
Frequency Modulated Continuous Wave Radar Based
Fall Risk Monitoring System

by

Daniel Ilan Copeland, M.D.

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Daniel Ilan Copeland, M.D. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Daniel Ilan Copeland, M.D.
Department of Mechanical Engineering
May 10, 2024

Certified by: Brian W. Anthony
Principal Research Scientist, Thesis Supervisor

Accepted by: Nicolas Hadjiconstantinou
Chairman
Graduate Officer, Department of Mechanical Engineering



2



Frequency Modulated Continuous Wave Radar Based Fall Risk
Monitoring System

by

Daniel Ilan Copeland, M.D.

Submitted to the Department of Mechanical Engineering
on May 10, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

ABSTRACT

Falls represent a significant health risk, especially for the elderly. Fortunately, interven-
tions have been shown to decrease falls when clinicians identify at-risk patients. However,
factors such as medication changes, illness, and injuries can rapidly increase fall risk, mak-
ing timely clinical identification and subsequent interventions challenging to implement. Our
study introduces a comprehensive approach to assessing fall risk using a frequency-modulated
continuous-wave (FMCW) radar system, addressing the need for frequent, low-cost, long-
term balance monitoring solutions. This technology is compared with ground-truth contact-
based lab sensors like force plates and motion capture systems, establishing a foundation
for accurate balance assessments in home settings. In our cross-sectional analysis, partici-
pants performed the one-legged stand test (OLST) with simultaneous data collection from
FMCW radar, force plates, and motion capture systems. By integrating the FMCW radar
with machine learning algorithms, we achieved a 98.4% accuracy in identifying OLST foot
movements and an R-squared of 0.70 in predicting force plate patterns, demonstrating the
system’s nuanced capability for balance performance evaluation. Additionally, we examine
the efficacy of combining radar technology with machine learning to identify movements sim-
ilar to those performed in fitness, clinical, and rehabilitation settings. We also explore the use
of simulations for optimizing radar system configurations. This thesis demonstrates the effec-
tiveness of FMCW radar technology in laboratory settings and its potential for home-based
health monitoring. The study highlights the transformative potential of integrating radar
technology with machine learning through detailed experimentation and analysis, offering a
versatile tool for health monitoring and fall risk assessment.

Thesis supervisor: Brian W. Anthony
Title: Principal Research Scientist

3



4



Acknowledgments

I would like to sincerely thank all the yogis who generously contributed their time and effort
to this study. Their dedication, flexibility, and commitment to the research were invaluable,
and their participation was essential to the success of this thesis.

I am particularly grateful to Evan Linton and Dr. Shawn Zhang for their help with the
experimental set-up, data collection, and data processing.

I would also like to acknowledge Nurse Tatiana Urman for her enthusiastic assistance
in obtaining informed consent from the participants and helping ensure data collection ran
smoothly. Her professionalism and dedication ensured the study was conducted ethically
and efficiently.

I want to give special thanks to my UROP, Hector Lugaro, for helping with the actuator
and cueing videos. His technical skills and dedication greatly contributed to the project’s
progress.

I would also like to thank Dr. Praneeth Namburi, Professor Caitlin Mueller, Profes-
sor Faez Ahmed, Professor Alex Slocum, and Ous Abou Ras for their invaluable insights
throughout this project’s many stages.

I thank my principal investigator, Dr. Brian Anthony, for his guidance and expertise
on FMCW radar technology and for providing general research direction. His support and
mentorship were crucial to my and this project’s development.

I would like to thank my MechE friends, the Makerworks community, and MIT’s coaching
cohorts. These communities made my masters a joy and imbued me with a sense of purpose
and togetherness.

Finally, I would like to thank my family, and specifically, my wife, Isabelle, for sticking
with me through a bit more grad school and my dog, Millie, for her pure joy and licks and
for getting me off my computer and outside to touch the grass.

5



6



Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 17

1 Introduction and Background 19
1.1 Significance of Falls in the Elderly . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Current Status Falls and Risk Monitoring . . . . . . . . . . . . . . . 19
1.1.2 Proposal of Radar as a Fall Risk Monitoring Tool . . . . . . . . . . . 21

1.2 FMCW Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Basics of Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.3 Differences Between FFT, Fourier Series, and Fourier Transform . . . 24
1.2.4 Fundamentals of FMCW Radar (Frequency Modulated Continuous

Wave Radar) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.5 Human Body as a Radar Reflector . . . . . . . . . . . . . . . . . . . 30
1.2.6 FMCW Radar in Healthcare . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.7 Machine Learning and FMCW Radar . . . . . . . . . . . . . . . . . . 32

1.3 Force Plates and Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4 Study Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Data Collection 35
2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Sensing Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Study Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Study Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Study Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Study Analyses 39
3.1 At Home Radar-Based Fall Risk Monitoring . . . . . . . . . . . . . . . . . . 39

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7



3.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Yoga Pose Transition Analysis Using FMCW Radar . . . . . . . . . . . . . . 49
3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Optimization of Radar Systems for Human Movement Characterization . . . 57
3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3 Motion Characterization Results . . . . . . . . . . . . . . . . . . . . . 60
3.3.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Conclusion and Future Work 65
4.1 At Home Radar-Based Fall Risk Monitoring . . . . . . . . . . . . . . . . . . 65

4.1.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Yoga Pose Transition Analysis Using FMCW Radar . . . . . . . . . . . . . . 66
4.2.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Optimization of a Radar System for Human Movement Characterization . . 66
4.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Appendix 69
A.1 Time Synchronization Linear Actuator . . . . . . . . . . . . . . . . . . . . . 69

A.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 Data Processing Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2.1 FMCW Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2.2 MOCAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2.3 Force Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.3 Dataset Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.3.1 Full Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.3.2 Stability Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.4 Model Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4.1 Full Capture RDM Classifier . . . . . . . . . . . . . . . . . . . . . . . 100
A.4.2 Stability Phase Predictor . . . . . . . . . . . . . . . . . . . . . . . . . 101

8



B Appendix 103
B.1 Technical Contributions to Sekisui House at MIT . . . . . . . . . . . . . . . 103

B.1.1 Goals of Sekisui House at MIT . . . . . . . . . . . . . . . . . . . . . . 103
B.1.2 Design and Implementation of a SQL Database . . . . . . . . . . . . 103
B.1.3 Development of a Box Data Scraping Tool . . . . . . . . . . . . . . . 105
B.1.4 Radar-Based Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . 107
B.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

References 113

9



10



List of Figures

1.1 Spiderweb diagram illustrating the comparative analysis of different balance
assessment tools across five key metrics: Accuracy, Affordability, Ease-of-use,
Privacy, and Frequency. ’At-Home Radar’ (red) is emphasized, showcasing its
relative positioning against traditional tools like ’Wearable Devices’, ’Clini-
cal Assessment’, ’Questionnaires’, and ’Lab Assessments’. This visualization
underpins the discussion on the viability and advantages of ’At-Home Radar’
systems for fall risk assessment and monitoring in the paper. . . . . . . . . . 20

1.2 A Sketch of a Kaplan-Meier survival curve depicting the association between
the ability to perform a successful 10-second OLST and long-term survival
rates. Individuals who passed the OLST (’Yes’) demonstrate a markedly
higher survival probability over the course of 10 years, as represented by
the blue line. Conversely, those unable to maintain the stance (’No’) show
a significantly decreased survival probability, illustrated by the red line. This
graph highlights the OLST’s prognostic value of a simple physical performance
measure in predicting longevity in middle-aged and older adults. The test’s
predictive capability for mortality may stem from its implicit assessment of
overall physical fitness, stability, muscle strength, and functional health sta-
tus, which are crucial indicators of an individual’s health span and resilience
against age-related declines and fall risk. [9]. . . . . . . . . . . . . . . . . . . 21

1.3 Illustration of the time of flight and distance determination using RADAR. . 22
1.4 This image illustrates the Doppler Effect as observed by a moving receiver

(right) moving relative to the radar emitting source (left). The radar emits
waves at a certain frequency, denoted by fs, in the middle waveform. In the
top waveform, the receiver moves towards the emitter at velocity Vo, the waves
are compressed, resulting in a higher frequency fo observed by the receiver,
and the waves are more closely packed. Conversely, in the bottom waveform,
when the object moves away from the radar at velocity Vo, the waves are
stretched, leading to a lower frequency fo observed by the receiver. and the
waves are more spread out. The change in frequency between the source and
receiver due to the relative motion is known as the Doppler Effect, which is
central to radar technology for determining the velocity of objects. . . . . . . 23

11



1.5 A depiction of the MIMO radar processing sequence to create a Radar Dat-
acube. A series of chirps (Tx) are transmitted and their reflections (Rx)
are received. The resulting IF signal from the mixing process is sampled
and digitized along fast-time. These samples populate a data matrix with
fast-time and slow-time dimensions, corresponding to individual chirps and
chirp sequences, respectively. In MIMO radar systems, datacubes from mul-
tiple time-synchronized channels are then stacked to introduce a third dimen-
sion—’Depth’. This additional dimension represents multiple channels and is
essential for enhanced spatial resolution and precise target location identifi-
cation in MIMO radar applications. . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Processing steps for RDM generation using FMCW radar. The process begins
with the transmission (Tx) of a linear frequency-modulated chirp and the
reception (Rx) of the echo from the target, depicted over time. The received
signal, which exhibits a frequency shift relative to the transmitted signal due to
the round-trip delay and the Doppler effect from target motion, is mixed with
the Tx signal to produce an Intermediate Frequency (IF) signal. The frequency
of the IF signal is proportional to the target’s range. Applying a Fast Fourier
Transform (FFT) to the IF signal yields the range spectrum for each chirp.
Subsequent FFT analysis across chirps reveals the Doppler frequency shift,
indicated by changes in phase, which corresponds to the target’s velocity. The
final 2D FFT output provides a Range-Doppler map, where the peak positions
within the respective range and velocity bins identify the target’s range and
velocity. The Doppler phase shift (ϕ) is related to the Doppler frequency (f)
by the equation ϕ = 2πf · n∆τ , where n is the sample index and ∆τ is the
sampling interval. This phase shift, represented by the sinusoidal function
sin(2πf · n∆τ), encodes the velocity information of the target. [18]. . . . . . 30

2.1 Example of 18 Motion Capture Markers and Force Plate Vector During a
Participant’s Left One-Legged Tree Pose . . . . . . . . . . . . . . . . . . . . 36

2.2 Example of a participant on force plates, standing and in left one-legged tree
pose. These were the two states the participants were asked to transition
between for the OLST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 FMCW RADAR, RGB Camera, and MOCAP to Radar Time Synchronization
Linear Actuator Setup [A.1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Range-Doppler Map (RDM) showcasing a stationary human target detected
at approximately 5 meters. The map encodes intensity in grayscale values,
with lighter areas indicating stronger radar returns. The x-axis represents
the target range from the radar system, and the y-axis indicates the radial
velocity, where stationary targets appear along the zero velocity line. The
depicted data points around the 5-meter mark on the x-axis and near-zero
velocity on the y-axis suggest the presence of a person standing relatively still
with respect to the radar’s position. . . . . . . . . . . . . . . . . . . . . . . . 40

12



3.2 Sequential representation of a complete OLST movement task performed by
subjects in front of the FMCW radar. Participants transition from a starting
pose to a one-legged stance, followed by a return to the initial pose. MO-
CAP and force plate data are synchronized with radar signatures to iden-
tify key temporal events: ’foot-lift’ marks the initiation of the one-legged
stance, ’start-of-stability’ indicates when the subject achieves balance, ’end-
of-stability’ designates the moment just before the lifted foot descends, and
’foot-touchdown’ signals the foot’s return to the force plate. Foot-Up (FU) is
when the subject is lifting their foot. Food-Down (FD) is when the subject
is lowering their foot. The ’stability phase’ is when the subject maintains a
one-legged stance. The knee angle of the lifted leg is calculated to identify the
start and end of the stability phase. . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Test Participant 18’s Left-Side Third-Capture FU/FD events, followed closely
with the audio and video cues. All FU and FD events were correctly labeled,
with no false positives. The solid line represents the true labels, while the
dashed line represents the FU/FD model’s prediction. All FU/FD events
were accurately located, with no false positives. . . . . . . . . . . . . . . . . 45

3.4 Test Participant 24’s Right-Side First-Capture FU/FD events included a quick
fallout during the first stability phase. The solid line represents the true
labels, while the dashed line represents the FU/FD model’s prediction. The
additional FD and subsequent FU occurred in quick succession; however, all
FU/FD events were accurately located, with no false positives. . . . . . . . . 46

3.5 Confusion matrix representing the classification performance of the FU/FD
model. The matrix displays the number of correctly and incorrectly predicted
instances for each class. The True Class denotes the actual category of the
movement as labeled in the test data, while the Predicted Class signifies the
algorithm’s prediction. The matrix diagonal represents accurate predictions,
with 221 instances correctly identified as FU, and 147 as FD. Off-diagonal
elements indicate misclassifications: 2 instances of NEITHER (no significant
movement) were incorrectly predicted as FU, and 3 instances of FD were mis-
classified as NEITHER. There were no instances where FU was incorrectly
predicted as FD, demonstrating a high classification accuracy for these move-
ments by the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Comparison of model predictions versus actual values for the Center of Pres-
sure (COP) time-normalized distance using different amounts of fine-tuning
data. Each LOO model was tested on 75% of the excluded participant’s data.
Each subplot corresponds to results from models fine-tuned with a distinct
percentage of the test data: 2%, 5%, and 11%, respectively. The scattered
dots represent individual predictions for each test participant, with differ-
ent colors indicating different participants. The solid red line depicts the
regression line for each fine-tuning set, with the corresponding equation and
R-squared value annotated. The dashed black line indicates the ideal scenario
where predictions match the actual values perfectly. The trend demonstrates
improved model accuracy and better generalization with an increase in the
percentage of data used for fine-tuning. . . . . . . . . . . . . . . . . . . . . . 48

13



3.7 Graph illustrating the relationship between the number of stability phase se-
quences used for fine-tuning and the corresponding R-squared score of the
model’s predictions. The X-axis displays the count of standing phase RDM
sequences, ranging from 0 to 18. This corresponds to 0 to 100% of the fine-
tuning dataset. The Y-axis quantifies the R-squared score, indicating the
model’s prediction accuracy. The blue line and markers highlight the trend
of R-squared score improvement as more sequences are used for fine-tuning,
plateauing as the number of sequences increases, which suggests diminish-
ing returns on prediction accuracy beyond a certain point of fine-tuning data
inclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 tSNE Plot of Yoga Poses. Grouping visualization technique which shows a
distribution in 2 dimensions of 11 dimensional joint angle observations colored
by yoga pose. Even projected onto lower dimensional space, patterns amongst
different poses can be identified. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Parallel Coordinate Plot of Yoga Poses. Each vertical axis represents a dif-
ferent joint angle in the body. Each color represents a different static pose.
Each line across is a single observation at a moment in time. The observation
lines intersect the vertical axes at the joint angle value for that observation
and are colored by the pose. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Example Range Doppler Map with Time-Synchronized Pose Overlay. The
high-amplitude, dark section represents the signal from the participant. . . . 59

3.11 Conceptual diagram illustrating radar elevation and azimuth angles. . . . . . 61
3.12 Measured gain of a single DemoRad antenna across E-plane and H-plane angles. 61
3.13 Combined Sensitivity Analysis of Elevation and Azimuth Angles on Yoga

Transition Prediction Accuracy. The data reflects the model’s higher sen-
sitivity to elevation changes as opposed to azimuth changes. . . . . . . . . . 62

3.14 Sensitivity Analysis of Distance from Training Radar on Model Yoga Transi-
tion Prediction Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.1 Comprehensive SQL database schematic for Sekisui House at MIT: This schema
integrates various modules, including Surveys, Environment, Activities, Radar,
IR Systems, Questionnaires, Devices, Subjects, and Houses, detailing the rela-
tional structure and data types employed for effective in-home wellness mon-
itoring and early detection systems within aging populations. Each table is
outlined with attributes such as IDs, data entry dates, and specific device and
subject identifiers to ensure precision in data collection and analysis. . . . . 104

B.2 Workflow diagram showing the process of data extraction from the SQL server,
querying via Metabase, obtaining a CSV of file names and IDs, and interfacing
with the Box API through a Flask-based client to download requested files. . 106

B.3 Screenshot of the web interface used for the Box File Downloader tool. Users
can upload the CSV file, input their access token, and specify the destination
folder for the downloaded files. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

14



B.4 Illustration of the rolling standard deviation outlier detection and spike re-
moval technique applied to CW radar data. Spikes representing outliers are
identified and replaced with the local mean to maintain data integrity for
advanced vital sign detection and motion analysis. . . . . . . . . . . . . . . . 108

B.5 Manually Calculating Respiratory Rate: The radar data, post application of
the Clutter Cancel algorithm, showing 65 respiratory cycles over 3.93 minutes,
indicating a respiratory rate of 16.5 breaths per minute. . . . . . . . . . . . . 109

B.6 FFT Analysis of Respiratory Rate: Smoothing through Gaussian convolution
of the FFT reveals the primary frequency component of the radar signal,
correlating to a respiratory rate of 16.8 breaths per minute. . . . . . . . . . . 109

B.7 A visual representation of the Human Tracking Algorithm in action. On
the left, the grid overlay represents the radar segments, with colored blocks
indicating active radar zones corresponding to human movement. On the
right, the real-time video feed corroborates the radar data, with time stamps
ensuring synchronicity between the two data sources. . . . . . . . . . . . . . 110

15



16



List of Tables

3.1 Yoga Transition Scoring System. . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Crescent Lunge to Warrior II Transition Metrics. . . . . . . . . . . . . . . . 51
3.3 Feature Importances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 RF Classification Results for Yoga Poses. . . . . . . . . . . . . . . . . . . . . 55
3.5 Stability Classification CNN, LSTM Combination Model Results. . . . . . . 56
3.6 Transition Identification CNN, LSTM Combination Model Results. . . . . . 56

17



18



Chapter 1

Introduction and Background

1.1 Significance of Falls in the Elderly

1.1.1 Current Status Falls and Risk Monitoring

Falls among the elderly and those with balance impairments represent a significant public
health issue, leading to increased morbidity and mortality and accruing over $50 billion in
annual healthcare costs in the US alone [1]. The World Health Organization reports that
approximately 28–35% of people aged ≥ 64 years experience at least one fall every year [2].
Fortunately, detecting an increase in fall risk and intervening early has been shown to reduce
falls by up to 24% [3]–[6]. Traditional methods for assessing fall risk, such as the Timed Up
and Go (TUG) test, the Berg Balance Scale (BBS), and force plate tests, require clinical
settings and expert oversight, which can be resource-intensive and challenging to obtain more
frequently than once a year. Frequent at-home assessments could identify increases in fall
risk due to medication changes, injury, or illness between clinical visits [7].

As the global population ages, the demand for accessible, frequent, and non-intrusive
solutions for early fall risk detection becomes increasingly urgent [8]. While self-reported
questionnaires and in-home assessments are supplementary methods, their subjectivity and
resource-intensive nature remain significant drawbacks. Addressing these challenges, this
thesis introduces the innovative use of Frequency-Modulated Continuous-Wave (FMCW)
radar as a precise, non-contact tool for proctoring the One-Legged Standing Test (OLST)
[Figure 1.1].

19



Figure 1.1: Spiderweb diagram illustrating the comparative analysis of different balance
assessment tools across five key metrics: Accuracy, Affordability, Ease-of-use, Privacy, and
Frequency. ’At-Home Radar’ (red) is emphasized, showcasing its relative positioning against
traditional tools like ’Wearable Devices’, ’Clinical Assessment’, ’Questionnaires’, and ’Lab
Assessments’. This visualization underpins the discussion on the viability and advantages of
’At-Home Radar’ systems for fall risk assessment and monitoring in the paper.

Traditionally overseen by clinicians, the OLST provides crucial insights into an individ-
ual’s balance, postural control, and ability to maintain equilibrium and correlates strongly
with falls and mortality [Figure 1.2] [9], [10].

20



Figure 1.2: A Sketch of a Kaplan-Meier survival curve depicting the association between the
ability to perform a successful 10-second OLST and long-term survival rates. Individuals
who passed the OLST (’Yes’) demonstrate a markedly higher survival probability over the
course of 10 years, as represented by the blue line. Conversely, those unable to maintain the
stance (’No’) show a significantly decreased survival probability, illustrated by the red line.
This graph highlights the OLST’s prognostic value of a simple physical performance measure
in predicting longevity in middle-aged and older adults. The test’s predictive capability for
mortality may stem from its implicit assessment of overall physical fitness, stability, muscle
strength, and functional health status, which are crucial indicators of an individual’s health
span and resilience against age-related declines and fall risk. [9].

1.1.2 Proposal of Radar as a Fall Risk Monitoring Tool

Commonly utilized in the automotive and aviation industries [11], FMCW radar is an ad-
vanced sensing technology that is beginning to be leveraged for health monitoring, such
as for vital signs [12]–[14]. This study compares a radar-based measurement approach to
gold-standard balance assessment tools, such as force plates and motion capture (MOCAP)
technologies, confirming its ability to accurately proctor an at-home OLST and track balance-
related metrics [15]. Successfully implementing this technology to enhance early detection
and intervention could result in significant healthcare savings and, more importantly, help
preserve the health and independence of the world’s increasingly geriatric population [8].

1.2 FMCW Radar

1.2.1 Basics of Radar

Principle of Operation

radar operates on the principle of emitting microwave-frequency electromagnetic waves,
which then reflect off objects (often termed “targets”) and return to the radar receiver.

21



By analyzing the properties of the returned signal, information about the target’s position,
speed, and other characteristics can be deduced.

Time of Flight and Determination of Distance

The time taken for the emitted radio wave to travel to the target, reflect off it, and return
to the radar receiver is known as the “time of flight.” Given that radio waves travel at the
speed of light (c), the distance (d) to the target can be calculated using the equation

d =
c× Time of Flight

2
(1.1)

The division by 2 is to account for the round-trip travel of the wave. This equation gives a
direct measure of the distance based on the time taken for the signal to return [Fig. 1.3].

Figure 1.3: Illustration of the time of flight and distance determination using RADAR.

22



1.2.2 Doppler Effect

Introduction to the Doppler Effect

The Doppler Effect is a phenomenon observed in wave mechanics, where the frequency of a
wave changes for an observer moving relative to the source of the wave. In radar systems,
the waves reflected off a target are considered a new source, which causes a shift in the
observed frequency based on the relative velocity between the radar and the target. This
shift is crucial for determining the velocity of a moving target, making the Doppler Effect
central to radar systems.

Figure 1.4: This image illustrates the Doppler Effect as observed by a moving receiver
(right) moving relative to the radar emitting source (left). The radar emits waves at a
certain frequency, denoted by fs, in the middle waveform. In the top waveform, the receiver
moves towards the emitter at velocity Vo, the waves are compressed, resulting in a higher
frequency fo observed by the receiver, and the waves are more closely packed. Conversely,
in the bottom waveform, when the object moves away from the radar at velocity Vo, the
waves are stretched, leading to a lower frequency fo observed by the receiver. and the waves
are more spread out. The change in frequency between the source and receiver due to the
relative motion is known as the Doppler Effect, which is central to radar technology for
determining the velocity of objects.

As illustrated in Figure 1.4, the radar detects and interprets the change in frequency of
the returned wave to determine the relative motion of the target.

23



Mathematical Representation

• Definition: If a source of frequency fs is moving with a velocity vs relative to an
observer (with velocity vo), the frequency fo observed by the observer is given by:

fo =
(c+ vo)

(c+ vs)
fs (1.2)

where c is the speed of the wave in the medium.

• When both source and observer are moving towards each other:

fo =
(c+ vo)

(c− vs)
fs (1.3)

• When both source and observer are moving away from each other:

fo =
(c− vo)

(c+ vs)
fs (1.4)

Application in RADAR

In RADAR systems, the Doppler Effect is employed to determine the velocity of a moving
target. When the radar transmits a signal that hits a moving object, the reflected signal’s
frequency shifts. By analyzing this shift, the radar can calculate the object’s velocity. This
is especially crucial in applications like air-traffic control, and automotive RADAR where
the vehicles’ position and velocity need to be monitored.

The Doppler shift ∆f in radar systems for a target moving directly towards or away from
the radar is given by:

∆f =
2vr
c
f0 (1.5)

where:

• ∆f is the Doppler frequency shift.

• vr is the radial velocity of the target.

• f0 is the transmitted frequency.

• c is the speed of light (approximately 3× 108 m/s).

1.2.3 Differences Between FFT, Fourier Series, and Fourier Trans-
form

Fourier Transforms are mathematically foundational to FMCW Radar technology. However,
similar terminology here can be confusing. In signal processing and mathematical analysis,
the Fourier series, Fourier Transform, and Fast Fourier Transform (FFT) are three funda-
mental techniques used for representing and analyzing functions in terms of sinusoids. While
they are closely related, there are important distinctions among them.

24



1. Fourier Series:
The Fourier series decomposes a periodic function f(t) with period T into a weighted
sum of sines and cosines. Its representation is:

f(t) = a0 +
∞∑
n=1

[an cos(2πnf0t) + bn sin(2πnf0t)] (1.6)

Where:

a0 =
1

T

∫ T/2

−T/2

f(t) dt (1.7)

an =
2

T

∫ T/2

−T/2

f(t) cos(2πnf0t) dt (1.8)

bn =
2

T

∫ T/2

−T/2

f(t) sin(2πnf0t) dt (1.9)

f0 is the fundamental frequency equal to 1/T .

2. Fourier Transform:
The Fourier Transform extends the idea of the Fourier series to non-periodic functions,
producing a continuous frequency spectrum. For a given function f(t), its Fourier
Transform F (ω) is given by:

F (ω) =

∫ ∞

−∞
f(t)e−jωt dt (1.10)

Its inverse, which retrieves f(t) from F (ω), is:

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωt dω (1.11)

3. Fast Fourier Transform (FFT):
The FFT is not a distinct transform, but rather an efficient algorithm to compute the
Discrete Fourier Transform (DFT) and its inverse. The DFT maps a sequence of N
complex numbers to another sequence of N complex numbers and is given by:

X[k] =
N−1∑
n=0

x[n]e−j(2π/N)kn (1.12)

Where x[n] is the signal in time domain and X[k] is its frequency representation. The
FFT reduces the computational complexity of naive DFT calculation from O(N2) to
O(N logN), making it feasible for real-time processing and analysis of large datasets.

25



1.2.4 Fundamentals of FMCW Radar (Frequency Modulated Con-
tinuous Wave Radar)

Frequency Modulation

In FMCW radar, instead of emitting a continuous signal like Doppler radar or a short
pulse and waiting for its return like pulsed radar, the system continuously transmits an EM
signal whose frequency is modulated over time. This modulation can be linear, sawtooth,
triangular, among other patterns. The primary reason for modulating the frequency is to
encode the time of transmission into the transmitted signal frequency. This allows for the
continuous measurement of both the distance and velocity of targets.

Signal Mixing and Intermediate Frequency in FMCW Radar

In FMCW radar, signal mixing is an indispensable mechanism combining the transmitted
and received signals to derive the intermediate frequency (IF), encapsulating essential data
concerning the range and velocity of detected objects. During the mixing process, the re-
ceived signal, which carries a time delay due to traveling to and back from an object, as well
as a potential Doppler shift from the object’s velocity, is mathematically combined with the
transmitted signal. The equation for the mixing can be given as:

x1 = sin(ω1t+ ϕ1) (1.13)

x2 = sin(ω2t+ ϕ2) (1.14)

xout = x1 · x2 ≈ sin((ω1 − ω2)t+ (ϕ1 − ϕ2)) (1.15)

Where:

• x1 and x2 are the two input sinusoids.

• xout is the output after mixing, IF in FMCW radar.

• ω1 and ω2 are the angular frequencies of the input sinusoids x1 and x2 respectively.

• t is time.

• ϕ1 and ϕ2 are the phase offsets of the input sinusoids x1 and x2 respectively.

This IF signal is calculated for each unit of FMCW radar measurement, known as a chirp.
The chirp contains range and velocity information that is then stored in a standard data
structure known as a Radar Datacube.

26



Creating a Radar Datacube

The IF signal xout produced by each mixed FMCW chirp is stored in a single "Fast Time"
dimension of the radar data cube using the data processing shown in Figure 1.5. Successive
IF signals from successive chirps are stored in a second "Slow Time" dimension. A set
number of successive processed chirps are grouped together to create a frame. Many FMCW
radars have multiple receiving antennae or channels (MIMO). Each receiving antennae’s data
is stored in another dimension such that fast and slow time arrays are stacked to make the
3-dimensional data storage object.

Figure 1.5: A depiction of the MIMO radar processing sequence to create a Radar Datacube.
A series of chirps (Tx) are transmitted and their reflections (Rx) are received. The resulting
IF signal from the mixing process is sampled and digitized along fast-time. These samples
populate a data matrix with fast-time and slow-time dimensions, corresponding to individual
chirps and chirp sequences, respectively. In MIMO radar systems, datacubes from multiple
time-synchronized channels are then stacked to introduce a third dimension—’Depth’. This
additional dimension represents multiple channels and is essential for enhanced spatial res-
olution and precise target location identification in MIMO radar applications.

27



Extracting Range and Velocity from a Radar Datacube

Radar systems process received signals to extract information regarding the range, velocity,
and direction of detected targets. An important principle of signal processing is that all
signals, regardless of their complexity, can be decomposed into the addition of simple sine
waves of varying frequency and phase. The Fast Fourier Transform (FFT) [Equation 1.11]
is an efficient algorithm that shows which frequencies comprise a given signal.

In radar systems, the FFT plays an instrumental role in converting the time-domain
representation of received signals into the frequency domain, enabling the extraction of
essential parameters such as target range and velocity.

Range Estimation

Beat frequency refers to the dominant frequency found in the intermediate frequency due to
the reflection of an object. The relationship between the beat frequency and range R to the
target can be expressed as:

R =
fbrangec

2Btchirp
(1.16)

Where:

• fbrange = Beat frequency due to range [Hz]

• tchirp = Length of the chirp [s]

• B = Modulation bandwidth [Hz]

• R = Distance to the target [m]

• c = Speed of light in a vacuum [m/s]

Velocity Estimation using Phase Shift

For a target moving at a velocity, V , between two consecutive chirps, the change in the
received phase can be calculated as:

∆ϕ =
4π∆d

λ
(1.17)

Where:

• ∆ϕ = Phase difference between the received signals of two consecutive chirps

• ∆d = Change in distance due to velocity between those chirps

• λ = Transmitted signal’s wavelength

28



For the object’s movement between the chirps:

V =
∆d

tchirp
(1.18)

By combining the two equations, the velocity due to the noticed phase shift between two
chirps can be calculated as:

V =
∆ϕλtchirp

4π
(1.19)

Range Resolution

Range resolution is the radar’s ability to discern between two objects in proximity regarding
distance. A radar system with high range resolution can effectively differentiate between two
closely spaced targets. Mathematically, the range resolution (∆r) is inversely related to the
bandwidth (B) of the transmitted signal:

∆r =
c

2B
(1.20)

In FMCW RADAR, a substantial bandwidth is achieved by modulating the frequency
across a broad range, linearly increasing range resolution.

Range-Doppler Map Generation

Range-Doppler Maps (RDM) are grid-like heat maps with x and y axes binned by received
signal intensity across ranges, and velocities. The resolution of these bins is based on the
fundamentals of the radar described above. RDMs are generated in the steps described in
Figure 1.6. Because RDMs encode important position and velocity information and change
over time, they have been used as input data for machine learning algorithms that analyze
FMCW radar data [16], [17].

29



Figure 1.6: Processing steps for RDM generation using FMCW radar. The process begins
with the transmission (Tx) of a linear frequency-modulated chirp and the reception (Rx) of
the echo from the target, depicted over time. The received signal, which exhibits a frequency
shift relative to the transmitted signal due to the round-trip delay and the Doppler effect
from target motion, is mixed with the Tx signal to produce an Intermediate Frequency (IF)
signal. The frequency of the IF signal is proportional to the target’s range. Applying a
Fast Fourier Transform (FFT) to the IF signal yields the range spectrum for each chirp.
Subsequent FFT analysis across chirps reveals the Doppler frequency shift, indicated by
changes in phase, which corresponds to the target’s velocity. The final 2D FFT output
provides a Range-Doppler map, where the peak positions within the respective range and
velocity bins identify the target’s range and velocity. The Doppler phase shift (ϕ) is related
to the Doppler frequency (f) by the equation ϕ = 2πf · n∆τ , where n is the sample index
and ∆τ is the sampling interval. This phase shift, represented by the sinusoidal function
sin(2πf · n∆τ), encodes the velocity information of the target. [18].

1.2.5 Human Body as a Radar Reflector

Radar Reflectivity of Humans

The Radar Cross Section (RCS) measures how detectable an object is with a radar and has
units [m2] ([19]). A larger RCS indicates that an object is more easily detectable. Considering
a scenario where an individual stands directly in front of a radar system indoors with an
unobstructed line of sight, the Radar Cross Section (RCS) primarily depends on the clothing

30



material and the posture of the human. RCS can only be computationally calculated for
simple geometric bodies.

Basic RCS Equation

The radar cross-section (RCS) is commonly given by the equation:

Pr =
Pt ·Gt · σ · Ar

(4π)2 ·R4
(1.21)

where:

• Pr is the power received by the radar.

• Pt is the transmitted power of the radar.

• Gt is the gain of the transmitting antenna.

• σ is the RCS of the target (in this case, a human).

• Ar is the effective aperture of the receiving antenna.

• R is the range from the radar to the target.

Worst Case Scenario: Minimized RCS

• Clothing Material: Non-reflective and absorbent materials can minimize the RCS.

• Posture: Turning sideways might present a smaller cross-sectional area than facing
the radar head-on.

• Estimated RCS Value: For a typical human without reflective clothing, given the
various factors, an RCS might be around 1 m2.

Best Case Scenario: Maximized RCS

• Reflective Clothing: Metallic or reflective materials can drastically increase the RCS.

• Posture: Facing the radar directly can maximize the RCS.

• Estimated RCS Value: With highly reflective clothing and a direct orientation
towards the radar, the RCS might approach 2 m2.

1.2.6 FMCW Radar in Healthcare

Applying FMCW radar in healthcare is a relatively new frontier. Recent studies have begun
exploring FMCW radar’s potential in monitoring vital signs, detecting falls in real-time,
recognizing gestures, and assessing gait characteristics [16], [20]–[24]. In addition to being
non-contact, radar can penetrate non-metallic objects, making it appealing for unobtrusive
monitoring in home environments [22], [25].

31



1.2.7 Machine Learning and FMCW Radar

Raw and preprocessed FMCW radar data, despite their inherent noise and volume, are
highly conducive to machine learning (ML) techniques [17]. Particularly, the utilization of
Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs)
has advanced the accuracy of radar monitoring systems [17], [26]. LSTMs, designed to ana-
lyze time-series data, are ideally suited for interpreting the temporal patterns of vital signs
and movements detected by radar [24], [27], while CNNs, designed to process spatial data,
are widely used for classifying human activities [28]–[30]. These ML building blocks lay the
foundation for the development of health monitoring systems that can analyze evolving pat-
terns over time. By harnessing the complementary strengths of LSTM and CNN models, the
fusion of ML with FMCW radar technology stands poised to revolutionize patient care, ush-
ering in innovative approaches to remote health assessments and elderly care management,
as evidenced by recent studies [12], [20], [31], [32].

1.3 Force Plates and Motion Capture

Force plates have been the gold standard in objectively assessing balance and postural con-
trol. Researchers can infer information about the person’s balance and risk of falling by
measuring the ground reaction forces generated by a person’s movements [33]. Center of
pressure (COP) analysis, derived from force plate data, allows for a nuanced understanding
of balance and postural control by providing insights into weight distribution and shifting
indicative of instability [34]. Similarly, MOCAP systems provide detailed kinematic data
by tracking body movements in three dimensions. These technologies have contributed sub-
stantially to our understanding of human balance and have been used extensively in research
to identify fall risk factors [35]. For example, force plate-based COP tracking has been used
to detect postural stability decline and increased fall tendency in patients with Parkinson’s
disease [36]. However, their application is typically confined to labs and clinics, with highly
specialized equipment and staff [15].

1.4 Study Motivation

This thesis leverages the integration of radar, motion capture, and force plate technologies to
provide a sophisticated approach to health monitoring and movement analysis. Motivated by
the necessity for non-invasive, accurate assessments within healthcare, particularly for elderly
fall risk detection, this research explores the multifaceted applications of these technologies
through three focused analyses.

1. The first study investigates a robust system capable of proctoring the One-Leg Stand
Test (OLST), a critical measure of balance and stability among elderly populations
that provides insights into fall risk and prevention.

2. The second analysis classifies movement types, a central task for activity recognition
in real-time health monitoring systems.

32



3. The third and final study focuses on optimizing radar positioning through simulation
to maximize data accuracy and system efficiency.

These interconnected analyses address significant gaps in current monitoring practices and
help pave the way for future advancements in personalized healthcare technologies. The
ensuing chapters will delve into each study in detail, illustrating RADAR technology’s ex-
pansive potential to transform health monitoring.

33



34



Chapter 2

Data Collection

2.1 Participants

Fifteen participants (age range: 18-31 years, 10 males, 5 females) with varying levels of
self-reported balance were recruited for the study. Participants were required to be phys-
ically healthy and capable of performing the yoga tree pose, a one-legged standing bal-
ance pose, without assistance. The Institutional Review Board approved the study protocol
(#1911000055), and written informed consent was obtained from all participants before data
collection commenced.

2.2 Sensing Modalities

Data was collected in a controlled laboratory environment with a MOCAP system (Qual-
ysis, Inc. Göteborg, Sweden) with integrated force plates (Bertec Corporation, Columbus,
Ohio) and a 4-channel 24GHz FMCW DemoRad radar (Analog Devices, Inc. Wilming-
ton, Massachusetts). We used a 24GHz FMCW radar because it provides high-resolution
detection through clothing and non-metallic objects, and emits low-power, non-ionizing radi-
ation, deemed safe by international health standards [37]. The MOCAP system is configured
with 12 infrared cameras positioned around the laboratory and 2 RGB cameras on movable
tripods. Eighteen reflective markers were placed on the participants’ major joints to track
their movements [Figure 2.1]. The radar system was positioned 5 meters in front of the
participants at a height of 1 meter to allow the entire body to be within the radar’s field of
view.

MOCAP and force plate sensors were calibrated before each data collection to ensure
alignment with the global coordinate system and consistency in representing force vectors
and moments.

35



Figure 2.1: Example of 18 Motion Capture Markers and Force Plate Vector During a Par-
ticipant’s Left One-Legged Tree Pose

2.3 Study Procedure

2.3.1 Study Activities

Upon arriving at the laboratory, participants were briefed on the study and the data col-
lection procedures. A brief warm-up routine was conducted to minimize injury risk. After
the warm-up, we instructed participants to perform the yoga tree pose by placing the sole
of one foot against the opposite leg’s inner thigh, with arms remaining raised above their
heads [Figure 2.2].

Figure 2.2: Example of a participant on force plates, standing and in left one-legged tree
pose. These were the two states the participants were asked to transition between for the
OLST.

This version of the OLST was chosen to challenge the healthy participant’s balance skills.

36



The participants did not use their hands to help position their raised leg to avoid adding
noise to the radar data. Six data captures were performed by each participant, three times
on each leg (L/R).

During each of the six data captures, the participants challenged their balance by exe-
cuting two short tree poses, holding stable for two seconds, and executing a more prolonged
tree pose for five seconds while positioned on two force plates, one under each foot. This
sequence was chosen to challenge the dynamic and static components of the postural control.

In addition to OLST Mountain to Tree (L/R), five other transition movements were
performed by the participants: Cat to Cow, Cresent Lunge to Warrior II (L/R), and Forward
Fold to Mountain. They were instructed to perform the moves to the best of their abilities.

Visual and audio cues were provided to guide the participants through the pose sequences
and to ensure approximate temporal alignment between participants’ performances.

2.3.2 Study Hardware

At the beginning and end of each data capture segment, we placed and cycled a radar
reflective linear actuator equipped with a MOCAP marker to precisely synchronize the radar
and the combined MOCAP/force plate system [Figure 2.3].

Figure 2.3: FMCW RADAR, RGB Camera, and MOCAP to Radar Time Synchronization
Linear Actuator Setup [A.1].

The MOCAP, force plate, and radar systems recorded data simultaneously, allowing for
a robust reference analysis of balance and stability.

37



38



Chapter 3

Study Analyses

3.1 At Home Radar-Based Fall Risk Monitoring

3.1.1 Motivation

The existing literature thoroughly documents the use of force plates and MOCAP systems
for fall risk assessment in clinical settings, highlighting their efficacy and reliability [15].
Similarly, FMCW radar technology has been explored for various healthcare applications,
including detecting gestures [17], [19] and vital signs [23], [25], [32], demonstrating its versa-
tility and potential in non-invasive patient monitoring. However, a comprehensive synthesis
of these technologies—utilizing the precision of contact sensors to train radar-based algo-
rithms for fall risk evaluation in non-clinical, domestic settings—remains underexplored [12],
[13]. This analysis showcases FMCW radar’s capability in characterizing fall risk within
domestic settings, coupled with the prognostic power of gold standard methodologies [38].

3.1.2 Methods

Radar Data Preprocessing

Raw data from each sensor system underwent the following preprocessing steps. We pro-
cessed our radar data to suppress noise using a Hanning Window and generated Range-
Doppler Maps (RDMs) the steps described in Figure 1.6, [A.2] [39].

39



We cropped the four-channel RDMs to remove range data beyond 6 meters and velocity
data faster than ± 20 meters/seconds. We separated each 4-dimensional RDM (channels,
frames, height, width) by channels into four 3-dimensional RDMs (frames, height, width)
[Figure 3.1].

Figure 3.1: Range-Doppler Map (RDM) showcasing a stationary human target detected at
approximately 5 meters. The map encodes intensity in grayscale values, with lighter areas
indicating stronger radar returns. The x-axis represents the target range from the radar
system, and the y-axis indicates the radial velocity, where stationary targets appear along
the zero velocity line. The depicted data points around the 5-meter mark on the x-axis and
near-zero velocity on the y-axis suggest the presence of a person standing relatively still with
respect to the radar’s position.

40



Multimodal Data Acquisition System Synchronization

We used an FMCW radar system alongside a combined MOCAP and force plate system
for data acquisition. Both systems independently recorded and timestamped their own data
streams. To synchronize the data streams, we employed feature detection by convolving the
distinctive movement signature of the radar-reflective linear actuator at the commencement
and conclusion of each data capture session [Figure 2.3].

One-Leg Standing Sequence Tagging

After synchronizing the data, we annotated our one-legged standing dataset with ground-
truth motion characteristics. This involved identifying the precise times and corresponding
frames for key events such as foot-lift, start-of-stability, end-of-stability, and foot-touchdown,
allowing us to discern foot-up (FU) and foot-down (FD) movements and characterize partic-
ipants’ balance during the stability phase [Figure 3.2]. The time intervals between foot-lift
and start-of-stability mark the initiation of the FU movement, while those between end-of-
stability and foot-touchdown signify the conclusion of the FD movement. Additionally, the
stability phase encompasses the duration between the start-of-stability and end-of-stability.

Methodological Frameworks for Identifying Foot-Lift and Foot-Touchdown Times
in Force Plate Data

We designed a preprocessing, semi-automated labeling framework utilizing synchronized MO-
CAP and force plate data to obtain the FU and FD movements’ base truth start and end
times. This effort was critical for labeling the FMCW radar dataset to train models to rec-
ognize foot movement patterns. Two force plates, one under each foot, pinpointed foot-lifts
and foot-touchdowns. The data labeling process involved:

Importation After loading, we denoted the role of each force plate data capture as the
lifted foot or the foot on which the participant was standing.

Foot Lift Identification We applied dynamic thresholding to the foot-lift force plate data
to discern changes in force plate values indicative of foot-lifts (non-zero to zero transitions)
and foot-touchdowns (zero to non-zero transitions).

Event Validation Logic We validated foot-lift and foot-touchdown times to ensure a
sequence of meaningful events, such as ensuring that a foot-touchdown time followed after a
foot-lift time.

Manual Review We reviewed each foot-lift and foot-touchdown time using tracked marker
positions and force plate data, verifying the timing and accuracy of detected events.

This structured, multimodal approach to preprocessing ensured correct base-truth foot-
lift and foot-touchdown times for training models capable of discerning foot movements
within radar data.

41



Figure 3.2: Sequential representation of a complete OLST movement task performed by
subjects in front of the FMCW radar. Participants transition from a starting pose to a
one-legged stance, followed by a return to the initial pose. MOCAP and force plate data
are synchronized with radar signatures to identify key temporal events: ’foot-lift’ marks the
initiation of the one-legged stance, ’start-of-stability’ indicates when the subject achieves
balance, ’end-of-stability’ designates the moment just before the lifted foot descends, and
’foot-touchdown’ signals the foot’s return to the force plate. Foot-Up (FU) is when the
subject is lifting their foot. Food-Down (FD) is when the subject is lowering their foot. The
’stability phase’ is when the subject maintains a one-legged stance. The knee angle of the
lifted leg is calculated to identify the start and end of the stability phase.

Methodological Frameworks for Identifying Stability Phase in MOCAP Data by
Analyzing Lifted Leg Knee Angle

Knee Angle Calculation Using 3d coordinate marker data provided by MOCAP, we
calculated the lifted leg knee angle time series to identify when the knee angle minimized
and plateaued (end of FU movement) and began straightening (start of FD movement)
[Figure 3.2].

Stability Phase Identification We used dynamic thresholding with hysteresis to smooth
the knee angle time series, account for knee angle variation across captures, and identify the
start-of-stability and end-of-stability times.

MOCAP Time to RDM Frame Conversion After identifying the foot-lifts, foot-
touchdowns, starts-of-stability, and ends-of-stability, we converted these MOCAP times into
RDM frames. These time/frame pairs define the FU, FD, and stability phases in MOCAP,
force plate, and RDM datasets.

42



3.1.3 Machine Learning Models

In the following subsections, we detail two CNN-LSTM models.
The first model identifies and classifies RDM frames containing FU/FD movements within

radar recordings. By accurately identifying when these movements occur, we can bring the
powerful OLST beyond the clinic and into the home while maintaining patient privacy. The
OLST’s clinical utility stems from its prognostic power and simplicity; it can be performed
in a family medicine doctor’s office without equipment or much training. While clinicians
can make qualitative assessments during the test, it is primarily used as a binary test that
classifies fall risk at a single threshold.

Due to the limitations of the clinical OLST, we designed the second model to predict
postural control during the stability phase. This model accepts RDM data as input and
predicts a commonly studied force plate metric, the standing leg’s time-normalized COP
travel distance [Equation 3.1] [15], [40]. This metric’s assessment of postural control is more
granular than that of the OLST’s, meaning it can identify a significant elevation in fall risk
in a person whose binary OLST result does not change. Currently, this metric can only be
obtained in a highly equipped lab or specialist clinical settings [34]. Accurate radar-based
prediction and tracking of this metric would similarly bring this powerful test beyond the
lab and into the home.

Foot-Up Foot-Down Detection Model

Generating Training, Validation, and Testing Datasets To assess the model’s gen-
eralizability and reduce the risk of overfitting, we divided the participants into training,
validation, and testing subsets using a fixed ratio of 67% for training, 13% for validation,
and 20% for testing. This division allocated 10 participants to the training subset, 2 to the
validation subset, and 3 to the testing subset.

The input data for the FU/FD model were blocks of 100 sequential RDM frames called
windows. We generated these windows with a sliding window mechanism to ensure that the
full FU/FD movements, the longest of which was 45 consecutive frames, are kept together
in at least some windows. For each approximately 700-frame capture within the dataset,
we generated fixed-size windows (100-frames) with overlap (90-frames) between consecutive
windows. Each frame was labeled as FU, FD, or Neither according to FU/FD event frames
determined from the MOCAP and Force Plate data preprocessing, laying the groundwork
for supervised learning.

We applied a simple collate function to ensure uniformity and efficiency in data process-
ing, padding shorter sequences to ensure all windows were 100 frames.

FU/FD Model Architecture Our model’s hybrid CNN and LSTM architecture classi-
fies each RDM within the 100-frame window. This design exploits spatial features within
individual RDMs and temporal patterns across sequences of RDMs. Initially, the model
employs a CNN layer to extract spatial features from the RDMs, applying a convolution
operation followed by a ReLU activation function and max-pooling to reduce dimensionality
while preserving relevant spatial characteristics. The spatially processed data then feeds into
an LSTM layer, which captures temporal dependencies and dynamics over time by process-

43



ing the sequence of feature-extracted RDMs. Finally, a fully connected layer serves as the
classifier, taking LSTM’s output and mapping it to the probabilities that each frame’s label
is FU, FD, or Neither.

Test Data Prediction Aggregation After the model generated prediction probabilities
for each frame within the sliding test data windows, we had to map these overlapping pre-
dictions to the original full-length sequence of RDMs, resulting in one final class prediction
for each RDM in the capture. Since the class prediction for each frame is a probability,
we aggregated the overlapping predictions by choosing the highest probability prediction for
each unique frame, ensuring the retention of the highest confidence prediction per frame.
Following this aggregation, we smoothed the final predictions and consolidated blocks of
similarly classified sequential frames into FU/FD events to improve the model’s clarity.

Postural Control Prediction Model

Data Collection and Preparation Our postural control prediction model’s dataset is
also based on the processed radar RDM sequences. RDMs capturing each stability phase
were extracted.

Dataset Division and Labeling RDM sequences were labeled with the stability phase
time-normalized COP travel distance, indicating balance efficacy and postural control [Eq.
3.1]. The time-normalized distance (TN Dist) of the Center of Pressure (COP) is calculated
as the sum of the square root of the squared deltas of COP in both x and y coordinates over
consecutive time steps from the start (tss) to the end (tes) of the stability phase. This value
is then normalized by the total duration of the stability phase, providing a standardized
measure of balance and postural stability.

TN Dist =
∑tes

t=tss

√
(∆COPx)2 + (∆COPy)2

tes − tss
(3.1)

After labeling the RDM sequences with a TN Dist, we applied a collate function to ensure
uniformity and efficiency in the data processing. By padding shorter sequences, we ensured
all sequences within a batch were the same length.

Postural Control Prediction Model Architecture Like the FU/FD model, the Pos-
tural Control Prediction model also integrates CNN and LSTM networks to analyze RDM
sequences for balance assessment. Initially, the model employs two CNN layers that process
the input RDM sequences through filters, enhancing feature depth while maintaining spa-
tial dimensions. This step is followed by max pooling to reduce the spatial dimensions of
the feature maps, emphasizing significant features while reducing computational load. The
sequential processing of CNN layers, coupled with spatial dimension reduction, prepares the
data for temporal analysis.

Subsequently, the processed features are reshaped and fed into LSTM layers designed
to capture temporal dependencies within the radar data sequences. The LSTMs analyze
the dynamics across time, culminating in a fully connected layer that outputs the predicted
standing leg’s time-normalized COP travel distance.

44



Cross-Validation Training, Fine-Tuning, and Testing We used a 15-fold Leave-One-
Out (LOO) cross-validation method, creating 15 models withholding one participant’s data
in each case. This way, each participant’s data was used as a unique validation set for fine-
tuning and testing the models. This approach tests the models’ generalizability on unseen
data.

For each model, we split the excluded participant’s data 25%/75% for fine-tuning and
testing, respectively. We iteratively fine-tuned each model using from 0% to 25% of the fine-
tuning data, then evaluated performance on the test data, which constituted the remaining
75% of the participant’s data. This process enabled us to determine the optimal amount of
participant-specific data required to adapt the model effectively to new individuals.

3.1.4 Results

The FU/FD Detection Model Results

The FU/FD Detection Model combined CNN and LSTM layers to effectively classify RDM
sequences [Figure 3.3 and Figure 3.4]. After consolidating sequential similarly labeled base-
truth and predicted RMD frames into events, the model demonstrated exceptional accuracy
in event detection on the test dataset, correctly identifying 98.4% of FU/FD events. Specif-
ically, the model achieved a sensitivity of 0.99 and a specificity of 0.99 for FU events. For
FD events, the sensitivity and specificity were 0.987 and 1.0, respectively [Figure 3.5].

Figure 3.3: Test Participant 18’s Left-Side Third-Capture FU/FD events, followed closely
with the audio and video cues. All FU and FD events were correctly labeled, with no
false positives. The solid line represents the true labels, while the dashed line represents
the FU/FD model’s prediction. All FU/FD events were accurately located, with no false
positives.

An event prediction was considered correct if the True Label fell within 10 frames or
approximately 0.36 seconds. This allowance accommodates minor temporal discrepancies
between the model’s prediction and the labeled event, stemming from the inherent variability
in human motion and slight synchronization differences between radar and MOCAP systems.

Postural Control Prediction Model Results

The Postural Control Prediction Model assesses the OLST stability phase by predicting the
force-plates time-normalized COP travel distance [Eq. 3.1]. For each model, we used the

45



Figure 3.4: Test Participant 24’s Right-Side First-Capture FU/FD events included a quick
fallout during the first stability phase. The solid line represents the true labels, while the
dashed line represents the FU/FD model’s prediction. The additional FD and subsequent
FU occurred in quick succession; however, all FU/FD events were accurately located, with
no false positives.

excluded participant’s data 25%/75% for fine-tuning and testing, respectively. The fine-
tuning quickly increased the model’s predictive accuracy with only a small percentage of
the test participant’s data. This finding was reflected in the overall R-squared scores that
increased from 0.40 to 0.63 with an increase in fine-tuning stability from 2% to 5% [Figure
3.6]. Although not all data points align perfectly with the ideal prediction line (dashed
black line), the proximity of the fit line to this ideal underscores the model’s capability to
accurately evaluate stability.

Our analysis indicates that fine-tuning significantly impacts model performance. As
the fine-tuning data increased from 0 to 2 fine-tuning stability phase captures, a stark im-
provement in R-squared scores was observed [Figure 3.7]. However, the incremental benefit
diminished progressively, and the R-squared scores plateaued after 6 fine-tuning stability
phase captures, 11%, were used.

3.1.5 Discussion

The FU/FD Detection Model Discussion

The FU/FD Detection Model identified FU/FD events with an accuracy of 98.4%, validating
using FMCW radar and machine learning for this home health activity recognition task.
The model can efficiently monitor the 10-second OLST by calculating the time between FU
and FD events. Before deployment, the system’s accuracy could be further improved by
incorporating logic. For example, following a high-confidence FU event, the system would
only look for FD events.

Using the 10-frame buffer for calculating FU/FD prediction accuracy helped demonstrate
the model’s usefulness in real-world scenarios without compromising clinical utility.

The high accuracy, sensitivity, and specificity levels achieved in detecting FU/FD events
illustrate the model’s capacity to identify subtle movement patterns in radar data, which
could be applied to other human motion tracking and characterization tasks, such as gait or
movement disorders.

46



Figure 3.5: Confusion matrix representing the classification performance of the FU/FD
model. The matrix displays the number of correctly and incorrectly predicted instances for
each class. The True Class denotes the actual category of the movement as labeled in the
test data, while the Predicted Class signifies the algorithm’s prediction. The matrix diagonal
represents accurate predictions, with 221 instances correctly identified as FU, and 147 as FD.
Off-diagonal elements indicate misclassifications: 2 instances of NEITHER (no significant
movement) were incorrectly predicted as FU, and 3 instances of FD were misclassified as
NEITHER. There were no instances where FU was incorrectly predicted as FD, demonstrat-
ing a high classification accuracy for these movements by the algorithm.

Postural Control Prediction Model Discussion

The results of our Postural Control Prediction model with 15-fold LOO cross-validation pro-
vide compelling evidence that fine-tuning with a minimal subset of participant-specific data
can significantly enhance predictive performance. This finding is critical for the practical
deployment of personalized systems, where capturing an individual’s unique movement pat-
terns can lead to more accurate and reliable predictions. Each model requires only a small
amount of fine-tuning data from a new participant to predict the time-normalized COP
travel distance with high accuracy on the unseen 75% of the test data set.

The models’ ability to identify stability nuances, even among young, healthy partici-
pants, suggests broader applicability in distinguishing between individuals with expected
larger variations in balance ability and associated fall risk. Automatic notifications to the
patient’s care team about sudden or gradual decreases in performance could facilitate timely
interventions. Additionally, longitudinal outcome data could offer new insights into pre-fall

47



Figure 3.6: Comparison of model predictions versus actual values for the Center of Pressure
(COP) time-normalized distance using different amounts of fine-tuning data. Each LOO
model was tested on 75% of the excluded participant’s data. Each subplot corresponds to
results from models fine-tuned with a distinct percentage of the test data: 2%, 5%, and 11%,
respectively. The scattered dots represent individual predictions for each test participant,
with different colors indicating different participants. The solid red line depicts the regression
line for each fine-tuning set, with the corresponding equation and R-squared value annotated.
The dashed black line indicates the ideal scenario where predictions match the actual values
perfectly. The trend demonstrates improved model accuracy and better generalization with
an increase in the percentage of data used for fine-tuning.

movement patterns and lead to enhanced fall risk identification and prevention strategies.
The Postural Control Prediction Model’s strong performance in predicting the standing leg’s
time-normalized COP travel distance during the OLST highlights its potential as a valuable
balance and fall risk assessment tool.

While the study’s results are promising, certain limitations must be acknowledged. The
fine-tuning process, although not requiring extensive data, does assume the availability of
high-quality and representative movement sequences from future users. In scenarios where
such data are challenging to obtain, model performance might be impacted. Additionally,
this study was cross-sectional and, therefore, does not have data from a single individual
whose movement patterns changed over time.

Data Preprocessing Discussion

We used single-channel data as input to reduce the FMCW radar hardware complexity re-
quirements. Similarly, the decision to selectively focus on known range and velocity parame-
ters further demonstrates a strategic approach tailored to the OLST application, streamlin-
ing the radar data processing workflow. This data processing method significantly reduces
the computational burden by filtering out irrelevant signal data, increasing memory and
processing efficiency in deployed products.

48



Figure 3.7: Graph illustrating the relationship between the number of stability phase se-
quences used for fine-tuning and the corresponding R-squared score of the model’s predic-
tions. The X-axis displays the count of standing phase RDM sequences, ranging from 0
to 18. This corresponds to 0 to 100% of the fine-tuning dataset. The Y-axis quantifies
the R-squared score, indicating the model’s prediction accuracy. The blue line and markers
highlight the trend of R-squared score improvement as more sequences are used for fine-
tuning, plateauing as the number of sequences increases, which suggests diminishing returns
on prediction accuracy beyond a certain point of fine-tuning data inclusion.

3.2 Yoga Pose Transition Analysis Using FMCW Radar

3.2.1 Motivation

The increasing popularity of yoga as an in-home workout underscores its numerous physical
and mental health benefits, including improved strength, flexibility, balance, and reduced
stress [41]. This study investigates the potential of combining MOCAP, FMCW radar,
and ML technologies to enhance yoga practice through precise, non-contact monitoring of
movements and transitions.

This analysis aims to develop two ML models; the first model will be trained to identify
a variety of yoga movements, and the second model will be trained to characterize human
movement quality. The application of these technologies reaches beyond yoga with impli-
cations for sports science, in-home health monitoring, fall detection, and physical therapy,
thereby contributing to the fields of human movement analysis and automated health support
systems.

49



3.2.2 Methods

Motion Capture Data Preprocessing

In this study, MOCAP was used for base truth measurement. We trained preliminary models
to identify yoga positions based on the MOCAP data. We analyzed these preliminary models
to ensure that the base truth measurement data was able to identify the movements before
proceeding to the more abstract radar data. Various ML techniques were applied to ensure
the 13 static yoga positions at the beginning and ends of the transitions were identifiable
within this base truth measurement.

MOCAP data were processed to obtain 18 joint positions and 11 joint angles for each
yoga pose. The raw radar data were synchronized with the MOCAP data to ensure temporal
alignment and identify each pose and transition. Noise and artifacts in both MOCAP and
radar data were removed using appropriate filtering and trajectory-filling techniques. The
resulting MOCAP data were then sliced into individual poses and transitions for further anal-
ysis. Five observations per participant per pose were randomly selected for the t-distributed
stochastic neighbor embedding (tSNE) plot and parallel coordinates plot (PCP). Fifty ob-
servations per participant per pose were randomly selected for a Random Forest (RF) model.
The RF dataset was subdivided into training (80%), validation (10%), and testing (10%)
datasets.

Radar Data Preprocessing

For movement quality labeling, we chose to investigate the classic yoga movement, Cres-
cent Lunge to Warrior II. Participants’ Crescent Lunge to Warrior II transitions [Table 3.1]
were evaluated by the author, a long-time yoga enthusiast, and scored based on transition
smoothness, from 0 (very poor) to 4 (excellent).

Score Transition Description
0 Very poor control; jerky, unsteady, or unstable transi-

tion without smoothness or grace.
1 Poor control; transition with some unsteadiness or

abrupt movements, lacking overall smoothness.
2 Moderate control; mostly smooth transition with occa-

sional flow interruptions.
3 Good control; smooth and well-coordinated transition

with minor room for improvement.
4 Excellent control; exceptionally fluid, graceful, and con-

trolled transition.

Table 3.1: Yoga Transition Scoring System.

50



The overall scoring metrics are in [Table 3.2].

Metric Value
Mean 2.44
Median 2
Std Dev 1.04

Table 3.2: Crescent Lunge to Warrior II Transition Metrics.

Similar to the At Home Balance Monitoring Analysis, we processed our radar data to
suppress noise using a Hanning Window and generated Range-Doppler Maps (RDMs) fol-
lowing the steps in Figure 1.6 [39]. We cropped the four-channel RDMs to remove range data
from beyond 6 meters and velocity data faster than ± 20 meters/seconds. We separated each
4-dimensional RDM (channels, frames, height, width) by channels into four 3-dimensional
RDMs (frames, height, width) [Figure 3.1]. The transition windows were extracted from the
full capture’s RDMs based on the transition timing videos that defined the expected pose
and transition time intervals.

The MOCAP and radar datasets were tagged based on the transitions and poses they
encoded. These datasets were then used to train machine learning models to accurately
identify yoga poses and transitions, and evaluate the quality of transitions between poses.

51



3.2.3 Results

Visualization Techniques

The t-distributed stochastic neighbor embedding (tSNE) and parallel coordinate plots (PCP)
were used to visualize the MOCAP data patterns and relationships between poses and joint
angles. The t-SNE plot [Figure 3.8] demonstrates a distinct separation among the different
yoga poses, suggesting that these poses are in close proximity when represented in a high-
dimensional Euclidean space. For example, the Cat (baby blue) and Cow (pink) are in
similar poses and close together in the tSNE plot; however, they are also generally able to
be delineated even in tSNE’s lower-dimensional representation.

Figure 3.8: tSNE Plot of Yoga Poses. Grouping visualization technique which shows a
distribution in 2 dimensions of 11 dimensional joint angle observations colored by yoga
pose. Even projected onto lower dimensional space, patterns amongst different poses can be
identified.

52



The PCP [Figure 3.9] provided insights into the joint angle relationships and allowed for
identifying specific features that contributed to the classification of each pose. For example,
the two tree poses, Right Tree (yellow) and Left Tree (orange), are chiral and have distinctly
mirrored knee angles.

Figure 3.9: Parallel Coordinate Plot of Yoga Poses. Each vertical axis represents a different
joint angle in the body. Each color represents a different static pose. Each line across is a
single observation at a moment in time. The observation lines intersect the vertical axes at
the joint angle value for that observation and are colored by the pose.

53



Pose Classification

A Random Forest (RF) model was trained to classify the 13 yoga poses based on joint
positions and angles extracted from the MOCAP data. The most important features to the
RF model in identifying the poses were the knee angles followed by the hip angles [Table
3.3].

Feature Importance
Knee_R_angle 0.159263
Knee_L_angle 0.144546
Hip_L_angle 0.125505
Hip_R_angle 0.110485

Shoulder_L_angle 0.092234
Shoulder_R_angle 0.089760
Elbow_L_angle 0.067758
Elbow_R_angle 0.067507

Hip_Belly_Hip_angle 0.065061
Hip_LowBack_Hip_angle 0.044947

Shoulder_UpperBack_Shoulder_angle 0.032935

Table 3.3: Feature Importances

54



The model’s performance [table 3.4] was assessed using precision, recall, and F1 score.
On the validation dataset, the overall accuracy of the RF model was 98.6%, with a precision
of 99%, a recall of 99%, and an F1 score of 99%.

Pose Precision Recall F1-score Support
Cat 1.00 0.99 0.99 82
Chair 1.00 1.00 1.00 83
Cow 0.99 1.00 0.99 69
Downward Dog 0.99 1.00 0.99 83
Forward Fold 0.97 0.97 0.97 71
Left Crescent Lunge 0.94 0.97 0.95 65
Left Warrior II 0.97 1.00 0.99 69
Mountain 0.99 0.94 0.96 78
Right Crescent Lunge 1.00 0.96 0.98 78
Right Warrior II 0.96 1.00 0.98 74
Tree Left 1.00 1.00 1.00 81
Tree Right 1.00 0.98 0.99 65
Yogi Squat 1.00 1.00 1.00 77
Cross-validation mean accuracy 0.9814
Validation set accuracy 0.9856
Accuracy (total) 0.99 975
Macro avg 0.99 0.99 975
Weighted avg 0.99 0.99 975

Table 3.4: RF Classification Results for Yoga Poses.

These results indicate that the RF model was able to effectively recognize and differentiate
between the 13 types of yoga poses in the dataset.

55



CNN + LSTM Transition Stability Classification

A combination CNN-LSTM model was trained on time-distributed FMCW radar RDMs of
yoga transitions, labeled from 0 (very poor) to 4 (excellent). The CNN model’s performance
was assessed using Mean Squared Error (MSE), accuracy, and top-two accuracy on validation
data. The model achieved an MSE of 0.51, an accuracy of 60.2%, and a top-two accuracy of
85.2% [Table 3.5].

Metric Value
Mean Squared Error (MSE) 0.51
Validation Accuracy 60.2%
Validation Top-2 Accuracy 85.2%
Min Validation Loss 1.07

Table 3.5: Stability Classification CNN, LSTM Combination Model Results.

CNN + LSTM Transition Classification

A similar combination CNN-LSTM model was trained to identify which transition was per-
formed based on tagged time-distributed RDMs of yoga transitions captured in FMCW
radar. The performance of the CNN model was assessed using accuracy and top-two accu-
racy, as many of the transitions are chiral, which may be difficult for an anterior radar to
differentiate. The model achieved a validation accuracy of 67.4% and a top two accuracy of
83.5% [Table 3.6].

Metric Value
Validation Accuracy 67.4%
Validation Top-2 Accuracy 83.5%
Loss 0.12

Table 3.6: Transition Identification CNN, LSTM Combination Model Results.

These results suggest that the combination CNN-LSTM model could identify which yoga
transition was performed with a high degree of accuracy and, more often than not, distinguish
between chiral transitions.

3.2.4 Discussion

This study aimed to develop machine learning models that accurately identify yoga poses
and evaluate yoga transitions using MOCAP and FMCW radar technology. Visualization
techniques, such as tSNE [Figure 3.8] and PCP [Figure 3.9], provided valuable insights into
the patterns and relationships between joint angles, allowing for a better understanding of
the features contributing to pose classification. The RF model effectively classified yoga
poses based on joint angles. The combination CNN-LSTM model trained on labeled time-
distributed 3D RDMs of yoga transitions characterized stability with an accuracy of 60.2%, a

56



top two accuracy of 85.2%, and MSE of 0.51 [Table 3.5]. Top-two accuracy is crucial because
it reflects the model’s capability to identify the most likely two categories in transition
smoothness ratings. Considering the subjectivity in rating yoga transitions, top-two accuracy
provides a more nuanced evaluation of the model’s performance.

The combination CNN-LSTM model demonstrated its effectiveness in identifying yoga
transitions, achieving a testing accuracy of 67.4% and a top-two accuracy of 83.5% [Table
3.6]. This latter metric was particularly valuable given the chiral nature of several transitions
that are difficult to differentiate from an anterior radar perspective. Despite these challenges,
the high top-two accuracy indicates the model’s ability to correctly identify one of the two
most likely transitions, particularly between closely related chiral classes. These results
demonstrate the model’s robustness in recognizing yoga transitions and highlight the value
of using additional performance metrics, such as top-two accuracy, in evaluations, especially
when the classes are closely related.

This study highlighted the power of machine learning in transforming raw motion data
into meaningful insights. These insights could guide future efforts in training and evaluating
similar models.

3.3 Optimization of Radar Systems for Human Move-
ment Characterization

3.3.1 Motivation

When designing this human movement-radar study, we encountered the challenge of deter-
mining where to place the radar sensors. This task presented an intriguing optimization
problem that we believed warranted deeper exploration, particularly because it’s an issue
likely to be faced by future designers of radar systems for human movement detection within
varying enclosed spaces. Optimizing radar systems based on simulated data offers crucial ad-
vantages for efficiently integrating these technologies into existing environments, particularly
for precise, noninvasive monitoring in healthcare settings.

Simulations would allow for effective designing and retrofitting of spaces by testing var-
ious sensor configurations and placements without physical modifications, ensuring optimal
setup before actual installation. This approach facilitates a thorough cost-benefit analysis,
determining the most effective deployment strategies to balance cost with performance, and
potentially reducing the number of sensors needed while maintaining high functionality. Fur-
thermore, simulated data enables the fine-tuning of system specifications, including sensor
frequencies and signal processing algorithms, to enhance detection accuracy, particularly
for critical applications like fall detection and health monitoring. By exploring different
operational scenarios and environmental conditions, simulations ensure radar systems are
adaptable and scalable, ready for diverse real-world applications, and minimize the need for
expensive physical testing. This method significantly accelerates the development and imple-
mentation of radar technologies, promoting innovation in non-invasive monitoring solutions.

Extensive public online libraries are available for motion capture data, yet similar re-
sources for radar data are lacking. By adapting a radar simulator to accept motion capture

57



data, it becomes possible to generate a wealth of simulated radar data, which could then be
utilized across a multitude of radar applications.

58



3.3.2 Methods

Data Preprocessing

MOCAP data of the 18 joint positions were processed to obtain x, y, and z coordinates for
both location, and velocity at each time step. The raw radar data were synchronized with the
MOCAP data to ensure temporal alignment and identify each pose and transition. Noise and
artifacts in MOCAP and radar data were removed using appropriate filtering and trajectory-
filling techniques. The resulting MOCAP data were then sliced into individual poses and
transitions. For each transition, the position and velocity of each motion capture marker
were imported into the modified open-source radar simulator, RadarSimX [42]. Each label
was given the worst-case scenario RCS value of 1. This simulator was tuned to the settings
of the 1 Transmission/4 Receive (1Tx/4Rx) Multi-Input Multi-Output (MIMO) DemoRad,
Analog Devices radar, used during data collection.

Range Doppler Maps (RDMs) were generated from the radar data [Figure 3.10]. Each
transition generates 4 RDM sequences due to the MIMO device architecture. This built-
in data augmentation adds noise and accounts for the multiple Rx antenna positions. We
cropped the four-channel RDMs to remove range data from beyond 15 meters and velocity
data faster than ± 5 meters/seconds. The tagged time-series RDMs were used as the inputs
to the ML models.

Figure 3.10: Example Range Doppler Map with Time-Synchronized Pose Overlay. The high-
amplitude, dark section represents the signal from the participant.

59



Radar Set-Up Optimization

Optimizing the set-up of the simulated radar system was crucial for enhancing the perfor-
mance of our ML models. We approached the optimization process by considering three
main aspects: the location, number, and orientation of the radar units. To determine the
most effective arrangement, we sampled the design space heuristically.

Given a radar placed at a height of h = 1 meter and an elevation angle of θ = 12.5
degrees, the horizontal distance d from the radar to the point directly below the target can
be calculated using the tangent of the elevation angle:

d =
h

tan(θ)

Substituting the given values:

d =
1 m

tan(12.5◦)
≈ 4 m

This calculation suggests that the radar should be placed approximately 4 meters away
from the target for optimal detection. Therefore, initially, we sampled four locations in the
design space 4 meters away (front, back, left, and right) from the participant, directed at
their approximate center of mass (x = 1, y = 0.5, z = 1).

3.3.3 Motion Characterization Results

Distinguishing between different types of yoga movements

Originally, the study intended to explore a wide design space to determine the optimal sensor
placement for accurate movement characterization. However, during preliminary testing, it
was discovered that the first two-radar system tested (anterior plus lateral sensors) yielded
exceptionally high accuracy. Specifically, the models achieved a 98.2% accuracy and a 100%
top-2 accuracy on test data from participants that they had never encountered before. The
model also performed well on a single simulated radar system, with an 87.1% accuracy and a
97.7% top-2 accuracy. While relatively close, this result was notably better than the accuracy
of the model trained on the real radar data, which had a validation accuracy of 67.4% and
a top-two accuracy of 83.5%. The relatively close alignment between the real and simulated
accuracies of the single radar system was particularly useful as it validated the effectiveness
of the simulated environment for preliminary testing and optimizations. If put into practice,
this outcome would reduce the need for extensive real-world data collection while allowing
for reliable model development and refinement.

3.3.4 Sensitivity Analysis

Since the challenge of optimizing a two-radar system turned out to be fairly straightforward
for this human movement classification task, we decided to perform a comprehensive sen-
sitivity analysis on a single simulated radar system. We chose to evaluate a single-radar
system’s performance as a function of varying test participant positions in terms of distance
and angular displacement from the training setup. This investigation aims to understand

60



the limits within which the radar system can operate without significant loss of accuracy
in the task of identifying different human movements. The analysis involved systematically
modifying the simulated radar’s position and orientation for the test data generation. Such
an analysis is essential for establishing the system’s robustness in real-world applications,
where maintaining an ideal sensor-to-human alignment is not always possible.

Figure 3.11 illustrates the spatial relationship between elevation and azimuth angles that
were explored, while Figure 3.12 provides insight into the antenna’s gain pattern. The
antenna’s gain pattern is particularly critical in determining how accurately the system can
detect and predict movements at various angles and distances.

Figure 3.11: Conceptual diagram illustrat-
ing radar elevation and azimuth angles.

Figure 3.12: Measured gain of a single De-
moRad antenna across E-plane and H-plane
angles.

61



Combined Elevation and Azimuth Sensitivity Analysis

The angular sensitivity analysis, as depicted in Figure 3.13, illustrates the radar system’s
differential response to elevation and azimuth angle changes. Horizontal lines demarcating
’Pure Chance Accuracy’ and ’Pure Chance T2A’ are included to establish baselines for
performance evaluation. The graph indicates a pronounced decline in model accuracy as
the elevation angle increases beyond 4.5 degrees. Conversely, the azimuth sensitivity shows
a more gradual decrease in accuracy. This suggests that the radar system’s performance is
more robust to azimuth changes than elevation.

Figure 3.13: Combined Sensitivity Analysis of Elevation and Azimuth Angles on Yoga Tran-
sition Prediction Accuracy. The data reflects the model’s higher sensitivity to elevation
changes as opposed to azimuth changes.

62



Distance Sensitivity

Figure 3.14 graphically conveys the relationship between the training radar location distance
and the corresponding accuracy of yoga transition predictions model trained on the RDM
time series. The graph delineates two datasets: the accuracy and the Top 2 Accuracy (T2A).
Once the distance exceeds 10 wavelengths, approximately 12.5 cm, prediction accuracy no-
ticeably decreases, indicating a spatial constraint in the effectiveness of the radar’s training
algorithm. This visual analysis underscores the accuracy reduction beyond the 12.5 cm mark,
a critical observation for understanding the model’s limitations in spatial sensitivity.

Figure 3.14: Sensitivity Analysis of Distance from Training Radar on Model Yoga Transition
Prediction Accuracy.

63



3.3.5 Discussion

The sensitivity analysis of the simulated single radar system provides insights into the effects
of relative positioning, both angular and distance, on movement identification accuracy. The
aim was to plot the system accuracy as a function of the difference in simulated position
between the training data and the testing data. Such an understanding is vital for practical
human motion tracking applications where ideal positioning conditions are seldom met.

The combined analysis of elevation and azimuth sensitivity revealed that the radar system
was notably more sensitive to elevation changes than azimuth. As depicted in Figure 3.13,
there was a marked decrease in accuracy when the elevation angle exceeded 4.5 degrees.
However, changes in azimuth showed a more gradual impact on performance. This finding
is in alignment with the directional sensitivity of the radar system, which is more accommo-
dating of azimuthal shifts—a likely consequence of the design and operational mechanics of
the antenna gain pattern, as seen in Figure 3.12.

This disparity in angular sensitivity is a key consideration when designing radar systems
for monitoring human activity, which predominantly occurs at a constant elevation, such as
walking around a room. In such scenarios, optimizing radar systems to be more robust to
azimuth changes than elevation changes could enhance detection and tracking accuracy and
reduce the number of needed sensors.

Moreover, the analysis of distance sensitivity, illustrated in Figure 3.14, indicated a dis-
tinct threshold for accurate predictions. Beyond a critical distance of 12.5 cm, roughly
equivalent to 10 wavelengths in this context, model performance declined. In real-world
settings, this range would likely be too tight of a window to be effective. The most likely
way to increase this range would be to collect training data from a wider range of distances.
Additionally, when distance and angular displacements are combined, there may be com-
pounding impacts on system accuracy. This relationship between spatial positioning and
accuracy guides the setting of operational parameters for radar systems to ensure maximum
efficacy and the need for more robust data collection and algorithms.

Despite these insights, the study has limitations that must be acknowledged. Using a
controlled laboratory setting provided a stable environment and simulated data to assess
the radar system’s performance but did not fully capture the complexity and variability of
real-world conditions. Moreover, the participants in this study were within a young age
bracket, which does not represent the movement patterns and potential physical limitations
of the elderly population—the demographic that could benefit significantly from enhanced
radar detection in applications such as fall detection and activity monitoring.

64



Chapter 4

Conclusion and Future Work

4.1 At Home Radar-Based Fall Risk Monitoring

4.1.1 Conclusion

This analysis has demonstrated the viability of using FMCW radar and machine learning
models to assess balance and fall risk in non-clinical settings. We have shown that FMCW
radar can accurately detect FU and FD movements and predict force plate patterns. The
high levels of accuracy, sensitivity, and specificity our models have achieved demonstrate the
technology’s potential for daily, noninvasive, low-cost, home-based monitoring of fall risk.

Successfully integrating FMCW radar with machine learning techniques has validated the
feasibility of conducting detailed balance assessments outside the clinical environment and
opened up new possibilities for enhancing the quality of life for at-risk populations. As we
continue to refine non-contact technology and explore its full potential, we remain committed
to improving the autonomy, safety, and well-being of individuals at risk of falls, ultimately
contributing to the broader goal of helping the elderly age with dignity and improving public
health outcomes.

4.1.2 Future Work

The promising results of these models suggest several pathways for future exploration. Fu-
ture research should prioritize collecting data from populations more representative of those
who will benefit from this technology, including older adults and individuals with balance
disorders. Long-term studies would offer deeper insights into balance deterioration and the
efficacy of treatments. It would be interesting to investigate whether frequently assessing
one’s fall risk actually reduces falls since frequent testing may increase balance practice and
stability awareness.

The length of time a patient is able to stand on one leg has been shown to decrease with
age [10]. In addition to the binary 10-second version of this test, a hold-as-long-as-possible
test could easily be implemented with the same model, providing another longitudinal result
worth tracking.

Integrating radar with other technologies could yield a more nuanced balance evalua-
tion, while real-time monitoring systems may provide instantaneous fall-risk alerts, enabling

65



prompt intervention. Finally, investigating radar’s potential in other health metrics, such as
gait and posture analysis, could expand its utility in preventive healthcare.

4.2 Yoga Pose Transition Analysis Using FMCW Radar

4.2.1 Conclusion

The yoga pose prediction models have significant potential for application in various fields,
including sports science, in-home health, fall detection and risk stratification, and physical
therapy.

This analysis has demonstrated the potential of machine learning models and visual-
ization techniques to enhance yoga practice by accurately identifying poses and evaluating
transitions. The resulting insights and applications could help pave the way for more mean-
ingful yoga experiences and contribute to the growing field of non-contact human movement
monitoring.

4.2.2 Future Work

Future research could explore incorporating additional data modalities, such as electromyo-
graphy (EMG), ultrasound, video, and force plate data, to provide a more comprehensive
understanding of the biomechanics involved in yoga practice. Furthermore, the models can
be extended to include a broader range of yoga poses and different levels of expertise among
participants. This would enable the development of more sophisticated and robust AI sys-
tems that cater to the needs of diverse yoga practitioners, enhancing the overall effectiveness
and accessibility of yoga practice in various populations.

By integrating these models with computer vision methods like the Google Pose Project,
it may be possible to develop a "yoga guru AI" mobile app that provides personalized, real-
time feedback to yoga practitioners, helping them improve their practice. Similarly, an AI
in-home physical therapy app could provide immediate feedback on patients’ movement and
posture, guiding them toward a safer and more effective rehabilitation process.

4.3 Optimization of a Radar System for Human Move-
ment Characterization

4.3.1 Conclusion

Using FMCW radar to evaluate human motion involves a multidisciplinary approach, incor-
porating physics, biomedical studies, engineering, and computer science. Understanding the
underlying physics is crucial for developing effective real-world systems.

Enhancing radar system sensitivity can lead to a robust home-monitoring system capa-
ble of accurately predicting and preventing fall incidents, thus promoting the safety and
independence of the elderly. Future research should aim to refine these models, expand the
dataset to cover a broader range of movements and locations, and assess the scalability of

66



these systems for residential use. Retrofitting unique home environments is also essential for
practical application and validation.

This analysis sets the stage for innovative radar technology applications in healthcare,
leveraging machine learning to interpret complex data and enhance the well-being of vulner-
able populations. The potential to scale up the use of simulations with extensive MOCAP
data could transform how we monitor and analyze human movement, significantly impacting
preventive healthcare and healthy aging.

4.3.2 Future Work

The outcomes of this analysis lay a solid foundation for future research and development
in radar system design for motion detection and classification. Future work could expand
in several promising directions, including extending sensitivity analysis to cover a broader
range of elevation and azimuth angles and environmental factors like temperature, humidity,
and multi-path effects, which could enhance the resilience of radar systems.

Integrating radar data with other sensor modalities such as LIDAR, IMUs, acoustics, and
visual camera data could create a more robust detection system, providing complementary
information that reduces uncertainties and improves system performance. Additionally, ex-
panding the dataset to include more human movements could facilitate the development of
comprehensive activity recognition systems, with significant implications for sports science,
elderly care, and rehabilitative medicine.

Practical deployment of radar systems in real-world environments and addressing ethical
and privacy concerns are also crucial. Future work should focus on developing guidelines
and technologies to protect individual privacy while leveraging radar technology for public
safety and welfare. Innovative solutions and societal acceptance of radar technologies will
require developing a commercialization strategy for radar-based motion detection systems,
ensuring systems meet user needs through feedback, and fostering transdisciplinary research
across engineering, data science, healthcare, and ethics. These initiatives are poised to drive
significant advancements in radar systems, making them more technically sophisticated,
operationally efficient, socially responsible, and aligned with user needs.

Finally, this study’s implications are limited by the controlled environment and the young
participant age range, which may not fully represent the elderly’s movement complexities.
Future studies should include a more representative sample of the target population and
consider real-life environmental challenges.

67



68



Appendix A

Appendix

A.1 Time Synchronization Linear Actuator

A.1.1 Hardware

The calibration device consists of an aluminum covered carbon fiber plate, that is mounted
on a linear ball screw guide (FUYU FLS40, 10 mm/rev), and is driven by a NEMA 23
stepper motor. It was driven with a TB6600 Stepper Motor Driver, and controlled by an
Arduino UNO [A.1]. The calibration device is used to synchronize the data collected by the
motion capture equipment and the FMCW radar. This was achieved by placing a reflective
ball on top of the aluminum plate, which is visible by the motion capture equipment.

Pins 2 and 3 were connected to the Dir+ (+5V) and Pul+ (+5V) pins on the driver. Pin
2 is used to set the direction of our rotation, and pin 3 deals with the rotation itself. The
rest of the pins on the signal section of the driver were connected to ground. The B-, B+,
A- and A+ pins on the high voltage section were connected to the motor in the respective
slots, and the GND and VCC pins were connected to our 10W power supply. The driver
was set to 6400 steps per revolution.

A.1.2 Software

The code written for the Arduino uses loops to rotate the motor an integer number of times,
using a nested loop that makes 6400 steps a number of times specified by the Fcounter
(forward rotation counter) and Bcounter (backwards rotation counter) variables. Each in-
dividual step is made by first setting the direction of the rotation using the digitalWrite()
function, and then producing the step itself by setting pin 3 to low and then high using
the same function. Then, a delay of 20 microseconds is applied between steps, which was
the lowest delay that was found to work experimentally. The code uses a loop to actuate
the plate forwards (Low V on pin 2), and another to actuate it backwards (High V). A 100
ms delay between switching directions was implemented, as it was the shortest delay that
worked. This device is placed with the aluminum-covered side facing the radar, and upon
pressing the reset button on the Arduino, the plate starts moving after a short delay. It is
used at the start and at the end of the simultaneous data collection for the radar and motion
capture device.

69



1 void setup ( ) {
2 // SUMMARY: Rotates motor 25 t imes forward , 25 t imes backward . Pr in t s

p o s i t i o n+time data every loop .
3 pinMode (2 , OUTPUT) ;
4 pinMode (3 , OUTPUT) ;
5 S e r i a l . begin (9600) ;
6

7 S e r i a l . p r i n t ( "\n" ) ;
8 S e r i a l . p r i n t ( "LINEAR CODE START" ) ; // Pr in t s s t a r t message through s e r i a l

monitor . Use CoolTerm to pr in t data to . txt
9 S e r i a l . p r i n t ( "\n" ) ;

10 i n t Fturn = 25 ; // Times motor r o t a t e s forward , max s a f e va lue = 25
11 i n t Bturn = Fturn ; // Times motor r o t a t e s backwards , make l e s s than Fturn to

avoid damage , but s e t t i n g equal works f i n e
12 i n t timeMS = 0 ; // Def ined l a t e r
13 f l o a t loopTime25 = 5222 ; // Time i t takes motor to r o t a t e 25 t imes in ms .
14 f l o a t loopDist25 = 340 ; // Distance covered by p l a t e when motor r o t a t e s

25 t imes in mm.
15 f l o a t loopSpeed25 = loopDist25 / loopTime25 ;
16 f l o a t motorDist = 10000; // Distance in mm of the end o f the actuator with

the motor from the radar
17 f l o a t midTime = 0 ; // Def ined l a t e r
18 f l o a t posMM = 0 ; // Def ined l a t e r
19 f l o a t lastPosMM = 0 ; // Def ined l a t e r
20 f o r ( i n t Fcounter = 0 ; Fcounter < Fturn ; Fcounter++) { // Sets up loop to

r o t a t e forward Fturn amount o f t imes .
21 f o r ( i n t i = 0 ; i < 6400 ; i++) {// Loop that r o t a t e s motor once . I t takes

6400 s t ep s to r o t a t e motor once .
22 d i g i t a lWr i t e (2 , LOW) ; // Sets d i r e c t i o n to be forward (away from motor )
23 d i g i t a lWr i t e (3 , LOW) ;
24 d i g i t a lWr i t e (3 , HIGH) ;
25 delayMicroseconds (20) ; // Lowest de lay that works f o r each step in micro

s .
26 }
27 timeMS = m i l l i s ( ) ; // Records cur rent

time s i n c e code s t a r t ed running in ms .
28 posMM = timeMS ∗ loopSpeed25 ; // Uses t h i s time and

the speed o f the p l a t e to c a l c u l a t e cur rent d i s t anc e from i n i t i a l p o s i t i o n
.

29 S e r i a l . p r i n t ( S t r ing ( timeMS) + " , " + St r ing ( motorDist − posMM) ) ; // Pr in t s
cur rent time and the d i s t ance from the radar .

30 S e r i a l . p r i n t ( "\n" ) ;
31 }
32 delay (100) ; // Shor t e s t de lay that worked
33

34 lastPosMM = posMM; // Records l a s t p o s i t i o n o f p l a t e .
35 midTime = m i l l i s ( ) ; // Records cur rent time .
36 f o r ( i n t Bcounter = 0 ; Bcounter < Bturn ; Bcounter++) { // Sets up loop to

r o t a t e Bturn t imes in backwards d i r e c t i o n .
37 f o r ( i n t j = 0 ; j < 6400 ; j++) { // Rotates the motor once backwards .
38 d i g i t a lWr i t e (2 , HIGH) ; // Sets d i r e c t i o n to be backwards (

towards motor ) .
39 d i g i t a lWr i t e (3 , LOW) ;
40 d i g i t a lWr i t e (3 , HIGH) ;

70



41 delayMicroseconds (20) ;
42 }
43 timeMS = m i l l i s ( ) ; // Records time s i n c e code

s t a r t ed running
44 posMM = (timeMS − midTime) ∗ loopSpeed25 ; // Obtains d i s t ance covered

from most forward po s i t i o n .
45 S e r i a l . p r i n t ( S t r ing ( timeMS) + " , " + St r ing ( motorDist − lastPosMM + posMM) )

; // Pr in t s cur rent time and t o t a l d i s t ance from radar .
46 S e r i a l . p r i n t ( "\n" ) ;
47 }
48 }

Listing A.1: Arduino Code for Motor Control

A.2 Data Processing Classes

A.2.1 FMCW Radar

1

2 import h5py
3 import numpy as np
4 import os
5 import matplotlib.pyplot as plt
6 from scipy.signal import find_peaks , correlate
7 from scipy.ndimage import convolve
8 from PIL import Image , ImageDraw
9

10 class FMCWRADARDataCapture:
11 """
12 A class to handle the capture , processing , and saving of FMCW RADAR

data from a specified HDF5 file.
13

14 Attributes:
15 file_path (str): Path to the HDF5 file containing RADAR data.
16 """
17

18 def __init__(self , file_path):
19 """
20 Initializes the FMCWRADARDataCapture class with the file path.
21

22 Args:
23 file_path (str): Path to the HDF5 file to be loaded and

processed.
24 """
25 if not os.path.isfile(file_path):
26 raise FileNotFoundError(f"The file ’{file_path}’ does not

exist.")
27 self.file_path = file_path
28 self.output_path = file_path.replace("_Data", "_Data_NP") #

Default output path
29

71



30 def load_and_save(self , output_path=None , format=’npy’, save_npy=False
):

31 """
32 Loads RADAR data from the HDF5 file , processes it, and optionally

saves it to disk.
33

34 Args:
35 output_path (str , optional): Path to save the processed data.
36 format (str , optional): Format to save the data (’npy’ or ’npz

’).
37 save_npy (bool , optional): Whether to save the data to disk.
38 """
39 if output_path is None:
40 output_path = self.output_path
41 output_path = os.path.splitext(output_path)[0] # Ensure

correct file extension
42

43 if not os.path.exists(os.path.dirname(output_path)):
44 os.makedirs(os.path.dirname(output_path))
45

46 with h5py.File(self.file_path , ’r’) as file:
47 # Process RADAR data here
48 dataCubes = self._process_file(file)
49

50 if save_npy:
51 if format == ’npy’:
52 np.save(output_path , dataCubes)
53 elif format == ’npz’:
54 np.savez(output_path , dataCubes)
55 else:
56 raise ValueError("Unsupported format. Use ’npy’ or ’

npz ’.")
57

58 return dataCubes
59

60 def _process_file(self , file):
61 """
62 Internal method to process RADAR data from the HDF5 file.
63

64 Args:
65 file (h5py.File): Opened HDF5 file.
66

67 Returns:
68 np.ndarray: Processed RADAR data cubes.
69 """
70 # Configuration and initialization of RADAR parameters
71 FreqStrt = file[’/BrdCfg/FreqStrt ’][()]
72 FreqStop = file[’/BrdCfg/FreqStop ’][()]
73 B = (FreqStop - FreqStrt) / 284 * 256 # Effective bandwidth

calculation
74

75 If = file[’/If’][:] # Read the If signal
76 NrFrms , Nx = If.shape
77

72



78 dataCubes = np.zeros((4, NrFrms , 256, 128)) # Initialize data
storage

79

80 for frame_idx in range(NrFrms):
81 for channel_idx in range (4):
82 start_idx = channel_idx * 256 * 128
83 end_idx = (channel_idx + 1) * 256 * 128
84 reshaped_data = If[frame_idx , start_idx:end_idx ]. reshape

(128, 256)
85 dataCubes[channel_idx , frame_idx , :, :] = reshaped_data.

transpose ()
86

87 return dataCubes
88

89

90 @staticmethod
91 def rawDataToDataCube(rawData , numFrames , numChirpsPerFrame ,

numSamplesPerChirp , numAntennas):
92 # Reshape and rearrange the rawData
93 matrixData = rawData.T.reshape(numChirpsPerFrame *

numSamplesPerChirp , numFrames * numAntennas)
94 dataCubes = np.zeros((numFrames , numChirpsPerFrame ,

numSamplesPerChirp , numAntennas))
95

96 for frame in range(numFrames):
97 for antenna in range(numAntennas):
98 chirps = matrixData [:, frame * numAntennas + antenna]
99 chirpsMatrix = chirps.reshape(numSamplesPerChirp ,

numChirpsPerFrame)
100 dataCubes[frame , :, :, antenna] = chirpsMatrix.T
101

102

103 return dataCubes.transpose ((3,0,1,2))
104

105 def range_doppler_processing(self , dataCubes):
106 """
107 Processes data cubes to generate Range -Doppler Maps for each

channel and frame.
108

109 Args:
110 dataCubes (np.ndarray): Data cubes with RADAR information.
111

112 Returns:
113 np.ndarray: Range -Doppler Maps for each channel.
114 """
115 n_channels , n_frames , n_bins , n_doppler = dataCubes.shape
116 rdm_all_channels = []
117 range_window = np.hanning(n_bins)
118 doppler_window = np.hanning(n_doppler)
119

120 for channel_idx in range(n_channels):
121 rdm_list = []
122 for frame_idx in range(n_frames):
123 current_data = dataCubes[channel_idx , frame_idx , :, :]

73



124 windowed_data = np.outer(range_window , doppler_window) *
current_data

125 rdm = np.fft.fft2(windowed_data)
126 rdm = np.fft.fftshift(rdm , axes =1)
127 rdm = np.abs(rdm)
128 rdm_list.append(rdm)
129 rdm_all_channels.append(rdm_list)
130

131 return np.array(rdm_all_channels)
132

133 def angle_of_arrival_processing(self , dataCube):
134 """
135 Processes data cubes to generate Angle of Arrival (AoA) heatmaps

for each channel and frame.
136

137 Args:
138 dataCube (np.ndarray): The raw data cubes to be processed.
139

140 Returns:
141 np.ndarray: Array of processed AoA heatmaps for each channel.
142 """
143 n_channels , n_frames , n_bins , n_elements = dataCube.shape
144 aoa_all_channels = []
145 spatial_window = np.hanning(n_elements)
146

147 for channel_idx in range(n_channels):
148 aoa_list = []
149 for frame_idx in range(n_frames):
150 current_data = dataCube[channel_idx , frame_idx , :, :]
151 windowed_data = current_data * spatial_window
152 aoa_spectrum = np.fft.fft(windowed_data , axis =1)
153 aoa_spectrum = np.fft.fftshift(aoa_spectrum , axes =1)
154 aoa_spectrum = np.abs(aoa_spectrum)
155 aoa_list.append(aoa_spectrum)
156 aoa_all_channels.append(aoa_list)
157

158 return np.array(aoa_all_channels)
159

160 def generate_actuator_filter(self , dataCubes):
161 """
162 Processes each frame in the data cubes to generate actuator -

specific filters for RADAR signal analysis.
163

164 Args:
165 dataCubes (np.ndarray): The raw data cubes.
166

167 Returns:
168 np.ndarray: Range -Doppler Maps filtered based on actuator

movement.
169 """
170 n_channels , n_frames , n_bins , n_doppler = dataCubes.shape
171 filtered_rdm = []
172

173 for channel_idx in range(n_channels):

74



174 for frame_idx in range(n_frames):
175 current_data = dataCubes[channel_idx , frame_idx , :, :]
176 rdm = np.abs(np.fft.fft2(current_data))
177 rdm = np.fft.fftshift(rdm , axes =1)
178 filtered_rdm.append(rdm)
179

180 return np.array(filtered_rdm)
181

182 def plot_match_scores(self , match_scores):
183 """
184 Visualizes the match scores across different frames to identify

significant matching events.
185

186 Args:
187 match_scores (np.ndarray): Array of match scores.
188

189 """
190 plt.figure(figsize =(10, 6))
191 plt.plot(match_scores , marker=’o’, linestyle=’-’)
192 plt.title(’Pattern Match Score Across Frames ’)
193 plt.xlabel(’Frame Index’)
194 plt.ylabel(’Match Score’)
195 plt.grid(True)
196 plt.show()
197

198 def create_gif(self , data , gif_filename , fp_data_capture):
199 """
200 Generates a GIF from radar data frames , annotating foot movement

states and saving it to the specified path.
201

202 Args:
203 data (np.ndarray): 3D array containing the image data.
204 gif_filename (str): Filename for the GIF , without path.
205 fp_data_capture (FPDataCapture): Object containing information

about foot lift and down frames.
206

207 Returns:
208 str: Path to the saved GIF file.
209 """
210 gif_dir = os.path.join(os.getcwd (), ’data/gifs’)
211 os.makedirs(gif_dir , exist_ok=True)
212 gif_path = os.path.join(gif_dir , gif_filename)
213

214 with imageio.get_writer(gif_path , mode=’I’, duration=
fp_data_capture.seconds_per_frame) as writer:

215 for i in range(data.shape [0]):
216 frame = data[i, :, :].T # Transpose for correct

orientation
217 img = Image.fromarray(np.uint8(plt.cm.viridis(frame) *

255))
218 draw = ImageDraw.Draw(img)
219 text = ’Foot Down’ if i in fp_data_capture.

foot_down_frames_after_actuator else ’Foot Up’
220 draw.text ((10, 10), text , fill=’white’)

75



221 writer.append_data(np.array(img))
222

223 return gif_path
224

225 def process_and_save_channels_tx_separately(self , data ,
output_folder_path , file_name):

226 """
227 Processes and saves individual radar channels and transmission

periods to separate files.
228

229 Args:
230 data (np.ndarray): The raw data from all channels.
231 output_folder_path (str): Base directory to save processed

files.
232 file_name (str): Base file name to use for saved files.
233

234 """
235 specific_output_folder_path = os.path.join(output_folder_path ,

file_name [:2])
236 os.makedirs(specific_output_folder_path , exist_ok=True)
237

238 num_channels , num_frames , _, _ = data.shape
239 for channel_idx in range(num_channels):
240 channel_data = data[channel_idx , :, :, :]
241 np.save(os.path.join(specific_output_folder_path , f"{file_name

}_channel_{channel_idx +1}. npy"), channel_data)
242

243 print(f"Data for {file_name} processed and saved in separate
channel files.")

244

245 def sub_select_RADAR_DATA(self , data):
246 """
247 Subselects and processes radar data to focus on a specific region

of interest.
248

249 Args:
250 data (np.ndarray): Full radar data array.
251

252 Returns:
253 np.ndarray: Processed and subselected radar data.
254 """
255 # Assume data dimensions are [channels , frames , height , width]
256 processed_data = np.zeros_like(data)
257

258 for channel_idx in range(data.shape [0]):
259 for frame_idx in range(data.shape [1]):
260 frame_data = data[channel_idx , frame_idx , :, :]
261 # Example processing: select central part of the radar

image
262 center_y , center_x = frame_data.shape [0] // 2, frame_data.

shape [1] // 2
263 sub_frame = frame_data[center_y -50: center_y +50, center_x

-50: center_x +50]
264 processed_data[channel_idx , frame_idx , :, :] = sub_frame

76



265

266 return processed_data
267

268 def visualize_data(self , data , frame_index):
269 """
270 Displays a single frame from radar data for visual inspection.
271

272 Args:
273 data (np.ndarray): Radar data array.
274 frame_index (int): Frame index to visualize.
275 """
276 plt.figure ()
277 plt.imshow(data[frame_index , :, :], cmap=’hot’, interpolation=’

nearest ’)
278 plt.colorbar ()
279 plt.title(f’Radar Data Visualization at Frame {frame_index}’)
280 plt.xlabel(’Range Bins’)
281 plt.ylabel(’Doppler Bins’)
282 plt.show()

Listing A.2: FMCW Radar Capture Python Class

A.2.2 MOCAP

1 import numpy as np
2 import pandas as pd
3 import os
4 import csv
5 import re
6 from datetime import datetime
7 from scipy.signal import find_peaks , convolve
8 import matplotlib.pyplot as plt
9

10 class MOCAPDataCapture:
11 def __init__(self , base_file_path):
12 self.base_file_path = base_file_path
13 self.sample_frequency = 100
14 self.pos_file_path = base_file_path.replace(".tsv", "_pos.tsv")
15 self.vel_file_path = base_file_path.replace(".tsv", "_vel.tsv")
16 # Pattern to match "/##/" where ## are two digits
17 self.participant_pattern = r"/(\d{2})/"
18 match = re.search(self.participant_pattern , base_file_path)
19 if match:
20 self.participant_id = match.group (1)
21 print(f"Processing File: {self.base_file_path.split(’/’)[-1]}"

)
22 else:
23 raise ValueError("Participant ID could not be extracted from

the base file path.")
24 self.position_data = None
25 self.velocity_data = None
26 self.start_actuator_time = None
27 self.end_actuator_time = None

77



28 self.load_and_process_data ()
29

30 def load_and_process_data(self):
31 """
32 Loads and processes position and velocity data from TSV files.
33

34 Args:
35 pos_file_path (str): The file path to the position TSV file.
36 vel_file_path (str): The file path to the velocity TSV file.
37 """
38 try:
39 self.position_data = self.process_tsv(self.pos_file_path)
40 self.velocity_data = self.process_tsv(self.vel_file_path)
41 # print(" Position and velocity data loaded and processed .")
42 # print(self.position_data)
43 # print(self.velocity_data)
44 except Exception as e:
45 print(f"An error occurred: {e}")
46

47 def process_tsv(self , file_path , save_to_csv=False):
48 print(file_path)
49 if not os.path.isfile(file_path):
50 raise FileNotFoundError(f"The file ’{file_path}’ does not

exist.")
51 with open(file_path , mode=’r’, newline=’’) as tsv_file:
52 tsv_reader = csv.reader(tsv_file , delimiter=’\t’)
53 # print(tsv_reader)
54 first_5_rows_list = []
55 remaining_rows_list = []
56

57 try:
58 for i, row in enumerate(tsv_reader):
59 if i < 5:
60 first_5_rows_list.append(row)
61 else:
62 if len(row) < 58:
63 row += [’’] * (58 - len(row))
64 remaining_rows_list.append(row)
65 except Exception as e:
66 print(f"An error occurred while processing the file: {e}")
67 return
68

69 # Create Header pandas DataFrames from first 5 rows of lists
70 df_header = pd.DataFrame(first_5_rows_list).set_index (0)
71 try:
72 df_header.columns = ["Value"]
73 except:
74 pass
75 # print(" Header for data frame ")
76 # print(df_header)
77

78 # Create blank , correct shape pandas DataFrames from the
remainder of the lists

79 df = pd.DataFrame(remaining_rows_list)

78



80

81 # Shift row 6 to the left and remove cell 6,1
82 df.iloc[2, 0:-1] = df.iloc[0, 1:]. values
83

84 #delete empty column
85 df = df.iloc [:,:-1]
86

87 # Remove rows 7 and 8 (originally 8 and 9)
88 df = df.drop(df.index [0:2])
89 df.columns = df.iloc [0]
90 df = df.drop(df.index [0])
91

92 ## Change data types of columns
93 df = df.apply(pd.to_numeric , downcast=’float ’)
94

95 # Add ’frame ’, ’time’ and participant columns
96 df.insert(0, ’frame’, range(0, len(df)))
97 df.insert(1, ’time’, [i * 0.01 for i in range(len(df))])
98 df.insert(2,’participant_id ’, self.participant_id)
99

100 # Reset index
101 df.reset_index(drop=True , inplace=True)
102

103 if save_to_csv == True:
104 if df.shape [0] != 4000:
105 print(df.shape)
106 raise Exception("DATA Frame is the wrong size!!")
107 else:
108 self.output_folder = "/Users/danielcopeland/Library/

Mobile Documents/com~apple~CloudDocs/MIT Masters/DRL/LABx/RADARTreePose
/data/csvs"

109 output_file_path = os.path.join(
110 self.output_folder , os.path.splitext(os.path.

basename(file_path))[0] + ".csv"
111 )
112 print(f"Saved: {os.path.basename(file_path)}")
113 df.to_csv(output_file_path , index=False , header=True)
114 return df
115

116

117 def plot_convolution_result(self , actuator_vel_x):
118 """
119 Plots the convolution result along with a threshold line to help

determine an appropriate threshold.
120

121 Args:
122 actuator_vel_x (np.array): The actuator velocity data.
123 """
124 # Generate the template signal
125 template = np.concatenate ([np.full (102, 50), np.zeros (10), np.full

(102, -50)])
126

127 # Convolve the template with the actuator velocity data
128 convolution_result = convolve(actuator_vel_x , template , mode=’

79



valid’)
129

130 # Find local minima in the convolution result
131 local_minima_indices , _ = find_peaks(-convolution_result)
132

133 # Define the threshold
134 threshold = -4e5
135

136 # Plot the convolution result
137 plt.figure(figsize =(12, 6))
138 plt.plot(convolution_result , label=’Convolution Result ’)
139

140 # Plot the local minima
141 plt.plot(local_minima_indices , convolution_result[

local_minima_indices], ’rx’, label=’Local Minima ’)
142

143 # Plot the threshold line
144 plt.axhline(y=threshold , color=’g’, linestyle=’--’, label=f’

Threshold ({ threshold })’)
145

146 plt.xlabel(’Time Step’)
147 plt.ylabel(’Convolution Value ’)
148 plt.title(’Convolution Result with Local Minima and Threshold ’)
149 plt.legend ()
150 plt.show()
151

152

153 def find_actuator_start_end_direction_changes(self):
154 """
155 Uses convolution to find the start and end times of transitions in

the actuator velocity
156 from around +50 to -50, ensuring that peaks are not within 2

seconds of each other.
157 """
158 if self.velocity_data is None:
159 print("Velocity data not loaded. Please load data before

running this function.")
160 return
161

162 # Generate the template signal
163 template = np.concatenate ([np.full (102, 50), np.zeros (10), np.full

(102, -50)])
164

165 # Extract the actuator X velocity data
166 actuator_vel_x = self.velocity_data[’Actuator_vel_X ’]. to_numpy ()
167

168 # Convolve the template with the actuator velocity data
169 convolution_result = convolve(actuator_vel_x , template , mode=’

valid’)
170

171 # Find local minima in the convolution result as potential matches
172 local_minima_indices , _ = find_peaks(-convolution_result)
173

174 # Threshold for determining a strong match

80



175 threshold = -4e5 # Adjust based on your data’s characteristics
176

177 # Filter out matches that don’t meet the threshold
178 significant_matches = [idx for idx in local_minima_indices if

convolution_result[idx] < threshold]
179

180 # Ensure matches are not within 200 indices of each other
181 filtered_matches = []
182 for match in significant_matches:
183 if not filtered_matches: # If list is empty , add the first

match
184 filtered_matches.append(match)
185 else:
186 # Check if current match is more than 200 indices apart

from the last added match
187 if match - filtered_matches [-1] > 200:
188 filtered_matches.append(match)
189 else:
190 # If within 200 indices , keep the one with the more

significant peak (lower value in convolution result)
191 if convolution_result[match] < convolution_result[

filtered_matches [ -1]]:
192 filtered_matches [-1] = match # Replace the last

match with the current one
193

194 if filtered_matches:
195 # Set start and end times based on the filtered matches
196 self.start_actuator_time = self.velocity_data.iloc[

filtered_matches [0]][’time’]
197 if len(filtered_matches) > 1:
198 self.end_actuator_time = self.velocity_data.iloc[

filtered_matches [1]][’time’]
199 print(f"Start actuator time: {self.start_actuator_time}, End

actuator time: {self.end_actuator_time}")
200 else:
201 print("No appropriate transitions found in the Actuator_vel_X

data.")
202

203

204 def get_time_normalized_length(self , start_time , end_time , markers):
205 allowed_markers = [’Shoulder ’, ’Wrist ’, ’Chest’, ’Belly ’]
206 time_normalized_lengths = {}
207

208 # Filter the position data for the given time range
209 filtered_data = self.position_data [(self.position_data[’time’] >=

start_time) & (self.position_data[’time’] <= end_time)]
210

211 for marker in markers:
212 if marker not in allowed_markers:
213 print(f"Marker {marker} is not allowed.")
214 continue
215

216 sides = [’R’, ’L’] if marker in [’Shoulder ’, ’Wrist’] else [’’
]

81



217 for side in sides:
218 marker_name = f"{marker}_{side}" if side else marker
219 pos_columns = [f"{marker_name}_pos_X", f"{marker_name}

_pos_Y", f"{marker_name}_pos_Z"]
220

221 # Check if the necessary columns exist in the data
222 if not all(col in filtered_data.columns for col in

pos_columns):
223 print(f"Data for {marker_name} is incomplete or

missing.")
224 continue
225

226 # Calculate the distance traveled by the marker
227 distances = np.sqrt(np.sum(np.diff(filtered_data[

pos_columns ].values , axis =0)**2, axis =1))
228 total_distance = np.sum(distances)
229

230 # Calculate the time normalization factor
231 time_normalization_factor = (end_time - start_time)
232

233 # Calculate the average speed (distance/time)
234 average_speed = total_distance / time_normalization_factor

if time_normalization_factor > 0 else 0
235

236 # Store the results
237 if side: # For R or L markers
238 key = f"{marker}_{side}"
239 time_normalized_lengths[key] = average_speed
240 else: # For markers without side specification
241 time_normalized_lengths[marker] = average_speed
242

243 return time_normalized_lengths

Listing A.3: MOCAP Capture Python Class Template

A.2.3 Force Plate

1

2 import pandas as pd
3 import numpy as np
4 import os
5 import matplotlib.pyplot as plt
6 from scipy.spatial import ConvexHull
7

8 class FPDataCapture:
9 """

10 A class to handle the capture , analysis , and visualization of force
plate data.

11

12 Attributes:
13 base_file_path (str): Base path to the TSV file containing the

force plate data.
14 """

82



15

16 def __init__(self , base_file_path , is_foot_always_up=False):
17 """
18 Initializes the FPDataCapture with paths to data and

configurations.
19

20 Args:
21 base_file_path (str): Path to the base TSV file.
22 is_foot_always_up (bool): Indicates if foot is always up,

adjusting data processing.
23 """
24 self.base_file_path = base_file_path
25 self.data_f_1 = self.import_data(base_file_path.replace(".tsv", "

_f_1.tsv"))
26 self.data_f_2 = self.import_data(base_file_path.replace(".tsv", "

_f_2.tsv"))
27 self.data = self.data_f_2 if "MNTRR" in base_file_path else self.

data_f_1
28

29 def import_data(self , file_path):
30 """
31 Imports data from a specified TSV file.
32

33 Args:
34 file_path (str): Path to the TSV file to import.
35

36 Returns:
37 DataFrame: A pandas DataFrame with the imported data.
38 """
39 num_metadata_lines = 26 # Number of initial lines with metadata.
40 data = pd.read_csv(file_path , delimiter=’\t’, header=

num_metadata_lines)
41 data = data.apply(pd.to_numeric , errors=’coerce ’)
42 data.rename(columns=lambda x: x.strip().lower (), inplace=True)
43 return data.reset_index(drop=True)
44

45 def identify_foot_lift(self):
46 """
47 Identifies the times of foot lift events based on changes in

Center of Pressure (COP).
48

49 Returns:
50 tuple: Two lists containing the times for foot lift and foot

down events.
51 """
52 data = self.data_f_1 if "MNTRL" in self.base_file_path else self.

data_f_2
53 foot_lift_events = data[(data[’cop_x’]. shift (1) != 0) & (data[’

cop_x’] == 0)]
54 foot_down_events = data[(data[’cop_x’]. shift (1) == 0) & (data[’

cop_x’] != 0)]
55

56 filtered_lift_times = [time for time in foot_lift_events[’time’]
if time > 8]

83



57 filtered_down_times = [time for time in foot_down_events[’time’]]
58

59 self.foot_lift_times = filtered_lift_times
60 self.foot_down_times = filtered_down_times
61

62 return self.foot_lift_times , self.foot_down_times
63

64 def convert_time_to_frames(self , times):
65 """
66 Converts a list of times into corresponding frame numbers based on

data frequency.
67

68 Args:
69 times (list): List of times to convert.
70

71 Returns:
72 list: List of corresponding frame numbers.
73 """
74 frames = [int(time * self.sample_frequency) for time in times]
75 return frames
76

77 def plot_cop(self):
78 """
79 Plots the trajectory of the Center of Pressure (COP) over time.
80 """
81 plt.figure(figsize =(10, 5))
82 plt.plot(self.data[’time’], self.data[’cop_x’], label=’COP X’)
83 plt.plot(self.data[’time’], self.data[’cop_y’], label=’COP Y’)
84 plt.xlabel(’Time (s)’)
85 plt.ylabel(’COP Position ’)
86 plt.title(’Center of Pressure Trajectory ’)
87 plt.legend ()
88 plt.show()
89

90 def calculate_average_velocity(self):
91 """
92 Calculates the average velocity of the COP movements.
93

94 Returns:
95 float: The average velocity.
96 """
97 velocities = np.sqrt((np.diff(self.data[’cop_x’]) ** 2) + (np.diff

(self.data[’cop_y ’]) ** 2))
98 average_velocity = np.mean(velocities)
99 return average_velocity

100

101 def generate_cop_trace_gif(self , gif_filename):
102 """
103 Generates a GIF animation showing the trace of COP movements.
104

105 Args:
106 gif_filename (str): Filename for the output GIF.
107 """
108 images = []

84



109 plt.figure(figsize =(6, 6))
110 for i in range(0, len(self.data), 10): # Sampling every 10 frames

for simplicity
111 plt.plot(self.data[’cop_x’][:i], self.data[’cop_y’][:i], color

=’blue’)
112 plt.xlim([self.data[’cop_x’].min(), self.data[’cop_x ’].max()])
113 plt.ylim([self.data[’cop_y’].min(), self.data[’cop_y ’].max()])
114 filename = f’temp_frame_{i}.png’
115 plt.savefig(filename)
116 images.append(imageio.imread(filename))
117 os.remove(filename)
118

119 imageio.mimsave(gif_filename , images , duration =0.1)
120 plt.close ()
121

122 def plot_force_vectors(self):
123 """
124 Plots the force vectors (X, Y, Z) over time to visualize changes

in force plate measurements.
125 """
126 plt.figure(figsize =(14, 7))
127 plt.plot(self.data[’time’], self.data[’force_x ’], label=’Force X’)
128 plt.plot(self.data[’time’], self.data[’force_y ’], label=’Force Y’)
129 plt.plot(self.data[’time’], self.data[’force_z ’], label=’Force Z’)
130 plt.title(’Force Vectors Over Time’)
131 plt.xlabel(’Time (s)’)
132 plt.ylabel(’Force (N)’)
133 plt.legend ()
134 plt.show()
135

136 def calculate_convex_hull_area(self):
137 """
138 Calculates the area enclosed by the convex hull of the Center of

Pressure (COP) points.
139

140 Returns:
141 float: The area of the convex hull.
142 """
143 cop_points = self.data[[’cop_x’, ’cop_y’]]. dropna ().values
144 if len(cop_points) < 3:
145 return 0
146 hull = ConvexHull(cop_points)
147 return hull.volume # In 2D, ’volume ’ is the area.
148

149 def calculate_average_velocity(self):
150 """
151 Calculates the average velocity of the Center of Pressure (COP)

based on its movement over time.
152

153 Returns:
154 float: The average velocity of COP.
155 """
156 dx = np.diff(self.data[’cop_x’])
157 dy = np.diff(self.data[’cop_y’])

85



158 dt = np.diff(self.data[’time’])
159 velocities = np.sqrt(dx**2 + dy**2) / dt
160 return np.nanmean(velocities)
161

162 def calculate_maximum_distance_from_centroid(self):
163 """
164 Calculates the maximum distance from the centroid of all Center of

Pressure (COP) points.
165

166 Returns:
167 float: The maximum distance from the centroid.
168 """
169 cop_points = self.data[[’cop_x’, ’cop_y’]]. dropna ().values
170 centroid = np.mean(cop_points , axis =0)
171 distances = np.sqrt ((( cop_points - centroid)**2).sum(axis =1))
172 return np.max(distances)
173

174 def generate_cop_trace_gif(self , gif_filename):
175 """
176 Generates a GIF showing the trajectory of the Center of Pressure (

COP) over time.
177

178 Args:
179 gif_filename (str): The filename where the GIF should be saved

.
180 """
181 cop_x = self.data[’cop_x’]. values
182 cop_y = self.data[’cop_y’]. values
183 images = []
184

185 plt.figure(figsize =(8, 8))
186 for i in range(0, len(cop_x), 10): # Adjust step for smoother

animation
187 plt.plot(cop_x [:i], cop_y[:i], color=’blue’)
188 plt.xlim([np.min(cop_x), np.max(cop_x)])
189 plt.ylim([np.min(cop_y), np.max(cop_y)])
190 filename = f’temp_frame_{i}.png’
191 plt.savefig(filename)
192 images.append(imageio.imread(filename))
193 os.remove(filename)
194

195 imageio.mimsave(gif_filename , images , duration =0.1)
196 plt.close ()
197 print(f"GIF saved to {gif_filename}")
198

199 def plot_cop_velocity(self):
200 """
201 Plots the velocity of the Center of Pressure (COP) over time.
202

203 Returns:
204 matplotlib.figure.Figure: A plot of COP velocity over time.
205 """
206 dx = np.diff(self.data[’cop_x’])
207 dy = np.diff(self.data[’cop_y’])

86



208 dt = np.diff(self.data[’time’])
209 velocities = np.sqrt(dx**2 + dy**2) / dt
210

211 plt.figure(figsize =(10, 5))
212 plt.plot(self.data[’time’][:-1], velocities , label=’COP Velocity ’)
213 plt.title(’Center of Pressure (COP) Velocity Over Time’)
214 plt.xlabel(’Time (s)’)
215 plt.ylabel(’Velocity (mm/s)’)
216 plt.legend ()
217 plt.show()
218

219 def save_data_summary(self , filename):
220 """
221 Saves a summary of the force plate data to a CSV file.
222

223 Args:
224 filename (str): The filename to save the data summary.
225 """
226 summary = {
227 ’Average Velocity ’: self.calculate_average_velocity (),
228 ’Max Distance from Centroid ’: self.

calculate_maximum_distance_from_centroid (),
229 ’Convex Hull Area’: self.calculate_convex_hull_area ()
230 }
231 summary_df = pd.DataFrame ([ summary ])
232 summary_df.to_csv(filename , index=False)
233 print(f"Summary data saved to {filename}")

Listing A.4: Force Plate Capture Python Class Template

A.3 Dataset Classes

A.3.1 Full Capture

1

2 import pandas as pd
3 import os
4 import numpy as np
5 import torch
6 import torch.nn as nn
7 from torch.utils.data import Dataset , DataLoader
8 from torchvision.transforms.functional import resize
9 from torch.nn.utils.rnn import pad_sequence , pack_padded_sequence

10 from torch import optim
11 from scipy.ndimage import uniform_filter1d
12 from scipy.stats import mode
13 from sklearn.metrics import confusion_matrix
14 import matplotlib.pyplot as plt
15

16 class RdmFullCapture(Dataset):
17 def __init__(self , root_dir , event_csv , included_folders , window_size

=100):

87



18 self.data = []
19 self.full_capture_labels = []
20 self.labels = [] # This will store labels for each capture , list

of lists
21 self.all_metadata = [] # Store metadata for each capture , list of

dictionaries
22 self.window_size = window_size
23 self.current_index = 0
24

25 # Load event labels and actuator frames
26 self.event_labels_df = pd.read_csv(event_csv)
27

28 # Iterate only over included folders
29 for folder_name in included_folders:
30 folder_path = os.path.join(root_dir , folder_name)
31 for file in sorted(os.listdir(folder_path)):
32 if file.endswith(’.npy’):
33 filepath = os.path.join(folder_path , file)
34 radar_capture = "_".join(file.split(’_’)[:-1]) #

Extract radar capture name
35

36 channel_number = filepath.split(".")[-2]. split("
channel")[-1]

37

38 # Ensure radar_capture matches one of the entries in
the actuator CSV

39 if self.event_labels_df[’RADAR_capture ’].str.contains(
radar_capture).any():

40 rdm_data = np.load(filepath)
41 rdm_data = torch.from_numpy(rdm_data).float () #

Convert numpy array to PyTorch tensor of type float
42

43 actuator_info = self.event_labels_df[self.
event_labels_df[’RADAR_capture ’] == radar_capture ].iloc [0]

44 actuator_start_frame , actuator_end_frame =
actuator_info[’RADAR_Start_Frame ’], actuator_info[’RADAR_End_Frame ’]

45 MOCAP_Start_Time = actuator_info[’
RADAR_Start_Frame ’]

46 MOCAP_End_Time = actuator_info[’MOCAP_End_Time ’]
47 seconds_per_frame = actuator_info[’

Seconds_per_Frame ’]
48

49 # Create windows , label them , and add metadata
50 labels , goup_ranges , down_ranges = self.

label_frames(radar_capture)
51 metadata = {
52 ’channel_number ’: channel_number ,
53 ’frame_range ’: (actuator_start_frame ,

actuator_end_frame),
54 ’MOCAP_time_range ’ : (MOCAP_Start_Time ,

MOCAP_End_Time),
55 ’seconds_per_frame ’: seconds_per_frame ,
56 ’RADAR_capture ’: radar_capture ,
57 ’GOUP_ranges ’: goup_ranges ,

88



58 ’DOWN_ranges ’: down_ranges ,
59 ’window_start_frame ’: 0,
60 ’window_end_frame ’: 0
61 }
62

63 self.all_metadata.append(metadata)
64 self.labels.append(labels)
65 self.data.append(rdm_data)
66

67 def label_frames(self , radar_capture):
68 num_frames = 1000
69 labels = np.full(num_frames , 2)
70 capture_events = self.event_labels_df[self.event_labels_df[’

RADAR_capture ’] == radar_capture]
71

72 goup_ranges = []
73 down_ranges = []
74

75 for _, event in capture_events.iterrows ():
76 if not pd.isna(event[’frame_foot_up ’]) and not pd.isna(event[’

frame_stable ’]):
77 start = int(event[’frame_foot_up ’])+1
78 end = int(event[’frame_stable ’])+1
79 labels[start:end] = 0 # GOUP
80 goup_ranges.append ((start , end))
81 if not pd.isna(event[’frame_break ’]) and not pd.isna(event[’

frame_end ’]):
82 start = int(event[’frame_break ’])+1
83 end = int(event[’frame_end ’])+1
84 labels[start:end] = 1 # DOWN
85 down_ranges.append ((start , end))
86

87 self.full_capture_labels.append(labels)
88

89 return labels , goup_ranges , down_ranges
90

91 def create_windows_for_capture(self , index , overlap):
92 """
93 Create windows for a specific capture given by index.
94

95 Parameters:
96 - index: Index of the capture to process.
97 - window_size: The size of each window.
98 - overlap: The overlap between consecutive windows.
99

100 Returns:
101 - A tuple containing windows , labels for each window , lengths of

each window , and metadata.
102 """
103 self.overlap = overlap
104 self.current_index = index
105

106 if index >= len(self.data):
107 raise ValueError("Index out of range.")

89



108

109 capture_data , capture_labels , _, capture_metadata = self[index]
110 actuator_start_frame = capture_metadata[’frame_range ’][0]
111 actuator_end_frame = capture_metadata[’frame_range ’][1]
112

113 windows_ranges = []
114 capture_windows_data = []
115 windows_labels_data = [] # Collect labels data
116 windows_lengths_tensor = []
117

118 num_windows = 1 + (actuator_end_frame - actuator_start_frame -
self.window_size) // (self.window_size - overlap)

119

120 print(f"Creating windows {num_windows} windows for Radar Capture:
{capture_metadata[’RADAR_capture ’]}, channel: {capture_metadata[’
channel_number ’]}")

121

122 for w in range(num_windows):
123 start = w * (self.window_size - overlap) +

actuator_start_frame # Adjust for correct sliding window
124 end = start + self.window_size
125 window_range_dict = {’window_start_frame ’: start , ’

window_end_frame ’: min(end , actuator_end_frame)}
126

127 if end > actuator_end_frame:
128 padding_length = end - actuator_end_frame
129 window_data = torch.cat(( capture_data[start:

actuator_end_frame], torch.zeros(padding_length , *capture_data.shape
[1:])), dim =0)

130 window_labels = np.pad(capture_labels[start:
actuator_end_frame], (0, padding_length), ’constant ’, constant_values
=-1)

131 else:
132 window_data = torch.tensor(capture_data)[start:end]
133 window_labels = capture_labels[start:end]
134

135 capture_windows_data.append(window_data.unsqueeze (0))
136 windows_labels_data.append(torch.tensor(window_labels).

unsqueeze (0)) # Convert labels to tensor here
137 windows_lengths_tensor.append(min(end , actuator_end_frame) -

start)
138 windows_ranges.append(window_range_dict)
139

140 # Concatenate all windows and labels data after loop
141 capture_windows_tensor = torch.cat(capture_windows_data , dim=0)
142 windows_labels_tensor = torch.cat(windows_labels_data , dim =0)
143

144 return capture_windows_tensor , windows_labels_tensor , torch.tensor
(windows_lengths_tensor , dtype=torch.long), capture_metadata ,
windows_ranges

145

146 def predict_on_windows(self , model , windows_tensor , lengths):
147 model.eval()
148 predictions = []

90



149

150 # Ensure lengths is a tensor
151 lengths_tensor = torch.tensor(lengths , dtype=torch.long)
152 windows_tensor = torch.tensor(windows_tensor , dtype=torch.

float)
153

154 with torch.no_grad ():
155 outputs = model(windows_tensor , lengths_tensor)
156

157 # Correctly flatten output for subsequent operations
158 outputs_flat = outputs.view(-1, 3) # 3 classes
159

160 # Apply softmax to get probabilities
161 predictions = torch.softmax(outputs_flat , dim=1).numpy()
162

163 return predictions
164

165 def aggregate_predictions_sliding_windows(self , predictions ,
windows_ranges , smoothing_window_size =5):

166 full_length = max(w_range[’window_end_frame ’] for w_range in
windows_ranges) + 1

167 num_classes = predictions.shape [1]
168

169 # Initialize an array for the aggregated maximum likelihoods
170 aggregated_predictions = np.zeros (( full_length , num_classes))
171 coverage_count = np.zeros(full_length) # Track how many times

each frame is covered by windows
172

173 current_pred_idx = 0 # Track the current index within the flat
predictions array

174

175 for window_range in windows_ranges:
176 start_frame = window_range[’window_start_frame ’]
177 end_frame = min(window_range[’window_end_frame ’], full_length)
178

179 for frame_idx in range(start_frame , end_frame):
180 # Extract the prediction for the current frame
181 frame_prediction = predictions[current_pred_idx]
182 current_pred_idx += 1 # Move to the next prediction
183

184 # Aggregate by taking the maximum likelihood across
overlapping predictions

185 aggregated_predictions[frame_idx] = np.maximum(
aggregated_predictions[frame_idx], frame_prediction)

186 coverage_count[frame_idx] += 1
187

188 # Handle frames not covered by any window (if any) to avoid
division by zero

189 coverage_count[coverage_count == 0] = 1
190

191 # Normalize aggregated predictions by the number of windows
covering each frame

192 aggregated_predictions /= coverage_count [:, None]
193

91



194 # Let’s say ’predictions ’ is your numpy array with shape (806, 3)
195 smoothed_predictions = self.smooth_probabilities(

aggregated_predictions)
196

197 # Determine class predictions by selecting the class with the
highest likelihood for each frame

198 class_predictions = np.argmax(smoothed_predictions , axis =1)
199

200 class_predictions [-1] = 2
201

202 return class_predictions
203

204 def smooth_probabilities(self , probabilities , window_size =7):
205 # Check if probabilities array is 2D and has the correct shape
206 if probabilities.ndim != 2 or probabilities.shape [1] != 3:
207 raise ValueError("The probabilities array should be 2D with

shape (n, 3).")
208

209 # Apply a uniform filter to smooth each class ’s probability
210 smoothed = np.apply_along_axis(lambda m: uniform_filter1d(m, size=

window_size), axis=0, arr=probabilities)
211 return smoothed
212

213 def plot_predictions_with_time(self , index , smoothed_predictions ,
capture_name):

214 """
215 Plot smoothed predictions against the true labels and show time on

the secondary x-axis.
216 Adjusted to label the y-axis by classes 0 being FU, 1 being FD,

and 2 being NEITHER.
217 Labels and tick labels are made 2x larger.
218 """
219 labels = self.labels[index]
220 metadata = self.all_metadata[index]
221 correction_offset = 0.3
222

223 fig , ax1 = plt.subplots(figsize =(20, 5))
224

225 ax1.plot(labels , label=’True Labels ’, color=’blue’)
226 ax1.plot(smoothed_predictions , label=’Predicted ’, color=’red’,

linestyle=’--’)
227 ax1.set_xlim ([ metadata[’frame_range ’][0], metadata[’frame_range ’

][1]])
228 ax1.set_xlabel(’Frame’, fontsize =34) # 2x larger font size for X

axis label
229 ax1.set_ylabel(’Label’, fontsize =34) # 2x larger font size for Y

axis label
230 ax1.set_yticks ([0, 1, 2])
231 ax1.set_yticklabels ([’FU’, ’FD’, ’NEITHER ’], fontsize =30) # 2x

larger font size for Y tick labels
232 ax1.legend(loc=’lower right’, fontsize =24) # Adjust legend font

size if needed
233

234 # Increase tick label size

92



235 ax1.tick_params(axis=’x’, labelsize =14) # Adjust X tick label
size if needed

236 ax1.tick_params(axis=’y’, labelsize =24) # Adjust Y tick label
size if needed

237

238 frames = np.arange(metadata[’frame_range ’][0], metadata[’
frame_range ’][1] + 1)

239 times = (metadata[’MOCAP_time_range ’][0] + frames * metadata[’
seconds_per_frame ’]) - metadata[’frame_range ’][0] + correction_offset

240

241 # Dynamically determine tick frequency to avoid zero step size
242 tick_frequency = max(1, round(1 / metadata[’seconds_per_frame ’]))
243 tick_indices = np.arange(len(frames))[:: tick_frequency]
244 tick_frames = frames[tick_indices]
245 tick_times = times[tick_indices]
246

247 ax2 = ax1.twiny()
248 ax2.set_xlim(ax1.get_xlim ())
249 ax2.set_xticks(tick_frames)
250 ax2.set_xticklabels (["{:.2f}s".format(time) for time in tick_times

], rotation =45, fontsize =14) # Adjust secondary X tick label size if
needed

251 ax2.set_xlabel(’Time (s)’, fontsize =20) # 2x larger font size for
secondary X axis label

252

253 plt.title(f’Predictions vs. True Labels for {capture_name}’,
fontsize =24) # 2x larger font size for the title

254 plt.show()
255

256 def plot_predictions_without_time(self , index , smoothed_predictions ,
capture_name):

257 """
258 Plot smoothed predictions against the true labels and show time on

the secondary x-axis.
259 Adjusted to label the y-axis by classes 0 being FU, 1 being FD,

and 2 being NEITHER.
260 Labels and tick labels are made 2x larger.
261 """
262 labels = self.labels[index]
263 metadata = self.all_metadata[index]
264 correction_offset = 0.3
265

266 fig , ax1 = plt.subplots(figsize =(20, 5))
267

268 ax1.plot(labels , label=’True Labels ’, color=’blue’)
269 ax1.plot(smoothed_predictions , label=’Predicted ’, color=’red’,

linestyle=’--’)
270 ax1.set_xlim ([ metadata[’frame_range ’][0], metadata[’frame_range ’

][1]])
271 ax1.set_xlabel(’Frame’, fontsize =34) # 2x larger font size for X

axis label
272 ax1.set_ylabel(’Label’, fontsize =34) # 2x larger font size for Y

axis label
273 ax1.set_yticks ([0, 1, 2])

93



274 ax1.set_yticklabels ([’FU’, ’FD’, ’NEITHER ’], fontsize =30) # 2x
larger font size for Y tick labels

275 ax1.legend(loc=’lower right’, fontsize =24) # Adjust legend font
size if needed

276

277 # Increase tick label size
278 ax1.tick_params(axis=’x’, labelsize =24) # Adjust X tick label

size if needed
279 ax1.tick_params(axis=’y’, labelsize =24) # Adjust Y tick label

size if needed
280

281 plt.title(f’FU/FD Predictions for Capture: {capture_name}’,
fontsize =30) # 2x larger font size for the title

282 plt.show()
283

284

285 def find_consecutive_segments(self , predictions =[], min_length =5):
286 if not isinstance(predictions , np.ndarray):
287 predictions = self.labels[self.current_index]
288 segments = []
289 current_segment = []
290 last_label = 2
291

292 for i, label in enumerate(predictions):
293 if label == last_label and label in [0, 1]: # GOUP or DOWN
294 current_segment.append(i)
295 else:
296 if len(current_segment) >= min_length:
297 segments.append (( current_segment [0], last_label))
298 current_segment = [i] if label in [0, 1] else []
299 last_label = label
300

301 # Check the last segment
302 if len(current_segment) >= min_length:
303 segments.append (( current_segment [0], last_label))
304

305 return segments
306

307 def generate_full_confusion_matrix(self , segments , true_segments ,
full_predictions , window =12):

308 true_labels = self.labels[self.current_index]
309 y_pred = []
310 y_true = []
311 for start , label in segments:
312 # Look for the corresponding start in true_labels within a 10-

frame window
313 for i in range(max(0, start - window), min(len(true_labels),

start + window)):
314 if true_labels[i] == label:
315 y_pred.append(label)
316 y_true.append(label)
317 break
318 else:
319 y_pred.append(label)

94



320 y_true.append (2) # Neither
321

322 # Second pass: look for false negatives using a window approach
323 window = 10
324 for start , label in true_segments:
325 # Look for the corresponding start in true_labels within a 10-

frame window
326 for i in range(max(0, start - window), min(len(true_labels),

start + window)):
327 if full_predictions[i] == label:
328 # Not a false negative
329 break
330 else:
331 y_pred.append(full_predictions[i])
332 y_true.append(label) # Neither
333

334 return confusion_matrix(y_true , y_pred , labels =[0, 1, 2])
335

336 def generate_confusion_matrix(self , segments , window =12):
337 true_labels = self.labels[self.current_index]
338 y_pred = []
339 y_true = []
340 for start , label in segments:
341 # Look for the corresponding start in true_labels within a 10-

frame window
342 for i in range(max(0, start - window), min(len(true_labels),

start + window)):
343 if true_labels[i] == label:
344 y_pred.append(label)
345 y_true.append(label)
346 break
347 else:
348 y_pred.append(label)
349 y_true.append (2) # Neither
350

351 return confusion_matrix(y_true , y_pred , labels =[0, 1, 2])
352

353

354 def generate_confusion_matrix_with_window_for_false_negatives(self ,
segments , window =12):

355 true_labels = self.labels[self.current_index]
356 y_pred = []
357 y_true = []
358 used_true_labels = [] # Keep track of which true labels have been

matched
359

360 # First pass: look for true positives and false positives
361 for start , label in segments:
362 found_match = False
363 for i in range(max(0, start - window), min(len(true_labels),

start + window)):
364 if true_labels[i] == label and i not in used_true_labels:
365 y_pred.append(label)
366 y_true.append(label)

95



367 used_true_labels.append(i)
368 found_match = True
369 break
370 if not found_match:
371 y_pred.append(label)
372 y_true.append (2) # Neither
373

374 print(f"Used true labels are: {used_true_labels}")
375

376 # Second pass: look for false negatives using a window approach
377 for i, label in enumerate(true_labels):
378 # Only consider labels that are GOUP or DOWN and haven’t been

used
379 if label in [0, 1] and i not in used_true_labels:
380 # Check if there’s a sequence of similar labels within a

window
381 sequence_found = False
382 for j in range(max(0, i - window), min(len(true_labels), i

+ window)):
383 # If a sequence is detected
384 if true_labels[j] == label:
385 sequence_found = True
386 break
387

388 if sequence_found:
389 # If a sequence of the same event type is found within

the window , consider it a false negative
390 y_pred.append (2) # Neither (predicted)
391 y_true.append(label) # Actual event type
392 else:
393 # If no sequence is found , it’s not considered a false

negative
394 used_true_labels.append(i) # Mark as used to avoid re

-evaluation
395

396 return confusion_matrix(y_true , y_pred , labels =[0, 1, 2])
397

398 def __len__(self):
399 return len(self.data)
400

401 def __getitem__(self , index):
402 data = self.data[index]
403 label = self.labels[index]
404 length = len(data) # Or however you calculate the length of your

sequence
405 metadata = self.all_metadata[index]
406

407 return data , label , length , metadata
408

409

410 @staticmethod
411 def collate_fn(batch):
412 # Unzip the batch to separate sequences , labels , lengths , and

metadata

96



413 sequences , labels , lengths , metadata = zip(*batch)
414

415 # Ensure sequences are tensors and pad them to have the same
length

416 sequences_padded = pad_sequence ([torch.tensor(seq , dtype=torch.
float) for seq in sequences], batch_first=True)

417

418 # Similarly , pad labels if they are of variable lengths
419 labels_padded = pad_sequence ([torch.tensor(label , dtype=torch.long

) for label in labels], batch_first=True , padding_value =-1) # Use -1
as an ignore index if labels are of variable lengths

420

421 # Convert lengths to a tensor
422 lengths_tensor = torch.tensor(lengths , dtype=torch.long)
423

424 return sequences_padded , labels_padded , lengths_tensor , metadata
425

426 def plot_labels_and_ranges(self , index):
427 """
428 Plots the labels and frame ranges for a single capture.
429

430 Parameters:
431 - index: Index of the capture to plot in the dataset.
432 """
433 if index >= len(self.data):
434 print("Index out of range.")
435 return
436

437 metadata = self.all_metadata[index]
438 labels = self.labels[index]
439

440 plt.figure(figsize =(20, 5))
441

442 # Plot labels
443 plt.plot(labels , label=’Labels ’)
444

445 plt.title(f’Labels and Frame Ranges for Capture: {metadata ["
RADAR_capture "]}’)

446 plt.xlabel(’Frame Index’)
447 plt.ylabel(’Label ’)
448 plt.yticks ([0, 1, 2], [’GOUP’, ’DOWN’, ’NEITHER ’])
449 plt.xlim([ metadata[’frame_range ’][0], metadata[’frame_range ’][1]])
450 plt.legend ()
451

452 plt.show()

Listing A.5: Full Capture RDM Dataset Python Class Template

A.3.2 Stability Phase

1 import pandas as pd
2 import os
3 import numpy as np

97



4 import torch
5 from torch.utils.data import Dataset , DataLoader
6 from torch.nn.utils.rnn import pad_sequence
7 from FPDataCapture import FPDataCapture
8

9 class StableRdmDataset(Dataset):
10 """ Dataset class for processing and loading radar and motion capture

data for stability analysis in yoga poses."""
11

12 def __init__(self , root_dir , event_csv , included_folders , label_type="
avg_speed"):

13 """ Initializes the dataset with the directory of the data , an
events CSV file , and the specific folders to include."""

14 label_types = [’avg_velocity_squared ’, ’max_distance_from_centroid
’, "avg_speed", "sqrt_of_avg_speed"]

15 if label_type not in label_types:
16 raise ValueError(f"Invalid label type. Expected one of: {

label_types}")
17

18 self.data = []
19 self.labels = []
20 self.metadata = []
21 self.force_plate_dir = "/Volumes/FourTBLaCie/

Yoga_Study_FP_1and2_MNTR"
22 self.num_channels = 4
23 self.event_labels_df = pd.read_csv(event_csv)
24

25 for folder_name in included_folders:
26 folder_path = os.path.join(root_dir , folder_name)
27 filtered_df = self.event_labels_df[self.event_labels_df[’

RADAR_capture ’].str.startswith(folder_name)]
28 for index , row in filtered_df.iterrows ():
29 radar_capture = row[’RADAR_capture ’]
30 frame_end = row[’frame_end ’] if np.isnan(row[’frame_break ’

]) else row[’frame_break ’]
31 t_end = row[’t_foot_down ’] if np.isnan(row[’t_break ’])

else row[’t_break ’]
32

33 for i in range(self.num_channels):
34 capture_and_tx = f"{radar_capture}_channel{i+1}_tx{row

[’tx ’]}"
35 radar_file_path = os.path.join(folder_path ,

capture_and_tx + ’.npy’)
36 if os.path.exists(radar_file_path):
37 rdm_data = np.load(radar_file_path)
38 self.data.append(rdm_data)
39 metadata = {
40 ’RADAR_capture ’: radar_capture ,
41 ’participant_id ’: radar_capture [:2],
42 "tx": row[’tx’],
43 ’channel ’: i+1,
44 "n_frames": rdm_data.shape[0],
45 ’seconds_per_frame ’: row[’Seconds_per_Frame ’],
46 ’frame_range ’: (row[’frame_stable ’], frame_end

98



),
47 ’time_range ’: (row[’t_stable ’], t_end)
48 }
49 self.metadata.append(metadata)
50

51 force_plate_capture = self.create_fp_data_capture(
radar_capture)

52 filtered_force_plate_df = force_plate_capture.
isolate_rows_by_time(row[’t_stable ’], t_end)

53

54 label = force_plate_capture.calculate_label(
filtered_force_plate_df , label_type)

55 self.labels.append(label)
56

57 def create_fp_data_capture(self , radar_capture):
58 """ Creates a data capture object for force plate data based on the

radar capture name."""
59 participant = radar_capture [:2]
60 MOCAP_FP_capture_name = radar_capture.replace(’_RR_’, ’_MC_’)
61 base_file_path = os.path.join(self.force_plate_dir , participant ,

MOCAP_FP_capture_name + ’.tsv’)
62 return FPDataCapture(base_file_path=base_file_path ,

is_foot_always_up=True)
63

64 def __len__(self):
65 """ Returns the total number of samples in the dataset."""
66 return len(self.data)
67

68 def __getitem__(self , index):
69 """ Fetches a sample and its associated data from the dataset."""
70 data = self.data[index]
71 label = self.labels[index]
72 metadata = self.metadata[index]
73 length = metadata[’n_frames ’]
74

75 return data , label , length , metadata
76

77 @staticmethod
78 def collate_fn(batch):
79 """ Custom collate function to manage data batching."""
80 sequences , labels , _, metadata = zip(*batch)
81 sequences_padded = pad_sequence ([torch.tensor(seq , dtype=torch.

float32) for seq in sequences], batch_first=True)
82 labels_padded = torch.tensor(labels , dtype=torch.float32)
83 lengths = [md[’n_frames ’] for md in metadata]
84

85 lengths_tensor = torch.tensor(lengths , dtype=torch.long)
86

87 return sequences_padded , labels_padded , lengths_tensor , metadata

Listing A.6: Stability Phase Dataset Python Class Template

99



A.4 Model Classes

A.4.1 Full Capture RDM Classifier

1

2 import pandas as pd
3 import os
4 import numpy as np
5 import torch
6 import torch.nn as nn
7 from torch.utils.data import Dataset , DataLoader
8 from torchvision.transforms.functional import resize
9 from torch.nn.utils.rnn import pad_sequence , pack_padded_sequence

10 from torch import optim
11

12 class RdmClassifier(nn.Module):
13 def __init__(self , num_classes , hidden_size):
14 super(RdmClassifier , self).__init__ ()
15 self.num_classes = num_classes
16 # Define CNN architecture
17 self.cnn = nn.Sequential(
18 nn.Conv2d(1, 16, kernel_size =3, stride=1, padding =1), # RDMs

have a single channel
19 nn.ReLU(),
20 nn.MaxPool2d (2),
21 nn.Flatten (), # Flatten the output of the convolutional

layers
22 )
23 cnn_output_size = self._get_conv_output_size ()
24

25 # Define the LSTM layer
26 self.lstm = nn.LSTM(cnn_output_size , hidden_size , batch_first=True

)
27

28 # Define the fully connected layer for classification
29 self.fc = nn.Linear(hidden_size , num_classes)
30

31 def forward(self , x, lengths):
32 x = x.float () # Ensure input is float type
33 batch_size , seq_len , _, _ = x.size()
34 # Apply CNN to each RDM in the sequence
35 c_out = self.cnn(x.view(batch_size * seq_len , 1, *x.size()[ -2:]))
36

37 # Reshape for LSTM input
38 r_out = c_out.view(batch_size , seq_len , -1)
39

40 # Pack the sequence for LSTM
41 packed_input = pack_padded_sequence(r_out , lengths , batch_first=

True , enforce_sorted=False)
42 # Instead of using just the last hidden state
43 packed_output , (hidden , cell) = self.lstm(packed_input)
44 # Decode the packed output

100



45 lstm_out , _ = torch.nn.utils.rnn.pad_packed_sequence(packed_output
, batch_first=True)

46 # Apply the fully connected layer to all time steps
47 out = self.fc(lstm_out)
48 return out
49

50 def _get_conv_output_size(self):
51 with torch.no_grad ():
52 dummy_input = torch.zeros(1, 1, 23, 13)
53 dummy_output = self.cnn(dummy_input)
54 return dummy_output.size(-1)

Listing A.7: RDM Classifier Python Class Template

A.4.2 Stability Phase Predictor

1

2 import torch
3 import torch.nn as nn
4 import torch.nn.functional as F
5

6 class RdmCNNLSTMModel(nn.Module):
7 def __init__(self , num_channels , hidden_dim , lstm_layers =1,

bidirectional=False):
8 super(RdmCNNLSTMModel , self).__init__ ()
9 self.num_channels = num_channels

10

11 # Convolutional layers
12 self.conv1 = nn.Conv2d(in_channels=num_channels , out_channels =16,

kernel_size =3, stride=1, padding =1)
13 self.conv2 = nn.Conv2d(in_channels =16, out_channels =32,

kernel_size =3, stride=1, padding =1)
14 self.pool = nn.MaxPool2d(kernel_size =2, stride=2, padding =0)
15

16 self.cnn_output_size = self._get_conv_output_size ()
17

18 # LSTM layers
19 self.hidden_dim = hidden_dim
20 self.lstm_layers = lstm_layers
21 self.bidirectional = bidirectional
22 self.lstm = nn.LSTM(input_size=self.cnn_output_size , hidden_size=

hidden_dim , num_layers=lstm_layers , batch_first=True , bidirectional=
bidirectional)

23

24 # Linear layer for output
25 direction_multiplier = 2 if bidirectional else 1
26 self.fc = nn.Linear(hidden_dim * direction_multiplier , 1) #

Predicting a single value
27

28 def forward(self , x):
29 # Reshape output for LSTM layers
30 batch_size , time_steps , height , width = x.shape
31 x = x.view(batch_size * time_steps , 1, height , width)

101



32

33 # Apply convolutional layers
34 x = self.pool(F.relu(self.conv1(x)))
35 x = self.pool(F.relu(self.conv2(x)))
36

37 # Reshape x back to [batch_size , time_steps , features] for LSTM
processing

38 x = x.view(batch_size , time_steps , self.cnn_output_size)
39

40 # LSTM layers ...
41 lstm_out , _ = self.lstm(x)
42

43 # Take the output of the last LSTM layer
44 if self.bidirectional:
45 lstm_out = lstm_out[:, -1, :]
46 else:
47 lstm_out = lstm_out[:, -1, :]
48

49 # Linear layer
50 out = self.fc(lstm_out)
51 outputs = torch.squeeze(out)
52 return outputs
53

54 def _get_conv_output_size(self):
55 # Create a dummy input to pass through the CNN layers to calculate

output size
56 # spatial dimensions of your input radar data are 23x13
57 dummy_input = torch.zeros(1, self.num_channels , 23, 13)
58 x = self.pool(F.relu(self.conv1(dummy_input)))
59 x = self.pool(F.relu(self.conv2(x)))
60 # Multiply the dimensions of the output feature map to get the

total feature size
61 return x.numel() // x.shape [0] # Use numel() to get total number

of features and divide by batch size (1 in this case)

Listing A.8: Stability Phase Predictor Python Class Template

102



Appendix B

Appendix

B.1 Technical Contributions to Sekisui House at MIT

B.1.1 Goals of Sekisui House at MIT

My research was primarily sponsored by Sekisui House at MIT, a joint venture between MIT’s
Institute for Medical Engineering and Science (IMES) and Sekisui House, one of Japan’s
leading homebuilders. This collaboration is dedicated to developing technologies that cater
to the needs of an aging population through innovative in-home wellness monitoring and
Early Detection Systems (EDS). By enabling individuals to stay healthy and independent in
their own homes for as long as possible, Sekisui House at MIT aims to address the growing
demands on healthcare systems and caregivers worldwide. The partnership leverages the
capabilities of MIT’s Clinical Center for Research Trials (CCTR) and HealthLab facilities,
promoting educational and global exchanges among diverse communities. This initiative
enhances medical and observational research to improve the quality of life for the elderly on
a global scale.

B.1.2 Design and Implementation of a SQL Database

In collaboration with MIT, Sekisui House built two houses fully instrumented with a dense
network of continuous wave (CW) radar and infrared sensors. Over a two-and-a-half-year
period, Sekisui House collected over 40 TBs of supervised and unsupervised data on the
occupants. This data was labeled by date and radar used; however, a relational database
did not exist that could effectively connect the activities performed, occupants, places, and
sensors. This connection was essential for researchers to identify, pull, and tag the correct
data.

Conceptualization

The conceptualization phase began with identifying the primary objectives of the database
system, which included the ability to track and correlate the diverse data streams from vari-
ous sensors and interaction points within the houses. The goal was to create a framework that
would facilitate complex queries involving multiple data types and support large-scale data

103



analytics for ongoing research in aging and in-home care technologies. Key considerations
were clarity, data integrity, scalability, and accessibility.

Design

The design of the SQL database was structured to support the complex needs of the Sekisui
House research project. The database schema was developed to include tables for Activities,
Subjects, Houses, Devices, Sensors, and Environmental Conditions, among others [Figure
B.1]. Each table was designed to ensure relationships that would allow for efficient querying
and analysis. For instance, the ‘Activities‘ table connects with the ‘Subjects‘ table through
a foreign key that links each activity to an individual subject. Similarly, the ‘Devices‘ table
relates to the ‘Sensors‘ table, enabling tracking of the effects of radiofrequency generating
devices across different instrumentation.

Figure B.1: Comprehensive SQL database schematic for Sekisui House at MIT: This schema
integrates various modules, including Surveys, Environment, Activities, Radar, IR Systems,
Questionnaires, Devices, Subjects, and Houses, detailing the relational structure and data
types employed for effective in-home wellness monitoring and early detection systems within
aging populations. Each table is outlined with attributes such as IDs, data entry dates, and
specific device and subject identifiers to ensure precision in data collection and analysis.

104



Implementation

The implementation phase involved setting up the SQL database on a robust server infras-
tructure to handle the expected data load. Database indexing strategies were employed to
optimize performance for frequent queries, such as those involving temporal data correla-
tions between sensor readings and occupant activities. Procedures for data ingestion were
established, with scripts developed to automate the parsing and loading of data from various
sources directly into the database.

Maintenance and Usage

Post-implementation, the focus shifted to maintenance and ensuring the database’s contin-
uous operation. Researchers extensively use the database to generate customized reports,
conduct statistical analyses, and develop machine-learning models that predict vital signs
and health trends based on the collected data. An ongoing review process helps identify and
rectify any inefficiencies in the database to improve response times and extend its capabilities
as new types of sensors and data streams are introduced into the research environment.

B.1.3 Development of a Box Data Scraping Tool

Purpose and Design

The primary objective in developing the Box Data Scraping Tool was to streamline the
process of retrieving large datasets from Box storage, a common repository for the immense
volumes of data generated by Sekisui House’s sensor networks. The design of the tool focuses
on automating the extraction of files using metadata stored in the SQL database and an
interface that allows for easy querying and identification of files of interest [Figure B.2].

Functionality

The functionality of the tool is best understood by its capability to handle and process
structured CSV files that contain Box file IDs and filenames. This process is facilitated by
a web-based interface, where users can upload a CSV file, input their Box access token,
and specify a folder path where the files should be saved. The system is designed to offer
researchers a seamless experience, enabling them to efficiently download the necessary files
for their analysis without having to search through the Box directories [Figure B.3].

105



Figure B.2: Workflow diagram showing the process of data extraction from the SQL server,
querying via Metabase, obtaining a CSV of file names and IDs, and interfacing with the Box
API through a Flask-based client to download requested files.

106



Figure B.3: Screenshot of the web interface used for the Box File Downloader tool. Users
can upload the CSV file, input their access token, and specify the destination folder for the
downloaded files.

B.1.4 Radar-Based Analysis Tools

Clutter-Cancel Canceller Tool for CW Radar Data

During the calibration of the large multi-radar system, it was noticed that there was a
significant amount of drift in the I and Q channels of the CW radars. This drift was addressed
with frequent clutter cancellation resets every two minutes across the multi-radar system.
These resulted in a spike in the radar data across all frequencies. This raised the need for
a robust outlier detection and spike removal tool. This tool employs a rolling 4.5 standard
deviation outlier detection algorithm, which is instrumental in identifying anomalies within
the CW radar data [Figure B.4].

The radar’s ability to detect and measure vital signs and motion accurately was dependent
on this tool’s ability to remove these spikes. The implemented rolling standard deviation
algorithm scans the radar data for spikes indicative of outliers and substitutes them with the
local mean calculated within a dynamic window. This approach ensures a smoother data
set, devoid of extreme variations that could lead to false readings or inaccuracies in vital
sign detection and motion algorithms.

The tool has since become a cornerstone for researchers who rely on precision and accu-
racy when working with this radar data for vital sign detection and motion algorithms. Its
ability to efficiently preprocess data ensures that subsequent analysis is based on high-quality
and reliable data sets.

107



Figure B.4: Illustration of the rolling standard deviation outlier detection and spike removal
technique applied to CW radar data. Spikes representing outliers are identified and replaced
with the local mean to maintain data integrity for advanced vital sign detection and motion
analysis.

Supine Respiratory Rate

A key application of the Clutter-Cancel Canceller tool is in the domain of vital sign moni-
toring. To test this tool, I applied the algorithm to radar data and analyzed it to detect the
respiratory rate of a subject in a supine position. The respiratory rate is a crucial vital sign
that indicates various medical conditions and the overall well-being of a patient.

A manual calculation of the respiratory rate was initially conducted to validate the re-
liability of the analysis. This manual approach involved counting the number of breathing
cycles over a period, as represented by the fluctuations in the radar signal. In the specific
case analyzed, a total of 65 cycles were counted over 3.93 minutes, resulting in a calculated
respiratory rate of 16.5 breaths per minute Figure B.5.

108



Figure B.5: Manually Calculating Respiratory Rate: The radar data, post application of
the Clutter Cancel algorithm, showing 65 respiratory cycles over 3.93 minutes, indicating a
respiratory rate of 16.5 breaths per minute.

Further analysis was conducted using Fast Fourier Transform (FFT) followed by smooth-
ing to provide a more automated and precise measurement. The FFT analysis, followed by
a Gaussian convolution, allowed for the identification of the dominant frequency component
corresponding to the respiratory rate. The frequency of 0.28 breaths per second (equivalent
to 16.8 breaths per minute) observed in the FFT analysis confirms the manual count, thereby
validating the efficacy of the Clutter-Cancel algorithm for preprocessing CW radar data for
monitoring vital signs [Figure B.6].

This synergy between manual methods and advanced signal processing techniques un-
derpins the robustness of the radar data analysis, ensuring reliable vital sign monitoring in
non-invasive settings.

Figure B.6: FFT Analysis of Respiratory Rate: Smoothing through Gaussian convolution
of the FFT reveals the primary frequency component of the radar signal, correlating to a
respiratory rate of 16.8 breaths per minute.

109



Human Tracking Algorithm

The Human Tracking Algorithm represents the culmination of the diverse toolset developed
for analyzing the Sekisui House dataset. This algorithm retrieves relevant radar data cor-
responding to specific activities and accurate timeframes by integrating an SQL database
wrapper. Coupled with the Box Data Downloader, researchers can efficiently download the
radar data of interest.

The human tracking algorithm refines the data by removing noise and spikes using the
Clutter-Cancel tool, collates the multiple radars using recursion, and then applies a smoothed
rolling standard deviation. This processing across multiple radar inputs allows for the precise
tracking of human movement within the two-dimensional plane of the room, delineating both
the x and y coordinates of individuals [Figure B.7].

Figure B.7: A visual representation of the Human Tracking Algorithm in action. On the left,
the grid overlay represents the radar segments, with colored blocks indicating active radar
zones corresponding to human movement. On the right, the real-time video feed corroborates
the radar data, with time stamps ensuring synchronicity between the two data sources.

This approach enhances the accuracy of human tracking in a controlled environment
and extends the potential for non-intrusive monitoring in applications such as elderly care,
security, and smart home systems. By mapping the detected movements to physical space,
researchers can analyze patterns of life and draw significant conclusions about the behaviors
and well-being of the subjects within these environments.

B.1.5 Discussion

The collaboration with Sekisui House at MIT has resulted in important technical contri-
butions to the field of in-home wellness monitoring and early detection systems. Through
this joint venture, we have developed a comprehensive suite of tools that have enhanced the
ability to collect, process, and analyze data in innovative ways that cater to the needs of an
aging population.

The creation of a robust SQL database has been foundational in structuring and analyzing

110



the data collected from sensor-equipped homes. The database has enabled researchers to
track a wide array of data points while maintaining its integrity and accessibility.

The Box Data Scraping Tool efficiently retrieves large datasets for researchers. By stream-
lining this process, we have enabled researchers to focus more on analysis rather than data
management, thereby accelerating the pace of discovery and innovation.

The Clutter-Cancel Canceller Tool has addressed the critical challenge of data integrity
in radar signal analysis. Its ability to remove noise and spikes from the radar data ensures
that vital signs and movement are monitored with the highest level of accuracy. This tool’s
precision is evidenced in the manual and FFT analysis of respiratory rates, where it has
demonstrated its efficacy in filtering out irrelevant data and spotlighting the true vital signals.

The Human Tracking Algorithm has showcased the full potential of our integrated tools.
By providing a two-dimensional tracking capability, it has paved the way for advanced studies
in human behavior and health monitoring, which are essential in the context of non-invasive
elder care and smart home systems.

The success of these tools underlines the strength of the interdisciplinary approach that
Sekisui House at MIT embodies. It also showcases the value of academic-industrial partner-
ships in pushing the boundaries of technology for social good. Due in large part to Sekisui
House’s vision, this project’s outcomes extend beyond its business objectives. They provide
critical tools and methodologies that advance the scientific understanding of healthy aging,
ultimately contributing to the well-being and quality of life of elder populations globally.

111



112



References

[1] B. H. Alexander, F. P. Rivara, and M. E. Wolf, “The cost and frequency of hospital-
ization for fall-related injuries in older adults.,” American Journal of Public Health,
vol. 82, pp. 1020–1023, 7 Jul. 1992, issn: 0090-0036. doi: 10.2105/AJPH.82.7.1020.

[2] W. H. O. Ageing and L. C. Unit, WHO global report on falls prevention in older age.
World Health Organization, 2008.

[3] L. D. Gillespie, M. C. Robertson, W. J. Gillespie, C. Sherrington, S. Gates, L. Clem-
son, and S. E. Lamb, “Interventions for preventing falls in older people living in the
community,” Cochrane Database of Systematic Reviews, vol. 2021, 6 Sep. 2012, issn:
14651858. doi: 10.1002/14651858.CD007146.pub3.

[4] M. F. Ong, K. L. Soh, R. Saimon, M. W. Wai, M. Mortell, and K. G. Soh, “Fall
prevention education to reduce fall risk among community-dwelling older persons: A
systematic review,” Journal of Nursing Management, vol. 29, pp. 2674–2688, 8 Nov.
2021, issn: 0966-0429. doi: 10.1111/jonm.13434.

[5] L. D. Ott, “The impact of implementing a fall prevention educational session for
community-dwelling physical therapy patients,” Nursing Open, vol. 5, pp. 567–574,
4 Oct. 2018, issn: 2054-1058. doi: 10.1002/nop2.165.

[6] C. S. Colón-Emeric, C. L. McDermott, D. S. Lee, and S. D. Berry, “Risk assessment
and prevention of falls in older community-dwelling adults,” JAMA, vol. 331, p. 1397,
16 Apr. 2024, issn: 0098-7484. doi: 10.1001/jama.2024.1416.

[7] N. Salari, N. Darvishi, M. Ahmadipanah, S. Shohaimi, and M. Mohammadi, “Global
prevalence of falls in the older adults: A comprehensive systematic review and meta-
analysis,” Journal of Orthopaedic Surgery and Research, vol. 17, p. 334, 1 Jun. 2022,
issn: 1749-799X. doi: 10.1186/s13018-022-03222-1.

[8] M. Steverson, Https://www.who.int/news-room/fact-sheets/detail/ageing-and-health, Aug.
2022.

[9] C. G. Araujo, C. G. de Souza e Silva, J. A. Laukkanen, M. F. Singh, S. K. Kunutsor,
J. Myers, J. F. Franca, and C. L. Castro, “Successful 10-second one-legged stance
performance predicts survival in middle-aged and older individuals,” British Journal
of Sports Medicine, vol. 56, pp. 975–980, 17 Sep. 2022, issn: 0306-3674. doi: 10.1136/
bjsports-2021-105360.

113

https://doi.org/10.2105/AJPH.82.7.1020
https://doi.org/10.1002/14651858.CD007146.pub3
https://doi.org/10.1111/jonm.13434
https://doi.org/10.1002/nop2.165
https://doi.org/10.1001/jama.2024.1416
https://doi.org/10.1186/s13018-022-03222-1
https://doi.org/10.1136/bjsports-2021-105360
https://doi.org/10.1136/bjsports-2021-105360


[10] B. A. Springer, R. Marin, T. Cyhan, H. Roberts, and N. W. Gill, “Normative values
for the unipedal stance test with eyes open and closed,” Journal of Geriatric Physical
Therapy, vol. 30, pp. 8–15, 1 Apr. 2007, issn: 1539-8412. doi: 10 .1519/00139143-
200704000-00003.

[11] A. Srivastav and S. Mandal, “Radars for autonomous driving: A review of deep learning
methods and challenges,” IEEE Access, vol. 11, pp. 97 147–97 168, 2023, issn: 2169-
3536. doi: 10.1109/ACCESS.2023.3312382.

[12] X. Li, Y. He, and X. Jing, “A survey of deep learning-based human activity recognition
in radar,” Remote Sensing, vol. 11, p. 1068, 9 May 2019, issn: 2072-4292. doi: 10.3390/
rs11091068.

[13] B. van Berlo, A. Elkelany, T. Ozcelebi, and N. Meratnia, “Millimeter wave sensing: A
review of application pipelines and building blocks,” IEEE Sensors Journal, vol. 21,
pp. 10 332–10 368, 9 May 2021, issn: 1530-437X. doi: 10.1109/JSEN.2021.3057450.

[14] N. Mandischer, I. Koop, A. Granich, D. Heberling, and B. Corves, “Radar tracker for
human legs based on geometric and intensity features,” IEEE, Aug. 2021, pp. 1521–
1525, isbn: 978-9-0827-9706-0. doi: 10.23919/EUSIPCO54536.2021.9616134.

[15] B. Chen, P. Liu, F. Xiao, Z. Liu, and Y. Wang, “Review of the upright balance as-
sessment based on the force plate,” International Journal of Environmental Research
and Public Health, vol. 18, p. 2696, 5 Mar. 2021, issn: 1660-4601. doi: 10 . 3390 /
ijerph18052696.

[16] B. Jokanovic and M. Amin, “Fall detection using deep learning in range-doppler radars,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 54, pp. 180–189, 1 Feb.
2018, issn: 0018-9251. doi: 10.1109/TAES.2017.2740098.

[17] P. Zhao, C. X. Lu, B. Wang, N. Trigoni, and A. Markham, “Cubelearn: End-to-end
learning for human motion recognition from raw mmwave radar signals,” IEEE Internet
of Things Journal, vol. 10, pp. 10 236–10 249, 12 Jun. 2023, issn: 2327-4662. doi:
10.1109/JIOT.2023.3237494.

[18] M. M. Vázquez, Basics of fmcw radar. Sep. 2021.

[19] P. Hugler, M. Geiger, and C. Waldschmidt, “Rcs measurements of a human hand for
radar-based gesture recognition at e-band,” IEEE, Mar. 2016, pp. 259–262, isbn: 978-
3-9812-6687-0. doi: 10.1109/GEMIC.2016.7461605.

[20] S. Z. Gurbuz and M. G. Amin, “Radar-based human-motion recognition with deep
learning: Promising applications for indoor monitoring,” IEEE Signal Processing Mag-
azine, vol. 36, pp. 16–28, 4 Jul. 2019, issn: 1053-5888. doi: 10.1109/MSP.2018.2890128.

[21] X. Yang, J. Liu, Y. Chen, X. Guo, and Y. Xie, “Mu-id: Multi-user identification through
gaits using millimeter wave radios,” IEEE, Jul. 2020, pp. 2589–2598, isbn: 978-1-7281-
6412-0. doi: 10.1109/INFOCOM41043.2020.9155471.

[22] B. Vandersmissen, N. Knudde, A. Jalalvand, I. Couckuyt, A. Bourdoux, W. D. Neve,
and T. Dhaene, “Indoor person identification using a low-power fmcw radar,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 56, pp. 3941–3952, 7 Jul. 2018,
issn: 0196-2892. doi: 10.1109/TGRS.2018.2816812.

114

https://doi.org/10.1519/00139143-200704000-00003
https://doi.org/10.1519/00139143-200704000-00003
https://doi.org/10.1109/ACCESS.2023.3312382
https://doi.org/10.3390/rs11091068
https://doi.org/10.3390/rs11091068
https://doi.org/10.1109/JSEN.2021.3057450
https://doi.org/10.23919/EUSIPCO54536.2021.9616134
https://doi.org/10.3390/ijerph18052696
https://doi.org/10.3390/ijerph18052696
https://doi.org/10.1109/TAES.2017.2740098
https://doi.org/10.1109/JIOT.2023.3237494
https://doi.org/10.1109/GEMIC.2016.7461605
https://doi.org/10.1109/MSP.2018.2890128
https://doi.org/10.1109/INFOCOM41043.2020.9155471
https://doi.org/10.1109/TGRS.2018.2816812


[23] X. Huang, Z. Ju, and R. Zhang, “Real-time heart rate detection method based on 77
ghz fmcw radar,” Micromachines, vol. 13, p. 1960, 11 Nov. 2022, issn: 2072-666X. doi:
10.3390/mi13111960.

[24] E. Turppa, J. M. Kortelainen, O. Antropov, and T. Kiuru, “Vital sign monitoring using
fmcw radar in various sleeping scenarios,” Sensors, vol. 20, p. 6505, 22 Nov. 2020, issn:
1424-8220. doi: 10.3390/s20226505.

[25] Z. Li, J. L. Kernec, Q. Abbasi, F. Fioranelli, S. Yang, and O. Romain, “Radar-based
human activity recognition with adaptive thresholding towards resource constrained
platforms,” Scientific Reports, vol. 13, p. 3473, 1 Mar. 2023, issn: 2045-2322. doi:
10.1038/s41598-023-30631-x.

[26] A. Sengupta, F. Jin, R. Zhang, and S. Cao, “Mm-pose: Real-time human skeletal
posture estimation using mmwave radars and cnns,” IEEE Sensors Journal, vol. 20,
pp. 10 032–10 044, 17 Sep. 2020, issn: 1530-437X. doi: 10.1109/JSEN.2020.2991741.

[27] G. Paterniani, G. Paterniani, D. Sgreccia, A. DAVOLI, G. Guerzoni, P. D. Viesti, A. C.
Valenti, and et al., “Radar-based monitoring of vital signs: A tutorial overview,” doi:
10.36227/techrxiv.19212918.v1. url: https://doi.org/10.36227/techrxiv.19212918.v1.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, pp. 1735–1780, 8 Nov. 1997, issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

[29] T. T. Niemirepo, M. Viitanen, and J. Vanne, “Binocular multi-cnn system for real-
time 3d pose estimation,” ACM, Oct. 2020, pp. 4553–4555, isbn: 9781450379885. doi:
10.1145/3394171.3414456.

[30] “Deep learning models for yoga pose monitoring,” Algorithms, vol. 15, p. 403, 11 Oct.
2022, issn: 1999-4893.

[31] B. Erol, S. Z. Gurbuz, and M. G. Amin, “Motion classification using kinematically sifted
acgan-synthesized radar micro-doppler signatures,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 56, pp. 3197–3213, 4 Aug. 2020, issn: 0018-9251. doi:
10.1109/TAES.2020.2969579.

[32] M. S. Seyfioglu and S. Z. Gurbuz, “Deep neural network initialization methods for
micro-doppler classification with low training sample support,” IEEE Geoscience and
Remote Sensing Letters, vol. 14, pp. 2462–2466, 12 Dec. 2017, issn: 1545-598X. doi:
10.1109/LGRS.2017.2771405.

[33] E. A. Wikstrom, M. D. Tillman, A. N. Smith, and P. A. Borsa, “A new force-plate tech-
nology measure of dynamic postural stability: The dynamic postural stability index.,”
Journal of athletic training, vol. 40, pp. 305–9, 4 2005, issn: 1062-6050.

[34] F. Quijoux, A. Nicolaï, I. Chairi, et al., “A review of center of pressure (cop) variables
to quantify standing balance in elderly people: Algorithms and open-access code*,”
Physiological Reports, vol. 9, 22 Nov. 2021, issn: 2051-817X. doi: 10.14814/phy2.15067.

[35] N. Eichler, S. Raz, A. Toledano-Shubi, D. Livne, I. Shimshoni, and H. Hel-Or, “Auto-
matic and efficient fall risk assessment based on machine learning,” Sensors, vol. 22,
p. 1557, 4 Feb. 2022, issn: 1424-8220. doi: 10.3390/s22041557.

115

https://doi.org/10.3390/mi13111960
https://doi.org/10.3390/s20226505
https://doi.org/10.1038/s41598-023-30631-x
https://doi.org/10.1109/JSEN.2020.2991741
https://doi.org/10.36227/techrxiv.19212918.v1
https://doi.org/10.36227/techrxiv.19212918.v1
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3394171.3414456
https://doi.org/10.1109/TAES.2020.2969579
https://doi.org/10.1109/LGRS.2017.2771405
https://doi.org/10.14814/phy2.15067
https://doi.org/10.3390/s22041557


[36] J. W. Blaszczyk and R. Orawiec, “Assessment of postural control in patients with
parkinson’s disease: Sway ratio analysis,” Human Movement Science, vol. 30, pp. 396–
404, 2 Apr. 2011, issn: 01679457. doi: 10.1016/j.humov.2010.07.017.

[37] F. Fereidouni, “Human health risk assessment of 4-12 ghz radar waves using cst studio
suite software,” Journal of Biomedical Physics and Engineering, vol. 12, 3 Jul. 2022,
issn: 22517200. doi: 10.31661/jbpe.v0i0.1272.

[38] A.-K. Seifert, M. G. Amin, and A. M. Zoubir, “Toward unobtrusive in-home gait anal-
ysis based on radar micro-doppler signatures,” IEEE Transactions on Biomedical En-
gineering, vol. 66, pp. 2629–2640, 9 Sep. 2019, issn: 0018-9294. doi: 10.1109/TBME.
2019.2893528.

[39] F. D. Enggar, A. M. Muthiah, O. D. Winarko, O. N. Samijayani, and S. Rahma-
tia, “Performance comparison of various windowing on fmcw radar signal processing,”
IEEE, Nov. 2016, pp. 326–330, isbn: 978-1-5090-3840-4. doi: 10.1109/ISESD.2016.
7886743.

[40] C.-H. Lee and T.-L. Sun, “Evaluation of postural stability based on a force plate and
inertial sensor during static balance measurements,” Journal of Physiological Anthro-
pology, vol. 37, p. 27, 1 Dec. 2018, issn: 1880-6805. doi: 10.1186/s40101-018-0187-5.

[41] A. Ross and S. Thomas, “The health benefits of yoga and exercise: A review of com-
parison studies,” The Journal of Alternative and Complementary Medicine, vol. 16,
pp. 3–12, 1 Jan. 2010, issn: 1075-5535. doi: 10.1089/acm.2009.0044.

[42] Z. Peng, Radar sim py, https://github.com/radarsimx/radarsimpy, 2023.

116

https://doi.org/10.1016/j.humov.2010.07.017
https://doi.org/10.31661/jbpe.v0i0.1272
https://doi.org/10.1109/TBME.2019.2893528
https://doi.org/10.1109/TBME.2019.2893528
https://doi.org/10.1109/ISESD.2016.7886743
https://doi.org/10.1109/ISESD.2016.7886743
https://doi.org/10.1186/s40101-018-0187-5
https://doi.org/10.1089/acm.2009.0044
https://github.com/radarsimx/radarsimpy

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction and Background
	1.1 Significance of Falls in the Elderly
	1.1.1 Current Status Falls and Risk Monitoring
	1.1.2 Proposal of Radar as a Fall Risk Monitoring Tool

	1.2 FMCW Radar
	1.2.1 Basics of Radar
	1.2.2 Doppler Effect
	1.2.3 Differences Between FFT, Fourier Series, and Fourier Transform
	1.2.4 Fundamentals of FMCW Radar (Frequency Modulated Continuous Wave Radar)
	1.2.5 Human Body as a Radar Reflector
	1.2.6 FMCW Radar in Healthcare
	1.2.7 Machine Learning and FMCW Radar

	1.3 Force Plates and Motion Capture
	1.4 Study Motivation

	2 Data Collection
	2.1 Participants
	2.2 Sensing Modalities
	2.3 Study Procedure
	2.3.1 Study Activities
	2.3.2 Study Hardware


	3 Study Analyses
	3.1 At Home Radar-Based Fall Risk Monitoring
	3.1.1 Motivation
	3.1.2 Methods
	3.1.3 Machine Learning Models
	3.1.4 Results
	3.1.5 Discussion

	3.2 Yoga Pose Transition Analysis Using FMCW Radar
	3.2.1 Motivation
	3.2.2 Methods
	3.2.3 Results
	3.2.4 Discussion

	3.3 Optimization of Radar Systems for Human Movement Characterization
	3.3.1 Motivation
	3.3.2 Methods
	3.3.3 Motion Characterization Results
	3.3.4 Sensitivity Analysis
	3.3.5 Discussion


	4 Conclusion and Future Work
	4.1 At Home Radar-Based Fall Risk Monitoring
	4.1.1 Conclusion
	4.1.2 Future Work

	4.2 Yoga Pose Transition Analysis Using FMCW Radar
	4.2.1 Conclusion
	4.2.2 Future Work

	4.3 Optimization of a Radar System for Human Movement Characterization
	4.3.1 Conclusion
	4.3.2 Future Work


	A Appendix
	A.1 Time Synchronization Linear Actuator
	A.1.1 Hardware
	A.1.2 Software

	A.2 Data Processing Classes
	A.2.1 FMCW Radar
	A.2.2 MOCAP
	A.2.3 Force Plate

	A.3 Dataset Classes
	A.3.1 Full Capture
	A.3.2 Stability Phase

	A.4 Model Classes
	A.4.1 Full Capture RDM Classifier
	A.4.2 Stability Phase Predictor


	B Appendix
	B.1 Technical Contributions to Sekisui House at MIT
	B.1.1 Goals of Sekisui House at MIT
	B.1.2 Design and Implementation of a SQL Database
	B.1.3 Development of a Box Data Scraping Tool
	B.1.4 Radar-Based Analysis Tools
	B.1.5 Discussion


	References

