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ABSTRACT 
 
This dissertation explores how system dynamics (SD) can improve traditional operations management 
(OM) models for work in public policy, understanding plaform markets, and the implications of price 
transparency decisions on platform firm performance and consumer behavior. 
 
Chapter 1, co-authored with Edward Anderson and David Keith, creates a roadmap for researchers who 
study public policy-related OM problems. We review and organize relevant system dynamics literature in 
both traditional operations management, and public policy venues. We identify a set of interesting open 
questions and the potential SD building blocks for answering them by topic. Leveraging this review, we 
describe under what conditions system dynamics is most appropriate. We then identify several 
overarching methodological and domain gaps for future research. Finally, we propose a process for using 
SD with traditional OM methodologies.  
 
Chapter 2 is joint work with Geoffrey Parker and Edward Anderson. We develop the Value Creation Lens, 
a framework, grounded in theory, for understanding the dynamics of platform value creation and growth. 
We separate a platform’s value into three components: (1) the standalone value of the product, (2) the 
value of other participants on the platform, and (3) the value created by complementary products from 
3rd party providers. We explore differences in value creation between consumer-facing and business-
facing platforms, along with managerial implications. 
 
Chapter 3 studies the effects of a common price obfuscation tactic, namely the use of shrouded hidden 
fees on consumer behavior and platform firm performance. I develop an SD model based on the Value 
Creation Lens and use it to understand the competing incentives that lead to price shrouding or 
transparency in online platforms. I find evidence to suggest that building consumer trust through 
disclosure is a dynamic attribute that may be dominated by worse-before-better outcomes. The results 
provide evidence that platform price transparency decisions should differ depending on market and 
industrial context. 
 
Thesis supervisor: John Sterman 
Title: Jay W. Forrester Professor of Management, MIT Sloan 
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Chapter 1 
 

Opportunities for System Dynamics Research in 
Operations Management for Public Policy 

 
Operations management in the public policy context is extremely complex with many mutually interacting 
factors characterized by feedback loops, delays, and nonlinearities, as well as multiple stakeholders 
pursuing divergent objectives. Prior researchers have called for a systems approach in these contexts, 
arguing that standard OM methodologies such as mathematical programming, and queuing theory often 
cannot fully address the problems posed by complexity. In this work, we create a roadmap for 
researchers—both those who are familiar with systems dynamics and those who are not—for the 
expanded use of system dynamics to study public policy-related OM problems. We review and organize 
relevant system dynamics literature in both traditional operations management venues as well as public 
policy venues that may be less familiar to OM audiences. We then identify a set of interesting open 
questions and potential system dynamics building blocks for answering them by topic. Leveraging this 
review, we describe under what conditions system dynamics is most appropriate. We then identify several 
overarching methodological and domain gaps for future research. Finally, we propose a process for using 
system dynamics with traditional operations management methodologies.  
 
 Keywords: System Dynamics, Operations Management, Public Policy, Simulation, Scenario Planning, 
Literature Review 

1.1 Introduction 
Public policy is a fundamental driver of societal progress, and many policy-related challenges are 

evolving rapidly: climate and environmental concerns, healthcare, peacekeeping and security, 

infrastructure, and regulation of digitally enabled business models. Public policy programs are ultimately 

deployed through supply chains and operations where theory is put into practice. There is an obvious 

need to bridge public policy and operations management research and to practice it more effectively 

(Tang, 2016). However, this has proven difficult for a number of reasons (Sodhi and Tang, 2008). Foremost 

of these is that public policy problems are typically embedded in complex systems; this, in turn, makes it 

difficult to develop management strategies that achieve their intended results (Ackoff, 1994, Simon, 1962, 

Besiou and Van Wassenhove, 2015, Weick, 1989, McDaniel and Driebe, 2005). There are multiple 

stakeholders and decision makers with differing perspectives and often conflicting goals (Besiou et al., 

2011). There are many dynamic variables that mutually interact, creating feedback loops. Significant time 

delays exist between cause and effect, and there are also many nonlinearities (Forrester, 1961, Sterman, 

1994, Sterman, 2001). Uncertainty exists due to imperfect understanding of the problem, distorted or 

inaccurate information, and ambiguous legal and regulatory regimes. The resulting problem is twofold. 
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On one hand, standard operations management approaches typically rely on techniques that can address 

only a subset of these issues (Sodhi and Tang, 2008, Singhal and Singhal, 2012b, Singhal and Singhal, 

2012a). On the other, while research in public policy venues captures important policy constructs, it often 

insufficiently models the details of operations management due to a lack of understanding of the field 

(Besiou and Van Wassenhove, 2015). Clearly, a high-level systems approach is needed, one that can 

integrate operations management issues with public policy. 

For decades, the field of System Dynamics (SD) has proven to be one such systems-level approach. 

SD provides a powerful lens to study operations management (OM) problems in public policy contexts 

(Lane et al., 2000, Besiou and Van Wassenhove, 2015, Thompson et al., 2015, Homer and Hirsch, 2006). A 

long history of SD-operational management interventions exist that have performed successfully in 

complex systems (Sterman, 2000, Van Wassenhove and Besiou, 2013, Sterman et al., 2015a, Joglekar et 

al., 2016, Größler et al., 2008). There are several reasons for this. SD is a computer-aided approach that 

originally derived from controls theory and electrical engineering (Forrester, 1961). The models 

themselves are generally nonlinear differential-equation state-space models, like those used in optimal 

control theory, albeit the models tend to be larger and require simulation. Wherever possible, variables 

and parameters correspond directly to real-world metrics such as “work hours per week” or “dollars per 

year,” and many standard formulations have been developed over time (Hines, 1996). Researchers 

developing system dynamics models often employ techniques such as scenario planning (used in most SD 

operations models geared towards public policy) and group model-building among stakeholders (used 

less frequently in research, but often in practice). The system dynamics methodology was specifically 

developed to analyze dynamic problems arising in complex social, managerial, economic, and ecological 

systems characterized by multiple stakeholders, mutual-interacting endogenous variables, information 

feedback, long delays between cause and effect, and circular causality. Hence, SD an ideal tool for studying 

public policy problems (Besiou and Van Wassenhove, 2015). In fact, SD’s first applications were in OM 

(Forrester, 1958). Since then, system dynamics has had a continuous thread in the OM literature, 

addressing topics as diverse as project management, supply chain design, process improvement, service 

management, and managing complementary technologies (Sterman, 1989, Sterman et al., 1997, 

Anderson et al., 2000, Oliva and Sterman, 2001, Akkermans and van Helden, 2002, Anderson and Parker, 

2002, Joglekar and Ford, 2005). However, despite the demonstrated potential of SD, relatively few 

publications address OM in the public policy space. One reason for this is the number of SD papers 

published in the entire corpus of operations management is relatively small. (Using the methodology 

described in Section 3, we identified only approximately 65 papers published since 2000 in the 7 OM 
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journals we searched.) Also, many important SD studies in this area have been targeted towards either 

domain-specific public policy outlets that may be unfamiliar to the OM audience or the System Dynamics 

Review.  

The goal of this work is to begin rectifying this problem by providing a roadmap for OM 

researchers to use of SD in public policy contexts, including both those who have done SD research in the 

past and those who are less familiar with the methodology. To this end, we develop a “scoping review” of 

SD research addressing OM problems in the policy space. Scoping reviews are literature reviews that 

inductively examine how research is conducted in a particular field or topic, identify key characteristics 

related to a concept, and identify knowledge gaps and are often precursors to systematic reviews. Their 

purpose is to exhaustively catalog a topic using a repeatable methodology (Arksey and O'Malley, 2005, 

Munn et al., 2018). This paper is in the same vein as, and builds upon, Krishnan and Ulrich’s (2001) review 

of new product development, Anderson and Parker’s (2013) review of integrating knowledge work across 

supply chains, Joglekar et al.’s (2016) review of industry studies and public policy, and Parker et al.’s (2019) 

review of energy-related operations management. However, this paper necessarily differs from those 

prior surveys because, rather than providing a roadmap for the study of a particular domain, we seek to 

provide a roadmap for researchers using a particular methodology in a domain. To that end, we begin by 

describing why, how, and when SD might prove a useful tool for researching OM in public policy based on 

prior researchers’ work in this area  (Homer and Hirsch, 2006, Größler et al., 2008, Besiou et al., 2011, 

Sterman et al., 2015b, Besiou and Van Wassenhove, 2021), as well as the authors’ combined 50 years of 

research experience in system dynamics and operations management. We then map the relevant prior 

literature in a structured manner by selecting a sample of approximately 150 SD papers that investigate 

operation managements in a public policy context. Parker et al. (2019) is especially relevant, because the 

authors needed to look outside the typical operations management journals. We follow them by 

reviewing policy-related system dynamics operations literature in both the standard operations 

management venues and public policy venues. We also follow Parker et al. because this review will not 

be exhaustive; some of the methodologies used necessarily involve judgement by the authors, such as the 

“KJ” clustering technique (Kawakita, 1975, Shiba et al., 1993, Burchill and Fine, 1997, Scupin, 1997), 

meaning the process for selecting papers and clustering them into themes is not necessarily repeatable. 

However, that is not our goal for generating the sample. Rather, we seek to generate sufficient coverage 

and insights for future researchers to build upon, per other scoping reviews. We then use the resulting 

literature map to identify useful exemplars of research in each cluster, along with open or sparsely 

researched questions in each cluster. Finally, we distill these to identify the overarching questions of 
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greatest opportunity. Some are domain questions that emerge as common among all clusters, while 

others address methodology.  

The closest papers to ours treat SD and complex systems in socially responsible operations (Van 

Wassenhove and Besiou, 2013, Besiou and Van Wassenhove, 2015). We build on them by: (1) performing 

a detailed scoping review, (2) expanding beyond humanitarian operations and sustainability to other 

policy realms, (3) including references and exemplars after 2015, and (4) identifying specific open 

questions in the SD literature that require additional research. Homer and Hirsch (2006) and Lane et al. 

(2000) also have excellent reviews, although they focus exclusively on healthcare and require updating 

similarly. Also related are the reviews of Größler et al. (2008) and Sterman et al. (2015b) on the use of SD 

for operations management. However, we focus strictly on public policy, which brings specific issues into 

play that are not addressed by those papers, and as a result, the roadmap for research is different. One 

example is the need to integrate structures drawn from political science and public policy economics. We 

also include more recent references.  

To support these specific goals, we exclude operations management literature that does not 

involve SD from our sample, as well as SD research that does not involve operations management. We 

include only those papers that both are within the intersection of these two domains and address public 

policy (see Figure 1.1, below). Also, we deliberately do not address how SD models are built, validated, or 

tested. There are a number of excellent texts on this topic, such as Sterman (2000) and Ford (1999), and 

exemplar papers such as Oliva and Sterman (2001), Besiou et al. (2014), and Kapmeier and Goncalves 

(2018). 

 

Figure 1.1: Questions Addressable by System Dynamics Models 
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Based on our work developing the roadmap above, we highlight seven gaps in the research that 

should be addressed to enable better use of SD for OM problems in public policy contexts. To the best of 

our knowledge, five of these have not been explicitly called out before, and we believe that articulating 

them will help other researchers. With respect to operations management problems in public policy 

contexts, more research effort is needed: 

1. Building consensus among stakeholders with SD models.  

2. Integrate SD with traditional OM methods, such as mathematical programming or queuing theory, to 

create hybridized methods that combine the different strengths of both approaches. Besiou and Van 

Wassenhove (2015) identified this as crucial, but the literature is lacking. 

3. Pay more explicit attention to identifying trajectories from the current situation to a desired “ideal” 

state, including whether OM strategies will need to evolve over time. In particular, research must 

account for path dependencies that might prevent the ideal state from being achieved. 

4. Feed back the results of implementation to adjust models and operations to improve future 

outcomes. Research in this area appears to be almost entirely lacking. 

5.  “Spillovers” among research silos in public policy (e.g., humanitarian operations often result from 

famine created by civil conflict. Sustainable OM, energy and transportation are also closely linked). 

6. Create global supply chains that are more resilient to disruptions from pandemics, trade disputes, 

etc., and other shocks. Here the literature is sparse, aside from research directly related to medical 

products and services. 

Based on the above points, we also propose that: 

7. Besiou and Van Wassenhove’s (2015) framework for using SD for OM in public policy contexts should 

be extended to include: consensus-building models, scenario planning, feedback from 

implementation outcomes, and multiple levels of SD models. Specifically, there should be simpler 

models for building initial consensus among stakeholders and detailed operations-planning models 

for interventions. 

The remainder of the paper is organized as follows. First, we discuss the advantages of SD, when 

it is best used by OM researchers to supplement classic techniques, and the challenges to doing so. To 

illustrate our work, we leverage an in-depth example: developing a network of fast-charging stations for 

electric vehicles. We then describe the methodology used to select the article sample and cluster them 

into domain areas. Next, we present each identified domain as a separate section describing extant 

research. For each domain, we also identify exemplar papers, important open or under-researched 
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questions, and SD building blocks for future research. We conclude with a discussion identifying 

overarching questions, detailing the proposed implementation process, and summarizing exemplars to 

provide building blocks for future research. 

1.2 Features of System Dynamics Modeling 
Before going further, we define some terms and abbreviations to facilitate the remainder of the 

paper. Unless otherwise specified or obvious from context, we follow many others in referring to public 

policy as simply “policy” (Joglekar et al., 2016, Parker et al., 2019). This is notably distinct from the use of 

“policy” in operations management when describing a decision rule (e.g., “inventory management 

policy”). As mentioned above, we use the abbreviation SD for System Dynamics. We also use the 

abbreviation OMPP to denote operations management in public policy contexts.  

 We build on Atasu and Van Wassenhove (2012), in which the authors argue that operations 

management problems in the public policy space are especially challenging because OM and policy 

decisions cannot be isolated from each other (see Figure 1.2 below). Additionally, they argue, these 

contexts have multiple stakeholders. 

 

Figure 1.2: Atasu and Van Wassenhove's "Gray Zone" 
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Joglekar et al. (2016) expanded on this to explicitly argue that OM and policy influence each other 

bidirectionally (Figure 1.3). They present the example of the U.S. Clean Air Act of 1970, in which the federal 

government set a standard for the fuel emissions of cars sold, and once automakers met these standards, 

the government made the standards more stringent. 

 

Figure 1.3: Joglekar et al.’s Diagram of Bidirectional Causality Between Operations and Public Policy 
 

 
 

Once public policy is considered part of an OM problem, the result often has a number of 

characteristics that create a complex system (Besiou and Van Wassenhove, 2015). Complex systems are 

characterized by multiple stakeholders with conflicting objectives, context uncertainty and problem 

ambiguity, multiple feedbacks that mutually interact often in nonlinear ways, and endogeneity—generally 

with delays, constraints, and path dependency (Ackoff, 1994, Sterman, 1994, Atasu and Van Wassenhove, 

2012, Joglekar et al., 2016, Besiou and Van Wassenhove, 2021). Due to these factors, potential 

interventions can be difficult to validate; among other reasons, interventions often result in 

counterintuitive behavior that is difficult to understand without a systems approach (Weick, 1989, 

Sterman, 1994, McDaniel and Driebe, 2005, Besiou and Van Wassenhove, 2015). Generalizability to other 

policy contexts is also difficult (Joglekar et al., 2016). Another issue with complex systems was nicely 

articulated by McDaniel (2015) who stated, “Even if I know where I am now, and where I optimally want 

to be, I also need to know how to get from point A to point B. On top of that, the system might be path 

dependent. Can I even get to point B?”  

SD has a long history of successfully addressing problems in complex systems (Forrester, 1958, 

Forrester, 1961, Sterman, 2000, Besiou and Van Wassenhove, 2021). SD includes several features that are 
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advantageous for studying the complex systems typical of OMPP problems. However, it also has 

limitations. In other words, SD is useful for some contexts, but not for others. Given this, how does an OM 

researcher recognize which contexts represent fruitful opportunities for employing SD?  

To illustrate when and why system dynamics might be advantageous, we consider a policy 

problem for operations management of current import: how to expand the network of fast-charging 

stations in the U.S. for electric vehicles (EVs). Fast-charging stations are to electric vehicles what gasoline 

stations are to fuel-powered cars. The availability of fast-charging stations has been identified as the 

biggest barrier to EV adoption by many sources, including the U.S. Department of Energy and McKinsey & 

Co. (Jones et al., 2018, Gersdorf et al., 2020). Important questions include: How many stations should be 

built? Where should they be located? And in what sequence should they be built? These questions are 

part of a classic OM topic, that of facility location. In principle, we might assume this could be solved by a 

straightforward mathematical programming model. However, upon further examination, we see that 

aspects of the problem make it a complex system. Anderson et al. (2022) describes a number of these 

issues in detail. First, as more stations are built, more EVs will be bought, making it more profitable for 

new stations to enter the market (Struben and Sterman, 2008). The resulting cross-side externalities 

connect the two sides in a reinforcing loop, which is the hallmark of a platform (Parker et al., 2016). That 

said, the cross-side externalities also show diminishing returns with respect to the number of stations, 

creating nonlinearities. Delays are present in both the time it takes to construct stations and the time 

needed for consumers to perceive the improved availability of fast-charging stations and then purchase 

EVs in response. Also, there are multiple stakeholders, often with conflicting objectives. State and federal 

governments seek to expand the number of stations as quickly as possible by setting a single standard for 

stations that is compatible with all firms’ EVs. Yet some firms (e.g., Tesla) can and have invested in their 

own proprietary, incompatible charging networks to maximize profits from sales of their own vehicles 

while excluding benefits to their competitors. Firms without their own charging networks want to enforce 

interoperability. Even EV owners have their own heterogenous goals. Suburban homeowners can 

recharge at home at night and are less sensitive to how many stations surround them than are apartment 

dwellers. For this reason, suburban owners are much less likely to support new taxes to fund government 

subsidies for building stations. Additionally, there is the technical side of the issue: How will EV driving 

ranges increase over time? What investments in utilities are needed to power these stations? Finally, 

every one of these issues—from consumer preferences to which political party is in government, to future 

EV range—is characterized by uncertainty. Ambiguities also exist around the problem boundary. Should 

the impact of mass-transit investment and ride-sharing regulation be included (Naumov et al., 2020)? 
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There are other issues as well, but this is enough to illustrate the complexity of what would appear at first 

to be a straightforward location problem. 

A more detailed discussion of when an SD approach is most appropriate for addressing an OMPP 

problem later is presented later in this section. However, at a broad level, the EV problem illustrates these 

contexts. As shown by sample, SD can cope with a great deal of systems complexity because it can model 

a broad variety of problem contexts, decisions, and outcomes. This permits a “good” and robust solution 

by accounting for structures that other OM disciplines typically cannot capture. That said, it comes at a 

cost. SD relies on aggregating variables, and it may also miss important operational structures needed for 

fine-tuning solutions. Also, SD relies on computer simulation, which may result in a “good” solution that 

is nonetheless sub-optimal. In short, whether to use the SD methodology boils down to determining 

whether the system is complex enough that “good” and robust is more important than optimal and over-

simplified. 

Before moving on, we note that our discussion below builds on the existing body of SD work. Yet, 

the SD tool kit below is constantly evolving and becoming more effective (Rahmandad et al., 2015). 

1.2.1 Modeling Complex Systems Structure 
SD models, thanks to their systematic, rigorous computer simulations, can capture the interactions of the 

many industry-specific and policy-related “moving parts” needed to study OMPP problems (Joglekar et 

al., 2016). SD models are typically state-space differential-equation (or sometimes difference-equation) 

models based on the engineering discipline of control theory. Hence, SD models center on the modeling 

of systems with feedback loops and time delays (Forrester, 1961). As stated earlier, we do not treat how 

to build SD models here because many excellent references already exist (Sterman, 2000, Meadows, 

2008). Fundamentally, however, there are two kinds of feedback loops. One is a “reinforcing” feedback 

loop in which the effect of an initial perturbation is amplified over time, for example, the accumulation of 

interest in a bank savings account. The other type is a “balancing” feedback loop in which an initial change 

is resisted, resulting in goal-seeking behavior over time, such as a hot cup of coffee cooling to room 

temperature. In addition, Forrester recognized that many of the relationships among variables in these 

loops are nonlinear, and that the interaction of these loops with nonlinearities and delays can create 

counterintuitive behaviors. For example, SD analysis could show that subsidies for purchasing EVs may 

have given early movers such a big advantage in growth and market share, they could then build 

proprietary station networks that ultimately hindered other competitors from entering the market 

(Anderson et al., 2022). 
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SD models include several standard formulations for decision-making behavior by both 

organizations and individuals, such as how employee overtime is a function of demand vs. capacity, 

reduced productivity of newly hired employees, and how managers forecast future demand. Other 

standard functions model the effect of excess inventory or backlog on management decisions. Crucially, 

variables and parameters are grounded in real-world metrics whenever possible, which greatly constrains 

the plausible values of parameters and variables. Hence, validating a model with a structure 

fundamentally different from reality is difficult (Barlas, 1989, Barlas, 1996, Sterman, 2000, Homer, 2012). 

And methods for calibrating models to data are ever improving (Eberlein, 2015, Hovmand and Chalise, 

2015, Rahmandad et al., 2015). 

It’s important to note that this powerful modeling capability of SD does come with trade-offs 

relative to other commonly used OM techniques. We outline characteristics in Table 1.1 below. 

 



Table 1.1: Characteristics of a Typical Model, for Different Modeling Techniques 

 Application in 
OM Context 

Data required Number of 
Variables 

Dynamic 
feedback 

Additional 
Complexity 

Modeling of 
uncertainty 

Modeling of 
human 
behavior 

Understanding of behavior 
modes within model 
boundaries 

Game Theory High -Level 
Insights 
(Competition/ 
Cooperation) 

Very Low 
(qualitative data, if 
any) 

Low Yes, but rarely 
more than 1-3 
periods 

Different 
objective 
functions 

Probabilistic 
outcomes 

Rational 
optimizers 

Very high via closed-form 
analytic results 

Econometrics Detailed 
insights 
(Correlation/ 
Causality) 

High - Very High 
from archival 
and/or surveys 
(varies from 
aggregate to 
detailed data) 

High - Very 
High 

None (cross-
sectional) 
 Moderate 
(time-series) 

Low Identification 
strategy, 
clustering, 
residuals 

Occasionally 
probabilistic 
distributions 
for stochastic 
processes. 

Low - moderate due to 
limited ability to model 
counterfactuals 

Optimization 
Models (e.g., 
linear 
programming) 

Detailed 
operations 
design 
(particularly 
for capacity, 
Inventory, and 
scheduling 

Moderate - Very 
High (Detailed 
structural data) 

High - Very 
High 

Depends on 
application. If 
so, linear (LPs) 
or multiplicative 
(Mixed IPs) 

Low Very Low, if any, 
with the 
exception of 
Inventory models, 
which include 
demand 
uncertainty. 

None. All 
“physics.” 

High because of algorithmic 
optimal policies plus detailed 
model structure permit 
counterfactuals 

Dynamic & 
stochastic 
programming 

Detailed 
operations 
design 

Moderate 
(detailed 
structural data) 

Low - 
Moderate 

Yes. Typically, 
but not always, 
linear other 
than constraints 

Generally low Probability 
modeling for 
stochastic 
programming 

Utility 
functions, if 
any 

Moderate – Very High 
(depending on whether 
closed-form solutions or 
approximations obtain – 
usually related to number of 
variables) 

Queuing 
Theory 

Design of 
operations, 
esp. capacity 
planning, 
process, and 
queuing 
discipline 
design 

Moderate (wait, 
demand & 
capacity, 
constraints) 

Moderate - 
High 

Yes. Linear 
Markov chains 
with constraints 
such as 
maximum 
queue size 

Low Probabilistic 
distributions for 
demand, capacity, 
and waiting 

Only with 
respect to 
waiting (e.g., 
reneging, 
balking) 

Moderate - High (depending 
on whether optimal closed-
form solution can be found, 
or else, tightness of bounds) 
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Table 1.1: Characteristics of a Typical Model, for Different Modeling Techniques 

 Application in 
OM Context 

Data required Number of 
Variables 

Dynamic 
feedback 

Additional 
Complexity 

Modeling of 
uncertainty 

Modeling of 
human 
behavior 

Understanding of behavior 
modes within model 
boundaries 

System 
Dynamics 

Consensus 
Building, 
High- or mid-
level 
operations 
design 

Low-Moderate 
from case, expert 
opinion, or trade 
journals 
(consensus) 
 Moderate-High 
(Ops Planning) 
including both 
econometric and 
some structural 
data 

Low -
Moderate 
(Consensus), 
  
Moderate - 
High (Ops. 
Planning) 

Yes. Nonlinear 
state-space/ 
compartment 
models 
 

Multiple 
stakeholders, 
problem 
ambiguity 

Generally, 
through sensitivity 
analysis for 
scenario planning 
and/or Monte 
Carlo analysis. 

Boundedly 
rational 
(typically 
derived from 
behavioral 
economics of 
behavioral 
operations) 

Moderate - High depending 
on number of variables (via 
numerical 
simulation/optimization and 
assuming detailed sensitivity 
analysis) 

Agent-based 
modeling 

Consensus 
Building, 
Mid or low-
level 
operations 
design 

Moderate from 
case, expert 
opinion, or trade 
journals 
(consensus) 
High (Ops 
Planning) including 
micro-level 
behavioral data of 
agents and 
structural data 

Moderate-
High 
(Consensus), 
 
High - Very 
High (Ops. 
Planning) 

Yes. Nonlinear 
interactions of 
low-level 
agents.  

Multiple 
stakeholders, 
problem 
ambiguity 

Probabilistic 
distributions of 
individual agents’ 
behaviors 
captured by 
Monte Carlo 
analysis. 
Sensitivity tests to 
probabilistic 
distributions and 
other parameters. 

Boundedly 
rational, 
usually based 
on individual-
level economic 
or 
psychological 
underpinnings 

Moderately low – 
Moderately High depending 
on number of agents and 
complexity of their 
interactions (via Monte Carlo 
simulation and assuming 
detailed sensitivity analysis) 

Discrete event 
simulation 

Same as 
queuing 
theory 

Moderate-Very 
High (Data needed 
is similar to 
queuing theory, 
but possibly also 
routing, demand 
etc. as well as 
entity-level 
characteristics) 

Moderate – 
High (generally 
modeled at 
entity level, 
but generally 
small number 
of types of 
entities) 

Yes, feedback 
between 
queues, routing, 
and potentially, 
capacity, 
demand and 
entity 
characteristics 

Low Probabilistic 
distributions for 
demand, capacity, 
waiting, routing 
and potentially 
other entity 
behaviors 

Only with 
respect to 
waiting (e.g., 
reneging, 
balking, 
routing choice) 

Moderate – Moderately High 
depending on how much 
more complex model is than 
analytic queuing models (via 
Monte Carlo analysis of 
numerical simulations 
assuming good ranking and 
selection criteria)  

Traditional OM techniques drawn from Winston, W.L. 2004. Operations research: applications and algorithms (4th edn). Boston: Cenage. Simulation techniques from Heath, S.K., Brailsford, S.C., Buss, 
A. and Macal, C.M., 2011, December. Cross-paradigm simulation modeling: challenges and successes. In Proceedings of the 2011 winter simulation conference (WSC) (pp. 2783-2797). IEEE and 
Anderson, E.G., Lewis, K. and Ozer, G.T., 2018. Combining stock-and-flow, agent-based, and social network methods to model team performance. System Dynamics Review, 34(4), pp.527-574. 



 It must be emphasized that the entries in each row represent “typical” models using a given 

technique; there are exceptions. For example, simplified optimization models of inventory or queues are 

often included as part of game-theoretic models in the OM space. Furthermore, the table illustrates some 

important trade-offs. One is that SD is useful for handling problems with ambiguous boundaries, such as 

the behavior of stakeholders, public perceptions, and domain-specific factors such as ecological, 

legislative, or technological processes, which a mathematical optimization model typically cannot handle. 

However, unlike mathematical optimization models, SD models operational structures in the aggregate 

rather than in detailed form, and it relies on numerical simulation. Hence, SD models can yield a robust 

operations solution that functions reasonably effectively over a broad range of scenarios (Joglekar et al., 

2016). In another trade-off, it is more difficult to characterize the behavior of SD models than game theory 

models or even linear programming models, although advances in this area are being made (Oliva, 2016, 

Oliva, 2020). Yet another tradeoff is that SD models often need less data because they rely on a moderate 

number of aggregate variables. This is facilitated by modeling human beings and organizations using 

bounded rationality (behavioral operations management researchers may indeed consider this a plus!). 

However, for less complex, more straightforward systems, SD models typically deliver OM solutions that 

may be inferior to mathematical programming or queuing models, both of which can better leverage 

detailed structural data. The question then becomes how to utilize the strengths of both SD and other OM 

methods to get the best of both worlds. We discuss this more in Section 1.2.3, and it is a theme that recurs 

throughout the paper. 

1.2.2 Stakeholders and Consensus Building. 
Looking at Table 1.1 again highlights another point: SD models can be useful for consensus-

building, something that is rarely described in our sample. The models that dominate our sample are 

commonly seen in the SD OM literature, being relatively large models used for operations design. Seen 

much less often are smaller models that serve as artifacts used to build consensus among stakeholders. 

Compared with the larger models, these smaller models are structurally simpler, need much less data, 

and can be built much more quickly while incorporating multiple stakeholders’ inputs in a process known 

as “group model-building” (Andersen et al., 1997, Andersen et al., 2007, Vennix, 1999). For the current 

purposes, stakeholders would include subject-matter experts such as ecologists and automotive 

engineers. This creates a powerful tool for building consensus, without which OMPP solutions often, as 

described earlier, fail. Once stakeholder buy-in is achieved with a simple SD model, a more detailed SD 

model for operations design can be pursued. However, only the latter are usually published. A good 
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example of this is Kapmeier and Goncalves’s (2018) model of island tourism sustainability. Carefully 

reviewing the paper, there appears to be some group model-building, but it is not stated explicitly, much 

less described. In our sample, descriptions of the processes by which consensus is reached is 

underrepresented. A related use is giving models a user interface to create “management flight 

simulators.” This lets non-SD modelers interact easily with the model (Sterman et al., 2013). These 

simulators are useful for soliciting stakeholder input, helping employees and policy makers improve 

mental models of system behavior, and facilitating effective scenario planning.  

Returning to our fast-charging station example, stakeholders include governmental agencies such 

as the U.S. Departments of Transportation and Energy as well as state-level equivalents. Private entities 

include EV firms, non-EV or traditional automotive firms, independent fast-charging station owners, 

battery firms, electric utilities, and technology suppliers (solar, wind, fossil, and nuclear). Finally, there are 

non-governmental organizations such as consumer and environmental advocacy groups. All have 

conflicting objectives. Perhaps more important, individual stakeholders may not fully understand what 

drives their counterparts, a factor that can be improved by group model-building (Andersen et al., 1997). 

1.2.3 Triangulation with Other Methodologies 
Once consensus is reached, another model may be used to add the level of detail needed to create 

practical OM solutions, possibly expanding the consensus-building SD model. While not often seen in this 

context, a mathematical optimization, queuing, or similar model more familiar to OM researchers is 

possible. However, that model would need to be tested against the higher-level SD model for robustness 

(Besiou and Van Wassenhove, 2015). For example, in the EV fast-charger model, the output of a high-level 

SD model could be used as input for allocating investment each period to specific stations using a more 

traditional mathematical programming facility location model. The output of the detailed model would 

then feed back into the high-level model to determine how the built-out network influences high-level 

policy variables such as station subsidies or consumer demand. Once these policy parameters are 

determined, the mathematical programming model would then be run again for the next period (Homer, 

1999, Anderson, 2019). SD models can also facilitate closed-form analytic model development by 

identifying which variable relationships can be safely neglected when optimizing (Ghaffarzadegan and 

Larson, 2018). 
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1.2.4 Scenario Planning for Risk, Uncertainty, and Ambiguity 
Another benefit of using SD to address public policy issues is its long history of use for scenario 

planning (Senge, 1990, Ringland and Schwartz, 1998). Scenario planning is useful in a policy context 

because many factors cannot be known with certainty, particularly over the long time horizons associated 

with policy, meaning participants must prepare for many plausible futures (Schwartz, 2012). SD models 

can facilitate this by capturing the many interacting decision variables, actors, and uncertainties typical of 

policy decisions, and they can also determine the range of long-term consequences of particular policies 

(Schwartz, 2012). Once constructed, a large parameter space can quickly be analyzed—including 

counterfactual scenarios—which facilitates the development of robust policies that are reasonably 

effective against many future eventualities (Ringland and Schwartz, 1998). Accordingly, most SD models 

in our sample use detailed sensitivity analysis of important parameters. A smaller number of models use 

formal Monte Carlo analysis (Besiou et al., 2014, Thompson et al., 2015, Kapmeier and Gonçalves, 2018). 

A third group copes with model ambiguity by testing the robustness of solutions against model structures 

or boundary changes. With respect to the EV fast-charging station example, this can be illustrated by 

asking: Would it be better for the government to influence station-location decisions by offering 

incentives to build infrastructure in rural areas not presently serviced by interstate highways? Or would it 

be better for the government to mandate these changes? Both alternatives might lead to so called 

“unintended consequences”, or perverse effects on social welfare under some scenarios. Another issue is 

whether an EV manufacturer building fast-charging stations should be required to make its stations 

interoperable with cars made by other brands. Arguably, allowing firms to offer incompatible stations 

could expedite their investment to capture rents, at least initially. However, this could also let market 

leaders, such as Tesla in the U.S., lock out their competitors. This might have several effects, including 

reducing competition by more innovative EV-makers; hindering entry by more capable incumbents (at 

least in manufacturing) from the gasoline-vehicle industry; and creating fragmented or inefficient 

standards. All these could ultimately deter EV adoption. One could imagine that enforcing compatibility 

standards might be optimal, but the timing would become critical. Many parameters, such as the average 

driving range of new EVs manufactured five years from now, are uncertain and must be accounted for. 

There are also structural issues such as boundary ambiguity. For example, should new highway building 

projects be included endogenously, or solely as an exogenous driver? Should national restrictions on 

lithium exports (used to make EV batteries) be included because they may become a weapon in trade 

wars, particularly if EV adoption is rapid? Such structures can be drawn from the various disciplines as 

described in the next subsection and added into an SD model for robustness testing.  



 23 

1.2.5 Bridging Disciplines 
Finally, because adding additional structure to SD models is straightforward, SD models can bridge 

what Tang (2016) describes as “fragmented” silos in operations management, resulting in more robust 

strategies (Ghaffarzadegan et al., 2011, Sterman et al., 2015a). The EV fast-charging station problem goes 

beyond this by involving issues from disciplines outside operations management. Bhargava et al. (2021) 

cites not only OM articles, but also research articles from political science, economics, and domain 

literature from engineering. Other policy problems may of course be examined from the perspective of 

different disciplines but comparing them might prove valuable because their perspectives are common to 

many OMPP problems (Atasu and Van Wassenhove, 2012). To this end, we follow Krishnan and Ulrich’s 

(2001) comparison of academic perspectives involved in product development (such as marketing, 

engineering, and operations management) by comparing these policy disciplines (Table 1.2). 

 
Table 1.2: Comparison of Perspectives by Academic Communities Researching Public Policy 
Using the Electric Vehicle Fast Charging Question as an Example 
 
 Political Science 

(Sociology) 
Subject Matter Experts Economics Operations 

Management 
Perspective on 
Problem 

A bundle of societal 
functions and polities’ 
wants 

Bundle of interacting 
“physical” phenomena 
needing attention 

Network of 
macroeconomic factors 
including national 
accounts, factors of 
production, and 
monetary supplies 

Set of supply chains, 
operational processes, 
and projects that 
create value 

Typical Metrics Public approval polls, 
policy compliance, 
citizen unrest, national 
security 

Problem dependent (e.g., 
EV fleet adoption, disease 
mortality, etc.) 

GDP gain or loss, 
unemployment, 
inflation, national 
accounts 

Utilization, service 
levels, customer 
satisfaction measures, 
wait/lead times, cost 

Dominant 
Representational 
Paradigm 

Public welfare as a 
function of societal and 
political factors. 

“Physical” models of 
phenomena (e.g., Climate 
models, Epidemiological 
compartment models, 
etc.) 

Mathematical and 
econometric models 

Value chain maps, 
process diagrams, 
project structures 
(e.g., critical path 
models, work-
breakdown structures) 

Example Decision 
Variables 

Communication 
policies, mandates vs. 
incentives, 
centralization vs. 
decentralization of 
administration 

Mandates (e.g., 
Lockdowns, masks, 
vaccine mandates; 
company EV mix 
requirements; charging 
compatibility standards) 

Interest rates, 
monetary & fiscal 
stimuli, cost tradeoff 
calculations 

Distribution logistics, 
capacity planning, 
facility location, 
sequencing of tasks 

Critical Success 
Factors 

Political legitimacy, 
Compliance with 
government mandates 

Understanding of 
phenomena, cost/benefit 
ratio of interventions, 
quality of data 

Quality of economic 
data, effectiveness of 
stimuli 

Supply chain design, 
process design, 
project management 
processes 
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Each perspective lets us see part of the complex system that is building EV fast-charging stations, 

much like the folk tale of the five blind men exploring an elephant. One man touches the elephant’s leg 

and says an elephant is like a tree. Another touches the elephant’s tail and likens the elephant to rope, 

and so on. Of particular importance here are the decisions, none of which can be taken in isolation. For 

example, the value chain inherent in the location of fast-charging stations cannot be decided without 

political decisions, such as whether all stations should be mandated to be interoperable; economic 

decisions, such as whether to subsidize the purchase of EVs to stimulate demand; and engineering 

decisions, such as whether to put a new battery technology into a vehicle, which might favor range over 

reliability.  

This structure, at an abstract level, is relevant to many other problems with only minor changes 

(Rahmandad et al., 2020). Hence, many papers in our sample leverage viewpoints drawn from beyond 

OM. For example, Table 2 could also represent the public health problem of immunizing a population to 

cope with a pandemic. In this case, epidemiology and physiology experts would replace engineers as the 

domain experts, typical metrics such as the percent of the population immunized and infected would be 

used, SEIR (Susceptible, Exposed, Infected, Recovered) compartmental models would be employed as the 

dominant representational paradigm, and so on. This could lead to decisions around fast-tracking vaccine 

development, prioritizing which population segments to vaccinate first, and allocating capacity (including 

beds, staffing, and ventilators) to hospitals in different areas (Goncalves et al., 2022) 

In short, looking at the literature sample, an SD approach is most appropriate when features of 

an OMPP problem must be accounted for, but cannot be captured by other OM methods. Otherwise, 

though the solution may appear “optimal,” it will not be robust enough for the problem’s complexity. 

1.3. Sample Selection and Methodology 
Literature that applies SD to operations management in policy contexts is widely dispersed in many 

journals across many fields. What’s more, every year the OM community publishes a large number of 

articles across a wide range of domains. To manage the scope of our literature search, we follow prior 

papers such as Krishnan and Ulrich (2001) and Parker et al. (2019). These had the same goal of identifying 

current research opportunities for OM scholars. That is, we do not attempt to create an exhaustive review, 

but rather a scoping review as described earlier, upon which contemporary scholars can build relevant 

research. Leveraging those prior surveys, we use the following methodology to select our sample:   
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1. We conduct a search for articles in the leading operations management journals: 1) Production and 

Operations Management, 2) Manufacturing & Service Operations Management, 3) Journal of 

Operations Management, 4) Operations Research, and 5) Management Science. (Leading is defined 

as the OM outlets appearing on a list compiled by the University of Texas, Dallas, of leading academic 

journals in major business disciplines. This list was retrieved on December 23, 2021, from 

https://jsom.utdallas.edu/the-utd-top-100-business-school-research-rankings/.) To identify relevant 

articles, we used the following search terms: “System Dynamics,” “simulation,” and “modeling.” 

System Dynamics is a sufficiently unique key term, and we are confident that the vast majority of 

research using the SD methodology published in these journals has been identified. We limited our 

search to articles published since 2000 because our main goal is illustrating research questions for 

current and future researchers. We then eliminated those articles judged by the authors as either not 

related to public policy (i.e., they addressed only “inventory management policies”) or not related to 

system dynamics. From a total of approximately 11,500 articles in these journals over the period of 

interest, our search resulted in approximately 50 articles.  

2. We also searched the System Dynamics Review over the same period (post-2000) for research using 

the topics “operations management” and “policy.” This is the journal of the System Dynamics Society, 

the association of SD researchers. In this sample, we did not include either “simulation” or “system 

dynamics,” because in these outlets, these terms are redundant. Again, we eliminated those articles 

judged by the authors to be unrelated to public policy. Our search resulted in a total of approximately 

25 articles.  

3. Because of the paucity of articles revealed in the above searches related to OM in a public-policy 

context, we searched the list of SD research publications maintained by the System Dynamics Society, 

which contains approximately 2,500 journal articles. This list can be obtained from the System 

Dynamics Society’s bibliography webpage (https://www.systemdynamics.org/bibliography). The 

System Dynamics Society Bibliography revealed that SD research also appeared frequently (as defined 

by over 50 instances) in two operations management-related journals: (1) Journal of the Operational 

Research Society and (2) European Journal of Operational Research. We added these, not only for their 

frequency of publications, but also their explicit linkages (unlike the six journals listed above) to 

research societies based outside the United States. We then searched these journals for articles using 

the same criteria as (1) above. From the total of approximately 9,200 articles in these journals over 

the period of interest, our search resulted in an additional sample of approximately 15 articles. 
 

https://www.systemdynamics.org/bibliography
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Because the searches described above surfaced a relatively small number of articles, we then broadened 

our scope in three ways:   

4. We searched the System Dynamic Society’s bibliography again because it had earlier proved to be an 

invaluable resource for searching the broad swath of journals in different policy domains. The search 

parameters used on the database were the same as for the System Dynamics Review above. This 

yielded approximately five articles that had not been captured by the previous searches.  

5. We contacted the Jay W. Forrester Award winners from the past 20 years (i.e., since 2000), asking 

them to provide additional guidance on relevant articles we may have overlooked. The Forrester 

award is given annually for the best SD research by the System Dynamics Society. We also searched 

for articles by Award winners written after 2010 that treated operations management in a policy 

context. This yielded approximately 15 articles that had not previously been captured by the above 

searches.  

6. We searched the articles in (1)-(5) for references to expand our review to capture influential articles 

useful to the contemporary researcher in OMPP following the expansion by Parker et al. (2019) of 

their search. This resulted in approximately 40 additional articles. 

Next, we clustered the sample into research areas using the “KJ” clustering method (Graham et al., 

2001, Shiba et al., 1993), which was also used in prior reviews such as Anderson and Parker (2013). The 

resulting clusters are: (1) humanitarian operations and crisis management; (2) healthcare operations 

management; (3) conflict, defense, and security; (4) transportation, logistics, and infrastructure; (5) 

sustainable operations; (6) new business models; and (7) energy. We use these clusters to structure our 

review in Section 3. Some of these research areas were similar enough to Production and Operations 

Management Society (POMS) colleges that we used their category names where appropriate. 

1.4. Literature Review and Open Questions by Cluster 
Each subsection below addresses one of the research clusters identified in Section 1.3. For each cluster, 

we describe the nature of the cluster using review articles, and we identify those aspects of complex 

systems that are particularly salient. We then identify exemplar articles of rigorous and important 

research in the cluster as well as other articles of interest. For each cluster, a summary table at the end of 

each section creates a roadmap for researchers that: (1) contains both the exemplars and other relevant 

articles in the sample; (2) subdivides the articles into topics for ease of reference for researchers, as well 

as how each topic leverages contributions from SD; and (3) includes relevant open questions and 

additional SD “building blocks” in the extant literature relevant to the open questions. 
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1.4.1 Humanitarian Operations and Crisis Management 
In the last half-century, the number of disasters—whether natural (e.g., earthquakes, hurricanes, 

monsoons, floods, droughts), man-made (e.g., war, displacement, forced migration, famines), or 

pandemics—has risen dramatically. Forecasts show that in the next half-century, these events will likely 

become even more frequent (Allahi et al., 2018). Humanitarian operations efforts strive to provide aid 

and relief in contexts typical of the complex systems described earlier. Particularly problematic are 

situations involving multiple stakeholders with often widely differing objectives (Starr and Van 

Wassenhove, 2014). Additional pressures on humanitarian organizations (HOs) include inadequate 

funding, high staff turnover, limited time horizons in which to react, and compressed project life cycles 

(Besiou and Van Wassenhove, 2020). The operations management literature has proposed many excellent 

approaches for planning and directing humanitarian aid, and these have proven to be of great help. 

However, studies have also shown that other organizations have faced difficulty when implementing 

these approaches; hence, they have posited that research into operations in this context could often 

benefit from an SD approach (De Vries and Van Wassenhove, 2020).  

Kunz et al. (2014) is an exemplar paper in this cluster. It uses extensive scenario and sensitivity 

analysis to explore the delivery process of ready-to-use therapeutic food items in the immediate response 

phase of a disaster. The paper then builds a model to analyze different preparedness scenarios for 

therapeutic food items to enable a fast response. The authors find that the fastest method is to 

preposition stocks of relief supplies in all countries prone to disasters. However, this approach, while fast, 

is also prohibitively expensive. An alternative approach involves investing in capabilities such as training 

staff and pre-negotiating customs and other arrangements in countries prone to disaster up front. In this 

way, centrally held stocks can be rapidly transferred to affected regions. Compared with other 

approaches, this is less costly, but also slower. The paper’s authors conclude that a mix of the two 

strategies provides the best performance and recommend specific allocation policies for relief 

organizations.  

Besiou et al. (2014) is another exemplar. The authors apply a similar approach to Kunz et al. but 

add Monte Carlo analysis to examine whether vehicle fleets for humanitarian relief should be locally 

purchased as needed or centrally purchased and then held in reserve. Perhaps unsurprisingly, the paper 

finds that a hybrid policy is generally best. However, the analysis is interesting for two reasons. First, the 

authors explicitly extend the dynamic programming strategies for centralized purchasing developed in 

Pedraza-Martinez and Van Wassenhove (2012) by adding three complexities: (1) decentralized 

procurement is possible; (2) relief efforts due to natural disasters may also be needed; and (3) demand 
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for vehicles is stochastic. Second, the authors also broaden the study and span silos by studying the 

degradation of procurement efficiency that results when program-funding groups earmark aid to specific 

locations. 

Other topics addressed by SD research emerged from our cluster analysis as well. One topic 

directly addresses the compressed “life cycle” of humanitarian operations (e.g., Ni et al., 2015). Another 

is humanitarian supply chains. Among these, Diaz et al. (2019) and Badakhshan et al. (2020) tie back to 

the original SD work of Forrester (1961) by studying the bullwhip effect in relief efforts.  

One important challenge still open in the field of humanitarian operations is how to best deal with 

the complexity of last-mile distribution. As identified by logistics and distribution studies, the last mile 

accounts for most of the cost under normal day-to-day conditions, particularly in developed nations with 

established carrier services and good infrastructure. However, humanitarian organizations are often 

tasked with last-mile distribution in areas with little to no infrastructure. Related to this, extant work has 

used classic OM optimization approaches to plan routes, determine vehicle fleet sizes, and address 

coordination challenges in humanitarian relief chains (Balcik et al., 2008, 2010). Due to the complexity of 

the systems in which these problems are embedded, SD could prove a useful tool (De Vries and Van 

Wassenhove, 2020). Another challenge involves developing strategies to cope with hoarding, which is 

commonly seen in humanitarian operations settings. Hoarding results in longer delivery times and greater 

perceived shortages, and it creates feedbacks that intensify scarcity and destabilize supply chains by 

reinforcing the perception of shortages (Sterman and Dogan, 2015). If hoarding could be ameliorated with 

appropriate policies, then the difficulty inherent in rapidly establishing ad hoc supply chains during crises 

could be markedly reduced. Another open question is how to best manage the relationships among 

humanitarian operations, media presence and coverage of operations, and humanitarian organization 

funding (Burkart et al., 2016). Because of its complexity and overlap with marketing, this question is an 

ideal candidate for SD research. Nageswarakurukkal et al. (2020) begins to address this by examining how 

social media affects publicity, fundraising, and operational efficacy, and Keith et al. (2022) studies how 

management emphasis on fundraising can detract from operational effectiveness. Finally, humanitarian 

operations problems often spill over into other policy clusters, such as the possibility that drought and 

food shortages may result in civil unrest, which in turn can exacerbate food shortages (Besiou et al., 2011). 

This complex humanitarian topic is another excellent area for SD research, one that according to our 

sample, remains underexplored. Table 1.3 below organizes the roadmap for the cluster as described at 

the beginning of the section and provides additional references from our sample. 

 



*Source of question is from authors as opposed to from research agendas in sample papers **Unless otherwise indicated, SD structures can be found in Sterman (2000), which 
summarizes seminal research in system dynamics, and presents many of the commonly used structures and formulations for a wide variety of modeling applications. For ease of 
reference, we will note the Chapter and Section where a relevant structure is presented as “BD-xxx yyy” where xxx is the chapter and yyy is the section.  

Table 1.2: Humanitarian Operations and Crisis Management Literature and Open Questions 

Research Topics Selected References Useful SD Features Policy Questions* Operational Questions* Relevant SD Structures for Future 
Research** 

Literature 
Review 

Tomasini et al. (2009), Starr and 
Van Wassenhove (2014), Van 
Wassenhove and Besiou (2013), 
Besiou and Van Wassenhove 
(2015), Allahi et al. (2018), 
Besiou and Van Wassenhove 
(2020, 2021)  

Ability to include both short term 
and long term time horizons (Van 
Wassenhove and Besiou, 2013) 
 
Complex problems with multiple 
stakeholders and conflicting goals 
(Van Wassenhove and Besiou, 2013) 

How to can we holistically 
understand the relationship 
of humanitarian operations 
with other policy 
challenges? 

How can we apply our knowledge 
from traditional OM problems to 
maximize recipient outcomes in 
humanitarian relief operations? 

Use and build on existing small models 
per Ghaffarzadegan et al. (2011) to 
aggregate for larger, more complex 
problems 

Disaster Life 
Cycle Models 
and Emergency 
Preparedness 

Cooke (2003), Deegan (2006), Ni 

et al. (2015), Diaz et al. (2019) 

Accounts for models of managerial 
behavior 
(BD-13.1 & BD-15) 
 
Uses established models of project 
management 
(BD-2.3) 
 

How can we find the optimal 
level of preparedness given 
economic constraints and 
cyclical and stochastic 
nature of disasters? 
 
What are the contexts of 
disaster relief recipients that 
might complicate relief 
delivery? 

How to manage compressed relief 
effort/project lifecycle? 
 
 How to manage complications in 
demand due to hoarding in a 
disaster area?  
 

Behavioral Model of Hoarding (Sterman 
and Dogan, 2015) 
 
Extend existing models to endogenize 
production rates 

Balancing 
Competing 
Demands in 
Disaster 
Management 

Gonçalves et al. (2011), Kunz et 

al. (2014) 
 

Capability Trap model of the 
tradeoffs between providing relief 
and building capacity (Gonçalves, 
2011), where immediate needs are 
not aligned with long term goals 

How to can different 
stakeholders coordinate to 
get crisis relief to affected 
areas quickly and efficiently? 

How to manage last mile 
distribution in underdeveloped 
areas?  
 
Where do on-the-ground 
problems differ from those in for-
profit settings? 

Capability traps in non-profit fundraising 
(Keith et al., 2022) 

Vehicles and 
Fleet 
Maintenance 

Besiou et al. (2011), Pedraza-
Martinez and Van Wassenhove 
(2012), Besiou et al. (2014), 
Cruz-Cantillo (2014)  

Maintenance models vs customer 
satisfaction 
(BD-2.4) 

How do we set up and 
maintain capacity to be 
quickly deployed in a 
disaster zone? 

What are the effects of earmarks 
and other constraints from 
donors? 

Maintenance Traps (Bivona and 
Montemaggiore, 2010) 
 
Media/public relations effects (Keith et 
al., Forthcoming)  

Humanitarian 
Supply Chains 
and Logistics 

Peng et al. (2014), Remida 
(2015), Cortés et al. (2019), 
Badakshan et al. (2020)  

Bullwhip and oscillation models 
(BD-17.1) 
 
Stock management (BD-17.3) 
 

How can we set up an 
efficient system to deal with 
the unpredictability of 
demand, suddenness of the 
disasters, and urgency of 
action? 

How is the success of a relief 
operation affected by the political 
characteristics of the region 
affected? 
 
What is the effect of experience 
and burnout on relief worker 
capabilities? 

“Rookie-Pro” aging chains that account 
for heterogeneous productivity of 
experienced vs inexperienced 
employees (BD-19.1, 19.2) 
 
Dynamics of worker burnout (Homer, 
1985) 



1.4.2 Healthcare Operations Management 
Healthcare operations management (HOM) is widely recognized as an exceedingly challenging domain, 

one that does not lend itself to easy solutions (Koelling and Schwandt, 2005, Dai and Tayur, 2019). In the 

United States, healthcare is characterized by financial waste, amounting to approximately 5% of GDP 

(Leape et al., 2009), numerous safety issues—such as unnecessary hospital deaths being the country’s 

third leading cause of death (Donaldson et al., 2000)—and poor service (Binary Fountain, 2018). While 

not as well documented, these issues also exist in other national health systems such as Sweden (Porter 

and Teisberg, 2006). These issues are due in no small part to stakeholders with different goals. These 

include: patients; doctors, nurses, and other healthcare providers; hospitals; insurance companies; 

pharmaceutical manufacturers and distributors; and local and national governments. Public policy makers 

that try to coordinate the system have limited resources, requiring trade-offs to be made. The very 

complexity of the healthcare system has attracted scholars from fields as varied as operations research, 

engineering, economics, and medicine to propose powerful and practical solutions (Dai and Tayur, 2019, 

Keskinocak and Savva, 2020). That said, many innovative approaches have challenges directly related to 

a fragmentation of scholarship (KC et al., 2020). To address these gaps, the Professional Society for Health 

Economics and Outcomes Research (ISPOR) have recently stated that HOM “exhibits a level of complexity 

that ought to be captured using dynamic simulation modeling methods” (Diez Roux, 2011, Marshall et al., 

2015). This may partly explain why this cluster has the greatest number of papers in our sample. Darabi 

and Hosseinichimeh (2020) document in their excellent survey of SD in health and medicine how SD has 

since the 1960s been successfully used to study a wide variety of topics in HOM, generally using simulation 

to complement empirical and observational studies. The authors often provide surprising insights into the 

most powerful levers to avoid policy resistance (Darabi and Hosseinichimeh, 2020). Similar observations 

were made by an earlier survey (Homer and Hirsch 2006).  

Numerous studies have explored models for public health (e.g., Homer and Hirsch, 2006, Atkinson 

et al., 2015, Dangerfield, 1999, Kang et al., 2018, Newell and Siri, 2016). One outstanding example is the 

series of papers studying polices for polio eradication (Thompson and Tebbens, 2007, Tebbens and 

Thompson, 2018). Much of this is summarized in Thompson et al. (2015). It is the result of a multi-method 

approach, integrating SD with several other OM and research techniques, including decision analysis, 

game theory, linear programming, and inventory models. The series is also a model of stakeholder 

collaboration. Working with the Global Polio Eradication Initiative (GPEI), the researchers demonstrated 

that polio eradication efforts need to be continued with the utmost vigor, even as polio is brought under 
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control. Much like a banked fire that, if disturbed, throws off embers that ignite other fires, even a small 

number of polio cases can flare up quickly into larger outbreaks. A quick response is paramount, even if 

that comes at the cost of imperfect coverage. Hence, a large stockpile of vaccine needs to be maintained 

at all times. The paper also develops a policy to determine the optimal timing for a switch from an oral 

poliovirus vaccine to an inactivated poliovirus vaccine. While the oral poliovirus vaccine is cheap and 

effective for snuffing out an outbreak quickly, it can (very rarely) cause dangerous side effects—or worse, 

mutate to create a dangerous polio epidemic of its own.  

One topic area where SD has been widely adopted at a more micro level is models of disease in 

the human body. Estimates show that nearly half of all U.S. adults suffer from at least one chronic illness, 

and that these illnesses ultimately result in seven out of 10 deaths (Centers for Disease Control & 

Prevention [CDC] 2015). This highlights the need for new tools to determine the most effective 

interventions for specific illnesses. Chief among these chronic illnesses are obesity, diabetes, and heart 

disease. Kang et al. (2018) develop a model that incorporates goal programming to help support decision 

making and intervention planning at different phases of chronic kidney diseases (CKD) management. 

Other SD research in this area addresses mental health issues, including depression in teenagers 

(Hosseinichimeh et al., 2018) and Post-Traumatic Stress Disorder (PTSD) among military personnel and 

veterans (Ghaffarzadegan et al., 2016). The latter is an exemplar of scenario planning in an SD 

environment. It is also an exemplar of a commonality discussed in much SD research, namely, that 

investing beforehand is far more effective than providing treatment afterwards. In particular, the authors 

found that programs to create resiliency (in this case, the ability to rapidly recover from traumatic effects) 

before a combat assignment are more cost-effective than screening or treatment afterwards.  

SD models have also been prominent in epidemiology, going back to traditional Susceptible, 

Infected (SI) models for HIV transmission (Roberts and Dangerfield, 1990, Dangerfield et al., 2001). More 

recently, researchers have developed SEIR (Susceptible, Infected, Exposed, Recovered) models that also 

include behavioral responses such as social distancing and self-isolation, as well as endogenously 

considering increases in hospital capacity in response to the current global COVID-19 pandemic (Struben, 

2020, Ghaffarzadegan and Rahmandad, 2020). Rigorous formulations and novel approaches have also 

shed light on how to best estimate parameters for global epidemics as they are unfolding, allowing for 

more confident and robust models, even in the face of limited and inconsistent data (Rahmandad et al., 

2020). Betcheva et al. (2020) describe an intervention to build a similar model with UK National Health 

Service planners and adds the mental health sector. 
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SD modeling has also been used successfully to study patient flows and capacity planning in 

healthcare institutions (Diaz et al., 2015, Wang et al., 2015). For an example of studying patient flows and 

capacity planning, Lane et al. (2001b) explore the relationship between a reduction in hospital capacity by 

the UK’s National Health Service (as measured in bed reductions) and emergency room waiting times. By 

combining sensitivity with extensive scenario testing of a calibrated SD model, the authors found that, 

counter to conventional wisdom, the major impact of bed shortages is most directly felt not in emergency 

admissions, but instead in elective admissions. Hence, the traditional practice of using emergency room 

waiting times to measure the effect of bed reductions can be misleading. This paper, though relatively 

old, remains an exemplar for three other reasons. One, it offers an extended description of SD validation 

tests used on the model. Two, the paper describes (if briefly) how the model was developed via group 

model building techniques—and ultimately accepted as valid—among stakeholders. Three, it provides an 

excellent discussion of the tradeoffs between modeling with SD and discrete event simulation. 

As patient tracking information continues to grow, the interconnectedness of the healthcare 

system has become of increasing interest to scholars. Some have broadened the boundary of the systems 

they study to include pricing and supply chain interactions between the pharmaceuticals and insurance 

industries (Paich et al., 2011, Kunc and Kazakov, 2018, Li et al., 2014, Darabi and Hosseinichimeh, 2020). 

By studying the interactions among healthcare providers, payers, and patients, they also highlight how 

misaligned incentives among these groups may lead to rising costs and lower service levels. In addition, 

Azghandi et al. (2018) addresses the complication of recalls and reverse logistics. Other papers in this 

stream focus on product development and market entry on healthcare operations such as marketing and 

strategy variables (Paich et al., 2011). Kunc and Kazakov (2018) is an exemplar because it describes how 

they developed a model and turned it into a flight simulator to make a decision-support tool, which was 

used in a workshop for multiple stakeholders.  

Finally, the treatment by Goncalves et al. (2021) of capacity serves is an exemplar for a number 

of reasons, including excellent sensitivity testing and calibration. Perhaps even more important, this paper 

provides one of the best descriptions of how consensus is created by stakeholders using system dynamics. 

Interestingly, it also offers a paradigm that differs from those provided in prior research (Vennix, 1999, 

Andersen et al., 1997.)  

Our survey of the literature has identified several open questions relating to the interaction of 

actors, costs, and quality of service that are explored below. Dai and Tayur (2019) argue that the huge 

cost issues facing policy makers are not just a question of misaligned incentives, but also the result of 

perverse incentives among providers, physicians, pharmaceutical companies, insurance companies, and 
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many other actors that drive unintended cost increases. Further, the dynamic complexities of these 

relationships inhibit process improvement and result in the characteristic “fixes that fail.” For example, it 

is widely acknowledged that pharmaceutical companies increase prices whenever possible to offset their 

high R&D costs. Despite public outcry, pharmaceutical companies continue to enjoy historically high 

margins, averaging close to 70% gross margins and 25% net margins (Sood et al., 2017). Pharmaceutical 

companies are aware of the controversies surrounding their pricing strategies, and some have taken steps 

to improve their public perception (Dai and Tayur, 2019). Compounding the problem is the fact that 

healthcare pricing is generally opaque and case-specific, so that patients are not generally able to make 

informed decisions, instead relying on the recommendations of their networks or physicians. This is typical 

of many problems in healthcare. A final complication is caused by remuneration policies. Arguments have 

been made that paying a fee for each service increases unnecessary procedures, leading to the 

implementation of either a fixed-fee for a given diagnoses (“bundled payments”) or payments to 

institutions based purely on the population in their catchment areas (“accountable care organizations”). 

Clearly, SD studies could be of great help in researching these problems and guiding future policy 

decisions. However, the SD literature in the pharmaceutical market dynamics space is sparse. To the best 

of our knowledge, the only major research paper in this space is by Paich et al. (2011). Many more papers 

are needed. 

Another important open challenge for policy makers is the need to improve quality and safety. 

Multiple studies have found evidence that, despite increasing costs, healthcare is not as safe as it should 

be. It is estimated that approximately 300,000 preventable deaths per year occur as a result of medical 

errors, and over $50 billion per year in costs (including lost income, lost disability, and healthcare costs) 

for these adverse events, 60% of which may have been preventable (Donaldson et al., 2000, Leape et al., 

2009). What policies could be put in place to curb these? Part of the problem is that process improvement 

is difficult to implement because of the severe penalties assessed on caregivers who have made mistakes. 

The unintended consequence is that mistakes are underreported (Norman, 2013), obscuring data that 

could be used to create safer processes. This behavioral feedback loop makes this topic particularly 

amenable to SD research.  

Studies have found that the United States wastes close to half a trillion dollars annually on 

reducing healthcare waste (Hopp and Lovejoy, 2012). Leape (2002) cites duplicated tests and procedures 

as the second greatest driver of healthcare waste. This is partly due to fragmented information systems, 

resulting in one institution being unable to see what another institution has already done with a patient. 

At a higher level, waste is also created by the reimbursement policies of insurers, including national health 
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systems. For example, payments to hospitals at a per capita rate, based on the number of patients served, 

may lead to skimping on acute, needed healthcare. Alternately, fee-for-service can induce skimping on 

preventive care. This particularly affects disadvantaged groups with fewer means of payment, or 

insurance. Another issue is remuneration for penalties on patients being readmitted within 30 days by 

U.S. Medicare, which has led to mixed results. This follows from the existing pressure on hospitals to 

shorten patient stays during initial treatments, perhaps leading hospitals to release patients too early in 

some cases. All these issues call out for SD research. 

Both duplicated treatments and patient safety should be improved by Electronic Healthcare 

Records (EHR) systems, at least in principle. That is why the United States incentivized the installation of 

EHRs by all healthcare institutions under the country’s Affordable Care Act. However, unintended results 

ensued. At the time the policy was implemented, the easiest-to-install systems were also the most difficult 

to integrate. This led to systems at different institutions being unable to communicate with each other, 

obviating some of the desired safety and cost improvements. Complicating this issue, government 

regulation of compatibility standards remains weak. As a result, this incompatible healthcare data 

ultimately confers a “winner-takes-all” advantage for those healthcare information systems vendors with 

the largest installed bases.  

Other open questions that require urgent attention have been brought to the forefront by the 

COVID-19 pandemic, which laid bare the inability of many governments to deal with pandemics and other 

public health crises at both the operational and policy levels. For example, one shortcoming has arisen as 

a result of the business practice, over the last few decades, of relentlessly pursuing supply-chain 

efficiencies by reducing inventories and safety stock levels and instead implementing just-in-time delivery 

systems. This was fine when conditions were predictable, but in the face of supply shocks from the 

shutdown of China and later Mexico, this efficiency came at the cost of robustness. Stockouts cascaded 

through the supply chain, creating critical shortages of personal protective equipment (PPE), testing 

supplies and equipment, pharmaceuticals, and materials necessary to produce vaccines (McMahon et al., 

2020). Hoarding, as discussed earlier, complicated the situation. Even more critically, both local and 

national governments worldwide have struggled to communicate clear policies and manage adherence 

fatigue. While there is some SD research on managing these issues, more is needed to provide valuable 

insights. For example, SEIR models have been developed to both illustrate the spread of COVID-19 and 

account for more behavioral responses such as public self-isolation measures when the death rate is high 

(Struben, 2020, Fiddaman, 2020, Rahmandad et al., 2020). Other studies have also included increased 

hospital capacity (Goncalves et al., 2021) and inventory trading between countries (Van Oorschot et al., 
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2022). However, few if any of these studies have linked the contagion model to the economic model to 

study linkages between the two. Moreover, COVID-19, as well as other recent epidemics such as Ebola, 

have revealed the necessity of studying project management in the specialized and heavily regulated 

context of accelerating vaccine and pharmaceutical development during a pandemic. While building the 

supply chain to bring parts and raw materials to manufacture the vaccine kits would be difficult under any 

circumstances, it is currently complicated by shortages due to bullwhip effects. Then there is the 

distribution of the vaccines. As discussed in the section on humanitarian operations later in the paper, 

this is also a complex problem. For example, in some areas, the last-mile problem might very well include 

delivery by donkeys carrying vaccines that require refrigeration or freezing (Kaplan, 2020). The need for 

SD-based research into how this is to be done is urgent.  

Clearly, as the field continues to grow, there will be ample opportunities to continue leveraging 

the strengths of SD modeling for HOM research. Table 1.4 below organizes the roadmap for the cluster as 

described at the beginning of this section and provides additional references from our sample. 

 



Table 1.3: Healthcare Operations Management Literature and Open Questions 

Research Topics Selected References Useful SD Features Policy Questions* Operational Questions* Relevant SD Key Structures 
for Future Research** 

Literature 
Review 

Luke and Stamatakis (2012), Darabi and 
Hosseinichimeh (2020) 

Complex problems with 
multiple stakeholders 
and conflicting goals 
(Darabi and 
Hosseinichimeh, 2020) 

What can we learn from 
modeling in relation to diseases 
and disease-spread, 
organizational and healthcare 
delivery structures, and how 
can it be adapted to different 
regions? 

How can we improve 
quality and consistency 
in healthcare delivery, 
while reducing costs and 
increasing coverage? 

Use and build on existing 
small models per 
Ghaffarzadegan et al. 
(2011) to aggregate for 
larger, more complex 
problems 

Models for Public 
Health 

Taylor and Dangerfield (2005), Homer 
and Hirsch (2006), Mustafee et al. 
(2010), Homer and Curry (2011), 
Katsaliaki and Mustafee (2011), Atkinson 
et al. (2015), Marshall et al. (2015), 
Newell and Siri (2016), Betcheva et al. 
(2020), Van Oorschot, (2021), Goncalves 
(2021) 

Accounts for models of 
managerial behavior 
(BD-13.1 & BD-15) 
 
Uses established models 
of project management 
(BD-2.3) 
 

How should the interactions 
between healthcare 
stakeholders be designed to 
reduce costs?  
 
How do we reduce inequity in 
patient outcomes for the 
disadvantaged? 

How can information 
systems be better 
designed to support 
processes and 
healthcare supply 
chains?  
 
How can process 
improvement in safety 
be addressed in a 
system that blames 
individuals rather than 
processes? 

Dynamics of worker 
burnout (Homer, 1985), 
corner cutting and 
overtime (Oliva and 
Sterman, 2001). Also 
summarized in BD-14. 

Epidemiology Roberts and Dangerfield (1990), 
Dangerfield (1999), Dangerfield et al. 
(2001), Ghaffarzadegan and Rahmandad 
(2020), Fiddaman (2020), Rahmandad et 
al. (2020), Struben (2020) 

Endogenous response to 
risk perceptions  
 

What policies improve 
treatment quality, consistency 
and safety overall? 

How can we be better 
prepared for outbreaks?  
 
How do we make supply 
chains more robust 
during pandemics? 

SEIR models, extended to 
include quarantines, 
vaccinations, distancing 
mandates, adherence 
fatigue, and behavioral risk 
perceptions. 
 

Effectiveness of 
Interventions 

Tengs et al. (2001), Ahmad and Billimek 
(2005), Kang et al. (2018), Jalali et al. 
(2019) 

Dynamics of 
communication, 
motivation and erosion, 
impact adoption and 
implementation (BD-1.1) 
 

How can waste be removed 
from current processes?  

How can we improve 
project management for 
crashed programs?  
 
How can supply chains 
be erected quickly? 

Temporal trade-offs or 
“Capability Traps” 
(Repenning and Sterman, 
2002) 
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Table 1.3: Healthcare Operations Management Literature and Open Questions 

Research Topics Selected References Useful SD Features Policy Questions* Operational Questions* Relevant SD Key Structures 
for Future Research** 

Patient Flows 
and Capacity 
Planning 

Van Ackere and Smith (1999), Lane et al. 
(2000, 2001a), Smith and Van Ackere 
(2002), Diaz et al. (2012), Wang et al. 
(2015), Lane and Husemann (2018) 

Modeling queues, and 
the interaction of delays 
and bottlenecks 
(BD-11.2) 

How can specific drivers, such 
as payment structures, be 
redesigned to reduce excessive 
or duplicated services?  
 
What are the effects of 
improving transparency of 
costs? 

How can patient flows 
be designed in a way 
that maximizes 
efficiency and improves 
patient outcomes? 
 
How can novel inventory 
replenishment models 
ensure availability of 
supplies and minimize 
costs? 

Dynamics of worker 
burnout (Homer, 1985) 
 
“Rookie-Pro” aging chains 
that account for 
heterogeneous 
productivity of experienced 
vs inexperienced 
employees 
(BD-19.1 and 19.2) 
 

Human Body and 
Disease 
Prevention 

Abdel-Hammid (2003), Jones et al. 
(2006), Karanfil and Barlas (2008), Abdel-
Hammid et al. (2014),  Fallah-Fini et al. 
(2014), Ghaffarzadegan et al. (2016), 
Hosseinichimeh et al. (2018), Rogers et 
al. (2018) 

Stock and flow 
structures inside the 
human body 
(BD-6) 

What are the government 
policies or behavioral 
interventions that can most 
cost effectively help contain 
the spread viral diseases? 

How to manage 
healthcare operations 
during humanitarian 
operations in areas with 
poor infrastructure?  
 
How to manage the 
complications in regions 
affected by war, 
corruption, or related 
issues? 

Treatment starves 
prevention structures  
(Jones et al., 2006) 

Addictions and 
Pharmaceutical 
Use 

Paich et al. (2011), Wakeland et al. 
(2011), Wakeland et al. (2015), Azghandi 
et al. (2018), Kunc and Kazakov (2018) 

Aging chains 
(BD-12) 

What are the government 
policies or behavioral 
interventions that can most 
cost effectively help drug 
epidemics? 

How can critical drug 
distribution be improved 
in emergencies? 

Treatment starves 
prevention structures 
(Jones et al., 2006) 

*Source of question is from authors as opposed to from research agendas in sample papers  
**Unless otherwise indicated, SD structures can be found in Sterman (2000), which summarizes seminal research in system dynamics, and presents many of the commonly used 
structures and formulations for a wide variety of modeling applications. For ease of reference, we will note the Chapter and Section where a relevant structure is presented as “BD-
xxx yyy” where xxx is the chapter and yyy is the section.  
 

 



1.4.3 Conflict, Defense and Security 
Conflict, whether in prosecuting “conventional” warfare, suppressing terrorism, or acquiring military 

assets, is by definition an expression of policy goals. Most often, governments implement these policies 

with OM levers. This is perhaps unsurprising given that much supply chain and operations management 

is derived ultimately from operations research, which finds its origins in military planning. In particular, 

conflicts often center on classic operations management topics such as supply chains (e.g., logistics, 

inventory, infrastructure), force (i.e., personnel) planning, project management, procurement, and, 

recently, the information management/operations interface (Van Creveld, 2004, 2010). That said, a 

number of problems involve significant complexity due to sociological issues such as regime legitimacy. In 

addition, these problems often exhibit an extra layer of complexity due to the involvement of actively 

hostile actors whose objectives are completely at odds with those of other stakeholders. In this policy 

domain, there is a long history of intellectual thought that is particularly compatible with SD research. For 

example, scenario planning is derived in many respects from military wargaming, so much so that even 

private-sector firms often use the two terms interchangeably, particularly in OM. Similarly, since the 

1800s, military decision-making has explicitly incorporated feedback thinking in the “command-and-

control loop” (Van Creveld, 1985, Lofdahl, 2006). Boyd’s observe–orient–define-act (OODA) loop is one 

well-known instantiation (Boyd, 1995, Plehn, 2000, Richards, 2020). However, many applications of SD 

that address problems in this cluster are never published, making the researcher’s task more difficult 

(Coyle et al., 1999). However, Ford and Clark (2019), in their recent survey of the literature show that this 

had been somewhat remedied in the areas of “conventional warfare” and weapons systems acquisition.  

The oldest stream in conflict, defense, and security (CDS) research appearing in our sample 

includes that of conventional warfare, particularly force planning and deployment (e.g., Coyle (1981), 

Wolstenholme (1983)). Unsurprisingly, given the military context, research in this stream pioneered some 

of the earliest uses of scenario planning (e.g., Coyle (1981)), numerical optimization (Wolstenholme and 

Al-Alusi (1987)), and the use of flight simulators for training (Coyle et al., 1999). In a slightly different vein, 

SD researchers explicitly addressed the feedback between human decision-makers’ ability to execute the 

command-and-control loop with respect to managing supply chains and force deployment using improved 

information and sensor technology (Bakken and Vamraak, 2003, Lofdahl, 2006). Lastly, Artelli et al. (2009, 

2008) is an exemplar of extending operations research concepts to include psychological and political 

science constructs. Specifically, they extend the classic Lanchester Laws—which define the odds ratio of 
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a larger force winning as a function of its numerical advantage in troops—to include endogenous factors 

such as troop fatigue and public morale.  

Project management, procurement, and implementation is one of the largest areas of SD 

research, because SD is well suited to project rework and other feedback loops. Much of this work has 

treated defense project management and acquisition (Lyneis and Ford, 2007). In our sample, this is 

reflected in the large number of papers on project management, a core OM discipline. SD can also assist 

project management due to its ability to handle many factors often omitted by OM work using other 

methods. For example, Lyneis et al. (2001) developed a model of air defense system procurement to check 

the bid, identify and manage risks, and assess the benefit of several process changes. They span silos into 

organization management to include team design. Another exemplar, Ford and Dillard (2008), examines 

how different OM project management strategies used (i.e., agile vs. waterfall) compare in operational 

effectiveness. For example, while using agile project management may expedite equipping some troops 

with improved weapons systems, this comes at the expense of delays in equipping other units. 

Insurgency research should integrate decisions around the planning and effectiveness of 

prosecuting insurgent or counterinsurgent actions with organizational recruiting, demographics, 

propaganda, public pressure, political legitimacy, building, and finance. Due to the large number of 

mutually interacting factors and other system complexities, as well as feedback loops among these factors 

(e.g., collateral damage from missions to suppress insurgencies increasing insurgent numbers), 

researchers have found SD to be a particularly useful methodology (Choucri et al., 2007, Pruyt and 

Kwakkel, 2014, Richardson, 2005, Anderson, 2007b). One example of this work, Anderson (2011), spans 

all the silos just mentioned except for finance. On the methodology side, the paper uses dynamic 

optimization to study force allocation and the timing of force withdrawal. The paper also includes 

operational issues specific to the military, such as experience curves being driven by the cumulative 

number of actions taken by an opponent. 

Generally, SD studies of operations in conflict, defense, and security are rather sparse, so all areas 

of inquiry could prove fruitful. However, studies on the criticality of information systems to the command-

and-control loop would seem to be particularly amenable to the strengths of SD (Lofdahl, 2006). Studying 

the relationship between insurgencies, finance, publicity, and organized crime would be extremely useful 

given the damage of organized crime to society, such as drug trafficking and kidnapping for ransoms 

(Schoenwald et al., 2009, Schoenenberger et al., 2014, Saeed et al., 2013). These papers point to some 

paths that should be taken in this space. 
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Finally, there is spillover between CDS issues and other clusters, such as humanitarian operations. 

For example, the decades-long conflict in the Congo has led to a widespread famine that affects over 20% 

of the population and has created the need for extensive humanitarian aid (Programme, 2020). Famines 

also often lead to epidemics. Studying policy interventions that interact with humanitarian and healthcare 

operations would be an excellent use of SD’s strengths. Table 1.5 below summarizes and organizes the 

research roadmap for this cluster, as described at the beginning of the section. 

 



 

Table 1.4: Conflict, Defense, and Security Literature and Open Questions 

Research Topics Selected References Useful SD Features Policy Questions* Operational Questions* Relevant SD Key Structures 
for Future Research** 

Literature Review Cunico et. al 
(Forthcoming) 

Causal representation 
in SD models provides 
insights 
 
Due to the lack of 
physical attacks to 
draw data from, 
simulation and 
scenario analysis are 
key. 

How can threats be 
mitigated in an 
increasingly 
interconnected, and 
more technologically 
dependent world? 
 
How do we train 
personnel to cope with 
conflicts (e.g., 
wargaming) 

What are the effects of militarily hostile 
“stakeholders” objective functions on 
operations? 

Flight simulators (Coyle et al., 
1999; Sterman et al., 2013) 
 
Adversarial decision making 
(Martinez-Moyano et al., 
2015) Artelli et al. (2009, 
2008) 
 
Scenario analysis for conflicts 
(Anderson, 2011), Coyle 
(1981) 

Conventional 
Warfare 

Coyle (1981, 1989, 
1992, 1996), 
Wolstenholme 
(1983, 1988), 
Wolstenholme and 
Al-Alusi (1987) , 
Artelli and Deckro 
(2008), Artelli et al. 
(2009), Backus et al. 
(2010) 

Relaxes the 
assumptions of the 
traditional force-loss 
ratio models 
(Lanchester Equation), 
to allow for conflicts 
that don't end in total 
annihilation or 
predetermined force 
numbers 

How do we create and 
maintain effective 
military forces? 
 
How can the command-
and-control loop be 
improved? 

How to manage the complications in 
regions affected by war, corruption, or 
related issues? 
 
How can technology improve the speed 
of the command-and-control loop?  
 
How can processes be developed to 
prevent control loop disruption, 
particularly of information systems? 

Ageing chains for recruitment 
including vacancy creation 
and hiring delays. BD (19.1) 
 
Maintenance structures for 
infrastructure, vehicles, etc. 
(BD 2.4) 
 
Decision support systems for 
military operations (Lofdahl, 
2006, 2014) 

Defense 
Acquisition and 
Capacity Planning 

Lyneis et al. (2001), 
Bakken and Gilljam 
(2003), Bakken and 
Vamraak (2003), 
Lyneis and Ford 
(2007), Ford and 
Dillard (2008), Ford 
(2009), Ford and 
Clark (2019) 

Highlights the 
tradeoffs and benefits 
of preventive policies 
versus reactive 
responses.  
 
Allows for exploration 
of different policies 

How can defense 
acquisition costs be 
reduced while improving 
effectiveness? 

Can agile or other project management 
methodologies improve acquisitions?  
 
How can organizational structures be 
designed to facilitate acquisition? 

Project management models 
with rework, modularity, etc. 
(Lyneis and Ford, 2007) 
 
Organizational  structures for 
acquisition (Ford and Clark, 
2019) 
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Table 1.4: Conflict, Defense, and Security Literature and Open Questions 

Research Topics Selected References Useful SD Features Policy Questions* Operational Questions* Relevant SD Key Structures 
for Future Research** 

Insurgency and 
Counterinsurgency 

Coyle (1985), 
Richardson et al. 
(2005), Anderson 
(2007b), Choucri et 
al. (2007), Sardell et 
al. (2009), 
Schoenwald et al. 
(2009), Anderson 
(2011), Saeed et al. 
(2013), Pruyt and 
Kwakkel (2014), 
Martinez-Moyano et 
al. (2015) 

Explores the effects of 
timing on the 
effectiveness of 
engagement and 
withdrawal efforts 

How can the 
interconnectedness of 
insurgencies with other 
policy challenges be 
managed? 
 
What policies can 
manage the “business” 
aspects of insurgencies 
including links with 
organized crime? 

How are increasingly global and 
interconnected SCs making governments 
more vulnerable to threats? 
 
How can supply chains for weapons etc. 
to support insurgencies be disrupted? 
 
How can funding for insurgencies and 
terrorism be cut without increasing 
organized crime? 

Insurgency-crime dynamics 
(Saeed et al., 2013) 
 
Blockading weapons imports 
and cutting finance to 
insurgents (Anderson, 2007a) 
 

Infrastructure and 
Information 
Security 

Martinez-Moyano et 
al. (2011), 
Schoenberger et al. 
(2014), Nazareth 
and Choi (2015), 
North et al. (2015), 
Armenia et al. 
(2019) 

Bass diffusion and SEIR 
epidemiological 
models to cyber virus 
attacks. 

How can we protect 
critical infrastructure 
from terrorism in a cost-
effective manner? 

Is it better to use redundancy or some 
other method to increase resiliency? 
Are there new technologies to help 
predict attacks? How can we change 
managerial behavior to adopt a 
“security mindset?” 

Using AI to predict attacks on 
infrastructure (North et al., 
2015) 
Behavioral models of 
information security 
(Martinez-Moyano et al., 
2011, Armenia et al., 2019) 

*Source of question is from authors as opposed to from research agendas in sample papers  
**Unless otherwise indicated, SD structures can be found in Sterman (2000), which summarizes seminal research in system dynamics, and presents many of the commonly used 
structures and formulations for a wide variety of modeling applications. For ease of reference, we will note the Chapter and Section where a relevant structure is presented as “BD-
xxx yyy” where xxx is the chapter and yyy is the section.  
 



1.4.4 Transportation, Logistics, and Infrastructure 
One core area of study in operations management is transportation, logistics, and other infrastructure. 

This may not seem to involve complex systems, and hence, it may not seem a good fit for SD approaches. 

However, there is important research in our sample, and it suggests that including a certain level of 

complexity can be helpful under some circumstances. Prominent complexity issues often involve long 

delays between policy decisions, customer response, and outcomes.   

The model of bus maintenance by Bivona and Montemaggiore (2010) is an exemplar of how SD 

can create counterintuitive policies by considering human factors and “marketing” issues endogenously. 

Including these factors results in a twist on the expected policy of reducing availability in the short term; 

instead, it favors preventive maintenance to reduce long-term cost. Surprisingly, the best strategy not 

only increases preventive maintenance, but also reduces the age of the bus fleet and frees up experienced 

mechanics to teach newly hired and inexperienced (or “rookie”) mechanics. While these actions in fact 

raise long-term costs, they also lead to increased service quality and customer usage, resulting in higher 

profitability. This paper is also an exemplar of actively describing the use of group model building with, 

among other things, flight simulators used by city officials to determine policy priorities. Mayo et al. (2001) 

is another exemplar that examines many of the same issues with respect to the London Underground, 

using officials to build a flight simulator and develop scenarios. While the flight simulator is discussed at 

length, the authors used the flight simulator as a decision-support tool. It helped officials outsource their 

operations by evaluating bidding firms for their ability to run the underground system.  

System dynamics addresses the role of OMPP in innovation in transport (Keith et al., 2020). 

Naumov et al. (2020) is an exemplar in this space, because it expands the boundaries typically considered 

in mass-transit planning to include not only new technologies, but also (1) expansive economic models of 

consumer utility and resulting market share, and (2) operational issues of maintenance and service routes 

run. For example, in their model consumer utility includes the belief by many policy experts that 

automated vehicles are problematic for improving the environment; these vehicles increase the 

attractiveness of commuting by reducing transit times and allowing drivers to spend their “drive-time” 

directly on work-related activities. Hence, experts argue for policies to increase ride-sharing), which, 

however, reduces mass-transit ridership. The model strongly suggests that policies promoting ride-sharing 

will reduce mass-transit capacity by strangling the funds needed for reinvestment. This could increase, 

rather than decrease, both pollution and energy use. Instead, a better policy seems to be a tax levied on 

vehicle miles traveled; this tax is then directed in part to the mass-transit system’s upkeep. This paper also 
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conducts an extensive, explicit analysis of trajectories that reveal path dependence and other issues via 

phase-plot analysis. 

Another aspect of operations management addressed in an SD OMPP model is Pierson and 

Sterman (2013), an exemplar that examines how yield management strategies in the United States 

interacted with deregulation to create cyclicality in the airline industry’s capacity, airplane production, 

and consumer demand. They find that yield management dampened capacity cycles but increased profit 

volatility, leading the airlines to lower average profits and reduced viability.  

A last aspect is skilled worker infrastructure. Ghaffarzadegan et al. (2017) is an exemplar for future 

research in this area. It examines the mismatch between work needs in the economy and education as a 

function of policy. It does so by creating, in their words, an “operational model” that combines a queuing 

model as influenced by a number of government policies, university capacity decisions, and individual 

behaviors. The paper then explores the model’s behavior under disruptions from the macroeconomy and 

other factors, using sensitivity analysis and scenario testing. One intriguing finding is that disruptions often 

result in shortages in filling lower-skilled jobs. This is particularly interesting given current shortages of 

workers in the U.S. and Europe in lower-skilled supply chain jobs such as warehouse workers, port 

employees, and truck drivers (Camaniti, 2021). The authors also discuss how their model could be 

extended to examine whether job-training policies create shortages of skilled workers needed for new 

technologies.  

Several questions regarding transport and logistics policy remain open, many of them involving 

interactions with other policy areas such as sustainability and new business models. For example, the 

COVID-19 pandemic has accelerated the move toward online business models, which in turn has 

intensified the last-mile problem and led to the creation of more emissions. In addition, retail outlets may 

be weakened in urban areas due to the pandemic-driven “flight” to the suburbs, further intensifying the 

last-mile problem (Bloch, 2021). This may lead to a need for policies that accelerate the shift to alternative 

fuel vehicles and increase reliance on new business models, such as using “ride-share” companies that 

pool deliveries to reduce the average mileage driven per package delivered. However, these policies must 

also avoid weakening mass transit. How will new business modalities, such as working online, affect these 

decisions (Naumov et al., 2020)? Another open issue is the need to create policies to manage automated 

driving and flight (Naumov et al., 2020). Automated driving must be regulated for safety purposes, and 

new infrastructure may be needed. Automation might also lead to counterintuitive effects such as job 

losses from unemployed drivers. With respect to flight, regulation will be needed to cope with new 

modalities of delivery such as drones. How can drone parcel deliveries be done safely on a large scale, by 
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many different business and organizations (Zelinger and Sallinger, 2020)? One possibility is to require pilot 

licenses when commercial drones operate beyond visual range, but that may damage the cost-

effectiveness of drones, particularly if these devices can lower fossil-fuel emissions. This ties in with 

educational policies that create national workforces inappropriate to new economic and operational 

needs. How can policies be designed to avoid worker shortages in supply chain and emerging high-tech 

jobs in operations (Bowman, 2021, Van den Bossche et al., 2020)? 

Table 1.6 below organizes the roadmap for the cluster as described at the beginning of this 

section, and it also provides additional references from our sample. 

 



Table 1.5: Transportation, Logistics, and Infrastructure Literature and Open Questions 

Research Topics Selected References Useful SD Features Policy Questions* Operational Questions* Relevant SD Key Structures for 
Future Research** 

Literature Review Abbas and Bell (1994), 
Shepherd (2014) 

Clarify the relations between 
multiple stakeholders with 
different goals 

What policies encourage 
transport and logistics 
efficiency and 
sustainability gains? 

What sorts of new business models should 
be encouraged to improve operational 
efficiency? 

Group model building to elicit decision 
maker's mental models. 

Mass Transit Coyle and Gardiner 
(1991), Homer et al. 
(1999), Mayo (2001), 
Bivona and 
Montemaggiore (2010) 

Shows the effects of 
"induced demand" and why 
road building is a "policy 
resistant" alternative to 
reducing traffic  

What policies can be 
enacted that can ensure 
the attractiveness, and 
improve the economics of 
mass transit? 

How do we coordinate price setting and 
long-term maintenance and purchasing? 

The mass transit "death spiral" 
(Naumov et al., 2020) 

Highway 
Maintenance 

Chasey et al. (2002), 
Friedman (2006), 
Fallah-Fini  et al. (2010) 

Combination of SD and 
optimization to improve 
priority setting schemes 

How do we improve 
infrastructure functionality 
while reducing long term 
infrastructure costs?  

What maintenance schedules should be 
followed? 
 
When should we build new infrastructure? 

Maintenance structures (BD-2.4) 
 
 

Airlines, Airport 
and Other 
Infrastructure 

Liehr et al. (2001), 
Rudolph and Repenning 
(2002), Miller (2007), 
Pierson and Sterman 
(2013) 

Models of supply line 
acquisitions that incorporate 
operational decisions such 
as revenue management  

What is the impact of 
COVID-19 on 
transportation and logistics 
policies? 

To what extent will telecommuting reduce 
traffic congestion and flying? 

Aging chains that allow for 
heterogenous attributes of different 
stock vintages. (BD-12.1) 
 
 

Innovation in the 
Automobile 
Market and 
Alternative Fuel 
Vehicles 

Struben and Sterman 
(2008), Stepp et al. 
(2009), Kieckhäfer et al. 
(2014), Keith et al. 
(2019), Bhargava 
(2020), Keith et al. 
(Forthcoming), Naumov 
et al. (2020) 

"Chicken-egg" dynamics in 
two sided markets 

How should automation be 
regulated? 

What are the unanticipated effects of 
policies to encourage automation that may 
lead to increased congestions? 
 
How can alternative fuel vehicles be 
incentivized or made attractive for last-mile 
deliveries?  

Platform competitions under 
technology changes (Anderson, 
1996). Also summarized in BD-10.4 
 
Congestion modeling (Naumov et al., 
2020) 

Skilled Worker 
Infrastructure 

Ghaffarzadegan et al. 
(2017) 

Feedback between current 
workforce structure and 
managerial decision making 

How to create a workforce 
that can maximize 
competitiveness? 

How do we incent universities to encourage 
students to study the skills most useful to 
long-term national needs? 
 
How do we incent firms to offer ongoing 
training? 

“Rookie-Pro” ageing chains that 
account for heterogeneous 
productivity of experienced vs 
inexperienced employees 
(BD-19.1, 19.2) 
Homer assignment model for 
resources (1999) 



1.4.5 Sustainable Operations 
Sustainable development was defined famously by the World Commission on Environment and 

Development (WCED Strategic Imperatives’ 1987) as “development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs.” At the heart of this 

issue are questions about how society consumes resources—both renewable and nonrenewable—in the 

presence of lengthy time delays between actions and consequences. This is complicated by the potential 

for self-interested and short-term behaviors that are at odds with the difficult collective actions needed 

to achieve true sustainability. As in other areas of policy, here governments can enact sustainability policy 

that align the incentives of individuals and firms with the collective good in principle. However, once again, 

system complexity often leads to unintended consequences and counterproductive policy-making 

(Moxnes, 1998, Moxnes, 2000). Another driver of complexity, at least in some contexts, is the need to 

model ecological or climate factors (Moxnes, 2005, Fiddaman, 2007). For these issues, SD modeling can 

be particularly useful in developing effective sustainability policies.  

Moxnes (2005) is an exemplar of an SD model that includes domain data (from ecology), 

economics, and operations. The larger task is to determine the impact of optimal quotas and capacity 

decisions on the fishing fleet for preserving the Northeast Arctic cod fishery. Moxnes found, contrary to 

conventional wisdom, that optimal policies and their trajectories were affected more by uncertainties in 

nonlinear economic relationships than those regarding the ecosystem. His method may likely apply to 

many other sustainability settings; that includes climate change, the management of which has proven 

particularly problematic. Also, this is one of the few SD papers that uses stochastic optimization, which 

has the added benefit of enabling an examination of the optimal trajectories as a function of uncertainties. 

Another exemplar is the study by Kapmeier and Goncalves (2018) that developed a model for 

managing tourism to promote economic growth, using 38 years of data from the Maldives Islands. Their 

model also included extensive input from various expert stakeholders from the island chain with respect 

to their concerns, decision-making policies, and other issues. Operationally, the study included capacity 

and demand as well as waste management, and it performed scenario planning to develop robust policies 

using Monte Carlo analysis. The authors found that policies for improving waste management will not 

work alone; one must also limit tourist demand. 

Agrawal et al. (2019) used systems thinking techniques based on those discussed by Senge (1990) 

to identify new opportunities for research in sustainable operations, specifically circular or “closed-loop” 

supply chains. These transform the linear “take-make-dispose” industrial model into a circular economy 
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that regenerates and restores materials, products, and other resources for future use. These strategies 

consider three important building blocks that are particularly germane to SD: “reverse flows,” “circular 

design,” and “circular business models.” All three explicitly consider feedback in their decision, 

production, delivery, and product transformation processes. Closed-loop supply chains have been studied 

with some success. Modeling examples include Lehr et al. (2013), which evaluates a variety of strategies 

for electronics firms to meet increasing European Union regulation of waste most effectively, and Yuan 

(2014), which studies the design of construction-waste fees charged in China. 

Interesting questions remain open. For example, despite the significant number of insightful 

works addressing how firms must cope with sustainability policies, studies examining how to optimize 

macro policies in our sample generally offer model operations as simplified national or global aggregations 

(Fiddaman, 2007, Fiddaman, 2002, Rooney-Varga et al., 2020). They do not examine the implications at a 

micro level for manufacturing and supply-chain design that may affect firm viability and other allied issues, 

which Joglekar et al. (2016) argue is necessary. This is unfortunate, because studies in climate change, 

resource and land use, and circular economies are a rapidly growing field of operations management and, 

arguably, the most important. Furthermore, the number of feedbacks and delays is perhaps even greater 

in sustainability than in any of the other policy areas discussed in this paper. We urge more development 

in all the areas identified above. Moxnes (2005) and exemplars from the related fields of transportation 

and logistics or energy clusters could be used as models to emulate (Ford, 2008).  

One area of inquiry not yet researched to the best of our knowledge is how to increase the 

durability of products, which could reduce both the future usage of materials and the creation of waste 

(Goworek et al., 2020). Another question is how continuous improvement programs might be actively 

directed to improve sustainability alongside regulatory changes. “Lean” continuous process improvement 

could be a powerful tool here, because its prime tenet is to “minimize waste.” However, continuous 

improvement takes time. Would abrupt regulatory changes (e.g., the sudden introduction of a carbon 

price) encourage the incremental minimization of waste, or would they result in risky “big bang” process-

improvement projects? Similarly, firms might use process improvement to reduce their carbon footprints 

(Aguado et al., 2013), but what sorts of regulation, carbon taxes, cap and trade, etc., would be needed to 

drive firms to effectively minimize their carbon footprints using continuous improvement?  

Table 1.7 in the below organizes the roadmap for the cluster as described at the beginning of this 

section and provides additional references from our sample. 

 



Table 1.6: Sustainable Operations Literature and Open Questions  

Research 
Topics 

Selected References Useful SD 
Features 

Policy Questions* Operational Questions* Relevant SD Key Structure for Future 
Research** 

Literature 
Review 

Abdelkafi and Täuscher 
(2016), Rebs et al. (2019) 

Clarify the 
fundamental 
tension between 
the desire for 
unlimited growth 
with limited 
resources 

How can we rethink the 
concept of "sustainable 
growth"? 

What are the appropriate time 
horizons for evaluating sustainable 
operations models? 

Compared to analytical models and 
mathematical programming, simulation 
models are underrepresented in 
sustainability 
 
SD models of expectation formation, 
uncertainty and risk (BD-16) 

Models for 
Climate Change 
and the 
Environment 

Fiddaman (2002, 2007), 
Kunsch and Springael 
(2008), Sterman et al. 
(2012), Currie et al. (2018) 

Interactive flight 
simulators for 
understanding and 
communication 
 
Understanding 
overshooting 
systems 

What is the right 
communications strategy to 
educate decision makers on 
climate policy? 
 
What is the impact of 
technological change for 
sustainability operations? 

How should we design flight 
simulators to improve stakeholders’ 
intuition? 

Flight simulator design (Sterman et al., 
2013) 
 
Feedback loop between technology 
and sustainability (Fiddaman, 2007) 
 
 

Planning, 
Development 
and 
Construction 

Saysel et al. (2002), Shen 
et al. (2005), Kapmeier 
and Gonçalves (2018) 

Model the 
tradeoff between 
growth and 
environmental 
impacts 

What is the rate at which 
regulation target levels be 
raised? Should they be 
continuously increasing or 
“lumpy?” 

How do regulations impact capacity 
planning? 

Models that include social aspects of 
Sustainable Development (Kapmeier 
and Gonçalves, 2018) 

Resource 
Management, 
Circular 
Economy and 
Closed Loop 
Supply Chains 

Moxnes (1998, 2004, 
2005), Mendoza and 
Prabhu (2006), Georgiadis 
and Besiou (2008, 2010), 
Purnomo and Mendoza 
(2011), Bhattacharjee and 
Cruz (2015), Do Val (2019)  

Broad model 
boundaries allow 
for analysis that 
incorporate both 
the environmental 
and economic 
aspects of 
sustainability 

What is the role of 
legislation in achieving 
compliance? 

How do different regulation or 
incentive structures affect individual 
industries, and how do they affect 
operations at firm level? 
 
What is the impact of production 
techniques on sustainability? 

Models that include social aspects of 
Sustainable Development (Kapmeier 
and Gonçalves, 2018) 
 
Scrap reduction from Lean 
Manufacturing. (Gupta et al., 2018) 
 
 

Fuel Economy, 
Emissions and 
Waste 
Reductions 

BenDor (2012), Lehr et al. 
(2013), Saysel and 
Hekimoglu (2013), Yuan 
(2014) 

Induced demand 
 
Rebound effects 

What is the optimal 
recycling percentage that 
should be pursued? 

How should lifetime recycling policies 
be designed to best encourage 
compliance?  
What incentives would drive 
production of durable products? 

Aging chain structures for age of 
product vs. likelihood of disposal (BD-
12) 



1.4.6 New Business Models 
Since 2000, there has been a flurry in the development of new business models. While many have been 

driven by improved information technology such as the internet, they also rely on operational innovations 

such as online ordering and home delivery. This has attracted the interest of OM researchers (Kumar et 

al., 2018, Sorescu, 2017). This area, ripe for policy and regulation, is clearly a complex system. The seminal 

work Parker et al. (2016) explicitly uses the language of SD, defining platforms as the center of reinforcing 

loops that connect different markets. While these markets are not owned by the platform firm, they 

create value for each other. Uber is a classic example of a firm that exploits the cross-side externalities 

between passengers and drivers, in which more passengers attract more drivers, which attract more 

passengers. To enable this often requires an operational innovation. Uber replaced employees with 

freelance “gig workers” who essentially act as spot-market suppliers. However, the book also discusses 

the negative effects of platforms on the community. For example, Uber’s drivers do not receive health 

insurance, monopoly effects might harm service and affect antitrust policy. Despite this rich discussion 

using SD terminology and concepts, however, there is no associated simulation model. Very few other 

extant SD research articles use models that analyze policy for platforms. This is unfortunate, because most 

of the extant literature on platforms, on which much policy is being decided, employ single-period game 

theory models. That said, there are a few SD papers treating OMPP issues in platforms. These include the 

study by (Keith and Rahmandad, 2019) of winner-takes-all outcomes in the gig economy. Another is the 

study by Anderson and Parker (2013) of an energy power storage startup’s new product-development 

choices in technology; it explicitly considers cross-side externalities as well as funding mechanisms for 

startups. However, both papers could easily have done more to study potential public-policy 

interventions.  

Startups are their own business models, differing from mature firms in important ways, such as 

their lack of cash combined with the need to balance R&D, marketing, capacity, and production during 

rapid growth. These lead to OM problems that lend themselves to SD research (Bianchi and Bivona, 2002, 

Milling and Stumpfe, 2000, Paich and Sterman, 1993). Another issue is that the overwhelming majority of 

startups fail (Marmer et al., 2011). SD models are particularly useful here because it can study 

unsuccessful firms and avoid the survivor bias when studying only those firms that “make it.” Policymakers 

often see startups as desirable, and the U.S. and other countries have policies to encourage startups 

(Hsieh and Chou, 2018). However, that raises two questions. Which policies actually help startups while 

also avoiding unintended consequences? And which policies, such as tax laws, inadvertently hurt startups 
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and small enterprises? While SD studies are strongly indicated, published studies are currently rare (Zali 

et al., 2014).  

Questions around new business-model policy are plentiful. For example, should gig employees be 

treated as independent contractors? But these issues remain understudied by SD scholars. There are 

many other issues that, to the best of our knowledge, remain completely unstudied. For example, the 

shift to more online ordering has led to interest by OM scholars in the last-mile problem created by 

increased deliveries as well as increased problems in reverse-logistics. This has a variety of knock-on 

effects that may need regulation. For example, increased vehicle emissions may potentially increase 

government interest in accelerating requirements for alternative fuel vehicles, which has been discussed 

previously. Waste-management problems also increase as a function of extra shipping materials and 

returned goods (Slabinac, 2015). Further, while warehouse workers represent a larger section of the 

economy, they are perceived to be underpaid or otherwise exploited by firms such as Amazon. As it has 

with gig workers, this situation has led to calls for employment regulation (Long, 2018), which may have 

unintended effects such as the acceleration of automation. SD models could be helpful in studying all 

these issues.  

With respect to new business models that rely on externalities, several questions need to be 

studied, especially those relating to operations and policy, such as antitrust issues. For example, Amazon’s 

reverse engineering of popular products from small and medium enterprises is now being investigated as 

a potentially unfair trade practice (Kalra and Stecklow, 2021). However, are regulatory remedies truly 

necessary, given that other platforms such as Shopify and BigCommerce are creating systems to enable 

small and medium enterprises to compete with Amazon (Lu, 2020)? Also, to the best of our knowledge, 

SD studies of the interaction of open or crowdsourced innovation with policy is completely absent. How 

should startups be promoted more broadly through policy? For example, could some worker regulations 

that make sense for large enterprises be problematic for small enterprises? Ultimately, policies are 

needed to encourage this development in nations that have a chronic shortage of the skilled labor needed 

to maintain automation, such as the United States (Moreno and Bauer, 2017). Similarly, to the best of our 

knowledge, additive manufacturing—better known as rapid prototyping or 3D printing—has also not been 

studied. This area is ripe for regulation given the possibilities for intellectual property (IP) infringement 

and the production of dangerous or other undesirable products, such as handguns. At the same time, 

additive manufacturing is desirable for encouraging R&D and leveraging open innovation. It also could 

have been used during the COVID-19 pandemic to produce critical subcomponents for equipment with 

otherwise disrupted supply chains. Another area of new business models includes those based on 
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disruptive technologies in operations such as artificial intelligence, machine learning, and automation. 

Much of this is covered in the transportation, logistics, and supply chain section of this paper, and includes 

Naumov et al. (2020). Much is also captured by prior SD models, such as Forrester’s, if parameters are 

used to reflect improved forecasting accuracy and promote coordination. However, some applications of 

artificial intelligence (AI) need new models. For example, the rise of automation requires a new type of 

labor force, one with fewer unskilled workers and more who are skilled. However, the U.S. is chronically 

short of skilled workers, so how can this be remedied?  

In short, the literature in all these topics is sparse, the suitability of SD is high, and the importance 

of policy questions is of the utmost importance. Table 1.8 below organizes the roadmap for the cluster as 

described at the beginning of this section and provides additional references from our sample. 

 



Table 1.7: New Business Models Literature and Open Questions 

Research Topics Selected References Useful SD Features Policy Questions* Operational Questions* Relevant SD Key Structures for 
Future Research** 

Entrepreneurship 
and Start-ups 

Paich and Sterman 
(1993), Bianchi and 
Bivona (2002), Oliva 
et al. (2003), 
Sterman et al. 
(2007), Zali et al. 
(2014) 

Boom and Bust Dynamics 
 
Limits to Growth 

What are policies 
needed to encourage 
new business model 
innovation to best 
enhance operational 
efficiency and social 
welfare? 

What supply chain (SC) models result 
from new business models?  
 
How can regulators design antitrust 
regulation to enhance operational 
effectiveness in a SC ecosystem? 
 
What policies will encourage a firm’s new 
product development?  

Startups and integration of 
complementary products 
(Anderson, 1996)  
 
“Market Growth Model” for 
scaling new businesses. (BD-15) 
 
“Design win” model for new 
product development pipeline  

Automation Nieuwenhuijsen et 
al. (2018), Naumov 
et al. (2020), Yu and 
Chen (2021) 

Models of innovation diffusion 
 
Broader modeling boundaries 
for analysis of so-called 
"unintended consequences" of 
interventions 

What policies should 
be in place to 
promote startups and 
small and medium 
enterprises’ 
innovations? 

How can the innovativeness of small and 
medium firms be measured?  
 
How will regulation and taxation policies 
affect startup and SME operations 
differentially from large, mature firms?  
 
How can large platforms be prevented 
from suppressing IP infringement? 

Innovation diffusion models 
coupled with product “hype 
cycle” dynamics. (BD-9.3)  

Platforms Anderson and 
Parker (2013), 
Parker et al. (2016), 
Keith and 
Rahmandad (2019) 

Models that combine SD and 
game theory 

How should new 
business models such 
as platforms be 
regulated? 

What are the operational effects of 
converting “gig workers” to employees?  
 
How can waste production by online 
firms’ deliveries be reduced? 

Platform models of demand, 
technology, and supply 
(Anderson, 1996)  
 
Search on complex landscapes 
(Rahmandad, 2019) 

R&D and Product 
and Process Inter-
dependencies 

Anderson (1996), 
Milling and Stumpfe 
(2000), Akkermans 
and van Oorschot 
(2016), Hsieh and 
Chou (2018) 

Models for project 
management, and concurrency 
for "strange projects" that face 
many unknown risks (Pitch et 
al. 2002, as quoted in 
Akkermans and van Oorschot 
2016) 

What policies are 
needed to manage 
new technologies and 
their potentially 
deleterious effects? 

What is the effect of automation on 
reduction of a firm’s unskilled workforce 
and increase in skilled employees?  
 
How should 3D printing be regulated to 
increase safety and reduce IP theft 
without stifling innovation and improving 
supply chain resilience? 

“Design wins” model of new 
product development pipeline 
 
Project models including 
concurrency, rework, etc. (Lyneis 
and Ford, 2007)  

 



1.4.7 Energy  
Parker et al. (2019) provides a scoping review of articles published on current operational and 

policy issues related to the electric power industry. The authors highlight the need for new models, to 

both help the industry better utilize resources in complex systems involving environments of increasing 

uncertainty and aid government policy makers better understand the potential impact of regulatory 

decisions. Specifically, they argue that there are opportunities for research recognizing the mutually 

interacting and dual-causality dynamics between operations and public policy. For these reasons, there is 

a long history of using SD models as a decision support method in the energy sector (Ford, 1997, Ahmad 

et al., 2016, Leopold, 2016). Work has spanned areas including fossil fuels, renewables (Fontes and Freires, 

2018, Zapata et al., 2019), power generation and distribution (Ford, 2008), and the evaluation of 

alternatives for both utilities and governments (Johnson et al., 2006, Tan et al., 2010). Particular 

complexities handled in these models include uncertainty in technology development. Another issue is—

at least in the U.S.—considerable fragmentation of the power-generation industry.  

The literature in this space is burgeoning. Several review papers are helpful in classifying recent 

work. Teufel et al. (2013) proposed a categorization into regulated and liberalized electricity markets, and 

the authors further subdivide these two markets into a number of sub-categories. Leopold (2016) provides 

a detailed review of other works using SD to model energy related systems. Qudrat-Ullah (2015) conducts 

a review of different modelling and simulation studies in service energy policy, including system dynamics, 

linear programming, econometric methods, optimization, scenario analysis, and agent based models. 

An exemplar article in this cluster is the study by Ford (2008) of technology choice, capacity 

planning, carbon-capture technology, incentives for switching to renewables, and pricing cap-and-trade 

allowances to reduce carbon emissions in the U.S. Western Energy Grid. Using extensive scenario testing 

in a model deeply grounded in technological detail, Ford found a number of results concerning different 

legislative and regulatory proposals, particularly that carbon pricing should be implemented even absent 

development of advanced technologies such as carbon capture and sequestration. A more recent 

exemplar paper by Castaneda et al. (2017a) builds a model including electricity demand and capacity 

markets to study the impact of roof-top solar systems on electric utilities’ business models. It also includes 

the Bass marketing model for demand for rooftop solar capacity. They analyzed several scenarios based 

on input from stakeholders including managers, engineers, energy specialists, and policy makers to cope 

with the numerous uncertainties involved. The paper ultimately finds that some environmental policies 

promoting rooftop solar may actually increase the likelihood of a death spiral for utilities.  
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 Other areas that have been studied by SD researchers include electricity market design, 

renewable integration, effects of climate policy on electric power infrastructure, the rise of electric 

powered vehicles, energy storage, and the growing interdependence between natural gas and electric 

power sectors (Arango and Larsen, 2011, Kilanc and Or, 2008). These often overlap with other areas of 

OM, such as sustainability, and further highlight the importance of the interdisciplinary study of complex 

topics. While there is a fair amount of SD literature with respect to OMPP problems in energy, the number 

of open questions remains extensive. Perhaps the most interesting are those that overlap with other 

clusters already identified in this paper. In particular, there is an obvious overlap between sustainability 

and energy. Hence, many of the questions related to combining energy models with climate models are 

critical (Fiddaman, 2002, Fiddaman, 2007). However, these questions must also include the impact at the 

micro-level operations issues faced by energy generation and distribution firms. A related question is: how 

can electricity systems be designed to cope with the extra capacity and uncertainty created by electric 

vehicles? For example, Bhargava et al. (2020) estimates that the load of a single electric truck is similar to 

that of a small city. There is also clear overlap between energy distribution, electricity markets, and new 

business models. For example, electricity grids are multisided markets and have cross-sided externalities 

with respect to technology adoption, particularly around power generation and storage (Parker et al., 

2019) How does one account for these new business models when drafting regulations? Capacity 

decisions by utilities depend upon whether power markets are based on guaranteed capacity (as in the 

U.S. Eastern and Western Grids for electricity distribution) versus based purely on delivered kilowatt-

hours (as in the Texas Grid). Which design is better, and under which conditions? Are there other designs 

that can combine the best parts of both? Or is some other design even better?  

Table 1.9 below organizes the roadmap for the cluster as described at the beginning of this section 

and provides additional references from our sample. 



Table 1.8: Energy Literature and Open Questions 

Research Topics Selected References Useful SD Features Policy Questions* Operational Questions* Relevant SD Key Structures 
for Future Research** 

Literature 
Review 

Ford (1997, 2020), Teufel et al. 
(2013), Qudrat-Ullah (2015), 
Ahmad et al. (2016), Leopold 
(2016), Parker et al. (2019), 
Selvakkumaran and Ahlgren 
(2020) 

Models that allow for 
understanding of the dynamics 
of energy transitions 
 
Delays in the demand control 
loops and capacity acquisition 
generate cycles 

How can we most effectively use 
regulation and to produce and 
supply energy in terms of cost, 
reliability, and sustainability? 

How can we accurately forecast 
demand and match generation 
capacity in an increasingly 
decentralized market? 
 
How do we design markets to 
ensure reliable energy and utility 
viability? 
 

Platform structures 
(Anderson, 1996) also 
summarized in (BD 10.4) 
 
Capacity acquisition behavior 
by managers 
 
Forecast structures and 
perceptions of other actors’ 
forecast structures (BD 16) 

Power 
Generation and 
Electricity 
Markets 

Fan et al. (2007), Sánchez et al. 
(2008), Kilanc and Or (2008), 
Arango and Larsen (2011), 
Moumouni et al. (2014) 

Models for project 
management (BD-2) 
 
Models that combine 
simulation with credit risk 
theory and game theory 
(Sánchez et al. 2008) 

How can we develop a platform 
for electric power markets to 
better integrate distributed 
energy resources into power 
grids?(Parker et al. 2019) 
 
Do liberalized energy markets 
offer sufficient incentives for 
building generation capacity?  
 
How can the utility death spiral 
be avoided? 

What's the impact of dynamic 
electricity pricing on capacity 
investments, demand response 
adoption, emission levels and 
technology mix of electricity 
generation portfolios? (Parker et al. 
2019) 
 
How do different rate structures 
affect renewable energy capacity 
investments? 
 

Prices and desired capacity 
(BD 20) 
 
Perception delays (BD 11.3) 
 
Yield management structures 
and capacity planning 
(Pierson and Sterman, 2013) 

Clean Energy, 
Sustainable and 
Renewables 

Movilla et al. (2013), Aslani et al. 
(2014), Franco et al. (2015), 
Osorio and Van Ackere (2016), 
Castaneda et al.  (2017b), 
Fontes et al. (2018), Zapata et al. 
(2019), Liu et al. (2019) 

Modeling competing scenarios How does regulation & 
deregulation impact efficiency of 
integration of renewables into 
the grid?  
 
What market policies or 
regulations can help improve the 
large-scale integration of 
renewables? 

How can renewables be used to 
secure supply, provide competitive 
prices, and provide environmental 
protection? 
 
What is the impact of large-scale 
renewable integration on optimal 
schedule and dispatch of power 
generation resources? 

Design of energy storage 
technology in presence of grid 
platform effects (Anderson 
and Parker, 2013) 

Evaluating 
Alternatives and 
Risk 
Management 

Johnson et al. (2006), Tan et al. 
(2010), Jeon and Shin (2014), 
Shafiei et al.  (2015), Fazeli and 
Davidsdottir (2017). 

Modeling competing scenarios Can clean energy policies be 
improved by bringing in an OM 
perspective? 

How can operations and supply 
chain management be revised to 
reduce emissions? 

See approximations for 
mileage in a vehicle routing 
problem (Figliozzi, 2009) 



1.5. Discussion and Conclusion 
In this work, we have sought to create a roadmap for researchers interested in using system 

dynamics to study operations management in public-policy-related contexts. Our intended audience 

includes both those experienced in using SD and those new to the field. To this end, we collected a sample 

of approximately 150 SD articles at the interface of operations management and public policy. The 

research areas surveyed are vast: including humanitarian operations; healthcare operations; conflict, 

defense, and security; transportation, logistics, and infrastructure; sustainable operations; new business 

models; and energy. Necessarily, we have imposed boundaries to keep the task manageable. For example, 

we avoided studies that represented operations at a macro level, typical of labor economics or 

macroeconomics research. While such research is valuable, it does not effectively inform operations 

management research. We also do not attempt to be exhaustive in our sample; instead, we focus on a 

scoping review, establishing a useful knowledge base for contemporary researchers interested in this 

area.  

We leverage our sample in several ways. First, we describe why, when, and how SD models might 

be valuable for studying operations management problems in a public-policy context. Second, we identify 

the tradeoffs in data gathering, aggregation, optimality, boundaries, and other issues involved in using 

system dynamics models versus “classic” operations management modeling methodologies such as game 

theory, mathematical optimization, and queuing. Henceforth, we find this is often not an either-or 

question—nor should it be. Instead, multiple methodologies can and often should complement each 

other. 

Next, we clustered the articles by topic. For each topic cluster, we then identified a list of extant 

literature, the extant contributions of system dynamics research, open questions, and potential SD 

building blocks for scholars investigating these questions. We gathered these into tables for each cluster 

to organize that knowledge for future researchers. We also identified and described exemplars in each 

cluster that could serve as models for future academic work. 

Several overarching challenges, all common to multiple clusters, emerge for researchers in public 

policy-related operations. On the methodology side, the biggest area for potential improvement is 

researching the use of SD models for consensus-building among stakeholders. In our sample, we cite 

exemplars that document group-model building as well as the use of flight simulators (see Table 1.10 

below, and note well: An “x” indicates an especially noteworthy use of a method. For example, all papers 

in the sample do rigorous sensitivity analysis. However, Ford’s (2008) is particularly detailed and 
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extensive, even relative to other exemplars, and is an excellent model for future researchers). However, 

overall, detailed literature remains sparse in the context of operations management for public policy. This 

is unfortunate, because stakeholder resistance is often a major hindrance to implementation (Besiou and 

Van Wassenhove, 2015). One simple step to improve research in this area would be providing more 

description on how stakeholder consensus is reached, even in papers primarily centered on the nature of 

the ultimate solutions. An exemplar for this approach is Goncalves et al. (2021), particularly because it 

describes a consensus-building approach different from those traditionally described in SD research 

(Andersen et al., 1997, Vennix, 1999). 

 



Table 1.9: Summary of Noteworthy Use of Methods in Exemplar Papers 

 
 
 
 
 
 
Exemplar 

 
 
 
 
 
 
Topic 

           
 
 
 
 
 
Notes 

Anderson (2011) Counterinsurgency for planning   X   X    X Integrates sociology and political science concepts.  
Nontraditional experience curve based on enemy activity. 

Artelli et al. (2008, 2009) Psychological and political  
factors’ effect on OR Lanchester Laws 

      X    Expansion of OR Lanchester Laws with psychological  
and political science constructs. 

Besiou et al. (2014) Central vs. local purchasing of relief  
vehicles 

   X   X   X Tests against dynamic programming models.  
Addresses concept of “earmarking” by funding organizations. 

Castaneda et al. (2017a) Roof-top solar power incentives’  
effect on electric utilities 

       X X X Uses Bass Diffusion Mode, from marketing literature. 

Ford (2008) Carbon reduction and technology 
choice by electric utilities 

X X         Extensive grounding in technical engineering literature. 

Ford and Dillard (2009) Agile development of weapons systems       X    Compares agile and waterfall project management methodologies. 

Ghaffarzadegan et al.  
 (2016) 

Post-traumatic stress disorder  
management 

 X        X Incorporates human psychological factors. 
 

Ghaffarzadegan et al.  
 (2017) 

Workforce education X X     X    Incorporates a queuing model. 
 

Gonçalves et al. (2022) Healthcare capacity planning  
during pandemics 

  X     X   Uses nontraditional group model building techniques. 
 

Kapmeier and Gonçalves  
 (2018) 

Sustainable island tourism  X X X       Connects a behavioral econ model of service industry to environmental impacts. 
Uses MC simulations to assess OMPP policies. Detailed consensus building. 

Kang et al. (2018) Public polices for chronic disease  
management 

 X         Integrates multi-object goal planning model, scenario planning, and a Markov  
model of disease progression. 

Kunz et al. (2014) Preparedness strategies for  
disaster relief 

X X         Extensive scenario and sensitivity analysis. 

Kunc and Kazakov  
 (2018) 

Pharmaceutical competition for  
heart disease market 

        X  Transforms a developed model into a flight simulator for building consensus  
in a workshop for multiple stakeholders. 

Lane et al. (2001b) Reducing hospital emergency 
department waiting time 

  X     X X  Uses time and motion studies to directly calibrate parameters rather than via  
optimization algorithms. 

Mayo et al. (2001) Subway vendor selection  X       X  Flight simulator used to teach vendors successful business models. 

Moxnes (2005) Quotas & capacity effects on  
fishery sustainability 

    X     X Stochastic optimization. Integrated ecological modeling. 

Naumov et al. (2020) Autonomous vehicles, ride-sharing,  
and mass transit 

    X     X Economic utility functions extensively used. 

Pierson and Sterman  
 (2013) 

Deregulation and aircraft purchase 
 cyclicality 

      X    Integrates yield management. 

Thompson et al. (2015) Polio eradication X X X X   X X   Summarizes a series of articles. Incorporates game theory, linear programming,  
decision analysis, and inventory models. 

Se
ns

iti
vi

ty
 

A
na

ly
sis

 
Sc

en
ar

io
 

A
na

ly
sis

 

In
te

gr
at

io
n 

w
ith

 
Tr

ad
iti

on
al

 O
M

/O
R 

Fl
ig

ht
 S

im
ul

at
or

s 

Sp
an

s 
D

isc
ip

lin
e 

Si
lo

s 

G
ro

up
 M

od
el

 
Bu

ild
in

g 

Tr
aj

ec
to

ry
 

A
na

ly
sis

 
D

yn
am

ic
 N

um
er

ic
al

 
O

pt
im

iz
at

io
n 

Ca
lib

ra
tio

n 
A

ga
in

st 
Ti

m
e 

Se
rie

s D
at

a 

M
on

te
 C

ar
lo

 S
im

s 



 60 

Another challenge is the dearth of research on integrating SD with other OM modeling 

techniques, whether mathematical programming, queuing, or otherwise. Table 10 identifies some 

exemplars that have addressed this issue. Other than those exemplars, however, few papers have 

investigated this area. As a result, this represents an important area for future research. Ghaffarzadegan 

and Larson (2018) and Anderson (2019) have outlined several potential paths of inquiry. One possibility is 

to build on the SD model of Homer (1999) for managing service capacity, which solves an optimal 

assignment problem for each time period. Additional building blocks for this area include articles by 

various authors in the book edited by Rahmandad et al. (2015). Among other things, the chapters by 

various authors address the use of Markov chains, decision analysis, optimization, and game theory. A 

related issue that shows up repeatedly in our survey is the last-mile problem. Formulations from 

operations management exist that can approximate the mileage at an aggregate delivery level for a fleet 

of vehicles traveling within a geographic location (Figliozzi, 2009). 

The topic of trajectories between the current and desired states is also a natural opportunity for 

system dynamics research (Moxnes and Davidsen, 2016). A particularly fruitful area to concentrate on is 

not only optimal trajectories between current and desired states, but also whether path-dependence 

precludes such a trajectory to that desired state. If that is the case, the question arises: What would be a 

useful path of inquiry, particularly when system dynamics models integrated with traditional operations 

management methods are employed? While this is implicitly discussed in some articles in our sample, 

explicit discussion is very sparse. One exemplar is Naumov et al. (2020). 

Based on these findings, we propose building on the Besiou and Van Wassenhove (2015) 

framework for addressing OM problems in public policy, as shown in Figure 1.4 below. 

 

Figure 1.4: SD Modeling Process for Operations in Public Policy Contexts 
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The major addition to their framework is a feedback loop on the left side of the model at the 

“systems level” to build consensus: convening stakeholders, gathering extant data at hand, and building 

small system dynamics models using a group modeling process. The goal is to facilitate stakeholder 

consensus on a systems-level approximation of what an operational solution might look like. We propose 

that in practice this feedback loop be pursued for several cycles before moving on to the detailed 

“operational level” on the right-hand side. Within the operational loop, more detailed operations planning 

models can be developed using traditional OM techniques such as mathematical programming or, 

alternately, by expanding the SD model appropriately to obtain an operational solution (or set of 

solutions). The potential solutions are then tested for robustness against the systems-level model, and 

additional data is gathered as needed. Every few cycles of the loop at the operational level, the proposed 

implementation should be fed back to the stakeholders at the systems level to gather input and maintain 

consensus. Flight simulators can be employed where appropriate. After a few more iterations between 

the two levels, the solution is implemented, and appropriate effectiveness metrics are gathered. These 

metrics should then be incorporated at the operational level to adjust the solutions to improve 

effectiveness and, from time to time, at the systems level to receive input and maintain consensus.   

On the domain side, studying spillovers among public policy research clusters is a rich area for 

future research. The electric vehicle fast-charging stations problem, used as a motivating example earlier 

in the article, spans multiple areas: transportation and logistics, energy, and new business models. In 

another area—conflict, defense, and security—insurgency suppression involves questions that go beyond 

the purely military in nature, because insurgencies destroy infrastructure and food supplies, which in turn 

contribute to weakening a population with respect to disease. On the opposite side, military conflicts 

often hinder humanitarian operations in the area and endanger nearby personnel. 

Finally, several opportunities for research emerge from recent global disruptions, including 

international trade disputes and the COVID-19 pandemic, that have laid bare the fragility of global supply 

chains. Research into bolstering these supply chains with policy initiatives (e.g., U.S. President Biden’s 

“Infrastructure Investment and Jobs Act” initiative to increase infrastructure resiliency) is a fruitful and 

necessary area for exploration by researchers leveraging system dynamics. However, there is currently 

little, if any, SD research addressing these areas outside of supply chains directly related to medical 

devices and supplies. Some starting points do exist, and they could be built on. Coping with smaller-scale 

supply chain fragility occurs in articles in three clusters of our sample: humanitarian operations; 

healthcare operations management; and conflict, defense, and security. Some policy efforts emphasize 

near-sourcing. For example, the U.S. CHIPS Act of 2022 subsidizes firms building semiconductor capacity 
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in the United States with the aim of reducing reliance on manufacturers located in Asia. Twenty years ago, 

some SD modeling research touched on the consequences of offshoring manufacturing, which included a 

hollowing out of nations’ strategic manufacturing competencies (e.g., Anderson et al., 2000). In addition, 

Akkermans et al. (1999) developed an extensive set of causal loop diagrams around international 

outsourcing that included the impact of customs and regulations policies. Another potential building block 

comes from Joglekar and Phadnis (2020) and Phadnis and Joglekar (2021) which propose to expand 

scenario planning to cope with policy disruptions by including suppliers in the planning process, which is 

a natural fit for SD. 

To conclude, we believe this survey describes how system dynamics can provide a powerful lens 

for studying policy issues in supply chain and operations management. Further, this work is intended as a 

roadmap for all researchers who might profit from using SD to address public policy problems, whether 

they have used SD before or are interested in trying it for the first time.  
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Chapter 2 
 

Leveraging Value Creation To Drive the 
Growth of B2B Platforms 

 
 
Business platforms have become widespread in Business to Consumer (B2C) markets and their adoption 
is on the rise in the business to business (B2B) world. However, our understanding of platform adoption 
in B2B is less developed than for B2C. In the few cases where B2B platforms have been explicitly examined, 
it is often assumed that they can be understood using principles developed from the study of B2C 
platforms. However, the two types of platforms have important differences that often require different 
managerial policies to be successful. B2B supply chains are much more complex because of multiple 
echelons, the sophistication of their purchasing and other organizations, the competition they face, and 
the value of their data. The result is that, among other things, the nature of their value exchange is likely 
different. To address this gap, we create a novel framework. The value creation lens is grounded in theory 
and creates a better understanding of the dynamics of platform creation and growth by separating the 
platform’s value into three components: (1) the standalone value of the product, such as a smartphone’s 
ability to take pictures, (2) the value of other participants on the platform, such as the number of friends 
on Instagram or merchants on eBay, and (3) the value created by complementary products from 3rd-party 
providers, such as apps for a smartphone. A dynamic perspective explores the trajectory of differences in 
value between B2B and B2C platforms along with managerial implications. 
 
Keywords: Platforms; Two-sided Markets; Business to Business; Business to Consumer; Value Creation; 
Launch; Scale 

2.1 Introduction 
 

Our goal in this paper is to explore an important emerging area, business to business (B2B) platforms, 

that we expect will be of substantial interest to production and operations management scholars. B2B 

platforms can be viewed as both standalone technological systems as well as business platforms that are 

designed to create and capture value from network effects. We have seen an explosion of investment in 

this area ranging from industrial internet of things technology (IIoT), agricultural technology, multi-model 

logistics tracking systems, medical system ecosystems, and much more.1  Our work draws from and seeks 

to join elements of the information systems and operations management literatures that have for decades 

 
1 See for example, PTC, Siemens Mindsphere, John Deere’s MyJohnDeere, Project44, GE Healthcare & Siemens 
Healthineers. 
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proceeded largely in parallel. In recent years, however, these fields are coming closer together, and it is 

gratifying to note that the Production and Operations Management (POM) journal now has multiple 

departments that explicitly cross the two fields. This should come as no surprise; POM has deliberately 

positioned itself to be an outlet to report on the study of operations management spanning a wide range 

of phenomena, methods, and applications over its now thirty-year history.  

As an example of the convergence of POM and information systems research, platforms have 

emerged as a new type of supply chain relationship to deliver value. They have long existed in local forms 

such as medieval marketplaces and in narrow form, such as the spot markets that help to mitigate last 

minute supply and demand imbalances. However, advances in information and communications 

technology (ICT) and the digital transformation seen in many industries is broadening the application of 

platforms in supply chains. This can be clearly seen in business-to-consumer (B2C) relationships in which 

a consumer does not have to buy products from a department store that holds its own inventory. Instead, 

consumers can buy from a market platform such as eBay or Amazon Marketplace, both of which allow 

browsing among hundreds of “shop fronts.” Consumers can also use platforms to bypass retail stores to 

buy directly from manufacturers, potentially on different continents. These alternate retail arrangements 

have been widely studied, particularly in the IS literature as the supply chains are straightforward.  

Now, however, platforms are moving into the B2B arena as well. As case studies and media coverage 

continue to showcase the great successes of platforms in the B2C world, firms that serve other business 

customers in healthcare, manufacturing, and other industries are frequently asking whether the 

revolutionary successes of B2C platform-based supply chains might be replicated in their own markets. 

Might B2B platforms improve their profits through enhanced value delivery to customers? Should they 

sell to other supply chain echelons, or should they trade within their echelon? Should companies start 

their own platforms or join consortia to create joint platforms? 

Platforms have been widely studied, through both a theoretical and empirical lens. However, we 

believe that academic theory treating B2B platforms lags industry and practice. Part of the reason is that 

extant data and theory on network platforms derive primarily from B2C settings, but B2B platforms differ 

in several ways from B2C platforms. Their supply chains are much more complex because of multiple 

echelons, the complexity of orders, and in many cases the type of value exchange (e.g., intermediate parts 

assemblies) being traded. For example, one echelon of a supply chain may have a traditional “pipe” one-

to-one relationship, but the next echelon upstream may have a platform structure. As another example, 

establishing standards between echelons connected by a platform may be difficult because of the need 

for common digital and physical standards. Another difference is that many B2C platforms capture value 
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in part through the acquisition and aggregation of customer data, which is then sold to third parties such 

as advertisers (Anthes, 2015). Business customers, however, are much more protective of their data for 

purposes of security and competitive advantage (Cusumano et al., 2019) although they may trade pre-

competitive data within an echelon. Bargaining power between businesses and consumers in platforms 

primarily favors businesses but bargaining power between supplier and consumer in a B2B relationship 

can vary markedly. Because of these and other differences, current theory guiding the design, economics, 

and deployment may lead to different outcomes in B2B settings. That said, many, if not most, of these 

complexities involve supply chain and operations management. Hence, the POM community has much to 

say about these types of supply chain issues. As a result, we believe that POM scholars need to become 

partners with IS scholars to make fundamental progress in our understanding of B2B platforms as 

specialized supply chain arrangements. 

To begin to answer the strategic and operational questions raised by employing platforms within 

supply chains, we begin by examining in more detail where B2B and B2C platforms overlap and where 

they differ. To this end, we develop and apply a framework based on how the platform impacts the 

exchange of value between supply chain members. We leverage prior research in information economics 

such as Parker and Van Alstyne (2018) and then apply supply chain and operations principles to create a 

novel framework, the “value creation lens.” It separates the value created by a platform for its customers 

into three components: standalone value, same-side value, and cross-side value. The “standalone value” 

of the platform benefits the firm in some manner absent any externalities. It is generally POM-related but 

does not directly affect the nature of the supply chain linkage other than facilitating the extant linkage’s 

execution. For example, one of the platforms in our data set uses an airline’s maintenance data to create 

improved preventive maintenance schedules, hence improving availability and expediting delivery of 

replacement parts. The second is the “same-side value,” that is the value of other participants on the 

same “side” of the platform. For example, the same platform just described could aggregate data among 

airlines. This would have the benefit of creating even better preventive maintenance schedules than it 

could utilizing only one firm’s data. Moreover, this is a type of externality because the more airlines that 

participate, the better the recommended schedules will be. Importantly, the value exchanged is between 

firms in the same supply chain echelon, creating a lateral rather than upstream or downstream linkage. 

The third “cross-side” value is the value to participants of third-party providers on the other side of the 

market. For the airline maintenance platform, airlines would benefit from having more suppliers to buy 

replacement components from or analytics providers who could use airline data to deliver services to the 

airlines. This is another externality. All other things equal, the more suppliers, the more cross-side value 
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to the airlines. The reverse is also true. The more airlines participating on the platform, the greater the 

cross-side value to the suppliers. Importantly, the value users receive from each of the three components 

is almost certain to change over time. For example, the relative value of each of the three bins in a startup 

may change greatly as it launches, grows, and then becomes a mature firm.  

The use of this framework on a dataset describing 79 B2B platforms generates novel, interesting, and 

important insights into the differences that separate B2B from B2C platforms.  

Among these insights are, relative to B2C platforms, B2B platforms are more likely to: 

● Launch with standalone value. 

● Launch with no same-side value. 

● Focus on one specific industry. 

● Change the mix of their platform investment over time, offering more cross-side value, and in pre-

competitive areas, same-side value. 

We also expect, although do not observe directly in the data, that B2B platforms will (1) need to offer 

compensation to participants for aggregated data and (2) require backing by industry consortia to 

succeed. 

Finally, we craft formal hypotheses based on these insights to serve as the foundation for a proposed 

agenda for future researchers. We believe that there is a need for understanding the dynamics of platform 

investment in the B2B space through (a) formal dynamic modeling and (b) longitudinal empirical studies. 

Our work is organized as follows: Section 2.2 reviews the developing literature on B2B platforms. 

Section 2.3 adapts a new framework for analyzing value creation in these settings. Section 2.4 shows the 

benefits of using this framework by applying it to a dataset of B2B startup platforms. Section 2.5 presents 

hypotheses for differences revealed by applying the framework to B2B platforms in general, particularly 

those that impact dynamic behavior over time. Finally, Section 2.6 concludes with potential implications 

for management and an agenda for future research. 

2.2 Motivation and Prior Literature 
A comprehensive view of the platform literature is well beyond the scope of this essay. However, to 

give a quick definition, we refer to (Eisenmann et al., 2011) who provide the following description: “In 

traditional manufacturing industries that rely on long-linked technologies (Thomson, 1967), bilateral 

exchanges follow a linear path as vendors purchase inputs, transform them, and sell output. By contrast, 

platform exchanges have a triangular structure. Users transact with each other, and they simultaneously 

affiliate with platform providers.” 
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For a more in-depth treatment, there are a number of surveys that can serve as points of departure 

for readers not already familiar with the field, including Gawer (2014), Parker et al. (2016),  Jacobides et 

al. (2018), and Kretschmer et al. (2022). To bound our review, we focus more narrowly on the academic 

literature that treats the B2B sector. To date, coverage of B2B platforms is sparse as compared to B2C 

platforms but appears to be growing. 

In the POM journal, we see several related research threads. Early on, there were papers that explored 

B2B enterprise resource planning (ERP) systems. These are an important category since successful 

deployments rely so heavily on external partners. For example, SAP is a major ERP vendor that has 

hundreds of thousands of external developers who deploy their systems as well as build customized 

solutions on top of their platform (Iansiti and Lakhani, 2009). Earlier POM researchers focused on the 

adoption and impact decisions that lead naturally to a broader discussion of platforms that explicitly 

coordinate external ecosystem partners. For example, (McAfee, 2002) analyzed a natural experiment and 

showed that firms that implemented ERP systems improved on critical operational metrics such as lead-

times and on time delivery percentages.  Stratman (2007) explored the adoption of ERP and found that 

those firms that made investments to improve internal operations gained more benefits from their ERP 

investments than firms that hoped for improvements in external supply chain performance.  A paper from 

Buhman, Kekre, and Singhal (2005) calls for research that we believe aligns with our view of the role of 

B2B systems and their evolution to platforms:  “The proposed operations management research focus is 

one that embraces a more holistic view of an “extended enterprise” which involves working with a new 

business model —the organization as a network. This methodology starts by treating the organization as 

a system that is enabled by information technology and is characterized by ubiquitous information sharing 

across traditional enterprise.” 

Another thread of POM research addresses B2B business in the context of auctions. For example, 

Mithas and Jones (2007) explore the use of reverse auctions in B2B procurement systems. They find novel 

results that are directly relevant to our discussions here. Specifically, they note that “Although we found 

some similarities in empirical findings across the B2B and B2C contexts, we note that some of the empirical 

regularities observed in the B2C context do not extend to the B2B context. For example, we find that bid 

decrement and auction duration have no effect on buyer surplus in the B2B context.” 

A more recent thread of POM research addresses platforms directly by analyzing some of their critical 

operational decisions. For example Bhargava, Kim, and Sun (2013) model the launch timing and version 

decisions platforms must make. Anderson and Parker (2013) model the decision for a firm to enter a 

market in which complementary technologies exhibit strong learning effects and the trade-off between 
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spreading investment across multiple possible solutions or concentrating on one solution. More recently, 

Guha and Kumar (2018) focus on the critical emerging area of the use of “big data” in operations, 

information systems, and healthcare. Anderson et al. (2022a) is a rare example treating physical platform 

relationships. The authors examine the role of 3rd party complementors in the battery electric vehicle 

industry, such as fast-charging stations and modular product designs.  

The majority of current B2B platform research has focused on classifying startup platforms in the B2B 

sector. Many of these have examined companies in the German Mittelstand (small and medium 

manufacturing companies). Examples of different classification schemes of varying complexity abound, 

though most have focused on data gathered through interviews, in the very early launch stages 

(Abendroth et al., 2021; Berger, 2018; de la Boulaye et al., 2019; Kraft et al., 2021). Berger (2018) looks at 

the growth and evolution of B2B marketplace business models and identifies four different business 

strategies that have emerged: “one-stop shop”, distribution channel extension,” “procurement network”, 

and “business model transformation.” These authors offer their perspective that the share of B2B 

commerce in Germany will continue to grow rapidly, if unevenly distributed among different sectors, and 

predict that the first areas to develop will be in the manufacturing and automotive industries.  

Other classifications and taxonomies have been presented, including de la Boulaye et al. (2019) who 

look at the potential impacts of online marketplaces on indirect procurement. They identify four types of 

marketplaces; product focused marketplaces (e.g., for office supplies, equipment), time and materials 

marketplaces (e.g., for freight services, travel, IT); scope of work marketplaces (e.g., for services such as 

marketing, telecommunications, utilities); and corporate spinoff marketplaces (e.g., formerly captive 

platforms that companies developed for their own supply networks). Kraft et al. (2021) look at new 

business models in Industry 4.0. Their classification includes Digital Refinements of Products and Services; 

Intelligent and Connected Operation and Production (Smart Factory); New Business Models through 

Connected and Intelligent Products and Services; and New Business Models through Intelligent 

Networking of Market Players in a Business Ecosystem. Though useful, these different classifications are 

not grounded in theory, and can be prone to ambiguities, because the different states are not mutually 

exclusive and collectively exhaustive (MECE). 

The literature that looks at ecosystem complementors, and B2B platform competition is even sparser. 

(Hein et al., 2019) analyze B2B platform co-creation practices via case studies in the IoT platforms and find 

that B2B platforms cannot rely on 3rd party developers for value creation as much as B2C platforms can. 

Instead, they focus on the integration of complementary assets to encourage the supply side, platform 

readiness for the demand side, and servitization through application enablement to connect supply and 
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demand.  Pauli et al. (2020) instead focus on understanding the drivers of complementor adoption in 

early-stage ecosystems. While they argue that complementors are a key source of advantage for platform 

business models, their findings show that in the early stages, few complementors are really offering 

solutions that take advantage of the platform business model, and instead are mostly focused on 

customized solutions. They highlight the importance of the existing relationship between a platform 

sponsor and a potential in the adoption decision. 

In one of the largest case studies published, Koenen and Heckler (2020) look at 79 different B2B 

platforms developed and offered by German companies, as commissioned by the Bundesverband der 

Deutschen Industrie (BDI) (author translation - The German Federal Association of German Industry).2 

They identify that no dominant position of individual platforms can be identified, but that there is 

competition between platforms with similar offers, and between platforms and more traditional offerings. 

They note that platforms in the industrial environment are often highly specialized in specific, narrowly 

defined fields of application or industries. On B2B platforms, there is significantly less asymmetry between 

platform operators and platform users. Thus, users of B2B platforms can negotiate customer-specific 

contracts with the platform’s operators. Operators of B2B platforms are strongly focused on providing 

platform users with solutions tailored to the needs of individual users. 

Koenen and Heckler (2020) first classify the B2B platforms into 2 categories: data-centric platforms, 

and transaction-centric platforms. Data-centric platforms are subdivided into Industrial IoT (IIoT) 

platforms (dealing with preventive maintenance, process optimization, big data analytics) and Data 

(transaction) platforms: focused on business processes, product data, and cloud. Transaction-centric 

platforms are subdivided into Marketplaces, Retail and Manufacturing platforms (such as those dealing 

with Agile Manufacturing or focused on retail and marketplaces); Supply Chain Management and Logistics 

Platforms (for example in transportation management), and Networking Platforms (for cross company 

collaboration). 

On the other end of the spectrum, in terms of classification complexity, Abendroth and co-authors 

(2021) set out to identify a new taxonomy for describing B2B co-creation platforms. They identify three 

essential distinguishing properties, which they label: value creation, platform architecture, and actor 

ecosystem. Ultimately though, they further subdivide each into 17 dimensions, and further break those 

down into 71 different categories. They then use the BDI database to code for descriptions. Although 

ultimately complex and allowing for differentiation, the fact that most B2B platforms studied are at early 

 
2 https://dih.telekom.net/wp-content/uploads/2019/10/2020-07-German-Digital-B2B-Platforms.pdf 
 

https://dih.telekom.net/wp-content/uploads/2019/10/2020-07-German-Digital-B2B-Platforms.pdf
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stages of launch complicates matters, as the classification scheme ultimately codes most of the data into 

catch-all buckets. Other authors have focused on the tradeoffs between “horizontal” and “vertical” 

approaches to integration (Schermuly et al., 2019), or understanding the attractiveness for 

complementors to join an existing platform (Pauli et al., 2020), but have done so in narrow case studies 

in the Industrial Internet of Things (IIOT) settings. 

As we hope the complexity of our description of the literature above demonstrates, we believe there 

is a need for a unifying theoretical framework to organize the different classifications. 

2.3 The Need for a New Lens 
The classifications described above have significant merits and the authors have done valuable work 

to open a new literature. However, we find the classifications to be either too general and thus 

ambiguous, or too specific, and thus difficult to generalize into insights that can guide managerial actions. 

For example, take the case of a “Data Transaction Platform” that can be both “Data Centric” and 

“Transaction Centric.” This raises the questions of when is a platform a marketplace versus a data-

marketplace? What happens to a transaction platform that also sells aggregate data? These overlaps can 

be difficult to parse.  

Our goal is to extend these efforts by developing a classification/clustering method that is grounded 

in theory and builds from primitives. We will also connect the way that value is created to specific supply 

chain linkages. An additional point is that the existing classifications are static rather than dynamic 

(Anderson et al., 2022b). That is, the schemes mostly rely on a snapshot of the firm today, and then 

categorize it.  We think there is an opportunity to identify potential future paths for the industry through 

a dynamic approach. 

As we have seen above, most of the extant academic literature in the B2B space has looked at data 

sets that include platforms/companies that are at an early stage in their development. This presents a 

two-fold problem. On one hand, there are selection and survivorship biases limiting the availability of 

companies that can be studied, the data that can be gathered, and the conclusions that can be drawn. As 

such, the space has been dominated by IIoT and Industry 4.0 companies, with their narrower 

characteristics of how platforms operate. On the other, it’s more difficult to consider alternative scenarios 

for how the growth paths will unfold. 

Schermuly et al. (2019) distinguish between two previous streams of research that, they argue, take 

on different perspectives: a market-oriented perspective, where the platform is mainly an intermediary 

between two or more sides in a market, and a technology-oriented perspective that studies platform 
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architectures and the firm’s capabilities to facilitate value co-creation and promote innovation. Their use 

of “platforms” combines both perspectives. This is consistent with a broader framework that we propose, 

that looks at the sources of value creation and that has been used to understand B2C platforms and the 

demand side economies of scale that can be created via network effects (Parker et al., 2016). 

2.3.1 The Value Creation Lens 
By taking again a broad view of platforms as intermediaries in matching markets, we offer a rich, 

dynamic perspective that includes feedback and can leverage a mapping of the system structure to infer 

behavior. Formally, we can consider platforms as businesses based on enabling value-creating interactions 

between external producers and consumers by providing the open infrastructure and setting the 

governance conditions  (Parker et al., 2017). Their aim is to attract and efficiently connect two different 

sides of the market (e.g., supply and demand; sellers and their buyers; developers and their customers; 

providers and their clients). The platform sponsor is often a third  party that sets the governance structure 

(rules for trading) and collects a fee for facilitating these matches and enabling transactions (Eisenmann 

et al., 2009). Ultimately users on either side of the market (complementors and consumers) can derive 

value through any of three distinct reinforcing feedback loops that connect the ecosystem. 

This Value Creation Framework separates the total value for users on either side of the ecosystem 

into 3 components: stand-alone value, same-side value, and cross-side value. 

 

𝑈𝑠𝑒𝑟	𝑉𝑎𝑙𝑢𝑒 ∶= 𝑉!" + 𝑉!! + 𝑉#!	 

 

The first component is the “standalone value” of the platform absent any network effects. For 

example, a smartphone’s standalone value is its use as a telephone, its ability to text, and its camera. 

None of this value depends on any other participants on the platform. The second is the “same-side 

value,” that is the value of other participants on the same “side” of the platform. For example, social 

networks such as Facebook create value to participants primarily by connecting them with other 

participants like themselves, i.e., their “friends.” The third “cross-side” value is the value to participants 

of third-party providers on the other side of the market. For a smartphone, owners derive much of their 

value from the 3rd-party providers of applications (apps). 

The following figures will help to illustrate some of the complexity of B2B platforms and their multiple 

echelons. We focus first on standalone value that a typical linear supply chain structure delivers. 
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Figure 2.1.1: Standard structure with SA value delivered by linear value chains serving an end consumer 
 

 
The figure above depicts a traditional linear value chain (pipeline supply chain). 

 
Figure 2.1.2: B2B platform CS value serving downstream linear value chains that serve an end consumer 

 

 
In the figure above, upstream supply chain value is created by ecosystem 
partners that work across a platform, e.g., a marketplace. 

 
Figure 2.1.3: B2B platform with SS value serving downstream linear value chains that serve an end consumer 

 

 
In the figure above, upstream supply chain value is created by suppliers that 
provide same-side value to one another through their affiliation with a platform.  
That value then gets transmitted through additional supply chain echelons until 
it reaches an end consumer. 
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Importantly, the values of each of the three value components may change over time. For example, 

the relative value of each of the three bins may be very different for a startup than when it becomes a 

mature firm. Importantly, this framework also allows for insights into the differences that separate B2B 

from B2C platforms. An illustration is provided in Figure 2.2 below. Note that the externalities depicted in 

the loops above can be positive (here labeled as reinforcing loops), or negative (here labeled as balancing 

loops). 

 

Figure 2.2: Main feedback effects that drive platform growth and attractiveness 
 

 
Note that, in the figure above, all network effects and externalities can be positive or negative 

 

A graphical way to represent the value of a platform at any given time is by using a “radar chart,” as 

shown in Figure 3. Each of the three axes in the chart represent the degree of each of the three types of 

value creation that a platform might offer. As an example, Figure 2.3 presents a radar graph of an example 

platform, which we will call PlatCo. From the diagram, we can see that PlatCo provides a great deal of 

cross-side value to the consumer. It also provides a moderately high standalone value. However, its same-

side value is minimal. Hence, its value bundle is very much weighted towards the cross-side value provided 

by participants on the other side of the market. 
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Figure 2.3: Radar Chart Depiction of a Platform’s Value Components for PlatCo 
 

 

Here “cross-side” value refers to the value of one additional user on the “other side of the platform.” 

To illustrate this, consider a stock of Complementors (potential sellers, or 3rd party developers on the 

platform), and a stock of Consumers (potential buyers on the platform). All else equal, more suppliers will 

join the platform if the perceived Value for Complementors increases. Refer to Figure 2 and assume that 

the system is in equilibrium (where the stocks of Complementors and Consumers are constant), and then 

suppose an external shock that, for example, drives up this perceived Value for Suppliers. Now, the 

complementor Adoption Rate will go up, and this will result in an increase in the Complementors stock 

(the number of suppliers currently available to sell on the platform). Next, from the point of view of 

potential consumers, having additional suppliers on the platform increases the perceived Value for 

Consumers (as it increases the probability of a match). This increases Adoption by Consumers, which will 

result in an increase in the Consumers stock. That is: from the point of view of a supplier, it is generally 

positive to have additional consumers (or potential product adopters) on the platform, and from the point 

of view of the consumer, it is generally positive to have additional suppliers on the platform (or potential 

sellers). This is reinforcing loop R1. 

We can follow a similar reasoning, to derive the  “same-side” value, and note that these externalities 

can be both positive (as is reinforcing loop R4), where the marginal value for a consumer of having one 

additional buyer join the platform can be positive if user generated content such as recommendation or 

reputation building mechanisms can reduce serve to reduce search costs, or negative (as is balancing loop 

B1), where the marginal value for a supplier of having one additional seller on the platform is reduced 

through additional competitive pressures. 

Same-Side Value Cross-Side Value

Standalone Value
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And lastly, we can consider the cases where platform sponsors can choose to reinvest some of the 

revenue generated in developing extra features on the platform that will increase attractiveness for one 

(or both) side(s) of the market. These are reinforcing loops R2, and R3. Overall, it is this structure of the 

system that drives the observed behavior of adoption for network platforms. Conventional wisdom, and 

the academic literature will say that it is generally beneficial for complementors (supplier businesses) and 

consumers to join platforms—the larger, the better—because the value to both sides is positive in most 

cases in the B2C world. However, these increasing returns to scale may be harder to achieve in the B2B 

world. 

Importantly, the strength of these main components of a platform’s value creation proposition will 

shift over time, depending on the platform sponsor’s resources, and their growth stage. This is illustrated 

with an example below. As described earlier, not only may the three sources of value change in absolute 

terms over time, but the relative value of each might also change. For example, PlatCo as shown in Figure 

3 is a mature platform. In comparison, consider Figure 4 below, which depicts PlatCo when it was a startup. 

Note that it provides less value along all three dimensions than as a mature firm. What is even more 

important, however, is that the relative contribution of those values is dramatically different. As a startup, 

Figure 4 shows that Platco provided primarily standalone value and very little in the way of cross-side or 

same-side value. Only over time, once it had achieved traction presumably, did it begin to invest in 

creating cross-side value. 

  



 94 

Figure 2.4: Radar Chart Depiction of PlatCo as a Startup 
 

  

2.4 An Application to Data 
To show the potential usefulness of the Value Creation Framework described above, we apply it to 

the BDI database (Koenen and Heckler, 2020) as this is one of the most complete resources to be found 

in the literature. Through detailed interviews, the BDI database’s researchers categorized the emerging 

B2B platforms of 79 companies into 5 distinct categories. They concluded that, for the B2B platforms in 

their sample, no dominant position of individual platforms could be identified. Rather, they identified 

extensive competition between platforms with similar offers, and between platforms and traditional non-

platform-based solutions. 

We conducted two independent classifications on their dataset, identifying the main sources of value 

creation for each of the 79 case studies in the sample. We also identify cases where the platform is 

industry specific, vs open, and where the sponsor is a participant (which can be important for trust and 

adoption in the B2B setting). Gwet’s test for inter-rater reliability, shows a degree of agreement of 83% 

between our independent coding, which increases confidence in the classifications (Gwet, 2014). 

Table 2.1 below, shows a summary of their classification scheme, and highlights some of the reasons 

that drive the conclusions that B2B platforms are highly specialized in specific, narrow fields of application 

(Koenen and Heckler, 2020). 
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Table 2.1: Application of The Value Creation Lens 

 
 

Table 2.2 below, takes a different tack and summarizes the number of platforms that create 

value through a “pure-play” that does not involve offering other types of value.  

 
Table 2.2: Pure-Play Platforms in our Sample 
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Standalone Value 

Examining Tables 2.1 and 2.2, a great majority of platforms (72%) create standalone value. On the 

other hand, Table 3 reveals that only a minority deliver only standalone value without any externality-

driven value (23%). Hence, half of the platforms in the sample are in effect externality platforms 

buttressed by standalone value. On the other hand, if one examines the digital platform firms in the top 

100 firms by market capitalization, the pattern is substantially different.3 For example, Alphabet now has 

Google Suite which drives substantial same-side value through collaboration tools, but that is recent 

relative to their search offering that was dominant for years. Alphabet’s appeal to consumers derived 

from its investment in search and its revenue growth was primarily dependent on cross-side externalities 

through advertising. Microsoft, Apple, Amazon, and Tencent relied on standalone value during their 

growth, but there was always a network component to their growth. Oracle is an exception, but it does 

not face consumers and has also relied to a certain extent on externalities. In contrast, Salesforce relied 

mostly on standalone value for its launch and initial growth and only after it had gained significant market 

traction did it open up to developers to build on top.  

 

Cross-side Value 

Many platforms in the sample create cross-side value (72%). However, they generally do so in 

conjunction with also creating some other sort of value, generally same-side value. 

 

Same-side Value 

Relative to the number of platforms creating standalone value (72%) and cross-side value (72%), those 

creating same-side value represent only a small percentage of the sample (14%). One might expect more 

given that Meta, Apple, Microsoft, and Adobe relied strongly on same-side value creation. Amazon, 

Alphabet, and Netflix also relied on same-side value via a customer review system, albeit to a lesser 

extent. 

 

Industry Specificity 

Half of these platforms are targeted towards use by a single industry such as aviation, 3D-printing 

(additive manufacturing), or even wood-products. This also stands in contrast to the large B2C players 

who, with potentially exception of Netflix, are agnostic with respect to consumer demographic. 

 
3 https://www.platformeconomy.com/blog/wert-der-top-100-plattformen-steigt-auf-15-5-billionen-dollar  

https://www.platformeconomy.com/blog/wert-der-top-100-plattformen-steigt-auf-15-5-billionen-dollar
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Potential Causes 

What explains the different investments in value between the BDI sample and the top-100 platforms 

just discussed? Of the top-100 platforms? The key may be that the only ones that heavily relied on 

standalone value only for growth–Oracle and Salesforce–were not consumer facing. The others relied 

heavily, if not exclusively, on consumers for their growth. So, having business as customers versus 

consumers seems to be different. 

2.5 Hypotheses 
There are several differences between B2C and B2B that drive the observations in Section 4. We now 

explore these in detail and create formal hypotheses to summarize our understanding and make 

predictions. First, we need to make an important distinction. Businesses differ from consumers along 

many dimensions including operations, organizational structure, and the intensity of the competition they 

face. Hence, the nature of their supply chain links with suppliers also differs.  Some businesses, such as 

home remodeling contractors relate to their suppliers such as Home Depot much like consumers. Others, 

like Volkswagen’s relationship to Robert Bosch or American Airlines’ relationship with Boeing are very 

different. These different supply chain relationships are reflected in their platform structures. The trade 

press distinguishes between “B2b” and “B2B” to capture these differences. B2b platforms and supply 

chains closely resemble B2C. On the other hand, B2B platforms are very different. However, this is not a 

binary difference, but rather platforms exist along a continuum as shown in Figure 2.5. 

 

Figure 2.5: Business to Business Platforms, From Big “B2B” to “B2b” 
 

 
 

Platforms closer to the “B2B” end of the axis above have participants on both the supplier and customer 
sides of their platform with more complex operations, more sophisticated organizations, and more intense 
competition than “B2b” platforms’ customers, whose characteristics are similar to those of consumers in a 
“B2C” context.  
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With this in mind, we next examine the differences between B2B and B2C, such as difficulty in 

achieving scale and weaker network effects. The result is that managerial approaches that have been 

successful in a B2C context—gaining rapid scale, building network effects, leveraging lock-in—will be less 

effective in B2B, requiring different value creation strategies.  

2.5.1 Operational Complexity  
As noted above, businesses as customers are fundamentally different from consumers. Businesses 

are inherently much more complex in their requirements for functionality than are consumers, even 

internal to the “organization.” This can easily be seen in the IIoT sector. The complexity of, for example, 

determining the optimal patterns for predictive and preventive maintenance or coordinating the 

production of equipment in a factory with perhaps hundreds of machines or fleets of airlines with 

hundreds of airplanes is simply not found in a household environment. External to the organization, 

businesses as customers have more complex demands than do individual consumers and much of this 

complexity is supply chain related. For example, an automotive assembly plant needs components 

approximately 3000-5000 suppliers to build a car, and if any of those components arrive more than a 

couple of hours late, the lack of parts will shut the plant down. Contrast this with a consumer’s 

transactions on Amazon, in which there may a few size or color options for a product and 3-4 shipping 

speeds, or with Facebook, where a consumer uploads and reads content. The result is that relationships 

between B2B customers and their suppliers are more intricate in structure than those of a consumer’s 

and require markedly more coordination effort. The logistics to deliver products to and from a business 

must also be managed. Hence, the amount of management attention, computational power, and other 

transaction costs needed to make the organization run is greater than that needed in a consumer context, 

and the value of a platform that can facilitate coordination will be higher.  

 

Hypothesis 1: The greater the complexity of a platforms’ participants’ operations, the more likely a 

platform will create value through standalone functionality. 

2.5.2 Organizational Sophistication  
At the same time, business purchasing organizations are also much more discerning than consumers 

and will be less swayed by external influencers. In addition, purchasing, systems implementation, and 

operations tend to be done by different divisions within an enterprise. Dedicated purchasing organizations 

benefit less from the use of a platform to reduce search costs. They will also be better able to leverage 
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the benefits of Blockchain and similar technologies, which enable smart contracts etc., without need for 

a platform. They also better at costing suppliers’ offerings. Lastly, purchasing cycles are longer. Between 

these factors and operational complexity, direct sales will be relatively more useful in a B2B context than, 

for example, viral marketing. Hence, overall onboarding a business to a platform and supporting it is more 

expensive for the platform both on the sales and on the technical side. It is very far from plug-and-play. 

The net result is that the marginal cost of adding an additional customer to a platform will be very high 

relative to that in a consumer context, in which the marginal cost of participation is essentially zero. It is 

not enough for a platform that its computer scientists to develop an algorithm and have marketing 

specialists target consumer demographics. Industry expertise is required to create value for the customer. 

Industry expertise is also useful from the perspective of the platform’s direct sales force, because they 

will more effectively convince participants to sign on if they understand their business needs. 

That said, firms are markedly differentiated by their particular product and market, so industry 

expertise from one market segment will be of much less value to other segments. Between these two 

forces, high marginal costs and the fragmentation of industry knowledge, the viability of competing for 

an individual industry is higher and platforms can gain an advantage from being industry specific. We 

believe that this accounts for the high proportion of industry-specific firms in our sample.  

 

 Hypothesis 2a: The more complex a platform’s participants’ operations, the more likely a platform is 

industry specific. 

 

Hypothesis 2b: The more sophisticated a platform’s participants’ organization, the more likely a 

platform is industry specific. 

 

As we will see, organizational sophistication has other ramifications as well for B2B, particularly when 

combined with other factors characteristic of B2B platform participants.  

 

2.5.3 Competition  
Unlike consumers, businesses compete with each other. Hence, while participating in a B2B platform, 

the nature of the externalities may differ. For example, there are in general, all other things equal, fewer 

businesses than people. Hence, search costs are lower with respect to finding suppliers, and the value of 

joining a platform for cross-side externalities will be less. This will be particularly true if firms are 



 100 

operationally complex, their needs are differentiated by industry, or their customers’ purchasing 

organizations are more sophisticated. If competition is very high, price visibility and the disclosure of other 

competitive information on a platform may make marginal costs negative at some point. From a platform 

perspective, the benefit of offering cross-side value is less. The implication is that there will be fewer cross-

side only offerings by platforms. 

 

Hypothesis 3a: The more competitive a platform’s participants’ markets, the less likely a platform will 

offer solely cross-side value. 

 

Hypothesis 3b: The more complex a platform’s participants’ operations, the less likely a platform will 

offer solely cross-side value. 

 

Hypothesis 3c: The more sophisticated a platform’s participants’ organization, the less likely a platform 

will offer solely cross-side value. 

 

2.5.4 Data Governance 
Because of competition and regulation, B2B firms are much more sensitive about their data than 

consumers are. The benefits of sharing information with other organizations may be limited and even if 

the data itself is not valuable per se, sharing data may inadvertently reveal operating trade secrets or 

other sources of competitive advantage. Hence, the value of same-side platform participation for 

businesses is likely to be much less than that for consumers. 

 

Hypothesis 4: The more competitive a platform’s participants’ markets, the less likely the platform will 

offer same-side value. 

 

Businesses are more aware of the value of their data in general than are consumers, particularly if 

their organizations are also sophisticated as described earlier. They are aware of the value a platform 

obtains from data-driven learning. Hence, even if they are willing to share information, they will be more 

likely to demand compensation for it from the platforms. 
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Hypothesis 5: The more sophisticated a platform’s participants’ organization, the more likely a platform 

will need to compensate participants if their data is aggregated and sold. 

 

While we did not observe this in our data set, we also expect that over time, these data governance 

issues will create an advantage for those platforms that are sponsored by a consortium of industry 

members because of higher levels of trust. For these reasons, General Motors, Tesla, or Volkswagen may 

try to create their own platforms, but we suspect that they will ultimately fail. Thus, we believe that as 

the platforms in this data set mature, the percentage of surviving platforms that are sponsored by a 

consortium will increase and the percentage sponsored by an individual firm will decrease. 

 

Hypothesis 6: Over time the fraction of platforms in a given market segment that are sponsored by 

industry consortia will increase, and those sponsored by individual firms will decrease. 

 

2.5.5 Dynamics 
Platforms are dynamic systems: they launch in one way but will almost surely adapt over time to offer 

different sources of value to their users. For example, Google is now investing in additional standalone 

value plus same-side value with Google suite. We can also expect B2B platforms to shift the way they 

create value over time as they mature. For example, we’ve seen that the number of potential participants 

on each side of the market is likely limited in many B2Bs. Hence, market penetration on both sides of the 

market must be high to create sufficient cross-side value, and to tap into the reinforcing loops driving user 

adoption. At the same time, the majority of platforms that offer standalone value in our sample is high 

and the platforms that offer cross-side value without standalone value is limited. However, we would 

expect as platforms mature from being startups, they will grow their number of participants by tapping 

into reinforcing loops resulting from externalities. Hence, the potential worth of any platform investment 

in cross-side value to participants should increase, while the cross-side value remains constant. The result 

is that the benefits to investing in creating cross-side value should increase faster than that for same-side 

value, and platforms will invest relatively more in cross-side value and less in standalone value. Hence, we 

would expect that over time B2B platforms’ value propositions will shift from a greater emphasis on 

standalone value to a greater emphasis on cross-side value.   

Data platforms in the sample exhibited cross-side value creation in the BDI startups’ descriptions of 

their value offerings. However, we would also expect that the value of same-side externalities, if it exists, 
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should ramp up over time. One can easily imagine data exchange in pre-competitive areas among 

industries in the same industry becoming more useful as a platform matures past its startup phase. Hence, 

we would expect that over time, the relative value of same-side externalities should either remain zero 

or steadily increase. Hence, investment and offering of same-side value will either remain zero or steadily 

increase as a platform matures. 

 

Hypothesis 7a: B2B platforms will over time offer a mix of value that shifts from standalone value to 

cross-side value. 

 

Hypothesis 7b: B2B platforms will over time offer a mix of value that either (a) never offers same-side 

value or (b) increasingly emphasizes same-side value in precompetitive areas, especially if the platforms 

already offer cross-side value. 

 

Table 2.3 summarizes the hypotheses as well as the differences between B2B and B2C platforms that drive 
them. 
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Table 2.3: Differences between the B2B and B2C Settings 

 Business to Business Platforms Business to Consumer Platforms Hypotheses 

Operational 
Complexity 

• Businesses as customers have more complex 
demands, requiring more institutional expertise and 
sales support. 
• Demand higher reliability (to offset the larger cost 
of potential downtime for the customer). 
• Requires coordination of complex and chain activity, 
which is unforgiving of failures and increases 
transaction costs. 
• Requires integration with other electronic solutions 
and legacy systems in the supply chain. 

• Straightforward purchases on the 
platform requiring little support 
• Support can easily be automated. 

• H1: The greater the complexity of a platforms’ 
participants’ operations, the more likely a platform 
will create value through standalone functionality. 

Organizational 
Sophistication 

• Customers have dedicated purchasing functions that 
are more discerning, focusing more on their own 
analysis of the technical details and costing of an 
offering, resulting in lower search costs. 
• Customers can better leverage Blockchain and 
similar technologies 
• Customers’ sales cycles are longer. 
• Marginal onboarding and support costs for a 
platform to add an additional participant are high. 
• Industry expertise is required to create value for the 
customer and acquire the customer. 
• Industry knowledge is fragmented and non-portable 
between market segments. 

• More opportunities for virality, 
and impulse purchases, affected by 
word-of-mouth and influencers. 
• The marginal cost of serving one 
additional customer is lower, and 
can approach zero. 
• Consumer transaction costs are 
minimal, particularly because of 
price transparency.  
 
 

• H2a: The more complex a platform’s participants’ 
operations, the more likely a platform is industry 
specific. 
• H2b: The more sophisticated a platform’s 
participants’ organization, the more likely a 
platform is industry specific. 
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Competition • Potential customers face strong direct competition 
from other businesses. 
• Overall, there is a smaller number of potential 
participants on either side of the market. 
• Lower search costs lead to lower value of joining a 
matching platform. 
• Price transparency may not be optimal. 
• Marginal benefit for a participant to join a platform 
is low relative to B2C or even negative. 

• Customers are not in direct 
competition with one another. 
• Generally higher number of 
consumer participants. 
• Marginal benefit for a consumer 
to join a platform is high relative to 
B2B, because there is no 
competitive crowding 

• H3a: The more competitive a platform’s 
participants’ markets, the less likely a platform will 
offer solely cross-side value. 
• H3b: The more complex a platform’s participants’ 
operations, the less likely a platform will offer 
solely cross-side value. 
• H3c: The more sophisticated a platform’s 
participants’ organization, the less likely a platform 
will offer solely cross-side value. 

Data 
Governance 

• Stronger privacy concerns, as businesses are more 
aware of the value of their data. 
• Lower benefits of information sharing with 
competing organizations. 
• Trust is highly important. Consortia-sponsored 
platforms are likely to be trusted more than those 
sponsored by individual firms. 

• Customers are less secretive with 
their data, and users will be willing 
to pay with their data. 
• Less sensitive to data storage and 
security concerns. 

• H4: The more competitive a platform’s 
participants’ markets, the less likely a platform will 
offer same-side value 
 •H5: The more sophisticated a platform’s 
participants’ organization, the more likely a 
platform will need to compensate their 
participants if data is aggregated and sold. 
• H6: Over time the fraction of platforms in a given 
market segment that are sponsored by industry 
consortia will increase, and those sponsored by 
individual firms will decrease. 

Dynamics • Cross-side and, especially, same-side offerings 
create less value for participants, raising the 
importance of standalone value. 
• As industry platforms mature overtime, they may 
shift from pure stand-alone plays, to increase their 
cross-side effects. 

• Requires less market penetration 
to be successful. 
 

• H7a: B2B platforms will over time offer a mix of 
value that shifts emphasis from standalone value 
to cross-side value. 
• H7b: B2B platforms will over time offer a mix of 
value that either (a) never offers same-side value 
or (b) increasingly emphasizes same-side value in 
precompetitive areas, especially if the platforms 
already offer cross-side value. 



 

 

2.6 Discussion and Conclusions 
 In this article, we describe a “value creation lens” that brings together elements of both the 

information systems and the production and operations management literatures, which generally have 

proceeded largely in parallel. The framework differentiates platforms by the mix of value they create 

through leveraging same-side externalities, cross-side externalities, and standalone value. We specifically 

choose these “bins” from information economics, instead of others, because of how they differentially 

transform the nature of relationships between supply chain echelons and within the firm. We then apply 

this framework to highlight the differences between business-to-consumer (B2C) platforms and business-

to-business (B2B) platforms. A number of differences, including more complex operations, more 

sophisticated purchasing organizations, more competition, and increased data-governance concerns 

differentiate the two. The result is that many platform strategies that have been successful in business-

to-consumer contexts may not transfer to business-to-business.  

To gain insight, we apply the framework to a sample of 79 business-to-business platforms. Because 

the business-to-business platform industry is more inchoate than business-to-consumers, they are mostly 

earlier in their life cycles. We find that the platforms are more likely to launch with standalone value and 

less likely to launch with same-side value. They tend to focus on one specific industry. 

Finally, we craft formal hypotheses to explain these differences. We also propose two additional 

hypotheses that fall out of the reasoning behind the hypotheses. One is that B2B platforms will 

compensate their participants for aggregating their data and that B2B platforms that are backed by 

consortia will succeed more often than those backed by individual firms. 

The value creation lens affords that investment and ultimately the mix of value offered by a platform 

may change over time as a platform matures. There is some suggestion of this in the descriptions provided 

by the platforms in our sample. Moreover, a number of platforms in the BDI sample primarily focus on 

enabling logistics and inventory management. These platforms are currently not facilitating the creation 

of new matches between firms to create value and thus are essentially providers of standalone value only. 

That said, many of these startups advertise that their improvements come from standardizing information 

flows to improve transparency and coordination. This standardization of interfaces between suppliers will 

reduce the costs for a focal firm to switch from one supplier to another on that platform. Hence, joining 

the platform will become more attractive for new suppliers and ultimately a multi-sided market will result, 

creating cross-side value for the platform to the customer. We note that the opposite trajectory, that of 

a platform like Google offering cross-side or same-side value initially followed later by standalone value 
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such as Google Docs, is much less likely to occur in the business-to-business space, if for no other reason 

than that business-to-business platforms so often launch with standalone value. 

Our work has a number of implications that can guide B2B growth strategies. While traditional B2C 

platforms can use a variety of pull-strategies to attract customers to either side of the market, in an 

attempt to jump start adoption, B2B platforms are likely to be more limited in their options to resolve the 

chicken-egg startup problem. Limited market sizes and the weakened impact of word of mouth on 

adoption decisions reduces virality. In most of the cases that we have studied, B2B platforms leverage 

industry expertise and use their own established supply chains to seed the platform. 

Importantly, heterogeneity in size and bargaining power of the firms that are potential customers can 

shift the balance. Reputation effects of a large customer joining the platform can lead to greater visibility 

and adoption. However, the bargaining power of these large firms may force concessions that could 

ultimately reduce the attractiveness to others. 

Though it seems advantageous to start the platform with an industry sponsor and by bringing in 

established supply chains, there may be unintended consequences that can ultimately limit growth. Trust 

issues, lack of transparency, and self-preferencing when the sponsor is also a platform user, as well as 

data governance, transparency and privacy concerns will be critically important. Additionally, B2B 

platforms serve more niche markets and still rely on some relationship building. The result is that the 

advantages of first movers may be more limited, as they are characterized by more customer stickiness 

and a more fragmented industry. Competition can lead to fragmentation, and it is unlikely that the winner-

take-all outcomes frequently seen in B2C will be as prevalent in the B2B world. 

In practice, we can see evidence that markets are shifting towards platform centric infrastructures as 

digitalization increases. At the same time, the literature on B2B platforms is still nascent. As a result, 

different approaches, from detailed case studies, to leveraging existing theory, to modeling and 

simulation can yield insights. However, there is a need for an overarching grounded framework that 

leverages the current understanding of platforms from B2C settings and characterizes the differences in 

the structure and dynamics of the systems in B2B settings. Another need is a dynamic framework that 

managers can use to identify the reinforcing loops that will drive adoption and growth and intervene to 

make them stronger. We propose that the value creation lens provides a beginning of a research agenda 

to address these issues. 
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Chapter 3 
 

The Hidden Cost of Hidden Fees: 
A Dynamic Analysis of Price Obfuscation in Online Platforms 

 
 
We study the effects of a common price obfuscation tactic, namely “shrouding hidden fees” on consumer 
behavior and platform firm performance. Where traditional economic models of individual firms have 
shown that obfuscation tactics can be profitable for these firms even in repeated interactions, more 
recent work in behavioral operations management has argued that these tactics can be harmful not just 
to consumers but to the firms themselves. We contribute to these studies by explicitly accounting for 
different aspects of platform value creation, to understand the role and incentives of platform firms as 
intermediaries to facilitate the matching process, and by using simulation modeling methods that allow 
us to expand model boundaries, and study appropriate time horizons. We find evidence to suggest that 
building consumer trust through disclosure is a dynamic attribute that may be dominated by worse-before 
better outcomes. The results provide evidence that the platform pricing transparency decisions may 
evolve differently depending on market and industrial context.  
 
Keywords: online platforms, two-sided markets, network effects, pricing, price obfuscation, consumer 
behavioral learning.  
 

3.1 Introduction 
Investment in platforms has exploded in recent years, and both consumers and businesses are 

increasingly engaging with vendors via third party platforms (Parker et al. 2017; Delaboylaye, 2019; Konen 

and Heckler, 2021; Anderson et al. 2022; Cusamano et al. 2023). At the same time, grievances continue 

to grow from dissatisfied consumers regarding their perceptions of price gouging and the use of deceptive 

features in online pricing (Huffman, 2019; Crumley, 2024). Examples abound: online ticket sellers will 

shroud and pass on to consumers a variety of different surcharges, under the guise of “event fees”, “venue 

fees,” and “convenience fees,” that are not initially disclosed to consumers. Food delivery apps will hide 

their “service fees”, or tack on “small order fees”, and “expanded range fees” only after consumers have 

been enticed by lower prices. Hotels, Airbnb, and other hospitality platforms have started to charge 
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“resort fees”, and “cleaning fees” that are disclosed only upon check-out. In many, if not all these cases, 

taxes are added onto the new price inclusive of fees, adding to consumer’s frustrations and difficulties in 

becoming fully informed of final prices before starting the purchase process. In general, these hidden fees 

have been widely panned by consumers, and the debate has drawn the attention of the press and 

regulators alike. In response some platforms have begun exploring options to become more transparent 

(Tumin, 2022; Dickler 2023; Beam, 2024). 

The fact that so many of the most popular platform firms continue to employ these tactics, while 

consumers so vehemently dislike them presents us with an interesting puzzle. We draw across several 

streams of literatures including marketing, economics, information systems, and behavioral operations 

management to explore how platform firm incentives, competitive pressures, and their current strategy, 

influence platforms’ decisions to either obfuscate prices, or buck trends and try to become more 

transparent. Following Akerloff and Schiller (2015) we will define price obfuscation as “any tactic used by 

firms with the intention of preventing customers from becoming fully informed about market prices.” For 

a comprehensive categorization of the various types of deceptive features in online platforms, refer to 

Benet Chiles (2017) and Johnen and Somogyi (2021). In this study, we will focus on “price dripping” as a 

form of price obfuscation, whereby a firm advertises only part of a product’s price up front and then 

reveals additional mandatory fees or surcharges as the consumer moves through the purchase process 

(Santana et al. 2020). 

We develop a model of platform firm choice and consumer behavioral response and use it to analyze 

the performance dynamics of shrouding versus transparent platforms. Simulation modeling allows us to 

expand on existing theory by accounting for more nuanced consumer behavioral responses, multiple 

feedbacks, and repeated interactions. Our model is generalizable and can be parameterized to provide 

insights for price transparency decisions in a variety of digital markets, such as: online ticket resale; food 

delivery; hospitality and airline bookings. Throughout this study, we’ll use a digital delivery platform (an 
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online ticket reseller) to illustrate our results. The rest of our paper is organized as follows: Section 2 

presents a summarized review of the extant relevant literature; Section 3 presents the methodology used 

and describes our simulation model; Section 4 presents simulation results; insights from the model, and 

potential managerial policies are discussed in Section 5. We conclude with some additional observations, 

and extensions for future work in Section 6. 

3.2 Motivation and Prior Literature 
The current body of research on price obfuscation spans distinct literatures, from economics, to 

marketing, to information systems, with each disciple developing different frameworks, methods, and 

definitions of the phenomenon under study (Bennet Chiles, 2017). Our study spans across disciplines and 

brings together separate literatures on price shrouding and two-sided platforms. 

Theoretical and empirical evidence from work in economics and marketing shows that companies 

can strategically hide or obscure certain aspects of prices to exploit consumer shortsightedness, resulting 

in higher firm profits, which can persist even in repeated purchases (Ellison and Ellison, 2009). Studies 

have reflect that these obfuscation tactics are individually rational for oligopolistic firms due to high search 

costs for consumers (Gabaix and Laibson, 2006), and experiments have concluded that disclosing fees 

upfront can reduce both the quantity and the quality of consumer purchases, and that efforts to increase 

salience cause revenues to drop (Blake et al. 2021). “There is no reason to expect new visitors to a site to 

have correct beliefs about fees, and once they have their sights on an item, letting go of it becomes hard—

as scores of studies in behavioral economics have shown. People end up making purchases that in 

hindsight they would not have made” (Foy, 2021). 

However, transparent price disclosure and increasing the salience of secondary attributes can 

eliminate price framing effects, leading to increased revenues for sellers (Brown et al. 2010). And recent 

work in behavioral operations management suggests that these obfuscation tactics can be harmful not 
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only to consumers, but also to the firms that engage in them. Various field experiments have shown that 

firms can create value for themselves and their customers by increasing operational and cost 

transparency, and through other acts of sensitive disclosure (Mohan et al. 2020; Buell et al. 2021). 

Adding to the complexity, existing theories offer different conclusions with respect to the effect 

that competition should have on a firm’s propensity to obfuscate prices, and the literature studying the 

role of price transparency in online platforms is still nascent (Blake et al. 2021; Bennet Chiles 2021). Where 

they have been studied, the focus has been on the strength of the cross-side network effects that drive 

platform growth, showing that in some cases, platforms may have even stronger incentives than to shroud 

complementor fees than even the complementors themselves (Johnen and Somogi, 2022). 

Interestingly, though many of the most popular online ticket seller platforms (e.g.: Booking.com, 

Kayak.com, StubHub, and Ticketmaster) purport to reduce search costs and frictions to facilitate price 

comparisons for their consumers, “price dripping” tactics, whereby additional mandatory fees are not 

disclosed upfront but rather added-on or “dripped” as the consumer progresses through the purchase 

process have now become so ubiquitous as to have drawn the ire of regulators (Dickler, 2023). 

Platforms can increase competition by consolidating price information from multiple firms. To 

counteract this intensified competition, the complementor firms often employ intricate pricing strategies. 

However, platforms have some influence over the extent of pricing complexity adopted by firms since 

they earn revenue from firms paying to be featured on their platform, creating an incentive to permit 

obfuscation. (Mamadehussene, 2020). Overall, while the notion that consumers may punish firms for 

price obfuscation (and deceptive behavior more generally) is hardly new surprisingly little research exists 

to support it. (Bennet Chiles, 2017). 

Although many of the most widely used matching platforms offer to help reduce consumer search 

costs, and efficiently find lowest prices, empirical evidence from consumer engagement with these 
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platforms shows that “hidden fees” are ubiquitous. This occurs even when the marginal cost of one 

additional ticket to the platform is vanishingly small. 

Figure 3.1 below provides an illustration of price dripping and hidden fees on the largest online 

ticket reselling platform (Ticketmaster). Additional examples of hidden fees from online platforms, 

including ticket sellers, food delivery, hospitality and ride-hailing purchases are shown in Appendix 3.A. 

 

Figure 3.1: Price-Dripping and Hidden Fees on Ticketmaster App.  
 

Fig 3.1.1* Fig. 3.1.2 Fig. 3.1.3 

   
These screenshots correspond to a 
typical order for resale tickets on 
Ticketmaster, where Hidden Fees 
are “dripped on” and revealed only 
as the consumer progresses 
through the purchase process.  
 
 
 
 
 

Consumers first observe a listing of 
potential offerings for different 
seating locations and prices. In this 
case, a consumer has decided to 
purchase 2 tickets for an Initial 
Visible price of $200/each.  

Consumers move through new 
screens. Notice that there is a small 
indication that the price is “$200 + 
Fees” above but hovering over or 
clicking on the “Fees” provides no 
additional information.  
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Fig 3.1.3 Fig 3.1.4 Fig 3.1.5 

   
A potential source of additional 
confusion for consumers is that the 
following screen indicates that 
there are no Delivery Fees for 
mobile delivery. 

However, as the consumer is ready 
to pay (and importantly after their 
credit card or payment information 
has been request, the Hidden Fees 
are now made visible. In this case, 
The Total Price has jumped to 
$486.95 , up from $400. 

Additional information is only 
revealed by hovering over the 2 line 
items in the recently disclosed Fees 
The line for Service Fee reads: 
“Service Fees are shared between 
parties that help make the event 
happen. This commonly includes 
venues, Ticketmaster, sports teams, 
leages and promoters. The price for 
the consumer has increased by 22%. 

 
Figure 3.1.1-3.1.6 shows a sequence of screen grabs from Ticketmaster’s App. These illustrate the 
purchase process. Initially, potential consumers search on the platform, and are exposed to initial 
or “visible prices” that they use to make their selections. As they continue to the purchase process, 
previously undisclosed or “hidden fees” are added, or “dripped”. Once the full price has been 
revealed, the consumer has invested time and effort, and may be induced to pay above their 
original intended willingness to pay. In this case, the total of the hidden fees is upwards of 22% of 
the initial quoted (visible) price. 
*The data were collected on May 1st, 2024 

 

Our work augments previously existing models with behavioral consumer learning to further 

understand the effects of obfuscation on consumer loyalty and firm performance and contributes to our 

understanding of the costs of price obfuscation more generally. 
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3.3 Methods and Modeling 
We consider a stylized and parsimonious model of platform competition in a two-sided market. In our 

model, up to two platforms (𝑃", 𝑃#) compete for a limited pool of potential consumers 𝐵(𝑡), where the B 

stands for Buyers (the demand side of the market) and a limited pool of potential complementors 𝑆(𝑡), 

where the S stands for Sellers (or the supply side of the market). Following our motivating example of 

ticket resellers on a matching platform, complementors list their tickets for sale on the platform, and 

consumers use the platform’s website or mobile App to evaluate the product offerings, make 

comparisons, and ultimately make ticket purchases for the event of their choosing. Thus, the platforms 

act as intermediaries, facilitating matches, and charging fees to one (or both) sides of the market 

whenever a transaction occurs. 

3.3.1 The Value Creation Lens 
We adopt the Value Creation Lens (Anderson et al. 2022) as a framework to understand platform 

attractiveness and user (both complementor and consumer) utility. This framework, grounded in theory, 

creates a better understanding of the dynamics of platform value creation and its drivers for growth, by 

separating the platform’s value creation into 3 mutually exclusive and collectively exhaustive 

components: the cross-side value, the same-side value and the stand-alone value.  

Here, the cross-side value refers to the change in attractiveness provided by having one additional 

participant on the other side of the market, the same side value refers to the change in attractiveness 

resulting from one additional participant on the same side of the market, and the stand-alone value refers 

to the change in attractiveness provided by the platform regardless of the participants. Using our 

motivating example of a ticket resale platform and taking the perspective of a potential consumer (buyer), 

the cross-side value of the platform refers to the increase in utility of having one more seller to choose 

from, both in terms of ease and speed of matching, and in variety of offerings. The same-side value refers 

to the decrease in utility of having one more competing buyer, which may result in unfulfilled demand 
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And the stand-alone value refers to a strategic decision that that the platform can make regarding it’s 

pricing and transparency.  

Previous work that on platform price transparency has been exploratory (Belleflamme and Peitz, 

2019), and has focused on understanding and quantifying the strength of the cross-side network effects. 

Our work expands on previous models, by explicitly considering the potential negative effects of same-

side competition, and the potential for high attractiveness and differentiation that can be derived from 

stand-alone value propositions, such as the strategic decision to shroud prices or become transparent.  

To illustrate further, we present a simplified causal loop diagram for the model and use it to 

explain key components and feedback loops. For clarity, some of the mechanisms have been summarized, 

but full model equations are present in the Annex. Figure 3.2 below, that shows the various ways in which 

a ticket-seller matching platforms can create value around a pricing decision: 
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Figure 3.2: The Value Creation Lens for Pricing in Online Platforms 
 

 

The cross-side network effects (Reinforcing Loop R1) are still at the core of our model, linking 

consumer and complementor participation. As complementors join the platform to offer their products, 

both quantity and variety increase, which makes the platform more attractive to consumers. With higher 

consumer utility, more consumers will join, ultimately driving more complementors to join in a reinforcing 

loop. However, from it is also clear that utility can be derived from other sources.  

Specifically, we also consider that the platform can make some strategic “stand-alone” decisions, 

namely, deciding whether to hide (shroud) part of their prices, or to be completely transparent about 

their fee structure. Specifically, while consumers may first anchor on the initial Visible Price and derive a 



119 

Perceived Consumer Surplus (Johnen and Somogy, 2022) if their original “Willingness To Pay” is higher, 

we also account for the fact that consumers will face a Disutility from Hidden Fees. Critically, this only 

occurs after engaging with the platform, so that the updates occur with a delay. The diagram also 

underscores a key feature of our model, which considers the role of competition or cooperation amongst 

same side participants in platforms. For our setting, same-side competition amongst consumers (buyers) 

and complementors (sellers) lowers their respective utilities. 

3.3.2 Overview of the Model Structure: 
Below we provide also provide a brief overview of the model structure. Our formulations are 

grounded in the Information Systems literature and, in particular, we use standard System Dynamics 

formulations where they are appropriate. We focus on augmenting the traditional game theoretic models 

of platform competition and add elements of consumer behavioral learning to the model. A summary of 

key model assumptions is as follows: 

• Assumption 1 (Variable normalization): Consumer and complementor market sizes can be 

normalized to 1 (i.e. 𝐵(𝑡)) ≤ 1, and 𝑆(𝑡)) ≤ 1, respectively) without loss of generality. 

• Assumption 2 (Installed base): At t=0, the platforms have no installed base of consumers or 

complementors (i.e. 𝐵(𝑡)) = 0, and 𝑆(𝑡)) = 0, respectively), which means there is no 

“piggybacking” from an existing user base (Dou and Wu, 2021). 

• Assumption 3 (Complementor’s capacity): We assume that the complementors are identical in 

their capacities, and the costs they face. Their decision to join the platform is based on an 

expectation of future profits. 

Final Sales Price: The final price that consumers pay on the platform is composed of 2 parts, the 

complementor’s service price, and the platform’s margin. 

𝑝$%&'( = 𝑝)*+,%-* + 𝑝.('/$0+1 (1) 
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Price Shrouding: A parsimonious model of price shrouding requires only that the platform’s margin be 

understood as composed of an initially visible price, and a hidden fee that is initially shrouded, and only 

revealed after the consumer has gone through most of the purchase process: 

𝑝.('/$0+1 = 𝑝,%)%2(* + 𝑝3%44*& (2) 

Such that: 

𝑝$%&'( = 𝑝)*+,%-* + 𝑝,%)%2(*	 + 𝑝3%44*&	 (3) 

 

Note that a transparent platform will set 𝑝3%44*&	 = 0. 

 

Platform revenue: In the most general case, platforms could collect revenue via subscription fees from 

both the consumer and complementor sides of the market. However, in more realistic representation for 

a matching platform, revenues are determined by the number of transactions. In our baseline formulation 

we consider that platform revenues are a product of the final sales price and the number of transactions 

𝑄(𝑡), net of the the costs to the platform 𝐶(𝑡). 

𝜋.('/$0+1 = 𝑝$%&'( ∙ 𝑄(𝑡) − 𝐶(𝑡) (4) 

Where the Actual Number of Monthly Transactions on the Platform 𝑄(𝑡) is constrained by the total 

demand and the total capacity: 

𝑄(𝑡) = 𝑚𝑖𝑛[𝐷𝑒𝑚𝑎𝑛𝑑(𝑡), 𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑡)] (5) 

And in turn, Demand is calculated as the product of 𝛼, the Average Number of Transactions per person 

per month, and the number of consumers 𝐵(𝑡) on the platform. 

𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) = 𝛼 ∙ 𝐵(𝑡) (6)  

And the Total Capacity is given by each individual complementors’ capacity, multiplied by the number of 

complementors 𝑆(𝑡) on the platform: 

𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑡) = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦6 ∙ 𝑆(𝑡) (7) 
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We have assumed that each individual complementor’s capacity is identical. As such, we formulate the 

necessary capacity that each complementor must have to clear the market in case where every potential 

consumer 𝐵1'7	and complementor 𝑆1'7 joined the market as: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦6 = 𝛼 ∙
𝐵1'7
𝑆1'7

∙ (1 + 𝛾) (8) 

Where the parameter 𝛾 is a measure of the Extra Fractional Supply Chain Capacity, which allows us to 

consider cases where either Total Capacity, or Demand are the active constraints on sales. 

Finally, combining (4)-(8), we arrive at the formulation for platform profits: 

𝜋.('/$0+1 = 𝑝$%&'( ∙ 𝑚𝑖𝑛 L𝛼 ∙ 𝐵(𝑡), 𝛼 ∙
8!"#
6!"#

(1 + 𝛾)𝑆(𝑡)M − 𝐶(𝑡) (10)  

 

Consumer utility and participation: Platforms compete for consumers. In line with previous literature, we 

adopt an additive formulation for of the consumer utility function (Anderson et al 2014, Tan et al. 2020, 

Tan et al. 2023). Following the value creation framework, we have that utility can come from: cross-side 

network effects, same-side network effects, and strategic decisions that the platform makes which can 

create stand-alone value for consumers. Since our principal interest is in participation decisions that are 

subject to price perceptions, and specifically hidden fees, we augment current models with a behaviorally 

realistic accounting of consumer’s perceptions of hidden fees. 

Where previous models assume that consumers’ utility increases with additional complementor 

participation (positive cross-side network effects), and that their purchasing decisions are anchored on 

the initially quote price 𝑝,%)%2(*, whereby perceived surplus is derived from the difference between their 

initially stated willingness to pay 𝑝9/. and 𝑝,%)%2(*, we introduce 2 important modifications: firstly, while 

“naïve” consumers may be induced to purchase even above their originally stated willingness to pay via 

hidden fees, they will also incur a disutility at the end of the purchase process from the lack of 

transparency. We explicitly account for this term. Additionally, in order to model the consumers’ utility 
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more realistically, we also introduce the concept of a Fulfillment Ratio, to indicate how much of the 

consumers’ demand D(t), can be met on the platform by the complementor’s capacity: 

𝐹𝑅 =
𝑄(𝑡)
𝐷(𝑡)

(11) 

A Fulfillment Ratio that is less than 1, indicates that there is an imbalance between supply and demand, 

potentially resulting in dissatisfied customers. This incorporates a negative same-side effect due to 

increased competition. 

At a high level, we have that: 

𝑈!(𝑡) = (𝑈"#$%%&'()(𝑡) − 𝑈&*+)&'()(𝑡) + 𝑈,)#-)'.)(&/#01/%(𝑡) − 𝑈2'(()34))) (12) 

 And we operationalize it in the following way: 

𝑈!(𝑡) 

= [𝑀𝑆&(𝑡)5!" +𝜔0#'-) ∙ 𝛼 ∙
𝑝670 − 𝑝%)#.'-) − 𝑝.'%'81)(𝑡) − (𝜔0)3 ∙ 𝑝9'(()3(𝑡))

𝑝670
] ∙ 𝐹𝑅 − 𝜔%9$#7*:) ∙ (1 − 𝐹𝑅) (13) 

 
This formulation considers diminishing returns on the cross-side network effects, penalizes 

platforms that don’t balance supply and demand correctly, and includes a component for the perceived 

price surplus, and a penalty on shrouding. 

𝑀𝑆8(𝑡) represents the percentage of consumer participation on the platform, at a given time. 

This value for the market share is determined by comparing the relative attractiveness of each platform 

to the total attractiveness of all options, including an outside option of not participating in the platform 

markets, which we denote as 𝜌8.  

In our motivating example, this would be akin to having consumers buy the tickets directly from 

a third-party seller, for example, by conducting the transaction outside of the venue. Note well that if the 

size of the consumer market is normalized to 1, consumer participation 𝐵(𝑡) is equivalent to the 

platform’s market share on the consumer side. We first calculate the indicated consumer market share at 

time t, 𝑀𝑆8R(𝑡), which represents the expected consumer market share, given each platforms’ current 

value proposition.  
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 We assume that the platform’s expected market share on the consumer side is determined based 

on the logit choice model (McFadden, 1986), which has been used extensively in the literature in 

Information Systems (Anderson et al. 2023) and System Dynamics (Sterman, 2000). According to this 

formulation, the indicated consumer market share is given by: 

𝑀𝑆8R(𝑡) =
𝑒:$∙<$(/)

∑𝑒:$∙<$(/) + 𝑒:$∙?$(/)
(14) 

Where 𝛽8 is the logit coefficient for consumers. The model has the flexibility to represent a differentiated 

market, such that a higher 𝛽8 means that the competition amongst the platforms (and the outside option) 

is more intense, and consumers are sensitive to smaller differences in utility for their participation choices. 

The inverse of 𝛽8 is analogous to the transport cost in the Hotelling model (Tan et al. 2023).  

 Finally, consumer participation level is a stock that can change over time in the following way: 

when the indicated consumer market share 𝑀𝑆8R(𝑡) is greater (less) than the current consumer market 

share 𝑀𝑆8(𝑡), the system will move towards the indicated market share 𝑀𝑆8R(𝑡) and 𝑀𝑆8(𝑡) will increase 

(decrease) with some delay. Consumers adopt the platform with some delay 𝜏8. Thus, the change in 

𝑀𝑆8(𝑡),  is given by: 

 

𝑀𝑆8@ (𝑡) =
𝑀𝑆8R(𝑡) −𝑀𝑆8(𝑡)

𝜏8
(15) 

 

Consumer learning: Consumers are initially “naïve”, and do not have an expectation of hidden fees. 

However, through interacting with the shrouding platforms over time, they will become informed of the 

hidden fees and will begin to price them in by adding their expectation to the initial quoted price. We use 

an exponential smoothing formulation, typically used in System Dynamics models (Sterman, 2000) via 

which consumers will gradually form a perception of hidden fees with some time delay 𝜏.*+-*%,*	$**): 
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𝑝@.*+-*%,*4 =
𝑝%&%/%'( + 𝑝.*+-*%,*4	3%44*&$**

𝜏.*+-*%,*	$**)
(16) 

 

And the time delay can depend on how frequently the consumers interact with the platform, and how 

salient those prices are to them.  

 

Complementor Expected Profits and Participation: Platforms compete for sellers as well. Where previous 

work in operations management and in information systems literature has adopted additive forms for the 

complementors’ utility function (Anderson et al. 2014, Tan et al. 2023), our setting requires a more 

behaviorally realistic formulation. Complementors on platforms generally differ from consumers, in that 

they are driven primarily by profit expectations. In this sense, complementors are akin to small businesses 

looking to maximize expected profits. 

Complementors’ expected profit is increasing in actual number of transactions 𝑄(𝑡) and 

decreasing in the number of competing complementors that have also joined the platform 𝑆(𝑡). 

𝐸[𝛱6(𝑡)] =
𝑄(𝑡)
𝑆(𝑡)

∙ X𝑝)*+,%-* − 𝑐)*+,%-* − 𝑐$**)Y (17) 

 
Where 𝑐)*+,%-*  is the cost of the service to the complementor and 𝑐$**) are the (potential) fees 

charged by the platform to complementors. Note they are currently set to 0 without loss of generality. If 

we call the complementors’ expected profit per transaction 𝜋), we have that: 

𝐸[𝛱6(𝑡)] =
𝑄(𝑡)
𝑆(𝑡)

∙ 𝜋) (18) 

In this model, we assume that complementors have the same sales costs for their services across 

platforms, and are charged the same fees across the platforms, so that the relevant elements of the 

complementors’ utility function is given by the three components mentioned above. 
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 We again assume that the platform’s expected market share on the complementor side is 

determined based on the logit choice model (McFadden, 1986, Anderson et al. 2023, Sterman, 2000), By 

symmetry with the consumers, the indicated complementor market share is given by: 

𝑀𝑆6Z (𝑡) =
𝑒:%∙<%(/)

∑𝑒:%∙<%(/) + 𝑒:%∙?%(/)
(19) 

Where 𝛽6 is the logit coefficient for complementors. Again, the model has the flexibility to represent a 

differentiated market, such that a higher 𝛽6 means that the competition is more intense. 

 Finally, complementor participation level is a stock that can change over time in the following 

way: when the indicated complementor market share 𝑀𝑆6Z (𝑡) is greater (less) than the current 

complementor market share 𝑀𝑆6(𝑡), the system will move towards the indicated market share 𝑀𝑆6Z (𝑡) 

and 𝑀𝑆6(𝑡) will increase (decrease) with some delay. We model the delay for complementors adopting 

the platform 𝜏6. Thus, the change in 𝑀𝑆6(𝑡) is given by: 

 

𝑀𝑆6@(𝑡) =
𝑀𝑆6Z (𝑡) −𝑀𝑆6(𝑡)

𝜏6A
(20) 
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The model’s key parameter values are shown in Table 3.1 below. The implementation of the model in 

Vensim includes additional formulations, e.g. to ensure robustness to extreme conditions. For clarity, the 

complete model formulations and parameter values are provided in Appendix C and the accompanying 

model file. 

Table 3.1: Key Model Variables and Parameter Values 

Variables Description Base Value* 

𝑃&,( Platforms. - 

𝑀𝑆)(𝑡) Complementor Market share (Dimensionless) - 

𝑀𝑆*(𝑡) Consumer Market share (Dimensionless) - 

𝑆(𝑡) Complementors. (People) - 

𝐵(𝑡) Consumers. (People) - 

𝑝)+,-./+ The price at which the complementors sell to the platform($) 0.6 

𝑝-.).01+ The part of the final price that is initially quoted to consumers($) 1 

𝑝2.33+4 The part of the final price that is initially hidden from consumers ($) 0.3 

𝑝567 Consumer’s original willingness to pay. ($) 1 

𝛼 Average monthly transactions per consumer. (Transactions/month/person) 1 

𝜔/) Coefficient of sensitivity to cross-side network effects for consumers [0,1] (Dmnl) 0.5 

𝜔7,./+ Coefficient of consumer utility from average perceived price surplus (Dimensionless) 1 

𝜔8++ Coefficient of consumer disutility hidden fees (Dimensionless) 2 

𝜔)29,6:;+ Coefficient of consumer disutility from unfulfilled demand (Dimensionless) 0.5 

𝛾 Extra fractional capacity (Dimensionless) 0.2 

𝜌< Utility of the outside option for complementors (Dimensionless) 0 

𝜌* Utility of the outside option for consumers (Dimensionless) 0 

𝛽< Logic coefficient for complementors (Dimensionless) 2 

𝛽* Logic coefficient for consumers (Dimensionless) 2 

𝜏=) Unshrouding time. (Months) 12 

𝜏7+,/+.-+8++) Time to become informed of hidden fees (Months) 6 

*Parameter Base values have been informed by previous literature on B2B and transaction platforms (Anderson et al. 2022; Koenen and Heckler, 
2020; Zhu and Iansiti, 2019). We also draw from Prospect Theory, and account for the fact that loses loom about twice as large as gains (Kahneman 
and Tversky 1975). Smith and Brynolfsson (2001) also find evidence to suggest that “consumers are approximately twice as sensitive to changes 
in shipping price and sales tax [which are typically “hidden fees”] as they are to changes in item price.  
Importantly, we are not calibrating a model to data, but rather are interested in the magnitudes and ratios of the parameter values. 
Extensive Sensitivity Analysis is performed in Sections 4 and 5. 
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3.4 Simulation Results 

3.4.1 Implications of Price Perceptions 
One key contribution of this work is to include a dynamic formulation of consumer price 

perceptions and consider its impact on consumer decision making. Where previous models have assumed 

a set fraction of “naïve” consumers who are uninformed of hidden fees, and a set fraction of 

“sophisticated” consumers who are aware, we allow this fraction to vary dynamically, via engagement 

with the platform. The larger the platform, the more frequent the purchases, or the larger the hidden 

fees, the faster that consumers will become “sophisticated”. 

Figure 3.3: Modeling Consumer Price Perceptions 

 

 

It takes time for consumers to become aware of 
potential hidden fees on the platform. In this example, 
we set the initial hidden fee to 30%, in line with our 
exploration of platform hidden fees across industries. 
Initially, consumers are unaware of the hidden fee, and 
only become informed as they interact with the 
platform. The orange line of consumer perceptions 
exponentially approaches the blue line of the actual 
hidden fee.  

The Final Price (green line) that the platform charges 
consumers is composed of two parts: the Initial or 
Visible Price (maroon line) plus the Hidden Fee (blue 
line). A platform that wishes to maintain Final Price 
(green line) which experimenting with reducing Hidden 
Fees must then increase their Initial or Visible Price. 
Consumers who have anchored on the hidden fee will 
expect higher total prices.   

 

Given enough time and engagement, consumers will become fully aware of the hidden fees, and price it 

into their decision making. Importantly, price perceptions are “sticky”, and if the platform decides to 

unshroud (drop the hidden fees) and become transparent, consumer price perceptions will remain high 
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until they engage with the platform sufficiently, however there are important dynamics in the transient 

that have important implications for firm success. 

 When a platform becomes transparent and forgoes the Hidden Fee component of their Final Price, 

they must now transfer the same amount to their Visible Price which is initially quoted to consumers if 

they wish to maintain their revenue per transaction constant. If consumers have grown accustomed to 

hidden fees on the platform (or even their competitor’s) platforms, then the Unshrouding platform will 

initially be compared unfavorably by consumers, who now face a higher Visible Price, and still expect 

Hidden Fees on the back end. This consumer response to shrouding, and price perceptions, helps explain 

nuances in platform firm price transparency decisions. In line with previous work, we show platform 

growth dynamics, but we are interested in the differences that arise from price transparency decisions. 
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3.4.2 Simulation Case Studies 
We begin by exploring the simplest case of a monopolistic platform that shrouds its fees, in a setting 

where there is no consumer behavioral learning. Previous works have shown that it is optimal for firms in 

these settings to price shroud, and our model can replicate this behavior. We run our model for a 

simulated period of 3 years. Figure 4 below shows the results: 

Figure 3.4: Case 1: Monopoly Platform, Shrouding, No Consumer Learning 

  

We plot consumer (blue line) and complementor 
(orange line) adoption and show the respective market 
shares. In the monopolistic case, the fraction of 
consumers and complementors that is not on 𝑃; finds 
the outside option more attractive.  

Revenues grow as the installed bases increases. Once 
market share has reached equilibrium, revenues for the 
platform remain constant, and the slope for 
Normalized Cumulative Revenue becomes a straight 
line. We have performed the normalization to use as a 
benchmark for the different scenarios we will explore 
below.  

 

In the absence of consumer behavioral learning (updating expectations about hidden fees) it is 

optimal for monopolistic platforms to price shroud provided the hidden fee is not so large that the outside 

option of quitting the platform altogether becomes more attractive. In our illustrative case, Consumers 

derive a higher Utility (𝑈8 ≈ 1) relative to the outside option 𝜌8 = 0. In this scenario, most of the 𝑈8 

comes from cross-side network effects. We replicate finds from previous studies in this benchmark case 

where platforms may extract additional revenues from consumers even above their original stated 

willingness to pay (Ellison and Ellison, 2006). Since consumers do not become informed, or “sophisticated” 

over time, this strategy will remain profitable even in repeated interactions. 
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We now proceed to study the case of a monopoly platform that engages in price shrouding, in a 

setting where consumers do become sophisticated (i.e. learn about the hidden fees and incorporate them 

into their pricing expectations over time). Our theory predicts that informed consumers will now compare 

their expected (higher) price with the outside option, thus reducing the relative attractiveness of the 

platform against the outside option. Figure 3.5 shows results: 

Figure 3.5: Case 2: Monopoly Platform, Shrouding, Introduction of Consumer Behavioral Learning 

  

We see that consumer (blue line) market share initially 
grows, as consumers are “naïve” about the hidden fees. 
However, we note the growth is slower than for the 
monopoly case.  

We see that total revenues in the case where there is 
consumer learning (red line) are lower than in the 
benchmark case when all consumers are naïve.  

 

As consumers transact on the platform, they are becoming aware of the hidden fees, their 

Disutility from Hidden Fees increases, and as such the total attractiveness of the platform drops. This 

lower number of consumers drives slower adoption and a lower total installed base of complementors 

when compared against Figure 3.4.  

Total revenues are lower than in the benchmark case. This follows from the fact that the platform 

has a lower installed base of both consumers and complementors, which lowers the transaction volume 

and ultimately reduces revenues. This is a direct consequence of the fact that a larger percentage of 

consumers now finds the outside option (not participating in the platform attractive). 
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We can now continue to build on these examples and explore the case of a monopolistic platform, 

in a setting with consumer behavioral learning, that chooses to unshroud prices, becoming transparent to 

capture a larger market share. Figure 3.6 shows the results: 

Figure 3.6: Case 3: Monopoly Platform, Shrouding to Unshrouding, Consumer Behavioral Learning 

  

We show consumers (blue line) and complementors 
(dashed orange line) for a monopolist that decides to 
become transparent at 𝜏/%=12.  

We show cumulative revenues for the new 
unshrouding case (green line), plotted against the 
benchmark (black line) and previous case where the 
platform was always shrouding (red line). Revenues for 
the shrouding case are higher than for the unshrouding 
case from 𝜏/%=12 to 𝜏$.)#=23 

 

In the beginning, consumers and complementors initially follow a similar dynamic as in Figures 

3.4 and 3.5. After one simulated year, at time 𝜏B) = 12, the platform unshrouds its prices, and becomes 

transparent. By including its previously hidden fee into its initial quoted price the platform first looks more 

expensive and less attractive compared to the outside option and a larger exodus of consumers occurs. 

With some delay, there is a slight impact to complementors as well, due to the strength of the cross-side. 

Critically, after enough time has passed, consumers learn that the platform is transparent and return to 

the platform. Preferring transparency to shrouding. These further drives consumer adoption, and the 

platform can achieve a higher market share than in Figure 3.5. 

We see that platform revenues (green line) initially fall below the previous scenario (red line) as 

the installed base is reduced. However, over time, the transparent strategy overtakes the shrouding 

strategy and becomes more profitable. In this setting, it takes the platform almost 11 months after 

 
 



132 

unshrouding for cumulative revenues to surpass the previous scenario. But because the platform can win 

back more market share, revenues in the periods going forward almost match the benchmark case. 

In effect, when we introduce consumer behavioral learning, it is no longer optimal to shroud 

prices even for a monopolistic platform. If the hidden fees are above a threshold value, the outside option 

is the most attractive option, and the platform misses out on potential revenues. However, if the hidden 

fees are not sufficiently high, some consumers will remain on the platform, and those will drive enough 

complementor adoption to sustain it in equilibrium. This provides further rationale for if engaging in 

shrouding is profitable for firms that have enough market power.  

Interestingly, even in a monopoly setting, a platform that has previously been shrouding fees and 

moves to disclose will face a challenge as it will have to educate consumers about its new price structure. 

That is, consumers who have previously realized the existence of hidden fees on the platform and even 

come to expect them, will continue to price them in, even when the platform initially moves to become 

transparent. To become transparent, and maintain profitability, the platform will need to move the 

hidden fee into the upfront price. Thus, even though total price remains the same, by removing the now 

expected hidden fees and increasing the initial quoted price the platform will look more expensive to 

consumers who will still price in a hidden fee until they interact with the platform enough to become 

sophisticated in this new sense. Ultimately though, more consumers will flock to the platform than in the 

previous scenario. We can show then that if firms are willing (and able) to weather the initial lower 

revenues, they will ultimately have a higher payoff.  

 Now, we consider an illustrative case of platform competition. In this scenario, 𝑃" and 𝑃# are in 

competition. If platform offerings are equally attractive, and if both platforms follow the same strategy, 

in equilibrium they will split the addressable market (with some consumers preferring the outside option 

𝜌8 to either platform. For illustration we assume that initially both platforms are shrouding prices by 
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dripping their hidden fees into the purchase process, and we explore the dynamics as one platform, in 

this case 𝑃", moves to become transparent after one simulated year, at time 𝜏<6 = 12. 

Figure 3.7: Case 4: Platform Competition, Unshrouding vs. Shrouding, with Naïve Consumers 

  

In this representation 𝑃& (in blue) and 𝑃( (in orange) are in 
competition. We start with both platforms shrouding prices 
in equilibrium and growing in lock step to split the market 
equally before 𝑃& makes the strategic decision to become 
transparent and unshroud its prices.  

Here, the green line is 𝑃& revenue, while the red line is 𝑃( 
revenue. After 𝑃& unshrouds, it loses market share while 𝑃( 
seems to thrive. Since consumers are not accounting for 
hidden fees, 𝑃( wins.  

 

In Figure 3.7 above, when 𝑃" unshrouds it initially looks more expensive (less attractive) to 

prospective consumers who have become accustomed to the presence of hidden fees, and as a result it 

faces a consumer exodus that ultimately also drives away complementors. This loss of market share by 𝑃" 

is claimed by 𝑃#. Because there is no consumer behavioral learning, 𝑃" never recovers. In this setting, 

shrouding is optimal, and the evidence is shown in the difference in revenues. 

Next, we explore this same competitive scenario, in a more realistic setting, where consumers are 

learning about the platform’s hidden fees, and they experience a disutility from being shrouded to. 
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Figure 3.8: Case 5: Platform Competition, Unshrouding v Shrouding, with Consumer Behavioral Learning 

  

In this representation 𝑃< (in blue) and 𝑃< (in orange) are 
in competition. We start with both platforms shrouding 
prices in equilibrium and growing in lock step to split 
the market equally before 𝑃; decides to become 
transparent and unshroud its prices.  

Here again, the green line is 𝑃; revenue, while the red 
line is 𝑃< revenue. After 𝑃; unshrouds, it loses market 
share and it stagnates, while 𝑃< seems to thrive. 
Overtime however, consumers will become embittered 
about 𝑃< hidden fees and will come to realize that 𝑃; is 
the transparent option. Even if total prices are the same 
on both platforms, 𝑃; will ultimately win.  

 

Crucially, in this setting the platform that unshrouds first will experience negative consequences in 

the short term, as it will initially seem to be the more expensive option for consumers that have come to 

expect hidden fees on top of a now larger initial price. Again, when 𝑃" unshrouds it initially looks more 

expensive (less attractive) and it faces a consumer exodus that also drives away complementors. This 

market share is claimed by 𝑃#. However, and critically absent from previous studies, given enough time, 

consumers will become informed both of 𝑃#’s shrouding and 𝑃"′𝑠 transparency. In equilibrium, even 

though there is no difference in their final prices, consumers prefer 𝑃" because there is no disutility from 

being shrouded to 

These results are in line with previous claims that if organizations choose to be deceptive towards 

their customers, and they are found out, the damages done to their reputation may ultimately overwhelm 

the short-term gains from the deception (Lee and Han, 2002; Roman 2010). Here, the transparent strategy 

can pay off. However, firms that decide to become transparent must consider the “worse-before-better” 

dynamics inherent if the industry standard is to shroud fees. Potentially successful transparency initiatives 

may therefore be abandoned too early by managers under short-term pressures. 
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3.5 Dynamics of Platform Competition 
Our base settings have shown that the decision to shroud prices or become transparent depends 

not only on the current market environment, but on consumer’s priors about hidden fees. We recall from 

Section 3, that we have modeled the consumer’s utility as a combination of 4 components: buyers derive 

increasing utility from additional sellers, and from their perceived price surplus (anchored on the initially visible 

price), and in turn face a disutility when they learn of price-dripped hidden fees, or from increased competition by 

other buyers for the limited supply on the platform. For ease of reference, Equation (12) is reproduced below:  

 

𝑈!(𝑡) = (𝑈"#$%%&'()(𝑡) − 𝑈&*+)&'()(𝑡) + 𝑈,)#-)'.)(&/#01/%(𝑡) − 𝑈2'(()34))) (12) 

 

Price sensitive consumers react to hidden fees in two distinct ways. Initially, naïve consumers are drawn 

in with the promise of a lower price. However, as they interact with the platform repeatedly, they will 

update their prior on the hidden fees, and will account for them going forward. We explore different 

outcomes for firms that want to become transparent, when faced with different levels of price sensitive 

consumers. Figure 3.9 shows these effects below:  

Figure 3.9: Effects of Price Sensitivity 𝝎𝒑𝒓𝒊𝒄𝒆 

  

We model increasing values of consumer price 
sensitivity (𝜔0#'-)), and we focus on the consumer 
market share for the transparent platform (𝑀𝑆!,,#). 
Compare outcomes against the benchmark case 
𝜔0#'-) = 1 in dashed gray above. 

We show the Revenue Ratio (>).$#
>).$%

), as a summary 

measure of platform firm performance. A Revenue 
Ratio greater than 1, indicates benefits from 
transparency for the unshrouding platform P;. In 
general, the greater the consumer price sensitivity 
(𝜔0#'-)), the greater the benefits from transparency. 
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When 𝜔.+%-* = 0, consumers are completely insensitive to price. Their decision of whether to 

join a platform, depends solely on the cross-side network effects. Complementors join the platform with 

the expectation that price taking consumers will buy their products, and buyers derive their utility from 

matching easily and quickly with a variety of potential sellers. In this setting, less than half (44%) of the 

potential consumer market share is on Platform 𝑃" by the end of our time horizon, and an equal amount 

is on 𝑃#,	with about 12% of consumers choosing the outside option. If consumers are increasingly price 

sensitive, the transparent platform 𝑃" will have to be prepared to withstand the worse-before-better 

dynamics inherent in educating consumers about their new lack of hidden fees. For positive values of  

𝜔.+%-* 	< 	1, consumers will initially derive a large portion of their utility from their perceived buyer 

surplus (the difference between their original willingness to pay 𝜔9/. and the initially quoted price 𝑝,%)%2(* 

(net of complementor costs), and lower values of 𝜔.+%-* also reduce the disutility from hidden fees 

𝜔.*&'(/C. However, if consumers are more price sensitive 𝜔.+%-* 	> 	1, this magnifies the effect of 

𝜔.*&'(/C on the overall 𝑈8(𝑡). For large values of 𝜔.+%-*, consumers are initially leaving both platforms 

in favor of the outside option, as they learn of, and resent the hidden fees. When 𝑃" unshrouds at 𝜏<6 =

12, there is an even larger exodus of consumers. Critically, even though there are increasing gains to the 

revenues for transparent pricing, it may be difficult for firms to weather this additional loss of consumers. 

Additionally, it’s important to note that even if 𝜔.+%-* 	≫ 	𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝜔.+%-*, there are still benefits to 

transparency, however total cumulative revenues fall dramatically unless the platforms reduce their 

prices, as they are no longer able to extract surplus from the consumers above the original 𝜔9/.. 

 Next, we consider the effect of consumer’s aversion to hidden fees. We recall from our discussion 

in Section 3, that a 𝜔.*&'(/C = 1 indicates that consumers assign the same weight to hidden fees as they 

do to the initially quoted price. Evidence from Prospect Theory shows that loses loom about twice as large 

as gains, (Kahneman and Tversky, 1979; Smith and Brynjolfsson, E., 2001) and this informs our base 
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parameter setting of 𝜔.*&'(/C = 2. However, we are interested in understanding outcomes for a wide 

range of values of 𝜔.*&'(/C . Figure 3.10 shows these effects below: 

Figure 3.10: Effects of Coefficient of Disutility of Hidden Fee (𝝎𝒑𝒆𝒏𝒂𝒍𝒕𝒚) 

  

We model increasing values of consumer disutility on 
hidden fees (𝜔0)3*17?), and we focus on the consumer 
market share for the transparent platform (𝑀𝑆!,,#). 
Compare outcomes against the benchmark case 
𝜔0)3*17? = 2 in dashed gray above 

We show the Revenue Ratio (>).$#
>).$%

), as a summary 

measure of platform firm performance. A Revenue 
Ratio greater than 1, indicates benefits from 
transparency for the unshrouding platform P;. In 
general, the greater the disutility of hidden fees 
(𝜔0)3*17?), the greater the benefits from transparency. 

 

When 𝜔.*&'(/C = 0, consumers are completely indifferent to being shrouded to. In this case, it is 

optimal for platforms to shroud their fees. In fact, whenever 𝜔.*&'(/C < 	1, the transparent platform 

underperforms their shrouding counterpart. Notice in Figure 10 that for 𝜔.*&'(/C < 	1, the value of the 

Revenue Ratio is also below 1, indicating that the platform is leaving money on the table by switching to 

transparent pricing. However, for 𝜔.*&'(/C > 	1, there are increasing gains from transparency. There are 

also additional pressures for transparency, as consumers with high 𝜔.*&'(/C will be incentivized to leave 

shrouding platforms in favor of competitors or a constant utility outside option 𝜌8. 

 We have used the logit formulation (McFadden, 1986) to split the consumer market based on 

affinity to utility. A key structural characteristic of the market is captured in the logic coefficient 𝛽8, which 

represents the competitiveness of the market. It is important to remember that the logit choice model 

accounts for consumer heterogeneity in tastes, and as a result, even when 𝑈8(𝑡) < 𝜌8, some consumers 

join the platform. Figure 3.11 illustrates the effects of 𝛽8 below: 
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Figure 3.11: Effects of Sensitivity to Affinity for Consumers (𝜷𝑩) 

  

We model increasing values of consumer sensitivity to 
affinity (𝛽!), and we focus on the consumer market 
share for the transparent platform (𝑀𝑆!,,#). Compare 
outcomes against the benchmark case 𝛽! = 2 in 
dashed gray above 

We show the Revenue Ratio (>).$#
>).$%

), as a summary 

measure of platform firm performance. A Revenue 
Ratio greater than 1, indicates benefits from 
transparency for the unshrouding platform P;. Larger 
values of 𝛽! 

 

 A value of 𝛽8 = 0 represents a lack of heterogeneous consumer preferences. In this extreme case, 

consumers are insensitive to differing valuations of 𝑈8(𝑡) across the different platforms and the outside 

option. In this case, the market share will be split equally among all 3 options. This is shown by the orange 

line in the figure above and the 33% corresponding 𝑀𝑆8(𝑡). However, as 𝛽8 increases, consumers are 

exponentially more sensitive to differences in their affinity valuations of the platforms (and the outside 

option). Small initial differences in utility compound and drive further adoption. This initial sensitivity is 

evidenced by the larger drops in consumer participation upon unshrouding. In a similar fashion, the higher 

the 𝛽8 the more benefits of a transparent strategy once consumers have learned of the “what-you-see-

is-what-you-get” pricing that they prefer. Importantly, very high 𝛽8 may make it impossible for a firm that 

wants to pursue a transparent strategy, to successfully navigate the dip. This insight is critical when 

considering that different industries may be locked into undesirable equilibria where shrouding is the 

norm and transparency is suboptimal.  
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 Next, we are interested in the effects of repeated engagement with the platforms on the 

pressures for obfuscation and transparency. Figure 3.12 below considers the effects of the average 

transactions desired by each buyer, which we have previously denoted 𝛼: 

Figure 3.12: Effects Average Transactions Desired Per Month Per Person (𝜶) 

  

We model increasing values of average desired transactions 
(𝛼), and we focus on the consumer market share for the 
transparent platform (𝑀𝑆*,I!). Compare outcomes against 
the benchmark case 𝛼 = 1in dashed gray above 

We show the Revenue Ratio (J+-"!
J+-"#

), as a summary measure 

of platform firm performance. A Revenue Ratio greater than 
1, indicates benefits from transparency for the unshrouding 
platform P&. Larger values of 𝛼 increase the benefits of 
transparency, and very large values of 𝛼 increase the pressure 
to mitigate the exodus to the outside option 𝜌*. 

 

Our baseline value for this model is 𝛼 = 1, which means that consumers demand one transaction per 

person per month on the platform. Naturally, there will be variation across industries, and consumer 

heterogeneity, with smaller purchase items (like food delivery) having higher frequency than big ticket 

items (potentially hotel stays and concerts). If 𝛼 = 	0, then no consumers want to transact on the 

platform, and results are trivial. However, even for very small values of 𝛼 we can derive meaningful results. 

A value of 𝛼 ≈ 0 indicates that the consumers engage with the platform with very low frequency. As such, 

there is little chance that they can have a prior on the hidden fee, so there is less value to transparency. 

but as 𝛼 increases there is additional value to transparency.  

 Finally, we are interested in understanding the role of the Outside Option for Consumers 𝜌8. 

Figure 3.13 shows the effects of variation in the consumer valuation of their Outside Option below: 
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Figure 3.13: Effects of Utility of Outside Option for Consumers (𝝆𝑩) 

  

We model increasing values Utility of the Outside 
Option for Consumers (𝜌!), and we focus on the 
consumer market share for the transparent platform 
(𝑀𝑆!,,#). Compare outcomes against the benchmark 
case 𝜌! = 0	in dashed gray above 

We show the Revenue Ratio (>).$#
>).$%

), as a summary 

measure of platform firm performance. A Revenue 
Ratio greater than 1, indicates benefits from 
transparency for the unshrouding platform P;. Larger 
values of 𝜌! 

 

 Large negative values of 𝜌8 indicate that consumers don’t value the outside option as attractively 

as they do the platforms. Therefore, as 𝜌8 becomes increasingly negative, 𝑀𝑆8,EK  increases for 𝑖 = 1,2. 

However, there is a maximum pool of potential consumers, so that there are decreasing returns to an 

lower and lower values of 𝜌8 as evidenced in the closeness between the orange and red lines in the 

Market Share graph above. Importantly, if 𝜌8 ≪ 1, but 𝜌6 < 1, the attractiveness of the platform for 

consumers will be limited by the fact that there is a large imbalance between supply and demand. 

Fulfillment ratios drop because most complementors would rather sell off platform, and consumers may 

become discouraged. This underscores the important and difficult task of matching supply and demand 

for transaction platforms like Uber, Lyft, Ticketmaster, StubHub, and AirBnB. On the other hand, if 𝜌8 ≫

1, then consumers flock to the attractive outside option, and the platform languishes. 

 Additional sensitivity analysis is presented in Appendix B. 

  



141 

3.6 Discussion and Limitations 
In this paper, we have built a parsimonious model of consumer behavioral learning to inform online 

platform pricing decisions. We have not been prescriptive on whether platforms should shroud prices or 

become transparent, nor was it our aim to do so in the general case. We argue for expanding model 

boundaries to include additional complexity between in the form of platform competition and 

competition in both sides of the market and have especially highlighted the need for taking a long-term 

view of the dynamics. Observing a long enough time horizon is necessary to fully capture the trade-offs 

between shrouding and transparency, and the long-term effects of trust, loyalty, and reputation building. 

For each industry, for each platform, there can be a range of outcomes depending on internal (initial 

market share, consumer loyalty, ability to weather a dip in performance for longer term improvements), 

and external factors (industry benchmarks, consumer price expectations and sensitivity), that can allow 

for better outcomes from transparency decisions.  

Figure 3.14 below highlights our main contributions. Areas above the blue "water line" have been 

explored in previous research. In our model, we take into account consumer sophistication (i.e. belief 

formation about potential future hidden fees based on previous experience); competition between 

platforms and an outside option; different sources of platform value creation (including same-side 

competition on the complementor and consumer sides), and an explicit disutility that arises from being 

shrouded too since, all else equal, consumer prefer a transparent option for the same price (Roman 2010). 
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Figure 3.14: Contributions. 

 

The use of simulation modeling has allowed to us explore the complex dynamics that arise when multiple 
platforms compete for multiple complementors and consumers. We have expanded the time horizon to 
account for the inherent delays in in trust and reputation building. 

 
 

Our results highlight the dynamic nature of developing consumer loyalty and reputation. Establishing 

trust and building loyalty with consumers is a process that takes time and cannot be achieved 

instantaneously. Additionally, it is critically important to note that this trust can also diminish over time if 

not consistently nurtured. Even more crucially, trust can be lost very quickly, and the effects can be 

deleterious, as customers will not return to platforms that have lost their trust. Brand loyalty, reputation, 

and consumer trust are subject to the phenomenon of "worse before better" dynamics, where there may 

be initial setbacks or challenges before experiencing long-term benefits (Repenning and Sterman, 2001). 

As we have shown, when undertaking pricing transparency decisions, it is critical to understand not 

just the equilibrium states, but the transients. Additionally, our work shows that in the context of 

managerial decision-making, it is crucial for managers to have a sufficiently long-time horizon in their 

mental models. Without a long-term perspective, managers may be tempted to abandon transparency 

efforts in favor of short-term gains achieved through concealing certain information or shrouding pricing 

details. This trade-off arises because, in the short run, shrouding may lead to immediate financial benefits. 
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However, such a strategy can undermine trust and reputation in the long term, hindering the development 

of enduring consumer loyalty. Therefore, managers need to consider the potential consequences of 

prioritizing short-term gains over the establishment and maintenance of transparency and trust in their 

interactions with consumers. Further work will incorporate Net Present Value calculations, using different 

Discount Rates to illustrate the inherent financial dynamics. 

Our study demonstrates that incorporating a consumer behavioral learning approach and 

comprehensively considering all avenues of platform value creation can lead to significant insights. 

Specifically, it reveals that there are specific circumstances in which price transparency emerges as a 

profitable strategy for platforms to adopt. By augmenting traditional models with a deeper understanding 

of consumer behavior and accounting for the diverse sources of value generated by platforms, this 

research sheds light on the conditions under which price transparency can be leveraged as a strategic 

advantage, ultimately contributing to the platform's profitability. Our work shows that, transparency pays 

especially when consumers are price sensitive, and have a high penalty on shrouding, but platform firms 

that move to transparent pricing options need to be cognizant of the time for their consumers to become 

informed of the drop in hidden fees. 

Further work in this stream will build upon this model to account for the role of purchase frequency 

in updating consumer expectations of hidden fees. The higher the average number of transactions per 

person per month (𝛼), the faster consumers are likely to learn about changes to the platforms’ pricing 

structure. At low purchase frequencies, it is difficult to have a good prior of what the industry standard is 

in terms of shrouding or transparency, but it is even harder to have a good prior on what the hidden fee 

for will be. Likewise, additional future work will explore the roles of word of mouth, and advertising, as 

potential mechanisms for consumers to become informed of a focal firm’s hidden fees, and those of their 

competitors. One important consideration is that consumers who face hidden fees that are much higher 

than their original willingness to pay, may drop-off from the purchase process altogether without 
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purchasing, and will be reluctant to return to the platform after, making it harder for them to learn about 

a potentially more attractive transparent strategy that the platform adopts in the future. 

Ongoing work will continue to explore these questions and expand our model to explicitly account for 

differences in industry, and the possibility that consumers may differentially “blame” the complementors 

or the platforms when faced with shrouded prices. To provide just one example of the differences 

between industries, it’s possible that consumers feel differently towards hidden “service delivery fees” on 

Ticketmaster (where the platform takes the blame for the hidden fees) versus hidden “cleaning fees” on 

AirBnB where the consumer may blame the hosts directly instead of the platform (see Figure 3.16.2 in 

Appendix A). Other interesting potential avenues to explore include ride hailing platforms, where 

shrouding can occur not just in the pricing, but also in the wait time, thus making it hard for consumers to 

compare across platform competitors (see Figure 3.17 in Appendix A). 

Overall, given the ubiquitous rise of matching platforms, we believe it is critical to fully explore and 

understand their incentives for transparency or obfuscation. Understanding why lock-in can occur in 

different industries is worthwhile avenue for additional research. 
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Appendix 3.A 
Additional Examples of Price Shrouding in Online Platforms 

 
Figure 3.15: Example of Hidden Fees on Ticket Master. Accessed on November 9th, 2023 
Figure 3.15.1 Figure 3.15.2 

  
These screenshots correspond to a typical order for 
resale tickets on Ticketmaster. Consumers face an 
initially Visible Price of $100. Compare Table 3.3 against 
this older version (2023) of the Ticket Master App. The 
line for “Resale Tickets” has a less salient highlighting of 
additional fees: smaller font, and gray color. Hovering 
over the Fees at this stage does not reveal the price. 

At the end of the purchase process, additional 
mandatory Hidden Fees appear. In this example, the 
Total Price was 22.2% higher than the Visible Price. 
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Figure 3.16: Example of Hidden Fees on DoorDash. Accessed on May 24th, 2023 
Figure 3.16.1 Figure 3.16.2 

  
These screenshots correspond to a typical order for 
food delivery on DoorDash. Consumers are initially 
quoted a Visible Price of $11.55. A pop-up at the 
bottom of the screen shows $0 delivery fee. 

Once the consumer has progressed through the 
different purchase screens, additional fees appear at 
the end. Not counting Dasher Tips, consumers face 
mandatory additional charges totaling $3.81. Although 
the purported $1.49 Delivery Fee discount highlighted 
in a different color, the remaining Fees’ salience is 
reduced by bundling the with Taxes. By hovering over, 
previously hidden details break this down into. A $3 
Service Fee, and $0.81 estimated tax. The fine print on 
the Service Fee reads: “This 15.0% service fee 
(minimum $3) helps us operate Door Dash.” In this 
setting, the Hidden Fee was approximately 26%. 
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Figure 3.16: Example of Hidden Fees on Airbnb. Accessed on May 2nd, 2024 
Figure 3.16.1 Figure 3.16.2 

  
These screenshots correspond to a typical booking for 
a one-night stay on AirBnb. Consumers are initially 
quoted a Visible Price of $104. No mention of possible 
additional fees occurs at this stage. 

Once the consumer has progressed through the 
different purchase screens, additional fees appear at 
the end. Here, the total price has increased by over 
87%. By hovering over, a breakdown is presented that 
includes 20% service fee. An additional “Cleaning fee” 
is attributed to the host. There is no mention of 
whether Airbnb’s service fees’ are calculated as a 
percentage that includes potential Cleaning fees as 
well. 
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Figure 3.17: Example of Hidden Fees on Airbnb. Accessed on October, 2022 
Figure 3.17.1 Figure 3.17.2 

  
These screenshots correspond to a ride-hailing 
purchase on Lyft. Ride hailing platforms can often 
increase the price when there are demand surges, and 
will often steer consumers to higher cost options. 
However, in this setting, we’ll focus on Shrouded Wait 
Times, as an analog to Shrouded Prices. Consumers 
may anchor on an Initially Visible Wait Time, and decide 
whether the wait-time to price value proposition is 
attractive enough to book the service.  

Once the ride has been booked, the ride hailing 
platforms can update the consumer on their wait time 
status. If the platform has indication that the wait time 
will increase, they have at least 2 options on how to 
disclose this information: On one extreme, they can 
provide constant updates (every minute). On the other, 
they can “batch” the updates, and only reveal to the 
consumer that the wait time has increased, when the 
driver should have already arrived. This is an example 
of the second case. 
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Figure 3.17.3 Figure 3.17.4 

  
After 3 minutes have elapsed (the Initial Visible Wait 
Time), the consumer receives an update that the driver 
is now 5 minutes away. 

After 5 minutes have elapsed (the new “dripped” Wait 
Time), the consumer receives an update that the driver 
is still 3 minutes away. Overall, the total wait time for 
this trim was 12 minutes. An increase in 300% over the 
Initial Quoted Wait Time. 

 
Figure 3.17 shows an interesting extension to Shrouded Prices on Ride Hailing Platforms. Even in 
cases where the ride-hailing platform doesn’t increase the price for consumers, they can increase 
their attractiveness compared to other platforms or the outside option (in this case a taxi, or some 
form of public transportation) by quoting short wait times initially and dripping additional wait 
times as the time progresses. I will explore this idea further in future research. 
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Appendix 3.B  
Multivariate Sensitivity Analysis 

 
 We briefly explore multivariate sensitivity with the contour plots in Figure 3.18 below. Each varies two 
parameters from section 3.5 above at the same time and plots the Revenue Ratio (>).$#

>).$%
) as the outcome measure. 

Revenue Ratios above 1 (shown in increasingly lighter color), show the benefits of transparency for 𝑃;. 
 

Figure 3.18: Multivariate Sensitivity Analysis 
𝝎𝒑𝒓𝒊𝒄𝒆	𝒗𝒔.𝝎𝒑𝒆𝒏𝒂𝒍𝒕𝒚	 𝜷𝑩	𝒗𝒔.𝝎𝒑𝒆𝒏𝒂𝒍𝒕𝒚 

  
We had previously explored the relationship between 
price sensistivy and the penalty that consumers place 
on shrouded hidden fees. For 𝝎𝒑𝒆𝒏𝒂𝒍𝒕𝒚 above 1, 
consumers are more upset at being shrouded to, in 
line with behavioral assumptions in the literature 

𝜷𝑩	is a structural characteristic of the market. In 
markets with higher 𝜷𝑩 transparency is more 
profitable. That is, if consumers are sensitive to 
differences in utility, the initial drop may be steeper, 
but more consumers will come back in time. 

𝜶	𝒗𝒔.𝝎𝒑𝒆𝒏𝒂𝒍𝒕𝒚 𝝆𝑩	𝒗𝒔.𝝎𝒑𝒆𝒏𝒂𝒍𝒕𝒚 

  
At low transaction numbers, the effect of 𝝎𝒑𝒆𝒏𝒂𝒍𝒕𝒚 is 
too small for transparency gains. For value of 𝜶 much 
higher than 1, the platforms are no longer able to get 
consumers to pay	𝜔67$ then 𝝎𝒑𝒓𝒊𝒄𝒆 puts downward 
pressure on total prices.* 

For high values of the outside option, both platforms 
loose market shares. However, transparency is 
optimal and it allows P;to capture a larger split of the 
consumers that are potential adopters of either 
platform.  

*Future work explores more sensitivity analysis. As well as the idea that increasing transactions reduces the time to become informed of Hidden Fees.  
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Appendix C  
Vensim Model 
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Appendix D 
Full Model Equations 

 
 
Actual Hidden Fee Fraction[Platforms]= 
        Hidden Price[Platforms]/Base Price[Platforms] 
    Units: Dmnl 
    The Actual Hidden Fee Fraction is the fraction of the Initial  
            Price that "dripped" to the customers. This is an extra fee  
            added to the Visible Price, as the consumers move through the  
            purchase process. When a platform shrouds (Switch to  
            Transparency = 0), the Actual Hidden Fee Fraction is the same as  
            the Indicated Hidden Fee Fraction. When a platform decides to  
            become transparent, the Actual Hidden Fee Fraction is 0. 
 
Actual Monthly Transactions Q[Platforms]= 
    MIN(Demand[Platforms], Total Complementors Capacity[Platforms]) 
Units: Transaction/Month 
The Actual Monthly Transactions (Q), is the minimum of the  
        Demand, and the Total Complementors Capacity. Thus, if the  
        Demand is higher than the Capacity, the actual transactions on  
        the platform are limited by capacity. 
 
Affinity for Complementors[Platforms]= 
    EXP(Sensitivity of Affinity for Complementors to Expected Profit for Complementors 
*(Expected Profit for Each Complementor 
    [Platforms]/Normalization Constant for Expected Profit for Each Complementor 
)) 
Units: Dmnl 
The Affinity for Complementors captures the effects of the  
        Expected Profit for Complementors, above a threshold for the  
        network effects. The Sensitivity parameter controls the strength  
        of the effect. 
 
Affinity for Consumers[Platforms]= 
    EXP(Sensitivity of Affinity for Consumers to Utility for Consumers*Utility for Consumers 
[Platforms]) 
Units: Dmnl 
The Affinity for Complementors captures the effects of the  
        Utility for Complementors. The Sensitivity parameter controls  
        the strength of the effect. 
 
Affinity of Outside Option for Complementors= 
    EXP(Sensitivity of Affinity for Complementors to Expected Profit for Complementors 
*Utility of Outside Option for Complementors) 
Units: Dmnl 
 
Affinity of Outside Option for Consumers= 
    EXP(Sensitivity of Affinity for Consumers to Utility for Consumers*Utility of Outside Option for Consumers 
) 
Units: Dmnl 
 
Alpha Ref= 
    1 
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Units: Transaction/(Month*People) 
A reference value for the number of Transactions per month  
        carried out by the adopters of each platform. 
 
Average Complementor Capacity= 
    Total Potential Consumer Population*Average Monthly Transactions per Consumer Alpha 
*(1+Extra Fractional Supply Capacity)/Total Potential Complementor Population 
Units: Transaction/(Month*People) 
Average Complementor Capacity is the capacity of each individual  
        complementor required clear the market if all potential  
        consumers and complementors joined. Assumes that the  
        complementors have identical capacity. 
 
Average Monthly Transactions per Consumer Alpha= 
    1 
Units: Transaction/(Month*People) [0,10,0.01] 
The Average Monthly Transactions per Consumer (Alpha) is the  
        average transactions per month that each consumer makes on the  
        platform they adopt. 
 
Base Price[Platforms]= 
    1 
Units: Dollars/Transaction 
The Base Price is a reference price that does not include the  
        Hidden Price. 
 
Change in Complementor Participation[Platforms]= 
    (Indicated Complementors[Platforms] - Complementors[Platforms]) / Complementor Adoption Time 
Units: People/Month 
The Change in Complementor Participation is the  
        adoption/de-adoption rate on the platform. This flow allows the  
        actual number of Complementors participating on each platform to  
        reach the number of Indicated Complementors. 
 
Change in Consumer Expectation of Hidden Fees[Platforms]= 
    Mismatch in Expectation of Hidden Fee Fraction[Platforms]/(Time to Become Informed of Hidden Fees 
) 
Units: Dmnl/Month 
Consumers have expectations of Hidden Fees based on prior  
        experience. These adjust with a delay. 
 
Change in Consumer Participation[Platforms]= 
    (Indicated Consumers[Platforms] - Consumers[Platforms])/ Consumer Adoption Time 
Units: People/Month 
The Change in Consumer Participation is the adoption/de-adoption  
        rate on the platform. This flow allows the actual number of  
        Consumers participating on each platform to reach the number of  
        Indicated Consumers. 
 
Complementor Adoption Time= 
    3 
Units: Month [0.1,12,1] 
The Complementor Adoption Time is the time it takes for  
        complementors to join or leave the platform. 
 
Complementor Market Share[Platforms]= 
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    Complementors[Platforms]/Total Potential Complementor Population 
Units: Dmnl 
The Complementor Market Share for each platform is the ratio  
        given by the number of Complementors that have adopted the  
        platform to the Total Potential Complementor Population. It is a  
        fraction between 0 and 1. 
 
Complementor Profit Per Transaction[Platforms]= 
    Complementor Transaction Price[Platforms]-Complementor Transaction Costs[Platforms 
] 
Units: Dollars/Transaction 
The Complementor Profit Per Transaction is the Complementor  
        Transaction Price less the Complementor Transaction Costs. 
 
Complementor Transaction Costs[Platforms]= 
    0.1, 0.1 
Units: Dollars/Transaction 
Complementor Transaction Costs are the expenses incurred by the  
        Complementors (sellers) in their contributions to the platform. 
 
Complementor Transaction Price[Platforms]= 
    0.6, 0.6 
Units: Dollars/Transaction 
The Complementor Transaction Price (or Pservice) is the dollar  
        amount that receive from the platform for each transaction. 
 
Complementors[Platforms]= INTEG ( 
    Change in Complementor Participation[Platforms], 
        Initial Complementors[Platforms]) 
Units: People 
The number of Complementors on the platform. This is the  
        "Supply" side. Also sometimes called the "Sellers". If the  
        number of complementors is normalized to 1, this is equivalent  
        to the platform's share of the complementor (seller) market. 
 
Consumer Adoption Time= 
    3 
Units: Month [0.1,12,1] 
The Consumer Adoption Time is the time it takes for  
        complementors to join or leave the platform. 
 
Consumer Disutility from Hidden Fee[Platforms]= 
    Weight on Consumer Disutility from Hidden Fee*(Hidden Fee Fraction Expected by Consumers 
[Platforms]) 
Units: Dmnl 
The Consumer Disutility from Hidden Fee is the negative value  
        that consumers assign to platforms that shroud prices. It is  
        proportional to the Hidden Fee Fraction that consumers expect. 
 
"Consumer Disutility from Same-Side Network Effects"[Platforms]= 
    "Weight on Same-Side Network Effects for Consumers"*Consumer Market Share[ 
Platforms] 
Units: Dmnl 
This is the negative utility that competition between consumers  
        creates for each consumer. 
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Consumer Disutility from Unfulfilled Demand= 
    0.5 
Units: Dmnl [0,10,0.1] 
The Consumer Disutility from the Imbalance of Supply and Demand  
        is the disutility incurred by those consumers that wished to  
        transact on the platform and that are not served because of a  
        limiting capacity constraint. 
 
Consumer Market Share[Platforms]= 
    Consumers[Platforms]/Total Potential Consumer Population 
Units: Dmnl 
The Consumer Market Share for each platform is the ratio given  
        by the number of Consumers that have adopted the platform to the  
        Total Potential Consumer Population. It is a fraction between 0  
        and 1. 
 
Consumer Stated Willingness to Pay= 
    1 
Units: Dollars/Transaction [1,2,0.1] 
This is the consumer's originally stated reservation price.  
        Hidden fees can induce the consumers to pay above this. 
 
Consumer Utility from CrossSide Network Effects[Platforms]= 
    Weight on Consumer Utility from CrossSide Network Effects*(Complementor Market Share 
[Platforms]^Sensitivity to CrossSide Network Effects for Consumers) 
Units: Dmnl 
The Consumer Utility from Cross-Side Network Effects is the  
        utility derived from one additional complementor on the  
        platform. The exponential formulation captures both the effects  
        of variety from additional complementors, and the decreasing  
        marginal utility that each new complementor can provide to each  
        consumer. 
 
Consumer Utility from Perceived Price[Platforms]= 
    Weight on Consumer Utility from Price * Normal Alpha* ((Consumer Stated Willingness to Pay 
-Visible Price[Platforms])/Consumer Stated Willingness to Pay-Consumer Disutility from Hidden Fee 
[Platforms]) 
Units: Dmnl 
This is the utility derived by consumers from their initial  
        price perceptions. When a shrouding platform first quotes a  
        lower visible price than the consumer's original stated  
        willingness to pay, consumers derive utility from this perceived  
        surplus. This is scaled by the Normal Transactions each consumer  
        performs on the platform on average. 
 
Consumers[Platforms]= INTEG ( 
    Change in Consumer Participation[Platforms], 
        Initial Consumers[Platforms]) 
Units: People 
The number of Consumers on the platform. This is the "Demand"  
        side. Also sometimes called the "Buyers". If the number of  
        consumers is normalized to 1, this is equivalent to the  
        platform's share of the consumer (buyer) market. 
 
Demand[Platforms]= 
    Average Monthly Transactions per Consumer Alpha*Consumers[Platforms] 
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Units: Transaction/Month 
The Demand represent the Desired Average Monthly Transactions by  
        Consumers. This is the total volume of transactions that the  
        consumers (Demand Side) would like to buy on the platforms. It  
        is measured in Transactions per Month. 
 
Effect of Monopoly Power on Complementors= 
    -200 
Units: Dollars/(Month*People) 
 
Effect of Monopoly Power on Utility for Consumers= 
    -200 
Units: Dmnl 
 
Expected Profit for Each Complementor[P1]= 
    Share of All Transactions Expected by Each Complementor[P1]*(Complementor Profit Per Transaction 
[P1]-Platform Fees Charged to Complementors[P1]) 
Expected Profit for Each Complementor[P2]= 
        (Switch for Competition)*Share of All Transactions Expected by Each Complementor 
    [P2]*(Complementor Profit Per Transaction 
        [P2]-Platform Fees Charged to Complementors[P2]) 
        + 
        (1-Switch for Competition)*(Effect of Monopoly Power on Complementors) 
    Units: Dollars/(Month * People) 
    The Expected Profit for Each Complementor is the Share of All  
            Transactions Expected by Each Complementor, multiplied by the  
            Complementor Profit Per Transaction. If there is no platform  
            competition (Switch for Competition = 0), then the Expected  
            Profit for Each Complementor on P2 is set to a large negative  
            value, that effectively makes it unattractive for any  
            complementors to join P2. 
 
Extra Fractional Supply Capacity= 
    0.2 
Units: Dmnl 
A measure of how much additional capacity each complementor  
        could fulfill if consumers's demand increased. 
 
Final Price[Platforms]= 
    Visible Price[Platforms]+Hidden Price[Platforms] 
Units: Dollars/Transaction 
The Final Price that the Platform charges consumers is the sum  
        of the Visible Price (first quote) and the Actual Hidden Fee. 
 
Final Price Expected by Consumers[Platforms]= 
    Visible Price[Platforms]*(1+Hidden Fee Fraction Expected by Consumers[Platforms 
]) 
Units: Dollars/Transaction 
The Final Price Expected by Consumers is the Sum of the Visible  
        Price and the Hidden Fee Expected by Consumers. (Currently just  
        used for generating graphs) 
 
FINAL TIME  = 36 
Units: Month 
The final time for the simulation. 
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Fulfillment Ratio[Platforms]= 
    IF THEN ELSE(Demand[Platforms]=0, 0, Actual Monthly Transactions Q[Platforms 
]/Demand[Platforms]) 
Units: Dmnl [0,1] 
The Fulfillment Ratio captures the fraction of Actual Monthly  
        Transactions to (Desired) Average Monthly Transactions Demand on  
        the platforms. If the capacity is not a limiting constraint, the  
        Fulfillment Ratio will be 1. If the capacity is a limiting  
        constraint, this value will be less than 1. XIDZ(Actual Monthly  
        Transactions Q[Platforms],Demand[Platforms],0) 
 
Hidden Fee Fraction Expected by Consumers[Platforms]= INTEG ( 
    Change in Consumer Expectation of Hidden Fees[Platforms], 
        Initial Hidden Fee Fraction Expected by Consumers) 
Units: Dmnl 
The Hidden Fee Fraction Expected by Consumers captures the idea  
        that consumers learn to expect a platform's Hidden Fees, but it  
        takes time. These price perceptions are "sticky". 
 
Hidden Price[Platforms]= 
    Base Price[Platforms]*Indicated Hidden Fee Fraction[Platforms]*(1-STEP(1,Unshrouding Time 
[Platforms])) 
Units: Dollars/Transaction 
The Hidden Price is the dollar amount that the platform shrouds.  
        The Hidden Price becomes 0 for the platform that becomes  
        transparent, at the Unshrouding Time. 
 
Indicated Complementor Market Share[Platforms]= 
    Affinity for Complementors[Platforms]/Total Affinity for Complementors 
Units: Dmnl 
The Indicated Complementor Market Share between the platforms  
        and the outside option is split by the Logit formulation. 
 
Indicated Complementors[Platforms]= 
    Indicated Complementor Market Share[Platforms] * Total Potential Complementor Population 
Units: People 
The number of Complementors expected by the attractiveness split. 
 
Indicated Consumer Market Share[Platforms]= 
    Affinity for Consumers[Platforms]/Total Affinity for Consumers 
Units: Dmnl 
The Indicated Complementor Market Share between the platforms  
        and the outside option is split by the Logit formulation. 
 
Indicated Consumers[Platforms]= 
    Indicated Consumer Market Share[Platforms] * Total Potential Consumer Population 
Units: People 
The number of Consumers expected by an attractivness split of  
        the options 
 
Indicated Hidden Fee Fraction[Platforms]= 
    0.3 
Units: Dmnl [0,1,0.05] 
The Indicated Hidden Fee Fraction is the fraction of the Initial  
        Price that "dripped" to the customers. This is an extra fee  
        added to the Visible Price, as the consumers move throught the  
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        purchase process. 
 
Indicated Time to Become Informed of Hidden Fees= 
    6 
Units: Month [0.1,36,1] 
The Indicated Time to Become Informed of Hidden Fees is the  
        average time that it takes for consumers to re-engage with the  
        Platform. The higher the frequency of purchases, the faster that  
        consumers become informed of the hidden fees they should expect  
        on the platform. 
 
Indicated Unshrouding Time[P1]= 
    12 
Indicated Unshrouding Time[P2]= 
        10000 
    Units: Month [0,36,1] 
    The Indicated Unshrouding Time is the time at which a platform  
            decides to become transparent (drops the hidden fees). 
 
Initial Complementors[Platforms]= 
    1 
Units: People 
The Initial number of Complementors on each platform. We  
        initialize with 1 Complementor. 
 
Initial Consumers[Platforms]= 
    1 
Units: People 
The Initial number of Consumers on each platform. We initialize  
        with 1 Consumer. 
 
Initial Hidden Fee Fraction Expected by Consumers= 
    0 
Units: Dmnl 
THe Initial Hidden Fee Fraction Expected by Consumers is set to  
        0. Consumers become informed of Hidden Fees by interacting with  
        platforms that have Hidden Fees. (Note, an extension of the  
        model could allow for consumers can have different expectations  
        for the Hidden Fees to begin with.) 
 
Mismatch in Expectation of Hidden Fee Fraction[Platforms]= 
    Actual Hidden Fee Fraction[Platforms]-Hidden Fee Fraction Expected by Consumers 
[Platforms] 
Units: Dmnl 
The Mismatch in Expectation of Hidden Fee Fraction captures the  
        difference between the Actual and the Expected Hidden Fees 
 
Normal Alpha= 
    Average Monthly Transactions per Consumer Alpha/Alpha Ref 
Units: Dmnl 
A normalized variable to capture the value of average  
        transactions per consumer on the platform. 
 
Normalization Constant for Expected Profit for Each Complementor= 
    1 
Units: Dollars/(Month*People) [1,1] 
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The Normalization Constat for Expected Profit for Each  
        Complementor is a scaling factor that represents the Expected  
        Profit for Each Complementor Above which the network effects  
        become important. 
 
Platform Fees Charged to Complementors[Platforms]= 
    0, 0 
Units: Dollars/Transaction 
This is the fee that the Platform charges the complementors. It  
        is not a Hidden Fee. 
 
Potential Complementors[Platforms]= INTEG ( 
    -Change in Complementor Participation[Platforms], 
        Total Potential Complementor Population) 
Units: People 
Potential Complementors are those that would be interested in  
        joining each platform. 
 
Potential Consumers[Platforms]= INTEG ( 
    -Change in Consumer Participation[Platforms], 
        Total Potential Consumer Population) 
Units: People 
Potential Consumers are those that would be interested in  
        joining each platform. 
 
Sensitivity of Affinity for Complementors to Expected Profit for Complementors 
= 
    2 
Units: Dmnl [0,15,0.1] 
 
Sensitivity of Affinity for Consumers to Utility for Consumers= 
    2 
Units: Dmnl [0,15,0.1] 
 
Sensitivity to CrossSide Network Effects for Consumers= 
    0.5 
Units: Dmnl [0,1,0.1] 
Measures the importance that Consumers give to one additional  
        Complementor. 
 
Share of All Transactions Expected by Each Complementor[Platforms]= 
    Actual Monthly Transactions Q[Platforms]/Complementors[Platforms] 
Units: Transaction/(Month*People) 
The Share of All Transactions Expected by Each Complementor is  
        the Actual Monthly Transactions (Q) conducted on each platform,  
        that an individual complementor can expect. Assuming that the  
        complementros are undifferentiated, all complementors get an  
        equal share of transactions, and so the more complementors on a  
        specific platform, the lower the share for each individual  
        complementor. 
 
Switch for Competition= 
    1 
Units: Dmnl [0,1,1] 
0 = Monopoly 1 = Competition 
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Switch for Sophisticated Consumers= 
    1 
Units: Dmnl [0,1,1] 
0 = Naive 1 = Sophisticated 
 
Switch for Transparency= 
    1 
Units: Dmnl [0,1,1] 
0 = Always Shrouds 1 = Transparency 
 
Time to Become Informed of Hidden Fees= 
    Indicated Time to Become Informed of Hidden Fees*(Switch for Sophisticated Consumers 
)+((1-Switch for Sophisticated Consumers)*(1000*FINAL TIME)) 
Units: Month [?,?,1] 
The Time to Become Informed of Hidden Fees is the actual time  
        that it takes for consumers to become informed of the Hidden  
        Fees on the Platform. The formulation allows for 2 types of  
        consumers: Naive and Sophisticated Consumers. Only Sophisticated  
        Consumers will ever become informed of the Hidden Fees. When the  
        Switch for Sophisticated Consumers is set to 0, all consumers  
        are uninformed (naive) and do not learn of the hidden fees - and  
        this means that the Time to Become Informe of Hidden Fees for  
        them is much larger than the time horizon in the model. 
 
Total Affinity for Complementors= 
    SUM(Affinity for Complementors[Platforms!])+Affinity of Outside Option for Complementors 
Units: Dmnl 
The Total Affinity for Complementors is the sum of the Affinity  
        for Complementors on each platform and the outside option. 
 
Total Affinity for Consumers= 
    SUM(Affinity for Consumers[Platforms!])+Affinity of Outside Option for Consumers 
Units: Dmnl 
The Total Affinity for Consumers is the sum of the Affinity for  
        Consumers on each platform and the outside option. 
 
Total Complementors Capacity[Platforms]= 
    Complementors[Platforms]*Average Complementor Capacity 
Units: Transaction/Month 
This is the total supply on the platform that can be offered to  
        consumers. 
 
Total Potential Complementor Population= 
    1000 
Units: People [0,?] 
 
Total Potential Consumer Population= 
    1000 
Units: People [0,?] 
 
Unshrouding Time[P1]= 
    Switch for Transparency*Indicated Unshrouding Time[P1]+(1-Switch for Transparency 
)*Indicated Unshrouding Time[P2] 
Unshrouding Time[P2]= 
        Indicated Unshrouding Time[P2] 
    Units: Month [0,48,1] 
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    The Unshrouding Time depends on the Decision to become  
            transparent. When the platform is shrouding (Switch to  
            Transparency = 0), the Unshrouding Time is beyond the time  
            horizon in the model. When the platform decides to become  
            transparenty (Switch to Transparency = 1) the Unshrouding Time  
            is the Indicated Unshrouding Time. 
 
Utility for Consumers[P1]= 
    (Consumer Utility from CrossSide Network Effects[P1]-"Consumer Disutility from Same-Side Network Effects" 
[P1]+Consumer Utility from Perceived Price[P1])*Fulfillment Ratio[P1]+(1-Fulfillment Ratio 
[P1])*(-Consumer Disutility from Unfulfilled Demand) 
Utility for Consumers[P2]= 
        (Switch for Competition) * (Consumer Utility from CrossSide Network Effects 
    [P2]-"Consumer Disutility from Same-Side Network Effects"[P2]+Consumer Utility from Perceived Price 
    [P2])*Fulfillment Ratio[P2]+(1-Fulfillment Ratio[P2])*(-Consumer Disutility from Unfulfilled Demand 
    )+ (1-Switch for Competition)*(Effect of Monopoly Power on Utility for Consumers 
    ) 
    Units: Dmnl 
    The Utility for Consumers is the sum of it's various components.  
            It is increasing in Consumer Utility from Cross-Side Network  
            Effects, Consumer Utility from Perceived Price and decreasing in  
            the Consumer Disutility from Same-Side Network Effects and the  
            Consumer Disutility from Hidden Fees. Those Consumers that  
            wished to transact on the platform and are not served because of  
            capacity constraints derive a Disutility from the Imbalance of  
            Supply and Demand. The formulation also allows for Platform  
            Competition or Monopoly, via the Switch for Competition. 
 
Utility of Outside Option for Complementors= 
    0 
Units: Dmnl [-10,10,0.1] 
The Utility of Outside Option for Complementors is the utility  
        derived from not participating on any platform, and instead  
        conducting the transactions off the platform. 
 
Utility of Outside Option for Consumers= 
    0 
Units: Dmnl [-10,10,0.1] 
The Utility of Outside Option for Consumers is the utility  
        derived from not participating on any platform, and instead  
        conducting the transactions off the platform. 
 
Visible Price[Platforms]= 
    Base Price[Platforms]*(1+STEP(Indicated Hidden Fee Fraction[Platforms], Unshrouding Time 
[Platforms])) 
Units: Dollars/Transaction 
The Visible Price is the part of the Total Price that the  
        platform initially shows to consumers. If the platform is not  
        transparent, the Visible Price will differ from the Total Price  
        by the Hidden Fee 
 
Weight on Consumer Disutility from Hidden Fee= 
    2 
Units: Dmnl [0,10,0.1] 
Measures the importance that Consumers give to the Hidden Fee. 
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Weight on Consumer Utility from CrossSide Network Effects= 
    1 
Units: Dmnl [0,5,0.1] 
 
Weight on Consumer Utility from Price= 
    1 
Units: Dmnl [0,10,0.1] 
Measures the importance that Consumers give to the Price they  
        Perceive on the platform. 
 
"Weight on Same-Side Network Effects for Consumers"= 
    0 
Units: Dmnl [0,20,0.1] 
Measures the importance of one additional consumer on the  
        platform for the Consumers. 
 
 


