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ABSTRACT

Classifying neurons into different cell classes is both an idea that has existed since the
origins of neuroscience, and one that is essential to understanding the complex interactions
of the brain. While there has been a substantial effort to categorize neurons morphologically,
molecularly and physiologically in in vitro studies, there is a gap in experiments performed
on awake and behaving animals. Using data collected from macaque monkeys performing
a working memory task, and employing an unsupervised Gaussian mixture model (GMM)
clustering algorithm, a number of different cell classes and their defining features were dis-
tinguished in area 7A, the lateral intraparietal area (LIP), the dorsolateral and ventrolateral
prefrontal cortex (PFC) and the extrastriate visual area (V4). While the number of cell
classes found across areas differed, there were several classes across areas that appeared to
be correlates. Classes in each area also showed functional differences in information encod-
ing during predictable trials and distributional differences in depth. This signifies both the
potential of functionally distinct cell classes involved in prediction, as well as the existence
of universal cell classes across different areas.

Thesis supervisor: Earl Miller
Title: Picower Professor of Neuroscience
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Chapter 1

Introduction

The identification and classification of neurons into different neuronal cell types is essential for

understanding the complex behaviors and the local and distal circuit dynamics of the brain.

While the foundations of neuroscience had its origins in attempting this classification [1],

fascinated by all the diversity the brain has to offer, attempts were often hindered by the

lack of computational methods available at the time, resulting in a laborious, and often

biased approach to the problem [2]. Focus in the field shifted towards more hypothesis

driven studies. However, with the recent development of reliable technological methods

that significantly reduce human bias and offer the ability to perform powerful computations

on large datasets, there has been a resurgence of this effort to identify different neuronal

sub-classes, their properties, and their functional roles [3], [4].

There are several different approaches to the classification of cell types, generally catego-

rized by morphological, molecular or physiological features. Morphological methods aim to

classify cells based on their structure, such as their dendritic and axonal shapes, and their

branching patterns, while molecular methods separate classes through properties such as

protein and mRNA composition [2]. Physiological methods, on the other hand, distinguish

neurons through properties such as firing rate, inter-spike intervals, and waveform shape.

Although a large number of different cell classes have been identified using these methods
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in in vitro studies, until recently, there had been a lack of classes identified using data col-

lected from awake animals [3], as well as limited studies done with data from the primate

pre-frontal cortex, critical for higher level cognition and decision making [5]. It is essential

to observe the function of different cell types within a natural framework, with an animal

engaging directly in tasks. Only then, can the full function of a cell class, as well as its

interactive dynamics, both local and distal, be understood.

Classification from extracellular recordings has shown a bimodal distribution of spike-

waveform widths, with each peak characterizing "broad-spiking and "narrow-spiking" cells.

The broad-spiking cells are thought to be a correlate to excitatory pyramidal cells, while

the narrow-spiking cells are thought to be GABAergic, inhibitory cells [6]. However, more

recent studies have diversified and broken down the two categories even more, suggesting

that there are more features than just spike waveform width that can be used to identify

cell classes [3]–[5], [7]–[9]. One such study found four clusters, two of which mirrored the

traditional broad and narrow-spiking cells, and the other two of which mirrored potential

morphologically identified classes, non-fast spiking inter-neurons, and intrinsically bursting

neurons [4]. Others identified many more cell types - up to seven or eight, with even more

diversity beyond broad and narrow spiking [3], [5], [8]. These studies included more than just

waveform features in their clustering analysis; they introduced other features of the neuron,

such as firing rate features, and inter-spike interval features, and it made clear that there

was more to cell classification than just the shape of the waveform itself; a neuron had other

intrinsic properties that allowed it to be differentiated.

Once these features of interest are identified, a computational approach to grouping dif-

ferent neurons based on these features needs to be chosen. Since the problem of classification

is an inherently unlabeled problem, an unsupervised clustering algorithm such as K-means

clustering [3], [5], [8], [9] or a Gaussian mixture model [4] is chosen. Both models have

advantages in different situations. K-means clustering uses a measure of squared euclidean

distance and attempts to minimize the sum of the averages of each cluster [10]. On the other
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hand, a Gaussian mixture model uses a model that maximizes expectation, and data points

are assumed to have a normal distribution. This often makes it more sophisticated than

K-means, and more able to handle non-linear data [11].

This project isolated five features of interest – trough to peak time and repolarization

time, two markers of waveform width, the mean firing rate of the neuron, and its coefficient

of variance (CV) and local variance (LV), two measures of how regular the neuron’s firing

patterns are. A Gaussian Mixture Model was chosen over a k-means model due to its lack

of bias in the perceived shape of the clusters, since there was no prior that suggested what

geometry the data would be.
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Chapter 2

Methods

2.1 Datasets

Two datasets collected in the Miller Lab were used for this project – the laminarPharm

dataset, collected by Alex Major, and the wmPredict dataset, collected André Bastos. The

data was collected from two macaque monkeys, Selma and Lucky. Data was formatted into

the standard Miller Lab data format. Preliminary clustering and plotting was done using

only the laminarPharm dataset; the wmPredict dataset was then added so that the clustering

algorithm could have more data points to produce a more accurate clustering. Since both

datasets were formatted using the standard Miller lab format, most functions were easily

extended – any discrepancies were dealt with manually in the code.

2.1.1 Task Design

Both datasets contain data from working memory tasks, with manipulations on sample

predictability and laminar recording. The laminarPharm dataset contained additional data

with manipulation of laminar pharmacology, though that data was not used for this project.

The task was a delayed match to sample task (DMTS), which consisted of two different trial

blocks – blocks in which the sample was predictable, and blocks in which the sample was
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(a)
(b)

Figure 2.1: (a) DMTS task setup; (b) Recording areas illustrated.
NOTE: FEF is labelled, but was not used in any analysis.
Both figures taken from laminarPharm documentation.

randomly selected from a set of three images (unpredictable). Samples were chosen from a

set of 12 used across all sessions. In the wmPredict dataset, blocks were 50 trials long. In

the laminarPharm dataset, they were 20 trials long.

Each trial consisted of a fixation period (1 second), followed by a sample image (1 second),

a delay period (variable) and finally, a test array containing 1-2 distractor objects. Subjects

had to saccade to the image matching the sample shown previously. The task is illustrated

in Fig. 2.1a.

Data in the laminarPharm datasets was recorded from the dorsolateral and ventrolateral

prefrontal cortex (dlPFC and vlPFC respectively), area 7a of the posterior parietal cortex

(7A) and the extrastriate visual area (V4). In addition to those areas, data in the wmPredict

dataset recorded from the lateral intraparietal area of posterior parietal cortex (LIP) was

also used. Data from dlPFC and vlPFC was combined for the analysis, and compiled into

datasets labeled ’PFC’. Areas are highlighted in 2.1b.

2.2 Spynal Library

The analysis in this project was heavily supported by Spynal, a neural data analysis li-

brary coded by Scott Brincat [12]. Various functions from Spynal were used, mainly in pre-

processing data. These functions included loading data, extracting spike rates, inter-spike
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intervals, waveform statistics, concatenating arrays, calculating percent explained variance,

and interpolating waveform data. Additionally, plotting functions from Spynal was used to

create the raster plots shown later on.

2.3 Data Pre-Processing

2.3.1 Spike and Waveform Data

Data pre-processing consisted of several steps: (1) Loading and reshaping the data, (2) Area

selection, (3) Trial Selection, (4) Unit selection, (5) Wave Alignment and (6) Concatena-

tion. Code for all pre-processing, feature extraction, clustering and plotting can be found in

Appendix A.

Loading Data

All relevant data for each session was loaded using the matIO module from Spynal. Spike

and waveform data was reshaped such that all individual trains were at least 1-dimensional

arrays, and all individual waveforms were at least 2-dimensional. The data for the proper

areas was selected by isolating the corresponding indices for the area from the ’unitInfo’

dataframe. Separation by area was chosen so that area would not be a potential hidden

parameter used in clustering. Additionally, it’s possible that not every area has the same

distribution or prevalence of varying cell-types, so the data from different areas was separated

to avoid inaccurate grouping.

Trial Selection

Valid trials were defined as trials that were (1) correct and (2) ≤ 5 trials before drug onset (in

the ’laminarPharm’ dataset). Trials after drug onset were chosen to not be used in analysis

due to previous analysis suggesting an almost complete suppression of activity after drug

onset, and thus would not provide much use for clustering.
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Unit Selection

Valid units were defined as units that (1) had a mean spike rate of ≥ 1 spike/ second and

(2) < 0.1% of inter-spike intervals that were within 1 millisecond. These criteria weeded

out silent cells and poorly isolated cells respectively. Additionally, a few outlier units with

inverted waveforms due to an error in the data recording process were also not used for the

analysis.

Wave Alignment

Wave alignment served to align all waveforms to the mean trough of all the waveforms in

a session. Firstly, waves were interpolated by 10x using the interpolate Spynal function.

Then, the mean waveform over all units was calculated. The trough of that waveform was

extracted to be the mean trough that all the waveforms would be aligned to. All waveforms

were aligned to the trough by shifting the waveform either left or right; the ends were padded

with NaN values as necessary. Zero-padding was avoided, so that zero values would not affect

any means taken over the waveforms. Then, the mean aligned waveform was found by taking

the mean over all of the aligned waveforms, ignoring NaN values.

Concatenation

Data from across all sessions was concatenated into large dataframes. Only sessions with

more than two valid trials and two valid units were used – otherwise, they were not concate-

nated. All dataframes were then saved for ease of future access, so that they would not have

to be recalculated every time the clustering algorithm ran.

Merging vlPFC and dlPFC

In order to create the PFC dataset, data for vlPFC and dlPFC were pre-processed, concate-

nated and saved separately, and then manually merged. dlPFC data was always concatenated

to the vlPFC data, for consistency.

19



2.3.2 LFP Data

LFP data was not heavily processed due to the data having already been pre-processed into

the Miller lab data format. Similar to spike and waveform data, the units from the area

of interest were isolated in the LFP data. Then, LFP data was pooled into two groups –

data recorded from electrodes above to Layer 4, and data recorded from electrodes deeper

than Layer 4. Depth information was taken from the corresponding area electrodes in the

electrodeInfo dataframe. Depths were recorded based on the estimated relative depth

of the electrode to layer 4, such that a label of 0 corresponded to layer 4, a label of > 0

corresponded to deep layers, and a label of < 0 corresponded to superficial layers.

2.4 Feature Extraction

Five features of interest were identified. Two were spike waveform features – the time in

milliseconds from a waveform’s trough to its peak, and repolarization time. Two were spike

rate features – firing rate, coefficient of variation (CV). The last feature was a spike timing

(ISI) feature, local variation (LV). The five features of each unit was recorded in a Pandas

dataframe.

2.4.1 Spike Waveform Feature Extraction

Spike waveform features for each unit were extracted from the mean aligned waveform for

that unit, which was found through the wave alignment section of pre-processing. Both

trough to peak time and repolarization time were calculated using the waveform_stats

Spynal function. An array of the trough to peak time and repolarization time for each unit

was returned, and added as columns in the feature dataframe.
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2.4.2 Spike Rate Feature Extraction

The mean firing rate for each unit was taken from the firing rates found using the rate

Spynal function. Firing rate was averaged over all time points, as well as over all trials for

a unit. An Anscombe transform was then performed on the mean rates, so that the data

would be normalized.

The coefficient of variation for each unit was calculated using the rate_stats Spynal

function, which took the mean firing rate of each trial per unit as input, and returned
SD(rates)

mean(rates) for each unit.

Arrays with the mean firing rate and CV were added as columns in the feature dataframe.

2.4.3 Spike Timing Feature Extraction

The local variation of each unit was found by calculating the LV of each trial of the unit using

the isi_stats Spynal function. If the trial had ≤ 1 ISI, meaning there were no intervals to

compare against each other, the LV was recorded as NaN. After all the LV of all trials was

calculated, the mean LV was found by taking a mean over all LVs, ignoring NaN values. The

final array of the mean LV per unit was added as a column to the feature dataframe.

2.5 Clustering

The optimal number of clusters for each area was found by performing Gaussian Mixture

Model (GMM) clustering on the given feature dataframe. Before feeding the data into the

GMM, the data was standardized by using sklearn’s StandardScaler and fit_transform

functions, which produces a scaler and then fits the scaler to the data and transforms it,

respectively. GMM clustering was performed using sklearn’s GaussianMixture function

from the mixture package.
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2.5.1 Optimal Cluster and Model Selection

500 repetitions of the GMM algorithm was performed, each repetition fitting the model on

component sizes in the range 2-27. For each repetition, every time a model was found for a

certain component size, the model was then fit to the features, and cluster labels for each

unit (which cluster each unit belonged to based on its five features) were predicted.

The Bayesian information criterion (BIC) and Akaike information criterion (AIC) values

were then calculated by using sklearn’s bic and aic functions from the mixture package.

The BIC value, AIC value, the current model, and labels were then recorded. The best

model per repetition was determined by finding the model with the minimum BIC value;

the best component size per repetition then recorded as the component size of the model

that produced that minimum. AIC value was not used to find the best fitting model since

AIC doesn’t penalize for larger component sizes. BIC penalizes for larger component sizes,

so that overfitting doesn’t occur.

The best component size (c) over all repetitions was determined by calculating the mode

of the array of best component sizes per repetition. The best c-component model was then

found by taking the c-component model with the lowest BIC value. The model itself, the

labels produced by that model, and c was returned for each area. Cluster labels were saved

for ease of access when performing analyses.

2.6 Depth Distribution

In order to investigate the distribution of each cluster across different depths, depth data was

isolated from the unit_info dataframes from both datasets. Both datasets took a measure

of depth relative to Layer 4 that was estimated by the crossing point of relative power in

beta and gamma bands. In the wmPredict dataset, this was called betaGammaDepth, and

in the laminarPharm dataset, this was called laminarDepth. In both datasets, negative

numbers meant more superficial depths, while positive numbers meant deeper depths. Zeros
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were considered to be within layer 4.

In the wmPredict dataset, depths that could not be reliably estimated were labelled as

NaN values. These values were converted to a value of -3, which was lower than the minimum

depth value recorded, to allow the investigation of whether certain clusters had more depth

information missing than others.

In addition to the original depth data, which was discrete, a "jittered" version of the

depth data was generated to aid in plotting the distributions. Jittered values helped prevent

the points from being plotted on top of each other due to the confines of the figure. The

array of jittered values was created by randomly selecting from a uniform distribution in

the range of [-0.02, 0.02] using numpy’s random package, np.random.uniform. The random

values were then added to the original depth values.

2.7 Information Encoding

The information encoding of each cluster was measured by finding the percent explained

variance of each unit’s firing rate over time by the variation in sample (three groups) or

block predictability (two groups). The percent explained variance was calculated using the

Spynal function neural_info.

In addition to using the full sample data, a truncated version of the sample labels was

created by filtering out the trials that occurred in predictable blocks, due to the presence of

units that would indiscriminately fire during those predictable blocks. The percent explained

variance calculated using the truncated sample data was also calculated using the same

Spynal function.

2.8 Spike Field Coupling

Spike field coupling/ synchrony was calculated using the Spynal function spike_field_coupling,

which uses the default method of measuring the magnitude of pairwise phase consistency
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(PPC). The LFP data was truncated to the three seconds surrounding sample onset ([-1, 2])

so that its time dimensions would match the spike time dimensions used for previous anal-

yses. In each area, the unique probes used for recording in that area were identified. Only

linear probes were used – single electrodes (only present in the wmPredict dataset) were

excluded from this analysis, due to the lack of comparable depth data. To reduce processing

burden, the lfp data for a specific probe was grouped into "deep" lfp data, measured with

the "deep" electrodes (relative to Layer 4), and "superficial" lfp data, measured with the

"superficial" electrodes. The spike data for that probe was then isolated by referencing the

unique ID of the probe.

Spike times were converted to boolean spike trains using the Spynal function times_to_bool.

Then, for every unit, the PPC between the spikes recorded by that unit, and the deep and

superficial lfp data was calculated, yielding two datasets. The data was then visualized using

the Spynal plot_spectrogram function.
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Chapter 3

Results

3.1 Preliminary Clustering

The preliminary clustering done with only the laminarPharm dataset, and for only datasets

recorded from 7A, PFC, and V4, revealed an optimal component size of 4, 3, and 5 for

7A (n_pts = 354), PFC (n_pts = 121), and V4 (n_pts = 261) respectively. Table 3.1

illustrates this data. The wmPredict dataset was added after preliminary results to increase

the number of data points for the model to be able to predict on, as the original dataset was

small, especially for the PFC.

In the preliminary clustering, some clusters had high variability in waveform shape (Fig-

ure 3.1). Most notably, the last cluster of area 7A has an increased number of outlier

waveforms [3.1a], categorized by those with repolarization times or trough to peak times

that were more than 2.5 standard deviations outside of the mean waveform, shown in black.

Other clusters, such as the last two clusters in V4[3.1b], and the last cluster of PFC[3.1c],

appear to have two different waveform shapes – one with a narrower trough to peak, and

one with a broader trough to peak.
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Table 3.1: Clustering Information, laminarPharm Only

7A PFC V4

Number Datapoints 354 121 261
Optimal Component Size 4 3 5

Table 3.2: Clustering Information, Full Dataset

LIP 7A PFC V4

Number Datapoints 689 765 1083 1663
Optimal Component Size 7 5 8 8

3.2 Cell Classes

The minimum mean BIC value for each component size revealed an optimal component size

of 7, 5, 8, and 8 for areas LIP (n_pts = 689), 7A (n_pts = 765), PFC (n_pts = 1083), and

V4 (n_pts = 1663) respectively. Table 3.2 illustrates this data.

All four areas showed a distinct "elbow" in the mean BIC curve for component sizes,

indicating a clear optimum in choosing component size [3.2]. On the other hand, the mean

AIC curves don’t show a distinct elbow for any areas [3.3] – this is due to AIC allowing for

overfitting by not punishing larger component sizes, which is why only the BIC values were

used to determine the optimal component size.

The size of the data appeared to have no correlation with the optimal number of clusters

found (i.e. more data points fed into the model did not imply a larger component size).

This can most notably be seen in LIP having an optimal component size of 7, while having

the smallest number of data points out of all the areas (689), while 7A, having the second

smallest number of data points out of the areas (765), and closer in size to the LIP dataset

than the other two areas, had an optimal component size of 5, smaller than that found for

LIP.
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3.2.1 Class Features

The mean value of each parameter for each cluster is shown in Figure 3.4. While each

area had a differing number of cell classes, there were some trends in parameter values

that seemed to remain constant across areas. Each area had a cell class characterized by

a broad waveform (TTP =̃ .0065 ; RPT =̃ 0.0030), a lower mean firing rate (3.5 < MR <

5), and a semi-regular firing pattern (0.5 < CV < 1) and medium "burstiness" (LV =̃ 1.0),

such as cluster 0 in area 7A [3.4b], cluster 7 in area PFC [3.4c], and cluster 7 in area V4

[3.4d]. Clusters 0 and 4 in area LIP seem to have similar properties, only being split up by

cluster 0 having a smaller repolarization time, a smaller mean rate, as well as a less regular

firing pattern [3.4a]. For convenience, this cluster will be referred to as B1. Inspection of

the marginal distribution of each feature for each cluster in Figure 3.5 suggests that B1 is

actually a group of neurons with highly variable trough to peak and repolarization times,

which is why their mean waveform trough to peak and repolarization times are larger than

other clusters.

The trough to peak and repolarization marginal distributions of each area clearly shows

a bimodal distribution of waveform width, which would be the distinction between broad-

spiking and narrow-spiking neurons. While there are some clusters that fit into either side

of the bimodal distribution, there are others, like cluster 3 in 7A which has peaks on both

sides. This suggests that what characterizes the cell class is not the waveform shape, but

rather the rate or ISI features [3.5b].

In addition to the broad-spiking B1 class, each area also appears to have a narrow wave-

form cluster (0.0002 < TTP < 0.0003 ; 0.00005 < RPT 0.00015) with a very high mean rate

(MR > 6), and low variability in both pattern and burstiness (CV < 0.6 ; LV < 0.95). This

pattern corresponds to cluster 3 in area LIP, cluster 0 in area PFC, and cluster 0 in area

V4. The cluster in 7A that seems to correspond to this pattern (cluster 3) seems to have a

slightly waveform than the others (TTP =̃ 0.00045 ; RPT =̃ 0.00018). For convenience, this
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cluster will be referred to as N1.

Besides clusters that can be further categorized within the broad/ narrow spectrum, there

appear to be clusters defined by very high/ low variability, or a high/ low mean rate. Cluster

2 in LIP, cluster 2 in PFC and cluster 6 in area V4 can all be characterized by a very high

CV, implying a much more irregular firing pattern than the other cell classes in the area.

This cell class is also characterized by a low mean rate (3 < MR < 4), a narrower waveform

(0.0003 < TTP < 0.0005 ; RPT =̃ 0.00015), and are not particularly bursty (0.85 < LV <

1.0). Area 7A doesn’t appear to have a direct correlate, although cluster 2 exhibits a similar

pattern, with a higher burstiness (LV =̃ 1.15). For convenience, this cluster will be referred

to as C1.

Similarly, cluster 6 in LIP, cluster 5 in PFC, and cluster 4 in V4 seem to be characterized

by a high LV, or being more bursty neurons. It also appears to be characterized by a more

regular firing pattern, a lower mean rate, and narrow to medium sized waveforms. For

convenience, this cluster will be called L1.

3.2.2 Average Waveforms

Cell classes that demonstrated similar parameter values, especially those strongly charac-

terized by their waveform features, appeared to have similar average waveform shapes, and

little outliers [3.6]. The broad spiking cluster, B1, had larger trough to peak durations (1̃50

timepoints) compared to the narrow spiking cluster, N1, which had a trough to peak dura-

tion of less than 100 timepoints, as expected. This can also be seen in other broad spiking

clusters, such as cluster 4 of LIP and cluster 3 of V4 [3.6a, 3.6d].

Notably, C1, which was characterized by a high CV, appeared to have two distinct

waveform groupings, as can be seen by the average waveform plots for cluster 2 in LIP, cluster

2 in PFC, and cluster 6 in V4 [3.6a, 3.6c, 3.6d]. Similarly, L1, which was characterized by a

high LV, shows the same waveform groupings in the average wave form plots for cluster 6 in

LIP, cluster 5 in PFC and cluster 4 in V4 [3.6a, 3.6c, 3.6d].
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3.2.3 Cluster Distribution

Figure 3.7 shows the percentage of data which fell into each cluster in each area. The

distribution of cells into clusters appears to differ by area – for group B1, it comprises 11.0%

of units in 7A, 15.3% of units in LIP, 7.7% of units in PFC, and 7.0% of units in V4. N1

comprised of much more units in 7A (29.5%) than the other areas (11.3, 15.6 and 11.8%).

C1 comprised of more units in V4 (23.8%) than other areas (12.0, 6.8, 5.4%). L1 seemed to

have the largest overall proportion of units, with 22.1% in LIP, 18.4% in PFC, and 16.4% in

V4.

3.2.4 Depth Distribution

The distribution of units in each cluster was visually represented in swarmplots, shown in

Figure 3.8. Due to lack of data, as well as missing depth data, the shapes of the distribution

appears unclear, especially for clusters that had proportionally fewer units in them. Most

clusters are missing a proportional number of depth information – the bigger they are, the

more unlabeled clusters (plotted at d = −3) there are.

From the distributions with more units, clusters 1 and 4 in LIP, clusters 3 and 4 in 7A,

clusters 0 and 1 in PFC, and clusters 0 and 5 in V4 appear "pinched" around layer 4 (d = 4),

and bottom heavy (with a higher distribution of neurons in deep layers). Conversely, cluster

3 in LIP and cluster 3 in PFC are also pinched around layer 4, but appear top heavy (higher

distribution in superficial layers). Cluster 5 in PFC and clusters 1 and 2 in V4 appear fatter

around layer 4.

3.3 Cell Class & Firing Rate Variation

The percent explained variance (PEV) of the predictability of the block on each cluster’s

firing rate can be seen in Figure 3.9. Areas LIP and 7A had little to no effect on PEV
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between clusters, but PFC showed a small peak in PEV for cluster 6 at sample onset. V4

showed a peak as well, with cluster 0. Cluster 6 had unusually high PEV throughout the time

period before and after sample onset. Cluster 0 in V4 was part of group N1, characterized

by a narrow waveform, high mean firing rate, and low CV and LV [3.4d]. Cluster 6 in PFC

showed similar patterns, albeit with a less narrow waveform [3.4c]. This implies that in these

clusters, information about the predictability of the trials in a block is encoded through a

high firing rate.

The PEV of the sample image on each cluster’s firing rate was also calculated, but was

found to have unusually high elevated PEV throughout the trial [3.10a]. Investigating the

activity of individual neurons revealed that some neurons would fire indiscriminately during

the entire period only in certain sample blocks [3.10b]. After removing trials from predictable

blocks from the PEV calculation, the elevated activity disappeared [3.11].

While clusters in 7A didn’t have much of an effect on PEV, cluster 3 in LIP, clusters 0

and 6 in PFC, and clusters 0 and 2 in V4 all showed a higher PEV at sample onset. All

clusters had a high firing rate, with half belonging to group N1, that similarly implies that

sample information is encoded through firing rate in these clusters [3.4]. Notably, cluster 4

in PFC also high firing rate, but had a lower PEV than clusters 0 and 6 [3.4c]. This could

be due to it having a higher CV, and thus having a less regular firing process.

3.4 Cell Class & Spike Field Coupling

Preliminary data from spike-field coupling shows synchronization occurring at different times

in the trial in different clusters in PFC. The unit from cluster 0 (part of group N1) exhibits

highest synchronization with superficial LFP signals throughout trial start, sample onset, and

the delay period [3.12a]. The unit from cluster 5 in group L1 exhibits highest synchronization

only before sample onset [3.12b]. The unit from cluster 7 in group B1 exhibits highest

synchronization before and after sample onset, but not during [3.12c]. While this shows
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potential for different periods of synchrony in different clusters during prediction periods,

the data is non-aggregate and isolated, so further analysis would need to be made.
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(a) (b)
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(c)

Figure 3.1: Average waveforms per preliminary clustering area. Outlier waveforms shown in
red. Average waveform shown in black.

(a) 7A ; (b) PFC ; (c) V4
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(a) (b)

(c) (d)

Figure 3.2: Mean BIC values and SEM values (shown as blue highlight) for each area
(a) LIP ; (b) 7A ; (c) PFC ; (d) V4
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(a) (b)

(c) (d)

Figure 3.3: Mean AIC values and SEM values (shown as blue highlight) for each area
(a) LIP ; (b) 7A ; (c) PFC ; (d) V4

35



(a)

(b)
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(c)

(d)

Figure 3.4: Five parameter values defining each cell class in areas
(a) LIP ; (b) 7A ; (c) PFC ; (d) V4
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(a)

(b)
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(c)

(d)

Figure 3.5: Visualization of clusters in the 2D space of each pair of features. Marginal
distribution of each feature on the diagonal.

(a) LIP ; (b) 7A ; (c) PFC ; (d) V4
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(a) (b)
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(c) (d)

Figure 3.6: Average waveforms per preliminary clustering area. Outlier waveforms shown in
light grey. Average waveform shown in black.

(a) LIP ; (b) 7A ; (c) PFC ; (d) V4
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(a) (b)

(c) (d)

Figure 3.7: Percentage of data points in each cluster for areas
(a) LIP ; (b) 7A ; (c) PFC ; (d) V4
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(a) (b)

(c) (d)

Figure 3.8: Depth distribution for clusters in areas
(a) LIP ; (b) 7A ; (c) PFC ; (d) V4
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(a) (b)

(c) (d)

Figure 3.9: Percent explained variance of trial predictability on cluster firing rate
(a) LIP ; (b) 7A ; (c) PFC ; (d) V4
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(a)

(b)

Figure 3.10: (a) PEV of each cluster on sample type in LIP ; (b) Raster plot of neuronal
activity over different sample trials in LIP
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(a) (b)

(c) (d)

Figure 3.11: Percent explained variance of trial sample type on cluster firing rate, with
predictable trial blocks removed

(a) LIP ; (b) 7A ; (c) PFC ; (d) V4
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(a) (b)

(c)

Figure 3.12: Spike-field coupling synchrony of select PFC units with superficial LFP signals
(a) Cluster 0 unit (Group N1) ; (b) Cluster 5 unit (Group L1) ; (c) Cluster 7 unit (Group

B1)
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Chapter 4

Discussion

4.1 Distinct cell classes

Using data in awake macaque monkeys performing a working memory task, five distinct cell

classes were found in area 7A, 7 in area LIP, and 8 in areas PFC and V4. These cluster

sizes are similar to previous studies, though more varied due to separating the data by

area. While the size of the number of cell classes differed between areas, there were certain

classes that seemed to be correlates of each other across areas. Identified in this project

were group B1 (broadest waveforms, low firing rates, and semi-regular spiking), group N1

(narrowest waveforms, high firing rates, and regular spiking), group C1 (narrower/variable

waveforms, low firing rates, non-bursty, but most irregular spiking), and group L1 (variable

waveforms, lower firing rates, regular spiking, high burstiness). While these were identified

comparing trends in mean feature values across areas, a more robust, computational method

is needed to see if these cell classes across areas are actually the same electrophysiological

phenotype. This would also be beneficial for identifying the defining features of each class

more thoroughly. A potential strategy would be to try validating the results with other

unsupervised learning methods, such as the simpler K-means clustering. While GMM is

good for handling complex, non-linear data, the results can be harder to interpret and parse.
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Using a simpler algorithm to see the comparison in results could offer insight into the clusters

given by the GMM.

4.2 Functional and distributional differences between cell

classes

Different clusters were shown to be functionally distinct from another, through analysis of

the differing firing rate for each cluster due to the difference in sample type, or predictability

of the trial. Group N1 and clusters with similar attributes were able to explain variance in

predictability in V4 and PFC, as well as sample type in LIP, PFC and V4. This implies

that group N1 does a lot of the information coding during mentally demanding working

memory tasks such as the DMTS task, in both aspects of differing sample and in prediction.

Preliminary spike-field coupling data also showed promise for differing synchrony periods

between different cell classes. More investigation into different measures of function would

help distinguish the roles of the classes even further. While N1 seems to be important in

information coding, it would be interesting to see what role the other classes play, if any at

all. It’s possible that there’s not a lot of functional information in certain areas, such as 7A,

which showed little to no effect of both sample type and predictability on any class’ firing

rate.

Clusters were also shown to be variable in both distribution across areas and depths. In

some areas, certain groups would be much more prominent in ratio than others, such as N1

in 7A, or C1 in V4. Cluster depth distribution revealed patterns in certain clusters that were

more prevalent in deep or superficial layers. The correlation between depth preference and

any functional or informational differences between clusters should be investigated.
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4.3 Correlates between classification methods

While it’s hard to tell if all clusters have an identifiable morphological or molecular correlate,

the characteristics of groups B1 and N1, which are probably the closest to the over-arching

broad-spiking and narrow-spiking cell classes identified in previous studies, appear to be

similar to regular-spiking pyramidal cells and fast-spiking GABAergic chandelier cells [13].

However, there are certain discrepancies that suggest a bigger picture – for example, pyra-

midal cells are known to make up around 70-85% of all neurons in the brain [14], but the

percentages of datapoints the B1 cell classes made up out of all datapoints were all less than

15%. This might be due to the distribution of probes, and where they recorded from, but

it seems suspect. As for the other cell classes, which are less easily separable, it may be to

match it up with a previous cell class identified through morphological or molecular methods

before more stringently pinning down each class’ identifying features.
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Appendix A

Code listing

Below is all code written for this project, separated by file/ function. Access to the repository

containing this code (https://github.com/ehuas/clustering) can be given upon request [15].

Minor adjustments for clean up and documentation may have been made since the writing

of this thesis.

A.1 Loading Data

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3 """
4 Created on Wed Nov 30 13:25:19 2022
5

6 @author: huange
7 """
8 from spynal.matIO import loadmat
9 import numpy as np

10 import pandas as pd
11 from analysis import *
12 from preprocessing import preProcessing , featExtract , coupling
13 import os
14

15 def select_area(unit_info , data , area_name):
16 ’’’
17 Isolates data recorded from a select area.
18

19 Input: unit_info: dataframe containing unit recording
information , such as area recorded
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20 spike_times (n_units , n_timepts): ndarray of spike
timestamps

21 spike_waves (n_units , n_timepts): ndarray of spike
waveforms

22 area_name: area of interest
23

24 Output: spike times , waves of select area
25

26 ’’’
27 areas = unit_info[’area’]. to_numpy ()
28 area_idx = np.where(areas == area_name)[0]
29

30 data = data[:, area_idx]
31

32 return data , area_idx
33

34 def shape_data(spike_times , spike_waves = None):
35

36 for i in range(spike_times.shape [0]):
37 for j in range(spike_times.shape [1]):
38 spike = spike_times[i,j]
39 if spike_waves is not None:
40 wave = spike_waves[i,j]
41 if len(wave.shape) < 2:
42 wave = np.expand_dims(wave , axis = 1)
43 if type(spike) != float:
44 if np.size(spike) != 0:
45 trunc_spike = np.where((-1 < spike) & (spike < 2))

[0]
46

47 spike_times[i,j] = np.atleast_1d(spike[trunc_spike
])

48

49 if spike_waves is not None:
50 trunc_wave = wave[:, trunc_spike]
51 spike_waves[i,j] = np.atleast_2d(trunc_wave)
52 else:
53 spike_times[i, j] = []
54

55 if spike_waves is not None:
56 spike_waves[i,j] = np.empty ((48 ,0))
57 else:
58 if -1 < spike < 2:
59 spike_times[i,j] = [spike]
60

61 if spike_waves is not None:
62 spike_waves[i,j] = np.expand_dims(wave , 1)
63 else:
64 spike_times[i,j] = []
65

66 if spike_waves is not None:
67 spike_waves[i,j] = np.empty ((48, 0))
68
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69 return spike_times , spike_waves
70

71 def load_data(path):
72 spike_times , spike_times_schema , unit_info , trial_info ,

session_info , spike_waves , spike_waves_schema = \
73 loadmat(path ,
74 variables =[’spikeTimes ’,’spikeTimesSchema ’,’unitInfo ’,’

trialInfo ’, ’sessionInfo ’, ’spikeWaves ’, ’spikeWavesSchema
’],

75 typemap ={’unitInfo ’:’DataFrame ’, ’trialInfo ’:’DataFrame ’})\
76

77 shape_spikes , shape_waves = shape_data(spike_times , spike_waves =
spike_waves)

78

79 return shape_spikes , spike_times_schema , unit_info , trial_info ,
session_info , shape_waves , spike_waves_schema

80

81 def load_osc_data(path):
82 lfp , lfp_schema , electrode_info , spike_times , unit_info = \
83 loadmat(path ,
84 variables =[’lfp’, ’lfpSchema ’, ’electrodeInfo ’, ’spikeTimes ’,

’unitInfo ’],
85 typemap ={’electrodeInfo ’:’DataFrame ’, ’unitInfo ’:’DataFrame ’

})\
86

87 spike_times , _ = shape_data(spike_times)
88

89 return lfp , lfp_schema , electrode_info , spike_times , unit_info
90

91 def concat_sessions(paths , area):
92 comb = pd.DataFrame(columns =[’meanRates ’, ’troughToPeak ’, ’

repolTime ’, ’CV’, ’LV’])
93 PEV_samp_concat = np.empty((0, 30))
94 PEV_pred_concat = np.empty((0, 30))
95 align_waves_concat = np.empty ((470, 0))
96 depths_concat = np.empty((0, ))
97 pred_concat = np.empty((0, ))
98 samp_concat = np.empty((0, ))
99 unit_count = 0

100

101 PEV_unpredSamp_concat = np.empty((0, 30))
102

103 for path in paths:
104 spike_times , _, unit_info , trial_info , session_info ,

spike_waves , spike_waves_schema = load_data(path)
105 area_spike_times , area_idx = select_area(unit_info ,

spike_times , area)
106 area_spike_waves = spike_waves [:, area_idx]
107

108 validTrials , validNeurons , meanRates , ISIs , meanAlignWaves ,
smpRate , rates , _, _, _, predInfo , sampInfo , depths , _, _
= \

109 preProcessing(area_spike_times ,
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110 trial_info ,
111 session_info ,
112 area_spike_waves ,
113 spike_waves_schema ,
114 unit_info ,
115 area ,
116 unit_count) \
117

118 if validTrials.size < 2 or len(validNeurons) < 2:
119 pass
120 else:
121 unit_count += len(validNeurons)
122 features = featExtract(meanRates , ISIs , meanAlignWaves ,

smpRate , rates)
123 comb = pd.concat ([comb , features], ignore_index=True)
124 #pev_samp = pev_func(rates , sampInfo)
125 pev_pred = pev_func(rates , predInfo)
126

127 #PEV_samp_concat = np.concatenate (( PEV_samp_concat , np.
squeeze(pev_samp , axis =0)), axis = 0)

128 PEV_pred_concat = np.concatenate (( PEV_pred_concat , np.
squeeze(pev_pred , axis =0)), axis = 0)

129

130 # pev_unpredSamp = pev_func(rates[trial_trials , :, :],
unpredSampInfo)

131 # PEV_unpredSamp_concat = np.concatenate ((
PEV_unpredSamp_concat , np.squeeze(pev_unpredSamp , axis
=0)), axis = 0)

132

133 align_waves_concat = np.concatenate (( align_waves_concat ,
meanAlignWaves), axis = 1)

134

135 depths_concat = np.concatenate (( depths_concat , depths),
axis = 0)

136

137 pred_concat = np.concatenate (( pred_concat , predInfo.
to_numpy ()), axis = 0)

138 samp_concat = np.concatenate (( samp_concat , sampInfo.
to_numpy ()), axis = 0)

139

140 return comb , PEV_pred_concat , align_waves_concat , depths_concat ,
pred_concat , samp_concat

141

142

143 def osc_concat(paths , areas):
144 session = 0
145 for path in paths:
146 lfp , lfp_schema , electrode_info , spike_times , unit_info =

load_osc_data(path)
147

148 for area in areas:
149 if unit_info[’area’].isin([area]).any():
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150 area_lfp , area_idx = select_area(electrode_info , lfp ,
area)

151 lfp_trunc = area_lfp [1000:4001 , :, :]
152 area_spikes = spike_times [:, area_idx]
153

154 smp_rate = lfp_schema[’smpRate ’]
155

156 if ’/mnt/common/datasets/wmPredict/mat/mainTask ’ in
path:

157 depth_var = ’betaGammaDepth ’
158 else:
159 depth_var = ’laminarDepth ’
160

161 coupling(lfp_trunc , area_idx , depth_var ,
electrode_info , unit_info , area_spikes , area ,
session , smp_rate)

162

163 session += 1
164

165 def main():
166 directories = [’/mnt/common/datasets/wmPredict/mat/mainTask ’, ’/

mnt/common/scott/laminarPharm/mat’]
167 paths = []
168 for directory in directories:
169 for filename in os.listdir(directory):
170 if filename == ’laminarPharm_databases.mat’ or filename

== ’spikesOnly ’ or filename == ’wmPredict_databases.
mat’:

171 pass
172 else:
173 f = os.path.join(directory , filename)
174 paths.append(f)
175

176 areas = [’vlPFC’, ’dlPFC ’, ’7A’, ’V4’, ’LIP’]
177

178 #comb , PEV_pred , waves , depths , pred , samp = concat_sessions(
paths , area)

179

180 osc_concat(paths , areas)
181

182 # unpredSamp_df = pd.DataFrame(PEV_samp)
183 # unpredSamp_df.to_csv(’/home/ehua/clustering /090623 _data /{}

_PEV_unpredSamp.csv ’.format(area))
184

185 # df = pd.DataFrame(comb)
186 # df.to_csv(’/home/ehua/clustering /090623 _data /{}_df.csv ’.

format(area))
187

188 # waves_df = pd.DataFrame(waves)
189 # waves_df.to_csv(’/home/ehua/clustering /090623 _data /{} _waves

.csv ’.format(area))
190

191 # samp_df = pd.DataFrame(PEV_samp)
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192 # samp_df.to_csv(’/home/ehua/clustering /090623 _data /{}
_PEV_samp.csv ’.format(area))

193

194 # pred_df = pd.DataFrame(PEV_pred)
195 # pred_df.to_csv(’/home/ehua/clustering /090623 _data /{}

_PEV_pred.csv ’.format(area))
196

197 # depths_df = pd.DataFrame(depths)
198 # depths_df.to_csv(’/home/ehua/clustering /090623 _data /{}

_depths_jitter.csv ’.format(area))
199

200 # pred_df = pd.DataFrame(pred)
201 # pred_df.to_csv(’/home/ehua/clustering /090623 _data /{} _pred.

csv ’.format(area))
202

203 # samp_df = pd.DataFrame(samp)
204 # samp_df.to_csv(’/home/ehua/clustering /090623 _data /{} _samp.

csv ’.format(area))
205

206

207 if __name__ == "__main__":
208 main()

A.2 Pre-processing

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3 """
4 Created on Tue Sep 27 22:52:30 2022
5

6 @author: huange
7 """
8 from spynal import spikes , utils , sync , spectra
9 import numpy as np

10 import pandas as pd
11 from utils import *
12 import copy
13 import math
14 import matplotlib.pyplot as plt
15

16 def trialSelection(trial_info , session_info):
17 ’’’
18 Selects valid trials from data.
19

20 Input: trialInfo (n_trials , n_variables) DataFrame for single
session

21 Output: (valid_trials ,) vector of indices of trials to keep
22

23 Valid trials are defined as:
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24 (a) correct and
25 (b) <= 5 trials before drug injection onset
26

27 ’’’
28 ### isolates only trials that are <= 5 trials before drug onset
29 if ’drugStartTrial ’ in session_info:
30 drugStartTrial = session_info[’drugStartTrial ’]
31 beforeDrugTrials = trial_info.loc[trial_info[’trial’] <=

drugStartTrial -5]
32 trials_df = beforeDrugTrials.loc[beforeDrugTrials[’correct ’]]
33 trials_keep = np.where(beforeDrugTrials[’correct ’])[0]
34 else:
35 trials_keep = np.where(trial_info[’correct ’])[0]
36 trials_df = trial_info.loc[trial_info[’correct ’]]
37

38 sampInfo = copy.deepcopy(trials_df[’sample ’])
39

40 ### identifies the non predictable and predictable trials
41 block_trials = np.where(trials_df[’blockType ’] == ’block’)[0]
42 trial_trials = np.where(trials_df[’blockType ’] == ’trial’)[0]
43

44 ### sets block types to 1, trial types to 0
45 trials_df.loc[trials_df[’blockType ’] == ’block’] = 1
46 trials_df.loc[trials_df[’blockType ’] == ’trial’] = 0
47 predInfo = copy.deepcopy(trials_df[’blockType ’])
48 unpredSampInfo = sampInfo[trial_trials]
49

50 return trials_keep , predInfo , sampInfo , block_trials ,
trial_trials , unpredSampInfo

51

52 def trialsKeep(trials_keep , spike_times , spike_waves):
53 ’’’
54 Filters out non -valid trials in given time , wave data
55 ’’’
56 times_trials = spike_times[trials_keep , :]
57 waves_trials = spike_waves[trials_keep , :]
58

59 return times_trials , waves_trials
60

61 def neuronSelection(times_trials):
62 ’’’
63 Selects valid neurons from data.
64

65 Input: spikeTimes (n_trials , n_units) object array for single
session

66 Output: (n_units ,) bool vector indicating which units to keep
67

68 Valid neurons are defined as:
69 (a) having an overall mean spike rate > 1 spike/s (weeding

out silent cells) and
70 (b) having < 0.1% ISIs within 1 ms (weeding out poorly

isolated single neurons)
71
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72 ’’’
73 rates , timepts = spikes.rate(times_trials , method=’bin’, lims =

[-1, 0.5])
74

75 #takes mean over all trials & timepts
76 meanRates = np.mean(np.mean(rates , axis = 2), axis = 0)
77

78 #find all indices where mean rate > 1
79 neurons_keep = np.where(meanRates > 1)[0]
80

81 valid_spikes = times_trials [:, neurons_keep]
82

83 allISIs = spikes.isi(valid_spikes)
84 ms_ISI = np.multiply(allISIs , 1000)
85 concat = utils.concatenate_object_array(ms_ISI , 0)
86 if concat.size > 1:
87 #every ISI per unit
88 flatAll = np.squeeze(utils.concatenate_object_array(ms_ISI ,

0))
89 else:
90 flatAll = concat [0]
91

92 for idx , neuron in enumerate(neurons_keep):
93 #all ISIs less than 1 ms for neuron
94 shorts = np.where(flatAll[idx] <= 1)[0]
95

96 num_shorts = np.size(shorts)
97 total_isi = np.size(flatAll[idx])
98 if num_shorts/total_isi >= 0.1:
99 #don’t keep the neuron

100 neurons_keep = np.delete(neurons_keep , idx)
101

102 return neurons_keep
103

104

105 def neuronsKeep(neurons_keep , times_trials , waves_trials):
106 ’’’
107 Filters out non -valid units in given time , wave data
108 ’’’
109 times_data = times_trials [:, neurons_keep]
110 waves_data = waves_trials [:, neurons_keep]
111

112 return times_data , waves_data
113

114 def depth(neurons_keep , unit_info , jitter = True):
115 ’’’
116 Saves depth information for two dataests. Depth data is

discretized -- jitter can be added to depths for ease of
plotting.

117

118 *Scaled Andre’s data to match Alex’s data
119 ’’’
120 try:
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121 depths = unit_info[’laminarDepth ’][ neurons_keep]
122 except:
123 ### Scale Andre’s data
124 depths = (unit_info[’betaGammaDepth ’][ neurons_keep ])/1000
125

126 if jitter:
127 ### Create random vector of jitter
128 x = pd.Series(np.random.uniform(low = -0.02, high = 0.02,

size = len(depths)))
129

130 ### Add jitter to original depths. Fill nan values with -3.
131 depths = x.add(depths.reset_index(drop=True), fill_value =

-3)
132

133 return depths
134

135 def rateData(time_data):
136 ’’’
137 Returns:
138 (a) meanRates: mean spike rate / unit
139 (b) rates: full np array of spike rates (units x timepts x

trials)
140 ’’’
141

142 rates , _ = spikes.rate(time_data , method=’bin’, lims = [-1, 0.5])
143 meanRates = np.mean(np.mean(rates , axis = 2), axis = 0)
144 meanRates = anscombe(np.expand_dims(meanRates , axis =0))
145

146 return meanRates , rates
147

148 def isiData(time_data):
149 ’’’
150 Returns: ISI data from given spike data. On the scale of

milliseconds (scaled by 1000).
151 ’’’
152

153 allISIs = spikes.isi(time_data)
154 ms_ISI = np.multiply(allISIs , 1000)
155

156 return ms_ISI
157

158 def waveAlign(waves_data , spike_waves_schema , trial_subset_indices =
None):

159 ’’’
160 Gets the mean -aligned waveform from data.
161

162 Input: spikeWaves (n_trials , n_units) object array for single
session

163 spikeWavesSchema:
164 trials_keep: all valid trials
165 neurons_keep: all valid units
166 trial_subset_indices: optional subset of (valid)

trials of interest
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167

168 Output: meanAlignWaves (n_trials , n_units): aligned mean
waveforms for each unit

169 smpRate: 10x interpolated sampling rate
170

171 ’’’
172

173 if trial_subset_indices: #if we pass in some subset
174 waves_data = waves_data[trial_subset_indices , :]
175

176 n_trials , n_units = np.shape(waves_data)
177 timepts = spike_waves_schema[’elemIndex ’][0]
178

179 num_timepts = (np.size(timepts) -1)*10
180 meanAlignWaves = np.zeros(( num_timepts , n_units))
181

182 for neuron in range(n_units):
183 spikesAll = utils.concatenate_object_array(waves_data [:,

neuron], axis = 0, elem_axis = 1)
184 n_timepts , n_spikes = np.shape(spikesAll) #get # of time pts
185 x = np.arange(1, n_timepts +1)
186 xinterp = np.arange(1, n_timepts , 0.1) #keep length , divide

step by 10
187 waves_interp = utils.interp1(x, spikesAll , xinterp , axis = 0)
188 meanWave = np.mean(waves_interp , axis =1) #get mean waveform

over all spikes
189 meanTroughIdx = np.argmin(meanWave) #get mean trough idx
190

191 for spike_idx in range(n_spikes):
192 spike = waves_interp [:, spike_idx]
193 spikeTroughIdx = np.argmin(spike)
194 diff = spikeTroughIdx - meanTroughIdx
195 newSpike = np.full(np.shape(spike), np.nan)
196 if diff > 0:
197 #if the spike’s trough is shifted ahead of mean trough
198 newSpike[:-diff] = spike[diff:]
199 #move it back
200 elif diff < 0:
201 newSpike[abs(diff):] = spike[:diff]
202 else:
203 newSpike = spike
204 waves_interp [:, spike_idx] = newSpike
205

206 # new waves_interp with aligned spikes
207 meanAlignWave = np.nanmean(waves_interp , axis =1) #take mean

of all spikes
208 meanAlignWaves [:, neuron] = meanAlignWave
209

210 smpRate = spike_waves_schema[’smpRate ’]*10
211

212 return meanAlignWaves , smpRate
213

214 def LV(ISIs):
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215 ’’’
216 Returns:
217 ’’’
218

219 n_trials , n_units = np.shape(ISIs)
220 allLV = np.zeros((1, n_units))
221

222 for neuron in range(n_units):
223 neuronLV = np.zeros((n_trials ,))
224 for trial in range(n_trials):
225 if len(ISIs[trial , neuron ]) <= 1: #if there are no ISIs

to compare against each other
226 neuronLV[trial] = float(’NaN’)
227 else:
228 LV = spikes.isi_stats(ISIs[trial , neuron], stat=’LV’)
229 neuronLV[trial] = LV
230 meanLV = np.nanmean(neuronLV , axis =0)
231 allLV[:, neuron] = meanLV
232 return allLV
233

234 def waveform_check(repolTime):
235 ’’’
236 Returns: passed_neurons (n_units , ): all units with non -inverted

waveforms.
237 ’’’
238

239 passed_neurons = []
240 row , num_neurons = np.shape(repolTime)
241 for i in range(num_neurons):
242 if not math.isnan(repolTime[:, i]):
243 passed_neurons.append(i)
244

245 newRepolTime = repolTime[:, passed_neurons]
246 return passed_neurons
247

248 def spike_i(spikes , predInfo , sampInfo , area , idx):
249 ’’’
250 Saves the time data for each unit (data is 1 x trials)
251 ’’’
252 trials , units = np.shape(spikes)
253 for i in range(units):
254 np.save(’/home/ehua/clustering /090623 _data/spikes /{} _spikes_

{}.npy’.format(area , i+idx), spikes[:, i])
255

256 predInfo.to_csv(’/home/ehua/clustering /090623 _data/info /{}
_predInfo_ {}.csv’.format(area , i+idx))

257 sampInfo.to_csv(’/home/ehua/clustering /090623 _data/info /{}
_sampInfo_ {}.csv’.format(area , i+idx))

258

259 def filterSingleElectrodes(electrode_info , depths , lfp , area_idx ,
lfp_probe_idx):

260 ’’’
261 Returns: indices of non -singular electrodes
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262 ’’’
263 idx_keep = np.where(electrode_info[’elecType ’][ area_idx ][

lfp_probe_idx] != ’single ’)[0]
264 depths = depths[idx_keep]
265 lfp = lfp[:, idx_keep , :]
266

267 return depths , lfp
268

269 def preProcessing(spike_times , trial_info , session_info , spike_waves ,
spike_waves_schema , unit_info , area , unit_count):

270 ### trial selection
271 trials_keep , predInfo , sampInfo , block_trials , trial_trials ,

unpredSampInfo = trialSelection(trial_info , session_info)
272 times_trials , waves_trials = trialsKeep(trials_keep , spike_times ,

spike_waves)
273

274 ### neuron selection
275 neurons_keep = neuronSelection(times_trials)
276 time_data , waves_data = neuronsKeep(neurons_keep , times_trials ,

waves_trials)
277

278 meanAlignWaves , smpRate = waveAlign(waves_data ,
spike_waves_schema)

279 repolTime = spikes.waveform_stats(meanAlignWaves , stat=’
repolarization ’, smp_rate=smpRate)

280 passed_neurons = waveform_check(repolTime)
281

282 time_data = time_data[:, passed_neurons]
283

284 # if time_data.shape [1] >= 2:
285 # spike_i(time_data , predInfo , sampInfo , area , unit_count)
286

287 waves_data = waves_data [:, passed_neurons]
288 meanAlignWaves = meanAlignWaves [:, passed_neurons]
289

290 depths = depth(passed_neurons , unit_info)
291

292 meanRates , rates = rateData(time_data)
293 meanNeuronRate = np.mean(rates , axis =0)
294 blockRates = np.mean(rates[block_trials , :, :], axis = 0)
295 trialRates = np.mean(rates[trial_trials , :, :], axis = 0)
296

297 ISIs = isiData(time_data)
298

299 return trials_keep , passed_neurons , meanRates , ISIs ,
meanAlignWaves , smpRate , rates , meanNeuronRate , blockRates ,
trialRates , predInfo , sampInfo , depths , unpredSampInfo ,
trial_trials

300

301 def coupling(area_lfp , area_idx , depth_var , electrode_info , unit_info
, spike_times , area , session , smp_rate):

302 probeIDs = electrode_info[’probeID ’][ area_idx ]. unique ()
303
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304 for probeID in probeIDs:
305 lfp_probe_idx = np.where(electrode_info[’probeID ’][ area_idx]

== probeID)[0]
306 spk_probe_idx = np.where(unit_info[’probeID ’][ area_idx] ==

probeID)[0]
307

308 depths = electrode_info[depth_var ][ area_idx ][ lfp_probe_idx ].
to_numpy ()

309

310 lfp = area_lfp[:, lfp_probe_idx , :]
311 spk = spike_times [:, spk_probe_idx]
312

313 if depth_var == ’betaGammaDepth ’:
314 depths , lfp = filterSingleElectrodes(electrode_info ,

depths , lfp , area_idx , lfp_probe_idx)
315

316 ### get idx of depth - superficial is negative , deep is
positive. labels of 0 (layer 4) ignored

317 sup_idx = np.where(depths < 0)[0]
318 deep_idx = np.where(depths > 0)[0]
319

320 lfp_sup = np.squeeze(np.mean(lfp[:, sup_idx , :], axis = 1))
321 lfp_deep = np.squeeze(np.mean(lfp[:, deep_idx , :], axis = 1))
322

323 spike_trains = spikes.times_to_bool(spk , lims=(-1,2))[0]
324

325 _, n_units , _ = spike_trains.shape
326

327 for unit in range(n_units):
328 unit_spikes = np.transpose(np.squeeze(spike_trains [:,

unit , :]))
329 osc_sup ,freqs_sup ,timepts_sup ,n_sup , phi_sup = \
330 sync.spike_field_coupling(np.transpose(unit_spikes),
331 np.transpose(lfp_sup),
332 time_axis = 1,
333 smp_rate = smp_rate ,
334 return_phase = True) \
335

336 osc_deep ,freqs_deep ,timepts_deep ,n_deep , phi_deep = \
337 sync.spike_field_coupling(np.transpose(unit_spikes),
338 np.transpose(lfp_deep),
339 time_axis = 1,
340 smp_rate = smp_rate ,
341 return_phase = True) \
342

343

344 np.save(’/home/ehua/clustering /090623 _data/osc/{}
_osc_sup_ {}_{}_{}’.format(area , session , probeID , unit
), np.squeeze(osc_sup))

345 np.save(’/home/ehua/clustering /090623 _data/osc/{}
_osc_deep_ {}_{}_{}’.format(area , session , probeID ,
unit), np.squeeze(osc_deep))

346
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347 np.save(’/home/ehua/clustering /090623 _data/osc/{}
_phi_sup_ {}_{}_{}’.format(area , session , probeID , unit
), phi_sup)

348 np.save(’/home/ehua/clustering /090623 _data/osc/{}
_phi_deep_ {}_{}_{}’.format(area , session , probeID ,
unit), phi_deep)

349

350 sup_path = ’/home/ehua/clustering /090623 _data/figures /{}
_spec_sup_ {}_{}_{}’.format(area , session , probeID ,
unit)

351 deep_path = ’/home/ehua/clustering /090623 _data/figures /{}
_spec_sup_ {}_{}_{}’.format(area , session , probeID ,
unit)

352

353 sup_img , sup_ax = spectra.plot_spectrogram(timepts_sup ,
freqs_sup , np.squeeze(osc_sup), sup_path , area ,
session , probeID , unit)

354 deep_imag , deep_ax = spectra.plot_spectrogram(
timepts_deep , freqs_deep , np.squeeze(osc_deep),
deep_path , area , session , probeID , unit)

355

356 # np.save(’/home/ehua/clustering /090623 _data/osc/{}
_phi_sup_session_ {} _unit_ {}.csv ’.format(area , session , i),
phi_sup)

357 # np.save(’/home/ehua/clustering /090623 _data/osc/{}
_phi_deep_session_ {} _unit_ {}.csv ’.format(area , session , i)
, phi_deep)

358

359 def featExtract(meanRates , ISIs , meanAlignWaves , smpRate , rates):
360 ’’’
361 Extracts features of interest from data.
362

363 Input: meanRates (n_units): mean spike rates for each unit
364 ISIs (n_trials , n_units): ISIs for each trial and unit
365 meanAlignWaves (n_timepts , n_units): mean aligned wave

for each unit
366 smpRate: 10x interpolated sampling rate
367 Output: featuresDF: dataframe containing features of interest
368 meanRates , troughToPeak , repolTime , CV,

LV
369

370 ’’’
371

372 troughToPeak = spikes.waveform_stats(meanAlignWaves , stat=’width’
, smp_rate=smpRate) #axis is 0?

373 repolTime = spikes.waveform_stats(meanAlignWaves , stat=’
repolarization ’, smp_rate=smpRate)

374

375 mean_timepts = np.mean(rates , axis =2)
376 CV = spikes.rate_stats(mean_timepts , stat=’CV’, axis =0) #deal

with timepts
377 allLV = LV(ISIs)
378

67



379 features = {’meanRates ’: np.squeeze(meanRates).tolist (), ’
troughToPeak ’: np.squeeze(troughToPeak).tolist (), ’repolTime ’:
np.squeeze(repolTime.tolist ()), ’CV’: np.squeeze(CV).tolist ()

, ’LV’: np.squeeze(allLV).tolist ()}
380 if np.shape(troughToPeak) == (1, 1):
381 featuresDF = pd.DataFrame(data=features , index = [0])
382 else:
383 featuresDF = pd.DataFrame(data=features)
384

385 return featuresDF
386

387 def main():
388 #validTrials , validNeurons , meanRates , ISIs , meanAlignWaves ,

smpRate , rates = preProcessing(spike_times , trial_info ,
session_info , spike_waves , spike_waves_schema)

389 #featuresDF = featExtract(meanRates , ISIs , meanAlignWaves ,
smpRate , rates)

390 pass
391

392 if __name__ == "__main__":
393 main()

A.3 Clustering

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3 """
4 Created on Thu Nov 3 16:14:04 2022
5

6 @author: huange
7 """
8

9 import numpy as np
10 import matplotlib.pyplot as plt
11 from sklearn.mixture import GaussianMixture
12 from statistics import mode
13 from sklearn.preprocessing import StandardScaler
14 import pandas as pd
15 from plotting import *
16 from analysis import *
17

18

19 def GMM(features , num_reps , area):
20 ’’’
21 Performs GMM clustering on data.
22

23 Input: features (n_features , n_datapts): matrix of feature
values for each datapoint
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24 num_reps: number of times clustering is performed for
a certain component value

25

26 Output: gmm_min: model fitted using the best number of
components

27 min_labels: cluster assignments for each data point
28 average_min_comp = number of components used for

clustering
29

30 ’’’
31 components = np.arange(2, 27) # 2-9 clusters
32 bics = np.zeros((num_reps , len(components)))
33 aics = np.zeros((num_reps , len(components)))
34 models = np.empty ((0, len(components)))
35 labels = []
36 min_comps = []
37

38 for rep in range(num_reps): # what is num_reps
39 min_bic = np.inf
40 rep_models = []
41 rep_labels = []
42 for comp in components: # for each cluster #
43 gmm = GaussianMixture(n_components=comp , random_state=rep

)
44 gmm.fit(features)
45 label = gmm.predict(features)
46

47 bic = gmm.bic(features)
48 aic = gmm.aic(features)
49

50 bics[rep , comp -2] = bic
51 aics[rep , comp -2] = aic
52 rep_models.append(gmm)
53 rep_labels.append(label)
54

55 if bic < min_bic:
56 min_bic = bic
57 min_comp = comp
58 min_comps.append(min_comp)
59 models = np.append(models , np.array(rep_models).reshape ((1,

25)), axis =0)
60 labels.append(rep_labels)
61

62 plt.figure (0)
63 bics_mean = np.mean(bics , axis =0)
64 bics_stds = np.std(bics , axis = 0)
65 plt.plot(components , bics_mean , ’k’, color=’#CC4F1B ’)
66 plt.fill_between(components , bics_mean -bics_stds , bics_mean+

bics_stds ,
67 alpha =0.5, edgecolor=’#CC4F1B ’, facecolor=’#

FF9848 ’)
68 plt.title(area + " bics")
69 plt.savefig(’/home/ehua/clustering /090623 _data/figures /{} _bics.
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png’.format(area))
70

71 plt.figure (1)
72 aics_mean = np.mean(aics , axis =0)
73 aics_stds = np.std(aics , axis = 0)
74 plt.plot(components , aics_mean , ’k’, color=’#CC4F1B ’)
75 plt.fill_between(components , aics_mean -aics_stds , aics_mean+

aics_stds ,
76 alpha =0.5, edgecolor=’#CC4F1B ’, facecolor=’#

FF9848 ’)
77 plt.title(area + " aics")
78 plt.savefig(’/home/ehua/clustering /090623 _data/figures /{} _aics.

png’.format(area))
79

80 average_min_comp = mode(min_comps)
81 print(min_comps)
82 min_model_idx = np.argmin(bics[:, average_min_comp -2])
83 min_model = models[min_model_idx , average_min_comp -2]
84 min_labels = labels[min_model_idx ][ average_min_comp -2]
85

86 return min_model , min_labels , average_min_comp\
87

88 def main():
89 area = ’dlPFC’
90 feat_df = pd.read_csv(’/home/ehua/clustering /090623 _data /{}_df.

csv’.format(area), index_col = 0)
91 waves_df = pd.read_csv(’/home/ehua/clustering /090623 _data /{}

_waves.csv’.format(area), index_col = 0)
92 depths = pd.read_csv(’/home/ehua/clustering /090623 _data /{} _depths

.csv’.format(area), index_col = 0)
93 waves = waves_df.to_numpy ()
94 waves_ptp = waves.ptp(axis = 0)
95 waves_norm = np.divide(waves , waves_ptp)
96

97 all_params = [’troughToPeak ’, ’repolTime ’, ’meanRates ’, ’CV’, ’LV
’]

98

99 cluster_stats = feat_df[all_params ]. to_numpy ()
100 scaler = StandardScaler ()
101 cluster_stats_norm = scaler.fit_transform(cluster_stats)
102

103 _, min_labels , _ = GMM(cluster_stats_norm , 500, area)
104

105 cluster_stats_df = pd.DataFrame(cluster_stats_norm)
106 cluster_stats_df[’labels ’] = min_labels
107 labels_df = feat_df.copy(deep=True)
108 labels_df[’labels ’] = min_labels
109 labels_df[’depths ’] = depths
110

111 labels_df.to_csv(’/home/ehua/clustering /090623 _data/clusters /{}
_labels_df.csv’.format(area))

112 min_labels_df = pd.DataFrame(min_labels)
113 min_labels_df.to_csv(’/home/ehua/clustering /090623 _data/clusters
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/{} _labels.csv’.format(area))
114

115 if __name__ == "__main__":
116 main()

A.4 Analysis

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3 """
4 Created on Tue Feb 21 13:06:39 2023
5

6 @author: ehua
7 """
8

9 from spynal import spikes , info , randstats
10 import pandas as pd
11 import numpy as np
12 import matplotlib.pyplot as plt
13

14 def cluster_count(labels , comp_num):
15 counts = np.zeros(comp_num)
16 for label in labels[’0’]:
17 counts[label] += 1
18 return counts
19

20 def pev_func(data , labels):
21 pev = info.neural_info(data , labels)
22 return pev
23

24 def anova(pev , labels):
25 p = np.squeeze(randstats.one_way_test(pev , labels))
26 #time_vec = np.linspace (-1.5, 2.5, 60)
27 #plt.figure ()
28 #plt.plot(time_vec , p)
29 return p
30

31 def ttest(data , labels):
32 plt.figure ()
33 comp_num = max(labels)
34 fig , axs = plt.subplots(comp_num , 1)
35 fig.tight_layout ()
36 colors = [’xkcd:azure’, ’mediumseagreen ’, ’tab:olive’, ’xkcd:

lavender ’]
37 time_vec = np.linspace(-1, 0.5, 30)
38

39 for i in range(comp_num):
40 ax = axs[i]
41 cluster_units = labels == i
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42 p = randstats.one_sample_test(data[cluster_units , :])
43 ax.plot(time_vec , np.squeeze(p), color = colors[i])
44

45

46 def main():
47 allPEVDf = pd.read_csv(’/home/ehua/clustering/allPEV_samp_V4.csv’

, index_col = 0)
48 allPEV = allPEVDf.to_numpy ()
49

50 labels_df = pd.read_csv(’/home/ehua/clustering/V4_labels.csv’,
index_col = 0)

51 labels = labels_df[’labels ’]
52

53 p = anova(allPEV , labels)
54 print(p)
55

56 ttest(allPEV , labels)
57

58

59 if __name__ == "__main__":
60 main()

A.5 Plotting

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3 """
4 Created on Thu Feb 9 15:47:31 2023
5

6 @author: ehua
7 """
8 import matplotlib.pyplot as plt
9 import seaborn as sns

10 import numpy as np
11 from matplotlib.ticker import NullFormatter
12 from scipy import stats
13 import pandas as pd
14 from sklearn.manifold import TSNE
15 from spynal import spikes
16 import math
17 from copy import deepcopy
18 from analysis import cluster_count
19

20 def outlier_id(labels_df , comp_num):
21 rows , _ = labels_df.shape
22 max_std = 2.5
23

24 outlier_col = np.empty((rows , ))
25 for i in range(comp_num):
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26 cluster_units = labels_df.loc[labels_df[’labels ’] == i]
27 cluster_idx = cluster_units.index
28

29 troughToPeak = cluster_units[’troughToPeak ’]. to_numpy ()
30 repolTime = cluster_units[’repolTime ’]. to_numpy ()
31 ttp_std = np.std(troughToPeak)
32 ttp_mean = np.mean(troughToPeak)
33 ttp_std_filter = np.where(np.logical_or(troughToPeak <

ttp_mean - (max_std*ttp_std), troughToPeak > ttp_mean + (
max_std*ttp_std)), 1, 0)

34 rpt_std = np.std(repolTime)
35 rpt_mean = np.mean(repolTime)
36 rpt_std_filter = np.where(np.logical_or(repolTime < rpt_mean

- (max_std*rpt_std), repolTime > rpt_mean + (max_std*
rpt_std)), 1, 0)

37

38 outlier_all = np.logical_or(ttp_std_filter , rpt_std_filter)
39

40 outlier_col[cluster_idx] = outlier_all
41

42 labels_df[’outliers ’] = outlier_col
43 return labels_df
44

45 def pairplot(labels_df , outliers_df , comp_num , area , outlier=False):
46 all_params = [’troughToPeak ’, ’repolTime ’, ’meanRates ’, ’CV’, ’LV

’]
47 if outlier:
48 for i in range(comp_num):
49 cluster_units = outliers_df.loc[outliers_df[’labels ’] ==

i]
50 g = sns.pairplot(cluster_units , hue = "outliers", kind=’

scatter ’,
51 diag_kind=’kde’, palette = ’muted

’, x_vars = all_params ,
y_vars = all_params)

52 g.fig.suptitle(area + " outlier pairplot for comp " + i,
y = 1.03, fontsize = 20)

53 else:
54 g = sns.pairplot(labels_df , hue = "labels", kind=’scatter ’,
55 diag_kind=’kde’, palette = ’muted’,

x_vars = all_params , y_vars =
all_params)

56 g.fig.suptitle(area + " cluster pairplot", y = 1.03, fontsize
= 20)

57 plt.savefig(’/home/ehua/clustering /090623 _data/figures /{}
_pairplot.png’.format(area))

58

59

60 def plot_avg_wave(allAlignWaves , df , comp_num , area):
61 fig , axs = plt.subplots(comp_num , 1)
62 fig.tight_layout ()
63 fig.set_figheight (15)
64 fig.set_figwidth (10)
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65

66 clusters =[]
67

68 colors = sns.color_palette("muted")
69 for i in range(comp_num):
70 ax = axs[i]
71 clusters.append(i)
72 cluster_units = df.loc[df[’labels ’] == i]
73 cluster_units_idx = cluster_units.index
74 outlier_idx = cluster_units.loc[cluster_units["outliers"] ==

1]. index
75 cluster_units_idx = list(set(cluster_units_idx) - set(

outlier_idx))
76 cluster_waves = allAlignWaves [:, cluster_units_idx]
77 outlier_waves = allAlignWaves [:, outlier_idx]
78

79 ax.plot(cluster_waves , color = colors[i], alpha = 0.2)
80 mean_wave = np.mean(cluster_waves , axis = 1)
81 ax.plot(mean_wave , color = ’k’)
82 if outlier_waves.size != 0:
83 ax.plot(outlier_waves , color="crimson", alpha = 0.5)
84 fig.suptitle(area + " cluster waveforms", y = 1.03, fontsize =

20)
85 fig.legend(clusters)
86

87 plt.savefig(’/home/ehua/clustering /090623 _data/figures /{}
_avg_waves.png’.format(area))

88

89

90 def elbow_plot(components , data_mean , data_std):
91 plt.figure (0)
92 plt.plot(components , data_mean , ’k’, color=’#CC4F1B ’)
93 plt.fill_between(components , data_mean -data_std , data_mean+

data_std ,
94 alpha =0.5, edgecolor=’#CC4F1B ’, facecolor=’#

FF9848 ’)
95

96 def tsne_plot(ax, perplexity , df_tsne , area):
97 ax.set_title(area + " for Perp=%d" % perplexity)
98 sns.scatterplot(data=df_tsne , x=’comp1’, y=’comp2’, marker=’o’,

hue=df_tsne.label.astype(’category ’).cat.codes , ax = ax)
99 ax.xaxis.set_major_formatter(NullFormatter ())

100 ax.yaxis.set_major_formatter(NullFormatter ())
101 ax.axis("tight")
102

103 def area_dist(df, comp_num , area):
104 colors = sns.color_palette("muted")
105 plt.figure(figsize = (10, 10))
106 datapts , _ = df.shape
107 labels = []
108 percs = []
109 for i in range(comp_num):
110 cluster_pts = df.loc[df[’0’] == i].shape [0]
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111 perc = cluster_pts/datapts
112 percs.append(perc)
113 labels.append(str(i))
114

115 plt.pie(percs , labels=labels , autopct=’%1.1f%%’,
116 shadow=True , startangle =90, colors=colors)
117 plt.title(area + " datapoints per cluster")
118 plt.savefig(’/home/ehua/clustering /090623 _data/figures /{} _dist.

png’.format(area))
119

120 def param_values(df, all_params , comp_num , area):
121 fig , axs = plt.subplots(1, len(all_params))
122 fig.tight_layout ()
123 fig.set_figheight (10)
124 fig.set_figwidth (15)
125

126 colors = sns.color_palette("muted")
127 clusters = []
128

129 for i in range(len(all_params)):
130 ax = axs[i]
131 param = all_params[i]
132 param_df = df[[param , ’labels ’]]
133 for j in range(comp_num):
134 clusters.append(j)
135 cluster_units = param_df.loc[param_df[’labels ’] == j]
136 mean_param = np.mean(cluster_units[param])
137 sem_param = stats.sem(cluster_units[param])
138 ax.errorbar(x=0, y=mean_param , yerr=sem_param , fmt =’o’,

color = colors[j])
139 ax.set_title(param)
140

141 plt.legend(clusters)
142 plt.title(area + " parameter values")
143 plt.savefig(’/home/ehua/clustering /090623 _data/figures /{}

_param_values.png’.format(area))
144

145 def psth(df, comp_num , blockRates , trialRates):
146 time_vec = np.linspace(-1, 1.95, 60)
147 fig , axs = plt.subplots(comp_num , 1)
148 fig.tight_layout ()
149 fig.set_figheight (15)
150 fig.set_figwidth (10)
151

152 for i in range(comp_num):
153 ax = axs[i]
154 cluster_units = df.loc[df[’labels ’] == i]
155 cluster_units_idx = cluster_units.index
156

157 ax.plot(time_vec , np.mean(blockRates[cluster_units_idx , :],
axis = 0), color="crimson", linewidth = 2)

158 ax.plot(time_vec , np.mean(trialRates[cluster_units_idx , :],
axis = 0), color="cyan", linewidth = 2)
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159

160 fig.legend (["block", "trial"])
161

162 def pev_plot(data , labels , comp_num , area , label_type):
163 plt.figure ()
164 #fig , axs = plt.subplots(comp_num , 1)
165 #fig.tight_layout ()
166 colors = sns.color_palette("muted")
167 clusters = []
168 time_vec = np.linspace(-1, 0.5, 30)
169

170 for i in range(comp_num):
171 #ax = axs[i]
172 clusters.append(i)
173 cluster_units = labels == i
174

175 data_mean = np.mean(data[cluster_units.to_numpy ().flatten (),
:], axis = 0)

176 plt.plot(time_vec , data_mean , color=colors[i])
177

178 sems = stats.sem(data)
179 plt.fill_between(time_vec , data_mean -sems , data_mean+sems ,
180 alpha =0.5, edgecolor=’#CC4F1B ’, facecolor=’#

FF9848 ’)
181

182 plt.title(area + ’ PEV plot for ’ + label_type)
183 plt.savefig(’/home/ehua/clustering /090623 _data/figures /{} _PEV_ {}.

png’.format(area , label_type))
184 plt.legend(clusters)
185

186 def feat_reduction(df, min_labels , area):
187 ’’’
188 Reduces N-d data to a 2-d feature space using TSNE method.
189

190 Input: df (n_features , n_datapts): dataframe of features to
be reduced

191 min_labels: cluster assignments for each datapoint
192 area: cortical area of data
193

194 Output: scatterplot of data in 2-d space.
195

196 ’’’
197 num_pts , num_vars = df.shape
198 perplexities = [10, 30, 40, 50, 60, 70, 80, 100]
199 (fig , subplots) = plt.subplots(2, 4, figsize =(16, 8))
200 axes = subplots.flatten ()
201

202 for i, perplexity in enumerate(perplexities):
203 ax = axes[i]
204

205 tsne = TSNE(
206 n_components =2,
207 init="random",
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208 perplexity=perplexity ,
209 learning_rate="auto",
210 n_iter = 5000
211 )
212 df_embedded = tsne.fit_transform(df)
213

214 df_tsne = pd.DataFrame(df_embedded , columns =[’comp1’, ’comp2’
])

215 df_tsne["label"] = min_labels
216

217 tsne_plot(ax, perplexity , df_tsne , area)
218

219

220 def raster(area , labels , cluster , cond_data , cond_type , unit_num ,
cluster_units):

221 ’’’
222 Generates raster plots of spike data per cluster for different

PEV labels.
223

224 Input: spike_data (n_units , n_timepts): ndarray of spike
timestamps

225 labels (n_units , ): column of cluster labels
226 comp_num: number of clusters
227 cond_data (n_units , ): labels of conditions
228 cond_type: condition type (samp or pred)
229

230 Output: scatterplot of data in 2-d space.
231

232 ’’’
233 fig , axs = plt.subplots(math.ceil(unit_num /10), 10)
234 fig.suptitle(’Raster Plot of Spikes for ’ + cond_type + ’ in ’ +

area)
235 cond_name = str(cond_type + ’Info’)
236 ax_count = 0
237

238 for i in cluster_units.index:
239

240 spikes_i = np.load(’/home/ehua/clustering /090623 _data/spikes
/{} _spikes_ {}.npy’.format(area , i), allow_pickle=True)

241 info_i = pd.read_csv(’/home/ehua/clustering /090623 _data/info
/{}_{}_{}.csv’.format(area , cond_name , i), index_col = 0)

242

243 r, c = divmod(ax_count , 10)
244 ax = axs[r, c]
245

246 spikes_df = pd.DataFrame(spikes_i)
247 info_i.index = spikes_df.index
248 df = pd.concat ([spikes_df , info_i], axis = 1)
249

250 if cond_type == ’samp’:
251 df = df.sort_values(’sample ’)
252 df = df.reset_index(drop = True)
253
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254 spikes.plot_raster(df[0], ax = ax)
255

256 last1Trial = df[’sample ’].where(df[’sample ’]==1.0).
last_valid_index ()

257 last2Trial = df[’sample ’].where(df[’sample ’]==2.0).
last_valid_index ()

258 last3Trial = df[’sample ’].where(df[’sample ’]==3.0).
last_valid_index ()

259 ax.axhspan(0, last1Trial , facecolor=’b’, alpha =0.3)
260 ax.axhspan(last1Trial , last2Trial , facecolor=’m’, alpha

=0.3)
261 ax.axhspan(last2Trial , last3Trial , facecolor=’y’, alpha

=0.3)
262 #plt.axhline(y = last1Trial , color = ’r’, linestyle =

’-’)
263 #plt.axhline(y = last2Trial , color = ’r’, linestyle =

’-’)
264

265 else:
266 df = df.sort_values(’blockType ’)
267 df = df.reset_index(drop = True)
268

269 spikes.plot_raster(df[0], ax=ax)
270

271 last1Trial = df[’blockType ’].where(df[’blockType ’]==1.0).
last_valid_index ()

272 last2Trial = df[’blockType ’].where(df[’blockType ’]==2.0).
last_valid_index ()

273 plt.axhspan(0, last1Trial , facecolor=’b’, alpha =0.3)
274 plt.axhspan(last1Trial , last2Trial , facecolor=’m’, alpha

=0.3)
275

276 ax_count += 1
277

278 def depth_analysis(depths , labels , counts , area):
279 depths = depths.rename(columns ={"0": "depth"})
280 labels = labels.rename(columns ={"0": "label"})
281 df = pd.concat ([depths , labels], axis =1)
282

283 fig , ax = plt.subplots(figsize =(19 ,19))
284 df.label = df.label.astype("category")
285 sns.swarmplot(data=df , x="label", y="depth", palette=’muted’, ax=

ax)
286

287 # weights = np.ones(len(labels))
288 # for i in range(len(labels)):
289 # weights[i] = 1/ counts[labels[’label ’][i]]
290

291 # sns.histplot(data=df, x="depth", hue=" label", multiple ="stack",
weights = weights , palette=’muted ’)

292

293 plt.title(area + ’Depth Distribution per Cluster ’)
294 plt.savefig(’/home/ehua/clustering /090623 _data/figures /{}
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_cluster_depth_nojitter.png’.format(area))
295

296 def main():
297 areas = [’7A’, ’V4’, ’LIP’, ’PFC’]
298 pev_types = [’samp’, ’pred’]
299

300

301 for area in [’LIP’]:
302 #feat_df = pd.read_csv(’/home/ehua/clustering /090623 _data /{}

_df.csv ’.format(area), index_col = 0)
303 waves_df = pd.read_csv(’/home/ehua/clustering /090623 _data /{}

_waves.csv’.format(area), index_col = 0)
304 waves = waves_df.to_numpy ()
305 waves_ptp = waves.ptp(axis = 0)
306 waves_norm = np.divide(waves , waves_ptp)
307

308 #spikes_df = pd.read_csv(’/home/ehua/clustering /090623 _data
/{} _spikes.csv ’.format(area), index_col = 0)

309 #spikes = spikes_df.to_numpy ()
310

311 # jitter_df = pd.read_csv(’/home/ehua/clustering /090623 _data
/{} _depths_jitter.csv ’.format(area), index_col = 0)

312 # jitter = jitter_df.to_numpy ()
313 # depths_df = pd.read_csv(’/home/ehua/clustering /090623 _data

/{} _depths.csv ’.format(area), index_col = 0)
314 # depths = depths_df.to_numpy ()
315

316

317 all_params = [’troughToPeak ’, ’repolTime ’, ’meanRates ’, ’CV’,
’LV’]

318 labels_df = pd.read_csv(’/home/ehua/clustering /090623 _data/
clusters /{} _labels_df.csv’.format(area), index_col = 0)

319 labels = pd.read_csv(’/home/ehua/clustering /090623 _data/
clusters /{} _labels.csv’.format(area), index_col = 0)

320 comp_num = max(labels[’0’]+1)
321 counts = cluster_count(labels , comp_num)
322

323 #depth_analysis(depths_df , labels , counts , area)
324

325 #feat_reduction(feat_df , labels , area)
326

327 # outliers_df = outlier_id(labels_df , comp_num)
328 # plot_avg_wave(waves_norm , outliers_df , comp_num , area)
329 # pairplot(labels_df , outliers_df , comp_num , area)
330

331 # area_dist(labels , comp_num , area)
332 # param_values(labels_df , all_params , comp_num , area)
333

334 #psth(labels_df , comp_num , allBlockRates , allTrialRates)
335

336 for pev_type in pev_types:
337 pev_df = pd.read_csv(’/home/ehua/clustering /090623 _data

/{} _PEV_ {}.csv’.format(area , pev_type), index_col = 0)
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338 pev_data = pev_df.to_numpy ()
339

340 pev_plot(pev_data , labels , comp_num , area , pev_type)
341

342 for cond_type in pev_types:
343 cluster = 4
344 cond_data = pd.read_csv(’/home/ehua/clustering /090623

_data /{} _PEV_ {}.csv’.format(area , cond_type),
index_col = 0)

345

346 cluster_units = labels.loc[labels[’0’] == cluster]
347 unit_num = cluster_units.size
348 raster(area , labels , cluster , cond_data , cond_type ,

unit_num , cluster_units)
349

350 if __name__ == "__main__":
351 main()

A.6 Utilities

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3 """
4 Created on Tue Feb 14 15:22:24 2023
5

6 @author: ehua
7 """
8 import numpy as np
9

10 def anscombe(x):
11 return 2.0*np.sqrt(x + 3.0/8.0)
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