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ABSTRACT

Designing a printed circuit board (PCB) is a complex process that involves creating a

schematic, placing components, ensuring that every component is routable, and performing

simulations to predict the behavior of the PCB before it is manufactured. With the rise of

technological innovations, the demand for chips will increase, putting pressure on the elec-

tronic design automation (EDA) industry to innovate in PCB design. As part of Cadence’s

Allegro X AI team, which aims to develop AI technology to automate PCB designers’ tasks,

we explored the application of multi-objective genetic optimization in component placements

as an alternative method for automating component placement. More specifically, we ap-

plied genetic optimization to a two-sided printed circuit board (PCB). We discovered that

employing multiple objectives, such as half-perimeter wirelength and routability, produces

promising component placements.

Thesis supervisor: Luca Daniel
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Chapter 1

Introduction

1.1 History of Printed Circuit Board and Electronic De-

sign Automation Tools

The invention of the printed circuit board (PCB) in the early 20th century revolutionized

the way electronic circuits were designed and built. Prior to the PCB, engineers had to

build circuits using point-to-point wiring, which was a time-consuming and labor-intensive

process. PCBs allowed circuits to be built quickly and easily by etching a circuit pattern onto

a copper-foil-coated board. In the 1960s, the introduction of integrated circuits (ICs) led to

the development of multi-layer PCBs. ICs are small electronic devices that contain millions

of transistors on a single chip. Multi-layer PCBs allow ICs to be connected to each other in

a compact and e�cient manner. As the complexity of ICs increased, designers began to use

electronic design automation (EDA) tools to help them design and build circuits [1], [2]. EDA

tools are software programs that allow designers to create and simulate electronic circuits.

Today, EDA tools are essential for the design of complex electronic devices. The three

dominant industry players in the EDA industry are Cadence, Synopsys, and Mentor. These

companies provide software solutions that allow designers to develop their chips. Now, with

the advent of machine learning and arti�cial intelligence, companies are trying to automate

15



(a)

(b)

Figure 1.1: Visual di�erences between printed circuit board and integrated circuit. (a) A
set of heterogenous components placed on a orinted circuit board (b) A singular integrated
circuit.

the PCB synthesis process by developing algorithms that can automatically generate PCB

layouts from a set of design speci�cations. These algorithms can also be used to optimize

PCB layouts for manufacturability and performance. In conclusion, the invention of the

PCB and the development of EDA tools have revolutionized the way electronic circuits are

designed and built. These innovations have led to the development of a wide variety of new

electronic devices, and they continue to play a vital role in the electronics industry.

1.2 Motivation for Accelerating PCB Design

PCB design is already a time consuming process, taking some designers months or weeks to

fully design a board. The need for PCB designers spans across many industries to build a

variety of technologies from small internet of thing (IoT) devices to autonomous vehicles to

supercomputers. As more technologies demand higher performance and complex objectives,

PCB layout becomes increasingly complex, implying that the design process would take even

longer. This is because all of the required components must be placed optimally to ensure

that all components can be routed, while maintaining high-speed circuitry performance,

avoiding electromagnetic interference and other signal integrity problems, dissipating heat,
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and ensuring that the board is manufacturable.

Once components are placed, PCB designers need to �gure out where to place vias, which

are small drilled holes that connect the layers of the PCB. The �nal stage of PCB layout is

routing. Routing is the process of connecting all of the components on a PCB with traces.

Routing is a challenging stage of PCB design, especially in high-density designs with many

components. The traces need to be routed in a way that minimizes the length of the traces,

which helps to improve signal integrity. The traces, including those for the power net, also

need to be routed in a way that avoids interference from other components and traces.

Ultimately, component placement a�ects the downstream placement of via and the routabil-

ity of the whole board. As a result, it is important to determine if we can automate compo-

nent placement e�ectively.

1.3 Thesis Overview

1.3.1 Cadence's Allegro X AI

For my Master's thesis at MIT, I conducted research at Cadence with the Allegro X AI

team. The team works on technology that fully automates the design of printed circuit

boards (PCBs). From a system point of view, the users would provide a PCB schematic,

and our product will output a PCB design ready for manufacturing. The PCB schematic

would be processed in the following stages:

1. Placement

2. Via Placement

3. Routing

4. System analysis for electrical and thermal performances

17



Cadence has released a product launch, where there are existing customers that are

sending their schematics for generated PCB designs. The purpose of the product is to

improve productivity, leverage cloud compute, provide quality PCB results, and ensure that

the generated PCB is analyzed properly for electrical and thermal performances.

1.3.2 Research Goal

In this thesis, the goal is to improve the placement stage by exploring the potential ap-

plication of genetic optimization as an alternative method to heuristic methods. Genetic

Optimization is a promising �eld to explore because of its ability to explore a large non-

convex search space and �nd solutions of di�erent objectives, especially for a objectives

that are non-di�erentiable. I hope that my research will provide insights for where genetic

optimization can be applied in the current PCB work�ow.

18



Chapter 2

Related Works

Both very large-scale integration (VLSI) and PCB designs share a similar problem statement,

where the goal of the designers is to �nd the optimal placement of components on the board.

Because of these similarities, it is useful to understand previous work done on VLSI designs

and understand why placement algorithms for VLSI designs cannot simply be extended to

PCB designs. VLSI is the process of combining multiple electronic components into a single

integrated circuit (IC) or chip. PCB design is the process of combining many integrated

circuits with resistors, transistors, connectors. For example, consider a chip designer that is

tasked with designing an application-speci�c chip for detecting physical temperature. This

temperature-detecting chip would be placed on a PCB that would be used in a range of

devices such as in home appliances. Attempts to automate VLSI designs have been made

recently in the last few decades. Researchers have attempted to automate VLSI designs by

developing a coding scheme called sequence-pair [3]. Lu et al developed ePlace (electrostatics-

based placement), an analytic and nonlinear placement algorithm, which models placement

instances as an electrostatic system: it uses an electrostatics-based global-smooth density

cost function and Nesterov's method nonlinear optimizer [4]. Recent work by Anna Goldie

and Azalia Mirhoseini at Google Brain posed placement as a Reinforcement Learning (RL)

problem and trained the agent to place components on a chip canvas [5]. This work was
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done at Google Brain, where Google used the developed ML model to construct its next

generation of TPU. Despite having a similar problem statement, the di�erences between the

VLSI and PCB designs are signi�cant:

1. PCB designs are dual-sided, while VLSI is single-sided

2. PCB components can be highly heterogeneous in geometry and size

3. PCB designs have di�erent physical, electrical, thermal constraints than VLSI designs

Any VLSI placer algorithm cannot be applied to solve the placement problem of PCB designs

without modi�cation. For example, the algorithm cannot handle the two-sided property of

PCBs. Additionally, the placer does not usually need to worry about the routability of a VLSI

design after placement, as the router is usually sophisticated enough to ensure routability

between all components. However, this is not the case for PCBs, making the automation

of PCB synthesis a di�cult task. As mentioned in Section 1.2, automating component

placement is the �rst obstacle that must be overcome in order to automate PCB synthesis.

The application of genetic algorithms in the PCB domain is not a novel approach. Re-

searchers have applied a genetic algorithm approach to increase the manufacturing process,

where the goal is to optimize the throughput rate of the automated machines that pick and

place components on PCB boards [6], [7]. Our team has already applied genetic optimization

in the realm of via placement, which is currently still being used in the current technology.

This work was done by a previous 6-A intern, Zachary Zumbo [8].

However, in this thesis, we are primarily focused on the application of genetic algorithms

in directly placing components on a PCB board. In the past decade, some researchers

attempted to optimize component placement design on PCB using a two-stage genetic algo-

rithm, where there were four objectives (temperature of component, area of PCB, high power

component placement, and high potential critical component) that were scaled as a singular

�tness function. They used an outer genetic optimization loop to optimize for the weights.

Furthermore, the optimization of component placement was only done on a one-side board
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with no rotation, limiting the search space of the solution signi�cantly [9]. Cecchetti et al.

employed an iterative genetic algorithm to optimally place decoupling capacitors on a power

delivery network (PDN), using feedback from a neural network that e�ectively predicts the

input impedance of the PDN [10]. Makeev applied genetic optimization to do automated

placement on a �ex-rigid printed circuit to optimize high-quality thermal and electromag-

netic compatibility. Like the previous research on PCB component placement, the usage of

a linear combination of �tness functions makes the problem a single-objective optimization.

Additionally, the researchers also did not optimize the weights used to scale the di�erent

objectives, and the research does not talk about whether or not the experiments were done

on realistic designs, so it is hard to draw conclusive evidence if the work could be applied

to real PCB designs [11]. MIT 6-A intern Peter Crocker has done some work in PCB com-

ponent placement, expanding the method of Goldie and Mirhoseini to PCB placement [12].

However, Crocker only explored a limited problem space, where he restricted the placement

domain to only ring placement. Ring-based placements were trivial to guarantee routability,

and the routing calculations were accessible for the RL agent. In his research, the RL agent

observed the state of a partially placed board and needed to place the rest of the unplaced

components.

However, the application of multi-objective genetic optimization in PCB component

placement to generate a Pareto front of solution has not been explored. Furthermore, this

thesis will be investigating the component placement in a problem space that considers a

two-sided board in the x-y space as well as comparing the result on realistic PCB designs.
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Chapter 3

Background on Optimization Methods

3.1 Computational Complexity of PCB Component Place-

ment

The complexity of component placement in PCB design can be understood by considering

the problem of routing a design. Routing is the process of connecting components on a board

after they have been placed. The task of a router is to connect the components according

to a netlist, which is a list of electrical connections that describe a circuit. The simplest

routing problem, known as the Steiner tree problem, involves �nding the shortest route for a

given net. This problem is considered NP-hard [13]. Routing can fail if components are not

connected correctly, if design rules are violated, or if signal integrity tests fail. Consequently,

any routing problem is an intractable computational problem.

Because routing depends on the placement of components, �nding an optimal placement

of components on a PCB is itself an intractable problem. More speci�cally, PCB component

placement is a highly nonlinear, multi-objective optimization problem that must consider

not only routability but also physical restrictions, signal integrity, the number of vias, the

length of traces, pin connections as speci�ed in the netlist, and other electrical properties.

Because there are multiple objectives that a designer must consider, there are typically

22



multiple solutions to a given PCB placement problem, each with di�erent trade-o�s.

As a result, PCB component placement is a complex problem that requires a signi�cant

amount of time for PCB designers to manually complete. There is no perfect algorithm

capable of solving PCB component placement due to the nonlinear nature of the problem.

3.2 Infeasability of Gradient-Based Optimization

Gradient-based methods, such as gradient descent [14], generally solve problems that can be

formulated in the following structure

min
x2 Rn

f (x)

wherex is a vector in n-dimensional andf (�) is a di�erentiable function.

However, it is infeasible to formulate PCB placement problem to be fully di�erentiable,

while taking account of the non-di�erentiable objectives that PCB designers care about.

Some of these non-di�erentiable objectives are the following

1. Minimizing the wirelength of the net of components

2. Non-overlapping components

3. Routability of all components

4. Electrical and thermal properties of the board

Furthermore, not only are we working with continuous values to place components in a

Cartesian coordinate, we would need to �nd a way to represent the discrete decision choice

of placing components on the top or bottom of the board. However, it is technically feasible

to formulate PCB component placement as a machine learning problem [5], [12]. We can

include continuous and discrete decision variables as part of a n-dimensional vector. The

technical issue with formulating PCB component placement as a machine learning task is
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the fact that it would be di�cult to incorporate the non-di�erentiable objectives as part

of the loss function. As a result, it is very likely that a machine learning approach would

provide us a low-quality placement solution.

3.3 Genetic Algorithms (GA)

A genetic algorithm (GA) [15]�[17] is a stochastic algorithm inspired by the process of natural

selection, which also belongs to a wider class of evolutionary algorithms. Genetic Algorithms

are well-suited for problems that have some form of non-convexity, non-linearity, multiple

solutions, and non-di�erentiable objectives and constraints.

3.3.1 Basic Principles of Genetic Algorithms

(I) Chromosome representation

Chromosome representation is a speci�c terminology in evolutionary computation for repre-

senting the the individuals in a given population. Each individual, as a whole, is a potential

solution to the problem space. Chromosome representation encompasses the the data struc-

ture required to represent an individual in the solution. For example, if we want to solve a

simple 0/1 Knapsack problem, we can represent an individual with binary encoding, where

the length of the binary string is the number of items that we are considering. Other common

genetic representation can include binary or real-valued array, binary tree, directed graph,

or parse tree.

(II) Initialization

After determining the proper chromosome representation for a computational problem, we

would initialize the population of individuals. The size of the population is a hyper-parameter

that would depend on the nature of the problem. Usually, the initialization of the population
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is random because this allows the algorithm to facilitate an expansive coverage of the search

domain.

(III) Selection

In a given generation, individuals in a population are selected through a �tness-based process.

The �tness-based process include a set of functions or constraints that evaluate the quality

of the individual. The underlying principle behind the selection process is to mimic the

survival of the �ttest concept from natural evolution. The selection mechanism will choose

individuals with higher �tness. This selection mechanism ensures that in each successive

generation, the algorithm will choose individuals that are more optimal than individuals

from the previous solutions.

(IV) Crossover (recombination) & Mutation

In order to produce a second generation from the chosen individuals, these selected members

are subjected to a breeding process that emulates the biological act of mating. A speci�c

subset of individuals is set aside for this reproductive operation. It is worth noting in the

domain of evolutionary computing, it is feasible to involve more than two parents for re-

production. A crossover operator is employed on this designated subset. The foundational

principle guiding this mechanism is the recombination of genetic material with the proba-

bilistic outcome of producing o�spring exhibiting higher �tness values. After the o�spring

generation procedure, the o�springs are introduced to the mutation process. This involves

the random perturbation of their genetic material. Conceptually, the application of a muta-

tion operator on o�springs enables the algorithm to venture away from a local optimum or

explore uncharted regions of the search space, enhancing the algorithm's exploratory capac-

ity.

There are two types of domain that these operators will be working in. Real-coded opera-

tors will be working with �oating-point values. Binary operators will be working with binary
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strings. Below are the operators that we will be using for the thesis.

Real-coded crossover operators

1. Simulated Binary Crossover [18] is designed to simulate the behavior of one-point

crossover in binary genetic algorithm. It accepts two parents and produces two o�p-

srings.

2. Di�erential Evolution Crossover is a mechanism that has been taken from the Di�er-

ential Evolution Algorithm [19], [20]. The crossover works by randomly selecting three

distinct individuals from the population. A di�erence vector is calculated between

the �rst two individuals. Then, the di�erence vector is added to the third individual.

Intuitively, this can be understood as moving the individual in the direction of where

the �rst two individuals are.

3. Parent Centric Crossover [21] is a multi-parent operator, where the user can de�ne the

number of parents. The operator will pick the user-speci�ed number of parents from

the population. To produce the o�spring, the operator will randomly pick a parent

and generate an o�spring that is within the distribution of that parent.

4. Simplex Crossover [22] is a multi-parent operator, where the user can de�ne the num-

ber of parents. The operator will pick the user-speci�ed number of parents from the

population. To produce the o�spring, the operator will form a convex hull, called a

simplex. O�springs are generated uniformly within the simplex.

Binary crossover operators

1. Half Uniform Crossover [23] is a crossover that takes two binary strings. Exactly half

of the non-matching bits are switched.
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Real-coded mutation operators

1. Polynomial Mutation [24] simulates the mutation of binary-encoded bit �ip mutation

on real-valued decision variables. The intuition behind this simulation is that if we de-

cide to mutate the individual, the o�spring would be generated based on a distribution

of the current real-valued. Think of a 1-D Gaussian, where the mean is the current

value.

Binary crossover operators

1. Bit �ip is a mutation, where the bit will be �ipped at a speci�ed probability.

(V) Fitness Function

The most important building block of a genetic algorithm is the �tness function. The �tness

function is used to evaluate each individual in a population, which drives the selection

process. In other words, the �tness function guides the algorithm to �nd optimal solution.

A poor �tness function will a�ect the genetic algorithm's ability to produce optimal solutions.

(VI) Termination

The algorithm is repeated until a termination condition is reached. The termination condi-

tion can be

1. a �xed number of generations

2. a solution reaching a minimum criteria

3. a given time budget for how long the algorithm is allowed to run for

4. if the best individual has not changed after n generations, where n is a hyper-parameter
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3.3.2 Limitations of Genetic Algorithms

There are many limitations in using genetic algorithms:

1. The time complexity of the �tness function can signi�cantly in�uence the algorithm's

e�ciency in generating subsequent solutions. For instance, if evaluating the �tness

for a single individual requires 10 minutes, and we are working with a population of

500 individuals. Hypothetically, if we need to execute at least 100,000 generations to

converge to optimal solutions, the algorithm would require at least 500,000,000 minutes.

This translates to approximately 8,333,333 hours. While this example might seem

exaggerated, it underscores the importance of understanding how the time complexity

of a �tness function can exponentially accumulate across generations. Moreover, as

we evaluate the feasibility of integrating the genetic algorithm into the placement

work�ow, it is imperative to recognize that the algorithm's performance is as crucial

as the quality of the solution it yields.

2. Genetic algorithms have a tendency to converge towards a local optimum. This problem

can be alleviated by using di�erent �tness functions, increasing the mutation rate, or

using a selection mechanism that maintains the diversity of individuals.

3. It is di�cult to quantify whether or not the genetic algorithm has reached a near-

optimal solution, especially if the problem space is extremely non-convex.

4. Running the genetic algorithm repeatedly does not guarantee the same solution, espe-

cially if search space is large. Each run may reach a di�erent solution, meaning that the

algorithm has reached a set of di�erent local optimum. We can solve the inconsistency

of each run by seeding the algorithm beforehand.

3.4 Multi-objective Genetic Algorithms

A general multi-objective optimization problem [25]�[27] is formulated as the following:
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min
x2 �

(f 1(x); f 2(x); � � � ; f k(x)) (3.1)

subject to

g1(x); g2(x); � � � ; gj (x) � 0; (3.2)

h1(x); h2(x); � � � ; hl (x) = 0 (3.3)

where there arek objective functions & j and l constraint functions. x 2 � consists of

n decision variables, wherex = [ x1; x2; � � � ; xn ], where eachx i can be discrete or continuous

variables. Furthermore,x i can be bounded by some lower and upper bound,[xL
i ; xU

i ]. Note

that this optimization problem can also be a maximization problem.

In this thesis, we are primarily interested in optimizing against multiple objectives given

constraints. Intuitively, this makes sense because there is no single optimal PCB design

because a given PCB design can represent a trade-o� among a set of objectives. For example,

assume a two-objective optimization problem, where we are trying to minimize both objective

A and objective B. We can acquire a solution that optimizes for objective A, requiring the

solution to compromise against objective B. This holds true for optimizing for objective B.

There is the middle ground for �nding the balance between objective A and B. Naturally,

in a multi-objective optimization, a set of solutions that are optimal as shown in Figure 3.1

are considered the Pareto front [28]. When given the Pareto front, choosing a single solution

out of this set requires higher domain knowledge. In the realm of PCB, this aligns with the

needs of many PCB designers.

3.4.1 Naive method

The naive method [25] of doing multi-objective optimization with genetic algorithms is to

bundle all the objectives into a single �tness function using a linear function. For example,

let i be the input for some functionf (�), with 3 objective functionsx(�); y(�); z(�). The single
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Figure 3.1: Pareto front of a two-objective optimization problem

�tness function would be represented as

f (x) = � � x(i ) + � � y(i ) +  � z(i )

where �; �;  are coe�cients that sum up to 1. This approach is sub-optimal because the

global �tness becomes a function of�; �;  . This requires us to do hyper-parameter opti-

mization on �; �;  . Furthermore, we are making a strong mathematical assumption that the

di�erent objectives could be added together in a linear fashion. This strong, naive assump-

tion may provide a poor solution for a highly non-linear and non-convex problem. Lastly, the

approach of combining all objective functions into a single �tness function will not produce

a Pareto front of optimal solutions.

30



3.4.2 Multi-objective Genetic Algorithms

In this section, we describe the following multi-objective genetic algorithms [27] that follow

the basic principles as mentioned in Section 3.3. Unlike the naive method, these algorithms

are purely multi-objective, where the output will produce a Pareto front. To understand

what is mathematically su�cient for a set of solutions to be part of a Pareto front, we need

to de�ne domination.

De�nition: Domination :

Let x 2 � , wherex consists of n decision variables. A solutionx(1) dominates the other

solution x(2) if it satis�es the following conditions:

1. Condition 1: x(1) is no worse thanx(2) for all objectives.

2. Condition 2: x(1) is strictly better than x(2) in at least one objective.

De�nition: Non-dominated set :

The non-dominated set of solutions are those that are not dominated by any member in

that set.

The underlying di�erences between these algorithms can be understood through the len

of

1. The selection mechanism of individuals. In other words, the utilization of the non-

dominated de�nition can be vary from algorithm to algorithm.

2. The mechanism for preserving population and maintaining diversity.

Nondominated Sorting Genetic Algorithm II (NSGA-II)

From a high level point of view, NSGA-II algorithm demonstrates three features: (i) em-

ploying an elitist principle, (ii) implementing a diversity preserving mechanism, and (iii)
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emphasizeing non-dominated solutions.

In a brief summary of the content from the original paper, NSGA-II [29] produces an o�spring

population Qt using the parent populationPt based on a set of crossover and mutation oper-

ators, wheret denotes the number of evolutionary iteration. The paper de�nesRt = Qt [ Pt .

The algorithm applies a non-dominated sorting onRt based on the de�nition of domination.

This step of the algorithm upholds the elitist principle because all previous and current pop-

ulation members are included in this step. Then, the algorithm constructs the �rst Pareto

front F1 from Rt . It successively constructs the second Pareto frontF2 from the setRt n F1.

This procedure continues until no more Pareto fronts can be accommodated forPt+1 . Pareto

fronts that are more diverse than another one are chosen by a crowding distance mechanism.

� -NSGA-II

� -NSGA-II extends the NSGA-II algorithm with the concept of� -dominance [30].� -dominance

is a concept that relaxes the the domination de�nition by� , allowing the user the control

the precision of the Pareto front. This extension increases the algorithm's e�cacy at solving

optimization problem e�ciently and quickly. There are other extensions to the� -NSGA-II

such as adaptive population sizing.

Strength Pareto Evolutionary Algorithm (SPEA2)

The selection and diversity mechanisms behind SPEA2 [31], [32] are di�erent from NSGA-II.

For SPEA2's selection mechanism, SPEA2 assigns a �tness value to an individual based on

the number of individuals that it dominates. SPEA2 keeps an archived of non-dominated

solutions and preserves the diversity of the population with a k-th nearest neighbor density

estimation technique.
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Pareto Envelope-based Selection Algorithm (PESA2)

The Pareto Envelope-based Selection Algorithm (PESA2) [33] di�ers from the above algo-

rithms mainly in its selection technique. Instead of assigning a �tness value to an individual,

the unit of selection is a hyperbox in the objective space. PESA2 chooses non-dense hyper-

boxes over dense ones because this promotes diversity in the population. An individual is

randomly selected from the chosen hyperbox for genetic operations. Like SPEA2, an archive

of non-dominated solutions is maintained.
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Chapter 4

PCB Component Placement Formulation

for Genetic Algorithm

In this chapter, we de�ne the (1) genetic representation of the solution domain and(2) the

�tness function that will evaluate the solution domain.

4.1 Problem Statement

We are placing components of heterogeneous size on a two-sided PCB board. Placement of

components will be driven by the �tness functions and the constraints.

4.2 Chromosome Representation

We de�ne the decision variables that are needed to place components:

1. Component coordinates : Component coordinates are in the Cartesian domain,

where x 2 R and y 2 R, where the domain will be bounded by the speci�cation

of the board boundary.

2. Rotation of the components : We de�ne four possible rotations: [0� ; 90� ; 180� ; 270� ].
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We will represent these choices as a 2-bit binary string for genetic optimization, where

00 - 0� , 01 - 90� , 10 - 180� , 11 - 270� .

3. Side Assignment : We de�ne the choices for the side assignment as a 1-bit binary

string.

We encode these decision variables as an array. Let there be n components. For compo-

nent i, let x i and yi be the coordinates for the x & y positions. Letr i be the 2-bit string for

rotation. Let si be the 1-bit string for side assignment.

For placing n components on a board, we represent the chromosome representation as an

array of these decision variables as followed:

[x1; y1; r1; s1; x2; y2; r2; s2; � � � ; xn ; yn ; rn ; sn ]

4.3 Fitness & Constraint Functions

Quality PCB placement is driven by its speci�ed objective and constraint functions. Al-

though there are potential objective functions that can be included in the genetic optimiza-

tion, this requires constructing �tness functions that model and measure metrics that we

care about. Below are existing objectives and constraints that will be used for this thesis

paper.

1. Half-perimeter Wirelength is a popular objective function, used in estimating the

wire length of the net. There are a variety of models [34], [35] that implement the

half-perimeter wirelength model. For this thesis, the model ouputs a scalar value of

the total HPWL for the PCB board. Let x 2 X be a net of components, whereX is

the set of all nets. The total HPWL is de�ned as

HPWL total =
X

x2 X

HPWL x
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The intuition behind minimizing HPWL total is that components in a net will be closer

together. Components that are closer together should be easier to route.

2. Routability is another important objective function that determines if the placement

of components is routable. Routability is an abstract de�nition, where there are a vari-

ety of models [36], [37] that attempt to de�ne what makes a placement of components

routable. The outputs of these models are proxy score that will help drive an itera-

tive algorithm like genetic algorithm. The two main goals of implementing a routing

�tness function are the following: (1) it must be light-weight, where the latency of

computation is low and (2) it must be as accurate as possible to the true router.

Currently, the team has developed an in-house routing function that estimates the

routability of the placement. The routing function returns an integer value that indi-

cates the number of routes that is not routable. The routing function is based on an

A* search algorithm using a Delauney Triangulation approach. The limitation of this

routing function is that the order of the routes will impact the routing score, and �nd-

ing the optimal permutation is a NP-hard problem. Furthermore, the routing function

makes a strong assumption, where it does not route components that are on di�erent

sides of the PCB board. It automatically assumes that these components are routable.

Looking forward, this assumption can potentially a�ect the overall design of the placed

component.

3. Area Overlap is an function that quanti�es the area overlap of a given design. The

goal of having this function is to obtain non-overlapping placements.
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Chapter 5

Algorithm Selection: Experimental

Analysis

5.1 Goal

The goal of this section is to select a multi-objective algorithm suitable for our PCB com-

ponent placement application. As described in Chapter 4, the distinctions between these

algorithms lie in their selection and diversity mechanisms. In the evolutionary literature, it

is widely acknowledged that the optimal algorithm depends on the speci�c problem at hand.

Moreover, the type of crossover and mutation operator may vary depending on the problem

space. We conduct an experimental analysis to choose the algorithm with the best crossover

and mutation operators. In these experiments, we will be running the genetic algorithm with

two objectives: (1) Half-perimeter wirelength (HPWL); (2) Area Overlap. As a result, we

de�ne optimal to be the placement with the best HPWL with zero overlapping components

at the �nal generation of the genetic algorithm run. This de�nition of optimal is equivalent

to treating this optimization problem as a single-objective with a single constraint function.

By focusing on minimizing the HPWL of the optimal placement with zero overlapping com-

ponents as our main metric, we can e�ectively compare multiple algorithms and di�erent
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hyperparameter settings.

We will be using an open-source multi-objective evolutionary algorithm library called

MOEAFramework [38]. For all of our experiments, we will be running the tests on an AWS

machine (c7g.8xlarge instance).

5.2 Test Benchmark

To assess the performance of these algorithms, it is important to verify that the algorithm can

reliably �nd the global optimum in simple designs. Otherwise, investigating the capabilities

of the genetic algorithm would be futile. We created three simple component designs as

shown in Figure 1.1. The half-perimeter wirelength (HPWL) of these designs is 0. Hence, by

design, the global solution for testing the placement of these designs yields in an HPWL of

0. It is important to note that the arrangement of these components does not need to mirror

what is shown in Figure 1.1, since the genetic algorithm will be considering a two-sided PCB

board.

Not only will we be using simple designs for testing, we will test the algorithm's perfor-

mance on a set of clusters that are taken from real PCB designs. Given a netlist, the team

used a spectral clustering algorithm to classify and separate components to optimize for sim-

ilar electrical characteristics. Therefore, we also test the algorithm's performance on these

generated clusters. Figure A.1 lists 6 cluster examples from a PCB design. The placement

of these clusters were created by the team's current proprietary placement algorithm.

38



(a)

(b)

(c)

Figure 5.1: Simple component designs constructed to have half-perimeter wirelength of 0.
All components are placed on the same layer. (a) A 3x3 lattice (b) A non-uniform component
(c) A big component surrounded by small components

5.3 Analysis

5.3.1 Experimental Overview

We test the following multi-objective algorithms, (1)NSGA-II , (2) � -NSGA-II , (3) SPEA2 ,

(4) PESA2 as described in Chapter 4. To determine which algorithm performs optimally,

we arbitrarily �x the crossover and mutation operators, the number of generation evalua-

tions, the population size, and other hyperparameters.

Once we settle on the optimal multi-objective algorithm, we determine if any crossover

and mutation operators have an e�ect on the algorithm's performance. The crossover and

mutation operators have their own hyperparameters, which require us to �ne-tune these op-

erators. We take a greedy approach with �ne-tuning the multi-objective algorithm. We will

be working with the crossover and mutation operators as described in Chapter 4.
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Let C be the set of crossover operators that can be used in the genetic algorithm. Let

M be the set of mutation operators that can be used in the genetic algorithm. For both

operators c 2 C and m 2 M , we denote that each operator has its own set of hyperpa-

rameters that need to be tuned in the following notation,cH and mH , whereH is a set of

hyperparameters of arbitrary length depending on the corresponding operator.

For our experiments, we make the following assumption in order to iterate on our �ne-tuning

procedure:

Assumption : For both cH 2 C and mH 2 M , we assume that the hyperparameters corre-

sponding to an operatorh 2 H are independent from each other. This allows us to �ne-tune

the crossover and mutation operator in a greedy manner. For example, consider we are

trying to �ne-tine cH
i , where i is the ith operator in the crossover set.

1. Determine each crossover's optimal hyper parameter setting. This requires us to �x

the mutation operator and other hyperparameters while doing a grid search on the

crossover's hyperparameters.

2. After �ne-tuning the crossover's hyperparameters setting, we will do the same thing

for all the other crossovers. Then, we will compare the performance of the algorithm

with these di�erent crossover operators, while holding the mutation operator and other

hyperparameters �xed.

3. We repeat step 1 & 2 for the mutation operators.

5.3.2 Statistical Testing

We use Kruskal-Wallis with Dunn's test [39] to check for statistical signi�cance of the perfor-

mances across these algorithms. Kruskal-Wallis test is a non-parametric test that compares

the median of more than 2 groups and determines if there is statistically signi�cant di�er-

ences between the group. If the p-value of Kruskal-Wallis is less than the speci�ed p-value,
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Dunn's test allow us to understand exactly which groups are di�erent. If statistical signif-

icance is found between two algorithms, this suggests that the algorithm A may perform

better than algorithm B.

Because genetic algorithms are stochastic, we run the experiments on a variety of designs to

strengthen our decision-making for choosing a certain algorithm over another.

For declaring statistical signi�cance, we set the p-value threshold of 0.05.

5.3.3 Experiment 1: Choosing the best multi-objective algorithm

Simple Designs (5.1) Analysis

We conducted our tests under the settings speci�ed in Table B.1, running each algorithm

for 20 iterations with di�erent seeds to ensure independent results.

Our analysis yielded the following insights: For the lattice design, the Kruskal-Wallis

test resulted in a p-value of 0.022. Dunn's test showed that PESA2 was statistically superior

to NSGA-II, with a p-value of 0.011845. In the non-uniform design, the Kruskal-Wallis

test resulted in a p-value of 2.81e-08. Dunn's test demonstrated PESA2 outperforming

SPEA2 and NSGA-II with p-values of 0.000486 and 3.38e-08, respectively. It also showed

� -NSGA-II performing better than NSGA-II, as evidenced by a p-value of 3.23e-04. For

the design involving a large component with smaller ones, PESA2 notably outperformed

SPEA2, � -NSGA-II, and NSGA-II, recording p-values of 0.000002, 0.000748, and 2.225537e-

11, respectively.

Dropping SPEA2 as a candidate

Due to performance reasons, we dropped SPEA2 as a potential candidate. SPEA2 was

signi�cantly slower than the other algorithms, a �nding that was also corroborated by another
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(a) (b)

(c)

Figure 5.2: Algorithmic Performance against half-perimeter wirelength (HPWL) based on
the designs shown in 5.1.

paper [40]. Although we had tested SPEA2 on three simple designs, it did not outperform

any of the other algorithms. Since the goal of this research project was to determine if

we could apply genetic optimization in the team's current placement module, we found

that SPEA2's speed and e�ciency would have compromised the overall performance of the

placement module.

Cluster Designs Analysis

We adjusted the experiment parameters due to initial bottlenecks with SPEA2, as detailed

in Table B.1. Each algorithm was run 20 times using di�erent seeds.
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We tested against 6 clusters of components from real PCB designs, as shown in Figure

A.1. Our �ndings were as follows:

1. Cluster 1: The Kruskal-Wallis test showed a signi�cant di�erence, where based on

the Dunn's post-hoc test, NSGA-II performed statistically signi�cant than� -NSGA-II

with p-value of 0.006 as shown in boxplot C.1a.

2. Cluster 2: The Kruskal-Wallis test showed a signi�cant di�erence, where based on

the Dunn's post-hoc test, both NSGA-II and PESA2 performed statistically signi�cant

than � -NSGA-II with p-values of 0.008 and 0.0002 as shown in boxplot C.1b.

3. Cluster 3: The Kruskal-Wallis test showed a signi�cant di�erence where based on the

Dunn's post-hoc test, PESA2 performed statistically signi�cant than both� -NSGA-II

and NSGA-II with p-values of 4.65e-09 and 2.6e-05 as shown in boxplot C.1c.

4. Cluster 4: The Kruskal-Wallis test showed a signi�cant di�erence, where based on the

Dunn's post-hoc test, PESA2 performed statistically signi�cant than both� -NSGA-II

and NSGA-II with p-values of 1.07e-11 and 3.97e-04. NSGA-II performed statistically

signi�cant than � -NSGA-II with p-value of 1.22e-03 as shown in boxplot C.1d.

5. Cluster 5: The Kruskal-Wallis test showed a signi�cant di�erence, where based on

the Dunn's post-hoc test, both NSGA-II and PESA2 performed statistically signi�cant

than � -NSGA-II with p-value of 0.000246 and 0.000246 as shown in boxplot C.1e.

6. Cluster 6: The Kruskal-Wallis test showed a signi�cant di�erence, where based on

the Dunn's post-hoc test, both NSGA-II and PESA2 performed statistically signi�cant

than � -NSGA-II with p-value of 1.979e-04 and 6.705e-07 as shown in boxplot C.1f.

Choosing PESA2 as the algorithm

After analyzing the results from simple designs and cluster designs, there was considerable

con�dence that PESA2 tended to perform better than the other algorithms in the speci�ed
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experimental setting. Although some examples showed that the performances of PESA2 and

� -NSGA-II were not statistically di�erent from each other, as illustrated in boxplots C.1a,

C.1b, C.1e, and C.1f, we observed that PESA2's median was lower than that of� -NSGA-II

in all of the clusters except Cluster 1. Regarding the simple designs, both� -NSGA-II and

PESA2 performed statistically better than NSGA-II across various scenarios, including the

lattice design, non-uniform design, and the design incorporating one large component with

smaller components. PESA2's median was superior to those of the other algorithms, as

depicted in boxplots 5.2c and 5.1b.

5.3.4 Experiment 2: Fine-tuning PESA2

The goal of this experiment is to determine the crossover and mutation operators as well

as their respective hyperparameters that may improve the performance of PESA2. Some

intuition for why it is important for �ne-tuning these operators are the following:

1. Crossover operators control the exploration and exploitation of the search space. By

crossing individual with di�erent genetic materials, we can obtain individuals that

belong from a di�erent area of the search space.

2. Mutation operators allow the algorithm to escape a local minimum. By randomly

mutating an individual that may belong to a local minimum, the algorithm can continue

exploring the search space for a better solution.

Experiment 2a: Finding the optimal real-coded crossover operator

For our experimental setting, we used the settings as shown in Table B.2. Compared to the

setting for Experiment 1, we increased the evaluation number to 500,000 and the population

size to 1000 because PESA2 was fast enough to conduct our experiments with a larger setting.

X in Table B.2 indicated that we were only varying the real-coded crossover operator.

We �ne-tuned each of the crossover operators: (1) Parent-centric Crossover, (2) Simulated
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Binary Crossover, (3) Di�erential Evolution Crossover, and (4) Simplex Crossover. We

took a greedy approach as follows: (1) Given a crossover operator, we assumed that the

hyperparameters were independent of each other. This was a strong assumption, but it

allowed us to �ne-tune the algorithm quickly. Additionally, instead of utilizing all the simple

designs and cluster designs as done in Experiment 1, we re�ned the algorithm, focusing only

on Clusters 1-3.

1. Fine-tuning Parent-centric Crossover : The default setting was pcx.parents1 =

10, pcx.eta2 = 0.1, pcx.zeta3 = 0.1. While varying pcx.eta, we only found that the

setting of pcx.eta = 0.1 and 0.3 statistically performed better than the rest of the

values only in Cluster 3 and 4 as shown in Figure C.2. For the rest of the clusters,

the Kruskal-Wallis test did not �nd any statistical signi�cance. This suggested that

there was no strong evidence for choosing a di�erent setting than the default value.

We reached the same conclusion for pcx.zeta and pcx.parents as shown in Figures C.3

and C.4. As a result, we kept the default setting for the parent-centric crossover.

2. Fine-tuning Simulated-Binary Crossover : The default setting for simulated-

binary evolution crossover was sbx.distributionIndex4 = 15. While varying sbx.distributionIndex,

we found statistical signi�cance for the Kruskal-Wallis test only for Cluster 4, where

for Cluster 4 a distributionIndex of 25 statistically performed better than a distribu-

tionIndex of 5 with a Dunn's post hoc p-value of 0.014 as shown in Figure C.5. As a

result, we kept the default setting for the simulated-binary crossover.

3. Fine-tuning Di�erential Evolution Crossover : The default setting for the dif-

ferential evolution crossover was de.stepSize5 = 0.5 and de.crossover6 = 0.1. While
1pcx.parents describe the number of parents used for the operation.
2pcx.eta describes the variability of solutions aligned with the selected parent, which is dictated by the

normal distribution's standard deviation.
3pcx.zeta describes the variability of solutions aligned with the remaining parents, which is dictated by

the normal distribution's standard deviation.
4sbx.distributionIndex describes the shape of the o�spring distribution
5de.stepSize is the scaling factor that is used to apply to each step of the operator.
6de.crossoverRate is the fraction of decision variables that will be modi�ed by this crossover operator.
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varying de.stepSize, we found statistical signi�cance for the Kruskal-Wallis test only

for Cluster 4, where de.stepSize of 0.1, 0.3, and 0.5 statistically performed better than

0.9. However, the other clusters did not pass the Kruskal-Wallis test. While varying

de.crossoverRate, again, we only found statistical signi�cance for the Kruskal-Wallis

test only for Cluster 4, where de.crossoverRate of 0.1 and 0.3 statistically performed

better than a de.crossoverRate of 0.9 based on the Dunn's post-hoc test. As a result,

we kept the default setting for the di�erential evolution crossover, as there was not

enough evidence to suggest a di�erent hyperparameter setting.

4. Fine-tuning Simplex Crossover : The default setting for the simplex crossover was

spx.parents7 = 10, spx.epsilon8 = 3. While varying spx.epsilon, we found that all clus-

ters were statistically signi�cant based on the Kruskal-Wallis test. When conducting

the Dunn's post-hoc tests, we primarily saw that spx.epsilon = 3 statistically per-

formed better than spx.epsilon of 7 and 9. This was visually corroborated in boxplot

C.8. While varying spx.parents, we only found that Cluster 4 was statistically signi�-

cant based on the Kruskal-Wallis test, where spx.parents of 10 statistically performed

better than spx.parents of 6. As a result, for the optimal hyperparameter setting, we

chose spx.epsilon = 3 and kept the default setting for spx.parents.

Determining the optimal real-coded crossover operator

After �ne-tuning four real-coded crossover operators, we needed to test if the choice

of a certain crossover operator had an e�ect on the algorithm's overall performance.

Based on the results of the real-coded operators, we found that Cluster 1, 2, and 4 were

statistically signi�cant based on the Kruskal-Wallis test. After applying the Dunn's

post-hoc test on these clusters, for Cluster 1, operators sbx, pcx, and de statistically

performed better than spx. For Cluster 2, only pcx statistically performed better than

spx. For Cluster 4, sbx statistically performed better than spx, pcx, and de. As a
7spx.parents describes the number of parents used in the operation.
8spx.epsilon is the expansion rate of the simplex. Intuitively, this can be seen as a knob that controls the

exploration and exploitation of the search space.
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result, this suggested that spx was not a great crossover to utilize. Furthermore, based

on the boxplots shown in Figure C.10, spx had high variance across all of these clusters.

As a result, we were left with three potential crossovers, where we decided to arbitrarily

move forward with pcx for the rest of our thesis.

Experiment 2b: Finding the optimal real-coded mutation operator

For our experimental setting, we mainly used the following setting as shown in Table B.2,

where we replaced theX with the parent-centric crossover with the default setting. For

experiment 2b, we would only be �ne-tuning polynomial mutation, while keeping the rest of

the settings constant.

Fine-tuning Polynomial Mutation : The default setting for polynomial mutation was

pm.distributionIndex9 = 20 and pm.rate10 = 1 / N, where N is the number of decision

variables.

While varying pm.distributionIndex, we found statistical signi�cance for Cluster 3, 4, 5,

and 6 after applying the Kruskal-Wallis test. We then applied the Dunn's post-hoc test. For

Cluster 3 and 4, we discovered that a distributionIndex of 15 statistically underperformed

compared to the other values. For Cluster 5, we found that a distributionIndex of 45 per-

formed better than a distributionIndex of 15 with a p-value of 0.0572. However, for Cluster

6, a distributionIndex of 45 and 15 did not show any signi�cance. Analyzing the boxplots

in Figure C.13, we observed that the median of the distributionIndex values of 30, 45, 60,

75 tended to be at the same level. As a result, we chose a pm.distributionIndex that is�

30 for the optimal setting, as there wasn't enough evidence to be more precise with values

above 30.

While varying pm.rate, we found statistical signi�cance for all clusters, as shown in Figure

C.11. We discovered that the conventional default setting of setting the rate of mutation

9pm.distributionIndex describes the shape of the o�spring distribution. A larger distribution index will
generate values closer to the original value.

10pm.rate is the mutation rate when applied to a decision variable.
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to be 1 / N did not yield sensible results. We conducted additional experiments shown

in Figure C.12, excluding the default setting value. We found statistical signi�cance for

Cluster 1, 2, 3, 4, and 6. Applying the Dunn's post-hoc test, for Cluster 1, a pm.rate of 0.05

statistically outperformed 0.01 and 0.2. For Cluster 2, we did not �nd any pm.rate that met

the statistical threshold. For Cluster 3 and 4, a pm.rate of 0.05 statistically outperformed

0.1, 0.15, 0.2. For Cluster 6, a pm.rate of 0.01 statistically underperformed compared to

0.05, 0.1, 0.15, and 0.2. As a result, we decided to select a pm.rate of 0.05 as the optimal

setting for the polynomial mutation operator.

Experiment 2c: Finding the Optimal Binary-coded Crossover Operator

For our experimental setting, we mainly used the following setting as shown in Table B.2,

where we replaced theX with the parent-centric crossover with the default setting. For

experiment 2c, we were only �ne-tuning half-uniform crossover, while keeping the rest of the

setting constant.

Fine-tuning Half-uniform Crossover : The default setting for half-uniform crossover

was hux.rate11 = 1.0. No statistical signi�cance was found after applying the Kruskal-Wallis

test, as shown in Figure C.14. As a result, we decided to proceed with the default setting.

Experiment 2d: Finding the Optimal Binary-coded Mutation Operator

For our experimental setting, we mainly used the following setting as shown in Table B.2,

where we replaced theX with the parent-centric crossover with the default setting. For

experiment 2d, we were only �ne-tuning half-uniform crossover, while keeping the rest of the

setting constant.

Fine-tuning Bit�ip Mutation : The default setting for bit�ip mutation was bf.rate 12

= 0.01. We found statistical signi�cance across all clusters after applying the Kruskal-Wallis

test, as shown in Figure C.15. We applied the Dunn's post-hoc test. For Clusters 2, 3, 4,

11hux.rate is the probability that the crossover is applied to a binary decision variable.
12bf.rate is the probability that a bit is �ipped.
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5, and 6, a bf.rate of 0.005 and 0.01 statistically outperformed 0.1 and 0.15. We found no

signi�cance between the performances of 0.005 and 0.01. As a result, we decided to maintain

the default setting for the bit�ip mutation.

Fine-tuned PESA2

For the remainder of our thesis, we used the following setting when applying the multi-

objective algorithm to real PCB designs, as shown in Table B.3.
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Chapter 6

Practical Multi-Objective PCB

Placement Optimization

After �ne-tuning PESA2 from Chapter 5, we incorporated the routing �tness function as

an objective. We executed the algorithm on the same clusters of components, as shown in

Figure A.1, over 100,000 iterations with a population size of 500, maintaining the settings

as presented in Table B.3. For displaying our results for clusters 1 to 6, we illustrate the

contrast in di�erent optimization settings:

1. Optimizing for Routability with No Overlap

2. Optimizing for HPWL with No Overlap

3. Optimizing for Routability and HPWL with No Overlap

By doing these three optimization variations, we aim to comprehend how distinct objec-

tive functions in�uence the quality of PCB component placement. Additionally, it is vital to

recognize that the insights we derive from placing components within a speci�c cluster might

not be relevant when conducting a full-design placement, as the latter is computationally

more intensive.
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6.1 Cluster Results

As shown in Figure 6.1, 6.2, 6.3, 6.4, and 6.5, we drew the following insights:

1. Upon adding the routing function as another objective function, the performance of the

genetic algorithm was driven by the computation involved in calculating the routability

score. For instance, the average time it took to run 100,000 iterations for optimizing

for Routability with No Overlap was 63683.5 ms, or 63.6835 seconds. The average

time for 100,000 iterations optimizing for HPWL with No Overlap was 18218.5 ms, or

18.2185 seconds. The average time for 100,000 iterations of optimizing for Routability

and HPWL with No Overlap was 82890.83 ms, or 82.89 seconds.

2. When optimizing solely for routability with no overlap across all clusters, the place-

ment usually achieved a routability score of 0, indicating no open pin connections.

Although the components were sparsely placed, the substantial size of the bounding

box permitted e�ective routing due to the ample white space available for trace adjust-

ments. When optimizing for HPWL with no overlap, the routability model generally

assessed the placement as having a routability score, usually between 0 and 2, across

all clusters with the exception of Cluster 4.

3. When optimizing for routability and HPWL with No Overlap, there was usually a

strong trade-o� observed, necessitating an increase in the HPWL to facilitate compo-

nent routing. This made sense intuitively, as having components in closer proximity

created a challenge for the routing process, sometimes forcing a choice between routing

options for nearby components versus those farther apart. This insight was particularly

evident in Cluster 2. When we examined the optimized placement for HPWL in 6.1e,

it was observed that the components were situated quite closely. This contrasted with

the placement in 6.1f, where components were more spaced out. This observation was

consistent in Cluster 5, when comparing the placements in 6.2e and 6.2f. Furthermore,
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the trade-o� between HPWL and routability was apparent in the non-dominating set

for Cluster 4 (6.5a, 6.5b, and 6.5c). However, there were instances that did not conform

to this pattern. For instance, the optimized HPWL placement in 6.2b showed a poor

HPWL value of 532955, in contrast to the optimized HPWL-Routability placement

with a HPWL value of 400266.

4. Generating a Pareto front of multiple non-dominating solutions was challenging for

simpler placement problems. For Clusters 1, 2, 3, 4, and 6, where the components

were fewer than 46, the optimizer could only �nd a single non-dominating solution.

Interestingly, when the number of components was large, as in Cluster 4, we identi�ed

three non-dominating solutions, as illustrated in Figure 6.5.

5. When comparing the genetic optimization results of cluster placement with our team's

current proprietary placement algorithm, as shown in Figure A.1, we observed that for

clusters with a smaller number of components, the optimizer was capable of packing the

components as tightly as possible, as demonstrated in Cluster 1. However, it appeared

that the optimizer did not fully pack Clusters 2, 3, 4, 5, and 6.
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(a) Cluster 1: Optimzing
Routability with no overlap.
HPWL : 1500355. Routabil-
ity : 0. Time (100,000 evalua-
tions): 32927 ms.

(b) Cluster 1: Optimizing
HPWL with no overlap.
HPWL : 142284. Routabil-
ity : 0. Time (100,000
evaluations): 20844 ms.

(c) Cluster 1: Optimizing
HPWL and Routability with
no overlap. HPWL : 146469.
Routability : 0. Time
(100,000 evaluations): 49787
ms

(d) Cluster 2: Optimzing
Routability with no overlap.
HPWL : 4940010. Routabil-
ity : 0. Time (100,000 evalua-
tions): 59768 ms.

(e) Cluster 2: Optimizing
HPWL with no overlap.
HPWL : 398010. Routabil-
ity : 2. Time (100,000
evaluations): 19551 ms.

(f) Cluster 2: Optimizing
HPWL and Routability with
no overlap. HPWL : 337797.
Routability : 0. Time
(100,000 evaluations): 72975
ms.

Figure 6.1: Cluster 1 & 2: Applied multi-objective optimization when optimizing (1)
Routability and No Overlap, (2) HPWL and No Overlap, (3) Routability, HPWL, and No
Overlap. The black traces are routing traces that connect the top components. The blue
traces are routing traces that connect the bottom components.
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(a) Cluster 3: Optimzing
Routability with no overlap.
HPWL : 8585027. Routabil-
ity : 0. Time (100,000 evalua-
tions): 74630 ms.

(b) Cluster 3: Optimizing
HPWL with no overlap.
HPWL : 532955. Routabil-
ity : 0. Time (100,000
evaluations): 74630 ms.

(c) Cluster 3: Optimizing
HPWL and Routability with
no overlap. HPWL : 400266.
Routability : 0. Time
(100,000 evaluations): 92337
ms.

(d) Cluster 5: Optimzing
Routability with no overlap.
HPWL : 6942028. Routabil-
ity : 0. Time (100,000 evalua-
tions): 59035 ms.

(e) Cluster 5: Optimizing
HPWL with no overlap.
HPWL : 354006. Routabil-
ity : 0. Time (100,000
evaluations): 15840 ms.

(f) Cluster 5: Optimizing
HPWL and Routability with
no overlap. HPWL : 603421.
Routability : 0. Time
(100,000 evaluations): 77902
ms.

Figure 6.2: Cluster 3 & 5: Applied multi-objective optimization when optimizing (1)
Routability and No Overlap, (2) HPWL and No Overlap, (3) Routability, HPWL, and No
Overlap. The black traces are routing traces that connect the top components. The blue
traces are routing traces that connect the bottom components.
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(a) Cluster 6: Optimzing Routability
with no overlap. HPWL : 5602274.
Routability : 0. Time (100,000 eval-
uations): 62614 ms.

(b) Cluster 6: Optimizing HPWL
with no overlap. HPWL : 410919.
Routability : 1. Time (100,000 eval-
uations): 16670 ms.

(c) Cluster 6: Optimizing HPWL and
Routability with no overlap. HPWL :
363655. Routability : 0. Time
(100,000 evaluations): 61470 ms.

Figure 6.3: Cluster 6: Applied multi-objective optimization when optimizing (1) Routability
and No Overlap, (2) HPWL and No Overlap, (3) Routability, HPWL, and No Overlap. The
black traces are routing traces that connect the top components. The blue traces are routing
traces that connect the bottom components.
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(a) Cluster 4: Optimzing Routability with no overlap. HPWL : 5602274.Routability : 1. Time
(100,000 evaluations): 93127 ms.

(b) Cluster 4: Optimizing HPWL with no overlap. HPWL : 8832068. Routability : 7. Time
(100,000 evaluations): 19457 ms.

Figure 6.4: Cluster 4: Applied multi-objective optimization when optimizing (1) Routability
and No Overlap and (2) HPWL and No Overlap. Theblack traces are routing traces that
connect the top components. The blue traces are routing traces that connect the bottom
components.
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(a) Non-dominating Solution 1 : HPWL :
7132715.Routability : 2.

(b) Non-dominating Solution 2 : HPWL :
7723031.Routability : 1.

(c) Non-dominating Solution 3 : HPWL :
8173373.Routability : 0.

(d) Cluster 4: Pareto front of the non-dominating
solutions

Figure 6.5: Cluster 4: Applied multi-objective optimization when optimizing for Routability,
HPWL, and No Overlap. Three non-dominated solutions were generated from this optimiza-
tion. Time (100,000 evaluations): 142874 ms.
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Chapter 7

Discussion

The use of genetic optimization in PCB component placement has proven to be a feasible al-

ternative to relying on algorithms embedded with multiple heuristics. Continually updating

algorithms to accommodate new design rules or PCB-related heuristics is less scalable com-

pared to developing �tness functions for a genetic optimizer. By designing �tness functions

that act as heuristics, the optimizer can automatically arrange components compactly, as

shown in Figure 6.1c, while achieving the desired objectives. The cluster results demonstrate

that a genetic optimizer can meet its objectives and constraints, reinforcing the idea that an

accurate �tness function is key to optimal placement.

At the same time, we highlight several limitations of the cluster results.

1. Limitation (1) : It is critical to acknowledge that across several clusters, the routabil-

ity score often registered below 3. This observation was logical as the bounding box of

the placement was typically larger than required. Consequently, in theory, when the

bounding box is sizable, routing should not pose much di�culty, given that the router

has ample space to work with. This phenomenon was evident in instances such as 6.2c

and 6.3c, where the router extended the traces more than was necessary. We presumed

that if a full-design placement were conducted, with a su�cient number of components
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to �x the bounding box size, the routability score would likely increase.

2. Limitation (2) : The routing model was designed to assess the routability of compo-

nents on a single layer independently. It initially established whether components on

the top layer could be routed, then did the same for the bottom layer. This approach

implied an assumption: components requiring connectivity across di�erent sides were

considered routable by default. As a result, the optimizer had a tendency to place com-

ponents from the same netlist on opposite sides, as the routing model would consider

the placements as routable. This also makes sense why there are no solutions, where

all components are on a single layer. For example, looking at the team's proprietary

algorithm results on Cluster 1 and Cluster 4 from Figure A.1, these components were

all placed on a single layer.

3. Limitation (3) : In some of the cluster results, the placement of components resulted

in sub-clusters that is not fully packed. Figure 6.2f shows two such sub-clusters placed

next to each other without full packing. Similarly, Figure 6.4 illustrates components

sparsely arranged relative to the main ones. Occasionally, a single component, as

seen in Figure 6.2c, is situated far from the others. There are a variety of potential

reasons for this certain result. We suspect main problem with sub-clusters might

come from assuming that components which need to connect across di�erent sides are

automatically seen as routable. This may explain the observation from 6.2c, where

we noticed that the isolated green component was supposed to be connected to two

components, yet these components were on di�erent sides (as indicated by the color

of the traces). As a result, we speculate that if the isolated green component and its

associated connected components were on the same layer, the optimizer would position

the isolated green components closer to those in its netlist. Therefore, it is probable

that a poor implementation of routability can lead to sub-optimal placement. Another

possible explanation could be the need for additional iterations by the optimizer.
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Chapter 8

Future Work

In our thesis, we conducted experiments on clusters of components that were derived from

a real PCB design board. Future work can be extended in conducting additional validation

of PCB placement from a suite of real PCB designs and their associated clusters of compo-

nents. This will allow us to verify the insights that were drawn from Chapter 6 as well as

determining the robustness of the optimizer across a variety of PCB designs. Our current

application of the optimizer on clusters of components still lead to an unresolved problem

of conducting global placement given these clusters.1 Instead of applying the optimizer on

cluster of components, we should employ the optimizer on a full PCB design to determine if

it is also viable to do a full-board placement.

The cluster results underscore the viability of using genetic optimization as an alternative

approach for automating component placements. The optimizer proved to be promising in

searching for an optimal solution, while trading-o� against multiple objectives. One limita-

tion identi�ed from our �ndings is the accuracy of certain metric models such as the Routing

model, where the Routing model did not take account of routing components on di�erent

sides. Improving the accuracy of the Routing model could lead to enhanced placement re-

sults. However, developing an accurate model may introduce complexities in computation,

1Note that the team has an approach for solving this problem already, but the goal of this thesis is to
pave a path for researching the feasibility of solving PCB placement with genetic optimization.
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which would increase latency costs. As a result, future work in this domain will require

engineering accurate �tness functions that will drive PCB placement and optimizing the

computations of these �tness functions to be e�cient. This implies the need for a perfor-

mance analysis to evaluate the optimizer's feasibility as the number of objectives and the

computational cost of evaluating solutions with multiple �tness functions increase.
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Appendix A

Clusters
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(a) Cluster 1: 7 components
cluster

(b) Cluster 2: 14 components
cluster

(c) Cluster 3: 22 components
cluster

(d) Cluster 4: 46 components
cluster

(e) Cluster 5: 19 components
cluster

(f) Cluster 6: 16 components
cluster

Figure A.1: Cluster of components from a real PCB design board. These clusters were
created by the team's current proprietary placement algorithm. Green components are
components that are placed on the bottom of the PCB. Orange components are components
that are placed on the top of the PCB.
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Appendix B

Hyperparameter setting
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Hyperparameters for Genetic Algorithm
Parameter Values Description

Algorithm-level
Hyperparameters

populationSize 500 Number of individuals in a
population

evaluationNumber 150000 Total �tness evaluations
algorithm X

Polynomial Mutation
rate 0.15 The probability that is ap-

plied to an individual for
mutation.

distributionIndex 30 The o�spring distribution
shape: larger values yield
o�spring nearer to the par-
ent.

Bit�ip Mutation rate 0.05 The probability that is ap-
plied to an individual for
mutation.

Parent-centric Crossover

parents 10 The number of parents
needed for crossover

o�spring 2 The number of o�springs
produced after doing a
crossover

eta 0.1 Standard deviation of the
normal distribution deter-
mines solution spread to-
wards the parent.

zeta 0.1 Standard deviation of the
normal distribution dictates
solution spread based on
other parents.

Half-uniform Crossover rate 0.15 The probability for doing a
crossover on a binary string
decision variable.

Table B.1: Setting for running Experiment 1, whereX is a placeholder for algorithmsNSGA-
II, � -NSGA-II, SPEA2, PESA2
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Hyperparameters for Genetic Algorithm
Parameter Values Description

Algorithm-level
Hyperparameters

populationSize 1000 Number of individuals in a
population

evaluationNumber 500000 Total �tness evaluations
algorithm PESA2 Pareto Envelope-based Se-

lection Algorithm

Polynomial Mutation
rate 0.15 The probability that is ap-

plied to an individual for
mutation.

distributionIndex 30 The o�spring distribution
shape: larger values yield
o�spring nearer to the par-
ent.

Bit�ip Mutation rate 0.05 The probability that is ap-
plied to an individual for
mutation.

X - -
Half-uniform Crossover rate 0.15 The probability for doing a

crossover on a binary string
decision variable.

Table B.2: Setting for running Experiment 2a, whereX is a placeholder for the following
real-coded crossoversParent-centric Crossover, Di�erential Evolution Crossover, Simplex
Crossover, Simulated Binary Crossover.
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Hyperparameters for Genetic Algorithm
Parameter Values Description

Algorithm-level
Hyperparameters

populationSize X Number of individuals in a
population

evaluationNumber X Total �tness evaluations
algorithm PESA2

Polynomial Mutation
rate 0.05 The probability that is ap-

plied to an individual for
mutation.

distributionIndex 60 The o�spring distribution
shape: larger values yield
o�spring nearer to the par-
ent.

Bit�ip Mutation rate 0.05 The probability that is ap-
plied to an individual for
mutation.

Parent-centric Crossover

parents 10 The number of parents
needed for crossover

o�spring 2 The number of o�springs
produced after doing a
crossover

eta 0.1 Standard deviation of the
normal distribution deter-
mines solution spread to-
wards the parent.

zeta 0.1 Standard deviation of the
normal distribution dictates
solution spread based on
other parents.

Half-uniform Crossover rate 1.0 The probability for doing a
crossover on a binary string
decision variable.

Table B.3: Fine-tuned PESA2 setting, whereX are placeholders for values that we can
arbitrarily set.
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