slower runtime on some
problems (e.g. Nguyen-6 and Nguyen-9 in Table A.3). This is due to the randomness of
the search process as well as the use of sublibraries as mentioned earlier in the Appendix.
Indeed, the runtime depends on the stopping criterion or condition. For example, one can
shorten the runtime further if the interest is just in an approximation rather than an exact
recovery. Our GSR method recovers exact expressions in the order of few minutes.

We further highlight the strengths of GSR on the new SymSet benchmark problem set,
and show the benefits of searching for expressions of the form g(y) = f(x) instead of y =
f(x). Typical expressions, with exact symbolic equivalence, recovered by GSR are shown
in Table A.18. The key feature of GSR lies in its ability to recover expressions of the
form g(y) = f(x). To better highlight the benefits offered by this feature, we disable it
by constraining the search space in GSR to expressions of the form y = f(x) (which is
the most critical ablation). We refer to this special version of GSR as s-GSR. Note that
most of the SymSet expressions cannot be exactly recovered by s-GSR (i.e. they can only
be approximated). We compare the performance of GSR against s-GSR on the SymSet
benchmarks in terms of accuracy and runtime (see Table A.4). The results clearly show that
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GSR is faster than s-GSR, averaging around 2 minutes per run on the SymSet benchmarks
compared to 2.27 minutes for s-GSR (i.e. ∼ 11% runtime improvement). In addition, GSR
is more accurate than s-GSR by two orders of magnitude. This is due to the fact that GSR
exactly recovers the SymSet expressions across most of the runs, while s-GSR only recovers
approximations for most of these expressions. It is worth mentioning that on SymSet-1,
SymSet-4, SymSet-5, SymSet-10, and SymSet-12, we observe mean RMSE values of the
same order of magnitude between GSR and s-GSR, since these expressions can be exactly
recovered by simply learning expressions of the form y = f(x). As GSR has to perform
a search to discover that g(y) is simply y for these expressions, it exhibits slower runtime
than s-GSR in recovering these expressions (see Table A.4).

In addition, we compare GSR against several strong SR methods with similar (or better)
expression ability. In particular, we experiment on SymSet with NGGPPS, PSTree, PySR,
and gplearn (see Table A.4). GSR is more accurate than all these methods by three orders of
magnitude, which further demonstrates the advantage of our proposed approach. As for the
runtime, PSTree is the fastest method, averaging around 16 seconds per run on the SymSet
expressions, while maintaining solid accuracies. This comes as no surprise given its state-of-
the-art performance on SRBench datasets [28]. It is worth mentioning that on SymSet-16,
all the methods (i.e. NGGPPS, PSTree, PySR, and gplearn) exhibited some instabilities in
the solution over all independent runs. Hence, we excluded SymSet-16 for these methods in
Table A.4.
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Table A.2: Recovery rate comparison of GSR against literature-reported values from several
algorithms on the Nguyen and Livermore benchmark problem sets over 25 independent runs.
The ground truth expressions for these benchmarks are shown in Tables A.11 and A.12.

Recovery Rate (%)
Benchmark GSR NGGPPS + SLP/HER NGGPPS GEGL DSR

Nguyen-1 100 100 100 100 100
Nguyen-2 100 100 100 100 100
Nguyen-3 100 100 100 100 100
Nguyen-4 100 100 100 100 100
Nguyen-5 100 100 100 92 72
Nguyen-6 100 100 100 100 100
Nguyen-7 100 100 96 48 35
Nguyen-8 100 100 100 100 96
Nguyen-9 100 100 100 100 100
Nguyen-10 100 100 100 92 100
Nguyen-11 100 100 100 100 100
Nguyen-12⋆ 100 4 12 0 0

Nguyen Average 100 92.00 92.33 86.00 83.58

Livermore-1 100 100 100 100 3
Livermore-2 100 100 100 44 87
Livermore-3 100 100 100 100 66
Livermore-4 100 100 100 100 76
Livermore-5 100 40 4 0 0
Livermore-6 100 100 88 64 97
Livermore-7 0 4 0 0 0
Livermore-8 0 0 0 0 0
Livermore-9 4 88 24 12 0
Livermore-10 100 8 24 0 0
Livermore-11 100 100 100 92 17
Livermore-12 100 100 100 100 61
Livermore-13 100 100 100 84 55
Livermore-14 100 100 100 100 0
Livermore-15 100 100 100 96 0
Livermore-16 100 100 92 12 4
Livermore-17 100 36 68 4 0
Livermore-18 100 48 56 0 0
Livermore-19 100 100 100 100 100
Livermore-20 100 100 100 100 98
Livermore-21 76 88 24 64 2
Livermore-22 100 92 84 68 3

Livermore Average 85.45 77.45 71.09 56.36 30.41

All Average 90.59 82.59 78.59 66.82 49.18
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Table A.3: Runtimes of GSR vs. NGGPPS on the Nguyen benchmarks. The ground truth
expressions for these benchmarks are shown in Table A.11.

Runtime (sec)
Benchmark GSR NGGPPS

Nguyen-1 18.66 27.05
Nguyen-2 25.96 59.79
Nguyen-3 38.77 151.06
Nguyen-4 63.82 268.88
Nguyen-5 447.01 501.65
Nguyen-6 465.79 43.96
Nguyen-7 33.35 752.32
Nguyen-8 93.89 123.21
Nguyen-9 391.79 31.17
Nguyen-10 68.05 103.72
Nguyen-11 38.86 66.50

Average 153.27 193.57
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Table A.4: Average performance in mean RMSE and runtime, along with their standard
errors, for GSR against s-GSR and several strong SR methods on the SymSet benchmark
problem sets over 25 independent runs. The ground truth expressions for these benchmarks
are shown in Table A.12.

Mean RMSE Runtime (sec)
Benchmark GSR s-GSR GSR s-GSR

SymSet-1 2.52× 10−5 ± 9.29× 10−6 3.69× 10−5 ± 1.62× 10−5 49.94 ± 2.61 43.81 ± 1.95
SymSet-2 4.28× 10−7 ± 3.35× 10−8 2.34× 10−3 ± 1.21× 10−3 75.24 ± 2.83 91.95 ± 4.26
SymSet-3 6.58× 10−6 ± 1.79× 10−6 1.22× 10−3 ± 8.17× 10−4 66.34 ± 2.51 88.14 ± 3.49
SymSet-4 7.94× 10−4 ± 5.19× 10−4 1.37× 10−4 ± 1.46× 10−3 428.23 ± 8.46 405.54 ± 6.04
SymSet-5 3.63× 10−5 ± 9.92× 10−5 4.98× 10−5 ± 7.37× 10−5 71.86 ± 4.12 64.19 ± 3.82
SymSet-6 4.38× 10−5 ± 8.09× 10−6 8.12× 10−2 ± 1.93× 10−2 76.59 ± 3.72 94.18 ± 4.16
SymSet-7 2.39× 10−4 ± 1.71× 10−5 6.83× 10−2 ± 6.56× 10−3 93.61 ± 2.54 109.94 ± 4.98
SymSet-8 6.83× 10−4 ± 1.95× 10−5 7.88× 10−3 ± 3.88× 10−3 68.07 ± 2.47 90.61 ± 3.06
SymSet-9 3.57× 10−6 ± 3.41× 10−5 6.32× 10−3 ± 1.39× 10−3 57.36 ± 2.68 83.18 ± 2.09
SymSet-10 2.12× 10−4 ± 4.43× 10−4 3.24× 10−4 ± 7.58× 10−5 393.62 ± 5.47 379.56 ± 6.86
SymSet-11 1.43× 10−3 ± 9.97× 10−4 9.39× 10−2 ± 6.78× 10−3 124.38 ± 9.65 187.49 ± 8.35
SymSet-12 1.22× 10−5 ± 5.37× 10−5 7.09× 10−5 ± 2.88× 10−4 78.53 ± 4.02 69.72 ± 2.97
SymSet-13 2.31× 10−5 ± 1.83× 10−5 9.13× 10−2 ± 3.28× 10−2 96.14 ± 5.48 114.85 ± 4.61
SymSet-14 2.18× 10−5 ± 9.47× 10−6 6.14× 10−2 ± 7.78× 10−3 112.32 ± 4.57 137.61 ± 4.53
SymSet-15 1.81× 10−6 ± 4.75× 10−5 6.71× 10−3 ± 3.57× 10−4 46.97 ± 2.33 85.07 ± 4.14
SymSet-16 7.24× 10−4 ± 3.58× 10−4 9.86× 10−3 ± 2.19× 10−3 98.37 ± 3.71 126.16 ± 5.94
SymSet-17 2.57× 10−4 ± 7.03× 10−5 3.41× 10−3 ± 4.54× 10−3 116.78 ± 4.49 143.31 ± 6.28

Average 2.66× 10−4 ± 1.59× 10−4 2.56× 10−2 ± 5.27× 10−3 120.84 ± 4.22 136.19 ± 4.56

Benchmark NGGPPS PSTree NGGPPS PSTree

SymSet-1 3.66× 10−1 ± 7.81× 10−3 7.92× 10−3 ± 2.23× 10−3 175.32 ± 1.54 42.98 ± 3.23
SymSet-2 4.75× 10−1 ± 5.92× 10−2 1.96× 10−1 ± 2.72× 10−2 171.46 ± 2.03 24.68 ± 1.05
SymSet-3 1.34× 10−2 ± 1.91× 10−3 3.73× 10−3 ± 4.01× 10−4 167.11 ± 1.69 21.68 ± 1.89
SymSet-4 1.76× 100 ± 9.89× 10−1 1.32× 100 ± 1.61× 10−1 171.85 ± 2.01 24.14 ± 1.09
SymSet-5 4.21× 10−1 ± 3.58× 10−2 3.19× 10−1 ± 9.94× 10−2 177.98 ± 1.57 13.09 ± 0.37
SymSet-6 2.08× 100 ± 4.80× 10−1 1.42× 100 ± 3.72× 10−1 179.34 ± 1.75 13.28 ± 0.36
SymSet-7 2.43× 10−2 ± 9.62× 10−3 5.25× 10−1 ± 7.62× 10−2 133.89 ± 6.95 11.78 ± 0.24
SymSet-8 3.93× 10−1 ± 5.08× 10−2 4.02× 10−1 ± 6.42× 10−2 169.46 ± 1.81 11.54 ± 0.41
SymSet-9 1.34× 10−1 ± 3.55× 10−2 1.23× 10−1 ± 1.90× 10−2 175.04 ± 1.04 12.23 ± 0.29
SymSet-10 3.32× 10−1 ± 3.09× 10−2 9.91× 10−1 ± 9.59× 10−2 178.27 ± 1.75 11.06 ± 0.17
SymSet-11 2.49× 10−1 ± 2.71× 10−2 1.11× 10−1 ± 2.24× 10−2 166.91 ± 1.66 21.26 ± 0.53
SymSet-12 8.76× 10−1 ± 6.89× 10−2 8.32× 10−1 ± 1.39× 10−1 178.56 ± 1.53 11.65 ± 0.32
SymSet-13 2.19× 10−1 ± 1.77× 10−1 8.69× 10−1 ± 1.71× 10−1 126.39 ± 7.88 9.92 ± 0.23
SymSet-14 4.93× 10−17 ± 2.85× 10−18 8.24× 10−2 ± 8.50× 10−3 99.85 ± 3.81 9.95 ± 0.21
SymSet-15 2.86× 10−17 ± 4.49× 10−18 6.22× 10−2 ± 1.28× 10−2 94.42 ± 2.84 9.93 ± 0.18
SymSet-17 9.16× 10−2 ± 6.52× 10−3 5.44× 10−2 ± 5.51× 10−3 171.25 ± 1.55 10.46 ± 0.19

Average 4.65× 10−1 ± 1.24× 10−1 4.57× 10−1 ± 7.98× 10−2 158.57 ± 2.59 16.23 ± 0.67

Benchmark PySR gplearn PySR gplearn

SymSet-1 1.10× 10−3 ± 3.01× 10−4 4.45× 10−2 ± 2.91× 10−3 61.21 ± 19.72 140.44 ± 7.27
SymSet-2 5.75× 10−2 ± 2.28× 10−2 3.42× 10−1 ± 5.12× 10−2 119.55 ± 39.39 145.84 ± 1.67
SymSet-3 1.71× 10−3 ± 2.02× 10−4 1.72× 10−2 ± 9.41× 10−3 12.62 ± 0.69 169.38 ± 1.19
SymSet-4 6.14× 10−1 ± 6.12× 10−1 2.89× 100 ± 5.77× 10−1 79.39 ± 1.98 248.12 ± 9.71
SymSet-5 5.91× 10−2 ± 1.28× 10−2 2.64× 10−1 ± 1.76× 10−2 69.47 ± 0.49 190.83 ± 1.41
SymSet-6 6.57× 100 ± 1.96× 100 3.94× 100 ± 1.31× 100 67.45 ± 0.67 215.11 ± 6.69
SymSet-7 5.22× 10−2 ± 4.64× 10−2 8.93× 10−1 ± 1.50× 10−1 117.47 ± 28.85 169.94 ± 1.91
SymSet-8 3.57× 10−1 ± 3.85× 10−2 4.35× 10−1 ± 3.16× 10−2 135.13 ± 30.82 167.64 ± 0.98
SymSet-9 2.58× 10−2 ± 8.51× 10−3 2.19× 10−1 ± 4.17× 10−2 162.11 ± 45.01 159.22 ± 1.86
SymSet-10 4.14× 10−2 ± 1.72× 10−2 1.63× 100 ± 3.38× 10−1 48.17 ± 0.43 192.92 ± 1.72
SymSet-11 2.81× 10−2 ± 3.40× 10−3 1.88× 10−1 ± 2.91× 10−2 49.88 ± 0.63 184.38 ± 1.34
SymSet-12 2.53× 10−2 ± 1.11× 10−2 2.62× 10−1 ± 3.11× 10−2 136.14 ± 41.77 187.32 ± 2.90
SymSet-13 8.44× 10−2 ± 6.39× 10−2 1.07× 10−16 ± 1.29× 10−17 16.01 ± 2.98 12.52 ± 0.77
SymSet-14 1.59× 10−2 ± 4.51× 10−3 9.82× 10−2 ± 1.59× 10−2 57.54 ± 9.81 142.12 ± 5.79
SymSet-15 6.90× 10−3 ± 4.02× 10−3 2.05× 10−1 ± 1.36× 10−2 93.54 ± 56.54 147.58 ± 1.12
SymSet-17 3.94× 10−2 ± 5.21× 10−3 1.18× 10−1 ± 8.20× 10−3 167.45 ± 65.81 148.42 ± 0.67

Average 4.99× 10−1 ± 1.76× 10−1 7.22× 10−1 ± 1.64× 10−1 87.07 ± 21.60 163.86 ± 2.94
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A.2 More Examples on Our Matrix-Based Encoding
Scheme

The encoding process happens according to a table of mapping rules that is very straightfor-
ward to understand and use. For example, consider the mapping rules shown in Table A.5
below, where d is the dimension of the input feature vector. Note that Table A.5 involves
more transformations than Table 2.2.

Table A.5: An example table of mapping rules for a basis function. Placeholder operands are
denoted by •, e.g. •2 corresponds to the square operator. The identity operator is denoted
by •1.

b•,1 0 1 2 3 4 5 6 7 8 9
Transformation (T ) 1 •1 •−1 •2 •3 cos sin exp ln

√
•

b•,2 0 1 2
Argument Type (arg) x

∑ ∏
b•,3, · · · , b•,mB

0 1 2 3 · · · d
Variable (v) skip x1 x2 x3 · · · xd

Example 1. For d = 2, nBϕ = 2 and mBϕ = 4 (i.e. nv = 2), the basis function ϕ(x) =
x21e

x1x2 can be generated according to the encoding steps shown in Table A.6.

Table A.6: Encoding steps corresponding to the basis function ϕ(x) = x21e
x1x2 .

Step T arg v1 v2 Update

1 •2 x x1 — T1(x) = x21
2 exp

∏
x1 x2 T2(x) = ex1x2

Final Update: ϕ(x) = T1(x) · T2(x)

Based on the mapping rules in Table A.5 and the encoding steps in Table A.6, the basis
function ϕ(x) = x21e

x1x2 can be encoded by a 2× 4 matrix as follows:

Bϕ =

[
3 0 1 •
7 2 1 2

]
(A.4)

Example 2. For d = 3, nBϕ = 5 and mBϕ = 5 (i.e. nv = 3), the basis function
ϕ(x) =

x32 sin(x2x3)
√
x2+2x3

2x1+x2
can be generated according to the encoding steps in Table A.7.

Based on the mapping rules in Table A.5 and the encoding steps in Table A.7, the basis
function ϕ(x) = x32 sin(x2x3)

√
x2+2x3

2x1+x2
can be encoded by a 5× 5 matrix as follows:

Bϕ =


2 1 1 1 2
4 0 2 • •
6 2 2 3 •
9 1 2 3 3
0 • • • •

 (A.5)
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Table A.7: Encoding steps corresponding to the basis function ϕ(x) = x32 sin(x2x3)
√
x2+2x3

2x1+x2
.

Step T arg v1 v2 v3 Update

1 •−1
∑

x1 x1 x2 T1(x) = (2x1 + x2)
−1

2 •3 x x2 — — T2(x) = x32
3 sin

∏
x2 x3 — T3(x) = sin(x2x3)

4
√
•

∑
x2 x3 x3 T4(x) =

√
x2 + 2x3

5 1 — — — — T5(x) = 1

Final Update: ϕ(x) = T1(x) · T2(x) · T3(x) · T4(x) · T5(x)

Example 3. For nBψ = 2, the basis function ψ(y) = y3
√
y can be generated according to

the encoding steps shown in Table A.8.

Table A.8: Encoding steps corresponding to the basis function ψ(y) = y3
√
y.

Step T Update

1 •3 T1(y) = y3

2
√
• T2(y) =

√
y

Final Update: ψ(y) = T1(y) · T2(y)

Based on the mapping rules in Table A.5 and the encoding steps in Table A.8, the basis
function ψ(y) = y3

√
y can be encoded by a 2× 1 matrix as follows:

Bψ =

[
4
9

]
(A.6)

Example 4. For nBψ = 3, the basis function ψ(y) = ln(y) can be generated according to
the encoding steps shown in Table A.9.

Table A.9: Encoding steps corresponding to the basis function ψ(y) = ln(y).

Step T Update

1 1 T1(y) = 1
2 ln T2(y) = ln(y)
3 1 T3(y) = 1

Final Update: ψ(y) = T1(y) · T2(y) · T3(y)

Based on the mapping rules in Table A.5 and the encoding steps in Table A.9, the basis
function ψ(y) = ln(y) can be encoded by a 3× 1 matrix as follows:

Bψ =

08
0

 (A.7)
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Example 5. For nBψ = 1, the basis function ψ(y) = ey can be generated according to the
encoding steps shown in Table A.10.

Table A.10: Encoding steps corresponding to the basis function ψ(y) = ey.

Step T Update

1 exp T1(y) = ey

Final Update: ψ(y) = T1(y)

Based on the mapping rules in Table A.5 and the encoding steps in Table A.10, the basis
function ψ(y) = ey can be encoded by a 1× 1 matrix as follows:

Bψ =
[
7
]

(A.8)
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A.3 Symbolic Regression Benchmark Problem Sets

Table A.11: Specifications of the Symbolic Regression (SR) benchmark problems. Input
variables are denoted by x for 1-dimensional problems, and by (x1, x2) for 2-dimensional
problems. U(a, b, c) indicates c random points uniformly sampled between a and b for every
input variable; different random seeds are used for the training and test sets. E(a, b, c)
indicates c evenly spaced points between a and b for every input variable; the same points
are used for the training and test sets

(
except Neat-6, which uses E(1, 120, 120) as test set,

and the Jin tests, which use U(−3, 3, 30) as test set
)
. To simplify the notation, libraries (of

allowable arithmetic operators and mathematical functions) are defined relative to a ‘base’
library L0 = {+,−,×,÷, cos, sin, exp, ln}. Placeholder operands are denoted by •, e.g. •2
corresponds to the square operator.

Benchmark Expression Dataset Library

Nguyen-1 y = x3 + x2 + x U(−1, 1, 20) L0

Nguyen-2 y = x4 + x3 + x2 + x U(−1, 1, 20) L0

Nguyen-3 y = x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0

Nguyen-4 y = x6 + x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0

Nguyen-5 y = sin(x2) cos(x)− 1 U(−1, 1, 20) L0

Nguyen-6 y = sin(x) + sin(x+ x2) U(−1, 1, 20) L0

Nguyen-7 y = ln(x+ 1) + ln(x2 + 1) U(0, 2, 20) L0

Nguyen-8 y =
√
x U(0, 4, 20) L0

Nguyen-9 y = sin(x1) + sin(x22) U(0, 1, 20) L0

Nguyen-10 y = 2 sin(x1) cos(x2) U(0, 1, 20) L0

Nguyen-11 y = xx21 U(0, 1, 20) L0

Nguyen-12 y = x41 − x31 + 1
2
x22 − x2 U(0, 1, 20) L0

Nguyen-12⋆ y = x41 − x31 + 1
2
x22 − x2 U(0, 10, 20) L0

Jin-1 y = 2.5x41 − 1.3x31 + 0.5x22 − 1.7x2 U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}
Jin-2 y = 8x21 + 8x32 − 15 U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}
Jin-3 y = 0.2x31 + 0.5x32 − 1.2x2 − 0.5x1 U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}
Jin-4 y = 1.5ex1 + 5 cos(x2) U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}
Jin-5 y = 6 sin(x1) cos(x2) U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}
Jin-6 y = 1.35x1x2 + 5.5 sin ((x1 − 1)(x2 − 1)) U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}

Neat-1 y = x4 + x3 + x2 + x U(−1, 1, 20) L0 ∪ {1}
Neat-2 y = x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0 ∪ {1}
Neat-3 y = sin(x2) cos(x)− 1 U(−1, 1, 20) L0 ∪ {1}
Neat-4 y = ln(x+ 1) + ln(x2 + 1) U(0, 2, 20) L0 ∪ {1}
Neat-5 y = 2 sin(x1) cos(x2) U(−1, 1, 100) L0

Neat-6 y =
∑x

k=1
1
k

E(1, 50, 50) {+,×,÷, •−1,−•,
√
•}

Neat-7 y = 2− 2.1 cos(9.8x1) sin(1.3x2) E(−50, 50, 105) L0 ∪ {tan, tanh, •2, •3,
√
•}

Neat-8 y = e−(x1−1)2

1.2+(x2−2.5)2
U(0.3, 4, 100) {+,−,×,÷, exp, e−•, •2}

Neat-9 y = 1
1+x−4

1

+ 1
1+x−4

2

E(−5, 5, 21) L0
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Table A.12: Specifications of the Symbolic Regression (SR) benchmark problems. In-
put variables are denoted by x for 1-dimensional problems, by (x1, x2) for 2-dimensional
problems, and by (x1, x2, x3) for 3-dimensional problems. U(a, b, c) indicates c random
points uniformly sampled between a and b for every input variable; different random seeds
are used for the training and test sets. To simplify the notation, libraries (of allowable
arithmetic operators and mathematical functions) are defined relative to ‘base’ libraries
L0 = {+,−,×,÷, cos, sin, exp, ln} or Lc0 = L0 ∪ {const}. Placeholder operands are denoted
by •, e.g. •2 corresponds to the square operator.

Benchmark Expression Dataset Library

Livermore-1 y = 1
3
+ x+ sin(x2) U(−10, 10, 1000) L0

Livermore-2 y = sin(x2) cos(x)− 2 U(−1, 1, 20) L0

Livermore-3 y = sin(x3) cos(x2)− 1 U(−1, 1, 20) L0

Livermore-4 y = ln(x+ 1) + ln(x2 + 1) + ln(x) U(0, 2, 20) L0

Livermore-5 y = x41 − x31 + x21 − x2 U(0, 1, 20) L0

Livermore-6 y = 4x4 + 3x3 + 2x2 + x U(−1, 1, 20) L0

Livermore-7 y = sinh(x) U(−1, 1, 20) L0

Livermore-8 y = cosh(x) U(−1, 1, 20) L0

Livermore-9 y = x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0

Livermore-10 y = 6 sin(x1) cos(x2) U(0, 1, 20) L0

Livermore-11 y =
x21x

2
1

x1+x2
U(−1, 1, 50) L0

Livermore-12 y =
x51
x32

U(−1, 1, 50) L0

Livermore-13 y = x
1
3 U(0, 4, 20) L0

Livermore-14 y = x3 + x2 + x+ sin(x) + sin(x2) U(−1, 1, 20) L0

Livermore-15 y = x
1
5 U(0, 4, 20) L0

Livermore-16 y = x
2
5 U(0, 4, 20) L0

Livermore-17 y = 4 sin(x1) cos(x2) U(0, 1, 20) L0

Livermore-18 y = sin(x2) cos(x)− 5 U(−1, 1, 20) L0

Livermore-19 y = x5 + x4 + x2 + x U(−1, 1, 20) L0

Livermore-20 y = e−x
2

U(−1, 1, 20) L0

Livermore-21 y = x8 + x7 + x6 + x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0

Livermore-22 y = e−0.5x2 U(−1, 1, 20) L0

SymSet-1 y = x sinh(x)− 4
5

U(−1, 1, 20) Lc0 − {ln} ∪ {e−•}
SymSet-2 y = (x5 − 3x4 − 2.8x+ 5)−1 U(−1, 1, 20) Lc0 ∪ {•−1}
SymSet-3 y = (x4 − 1.2x2 + 11.5)

1
3 U(−1, 1, 20) Lc0 ∪ {•2, •3}

SymSet-4 y = 0.8− cos(x) + 4.2ex sin(x2) U(−3, 3, 20) Lc0
SymSet-5 y = 4.5x21 + x1x

3
2 − 1.7x2 − 3.1 U(−1, 1, 20) Lc0

SymSet-6 y = 5
3x1−x32

U(−1, 1, 20) Lc0 ∪ {•−1}
SymSet-7 y = ln(x31 + 4x1x2) U(0, 2, 20) Lc0
SymSet-8 y =

√
5x51 + 14x31x

4
2 − 2x2 + 7 U(−1, 1, 20) Lc0 ∪ {•2, •3}

SymSet-9 y = (2x1 + x2)
− 2

3 U(0, 2, 20) Lc0
SymSet-10 y = 1.5 cos(x1) ln(x1x2)− 2.5 U(0, 1, 20) Lc0
SymSet-11 y =

√
2 cos(x1) + 30ex2 + 4 U(−1, 1, 20) Lc0 ∪ {•2}

SymSet-12 y = 0.4x41 + 6.2x2 − 3.5x1x3 − 4.5 U(−1, 1, 20) Lc0
SymSet-13 y = 2x2

x1+x3
U(0, 1, 20) Lc0

SymSet-14 y = x1x2x3
x1+x2+x3

U(0, 2, 20) Lc0
SymSet-15 y = (x1 + x2)

x3 U(0, 1, 20) Lc0
SymSet-16 y = e2.6x1−ln(x2)+9.8 cos(x3) U(0, 1, 20) Lc0
SymSet-17 y = ln

(
0.2ex1+x2 + 0.5 cos(x23)

)
U(0, 1, 20) Lc0
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A.4 Typical Recovered Expressions

Table A.13: Typical expressions (with exact symbolic equivalence) recovered by GSR for
the Nguyen benchmark set. Note that the coefficients in the GSR expressions form a unit
vector due to the normalization constraint imposed by the Lasso problem in Eq. (2.6). It
is easy to verify (by simplification) that the GSR expressions are symbolically equivalent to
the ground truth expressions.

Benchmark Expression

Truth y = x3 + x2 + x
Nguyen-1 −0.558 y = −0.1395(x× x× x)− 0.1395(x× x× x)− 0.2697x− 0.1395(x× x× x)

GSR −0.2697x− 0.2697x+ 0.0651(x+ x+ x+ x) + 0.0651(x+ x+ x+ x)
−0.1395(x× x× x)− 0.2697x− 0.558(x× x)

Truth y = x4 + x3 + x2 + x
Nguyen-2 −0.58554 y = −0.09759x(x+ x)− 0.58554x− 0.19518(x× x)x− 0.09759(x+ x)x

GSR −0.19518(x× x× x)− 0.29277x(x× x× x)− 0.29277x(x× x× x)
−0.09759(x+ x)x− 0.19518(x× x)x

Truth y = x5 + x4 + x3 + x2 + x
Nguyen-3 0.5 y = +0.125x+ 0.25(x× x× x× x) + 0.125(x)x+ 0.5(x× x)x

GSR +0.125x+ 0.5x(x× x× x× x) + 0.125x+ 0.125(x× x) + 0.125x
+0.125(x)x+ 0.125(x× x) + 0.25x(x× x× x)

Truth y = x6 + x5 + x4 + x3 + x2 + x
−0.48318 y = −0.096636x− 0.48318x(x× x)(x× x)− 0.16106(x× x)− 0.16106(x× x)

Nguyen-4 GSR −0.24159(x× x)x− 0.096636x− 0.48318(x× x× x)(x× x)x
−0.24159(x× x× x)− 0.24159(x× x× x)(x+ x)− 0.096636x
−0.096636x− 0.096636x− 0.16106(x× x)

Nguyen-5 Truth y = sin(x2) cos(x)− 1
GSR 0.63246 y = 0.63246 cos(x) sin(x× x)− 0.31623− 0.31623

Nguyen-6 Truth y = sin(x) + sin(x+ x2)
GSR 0.5 y = 0.5 cos(x) sin(x× x) + 0.5 sin(x) + 0.5 cos(x× x) sin(x)

Truth y = ln(x+ 1) + ln(x2 + 1)
0.70956 ey = +0.1095x(x× x× x) + 0.1095(x× x× x× x) + 0.17082x+ 0.23652

Nguyen-7 GSR +0.17082x+ 0.12702(x× x)(x+ x) + 0.17082x− 0.1095x(x+ x)(x× x)
+0.22776x(x× x) + 0.23652 + 0.22776(x× x)x+ 0.23652
+0.23652(x+ x+ x)x+ 0.17082x+ 0.01314(x+ x)

Nguyen-8 Truth y =
√
x

GSR 0.83654 ln(y) = −0.032175 ln(x× x× x× x) + 0.54697 ln(x)

Nguyen-9 Truth y = sin(x1) + sin(x22)
GSR −0.57735 y = −0.57735 sin(x1)− 0.57735 sin(x2 × x2)

Nguyen-10 Truth y = 2 sin(x1) cos(x2)
GSR 0.44721 y = 0.89442 sin(x1) cos(x2)

Nguyen-11 Truth y = xx21
GSR 0.70711 ln(y) = 0.70711x2 ln(x1)

Truth y = x41 − x31 + 1
2
x22 − x2

Nguyen-12 GSR −0.4 y = −0.2(x2 × x2)− 0.4x1 − 0.4x1 + 0.4(x1 + x2 + x1) + 0.4(x1 × x1)x1
−0.4x1(x1 × x1 × x1)

Truth y = x41 − x31 + 1
2
x22 − x2

Nguyen-12⋆ GSR −0.6 y = −0.1(x2 + x2 + x2)x2 − 0.3(x1 + x1)(x1 × x1 × x1) + 0.3(x1 × x1 × x1)
+0.3x1(x1 × x1) + 0.6x2
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Table A.14: Typical expressions (with exact symbolic equivalence) recovered by GSR for the
Jin benchmark set. Note that the coefficients in the GSR expressions form a unit vector due
to the normalization constraint imposed by the Lasso problem in Eq. (2.6). It is easy to
verify (by simplification) that the GSR expressions are symbolically equivalent to the ground
truth expressions. Although GSR does not exactly recover Jin-6, it recovers approximations
with very low RMSE, as shown in Table 2.5.

Benchmark Expression

Jin-1 Truth y = 2.5x41 − 1.3x31 + 0.5x22 − 1.7x2
GSR 0.30664 y = +0.15332x22 − 0.398632x31 − 0.260644x2 − 0.260644x2 + 0.7666x1x

3
1

Jin-2 Truth y = 8x21 + 8x32 − 15
GSR 0.06909 y = −0.518175 + 0.55272x32 − 0.518175 + 0.27636x21 + 0.27636x21

Jin-3 Truth y = 0.2x31 + 0.5x32 − 1.2x2 − 0.5x1
GSR −0.7943 y = −0.11914x2 − 0.15886x31 + 0.39715(x2 + x2 + x2 + x1)− 0.11915x2 − 0.39715x32

Jin-4 Truth y = 1.5ex1 + 5 cos(x2)
GSR −0.25198 y = −0.37797ex1 − 0.62995 cos(x2)− 0.62995 cos(x2)

Jin-5 Truth y = 6 sin(x1) cos(x2)
GSR 0.13484 y = −0.80904 sin(x2) cos(x1) + 0.40452 sin(x2 + x1) + 0.40452 sin(x2 + x1)

Jin-6 Truth y = 1.35x1x2 + 5.5 sin ((x1 − 1)(x2 − 1))
GSR Not exactly recovered
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Table A.15: Typical expressions (with exact symbolic equivalence) recovered by GSR for the
Neat benchmark set. Note that the coefficients in the GSR expressions form a unit vector
due to the normalization constraint imposed by the Lasso problem in Eq. (2.6). It is easy
to verify (by simplification) that the GSR expressions are symbolically equivalent to the
ground truth expressions. Although GSR does not exactly recover Neat-6, Neat-7, Neat-8,
and Neat-9, it recovers approximations with very low RMSE, as shown in Table 2.6.

Benchmark Expression

Truth y = x4 + x3 + x2 + x
Neat-1 −0.64952 y = −0.32476x(x+ x)(x× x)− 0.064952(x+ x) + 0.082996(x+ x+ x)

GSR −0.32476(x× x)− 0.2129x− 0.32476(x× x)− 0.18764x(x+ x)x
−0.064952(x+ x)− 0.2129x− 0.2129x− 0.27424(x× x× x)

Truth y = x5 + x4 + x3 + x2 + x
0.3914 y = +0.3914x(x× x× x× x) + 0.18274x+ 0.27676x(x) + 0.18274x

Neat-2 GSR +0.02794(x+ x) + 0.3914x(x× x)− 0.02702(x+ x+ x)(x+ x)
+0.18274x+ 0.27676(x× x)− 0.12682(x+ x+ x) + 0.3914(x× x× x)x
+0.18274x+ 0.18274x− 0.12682(x+ x+ x) + 0.18274x

Neat-3 Truth y = sin(x2) cos(x)− 1
GSR −0.57735 y = −0.57735 sin(x× x) cos(x) + 0.57735

Neat-4 Truth y = ln(x+ 1) + ln(x2 + 1)
GSR −0.5 ey = −0.25(x× x)− 0.5− 0.25x− 0.25x− 0.5x(x× x)− 0.25(x× x)

Neat-5 Truth y = 2 sin(x1) cos(x2)
GSR 0.57735 y = 0.57735 cos(x2) sin(x1) + 0.57735 cos(x2) sin(x1)

Neat-6 Truth y =
∑x

k=1
1
k

GSR Not exactly recovered

Neat-7 Truth y = 2− 2.1 cos(9.8x1) sin(1.3x2)
GSR Not exactly recovered

Neat-8 Truth y = e−(x1−1)2

1.2+(x2−2.5)2

GSR Not exactly recovered

Neat-9 Truth y = 1
1+x−4

1

+ 1
1+x−4

2

GSR Not exactly recovered
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Table A.16: Typical expressions (with exact symbolic equivalence) recovered by GSR
for the Livermore benchmark set. Note that the coefficients in the GSR expressions
form a unit vector due to the normalization constraint imposed by the Lasso problem
in Eq. (2.6). It is easy to verify (by simplification) that the GSR expressions are sym-
bolically equivalent to the ground truth expressions. Although GSR does not exactly
recover Livermore-7 and Livermore-8, it naturally recovers their Taylor approximations,
as discussed in Appendix A.1.

Benchmark Expression

Livermore-1 Truth y = 1
3
+ x+ sin(x2)

GSR 0.65079 y = 0.21693 + 0.65079 sin(x× x) + 0.325395(x+ x)

Livermore-2 Truth y = sin(x2) cos(x)− 2
GSR −0.40825 y = −0.40825 cos(x) sin(x× x) + 0.8165

Livermore-3 Truth y = sin(x3) cos(x2)− 1
GSR −0.57735 y = 0.57735− 0.57735 sin(x× x× x) cos(x× x)

Truth y = ln(x+ 1) + ln(x2 + 1) + ln(x)
Livermore-4 GSR −0.50998 ey = −0.25499(x× x)− 0.21064x− 0.022175(x+ x)− 0.21064x− 0.25499(x× x)

−0.50998(x× x)(x× x)− 0.50998x(x× x)− 0.022175(x+ x)

Livermore-5 Truth y = x41 − x31 + x21 − x2
GSR 0.44721 y = −0.44721x2 + 0.44721(x1 × x1)− 0.44721(x1 × x1)x1 + 0.44721(x1 × x1)(x1 × x1)

Truth y = 4x4 + 3x3 + 2x2 + x
Livermore-6 −0.15763 y = −0.26677x− 0.26677x− 0.093216(x+ x)− 0.23918(x× x)

GSR −0.03804(x+ x)x− 0.63052x(x)(x× x)− 0.47289(x× x× x)
−0.093216(x+ x) + 0.253886(x+ x+ x+ x)− 0.26677x

Livermore-7 Truth y = sinh(x)
GSR Not exactly recovered

Livermore-8 Truth y = cosh(x)
GSR Not exactly recovered

Truth y = x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x
GSR −0.30767 y = −0.30767x(x× x× x)(x× x)− 0.30767(x× x× x)x− 0.266671(x× x)

Livermore-9 −0.30767(x× x× x)(x)(x× x× x)− 0.153835x− 0.30767(x× x× x)
−0.30767(x× x× x× x× x)(x× x× x× x)− 0.30767(x× x× x× x)x
+0.056037(x+ x+ x+ x)(x+ x+ x+ x)− 0.266671(x× x)− 0.153835x
−0.30767(x× x× x× x)(x)(x× x× x)− 0.22364x(x+ x+ x)

Livermore-10 Truth y = 6 sin(x1) cos(x2)
GSR 0.22942 y = 0.68826 cos(x2) sin(x1) + 0.68826 sin(x1) cos(x2)

Livermore-11 Truth y =
x21x

2
1

x1+x2

GSR −0.40825 ln(y) = −0.8165 ln(x1 × x1) + 0.40825 ln(x2 + x1)

134



Table A.17: Typical expressions (with exact symbolic equivalence) recovered by GSR for the
Livermore benchmark set (cont’d). Note that the coefficients in the GSR expressions form a
unit vector due to the normalization constraint imposed by the Lasso problem in Eq. (2.6).
It is easy to verify (by simplification) that the GSR expressions are symbolically equivalent
to the ground truth expressions.

Benchmark Expression

Livermore-12 Truth y =
x51
x32

GSR 0.16903 ln(y) = 0.84515 ln(x1)− 0.50709 ln(x2)

Livermore-13 Truth y = x
1
3

GSR 0.97332 ln(y) = 0.16222 ln(x) + 0.16222 ln(x)

Livermore-14 Truth y = x3 + x2 + x+ sin(x) + sin(x2)
GSR 0.40825 y = 0.40825x(x× x) + 0.40825 sin(x) + 0.40825(x× x) + 0.40825 sin(x× x) + 0.40825x

Livermore-15 Truth y = x
1
5

GSR 0.99015 ln(y) = 0.099015 ln(x) + 0.099015 ln(x)

Livermore-16 Truth y = x
2
5

GSR 0.99504 ln(y) = 0.099504 ln(x× x× x× x)

Livermore-17 Truth y = 4 sin(x1) cos(x2)
GSR 0.17408 y = 0.69632 sin(x2 + x1)− 0.69632 cos(x1) sin(x2)

Livermore-18 Truth y = sin(x2) cos(x)− 5
GSR −0.19245 y = 0.96225− 0.19245 cos(x) sin(x× x)

Truth y = x5 + x4 + x2 + x
Livermore-19 GSR −0.46202 y = −0.46202x(x× x)x− 0.015609(x+ x+ x) +−0.46202 ∗ (x1 ∗ x1)− 0.46202x(x× x)(x× x)

−0.290313x− 0.15297(x+ x)− 0.15297(x+ x) + 0.12175(x+ x+ x+ x)

Livermore-20 Truth y = e−x
2

GSR −0.89442 ln(y) = 0.44721(x+ x)x

Truth y = x8 + x7 + x6 + x5 + x4 + x3 + x2 + x
−0.38914 y = −0.027357(x+ x+ x)x− 0.38914(x× x× x)(x× x)− 0.38914x(x× x× x× x)(x× x× x)

Livermore-21 GSR +0.0714425x(x+ x)(x+ x)− 0.38914x− 0.38914(x× x× x× x)− 0.22497(x× x× x)
−0.19457(x× x× x× x)(x+ x)(x× x)− 0.22497x(x× x)− 0.027357x(x+ x+ x)
−0.22497(x× x)x− 0.224998(x× x)− 0.097285x(x+ x+ x+ x)(x× x× x× x)

Livermore-22 Truth y = e−0.5x2

GSR 0.8165 ln(y) = −0.40825(x+ x)x+ 0.40825(x× x)
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Table A.18: Typical expressions (with exact symbolic equivalence) recovered by GSR for
the SymSet benchmark set. Note that the coefficients in the GSR expressions form a unit
vector due to the normalization constraint imposed by the Lasso problem in Eq. (2.6). It
is easy to verify (by simplification) that the GSR expressions are symbolically equivalent to
the ground truth expressions.

Benchmark Expression

SymSet-1 Truth y = x sinh(x)− 4
5

GSR 0.70448 y = 0.35224exx− 0.17612xe−x − 0.563584exe−x − 0.17612xe−x

Truth y = (x5 − 3x4 − 2.8x+ 5)−1

SymSet-2 −0.11335 y−1 = −0.23188x− 0.11335 + 0.50651(x+ x)− 0.11335− 0.23188x
GSR −0.11335− 0.11335− 0.23188x− 0.11335(x× x× x× x)x

−0.11335 + 0.34005x(x× x× x)

Truth y = (x4 − 1.2x2 + 11.5)
1
3

SymSet-3 GSR 0.1173 y3 = +0.26576x2 + 0.26576x2 + 0.26576(x× x) + 0.44965 + 0.44965
+0.02346(x+ x+ x+ x+ x)x3 − 0.23451(x+ x+ x+ x)x+ 0.44965

SymSet-4 Truth y = 0.8− cos(x) + 4.2ex sin(x2)
GSR 0.22485 y = −0.112425 cos(x) + 0.94437 sin(x× x)ex − 0.112425 cos(x) + 0.17988

SymSet-5 Truth y = 4.5x21 + x1x
3
2 − 1.7x2 − 3.1

GSR −0.16964 y = −0.16964(x2 × x2 × x2 × x1)− 0.76338(x1 × x1) + 0.525884 + 0.288388x2

SymSet-6 Truth y = 5
3x1−x32

GSR 0.84515 y−1 = −0.16903(x2 × x2)x2 + 0.50709x1

SymSet-7 Truth y = ln(x31 + 4x1x2)
GSR −0.482715 ey = −0.64362(x1 + x1 + x1)x2 + 0.21883x2 − 0.482715(x1 × x1 × x1)− 0.21883x2

SymSet-8 Truth y =
√
5x51 + 14x31x

4
2 − 2x2 + 7

GSR 0.060634 y2 = 0.30317(x21 × x31) + 0.848876x21x
3
2(x1 × x2) + 0.424438− 0.060634(x2 + x2)

SymSet-9 Truth y = (2x1 + x2)
− 2

3

GSR 0.83205 ln(y) = −0.5547 ln(x1 + x2 + x1)

SymSet-10 Truth y = 1.5 cos(x1) ln(x1x2)− 2.5
GSR 0.32444 y = −0.8111 + 0.48666 ln(x1 × x2) cos(x1)

SymSet-11 Truth y =
√
2 cos(x1) + 30ex2 + 4

GSR −0.228568 y + 0.028571 y2 = −0.457136 + 0.85713ex2 + 0.057142 cos(x1)

Truth y = 0.4x41 + 6.2x2 − 3.5x1x3 − 4.5
SymSet-12 GSR 0.16288 y = −0.18324 + 0.065152x1(x1)(x1 × x1)− 0.57008(x3 × x1) + 0.504928x2 − 0.18324

−0.18324− 0.18324 + 0.504928x2

SymSet-13 Truth y = 2x2
x1+x3

GSR 0.57735 ln(y) = 0.57735 ln(x2 + x2)− 0.57735 ln(x1 + x3)

SymSet-14 Truth y = x1x2x3
x1+x2+x3

GSR 0.57735 ln(y) = 0.57735 ln(x1 × x2 × x3)− 0.57735 ln(x2 + x3 + x1)

SymSet-15 Truth y = (x1 + x2)
x3

GSR 0.70711 ln(y) = 0.70711x3 ln(x1 + x2)

SymSet-16 Truth y = e2.6x1−ln(x2)+9.8 cos(x3)

GSR 0.098035 ln(y) = 0.960743 cos(x3)− 0.0490175 ln(x2 × x2) + 0.254891x1

SymSet-17 Truth y = ln
(
0.2ex1+x2 + 0.5 cos(x23)

)
GSR 0.88045 ey = 0.17609ex1+x2 + 0.440225 cos(x3 × x3)
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A.5 Limitations

Although GSR achieves great results whether by recovering exact expressions or approxima-
tions with low errors, it still has several limitations:

Absence of division operations. The primary limiting factor to our GSR method is that
it still cannot handle divisions. This is due to the way we define our encoding scheme. In this
current version, we only consider a weighted sum of basis functions where the basis functions
are a product of transformations; no divisions are involved. We can overcome this issue by
modifying the encoding scheme to include divisions within the basis functions

(
e.g. a nega-

tive integer in the first column of the basis functions implies a division by the corresponding
transformation, i.e. using Table A.5, a first-column entry of −8 encodes the division 1

ln

)
.

However, this will significantly increase the total number of possible combinations in which
we can form basis matrices. Due to the lack of divisions in its current version, GSR suffers
on some benchmarks such as Neat-6, Neat-8, Neat-9, Livermore-7, Livermore-8. It is worth
noting that GSR can recover some divisions with the help of the ln or •−1 operators (see
Livermore-11, Livermore-12, Livermore-20, Livermore-22, SymSet-2, SymSet-6, SymSet-9,
SymSet-13, and SymSet-14). This is only possible when the original function consists of
only one term (not a sum of terms).

Composition of tranformations. Another limiting factor to the current version of GSR is
that it cannot recover expressions containing composite functions, such as y = ecos(x)+ln(x).
In this example, the basis function ecos(x) cannot be recovered by GSR due to our encoding
scheme. Again, if ln(x) was not there, that is, if the function contained the first term only,
i.e. y = ecos(x), then GSR can handle the situation by recovering ln(y) = cos(x). The benefits
of using g(y) = f(x) can be clearly observed on the SymSet benchmark problems (especially
SymSet-16, and SymSet-17).

Choice of hyperparameters and search process. Throughout our experiments, we
have observed that, for some benchmarks (such as Jin-6 and Neat-7), althought they are
expressible by GSR, they were not fully recovered. GSR only recovered approximations for
these benchmarks with very low errors. This can be explained by two reasons: i) The choice
of hyperparameters affects the search process, ii) Our matrix-based GP search process may
not be very effective on these benchmarks, given the complexity of their corresponding basis
functions, and thus they may require a huge number of iterations to be recovered. That is, if
we keep our code running for a very long time, we may be able to recover these benchmarks.
This can be verified by expanding Jin-6 and Neat-7 as follows:
Jin-6:

y = 1.35x1x2 + 5.5 sin ((x1 − 1)(x2 − 1))

= 1.35x1x2 + 5.5 sin (x1x2 − x1 − x2 + 1)

= 1.35x1x2 + 5.5
[
sin (−x1 − x2) cos (x1x2 + 1) + cos (−x1 − x2) sin (x1x2 + 1)

]
= 1.35x1x2 − 5.5 cos(1) sin(x1 + x2) cos(x1x2)︸ ︷︷ ︸

ϕ1(x)

+5.5 sin(1) sin(x1 + x2) sin(x1x2)︸ ︷︷ ︸
ϕ2(x)

+ 5.5 cos(1) cos(x1 + x2) sin(x1x2)︸ ︷︷ ︸
ϕ3(x)

+5.5 sin(1) cos(x1 + x2) cos(x1x2)︸ ︷︷ ︸
ϕ4(x)
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Neat-7:
y = 2− 2.1 cos(9.8x1) sin(1.3x2)

= 2− 2.1
(
cos(9.8) cos(x1)− sin(9.8) sin(x1)

)(
sin(1.3) cos(x2) + cos(1.3) sin(x2)

)
= 2− 2.1 cos(9.8) sin(1.3) cos(x1) cos(x2)︸ ︷︷ ︸

ϕ1(x)

+2.1 sin(9.8) sin(1.3) sin(x1) cos(x2)︸ ︷︷ ︸
ϕ2(x)

− 2.1 cos(9.8) cos(1.3) cos(x1) sin(x2)︸ ︷︷ ︸
ϕ3(x)

+2.1 sin(9.8) cos(1.3) sin(x1) sin(x2)︸ ︷︷ ︸
ϕ4(x)

As we can see, GSR has to find the four corresponding basis functions simultaneously in
order to recover the expressions.

Indeed, there are plenty of expressions that still cannot be fully recovered by our GSR
method. This is the case for all the other methods as well.
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Appendix B

Supplementary Material for Chapter 3

B.1 Illustrative derivation of the adjoint equations for
the considered cases.

Although the proposed method and its algorithm can be and has been computed in an
automated fashion, here we show two detailed illustrative examples for 1-dimensional and
2-dimensional cases presented in Section 3.3 for the sake of better understanding the used
notation and how the library of candidate terms looks like.

B.1.1 Heat and Burgers’ Equations

As mentioned in Sections 3.3.1 and 3.3.2, for these two cases, we consider a system consisting
of a single PDE, i.e. N = dim(f) = dim(p) = 1 where f = f and p = p, in a one-dimensional
input space, i.e. n = dim(x) = dim(d) = 1 where x = x, and d = d. In addition, we
consider candidate terms consisting of derivatives with indices d ∈ {1, 2, 3} and polynomials
with indices p ∈ {1, 2, 3}). In other words, dmax = 3 and pmax = 3. The resulting forward
model in Eq. (3.1) takes the form

L[f ] = ∂f

∂t
+

3∑
d=1

3∑
p=1

αd,p
∂d
(
fp
)

∂xd

=
∂f

∂t
+ α1,1

∂f

∂x
+ α1,2

∂
(
f 2
)

∂x
+ α1,3

∂
(
f 3
)

∂x

+ α2,1
∂2f

∂x2
+ α2,2

∂2
(
f 2
)

∂x2
+ α2,3

∂2
(
f 3
)

∂x2

+ α3,1
∂3f

∂x3
+ α3,2

∂3
(
f 2
)

∂x3
+ α3,3

∂3
(
f 3
)

∂x3
(B.1)

where αd,p denotes the parameter corresponding to the term with d-th derivative and p-
th polynomial order. As we can observe, we have 9 terms with unknown coefficients α =
[αd,p]d∈{1,2,3},p∈{1,2,3} that we aim to find using the proposed adjoint method.
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The cost functional in this case is simply

C =
∑
j,k

(f ∗(x(k), t(j))− f(x(k), t(j)))
2
+

1

∆x∆t

∫
λ(x, t)L[f(x, t)]dxdt+ ϵ0||α||22 . (B.2)

Letting variational derivatives of C with respect to f to be zero, and using integration by
parts, the corresponding adjoint equation can be obtained as

∂λ

∂t
=

3∑
d=1

3∑
p=1

(−1)dαd,p
∂
(
fp
)

∂f

∂dλ

∂xd

=− α1,1
∂λ

∂x
− α1,2

(
2f
)∂λ
∂x
− α1,3

(
3f 2
)∂λ
∂x

+ α2,1
∂2λ

∂x2
+ α2,2

(
2f
)∂2λ
∂x2

+ α2,3

(
3f 2
)∂2λ
∂x2

− α3,1
∂3λ

∂x3
− α3,2

(
2f
)∂3λ
∂x3
− α3,3

(
3f 2
)∂3λ
∂x3

(B.3)

with final condition λ(x(k), t(j+1)) = 2(f ∗(x(k), t(j+1))−f(x(k), t(j+1))) for all j, k. The param-
eters α are then found using the gradient descent method with update rule

αd,p ← αd,p − η
∂C
∂αd,p

(B.4)

where η = βmin(∆x)d−dmax and
∂C
∂αd,p

= (−1)d 1

∆x∆t

∫
fp
∂dλ

∂xd
dxdt+ 2ϵ0αd,p . (B.5)

This leads to the update rule for each coefficient, for example

α1,1← α1,1 −
β

min(∆x)2
1

∆x∆t

∫
f
∂λ

∂x
dxdt− 2βϵ0α1,1

α1,2← α1,2 −
β

min(∆x)2
1

∆x∆t

∫
f 2 ∂λ

∂x
dxdt− 2βϵ0α1,2

α1,3← α1,3 −
β

min(∆x)2
1

∆x∆t

∫
f 3 ∂λ

∂x
dxdt− 2βϵ0α1,3

B.1.2 Reaction Diffusion System of Equations

As mentioned in Section 3.3.5, for this case, we consider a system consisting of two PDEs, i.e.
N = dim(f) = dim(p) = 2 where f = [f1, f2] and p = [p1, p2], in a two-dimensional input
space, i.e. n = dim(x) = dim(d) = 2 where x = [x1, x2], and d = [d1, d2]. In addition, we
consider candidate terms with derivatives such that d ∈ Dd = {[0, 0], [1, 0], [0, 1], [2, 0], [0, 2]}
and polynomials such that p ∈ Dp = {[1, 0], [0, 1], [1, 1], [2, 0], [0, 2], [2, 1], [1, 2], [3, 0], [0, 3]}.
In other words, dmax = 2 and pmax = 3. The resulting forward model in Eq. (3.1) takes the
form

Li[f ] = ∂tfi +
∑
d,p

αi,d,p∇(d)
x [fp] (B.6)
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where i ∈ {1, 2}, fp = fp11 f
p2
2 and ∇(d)

x = ∇(d1)
x1 ∇

(d2)
x2 . This is equivalent to

Li[f1, f2] =
∂fi
∂t

+
∑

[d1,d2]∈Dd

∑
[p1,p2]∈Dp

αi,[d1,d2],[p1,p2]
∂ d1+d2

(
fp11 f

p2
2

)
∂xd11 ∂x

d2
2

=
∂fi
∂t

+ αi,[0,0],[1,0]f1 + αi,[0,0],[0,1]f2 + αi,[0,0],[1,1]f1f2 + . . .+ αi,[0,0],[0,3]f
3
2

+ αi,[1,0],[1,0]
∂f1
∂x1

+ αi,[1,0],[0,1]
∂f2
∂x1

+ αi,[1,0],[1,1]
∂
(
f1f2

)
∂x1

+ . . .+ αi,[1,0],[0,3]
∂
(
f 3
2

)
∂x1

+ . . .

+ αi,[0,2],[1,0]
∂2f1
∂x22

+ αi,[0,2],[0,1]
∂2f2
∂x22

+ αi,[0,2],[1,1]
∂2
(
f1f2

)
∂x22

+ . . .+ αi,[0,2],[0,3]
∂2
(
f 3
2

)
∂x22

(B.7)

where i ∈ {1, 2}. As we can observe, we have |Dd| × |Dp| = 5× 9 = 45 terms with unknown
coefficients αi = [αi,d,p]d∈Dd,p∈Dp for the i-th PDE, i.e. a total of 90 terms for the considered
system, that we aim to find using the proposed adjoint method.
The cost functional in this case is simply

C =
2∑
i=1

(∑
j,k

(f ∗
i (x

(k), t(j+1))− fi(x(k), t(j+1)))2 +
1

∆x∆t

∫
λi(x, t)Li[f(x, t)]dxdt

)
+ ϵ0||α||22 .

(B.8)

The corresponding adjoint equation is given by

∂λi
∂t

=
∑
d,p

(−1)|d|αi,d,p∇fi [f
p]∇(d)

x [λi]

=
∑

[d1,d2]∈Dd

∑
[p1,p2]∈Dp

(−1)d1+d2αi,[d1,d2],[p1,p2]
∂
(
fp11 f

p2
2

)
∂fi

∂ d1+d2λi

∂xd11 ∂x
d2
2

(B.9)

and λi(x(k), t(j+1)) = 2(f ∗
i (x

(k), t(j+1))− fi(x(k), t(j+1))) for all j, k and where i ∈ {1, 2}.
Assume, without loss of generality, that i = 1. Then, we can write

∂λ1
∂t

=+ α1,[0,0],[1,0]λ1 + α1,[0,0],[1,1]f2λ1 + α1,[0,0],[2,0]

(
2f1
)
λ1 + . . .+ α1,[0,0],[3,0]

(
3f 2

1

)
λ1

− α1,[1,0],[1,0]
∂λ1
∂x1
− α1,[1,0],[1,1]f2

∂λ1
∂x1
− α1,[1,0],[2,0]

(
2f1
)∂λ1
∂x1
− . . .− α1,[1,0],[3,0]

(
3f 2

1

)∂λ1
∂x1

+ . . .

+ α1,[0,2],[1,0]
∂2λ1
∂x22

+ α1,[0,2],[1,1]f2
∂2λ1
∂x22

+ α1,[0,2],[2,0]

(
2f1
)∂2λ1
∂x22

+ . . .+ α1,[0,2],[3,0]

(
3f 2

1

)∂2λ1
∂x22

(B.10)
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and λ1(x
(k), t(j+1)) = 2(f ∗

1 (x
(k), t(j+1))− f1(x(k), t(j+1))) for all j, k. We can follow the same

procedure for i = 2. The parameters αi are then found using the gradient descent method
with update rule

αi,d,p ← αi,d,p − η
∂C

∂αi,d,p
(B.11)

where

η = βmin(∆x)|d|−dmax and
∂C

∂αi,d,p
= (−1)|d| 1

∆x∆t

∫
fp∇(d)

x [λi]dxdt+ 2ϵ0αi,d,p

(B.12)

with ∆x = ∆x1∆x2, leading to the update rule for each coefficient, for example

αi,[0,0],[1,0]← αi,[0,0],[1,0] −
β

min(∆x)2
1

∆x∆t

∫
f1λidxdt− 2βϵ0αi,[0,0],[1,0]

αi,[1,0],[1,0]← αi,[1,0],[1,0] −
β

min(∆x)

1

∆x∆t

∫
f1
∂λi
∂x1

dxdt− 2βϵ0αi,[1,0],[1,0]
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Appendix C

Supplementary Material for Chapter 4

C.1 Maximum entropy distribution function

The maximum entropy distribution (MED) function finds the least-biased closure for the
moment problem. Given Nb realizable moments µ ∈ RNb associated with polynomial basis
functions H of the unknown distribution function, MED is obtained by minimizing the
Shannon entropy with constraint moments using the method of Lagrange multipliers as
[114]

C[F(x)] :=
∫
F(x)(log

(
F(x)

)
− 1)dx−

Nb∑
i=1

λi

(∫
Hi(x)F(x)dx− µi(x)

)
. (C.1)

By taking the variational derivative of functional in Eq. (C.1), the extremum is found as

F(x) = 1

Z
exp

(
Nb∑
i=1

λiHi(x)

)
, where Z =

∫
exp

(
Nb∑
i=1

λiHi(x)

)
dx, (C.2)

which is referred to as the maximum entropy distribution function. The Lagrange multipliers
λ appearing in Eq. (C.2) can be found using the Newton-Raphson approach. As formulated
in [216], the unconstrained dual formulation D(λ) provides us with the gradient g = ∇D(λ)
and Hessian L(λ) = ∇2D(λ) as

gi = µi −
1

Z

∫
Hi exp

(
Nb∑
k=1

λkHk

)
dx for i = 1, ..., Nb (C.3)

and Li,j = −
1

Z

∫
HiHj exp

(
Nb∑
k=1

λkHk

)
dx for i, j = 1, ..., Nb . (C.4)

Once the gradient and Hessian are computed, the Lagrange multipliers λ can be updated
via

λ← λ−L−1(λ)g(λ) (C.5)

as detailed in Algorithm 8.
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Algorithm 8: Newton’s method for finding Lagrange multipliers of MED given
moments µ for a given tolerance ϵ.
Input: µ, λ0

Initialize λ← λ0;
Compute gradient g and Hessian L, i.e. Eqs. (C.3)-(C.4);
while ||g|| > ϵ do

Update λ← λ−L−1g;
Update gradient g and Hessian L with the new λ via numerical integration of
Eqs. (C.3)-(C.4);

end
Return λ;
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C.2 Maximum cross-entropy distribution function

The maximum cross-entropy distribution function (MxED) finds the least-biased closure for
the moment problem given Nb realizable moments µ ∈ RNb associated with polynomial basis
functions H of the unknown distribution function along with the prior FPrior as the input.
In other words, in addition to the moments of the target distribution, in the MxED method
we also have access to a prior distribution FPrior as well as N samples of the former, i.e.
{Xprior

j }Nj=1 ∼ FPrior. MxED is obtained by minimizing the Shannon cross-entropy from the
prior with constraint on moments using the method of Lagrange multipliers via the functional

C[F(x)] :=
∫
F(x) log

(
F(x)
FPrior(x)

)
dx+

Nb∑
i=1

λi

(∫
Hi(x)F(x)dx− µi(x)

)
. (C.6)

By taking the variational derivative of functional in Eq. (C.6), the extremum is found to be

F(x) = 1

Z
FPrior(x) exp

(
Nb∑
i=1

λiHi(x)

)
, where Z =

∫
FPrior(x) exp

(
Nb∑
i=1

λiHi(x)

)
dx.

(C.7)

Similar to the maximum entropy distribution function, the Lagrange multipliers λ appearing
in Eq. (C.7) can be found by following the Newton-Raphson approach. As formulated in
[216], the unconstrained dual formulation D(λ) provides us with the gradient g = ∇D(λ)
and Hessian L(λ) = ∇2D(λ) as

gi = µi −
1

Z

∫
FPriorHi exp

(
Nb∑
k=1

λkHk

)
dx for i = 1, ..., Nb (C.8)

and Li,j = −
1

Z

∫
FPriorHiHj exp

(
Nb∑
k=1

λkHk

)
dx for i, j = 1, ..., Nb . (C.9)

Once the gradient and Hessian are computed, the Lagrange multipliers λ can be updated
via

λ← λ−L−1(λ)g(λ) . (C.10)

Since we have access to the samples of XPrior ∼ FPrior, we use the given samples to compute
the gradient and Hessian, i.e.

gi ≈ µi −
〈
Hi

(
XPrior

) 〉
W

for i = 1, ..., Nb (C.11)

Li,j ≈ −
〈
Hi

(
XPrior

)
Hj

(
XPrior

) 〉
W

for i, j = 1, ..., Nb , (C.12)

where W (XPrior) = exp
(∑Nb

k=1 λkHk

(
XPrior

))
denotes weights for calculating moments us-

ing importance sampling, i.e. ⟨ϕ(X)⟩W :=
∑N

j=1 ϕ(Xj)W (Xj)/
∑N

j=1W (Xj). More details
can be found below (Algorithm 9).
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Algorithm 9: Newton’s method for finding Lagrange multipliers of MxED given
moments µ and samples of prior XPrior ∼ FPrior for a given tolerance ϵ.
Input: µ, XPrior ∼ FPrior

Initialize λ← 0;
Compute gradient g and Hessian L, i.e. Eqs. (C.11)-(C.12);
while ||g|| > ϵ do

Update λ← λ−L−1g;
Update gradient g and Hessian L with the new λ using samples, i.e.
Eq. (C.11)-(C.12);

end
Return λ;

146



C.3 Ablation studies

In this section, we report on the results of an ablation study that shows the effects of each
component in the proposed MESSY solution. The four components of MESSY Estimation
are: i) the symbolic component, ii) the multi-level component, iii) the orthogonalization,
and iv) the cross-entropy step. As we have already compared MESSY-S and MESSY-P
(MESSY without the symbolic regression component) throughout Chapter 4, we conduct an
ablation study on the remaining components, i.e. the multi-level, the orthogonalization, and
the cross-entropy step.

C.3.1 Multi-level component of MESSY

First, in order to show the effect of the multi-level part of the MESSY algorithm, let us
consider the bi-modal density near the limit of realizability, see Section 4.8.2. In particular,
let us consider the MESSY-P estimate with 4th order polynomials as basis functions. In
Fig. C.1, we show that by disabling the multi-level step, the estimated density covers only
one of the peaks and entirely misses the other one. We believe that this is due to the high
conditionality of the matrix LME. However, MESSY-P with a multi-level step accurately
recovers both peaks of the underlying density.

3 2 1 0 1
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3

4
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f
(x

)

Samples
MESSY-P (w/o multi-level)
MESSY-P (w/   multi-level)

Figure C.1: Ablation study on the multi-level component of MESSY-P estimation for the
case of target distribution near the limit of realizability.

C.3.2 Orthogonalization

Another important element of MESSY process is the orthogonalization of basis functions
given samples, i.e. the modified Gram-Schmidt Algorithm 4. As an example, here we
consider the MESSY-P estimate of target bimodal distribution function presented in Section
4.8.1 as a test case and report the condition number of the matrix LME that needs to be
inverted to compute the Lagrange multipliers in Eq. (4.18). As shown in Fig. C.2, the
condition number of LME increases with the polynomial order, making the linear system in
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Eq. (4.18) stiff and difficult to solve. However, by orthogonalizing the basis functions, we
can maintain a low condition number for the outcome LME which makes the resulting linear
system tractable.
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MESSY-P (w/o orthogonalization)
MESSY-P (w/   orthogonalization)

Figure C.2: Ablation study on the orthogonalization component of MESSY-P algorithm for
the case of bimodal distribution. Relation between condition number of matrix LME and the
order of considered polynomial with and without the orthogonalization step.

C.3.3 Cross-entropy step

The final step in the MESSY-P procedure is the cross-entropy. The goal of this step is
to reduce the bias that may have been introduced by the multi-level component of the
algorithm. In the MESSY Algorithm 6, we take the outcome of the multi-level step as
the prior, and correct Lagrange multipliers to match the target moments. In Fig. C.3, we
compare the MESSY-P density estimate of the discontinuous density from the test case
presented in Section 4.8.3 with and without cross-entropy step. As expected, we observe
that the cross-entropy step is essential in recovering distributions with discontinuities. This
is due to the fact that the solution obtained via gradient flow assumes a smooth target
density. Hence, it fails to find the Lagrange multipliers for the target discontinuous pdf.
However, the cross entropy step only assumes that the target distribution is integrable to
the extent that the given moments exist. This weaker condition is essential to recovering
discontinuous distributions, e.g. the one showed in Fig. C.3.
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Figure C.3: Ablation study on the cross-entropy step of MESSY-P estimation of a discon-
tinuous density.

C.4 Histogram estimate to the bi-modal distribution
function

Figure C.4 provides a comparison between a histogram, KDE, MESSY-P and MESSY-S
estimates of the underlying bi-modal distribution function considered in Section 4.8.1 given
N = 100, 1000, 10000 samples. Clearly, MED estimates provide a better solution than non-
parametric ones, i.e. histogram and KDE, when not many samples are available. However,
as more samples are considered, the non-parametric estimators become more accurate than
MESSY (or any parametric estimator) with fixed number of basis functions.
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Figure C.4: Density estimation using KDE, MxED, MESSY-P, MESSY-S and histogram
given (a) 100, (b) 1,000, and (c) 10,000 samples.
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C.5 Solution found by MESSY for the considered test
cases

Table C.1: Density expressions recovered by our MESSY estimation method for several
distributions.

Example Expression

Bimodal 1D MESSY-P f̂(x) = 0.288e−0.017x10+0.106x9−0.084x8−0.659x7+1.209x6+1.179x5−3.722x4+0.075x3+2.693x2−0.612x

MESSY-S f̂(x) = 0.993e−1.85x2−1.162x cos (1.5x)+0.232x−0.652 cos (x)−0.424 cos (2x)−0.591 cos (3.5x)+0.47 cos (cos (3.5x))

Limit of MESSY-P f̂(x) = 1.591 · 10−6e−12.876x4−56.46x3−38.072x2+62.617x + 5.282 · 10−27e−7.969x4−28.862x3−4.342x2+20.938x

Realizability MESSY-S f̂(x) = 4.134 · 1081e−21.893x2 sin (x)+0.025x2+117.267x cos (x)+0.861x+395.584 sin2 (x)−57.393 sin (x)+200.421 cos (x)−744.874 cos (cos (x))

Discontinuous MESSY-P f̂(x) =

{
1.096 e0.086x

2−1.298x if x ≥ 0

0 otherwise

MESSY-S f̂(x) =

{
0.293 e−0.145x2+0.018x+0.251 cos (x) cos (1.5x)+0.713 cos (x)+0.09 cos (1.5x) cos (3x)+0.076 cos (3.5x) if x ≥ 0

0 otherwise

Gaussian 2D MESSY-P f̂(x1, x2) = 0.18e−0.606x21+0.572x1x2+0.029x1−0.663x22−0.075x2

MESSY-S f̂(x1, x2) = 0.182e−0.648x21+0.598x1x2−0.018x1−0.644x22−0.044x2

Gamma-exp MESSY-P f̂(x1, x2) =

{
0.477e0.225x

2
1−0.04x1x2−2.264x1−0.376x22+0.913x2 x1 ≥ 0, x2 ≥ 0

0 otherwise

MESSY-S f̂(x1, x2) =

{
0.017e−0.13x21+0.016x1x2+0.15x1+0.017x22 cos (2.5 cos (2x2))−0.37x22+0.858x2+2.654 cos (x1)+0.334 cos (3.5x1)−0.437 cos (2.5x2) x1 ≥ 0, x2 ≥ 0

0 otherwise
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Appendix D

Supplementary Material for Chapter 5

D.1 Invertible symbolic expressions recovered by ISR for
the considered distributions

Table D.1: Invertible symbolic expressions recovered by our ISR method for density estima-
tion of several distributions (see Figure 5.4 in Section 5.4.1). Here, MoGs denotes “Mixture
of Gaussians.”

Example Expression

Gaussian u = x, i.e. u1 = x1, u2 = x2
s1(u2) = 1.16
t1(u2) = 0
v1 = u1 · exp (s1(u2)) + t1(u2)
v2 = u2
s2(v1) = 1.14
t2(v1) = −9.39
o1 = v1
o2 = v2 · exp (s2(v1)) + t2(v1)
z = o, i.e. z1 = o1, z2 = o2

Banana u = x, i.e. u1 = x1, u2 = x2
s1(u2) = 0.52 sin (1.86u2) + 0.084 sin (5.5 sin (1.86u2) + 2.55) + 1.7
t1(u2) = 0.74− 0.12 sin (3.65 sin (2.45u2)− 0.82)
v1 = u1 · exp (s1(u2)) + t1(u2)
v2 = u2
s2(v1) = 1.72 (0.025− 0.47 sin (0.33 v1)) (0.23 sin (0.33 v1)− 0.29) + 2.24
t2(v1) = −3.74 (0.022 sin (0.62 v1) + 0.035 sin (0.63 v1)− 0.76) (0.45 sin (0.62 v1) + 0.7 sin (0.63 v1) + 0.38) + 0.027
o1 = v1
o2 = v2 · exp (s2(v1)) + t2(v1)
z = o, i.e. z1 = o1, z2 = o2

Ring u = x, i.e. u1 = x1, u2 = x2
s1(u2) = −3.14 (−0.15u22 − 0.26 sin (1.26u2) + 0.094 sin (3.25u2)− 0.3) (0.098u22 + 0.39 sin (1.26u2) + 0.014 sin (3.25u2) + 0.16)

+0.09 sin (0.17u22 + 0.69 sin (1.26u2) + 0.76 sin (3.25u2) + 0.25)− 0.30 sin (0.94u22 + 2.35 sin (1.26u2)− 1.31 sin (3.25u2) + 1.57) + 0.053
t1(u2) = −0.012
v1 = u1 · exp (s1(u2)) + t1(u2)
v2 = u2
s2(v1) = 0.037 sin (0.22 sin (0.22 v1) + 0.22 sin (0.22 v1)− 0.27) + 0.052 sin (0.23 sin (0.22 v1) + 0.23 sin (0.22 v1)− 0.39)− 0.11
t2(v1) = 0.13 sin (0.13 sin (0.37 v1) + 0.13 sin (0.59 v1)− 1.16) + 0.65 sin (0.021 v1 + 1.34 sin (0.37 v1) + 2.29 sin (0.59 v1) + 1.44) + 0.33
o1 = v1
o2 = v2 · exp (s2(v1)) + t2(v1)
u = o, i.e. u1 = o1, u2 = o2
s1(u2) = −3.65 (−0.47 sin (1.38u2)− 0.026 sin (1.93u2)− 0.1) (−0.014 sin (1.38u2)− 0.39 sin (1.93u2)− 0.35)− 0.44 sin (1.74 sin (1.38u2) + 1.71 sin (1.93u2) + 5.55)

−0.46 sin (3.31 sin (1.38u2) + 0.44 sin (1.93u2)− 0.7) + 0.38
t1(u2) = 0.11 sin (0.85 sin (1.38u2) + 0.86 sin (1.38u2)) + 0.12 sin (0.87 sin (1.38u2) + 0.87 sin (1.38u2)) + 0.053
v1 = u1 · exp (s1(u2)) + t1(u2)
v2 = u2
s2(v1) = 0.25 v21 − 0.0071 sin (1.67 v1)− 0.1 sin (5.29 v1)− 0.63 sin (−1.075 v21 + 0.55 sin (1.67 v1) + 0.77 sin (5.29 v1))

+0.46 sin (1.89 v21 − 0.27 sin (1.67 v1)− 1.69 sin (5.29 v1) + 0.9) + 1.22
t2(v1) = 0.62 sin (1.56 sin (0.43 v1) + 1.57 sin (0.43 v1)− 1.68) + 0.61 sin (1.56 sin (0.43 v1) + 1.57 sin (0.43 v1)− 1.68)− 0.48
o1 = v1
o2 = v2 · exp (s2(v1)) + t2(v1)
z = o, i.e. z1 = o1, z2 = o2

MoG u = x, i.e. u1 = x1, u2 = x2
s1(u2) = −0.039 (−0.032 sin (1.44u2)− sin (1.48u2) + 0.94)2 − 3.03 (0.18 sin (1.44u2) + 0.14 sin (1.48u2)− 0.63) (0.26 sin (1.44u2) + 0.28 sin (1.48u2)− 0.31)

+0.047 sin (1.44u2) + 0.13 sin (1.48u2)− 0.029 sin (0.15 sin (1.44u2) + 1.4 sin (1.48u2)− 3.47)− 0.11 sin (0.45 sin (1.44u2) + 1.46 sin (1.48u2) + 2.65)− 0.17
t1(u2) = 0.052− 0.12 sin (1.13 sin (3.14u2) + 1.64)
v1 = u1 · exp (s1(u2)) + t1(u2)
v2 = u2
s2(v1) = 0.34 (0.15 sin (1.024 v1) + 0.13 sin (2.022 v1)) sin (2.022 v1) + 0.014 sin2 (2.022 v1) + 0.15 sin (0.98 v1 sin (1.024 v1) + 1.9 sin (2.022 v1)− 1.41)

−0.22 sin (3.38 sin (1.024 v1) + 1.83 sin (2.022 v1) + 1.5) + 0.39
t2(v1) = −0.46 sin (0.89 v1 + 0.21 sin (1.38 v1)− 1.56) + 0.33 sin (1.23 v1 + 1.69 sin (1.38 v1)− 0.44 sin (1.58 v1) + 1.75 v1) + 0.094
o1 = v1
o2 = v2 · exp (s2(v1)) + t2(v1)
u = o, i.e. u1 = o1, u2 = o2
s1(u2) = 3.36 (−0.36 sin (3.1u2)− 0.29) (0.26 sin (3.1u2) + 0.19)− 0.45 sin (3.88 sin (3.1u2)− 1.83)− 0.38
t1(u2) = 0
v1 = u1 · exp (s1(u2)) + t1(u2)
v2 = u2
s2(v1) = 0.0035 v21 − 2.88 (−0.079 v21 − 0.33) (0.042 v21 + 0.4) + 2.6 (−0.34 sin (1.7 v1)− 0.088 sin (1.71 v1)) (−0.053 sin (1.7 v1)− 0.38 sin (1.71 v1)) + 1.61
t2(v1) = −0.14
o1 = v1
o2 = v2 · exp (s2(v1)) + t2(v1)
z = o, i.e. z1 = o1, z2 = o2
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D.2 Details of network architectures

In our experiments, we train all models using Adam optimizer with a dynamic learning rate
decaying from 10−2 to 10−4. In addition, for INN, all (hidden) neurons of the subnetworks
are followed by Leaky ReLU activations, while for ISR, each neuron in the hidden layers is
followed by an activation function from the following library:{

1, id, •2(×4), sin(2π•), , •1 × •2
}

where 1 represents the constant function, “id” is the identity operator, denotes the sigmoid
function, and • denotes placeholder operands, e.g. •2 corresponds to the square operator.
Also, •1 × •2 denotes the multiplication operator, and each activation function may be
duplicated within each layer.
The architecture details are provided below.
Density estimation via normalizing flow. In Section 5.4.1, we train INN and ISR using a
batch size of 64. For the “Gaussian” and “Banana” distributions, we adopt 1 affine coupling
block with 2 fully connected (hidden) layers per subnetwork. For the “Ring” and “Mixture
of Gaussians (MoGs)” distributions, we use 2 invertible blocks with 2 fully connected layers
for each subnetwork.
Inverse Kinematics. In Section 5.4.2, we train all models using a batch size of 100. For all
models, we adopt 6 reversible blocks with 3 fully connected layers per subnetwork.
Geoacoustic Inversion. In Section 5.4.3, we train all models using a batch size of 200. For
all models, we adopt 5 invertible blocks with 4 fully connected layers for each subnetwork.
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D.3 Quantitative Evaluation – Inverse Kinematics

Here, we quantitatively evaluate the quality of the estimated posteriors by the different
models considered in the inverse kinematics experiment. To ensure a fair comparison among
all methods, we use the same training data and train all models for the same number of
epochs, and using identical batches and architectures (as provided in the previous section).

As suggested in [196], we evaluate the correctness of the estimated posteriors using two
metrics (see Table D.2). First, we use the Maximum Mean Discrepancy (MMD) introduced
by [200], which computes the posterior mismatch between the distribution p̂(x |y∗) produced
by a model and a ground truth estimate pgt(x |y∗), which in this case is obtained via rejection
sampling (see Section 5.4.2), i.e.

Errpost = MMD
(
p̂(x |y∗), pgt(x |y∗)

)
(D.1)

Second, we measure the re-simulation error, which applies the true forward process f in
Eq. (5.20) to the generated samples x and computes the mean squared distance to the
target y∗, i.e.

Errresim = Ex∼p̂(x |y∗)

[
||f(x)− y∗||22

]
(D.2)

Table D.2: Quantitative results for the inverse kinematics benchmark experiment.

Method Errpost Errresim

INN 0.0259 0.0163
cINN 0.0162 0.0087
ISR 0.0286 0.0196
cISR 0.0221 0.0134
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