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ABSTRACT

Modular composition is a very powerful and widely used tool in engineering disciplines,
as it aids in maintaining the system complexity tractable. Its main idea is that parts of
the systems can be encapsulated into black box models characterized only by its input to
output behavior, which eliminates the need to consider the complex dynamics inside the
black box. Moreover, this process can be done iteratively, allowing the design of highly
complex systems, such as computer chips. But this powerful tool is not always available,
like in synthetic biology, where engineered systems in cells have very complex and intricate
interconnections between subsystems, which makes encapsulating parts of theses systems a
very challenging endeavor. There are many reasons for this failure in modularity in biological
systems, such as load effects (retroactivity), unknown interactions and resource competition,
which is our focus for this work. Recent efforts to achieve modular design in systems with
resource competition, have focused in adding additional machinery to the cell to either try
to isolate the subsystems or control the availability of the shared resource. In this work
we explore a co-design approach, where instead of adding additional machinery to the cell,
we aim to tune some systems parameters to satisfy some specification. To this end we
provide conditions on the systems parameters for a network of subsystems to meet a given
specification, which are derived using mathematical logic and ideas on how to tackle similar
problems. With this, this work lays the foundations for further development of co-design
techniques for genetic networks with production and/or degradation resources, where one
may be able to mitigate the effects of one type of resource sharing by tuning the other.
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Title: Professor of Mechanical Engineering

3



4



Acknowledgments

I would like to thank the Air Force Office of Scientific Research (AFOSR) for the financial
support of this work under Grant # FA9550-22-1-0316. I would also like to thank Ilaria Di
Loreto and Theodore Wu Grunberg for the valuable ideas and contributions to this work.
Finally I would also like to thank my family, friends and girlfriend for the continued support
during the development of this work.

5



6



Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 11

1 Introduction 13

2 Production Resource Sharing 15
2.1 PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 PROBLEM SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 General Solution to Problem 2 . . . . . . . . . . . . . . . . . . . . . . 20

2.3 APPLICATION EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Production Degradation Resource Sharing 25
3.1 PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Equilibrium Point and Stability Analysis . . . . . . . . . . . . . . . . 26
3.1.2 Input-Output Characteristics . . . . . . . . . . . . . . . . . . . . . . 30

3.2 PROBLEM SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 APPLICATION EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Multiplexed Bio-sensing 38
4.1 PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Equilibrium Point and Stability Analysis . . . . . . . . . . . . . . . . 38
4.2 PROBLEM SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 PRACTICAL APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusion and Future Work 50

References 51

7



8



List of Figures

2.1 Block diagram representation of subsystem Σi. . . . . . . . . . . . . . . . . . 16
2.2 Example N = 2 subsystem network block diagram. . . . . . . . . . . . . . . 20
2.3 Feasible region for 1/k1 and 1/k2, with r∗i = (1 1) [nM ], y∗i = (2 2) [nM ], εi =

0.1y∗i = (0.2 0.2) [nM ], αi = (5.8 4.2) [nM/hr], δ = 1 [1/hr], δ0 = 0.05 [1/hr],
which yields γ̃i = (0.45 0.75) and γ̂i = (0.61 1.10). . . . . . . . . . . . . . . . 21

2.4 Feasible region for 1/ki with different values of εmin. . . . . . . . . . . . . . . 23
2.5 Feasible region for 1/k1, 1/k2 and 1/k3. . . . . . . . . . . . . . . . . . . . . . 24
2.6 Feasible region for 1/k1, 1/k2 and 1/k3 for different desired output values p∗. 24

3.1 Block diagram representation of subsystem Σi. . . . . . . . . . . . . . . . . . 26
3.2 Achievable region for the desired steady state output protein concentration y∗

with δ = 1 hr−1 and different values of α nM/hr. . . . . . . . . . . . . . . . . 35
3.3 Achievable region for the desired steady state output protein concentration

y∗with δ = 1 hr−1 and different values of α nM/hr. . . . . . . . . . . . . . . 36
3.4 Feasible region for θ tunable parameters with different values of θ′∗. . . . . . 37

4.1 Specification boundaries in cyan and steady state output protein concentration
yi for different inputs, with no RNase degradation (θ′i = 0 [nM−1]). . . . . . . 47

4.2 Specification and steady state output protein concentration yi for different
inputs, with RNase degradation (θ′i = 1.2141 [nM−1]). . . . . . . . . . . . . . 48

9



10



List of Tables

2.1 εi tolerances, γ̃i and γ̂i gains for the case N = 3 subsystems example. . . . . 23

11



12



Chapter 1

Introduction

Modular composition is a very powerful technique in the design of complicated systems, and
is commonly used in many traditional engineering disciplines, such as electrical engineering,
mechanical engineering and computer systems. In this technique, systems are characterized
by its input/output behavior, with the additional assumption that the systems don’t interact
when composed together. To this end, many engineering fields have gone to great lengths to
develop tools to isolate this modules from outside influences. In synthetic biology, modular
composition of systems is a very challenging endeavor because, in the cell, there are many
interactions among subsystems, which go beyond what we regard as the regulatory inputs
and outputs that we use for connecting systems to one another [1], [2], and the connectivity
among subsystems is often difficult to identify [3]. There are many reasons for the failure of
modularity in biological circuits, such as the effect of loads (retroactivity) on a system output
caused by downstream circuits [4], [5], [6], unknown interactions between adjacent genetic
sequences and factors [7], [8], [9], [10], as well as resource competition between systems [2],
[3], [11], [12], [13], more specifically competition for limited cellular resources needed for gene
expression [14], [15] and for protein degradation [16], affect system performance in surprising
ways [17].

In this work, we focus on the failure of modularity due to resource sharing. Prior work
on this topic experimentally demonstrated how two genetic modules become coupled when
they become activated concurrently in the cell even when they are not connected through
regulatory links [12]. Related work has further shown that this is the case even if one of the
genetic modules is placed on the chromosome [13], highlighting even more this problem as a
global perturbation to all genes in the cell. Previous efforts to mitigate the undesired effects
of resource sharing have concentrated on two approaches [2], namely, centralized control of
a shared resource and decentralized control of subsystems. The centralized control approach
aims to maintain the free resource level at a constant value [18], [19]. On the other hand, the
decentralized control approach focuses on isolating the module from perturbations in cellular
resources [20], [21], [22]. More specifically, for genetic circuits, wherein more genetic modules
are connected to each other through regulatory links, competition for resources among the
modules leads to surprising emergent circuit behavior and mathematical models were intro-
duced that well predict experimental outcomes [15]. These experimentally validated models
were later adopted in a theoretical study aiming at designing local feedback controllers to
insulate genetic modules from one another [22]. This line of work followed the general idea
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of capturing resource transactions through disturbance inputs to each genetic module and
to solve a disturbance attenuation problem [21], [20].

Our goal in this work is to design networks of subsystems that adhere to a specification
even in the presence of undesired coupling caused by resource sharing, be it production
resources, such as ribosomes or RNAPs, and/or degradation resources, such as microRNAs
and proteases. Moreover, we utilize the I/O framework proposed in [22], where each black
box system is characterized by its input/output behavior and also additional disturbance
outputs and disturbance inputs. These additional outputs capture the cumulative load that
the system applies on shared resources, while the additional inputs capture the cumulative
load that all other systems apply on the shared resources. Part of this work was published
in [23], where only production (ribossomes) resource sharing is considered, and another part,
which considers production (ribossomes) and degradation (proteases) resource sharing is
under review.

14



Chapter 2

Production Resource Sharing

2.1 PROBLEM FORMULATION

The system model we consider in this paper, for the process of gene expression [14], is
depicted in Fig.2.1. This model describes the protein production process, while accounting
for the fact that multiple such systems all share ribosomes required for gene expression [15],
[12]. In what follows, we use the standard notation, in which for a species S we let italics S
denote its concentration.

The i-th subsystem is responsible for the expression of the i-th gene, where the mRNA
mi is transcribed at a rate ri, which is then translated into protein pi. So, we define the i-th
subsystem states xi = [mi pi]

′ ∈ R2
+, with input ui = ri ∈ R+ and output yi = pi ∈ R+, as

well as disturbance input wi ∈ R+ and output di ∈ R+. With this, the subsystem dynamics
are given by [22]

ṁi = ui − δ0mi

ṗi = αi
(mi/ki)

1 + (mi/ki) + wi

− δpi

yi = pi

di = mi/ki,

(2.1)

for i = {1, . . . , N}. Here, αi is the translation rate constant, ki is the dissociation constant
of mRNA binding with ribosome, δ is the decay rate constant of the protein, δ0 is the decay
rate constant of mRNA. All parameters are strictly positive.

The disturbance input wi and disturbance output di capture the unintended interactions
among subsystems. Specifically, this model was derived in [22] and captures the fact that
ribosomes are required in the translation step, where the mRNA binds to ribosomes to be
translated to protein, which causes a “load” on the ribosome pool. In particular, the larger
mi and the smaller ki (stronger ribosome binding site), the larger the load di = mi/ki that
subsystem Σi applies to ribosomes. Because the decrease of translation rate that system Σi

experiences results from the overall load that all subsystems apply to ribosomes, we have
that the disturbance input is given by

wi =
∑
j ̸=i

dj, (2.2)
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Σi

ui yi

diwi

Figure 2.1: Block diagram representation of subsystem Σi.

which represents the effect that load on ribosomes from all other subsystems has on the i-th
subsystem. The full derivation of this model can be found in [22].

Since in this paper we are interested in guarantees on the steady state behavior of N
interconnected systems, we first prove uniqueness and stability of the equilibrium point.

Lemma 1. The network of systems Σi as given in (2.1), with interconnection (2.2), admits a
unique equilibrium point. Furthermore, this equilibrium point is locally asymptotically stable
for all parameter values.

Proof. System Σi equilibrium point is given by

mi,e = u∗
i /δ0

pi,e =
(αi/δ)(u

∗
i /kiδ0)

1 +
∑N

j=1(u
∗
j/kjδ0)

.

For all parameters and fixed inputs ui = u∗
i , this equilibrium point is unique. Now to conclude

about its stability lets define the column vector ξ =
(
(m1 − m1,e), . . . , (mN − mN,e), (p1 −

p1,e), . . . , (pN − pN,e)
)
and linearize the system about its equilibrium, which yields ξ̇ = Aξ,

where A is defined as

A =

[
−diag

(
δ0, . . . , δ0

)
0

c −diag
(
δ, . . . , δ

)] ,
with c ∈ RN×N block matrix, which has entries {c}i,j given by

{c}i,j =


αi

ki

1+
∑

n ̸=i(mn,e/kn)

(1+
∑N

n=1(mn,e/kn))2
, if i = j

−αi

kj

(mi,e/ki)

(1+
∑N

n=1(mn,e/kn))2
, otherwise.

As A is a lower triangular matrix, its eigenvalues are given by its diagonal entries, which are
all negative and equal to −δ and −δ0. Therefore, we conclude that the network of subsystems
Σi as given in (2.1), with interconnection rule (2.2), is locally asymptotically stable.

We are interested in steady state behavior, so we consider the following input/output
steady state characteristic of system Σi:

yi =
αi

δ

(ui/δ0ki)

1 + (ui/δ0ki) + wi

(2.3)

di = ui/δ0ki, (2.4)
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and let y∗i be the output of the isolated system with ui = r∗i > 0, i.e., yi in (2.3) with wi = 0,
and nominal parameter values αi = α∗

i , δi = δ∗, δ0 = δ∗0, and ki = k∗
i ∈ Ki with Ki ⊂ R+.

Now let us define the disturbance steady state I/O maps fi : wi → di as

di = fi(wi) = γiwi + γi, γi =
δyi

αi − δyi
. (2.5)

With this, our system specification is given as follows:
Specification: Given ui = r∗i , y∗i , and fixed tolerances εi > 0, i = {1, . . . , N}. The

specifications on the connected systems given in (2.2), (2.3), (2.4) are given in the form

yi ∈ [y∗i − εi, y
∗
i + εi], i ∈ {1, ..., N}. (2.6)

Remark 1. The systems gains γi are monotonically increasing with respect to yi, hence, the
steady state I/O maps di = fi(wi) are monotonically increasing with respect to yi. In fact, if
y∗i − εi ≤ y∗i + εi, then γ̃i ≤ γ̂i and also fi|(y∗i −εi) ≤ fi|(y∗i +εi).

Based on this specification, we seek to tackle two problems. First, we seek to determine
sufficient conditions on the systems’ parameters to satisfy this specification (Problem 1).
The second problem is to design the systems such that the specification is met (Problem 2).
For this problem, we regard the ribosome binding site strengths, captured by parameters
1/ki (see [14]) as the design parameters since they are easily and quantitatively tunable.

Problem 1 (Feasibility). Given a network of N subsystems of the form (2.1) and connection
rule (2.2). Determine sufficient conditions on each subsystem parameters such that the
specification is met for all subsystems. That is, there exists tunable parameters ki ≥ 0, i ∈
{1, . . . , N} such that (2.6) is satisfied.

The practical relevance of this problem stands in the fact that once multiple systems are
concurrently operating in the cell, they may not be able to achieve their nominal outputs as
they do in isolation because of decreased availability of gene expression resources to each of
them. Therefore, we investigate to what extent it is still possible to meet the specifications as
the number of subsystems increases and as the tolerance is changed. Indeed, it is reasonable
to expect that with more systems, one may require a larger tolerance and hence a larger
degradation of the system specification.

Problem 2 (Feasible Region). With all other parameters fixed, compute the region for the
parameters (k1, . . . , kN) ∈ K1 × · · · ×KN such that the specification is met.

With this, we define the quantities

γ̃i =
δ(y∗i − εi)

αi − δ(y∗i − εi)
(2.7)

γ̂i =
δ(y∗i + εi)

αi − δ(y∗i + εi)
. (2.8)

Lemma 2. The following conditions {
di ≥ γ̃iwi + γ̃i (2.9)

di ≤ γ̂iwi + γ̂i, (2.10)

are equivalent to those in (2.6).

17



Proof. We start by showing that (2.6) implies (2.9)-(2.10). The specifications given in (2.6)
define lower and upper bounds on the output yi, based on the tolerances εi. With this, we
can substitute these bounds on γi as defined in (2.5), yielding

γ̃i ≤ γi ≤ γ̂i, (2.11)

with γ̃i as given in (2.7) and γ̂i as given in (2.8). Now we substitute this into the steady
state I/O map given in equation (2.5), resulting in

γ̃iwi + γ̃i ≤γiwi + γi ≤ γ̂iwi + γ̂i

in which we substitute di as defined in (2.5), resulting in

γ̃iwi + γ̃i ≤ di ≤ γ̂iwi + γ̂i,

which are the conditions presented in (2.9)-(2.10).
Now we show that (2.9)-(2.10) implies (2.6). We start by rewriting the inequalities (2.9)-

(2.10) in the following form

γ̃iwi + γ̃i ≤ di ≤ γ̂iwi + γ̂i,

in which we substitute di as defined in (2.5), resulting in

γ̃iwi + γ̃i ≤γiwi + γi ≤ γ̂iwi + γ̂i.

Now we divide all terms by (1 + wi), yielding

γ̃i ≤ γi ≤ γ̂i,

which from the monotonicity of γi with respect to yi, implies that y∗i − εi ≤ yi ≤ y∗i + εi,∀i ∈
{1, . . . , N}, which gives the specifications given in (2.6).

2.2 PROBLEM SOLUTION

We tackle Problem 1 first, that is, we want to determine if there exist parameters (k1, . . . , kn)
such that our steady state output yi stays in the prescribed region around y∗i , with tolerances
εi.

Let w = (w1, . . . , wN) and d = (d1, . . . , dN), then (2.2) implies that

w = Td,

with T ∈ RN×N the interconnection matrix defined as

{T}i,j =

{
0, if i = j

1, otherwise.
(2.12)
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In turn, (2.5) with yi = y∗i − εi can we rewritten in vector form as

d = γ̃w + γ̃,

in which where the gain vector γ̃ ∈ RN is defined as γ̃ = (γ̃1, . . . , γ̃N), the gain matrix

γ̃ ∈ RN×N is defined as

{γ̃}i,j =

{
γ̃i =

δ(y∗i −εi)

αi−δ(y∗i −εi)
, if i = j

0, otherwise.
(2.13)

The following Theorem provides a sufficient condition to solve Problem 1. For a matrix
A, we let ρ(A) denote the spectral radius of A.

Theorem 1. Let γ̃ be the gain matrix defined in (2.13), and let T be the interconnection
matrix defined in (2.12). If ρ(γ̃T ) < 1, then Problem 1 has a solution.

Proof. By Lemma 2, satisfaction of the specification is equivalent to (2.9)-(2.10) with di ≥ 0.
We then focus on providing sufficient conditions for (2.9)-(2.10) to be satisfied.

Let us consider just the constraints of the form (2.9), which, given the matrices T and γ̃,
defined in (2.12) and (2.13), can be rewritten as

d ≥ γ̃Td+ γ̃ ⇐⇒ (I − γ̃T )d ≥ γ̃,

where d = (d1, . . . , dN) and γ̃ = (γ̃1, . . . , γ̃N). Since γ̃ ≥ 0 and di ≥ 0, for all i, must hold
from the definition of the models, we have that if (I − γ̃T )−1 ≥ 0, i.e., (I − γ̃T )−1 has
non-negative entries, then

d ≥ (I − γ̃T )−1γ̃ ≥ 0 ⇒ d ≥ 0. (2.14)

A sufficient condition to prove that (I − γ̃T )−1 ≥ 0 is given by checking that (I − γ̃T ) is
an M -matrix ([24]). Now, given that M = (I − γ̃T ) is such that {M}i,j ≤ 0 for all i ̸= j,
and given that γ̃T ≥ 0, we can exploit the result stated in Lemma 2.5.2.1 in [24], picking
α = 1, and finally obtaining that

(I − γ̃T ) is an M -matrix ⇐⇒ 1 > ρ(γ̃T ).

We can conclude that if 1 > ρ(γ̃T ), then (I − γ̃T )−1 ≥ 0 and hence (2.9) is satisfied for
di ≥ 0. Now, we prove the satisfaction of the conditions in (2.10). Let us consider values for
di, such that, di = γ̃iwi + γ̃i. By plugging these expressions for di into (2.10), we obtain

wi(γ̂i − γ̃i) + (γ̂i − γ̃i) ≥ 0,

which is always true for (k1, . . . , kN) when (2.14) is satisfied, given that γ̃i ≤ γ̂i. To conclude,
we have shown that if ρ(γ̃T ) < 1, then (2.6) is satisfied. Therefore, Problem 1 has a solution.

With this we can move on to Problem 2, where we want to find the feasible region for
the systems parameters (k1, . . . , kN). We consider first N = 2 as an illustrative example and
then propose a general algorithm for arbitrary N.
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Σ1

Σ2

r∗1

r∗2

p1(t)

p2(t)

d1
w1

w2
d2

Figure 2.2: Example N = 2 subsystem network block diagram.

2.2.1 Illustrative Example

In the case in which N = 2, the system network takes the simple form shown in Fig. 2.2.
In this case, we have w1 = d2 and w2 = d1. The gains of the subsystems, for y1 = y∗1 − ε1,
y2 = y∗2−ε2 are given by γ̃1 = δ(y∗1−ε1)/(α1−δ(y∗1−ε1)) and γ̃2 = δ(y∗2−ε2)/(α2−δ(y∗2−ε2)).
The gain matrix γ̃ = diag

(
(γ̃1, γ̃2)

)
and the interconnection matrix T = U − I, where U is

the unitary matrix, with ones in all elements and I is the identity matrix. The eigenvalues
of γ̃T are given by λ1 =

√
γ̃1γ̃2 and λ2 = −

√
γ̃1γ̃2. Then, ρ(γ̃T ) =

√
γ̃1γ̃2. As a consequence,

for a solution to Problem 1 to exist, it is sufficient that
√
γ̃1γ̃2 < 1. We next compute the

region of (1/k1, 1/k2) that ensures
√
γ̃1γ̃2 < 1.

To compute the feasible region, we first substitute (2.2) and (2.4) in (2.9)-(2.10), to obtain
these inequalities in terms of (1/k1, 1/k2)

γ̃1

(
u2

δ0
· 1

k2

)
+ γ̃1 ≤

(
u1

δ0
· 1

k1

)
≤ γ̂1

(
u2

δ0
· 1

k2

)
+ γ̂1 (2.15)

γ̃2

(
u1

δ0
· 1

k1

)
+ γ̃2 ≤

(
u2

δ0
· 1

k2

)
≤ γ̂2

(
u1

δ0
· 1

k1

)
+ γ̂2, (2.16)

where γ̃i is as defined in (2.7) and γ̂i is as defined in (2.8). Then, if γ̃1 and γ̃2 satisfy√
γ̃1γ̃2 < 1, we can compute the (1/k1, 1/k2) feasible region directly from the inequalities

(2.15)-(2.16), which is a linear program in the variables (1/k1, 1/k2).
One possible solution is shown in Fig.2.3 in terms of 1/k1 and 1/k2, that is, the polygon in

cyan contain all the points (1/k1, 1/k2) for which the specification given in (2.6) holds. What
we obtain is that inside the feasible region, we can decrease concurrently both k1 and k2, so
that d1 and d2 also will increase. This, in turn, implies that also p1, p2 will increase, keeping
on satisfying the specifications. On the other hand, on the boundaries of the feasible region,
we can decrease either k1 or k2, in order to preserve the satisfaction of the specifications.

2.2.2 General Solution to Problem 2

Now we consider the general case in which we have N subsystems and provide an algorithm
to determine the feasible region while allowing to change the tolerance εi. Suppose we have
a network composed of N subsystems, with prescribed outputs y∗i = p∗i , with fixed input
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Figure 2.3: Feasible region for 1/k1 and 1/k2, with r∗i = (1 1) [nM ], y∗i = (2 2) [nM ],
εi = 0.1y∗i = (0.2 0.2) [nM ], αi = (5.8 4.2) [nM/hr], δ = 1 [1/hr], δ0 = 0.05 [1/hr], which
yields γ̃i = (0.45 0.75) and γ̂i = (0.61 1.10).

ui = r∗i > 0 and tolerances εi, with γ̃i and γ̂i defined in (2.7) and (2.8), respectively, for fixed
parameter values αi, δ and δ0. Our goal is to find the feasible region for 1/ki, i ∈ {1, ..., N}.

In order to achieve this, we consider the inequalities in (2.9)-(2.10), as they describe the
feasible region. These inequalities are linear with respect to di since wi =

∑
j ̸=i dj, so we will

first compute the polygon that describes the feasible region for di, by computing its vertices,
then we use the linear relationship between di and 1/ki given in (2.4) to obtain the vertices
for the polygon that describes the 1/ki feasible region.

To do this, we solve the following linear system of equations

d = βTd+ β ⇐⇒ d = (I − βT )−1β, (2.17)

where β = (β1, . . . , βN), d = (d1, . . . , dN), β = diag(β) and T is as defined in (2.12). It is
important to note that the conditions from Theorem 1 guarantee that the matrix (I − βT )
is invertible. We define βi as having two possible values, γ̃i, as given in (2.7), or γ̂i, as given
in (2.8) for i ∈ {1, . . . , N}. We then solve (2.17) for all possible (β1, ..., βN) tuples such
that βi = γ̃i or βi = γ̂i. Then, to find the vertices for the 1/ki feasible region we use the
relationship 1/ki = δ0di/ui that comes from (2.4).

Next, to aid in the choice of the tolerance εi, we introduce a minimization problem that
returns suitable values εi, γ̃i and γ̂i, for fixed parameters αi, δ and δ0.
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Tolerance Minimization Problem

min
N∑
i=1

εi

s.t. εmin ≤ εi ≤ εmax

γ̃i =
δ(p∗i − εi)

αi − δ(p∗i − εi)

ρ(γ̃T ) < 1

To solve this minimization problem we use the YALMIP toolbox for MATLAB [25]. The
bounds on the tolerance εmin and εmax affect the size of the feasible region, which is useful
in practice as it is challenging to experimentally set the values of ki with precision. So, with
this in mind, we have introduced a lower bound on the tolerance εi, which, in turn, makes the
feasible region larger, i.e., provides a trade-off between performance and implementability of
the design.

2.3 APPLICATION EXAMPLES

Let us consider an example scenario, in which we have a network composed of N = 2
subsystems and show the effect of the minimum tolerance εmin on the feasible region. For
this, we will use the following parameters, the subsystem input and output r∗ = p∗ =
(9, 1) [nM ], the translation rate constant αi = (2, 0.5) [nM/hr], the decay rate constant
for the protein is δ = 0.0770 [1/hr] and for the mRNA δ0 = 0.0693 [1/hr]. Moreover, we
set the maximum tolerance εmax = 0.3p∗ = (2.7, 0.3) [nM ] and for the minimum tolerance
we test two different values, the first εmin = 0.1p∗ = (0.9, 0.1) [nM ] and the second εmin =
0.02p∗ = (0.18, 0.02) [nM ].

Fig.2.4 presents the (1/k1, 1/k2) feasible region for the two values of εmin. From the figure,
we see that changing this variable affects the size of the feasible region, but not its shape.
This occurs because as we increase εi we also decrease γ̃i and increase γ̂i. Decreasing γ̃i will
make the 1/ki coordinates of some of the vertices smaller (the ones closest to the origin in
the 1/ki axis). Increasing γ̂i will make the 1/ki coordinates of the remaining vertices larger
(the ones furthest from the origin in the 1/ki axis). Taken together, these result into the
observed increase in the size of the feasible region. We conclude that εmin is the parameter
to be adjusted if the feasible region is too small.

Now we consider another example scenario, where we have a network composed of N = 3
subsystems and we wish to maintain the outputs of all subsystems around the same value of
p∗ = (100, 100, 100) [nM ] with a minimum tolerance of εmin,i = 0.2p∗i = 20 [nM ] and a maxi-
mum tolerance of εmax,i = 0.3p∗i = 30 [nM ]. Moreover, the inputs r∗ = (100, 100, 100) [nM ],
the translation rate constant αi = (43, 89, 62) [nM/hr], the decay rate constant for the
protein is δ = 0.0770 [1/hr] and for the mRNA δ0 = 0.0693 [1/hr].

Solving the minimization problem, we obtain values for the tolerance εi, and the gains γ̃i
and γ̂i. Table 2.1 presents the values for these variables. Note that in this case the tolerance
is the same as the minimum tolerance specified, that is, the feasible region we will obtain can
be made smaller if the designer wishes and is able to implement the ki with greater precision.
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Figure 2.4: Feasible region for 1/ki with different values of εmin.

i 1 2 3
εi [nM ] 20 20 20

γ̃i 0.1673 0.0744 0.1103
γ̂i 0.2738 0.1159 0.1752

Table 2.1: εi tolerances, γ̃i and γ̂i gains for the case N = 3 subsystems example.

Furthermore, using (2.17) we can find the vertices of the (1/k1, 1/k2, 1/k3) feasible region
shown in Fig.2.5, where a plot of the (1/k1, 1/k2, 1/k3) feasible region is displayed.

Now we consider two modifications to this scenario, in the first one we want Σ3 to increase
its production to p∗3 = 300 [nM ] and in addition to this, in the second modification, we want
Σ2 to also increase its production to p∗2 = 275 [nM ]. Moreover, we perform these modifica-
tions while maintaining all other parameters at their nominal values, but the tolerances εmin

and εmax depend on the desired output values p∗i , so the relationships remain the same, but
the actual values change.

Fig.2.6 shows the effects of the modifications to the desired output levels in the feasible
region, where we can see that as we demand more protein production from the systems we
stretch the feasible region. This is due to the increase in p∗i , which makes γ̃i and γ̂i also
increase, causing an increase in the 1/ki coordinates of the vertices. This is especially true
for γ̂i, which sees the largest increase due to the fact that it depends on the sum of two
variables that have increased in value p∗i and εi.
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Figure 2.5: Feasible region for 1/k1, 1/k2 and 1/k3.

Figure 2.6: Feasible region for 1/k1, 1/k2 and 1/k3 for different desired output values p∗.
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Chapter 3

Production Degradation Resource Sharing

3.1 PROBLEM FORMULATION

Consider the following model for a network of N subsystems, shown in Figure 3.1, where
each subsystem Σi has dynamics described by

ṁi = ui − δ0mi

ṗi = αi
θimi

1+θimi+wi
− δpi − α′

i
θ′ipi

1+θ′ipi+w′
i

di = θimi

d′i = θ′ipi

yi = pi,

(3.1)

where θi ≥ 0, θ′i ≥ 0, i ∈ {1, . . . , N} are tunable parameters. Throughout this work we
assume that ui, αi, α

′
i > 0, i ∈ {1, . . . , N} and δ0, δ > 0. Additionally, wi and w′

i are state-
dependent disturbance inputs given by{

wi =
∑

j ̸=i dj

w′
i =

∑
j ̸=i d

′
j.

(3.2)

Here, each system Σi represents a genetic module, which transcribes mRNAmi and translates
protein pi. The translation rate of the protein pi depends also on the level of mRNAs mj with
j ̸= i due to ribosome sharing [22] and has been derived and experimentally validated in [15].
The decay rate of the protein, in addition to the dilution term δpi, includes a degradation
term, which arises from a protease, which is being shared by all modules. This model of
protease sharing was derived before in [26]. From an input/output system representation, we
can regard as (di, d

′
i) the“load”that system Σi is applying on the production and degradation

resources (ribosomes and proteases), while (wi, w
′
i) is the cumulative load on these resource

due to all systems except for Σi.
With this, for a fixed input ui = u∗

i , i ∈ {1, . . . , N}, we can write the steady state
equations for our subsystem as

Σi,ss :


mi =

u∗
i

δ0

0 = αi
di

1+di+wi
− δpi − α′

i
d′i

1+d′i+w′
i

yi = pi.

(3.3)
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Σi

ui yi
diwi

d′iw′
i

Figure 3.1: Block diagram representation of subsystem Σi.

From this, we obtain that the steady state output concentration yi is the solution to the
following system of equations

0 = αi
θiu

∗
i

δ0 +
∑N

j=1 θju
∗
j

− δyi − α′
i

θ′iyi

1 +
∑N

j=1 θ
′
jyj

, (3.4)

i ∈ {1, . . . , N}. Our goal is to choose parameters θ, θ′, such that, the steady state output yi
for each subsystem is close to a desired output concentration y∗i with tolerances εi > 0, i ∈
{1, . . . , N}.

Specification: Consider a fixed input ui = u∗
i , fixed desired output value y∗i , and fixed

tolerances εi ≥ 0, i = {1, . . . , N}. The specifications on the steady state of the network of
subsystems Σi given in (3.1) with interconnection rule (3.2) are given as

yi ∈ [y∗i − εi, y
∗
i + εi], i ∈ {1, ..., N}. (3.5)

Problem 3 (Feasibility). Given a network of N subsystems Σi of the form (3.1) and inter-
connection rule (3.2), with fixed input ui = u∗

i and a set S = Θ×Θ′, with Θ,Θ′ ⊆ RN
≥0, for

the nonnegative tunable parameters θi, θ
′
i. Determine if there exists (θi, θ

′
i) ∈ S,∀i, such that

yi, defined as the solution to (3.4), satisfies (3.5).

3.1.1 Equilibrium Point and Stability Analysis

Before we start tackling Problem 3, we analyze the number of equilibrium points of (3.1)
and their stability.

Lemma 3. The network of subsystems Σi, i ∈ {1, . . . , N}, with dynamics described by (3.1)
and interconnection rule (3.2), has a unique equilibrium point in the positive orthant.

Proof. Let x = [m1, . . . ,mN , p1, . . . , pN ], which allows us to rewrite our system in the follow-
ing form

ẋ = h(x, u) + λg(x)− Λx = fλ(x, u), (3.6)

where Λ = diag(δ0, . . . , δ0, δ, . . . , δ), λ ∈ [0, 1] and the vectors h(x, u) ∈ R2N and g(x) ∈ R2N

are defined as follows

{h(x, u)}i =

{
ui, if 1 ≤ i ≤ N

αi−N
θi−Nxi−N

1+
∑N

j=1 θjxj
, otherwise

, (3.7)

{g(x)}i =

 0, if 1 ≤ i ≤ N

−α′
i−N

θ′i−Nxi

1+
∑N

j=1 θ
′
jxj+N

, otherwise
. (3.8)
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Now we show that the system ẋ = f0(x) is bounded in the sense of Definition 7 in [27].
Consider the following energy like vector function E

{E}i =

 1
2

(
xi − ui

δ0

)2
, if 1 ≤ i ≤ N

1
2

(
xi − αi−N

δ

)2
, otherwise

, (3.9)

and its time derivative

{Ė}i =

{(
xi − ui

δ0

)
ẋi, if 1 ≤ i ≤ N(

xi − αi−N

δ

)
ẋi, otherwise

. (3.10)

Notice that for xi ≥ (ui/δ0) + ∆, i ∈ {1, . . . , N} and xi ≥ (αi/δ) + ∆, i ∈ {N + 1, . . . , 2N},
with ∆ > 0, we have

{Ė}i ≤

{
−δ0∆

2, if 1 ≤ i ≤ N

−δ∆2, otherwise
, (3.11)

thus, our state trajectories xi converge in finite time to the set xi ∈ [0, (ui/δ0) + ∆], i ∈
{1, . . . , N} and xi ∈ [0, (αi−N/δ) + ∆], i ∈ {N + 1, . . . , 2N}. Therefore, for each initial
condition, there exist M and T such that ∥x(t)∥ < M = max((ui/δ0) + ∆, (αi/δ) + ∆) for
all t > T , so ẋ = f0(x) is bounded in the sense of Definition 7 of [27].

Now fix the input ui = u∗
i , define the set Aλ = R2N

≥0 and compute the derivative of fλ(x)
with respect to x, which yields a matrix A composed of four sub-matrices A1, A2, A3, A4 ∈
RN×N as follows

A =

[
A1 A2

A3 A4

]
, (3.12)

where the sub-matrices A1, A2, A3, A4 ∈ RN×N are defined as follows

{A1}i,j =

{
−δ0, if i = j

0, if i ̸= j,
(3.13)

{A2}i,j = 0,∀i, j, (3.14)

{A3}i,j =


αi

θi(1+
∑

n̸=i(xnθn))
(1+

∑N
n=1(xnθn))

2 , if i = j

−αi
θj(xiθi)

(1+
∑N

n=1(xnθn))
2 , if i ̸= j,

(3.15)

{A4}i,j =


−δ − λα′

i

θ′i(1+
∑

n ̸=i(xn+Nθ′n))
(1+

∑N
n=1(xn+Nθ′n))

2 , if i = j

λα′
i

θ′j(xi+Nθ′i)
(1+

∑N
n=1(xn+Nθ′n))

2 , if i ̸= j.
(3.16)

The sub-matrix −A4 is a Z-matrix, as all elements of the off-diagonal of −A4 are non-
positive, that is, {−A4} ≤ 0,∀i ̸= j. Further, (−A4)

⊤D, with D = diag(1/α′
1, . . . , 1/α

′
N), is

strictly diagonally dominant, that is, the row sum, for all rows of (−A4)
⊤D, is positive. With

this, by Theorem 2.3 in Chapter 6 of [28] condition (I29), (−A4)
⊤ is a nonsingular M -matrix

for any λ ∈ [0, 1] and x ∈ Aλ.
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Since A is a block lower triangular matrix, its determinant det(A) = det(A1) det(A4) ̸= 0
for any λ ∈ [0, 1] and x ∈ Aλ, as det(A1) = (−δ0)

N and A4 is a nonsingular M -matrix. Also
observe that h(x) has no zeros on the boundary of the positive orthant and g(x) is mass
dissipating in the sense of Definition 8 in [27]. With this, by Theorem 10 of [27] we know
that the system in (3.6) with λ = 1 has the same number of equilibrium points as the system
with λ = 0.

System (3.6) with λ = 0 and fixed input ui = u∗
i gives us

ṁi = u∗
i − δ0mi (3.17)

ṗi = αi
θimi

1 +
∑N

j=1 θjmj

− δpi. (3.18)

Computing the equilibrium point for this system yields equilibrium mRNA concentration
mi,eq = u∗

i /δ0, which we substitute on the second equation yielding the unique solution

pi,eq =
αi

δ

θiu
∗
i

δ0 +
∑N

j=1 θju
∗
j

. (3.19)

Therefore, system (3.6) with λ = 0 has a unique equilibrium point in the positive orthant,
implying by Theorem 10 of [27] that system (3.6) with λ = 1, that is, system (3.1), also has
a unique equilibrium point in the positive orthant.

Lemma 4. The equilibrium point of the network of subsystems Σi, i ∈ {1, . . . , N}, with dy-
namics described by (3.1) and interconnection rule (3.2), is locally asymptotically stable for
all parameter values.

Proof. We first define the state ξ = [(m1−m1,e), . . . , (mN−mN,e), (p1−p1,e), . . . , (pN−pN,e)],
where mi,e is the mRNA concentration equilibrium point and pi,e is the protein concentration
equilibrium point. Then we linearize the system at its equilibrium, yielding

ξ̇ = Aξ, (3.20)

where the matrix A is composed of four sub-matrices A1, A2, A3, A4 ∈ RN×N as follows

A =

[
A1 A2

A3 A4

]
, (3.21)

where the sub-matrices A1, A2, A3, A4 ∈ RN×N are defined as follows

{A1}i,j =

{
−δ0, if i = j

0, if i ̸= j,
(3.22)

{A2}i,j = 0,∀i, j, (3.23)

{A3}i,j =


αi

θi(1+
∑

n ̸=i(mn,eθn))
(1+(mi,eθi)+

∑
n ̸=i(mn,eθn))

2 , if i = j

−αi
θj(mi,eθi)

(1+(mi,eθi)+
∑

n ̸=i(mn,eθn))
2 , if i ̸= j,

(3.24)

{A4}i,j =


−δ − α′

i

θ′i(1+
∑

n ̸=i(pn,eθ′n))
(1+(pi,eθ′i)+

∑
n ̸=i(pn,eθ′n))

2 , if i = j

α′
i

θ′j(pi,eθ′i)
(1+(pi,eθ′i)+

∑
n ̸=i(pn,eθ′n))

2 , if i ̸= j.
(3.25)
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Moreover, the sub-matrix −A4 is a Z-matrix, as all the off-diagonal elements of −A4 are
nonpositive, that is, {−A4} ≤ 0,∀i ̸= j, and additionally, (−A4)

⊤D, with D = diag(1/α′
1,

. . . , 1/α′
N), is strictly diagonally dominant. With this, by Theorem 2.3 in Chapter 6 of

[28] condition (I29), (−A4)
⊤ is a nonsingular M -matrix. Furthermore, condition (G20) of

Theorem 2.3 in Chapter 6 of [28] states that the eigenvalues of (−A4)
⊤ have positive real

part. We know that −A4 has the same eigenvalues as (−A4)
⊤, which implies that all the

eigenvalues of A4 have negative real part. Since A is a lower block triangular matrix due
to A2 having all entries equal to zero, its eigenvalues are the union of the eigenvalues of
A1 and A4. The eigenvalues of A1 are all equal to −δ0 and all of the eigenvalues of A4

have negative real part, so we can conclude that all the eigenvalues of A have negative real
part. Therefore, the equilibrium point of the network of subsystems Σi, i ∈ {1, . . . , N}, with
dynamics described by (3.1) and interconnection rule (3.2), is locally asymptotically stable
for all parameter values.

Theorem 2. The network of N subsystems Σi with dynamics described by (3.1) and inter-
connection rule (3.2), with fixed input ui = u∗

i has steady state protein output yi that satisfies
the specification in (3.5) for some θi ≥ 0, θ′i ≥ 0, if and only if, the same system has steady
state protein output yi that satisfies the specification in (3.5) for some θi ≥ 0, θ′i = 0.

Proof. First we show that if there exists a network with N subsystems and steady state
protein output yi which satisfies (3.5) for some θi ≥ 0, θ′i ≥ 0, then the same systems with
some θi ≥ 0, θ′i = 0 have yi which satisfies (3.5). Suppose there exists θi ≥ 0 and θ′i ≥ 0,∀i,
such that, the steady state protein concentration yi, defined as the solution to (3.4) satisfies
the specification in (3.5). From (3.4) we have

yi
αi

=
1

δ

(
θiu

∗
i

δ0 +
∑N

k=1 θku
∗
k

− (αiθ
′
iyi/α

′
i)

1 +
∑N

k=1 θ
′
kyk

)
, (3.26)

which substituted into (1/δ)−
∑N

k=1(yk/αk), results in

1

δ

(
1−

N∑
i=1

(
θiu

∗
i

δ0 +
∑N

k=1 θku
∗
k

− (αiθ
′
iyi/α

′
i)

1 +
∑N

k=1 θ
′
kyk

))
= (3.27)

δ0 +
∑N

k=1 θku
∗
k −

∑N
i=1 θiu

∗
i

δ
(
δ0 +

∑N
k=1 θku

∗
k

) +

∑N
i=1 (αiθ

′
iyi/α

′
i)

δ
(
1 +

∑N
k=1 θ

′
kyk

) = (3.28)

δ0

δ
(
δ0 +

∑N
k=1 θku

∗
k

) +

∑N
i=1 (αiθ

′
iyi/α

′
i)

δ
(
1 +

∑N
k=1 θ

′
kyk

) > 0. (3.29)

So (1/δ) −
∑N

k=1(yk/αk) > 0. Then the same value of yi can be achieved for θ′i = 0 with
θi = θ∗i ≥ 0,∀i defined as follows

θ∗i =
δ0yi

αiu∗
i

(
1
δ
−
∑N

j=1
yj
αj

) ,∀i. (3.30)
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This can be verified by substituting θ′i = 0, θi = θ∗i ,∀i into (3.4), yielding

αi
θ∗i u

∗
i

δ0 +
∑N

j=1 θ
∗
ju

∗
j

− δyi =

δ0yi
δ0
δ
−
∑N

k=1
δ0yk
αj

+
∑N

j=1
δ0yj
αj

− δyi = δyi − δyi = 0. (3.31)

Therefore, if the network of N subsystems Σi has steady state protein output yi with θ′i ≥ 0,
then the same network can achieve steady state protein output yi with θ′i = 0 and θi = θ∗i .

We conclude the proof by noting that if there exists a network with N subsystems has
steady state protein output yi which satisfies (3.5) for some θi ≥ 0, θ′i = 0, then the same
network has yi which satisfies (3.5) with the same θi ≥ 0, θ′i = 0 ≥ 0.

3.1.2 Input-Output Characteristics

Since our network of N subsystems Σi has a unique and stable equilibrium point for a fixed
input ui = u∗

i , i ∈ {1, . . . , N}, we can define the input-output steady state characteristics
for this network. Moreover, with Theorem 2 we have that the feasibility of a specification
(3.5) for a network with θ, θ′ ≥ 0 is tied to the feasibility of that specification for the same
network but with θ ≥ 0, θ′ = 0. So, we define the input-output characteristics for the system
with θ′i = 0, i ∈ {1, . . . , N}. For a fixed value of yi, i ∈ {1, . . . , N}, (3.3) allows us to derive
the following steady state I/O map

di = γi(1 + wi), (3.32)

where γi are the wi to di system’s gains defined as follows

γi =
δyi

αi − δyi
. (3.33)

This steady state I/O map describes how a change in the disturbance inputs wi affects the
disturbance outputs di when yi is held constant. With this we define the constant gains γ̃i
and γ̂i as follows

γ̃i =
δ(y∗i − εi)

αi − δ(y∗i − εi)
, (3.34)

γ̂i =
δ(y∗i + εi)

αi − δ(y∗i + εi)
. (3.35)

3.2 PROBLEM SOLUTION

Let w = [w1, . . . , wN ]
⊤ and d = [d1, . . . , dN ]

⊤, then (3.2) implies

w = Td, (3.36)
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with the interconnection matrix T ∈ RN×N defined as

{T}i,j =

{
0, if i = j

1, if i ̸= j.
(3.37)

Moreover, (3.32) can be written in matrix form as

d = γ + Γw, (3.38)

where γ = [γ1, . . . , γN ]
⊤ and the matrix Γ ∈ RN×N is defined as follows

{Γ}i,j =

{
γi, if i = j

0, if i ̸= j.
(3.39)

Now let yi = y∗i − εi, i ∈ {1, . . . , N}, and define the gain vector γ̃ = [γ̃1, . . . , γ̃N ]
⊤ and

matrix Γ̃ ∈ RN×N as follows

{Γ̃}i,j =

{
γ̃i, if i = j

0, if i ̸= j.
(3.40)

The following Theorem provides sufficient and necessary conditions for the existence of
θi ≥ 0, θ′i = 0 such that a network of N subsystems Σi has steady state output protein
concentration yi that satisfies the specification given in (3.5).

Theorem 3. Let Γ̃ be the gain matrix defined in (3.40), T be the interconnection matrix
defined in (3.37) and θ′i = 0. There exist θi ≥ 0 such that yi, defined as the solution to (3.4),
satisfies (3.5) if and only if ρ(Γ̃T ) < 1.

Proof. We start by showing that ρ(Γ̃T ) < 1 implies that there exists θi ≥ 0, i ∈ {1, . . . , N}
such that the steady state protein output yi satisfies the specification (3.5). LetM = (I−Γ̃T )
and note that {Γ̃T}i,j ≥ 0, ∀i ̸= j. With this, from Theorem 3.11 in Chapter 6 of [28], M
is nonsingular and {M−1}i,j ≥ 0 if and only if ρ(Γ̃T ) < 1. Now let d∗ = (I − Γ̃T )−1γ̃ and
since both (I − Γ̃T )−1 and γ̃ are element wise nonnegative from its definition, then d∗ ≥ 0.
Consider the following system of inequalities

di ≥ γ̃i(1 + wi) (3.41)

di ≤ γ̂i(1 + wi), (3.42)

where γ̃ is defined as in (3.34) and γ̂ is defined as in (3.35), along with di ≥ 0 and (3.2).
Using matrices (3.37) and (3.40), the constrains in (3.41) can be written as follows

(I − Γ̃T )d ≥ γ̃. (3.43)

Substituting d = d∗ in (3.41) yields

(I − Γ̃T )d∗ = (I − Γ̃T )(I − Γ̃T )−1γ̃ = γ̃. (3.44)

So inequality (3.41) in matrix form holds with d = d∗ ≥ 0. Now choose d = d∗. Consider
the quantity

(1 + wi)(γ̂i − γ̃i). (3.45)
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Since wi ≥ 0 and γ̂i ≥ γ̃i by definition, then the above quantity is always nonnegative and
thus (3.42) is satisfied by d = d∗. With this, by Lemma 2 in [23] we have that satisfying the
specification (3.5) is equivalent to satisfying (3.41)-(3.42).

Now we show that the existence of θi ≥ 0,∀i, such that, the steady state protein output
yi that satisfies the specification (3.5), implies that ρ(Γ̃T ) < 1. We first show that (1/δ) −∑N

k=1(y
∗
k − εk)/αk > 0. Substituting yi = y∗i − εi in (3.4), with θ′i = 0, yields

y∗i − εi
αi

=
1

δ

θiu
∗
i

δ0 +
∑N

k=1 θku
∗
k

, (3.46)

and substituting this expression into (1/δ)−
∑N

k=1(y
∗
k − εk)/αk results in

1

δ

(
1−

N∑
i=1

θiu
∗
i

δ0 +
∑N

k=1 θku
∗
k

)
=

δ0 +
∑N

k=1 θku
∗
k −

∑N
i=1 θiu

∗
i

δ
(
δ0 +

∑N
k=1 θku

∗
k

) =

δ0

δ
(
δ0 +

∑N
k=1 θku

∗
k

) > 0. (3.47)

Let A = I + Γ̃, v = [−1, . . . ,−1]⊤, so M = (A + γ̃v⊤), where if 1 + v⊤A−1γ̃ ̸= 0 we can
use the Sherman-Morrison formula to compute the inverse [29]. We have that 1+ v⊤A−1γ̃ =
(1/δ)−

∑N
k=1(y

∗
k − εk)/αk > 0, so the inverse of M exists and is given by

(A+ γ̃v⊤)−1 = A−1 − A−1γ̃vA−1

1 + v⊤A−1γ̃
, (3.48)

which yields

{M−1}i,j =


1

1+γ̃i
+ 1

1
δ
−
∑N

k=1

y∗
k
−εk
αk

γ̃i
(1+γ̃i)2

, if i = j

1
1
δ
−
∑N

k=1

y∗
k
−εk
αk

γ̃i
(1+γ̃i)(1+γ̃j)

, if i ̸= j
. (3.49)

From above {M−1}i,j ≥ 0 and by Theorem 3.11 in Chapter 6 of [28], we have that ρ(Γ̃T ) <
1. Therefore, if there exists θi ≥ 0 such that yi is the solution to (3.4) and satisfies the
specification (3.5), then ρ(Γ̃T ) < 1.

Corollary 1. Given a network of N subsystems of the form (3.1) and interconnection rule
(3.2), with fixed input ui = u∗

i , i ∈ {1, . . . , N}. Then ρ(Γ̃T ) < 1 if and only if there exists
θi ≥ 0, θ′i ≥ 0, i ∈ {1, . . . , N}, such that, the steady state protein concentration yi, defined as
the solution to (3.4), satisfies the specification in (3.5).

Proof. By Theorem 3 we have that there exists θi ≥ 0, θ′i = 0, i ∈ {1, . . . , N} such that a
network of N subsystems Σi has steady state output protein concentration yi which satisfies
the specification in (3.5) if and only if ρ(Γ̃T ) < 1. Additionally, by Theorem 2 we have
that there exists θi ≥ 0, θ′i = 0, i ∈ {1, . . . , N} such that a network of N subsystems Σi has
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steady state output protein concentration yi which satisfies the specification in (3.5) if and
only if there exists θi ≥ 0, θ′i ≥ 0, i ∈ {1, . . . , N} such that the same network has steady
state output protein concentration yi which satisfies the specification in (3.5). Therefore,
there exists θi ≥ 0, θ′i ≥ 0, i ∈ {1, . . . , N} such that a network of N subsystems Σi has steady
state output protein concentration yi which satisfies the specification in (3.5) if and only if
ρ(Γ̃T ) < 1 is satisfied.

We will now present a result that relates the spectral radius of Γ̃T to an inequality that
is easy to check.

Theorem 4. Let Γ̃ be the gain matrix defined in (3.40) and T be the interconnection matrix
defined in (3.37). Then ρ(Γ̃T ) < 1 if and only if the inequality

1

δ
−

N∑
j=1

y∗j − εj

αj

> 0, (3.50)

is satisfied

Proof. Let A = I+Γ̃, v = [−1, . . . ,−1]⊤, so M = (A+ γ̃v⊤) and from the Sherman-Morrison
formula, if 1 + v⊤A−1γ̃ ̸= 0, M is invertible and the inverse is given by [29]

(A+ γ̃v⊤) = A−1 − A−1γ̃vA−1

1 + v⊤A−1γ̃
, (3.51)

which yields

{M−1}i,j =


1

1+γ̃i
+ 1

1
δ
−
∑N

k=1

y∗
k
−εk
αk

γ̃i
(1+γ̃i)2

, if i = j

1
1
δ
−
∑N

k=1

y∗
k
−εk
αk

γ̃i
(1+γ̃i)(1+γ̃j)

, if i ̸= j
. (3.52)

If (3.50) is satisfied, then 1 + v⊤A−1γ̃ = 1
δ
−
∑N

j=1

y∗j−εj

αj
̸= 0, and so M is nonsingular and

{M−1}i,j ≥ 0 by (3.52) and the fact that γ̃i ≥ 0. On the other hand, if M is nonsingular and

{M−1}i,j ≥ 0, then from (3.52) we have that 1
δ
−
∑N

j=1

y∗j−εj

αj
> 0. Therefore, M is nonsingular

and {M−1}i,j ≥ 0 if and only if (3.50) is satisfied. From Theorem 3.11 in Chapter 6 of [28],
M is nonsingular and {M−1}i,j ≥ 0 if and only if ρ(Γ̃T ) < 1. Thus, ρ(Γ̃T ) < 1 if and only if
(3.50) is satisfied.

Corollary 2. Consider a network of N subsystems of the form (3.1) and interconnection rule
(3.2), with fixed input ui = u∗

i , i ∈ {1, . . . , N}. We have that the inequality

1

δ
−

N∑
j=1

y∗j − εj

αj

> 0 (3.53)

is satisfied if and only if there exists θi ≥ 0, θ′i ≥ 0, i ∈ {1, . . . , N}, such that, the steady state
protein concentration yi, defined as the solution to (3.4), satisfies the specification in (3.5).
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Proof. By Corollary 1 there exists θi ≥ 0, θ′i ≥ 0, i ∈ {1, . . . , N} such that a network of N
subsystems Σi has steady state output protein concentration yi which satisfies the specifi-
cation in (3.5) if and only if ρ(Γ̃T ) < 1. By Theorem 4 we have that ρ(Γ̃T ) < 1 if and
only if (3.50) is satisfied. Therefore, there exists θi ≥ 0, θ′i ≥ 0, i ∈ {1, . . . , N} such that a
network of N subsystems Σi has steady state output protein concentration yi which satisfies
the specification in (3.5) if and only if if and only if the inequality

1

δ
−

N∑
j=1

y∗j − εj

αj

> 0, (3.54)

is satisfied.

3.3 APPLICATION EXAMPLE

In this section, we consider two different examples. In the first example we use Corollary 2
to obtain the achievable region for the steady state protein output concentration y∗i for two
systems, one with N = 2 and the other with N = 3 subsystems Σi, both with fixed tolerance
εi = 0, i ∈ {1, . . . , N} and different values for α. Then in the second example, we choose
the tunable parameters θi > 0 and θ′i = 0 and compute the steady state protein output
concentration yi for some fixed input ui = u∗

i in a network with N = 2 subsystems Σi. Then
we use this yi value and the system parameters to numerically verify that ρ(Γ̃T ) < 1 as
established by Corollary 1 and that inequality (3.50) is satisfied as established by Corollary
2. We then expand this example by computing the feasible region for the θ parameters for
fixed θ′.

In this first example, we can use inequality (3.50), as established by Corollary 2, to
obtain the achievable set of desired steady state protein concentrations. That is, the region
of values of y∗ that can be achieved with fixed tolerance εi = 0, i ∈ {1, . . . , N}, for systems
with different number of subsystems and different values for α. Consider a network of N = 2
subsystems, Figure 3.2 presents the achievable region for the desired steady state protein
output y∗ with different values of α. Now considering a network of N = 3 subsystems,
Figure 3.3 presents the achievable for y∗ region with different values of α. Notice that the
achievable set presented in Figure 3.2 appears in the plane (y∗1, y

∗
2) when y∗3 = 0 in Figure

3.3, due to subsystems Σ1 and Σ2 having the same α1 and α2. Moreover, as we increase y∗3,
the achievable set in the y∗1, y

∗
2 plane reduces in size, showing that increasing the number

of subsystems Σi or demanding more output from one of these subsystems, reduces the
achievable set for the other system outputs.

For the second example, we consider the case where we have a network of N = 2 subsys-
tems Σi. To this end, we consider the following parameter values for our subsystems. We let
the fixed input and desired output u∗ = y∗ = [10, 20]⊤ nM, the tolerance ε = [1, 1]⊤ nM, the
translation rate constant α = [50, 50]⊤ nM/hr, the degradation rate constant α′ = [10, 10]⊤

nM/hr, the dilution rate constant for the protein δ = 1 hr−1 and for the mRNA δ0 = 1 hr−1.
With these values, if we choose θ = [0.05, 0.05]⊤ nM−1 and θ′ = [0, 0]⊤ nM−1 we obtain
exactly the desired output y∗ using the specified input u∗. So, the specification (3.5) with
εi = 0, i ∈ {1, . . . , N} is satisfied. Since the specification can be satisfied, we can validate
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Figure 3.2: Achievable region for the desired steady state output protein concentration y∗

with δ = 1 hr−1 and different values of α nM/hr.

our feasibility checks from Corollary 1

ρ
(
Γ̃T
)
= ρ

(
0.0000 0.0220
0.0306 0.0000

)
= 0.0259 < 1, (3.55)

and from Corollary 2

1

δ
−

2∑
j=1

y∗j − εj

αj

= 1− 1

5
− 2

5
=

2

5
> 0. (3.56)

Observe that both feasibility checks show that the specification is feasible.
Now we are interested in designing the θ, θ′ tunable parameters to meet a given speci-

fication, which is a computationally difficult task, which we simplify by fixing the value of
θ′i, i ∈ {1, . . . , N}. To this end, we state a method to calculate θi, i ∈ {1, . . . , N} as a function
of θ′i and yi, i ∈ {1, . . . , N}, where we assume that yi is such that (1/δ)−

∑N
i=1(yi+β′

i)/αi > 0.
We define the quantities β′

i as follows

β′
i =

α′
iθ

′
iyi

δ
(
1 + θ′iyi +

∑
j ̸=i θ

′
jyj

) . (3.57)

Fixing the values of yi, i ∈ {1, . . . , N} fixes the values of β′
i, i ∈ {1, . . . , N}, and thus one can

use (3.3) to derive the modified steady state I/O map

di = γ†
i (1 + wi), (3.58)
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Figure 3.3: Achievable region for the desired steady state output protein concentration y∗with
δ = 1 hr−1 and different values of α nM/hr.

where γ†
i is defined as follows

γ†
i =

δ(yi + β′
i)

αi − δ(yi + β′
i)
. (3.59)

With this, (3.58) can be rewritten in matrix form as

(I − Γ†T )d = γ†, (3.60)

where γ† = [γ†
1, . . . , γ

†
N ], T is as defined in (3.37) and Γ† = diag(γ†). Let A = I + Γ†,

v = [−1, . . . ,−1]⊤, so M = (I − Γ†T ) = (A + γ†v⊤). Since this procedure only consider yi,
such that (1+ v⊤A−1γ†) = (1/δ)−

∑N
i=1(yi+β′

i)/αi > 0, then the inverse of (I−Γ†T ) exists
and is given by [29]

(A+ γ†v⊤)−1 = A−1 − A−1γ†vA−1

1 + v⊤A−1γ† . (3.61)

This yields

{M−1}i,j =


1

1+γ†
i

+ 1

1
δ
−
∑N

k=1

ykβ′
k

αk

γ†
i

(1+γ†
i )

2
, if i = j

1

1
δ
−
∑N

k=1

ykβ′
k

αk

γ†
i

(1+γ†
i )(1+γ†

j )
, if i ̸= j.

(3.62)

Calculating di using d = (I − Γ†T )−1γ† and recalling that di = u∗
i θi/δ0, we finally obtain

θi =
δ0 (yi + β′

i)

αiu∗
i

(
1
δ
−
∑N

j=1

(
yj+β′

j

αj

)) . (3.63)

36



Figure 3.4: Feasible region for θ tunable parameters with different values of θ′∗.

Note that θi ≥ 0 since (1/δ)−
∑N

i=1(yi+β′
i)/αi > 0. We note that (3.63) was derived using the

modified I/O map given in (3.60). It can be verified that substituting the θi values obtained
from (3.63) into (3.3) yields the fixed values yi as the system’s steady state, which justifies
(3.63). With this, computing the θ feasible region can be numerically done by utilizing the
map (3.63) from the protein yi space to the θi space, for yi ∈ [y∗i − εi, y

∗
i + εi], i ∈ {1, . . . , N}

and yi such that (1/δ)−
∑N

i=1(yi + β′
i)/αi > 0.

Figure 3.4 presents the boundary of the θ parameter feasible region for multiple values
of θ′i = θ′∗, i ∈ {1, . . . , N}, computed using (3.63). To achieve this, we have sampled the
specification in the y space, then numerically computed (θ1, θ2) using (3.63) and finally
plotted just the boundary obtained in the θ space. This shows that including degradation
affects the θ tunable parameter feasible region, moving it towards larger values and also
increasing its area.
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Chapter 4

Multiplexed Bio-sensing

4.1 PROBLEM FORMULATION

Lets start by considering a network of subsystems Σi with the following form

Σi :


ṁi = ui − δ0mi − α′

i
θ′imi

1+
∑N

j=1 θ
′
jmj

ṗi = αi
θimi

1+
∑N

j=1 θjmj
− δpi

yi = pi.

(4.1)

Here, each subsystem Σi represents again a genetic module, which transcribes mRNA mi

and translates protein pi. The transcription rate of the mRNA mi is equal to the input
promoter concentration ui. Now we separate dilution and degradation, where the term
δ0mi represents the dilution and the remaining term is the degradation, where the amount
degraded is dependent also on the level of mRNAs mj with j ̸= i due to RNase sharing.
Moreover, we model RNase degradation as an enzymatic reaction, similarly to the protease
degradation, which was introduced in the previous chapter. The translation rate of the
protein pi depends also on the level of mRNAs mj with j ̸= i due to ribossome sharing. The
decay rate of the protein lumps together degradation and dilution into the term δpi.

With this, for a fixed input ui = u∗
i the system steady state is given by

Σi,ss :


0 = ui − δ0mi − α′

i
θ′imi

1+
∑N

j=1 θ
′
jmj

0 = αi
θimi

1+
∑N

j=1 θjmj
− δpi

yi = pi.

(4.2)

4.1.1 Equilibrium Point and Stability Analysis

We start by analyzing the number of equilibrium points of (4.1) and their stability.

Lemma 5. The network of subsystems Σi, i ∈ {1, . . . , N}, with dynamics described by (4.1)
has a unique equilibrium point in the positive orthant.
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Proof. Let x = [m1, . . . ,mN , p1, . . . , pN ], which allows us to rewrite our system in the follow-
ing form

ẋ = h(x, u) + λg(x)− Λx = fλ(x, u), (4.3)

where Λ = diag(δ0, . . . , δ0, δ, . . . , δ), λ ∈ [0, 1] and the vectors h(x, u) ∈ R2N and g(x) ∈ R2N

are defined as follows

{h(x, u)}i =

{
ui, if 1 ≤ i ≤ N

αi−N
θi−Nxi−N

1+
∑N

j=1 θjxj
, otherwise

, (4.4)

{g(x)}i =

{
−α′

i
θ′ixi

1+
∑N

j=1 θ
′
jxj

, if 1 ≤ i ≤ N

0, otherwise
. (4.5)

Now we show that the system ẋ = f0(x) is bounded in the sense of Definition 7 in [27].
Consider the following energy like vector function E

{E}i =

 1
2

(
xi − ui

δ0

)2
, if 1 ≤ i ≤ N

1
2

(
xi − αi−N

δ

)2
, otherwise

, (4.6)

and its time derivative

{Ė}i =

{(
xi − ui

δ0

)
ẋi, if 1 ≤ i ≤ N(

xi − αi−N

δ

)
ẋi, otherwise

. (4.7)

Notice that for xi ≥ (ui/δ0) + ∆, i ∈ {1, . . . , N} and xi ≥ (αi/δ) + ∆, i ∈ {N + 1, . . . , 2N},
with ∆ > 0, we have

{Ė}i ≤

{
−δ0∆

2, if 1 ≤ i ≤ N

−δ∆2, otherwise
, (4.8)

thus, our state trajectories xi converge in finite time to the set xi ∈ [0, (ui/δ0) + ∆], i ∈
{1, . . . , N} and xi ∈ [0, (αi−N/δ) + ∆], i ∈ {N + 1, . . . , 2N}. Therefore, for each initial
condition, there exist M and T such that ∥x(t)∥ < M = max((ui/δ0) + ∆, (αi/δ) + ∆) for
all t > T , so ẋ = f0(x) is bounded in the sense of Definition 7 of [27].

Now fix the input ui = u∗
i , define the set Aλ = R2N

≥0 and compute the derivative of fλ(x)
with respect to x, which yields a matrix A composed of four sub-matrices A1, A2, A3, A4 ∈
RN×N as follows

A =

[
A1 A2

A3 A4

]
, (4.9)
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where the sub-matrices A1, A2, A3, A4 ∈ RN×N are defined as follows

{A1}i,j =


−δ0 − λα′

i

θ′i(1+
∑

n ̸=i(xnθ′n))
(1+

∑N
n=1(xnθ′n))

2 , if i = j

λα′
i

θ′j(xiθ
′
i)

(1+
∑N

n=1(xnθ′n))
2 , if i ̸= j,

(4.10)

{A2}i,j = 0,∀i, j, (4.11)

{A3}i,j =


αi

θi(1+
∑

n̸=i(xnθn))
(1+

∑N
n=1(xnθn))

2 , if i = j

−αi
θj(xiθi)

(1+
∑N

n=1(xnθn))
2 , if i ̸= j,

(4.12)

{A4}i,j =

{
−δ, if i = j

0, if i ̸= j.
(4.13)

The sub-matrix −A1 is a Z-matrix, as all elements of the off-diagonal of −A1 are non-
positive, that is, {−A1} ≤ 0,∀i ̸= j. Further, (−A1)

⊤D, with D = diag(1/α′
1, . . . , 1/α

′
N), is

strictly diagonally dominant, that is, the row sum, for all rows of (−A1)
⊤D, is positive. With

this, by Theorem 2.3 in Chapter 6 of [28] condition (I29), (−A1)
⊤ is a nonsingular M -matrix

for any λ ∈ [0, 1] and x ∈ Aλ.
Since A is a block lower triangular matrix, its determinant det(A) = det(A1) det(A4) ̸= 0

for any λ ∈ [0, 1] and x ∈ Aλ, as det(A4) = (−δ)N and A1 is a nonsingular M -matrix. Also
observe that h(x) has no zeros on the boundary of the positive orthant and g(x) is mass
dissipating in the sense of Definition 8 in [27]. With this, by Theorem 10 of [27] we know
that the system in (4.3) with λ = 1 has the same number of equilibrium points as the system
with λ = 0.

System (4.3) with λ = 0 and fixed input ui = u∗
i gives us

ṁi = u∗
i − δ0mi (4.14)

ṗi = αi
θimi

1 +
∑N

j=1 θjmj

− δpi. (4.15)

Computing the equilibrium point for this system yields equilibrium mRNA concentration
mi,eq = u∗

i /δ0, which we substitute on the second equation yielding the unique solution

pi,eq =
αi

δ

θiu
∗
i

δ0 +
∑N

j=1 θju
∗
j

. (4.16)

Therefore, system (4.3) with λ = 0 has a unique equilibrium point in the positive orthant,
implying by Theorem 10 of [27] that system (4.3) with λ = 1, that is, system (4.1), also has
a unique equilibrium point in the positive orthant.

Lemma 6. The equilibrium point of the network of subsystems Σi, i ∈ {1, . . . , N}, with dy-
namics described by (4.1) is locally asymptotically stable for all parameter values.

Proof. We first define the state ξ = [(m1−m1,e), . . . , (mN−mN,e), (p1−p1,e), . . . , (pN−pN,e)],
where mi,e is the mRNA concentration equilibrium point and pi,e is the protein concentration
equilibrium point. Then we linearize the system at its equilibrium, yielding

ξ̇ = Aξ, (4.17)
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where the matrix A is composed of four sub-matrices A1, A2, A3, A4 ∈ RN×N as follows

A =

[
A1 A2

A3 A4

]
, (4.18)

where the sub-matrices A1, A2, A3, A4 ∈ RN×N are defined as follows

{A1}i,j =


−δ0 − α′

i

θ′i(1+
∑

n ̸=i(mn,eθ′n))
(1+(mi,eθ′i)+

∑
n ̸=i(mn,eθ′n))

2 , if i = j

α′
i

θ′j(mi,eθ
′
i)

(1+(mi,eθ′i)+
∑

n ̸=i(mn,eθ′n))
2 , if i ̸= j,

(4.19)

{A2}i,j = 0,∀i, j, (4.20)

{A3}i,j =


αi

θi(1+
∑

n ̸=i(mn,eθn))
(1+(mi,eθi)+

∑
n ̸=i(mn,eθn))

2 , if i = j

−αi
θj(mi,eθi)

(1+(mi,eθi)+
∑

n̸=i(mn,eθn))
2 , if i ̸= j,

(4.21)

{A4}i,j =

{
−δ, if i = j

0, if i ̸= j.
(4.22)

Moreover, the sub-matrix −A1 is a Z-matrix, as all the off-diagonal elements of −A1 are
nonpositive, that is, {−A1} ≤ 0,∀i ̸= j, and additionally, (−A1)

⊤D, with D = diag(1/α′
1,

. . . , 1/α′
N), is strictly diagonally dominant. With this, by Theorem 2.3 in Chapter 6 of [28]

condition (I29), (−A1)
⊤ is a nonsingularM -matrix. Furthermore, condition (G20) of Theorem

2.3 in Chapter 6 of [28] states that the eigenvalues of (−A1)
⊤ have positive real part. We

know that −A1 has the same eigenvalues as (−A1)
⊤, which implies that all the eigenvalues

of A1 have negative real part. Since A is a lower block triangular matrix due to A2 having
all entries equal to zero, its eigenvalues are the union of the eigenvalues of A1 and A4. The
eigenvalues of A4 are all equal to −δ and all of the eigenvalues of A1 have negative real part,
so we can conclude that all the eigenvalues of A have negative real part. Therefore, the
equilibrium point of the network of subsystems Σi, i ∈ {1, . . . , N}, with dynamics described
by (4.1), is locally asymptotically stable for all parameter values.

Theorem 5 (Achievable Point). Given a network of subsystems Σi of the form (4.1), with
fixed input ui = u∗

i . Then

1

δ
−

N∑
j=1

y∗i
αi

> 0, (4.23)

if and only if y∗i ,∀i is achievable, that is, there exists θi, θ
′
i ≥ 0,∀i such that steady state

output protein concentration yi = y∗i ,∀i.

Proof. First we show that (4.23) implies that there exists θi, θ
′
i ≥ 0,∀i such that steady state

output protein concentration yi = y∗i ,∀i. Let θ′i = 0 and θi = θ∗i ,∀i, with θ∗i defined as
follows

θ∗i =
δ0y

∗
i

αiu∗
i

(
1
δ
−
∑N

j=1

y∗j
αj

) . (4.24)
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Observe that θ∗i ≥ 0 if and only if (4.23) is satisfied. Moreover, the steady state of (4.1),
with θ′i = 0, θi = θ∗i ,∀i, yields

mi = (u∗
i /δ0) (4.25)

pi =
αiθ

∗
imi

δ
(
1 +

∑N
j=1 θ

∗
jmj

) (4.26)

yi = pi. (4.27)

And solving for the steady state output protein concentration yi yields

yi =
αiθ

∗
i u

∗
i

δ
(
δ0 +

∑N
j=1 θ

∗
ju

∗
j

) =
δ0y

∗
i

δ0 − δδ0
∑N

j=1

y∗j
αj

+ δδ0
∑N

j=1

y∗j
αj

=
δ0y

∗
i

δ0
= y∗i . (4.28)

Now we show that ∃θi, θ′i ≥ 0,∀i such that steady state output protein concentration
yi = y∗i ,∀i implies (4.23). Let θi = θ†i ≥ 0, θ′i = θ′†i ≥ 0, ∀i, such that yi = y∗i . From the
system steady state (4.2) we have

y∗i =
αiθ

†
im

†
i

δ
(
1 +

∑N
j=1 θ

†
jm

†
j

) , (4.29)

where m†
i ≥ 0 is the solution to

0 = u∗
i − δ0m

†
i − α′

i

θ′†i m
†
i

1 +
∑N

j=1 θ
′†
j m

†
j

. (4.30)

Substituting y∗i from (4.29) into (1/δ)−
∑N

k=1(y
∗
k/αk) yields

1

δ
−

N∑
k=1

y∗k
αk

=
1

δ

(
1−

N∑
k=1

θ†km
†
k

1 +
∑N

j=1 θ
†
jm

†
j

)
=

1

δ
(
1 +

∑N
j=1 θ

†
jm

†
j

) (1 + N∑
j=1

θ†jm
†
j −

N∑
k=1

θ†km
†
k

)
=

1

δ
(
1 +

∑N
j=1 θ

†
jm

†
j

) > 0. (4.31)

Therefore, (4.23) is satisfied, if and only if there exists θi, θ
′
i ≥ 0,∀i such that steady state

output protein concentration yi = y∗i , ∀i.

Corollary 3. Given a network of subsystems Σi of the form (4.1). If y†i ,∀i is achievable, then
any point yi ≤ y†i ,∀i is also achievable.

Proof. We have that y†i ,∀i is achievable, so by Theorem 5 we have

1

δ
−

N∑
j=1

y†j
αj

> 0. (4.32)
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Moreover, we have that

1

δ
−

N∑
j=1

yj
αj

≥ 1

δ
−

N∑
j=1

y†j
αj

> 0, (4.33)

as yi ≤ y†i ,∀i. Therefore, if y
†
i , ∀i is achievable, then any point yi ≤ y†i ,∀i is also achievable.

Specification: The specifications on the steady state of the network of subsystems Σi

given in (4.1) are given as

yi ∈

{
[0, yL], if ui = uL

[yH ,+∞), if ui = uH ,
(4.34)

where yH ≥ yL and yi = yH ,∀i is a achievable point in the sense of Theorem 5. Moreover,
yi = yL is also achievable by Corollary 3.

Problem 4 (Feasibility). Given a network of N subsystems Σi of the form (4.1), with a set
S = θ × θ′, with θ, θ′ ⊆ RN

≥0, for the nonnegative tunable parameters θi, θ
′
i. Determine if

there exists (θi, θ
′
i) ∈ S,∀i, such that yi satisfies (4.34).

4.2 PROBLEM SOLUTION

Lets start looking at the case where θ′i = 0,∀i, that is, we have a system without the RNase
sharing.

Theorem 6. Given a system of the form (4.1), with θi ≥ 0, θ′i = 0,∀i, and a specification of
the form (4.34). Then

yi =
αiθ

∗
i uL

δ
(
δ0 +

∑N
j=1 θ

∗
juL

) ≤ yL, (4.35)

with

θ∗i =
δ0yH

αiuH

(
1
δ
−
∑N

j=1
yH
αj

) ≥ 0,∀i, (4.36)

if and only if ∃θi ≥ 0,∀i such that yi satisfies the specification given in (4.34).

Proof. First we show that (4.35) with (4.36) implies that ∃θi ≥ 0,∀i such that yi satisfies
the specification given in (4.34). Let θi = θ∗i ≥ 0,∀i. With this, for ui = uH , ∀i, then the
steady state protein concentration yi yields

yi =
αiθ

∗
i uH

δ
(
δ0 +

∑N
j=1 θ

∗
juH

) =

δ0yH
1
δ
−
∑N

k=1
yH
αk

δ

(
δ0 +

∑N
j=1

δ0yH

αj

(
1
δ
−
∑N

k=1
yH
αk

)
) =

yH

δ
(

1
δ
−
∑N

k=1
yH
αk

+
∑N

j=1
yH
αk

) = yH . (4.37)

43



With this, for ui = uL,∀i, then the steady state protein concentration yi yields

yi =
αiθ

∗
i uL

δ
(
δ0 +

∑N
j=1 θ

∗
juL

) =

uL

uH

δ0yH
1
δ
−
∑N

k=1
yH
αk

δ

(
δ0 +

∑N
j=1

uL

uH

δ0yH

αj

(
1
δ
−
∑N

k=1
yH
αk

)
) =

uLyH

uH − δ
∑N

j=1 (uH − uL)
yH
αj

, (4.38)

which from (4.35) with (4.36) we have that yi ≤ yL. Now, for ui, then the steady state
protein concentration yi yields

yi =
αiθ

∗
i uL

δ
(
δ0 +

∑N
j=1 θ

∗
juL

) =
uiyH

uH − δ(uH − ui)
yH
αi

− δ
∑

j ̸=i(uH − uj)
yH
αj

, (4.39)

then for ui = uH we have

yi =
uHyH

uH − δ
∑

j ̸=i(uH − uj)
yH
αj

≥ yH . (4.40)

on the other hand, for ui = uL we have

yi =
uLyH

uH − δ(uH − uL)
yH
αi

− δ
∑

j ̸=i(uH − uj)
yH
αj

≤ uLyH

uH − δ
∑N

j=1(uH − uL)
yH
αj

≤ yL. (4.41)

Now we show that ∃θi ≥ 0,∀i such that yi satisfies the specification (4.34) implies that
(4.35) with (4.36). That is, ∃θi ≥ 0,∀i such that

αiθiuL

δ(δ0
∑N

j=1 θjuL)
≤ yL

αiθiuH

δ(δ0
∑N

j=1 θjuH)
≥ yH ,

(4.42)

which can be rewritten as  θi ≤ γ̂i

(
δ0
uL

+
∑

j ̸=i θj

)
θi ≥ γ̃i

(
δ0
uH

+
∑

j ̸=i θj

)
,

(4.43)

where the gains γ̃i and γ̂i are defined as follows

γ̂i =
δyL

αi − δyL
(4.44)

γ̃i =
δyH

αi − δyH
. (4.45)

Moreover, we can write in matrix form{
θ ≤ δ0

uL
γ̂ + Γ̂Tθ

θ ≥ δ0
uH

γ̃ + Γ̃Tθ,
(4.46)
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where the vectors γ̃ = [γ̃1, . . . , γ̃N ]
⊤, γ̂ = [γ̂1, . . . , γ̂N ]

⊤ and the matrices Γ̃, Γ̂ and T are
defined as follows

{Γ̃}i,j =

{
γ̃i, if i = j

0, if i ̸= j
(4.47)

{Γ̂}i,j =

{
γ̂i, if i = j

0, if i ̸= j
(4.48)

{T}i,j =

{
0, if i = j

1, if i ̸= j.
(4.49)

Which yield the following inequalities
(
I − Γ̂T

)
θ ≤ δ0

uL
γ̂(

I − Γ̃T
)
θ ≥ δ0

uH
γ̃.

(4.50)

Let Â = I+Γ̂, Ã = I+Γ̃ and v = [−1, . . . ,−1]⊤, so we have M̂ =
(
I − Γ̂T

)
=
(
Â− γ̂v⊤

)
and M̃ =

(
I − Γ̃T

)
=
(
Ã− γ̃v⊤

)
. We know that 1 + v⊤Â−1γ̂ = (1/δ)−

∑N
j=1(yL/αj) > 0

and 1 + v⊤Ã−1γ̃ = (1/δ) −
∑N

j=1(yH/αj) > 0, so the inverse of M̂ and M̃ exists and are
given by (

Â− γ̂v⊤
)⊤

= Â−1 − Â−1γ̂vÂ−1

1 + v⊤Â−1γ̂
(4.51)(

Ã− γ̃v⊤
)⊤

= Ã−1 − Ã−1γ̃vÃ−1

1 + v⊤Ã−1γ̃
, (4.52)

which yields

{M̂−1}i,j =


1

1+γ̂i
+ 1

1
δ
−
∑N

k=1
yL
αk

γ̂i
(1+γ̂i)2

, if i = j

1
1
δ
−
∑N

k=1
yL
αk

γ̂i
(1+γ̂i)(1+γ̂j)

, if i ̸= j
(4.53)

{M̃−1}i,j =


1

1+γ̃i
+ 1

1
δ
−
∑N

k=1
yH
αk

γ̃i
(1+γ̃i)2

, if i = j

1
1
δ
−
∑N

k=1
yH
αk

γ̃i
(1+γ̃i)(1+γ̃j)

, if i ̸= j
(4.54)

Calculating bounds on θi using (4.50) yields
θi ≤ δ0yL

αiuL

(
1
δ
−
∑N

j=1
yL
αj

)
θi ≥ δ0yH

αiuH

(
1
δ
−
∑N

j=1
yH
αj

) (4.55)

So if there ∃θi,∀i such that yi satisfies the specification (4.34), then it has to satisfies the
bounds in (4.55). Now observe that the steady state protein concentration yi is a monoton-
ically increasing function of θi, which implies that if any θi that satisfies the bounds (4.55),
then θi = θ∗i from (4.36), that is, the lower bound in (4.55) also satisfies the specification.
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Therefore, (4.35) with (4.36) if and only if ∃θi ≥ 0,∀i such that yi satisfies the specification
given in (4.34).

Now lets consider the case where θ′i ≥ 0,∀i and let the solution for the steady state of
network of N subsystems Σi of the form (4.1), be given by{

yi = fi(mi,mj),∀j ̸= i

mi = gi(ui, uj),∀j ̸= i.
(4.56)

Numerically determine θ′∗i = max(θ′i),∀i such that{
∂yi
∂ui

=
∑N

k=1
∂fi
∂mk

∂gk
∂ui

> 0
∂yi
∂uj

=
∑N

k=1
∂fi
∂mk

∂gk
∂uj

≤ 0,∀j ̸= i,
(4.57)

for all possible combinations of the input present in the specification (4.34). Moreover, define
mL

i and mH
i as the solutions to the system of equations

0 = uL − δ0m
L
i − α′

i

θ′∗i m
L
i

1 +
∑N

j=1 θ
′∗
j m

L
j

,∀i (4.58)

0 = uH − δ0m
H
i − α′

i

θ′∗i m
H
i

1 +
∑N

j=1 θ
′∗
j m

H
j

,∀i. (4.59)

Theorem 7. Given a system of the form (4.1), with θi, θ
′
i ≥ 0,∀i, a specification of the form

(4.34) and θ′∗i ≥ 0,∀i. If

yi =
αiθ

∗
im

L
i

δ
(
1 +

∑N
j=1 θ

∗
jm

L
i

) ≤ yL, (4.60)

with
θ∗i =

yH

αimH
i

(
1
δ
−
∑N

j=1
yH
αj

) ≥ 0,∀i, (4.61)

then ∃θi ≥ 0, 0 ≤ θ′i ≤ θ′∗i ,∀i such that yi satisfies the specification given in (4.34).

Proof. Let θi = θ∗i , θ
′
i = θ′∗i ,∀i. With this, for ui the steady state protein concentration yi

yields

yi =
αiθ

∗
imi

δ
(
1 +

∑N
j=1 θ

∗
jmi

) =
miyH

mH
i − δ(mH

i −mi)
yH
αi

− δ
∑

j ̸=i(m
H
j −mj)

yH
αj

, (4.62)

which for ui = uL we have mi = mL
i and

yi =
mL

i yH
mH

i − δ(mH
i −mL

i )
yH
αi

− δ
∑

j ̸=i(m
H
j −mj)

yH
αj

≤ mL
i yH

mH
i − δ

∑N
j=1(m

H
j −mL

j )
yH
αj

, (4.63)

which from (4.60) with (4.61) we have yi ≤ yL. Moreover, for ui = uH we have mi = mH
i

and

yi =
mH

i yH
mH

i − δ
∑

j ̸=i(m
H
j −mj)

yH
αj

≥ yH . (4.64)
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Figure 4.1: Specification boundaries in cyan and steady state output protein concentration
yi for different inputs, with no RNase degradation (θ′i = 0 [nM−1]).

Therefore, if (4.60) with (4.61), then ∃θi ≥ 0, 0 ≤ θ′i ≤ θ′∗i ,∀i such that yi satisfies the
specification given in (4.34).

Illustrative Example
Consider a system with N = 2 subsystems Σi, with model parameters α = [50, 50]⊤

[nM/hr], α′ = [50, 50]⊤ [nM/hr], δ = 1⊤ [hr−1], δ0 = 10⊤ [hr−1]. Moreover, we set the low
input uL = 1 [nM], the high input uH = 40 [nM], the low output yL = 2 [nM] and the
high output yH = 20 [nM]. Computing θ∗i as defined in (4.36) yields θ∗i = [0.5, 0.5]⊤ [nM−1].
Now using this value to compute the steady state output protein concentration yi for the
low input, that is, ui = uL,∀i, yields y = [2.2727, 2.2727]⊤ [nM], which does not satisfies the
specification. Figure 4.1 show the specification boundaries in cyan and steady state output
protein concentration yi for different inputs, with no RNase degradation (θ′i = 0 [nM−1]).
Note that we verify that the specification is not satisfied.

Adding RNase degradation to our system, we have that θ′∗ = [1.2141, 1.2141]⊤ [nM−1]
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Figure 4.2: Specification and steady state output protein concentration yi for different inputs,
with RNase degradation (θ′i = 1.2141 [nM−1]).

satisfies (4.57) as shown bellow

∂yi
∂ui

u=[uL,uL] =

[
0.7299 −7.9615× 10−7

−7.9615× 10−7 0.7299

]
(4.65)

∂yi
∂ui

u=[uL,uH ] =

[
0.6629 −0.0036
−0.1424 0.5241

]
(4.66)

∂yi
∂ui

u=[uH ,uL] =

[
0.5241 −0.1424
−0.0036 0.6629

]
(4.67)

∂yi
∂ui

u=[uH ,uH ] =

[
0.3370 −0.1630
−0.1630 0.3370

]
. (4.68)

With this, computing θ∗i as defined in (4.61) yields θ∗ = [1.0319, 1.0319]⊤ [nM−1]. Now
using this value to compute the steady state output protein concentration yi for the low
input, that is, ui = uL,∀i, yields y = [0.7298, 0.7298]⊤ [nM] and by Theorem 7 we have that
∃θi ≥ 0, 0 ≤ θ′i ≤ θ′∗i , ∀i such that yi satisfies the specification given in (4.34). Figure 4.2
show the specification boundaries in cyan and steady state output protein concentration yi
for different inputs, with RNase degradation (θ′i = 0.6609 [nM−1]). Figure 4.2 illustrates that
by adding RNase degradation to the mRNA enables the network to satisfies the specification,
where it was not able to satisfie without it.
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4.3 PRACTICAL APPLICATION

As shown in the illustrative example, adding RNase degradation to our network of subsystems
may aid in meeting the specification, on the other hand we lose the monotonic decreasing
behavior between input uj, j ̸= i and output yi, which makes it harder to analytically prove
conditions about system output. But we can utilize our knowledge of the system to numer-
ically compute the feasible region for θ or θ′ for each part of the specification by fixing the
other tunable parameter.

θ Feasible Region
Let the tunable parameter θ′i = θ′∗i ≥ 0,∀i be fixed, with this we can obtain the feasible

region using the map from yi to θi defined as follows

θi =
yi

αimi

(
1
δ
−
∑N

j=1
yj
αj

) , (4.69)

where mi is defined as the solution to

0 = ui − δ0mi − α′
i

θ′∗i mi

1 +
∑N

j=1 θ
′∗
j mj

,∀i. (4.70)

θ′ Feasible Region
Let the tunable parameter θi = θ∗i ≥ 0,∀i be fixed, with this we first translate the

specification from the steady state output protein yi to the steady state mRNA concentration
mi using the following map

mi =
yi

αiθ∗i

(
1
δ
−
∑N

j=1
yj
αj

) . (4.71)

Now using the mRNA specification we can obtain the feasible region for the θ′ tunable
parameter using the map from mi to θ′i defined as follows

θ′i =
ui − δ0mi

α′
imi

(
1−

∑N
j=1

uj−δ0mj

α′
j

) . (4.72)
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Chapter 5

Conclusion and Future Work

In this work we presented a co-design approach to deal with the resource sharing problem
inherent in biological system design, due to the limited availability of certain shared re-
sources in the cell. Moreover, this novel approach relies on tuning the system parameters to
ensure that the network of subsystems adheres to a specification. In contrast to the usual
approaches, namely, centralized control of a shared resource and decentralized control of
subsystems, which add additional machinery to the cell in order to mitigate the coupling
between the subsystems.

Three different models with ribossome sharing with either no other shared resource or
protease sharing or RNase sharing were considered. In addition, we consider two different
kinds of specifications, in the first we have a single input value for each subsystem and the
goal is to maintain the ouput around a desired value with a fixed tolerance. In the second,
we have a low and a high value for the input and our goal is to maintain the output of each
subsystem bellow a low output level for that subsystem low input and above a high output
value for that subsystem high input. Conditions for the feasibility of each specification
were derived through rigorous mathematical logic. Moreover, illustrative and application
examples were provided to demonstrate the feasibility conditions and how to compute the
tunable parameter region where the specifications are met.

Further work on this topic may focus on explore additional types of specification and
other network models. As for specifications, one may expand the fixed input points to input
ranges where a certain output specification needs to be met. Additionally, here we consider
only parallel systems, so a interesting next step would be to consider sequential networks of
subsystems, which have a very desirable application in the design of logic gates.
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