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Abstract 

In response to the rising trend of Direct-to-Consumer (D2C) sales, many traditional retailers, 
which have historically relied on wholesale business models, are now undertaking significant 
supply chain transformations. This thesis explores the strategic shift of a large retailer in the 
footwear and apparel sector, pseudonymously referred to as Iota in this study, as it transitions 
towards a D2C-focused supply chain. This transition, emblematic of a broader industry 
transformation, is aimed at enhancing alignment with the evolving expectations of customers in 
terms of service, cost-effectiveness, and sustainability. 
 
Central to this research are the proposed enhancements by Iota’s leadership to decentralize 
Iota’s supply chain. These enhancements include adding both physical infrastructure, with the 
planned establishment of a cross-dock facility, and digital infrastructure, through the 
development of a decision engine that aids in efficiently routing products within the new 
decentralized supply chain network. The cross-dock facility is envisioned to provide an 
opportunity for decision postponement in the inventory flow from Asian factories to US 
distribution centers. Meanwhile, the decision engine, leveraging a heuristic-based algorithm, is 
set to unlock new inventory flows and enhance inventory distribution. 
 
With the new infrastructure to decentralize the supply chain yet to be fully operational, a 
retrospective study was conducted using a digital twin of Iota’s supply chain. Various push and 
pull-based inventory deployment strategies were simulated in the digital twin with the goal of 
alleviating pressure on the primary distribution center and increasing fulfillment from regional 
distribution centers. In the simulation process, challenges with forecast data and lumpiness of 
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supply are discovered and subsequently addressed through the use of synthetic datasets, which 
emulate improved forecast coverage and smooth supply. 
 
The key findings from simulations highlight that despite achieving a modest performance in 
meeting the goals for the decentralized network, valuable insights were obtained that could drive 
future supply chain enhancements. The research underscores the benefits of smoothing supply 
for network performance, the critical role of comprehensive and reliable forecast data, and the 
necessity for supplementary storage solutions to complement the cross-dock facility. For 
example, one pull-based scenario using a synthetic dataset to emulate enhanced forecast 
coverage and smoother supply tripled network performance while reducing network costs by 1% 
compared to the baseline pull-based scenario. Such cost savings could be substantial for a large-
scale retailer. 
 
Concluding with recommendations, the thesis advises Iota to re-evaluate purchasing practices, 
consider integrating multiple internal sources of forecast data into a single source, and continue 
with simulation analyses. These recommendations are designed to support Iota, and by 
extension, similar retailers, in their transition towards a robust and agile D2C supply chain, 
ensuring competitive advantage in the dynamic retail sector. 
 
Thesis Supervisor: David Simchi-Levi 
Title: Professor of Engineering Systems 
 
Thesis Supervisor: Stephen C. Graves 
Title: Professor of Operations Management 
 
Thesis Supervisor: Vivek F. Farias 
Title: Professor of Operations Management 
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Acronyms 
 
Acronym Description 
BOP Beginning of Period. Start of a two-week decision period in the simulation. 
CPU Cost Per Unit. 
CxDF Cross-Dock Facility. A pass-through facility with no on-site storage. 
E2EDT End-To-End Digital Twin. A high-fidelity simulation environment for supply 

chain decision-making. 
EOP End of Period. End of a two-week decision period in the simulation. 
GAC Goods at Consolidator. A facility in Asia where the products from the 

manufacturers are assembled and purchased by Iota to be sent to the US. 
IAS Inventory Allocation Software. A decision engine to allocate inventory in first- 

and middle-mile of Iota’s decentralized supply chain network. 
JIT Just in Time. An inventory deployment strategy that minimizes storage needs. 
MVP Minimum Viable Product. A software development approach with the goal of 

getting a product to users as quickly as possible to get feedback to iterate 
upon. 

OST Off-Site Storage. A facility to store excess inventory arriving at the cross-dock 
facility. 

PDC Primary Distribution Center. The main distribution center, originally designed 
to primarily serve the wholesale business. 

PO Purchase Order. 
RDC Regional Distribution Center. There are three of them in operation currently, 

and they are used to fulfill online orders only. 
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Chapter 1: Introduction 

The retail landscape is experiencing a significant shift with the rise of the Direct-to-Consumer 
(D2C) sales channel. This channel encompasses both online customer orders and transactions 
from physical storefronts. This paradigm shift poses considerable challenges for many retailers 
whose supply chains were initially designed for wholesale operations. As such retailers transition 
their supply chains – traditionally centralized for infrequent, bulk shipments – to cater to the 
burgeoning D2C demand, which requires frequent, smaller shipments, a substantial 
reconfiguration becomes imperative. This involves moving from large-scale distribution to a 
more decentralized, agile system. The improved supply chain network must be capable of 
distributing smaller quantities nationwide cost-effectively, promptly, and sustainably. This 
restructuring is crucial as D2C sales are becoming an increasingly vital revenue source, and the 
existing supply chain models are ill-equipped to handle this change.  
 
In this evolving landscape, companies are grappling with uncertainties as they consider making 
significant investments to adapt their supply chains. The advent of digital twins – virtual 
replicas of physical entities – has shown potential in aiding decision-making for these transitions. 
These digital tools enable simulations with high fidelity, allowing businesses to assess the impact 
of supply chain network changes on various metrics such as network costs, fulfillment time, and 
carbon footprint, thereby guiding decision-making processes.  
 
This study conducts an empirical assessment of various supply chain network configurations for 
a large footwear and apparel retailer, anonymously named Iota in this thesis. It utilizes a digital 
twin to navigate the supply chain network’s restructuring to achieve specific supply chain 
objectives amid growing D2C demand. The thesis offers insights into the application of digital 
twins in strategic decision-making and sheds light on the challenges encountered by traditionally 
wholesale-centric retailers transitioning to accommodate D2C requirements. The findings are 
pertinent to other industry players considering a similar shift.  

1.1. Overview of Iota’s Supply Chain 

Iota’s supply chain, initially tailored to accommodate the wholesale business model – which 
constituted the bulk of its operations – was centralized for efficiency. The Primary Distribution 
Center (PDC) in the South, once the world’s largest of its kind at inception, served as the core 
hub for all products shipped from Asian factories. These products were typically dispatched in 
bulk from the PDC to wholesale partners. 
 
However, over the past decade, D2C sales have surged, prompting Iota to begin distributing 
products directly to consumers from the PDC. It became evident that the PDC, originally 
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designed for wholesale order fulfillment, was not optimally configured for handling D2C orders. 
To address this during the Covid-19 pandemic, Iota established three Regional Distribution 
Centers (RDCs) aimed at processing digital orders more effectively. These RDCs, located on the 
West Coast, East Coast, and Central US, played a crucial role in managing the spike in D2C 
sales during the pandemic. 

  
Figure 1: Iota’s Current Supply Chain Network 

Despite these adjustments, Iota’s distribution network largely remains centralized as seen in 
Figure 1. All products from Asia initially enter through the port on the West Coast and are 
then transported to the PDC. Upon arrival at the PDC, these items undergo a distribution 
assessment. Based on specific needs, a portion of this inventory is redirected to the RDCs to 
fulfill digital orders. However, if a particular item required for an online order is not available at 
the corresponding RDC, it is then shipped directly to the customer from the PDC, subject to its 
availability. Such a centralized approach in the distribution network leads to operational 
inefficiencies. For example, consider a digital order from a West Coast customer. The item, if 
fulfilled from the West Coast RDC, would travel an extended route from Asia to the West 
Coast port, onward to PDC, and then back to the RDC on the West Coast. Such centralized 
operations – which likely result in increased costs, fulfillment time, and carbon emissions – are 
increasingly becoming a challenge in the context of Iota’s steep D2C growth. 

1.2. Project Drivers and Objectives 

Iota is in the process of transforming its supply chain from a wholesale-focused model to a D2C 
framework, aiming to align with evolving customer expectations regarding service, cost, and 
sustainability. Iota is considering additional investments in both physical infrastructure and logical 
infrastructure to decentralize its network to support efficient fulfillment of its digital orders. 
 

FACTORY

PDC

RDC

CONSUMER

• RDC = Regional Distribution Center
• PDC = Primary Distribution Center
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On the physical infrastructure front, Iota is considering establishing a cross-dock facility (CxDF) on 
the West Coast to intercept and strategically redirect inventory arriving from Asian factories. 
Instead of routing all goods to the PDC, the CxDF will provide a decision postponement 
opportunity and allow inventory to be sent directly to the RDCs or the PDC depending on the 
need. 
 
On the digital infrastructure side, Iota is developing a new decision engine, which we will refer as 
Inventory Allocation Software (IAS) going forward in this thesis. This engine is tasked with 
managing the distribution of inventory across the first- and middle-mile of Iota’s evolving 
decentralized network. In particular, it determines the allocation of inventory across PDC, CxDF, 
and RDCs at factories in Asia (first-mile) as well as the allocation of inventory arriving at the 
CxDF across RDCs and PDC (middle-mile). The IAS operates on a heuristic-based model1 and is 
built upon a third-party software, anonymously referred to as SupplySoft in this thesis, which Iota 
is currently licensing. At the time of this study, the implementation of the IAS/CxDF solution was 
still in the preparatory phase and had not yet been fully operational. 
 
Iota’s leadership has established key strategic goals to enhance the efficiency of their supply chain. 
One such target is to maximize in-region fulfillment i.e., increase the percentage of digital orders 
fulfilled directly through the RDCs, as opposed to being dispatched from the PDC. Additionally, 
they aim to increase the share of inventory received by the RDCs from sources other than the PDC, 
thereby reducing the reliance and strain on the PDC to supply the RDCs’ inventory needs. These 
other sources of inventory flows into the RDCs include direct shipment from factories in Asia and 
inventory arriving at the CxDF. The enhancements and investments being made in both the 
physical and digital aspects of Iota’s infrastructure are directed towards reaching these supply chain 
targets. 
 
The primary aim of this research was to evaluate the impact of the IAS/CxDF solution on attaining 
the strategic goals outlined by Iota’s leadership. In addition to the strategic targets, other 
conventional supply chain metrics like inventory turns, network costs, and unutilized inventory at 
the CxDF are also used in the evaluation. Initially, the study sought to confirm that the 
introduction of the IAS/CxDF solution would not detrimentally affect the current performance of 
the supply chain, ensuring that these new infrastructural elements did not lead to a decline in the 
network performance. Following this assessment, the focus shifted towards exploring ways to 
improve the effectiveness of the IAS, with the objective of getting closer to Iota’s strategic targets. 

 
1 It must be emphasized that IAS’s algorithm is heuristics-driven and does not explicitly optimize an 
objective function unlike other decision engines used at Iota. 
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1.3. Overview of Approach  

Given that the IAS/CxDF solution was not operational during the research period, obtaining 
concurrent empirical data to assess its impact was not feasible. Consequently, a retrospective study 
leveraging simulation results was used to study the performance of the IAS/CxDF solution. 
 
Iota has built a sophisticated simulation platform, referenced in this thesis as End-To-End Digital 
Twin (E2EDT), designed to offer a high-fidelity environment for testing various supply chain 
decisions and their implications on network performance. E2EDT integrates several decision engines, 
including ones that simulate product manufacturing across different locations to evaluate the 
consequences of production shifts. For distribution strategies, it utilizes two main decision engines 
that are responsible for determining the movement of inventory from the PDC to the RDCs 
(covering the middle-mile logistics) and deciding the best source for fulfilling orders, whether from 
the PDC or RDCs (covering the last-mile logistics). Unlike IAS, which leverages a heuristics-based 
model, these other decision engines already integrated into the E2EDT are set up to optimize an 
explicit objection function that considers a combination of network costs, service-level, and 
sustainability performance. 
 
Ideally, the IAS/CxDF solution would have been integrated with E2EDT to directly simulate its 
impact and explore avenues for enhancing network performance. However, due to the third-party 
nature of the IAS/CxDF solution and its evolving status, integrating it into E2EDT was outside the 
scope of this project. The challenge was compounded by the substantial changes the IAS/CxDF 
solution introduced to Iota’s distribution model, such as diversifying the first-mile delivery routes to 
include the CxDF, RDCs, or PDC, and reconfiguring the middle-mile logistics to accommodate new 
network flows enabled by the CxDF. These significant alterations necessitated more time for full 
integration of IAS into E2EDT. 
 
To address these obstacles, the project entailed creating a streamlined digital twin of Iota’s supply 
chain distribution, which will be referred to as digital twin moving forward in this thesis. This 
digital twin emulated the heuristic logic of the IAS for first- and middle-mile logistics and used 
West greedy algorithms to perform the roles of the other distribution decision engines, namely 
replenishing inventory at the RDCs and fulfilling consumer orders, used in the E2EDT. This digital 
twin – a streamlined, standalone simulation environment – served as the basis for scenario 
analysis. The scenario analysis aimed to evaluate and enhance network performance by simulating 
the hypothetical availability of the IAS/CxDF solutions during a recent historical timeframe. It 
involved varying model parameters (discussed later) to uncover opportunities for improving the 
IAS’s performance.  
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Overview of Thesis Structure 

This thesis is structured as follows: Chapter 2 delves into the construction of the digital twin, with a 
focus on two key decisions made by IAS: the allocation of shipments from the port across PDC, 
CxDF, and RDCs, and allocation of inventory arriving at the CxDF across PDC and RDCs. This 
chapter also examines a streamlined approach to middle-mile replenishment and last-mile fulfillment 
employed in the digital twin and concludes with a discussion on the validation process of the digital 
twin. Chapter 3 explores the various metrics employed to evaluate the supply chain network 
performance. These metrics extend beyond the two strategic targets, encompassing additional 
factors such as network costs and inventory turnover at the RDCs. In Chapter 4, I outline the three 
main categories of push and pull-based scenarios simulated using the digital twin. This chapter also 
identifies two critical challenges discovered in enhancing the IAS/CxDF solution’s performance: the 
lumpy nature of Iota’s supply and the suboptimal forecast coverage. Chapter 5 presents the 
conclusion and offers recommendations for enhancing performance of the IAS/CxDF solution and 
more effective supply chain management. 
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Chapter 2: Digital Twin of Iota’s Supply Chain 

In collaboration with Iota, a digital twin of Iota’s supply chain was built. The digital twin 
models the distribution leg of the supply chain and focuses on replicating the decisions made by 
the IAS engine in the first- and middle-mile of the network. Some of the inventory allocation 
decisions in the middle- and last-mile logistics were simplified in the digital twin due to time 
constraints. The digital twin replicates two critical decisions made by the IAS. Firstly, it 
determines the inventory levels to be dispatched from factories to the RDCs, CxDF, and PDC. 
Secondly, it determines the allocation of volume between RDCs and PDC upon their arrival at 
the CxDF. These decisions are made on a bi-weekly basis, corresponding to a two-week time 
frame. 

 

 
Figure 2: Key Decisions Made by Inventory Allocation Software (IAS) 

The supply side is modeled based on historical POs available during the simulation timeframe. 
A PO is essentially an order placed by Iota with its contract manufacturers, specifying the total 
quantity of a SKU to be produced, along with the expected delivery date. While POs are 
designated for either digital or wholesale channels, it is noteworthy that non-digital POs may 
occasionally fulfill digital orders. This simulation exclusively considers POs allocated for digital 
orders on the supply side.  
 
The unconstrained nature of the model enables us to assess the upper bounds for the 
performance improvements resulting from IAS/CxDF. Except for the supply constraint 
determined by historical PO volume when matching demand and supply, the model assumes 
unlimited storage and processing capacity at each of the nodes in the network.  

PDCFACTORY

RDCs

CxDF

PO

1PO DIVERTS FROM 
FACTORY

As POs are processed at factory, IAS 
determines what POs should be split 
and redirected to the RDCs or CxDF

CONSUMER

2 TRANSFER FROM CxDF
As POs arrive at the CxDF, utilizing 
refreshed demand signals, DO determines 
what PO volume should be sent to the 
RDCs and what should be sent for further 
storage at the PDC
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The simulation covers demand from February 2022 to March 2023 for digital orders only. It can 
be run at the SKU level (defined at product-size level), and the simulations across the SKUs are 
independent. The simulation covers approximately 32 million2 units, encompassing thousands of 
SKUs, shipped. 

2.1. IAS Decision I: PO Diverts from Factory  

Without the IAS/CxDF solution, all digital inventory from the factory is sent to the PDC. 
From the PDC, the inventory is either replenished at the RDCs to fulfill digital orders, or it is 
sent directly to the consumer from the PDC if inventory is not available at the RDCs to fulfill 
digital demand.3 Following the implementation of the IAS/CxDF solution, inventory can be 
routed more efficiently from the factory.  
 
The first decision made by IAS is to allocate supply from the factory across RDCs, CxDF and 
PDC as depicted in Figure 2. To comprehend how IAS makes this decision, one must consider 
the demand and supply dynamics of a specific SKU. The available supply for a SKU on a 
particular decision date is ascertained by the historical POs eligible4 for diversion from the 
factory. It is common for there to be multiple eligible POs for an SKU, with the collective units 
from these POs contributing to the SKU’s total supply. Moreover, the model operates under the 
assumption that no inventory is present at the PDC, CxDF, or RDCs to satisfy demand, 
meaning supply for this IAS decision is strictly defined by the available POs. 
 
On the demand side, the model utilizes the long-range forecast of an SKU with a 13-week lead 
time, which is the anticipated duration for goods to travel from factories in Asia to the 
distribution centers in the US and become available to meet consumer demand. Historical 
forecast data snapshots are leveraged to establish the long-range forecast for each SKU. During 
this IAS decision-making process, any safety stock requirements are disregarded, and only the 
forecasted demand is considered.  
 
Following the establishment of long-range demand forecast, it must be disaggregated to 
distribute the demand across the RDCs, CxDF, and PDC. This disaggregation process is further 
explained in section 2.1.1. With granular demand and supply data at hand, a greedy heuristic 

 
2 During this period, the actual digital sales were much higher. However, the simulation does not include sales from 
specialized distribution centers, orders fulfilled by nodes that are not yet distribution centers, launch products, or 
digital orders fulfilled by POs that were allocated for non-digital sales. 
3 The fulfillment decision is made by another decision engine, which may prioritize fulfilling from the PDC even if the 
inventory is available at the RDCs, in order to meet the overall objective, which includes minimizing split shipments. 
4 Eligible POs to be diverted are determined based on their expected arrival dates at the consolidator in Asia. The 
model assumes a 5 week lead time between decision date and arrivate date at the consolidator.	
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algorithm is employed to match demand with supply. The specifics of this algorithm are detailed 
in section 2.1.2. 
 
The IAS in the digital twin runs on a bi-weekly cycle, assessing the demand and supply for each 
SKU within a two-week span. For example, during the first two weeks (weeks 0 and 1) of the 
simulation, the demand forecast for weeks 13 and 14 informs the decision-making process. The 
subsequent decision period covers weeks 2 and 3, which considers the demand forecast for weeks 
15 and 16, and this pattern continues throughout the simulation. Figure 3 presents a detailed 
timeline of the demand and supply considered for each IAS decision period. 
 

 

 
Figure 3: Decision Timeline in IAS Decision I 

2.1.1. Disaggregating Long-Range Demand Forecast 

The long-range forecast (13-week lead time), available at product level, is a key input in making 
the PO split decision at the factory. As mentioned earlier, the inventory on hand or the safety-
stock targets are not factored in for this IAS decision. To match forecasted demand with supply 
(POs), it is necessary to disaggregate the long-range demand forecast to match the level of 
granularity of the PO data. 
 
We begin by disaggregating the forecast to the product-size level, and subsequently splitting it 
even further to map to the three geographic regions served by the RDCs. Using Size Curves (an 
internally developed model that splits demand across sizes for each product) and historical 
proportion of digital sales across the three RDCs, the long-range forecast at the product level is 
split to be at the product-size-region level as shown in Figure 4. 
 

T = 0 + 13 wks + 15 wks

Demand Period

+ 5 wks + 7 wks

5-Week Lead Time for “Goods at 
Consolidator” to Identify POs Eligible 

POs

+ 2 wks

Decision Period for 
Diverts from Factory

13-Week Lead Time for Long-
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Figure 4: Long-Range Forecast Data Splitting Process at Product-Size-Region Level (Note: Illustrative 

Proportions) 

Next, to emulate the logic of the SupplySoft Solution (third-party software on top of which IAS 
was built), the forecasted demand, currently at product-size-region level, is further split into 
three confidence levels: high, medium, and low. This division is based on the confidence of 
demand actualization. These confidence levels are determined using an internally developed Flow 
Strategy model which is explained below.  
 
The Flow Strategy model categorizes products into seven segments based on their forecast 
volume and accuracy. Then, for each segment, the model defines demand proportions for high, 
medium, and low categories, illustrated in Figure 5. By mapping products to specific segments, 
the same set of demand confidence proportions is applied uniformly to all products within each 
segment. This division results in high, medium, and low confidence proportions for the demand. 
A more detailed description of the Flow Strategy model can be found in Appendix C. 
 

 
Figure 5: Confidence Proportions in the Flow Strategy Model (Note: Illustrative Purposes) 

Next, the Flow Strategy model specifies the lanes for diverting the supply based on forecasted 
demand. While medium confidence demand across all three RDCs is sent to the CxDF, and low 
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confidence demand is sent to the PDC, high confidence demand is sent directly to the three 
RDCs. This implies that high confidence demand must be distributed among three nodes, while 
medium and low confidence demand consolidate at a single node.  
 
To ensure a more equitable distribution of supply among the three RDCs, we further split the 
high-confidence demand into two5 segments and queue them (see H Quenue Position column) in 
the order of the segements (a SupplySoft Solution logic) as shown in Figure 6. As explained in 
the next section, this process enables a more fair allocation of supply across the RDCs, instead 
of diverting the supply to a single RDC in cases where enough supply is not available to meet 
demand across all the RDCs. 

 

 
Figure 6: Demand Split by Confidence Level With H-Demand Further Split into Two Segments for 

Equitable Distribution Across RDCs (Assuming X08720-A10 is in Product Segment A) 

2.1.2. Matching Disaggregated Forecasted Demand with Supply 

Emulating the SupplySoft Solution logic, a demand queue is established to match supply with 
the disaggregated forecasted demand as shown in Figure 7. Within this queue, high-confidence 
demand takes priority, followed by medium-confidence demand, and finally, low-confidence 
demand. The high-confidence demand segments are sorted by their position in the queue, 
starting with the first position, and moving on to subsequent ones. Within each high-confidence 
demand segments with the same queue position, the demand lines with the smallest quantities 

 
5 The choice of two segments was primarily to minimize runtime. A higher number of segments would enable more 
equitable distribution of supply across the RDCs when it is not sufficient to meet all forecasted demand.  
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PDC12 x 0.4 x 1 = 4.8-L (40%)

RDC 310.5 x 0.4 x 0.5 = 2.11
H (40%)

RDC 3 
(35%)
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are fulfilled first (1.5 followed by 2.1 followed by 2.4 within H Queue Position 1 in the example 
below). 
 
Next, case pack requirements are implemented in the demand queue to ensure that only full 
cases are shipped as per business requirements. The case pack requirement6 is 6 for footwear and 
12 for the first pack of apparel, followed by 6 for subsequent packs. For example, if there is a 
demand for 10.5 pairs of shoes, they will be shipped in two cases of 6 pairs each. If there is a 
demand for 12.4 shirts, they will be shipped in one case of 12 shirts, plus another case of 6 
shirts. 

  
Figure 7: Demand Queue for Supply-Forecasted Demand Matching with Case Pack Rounding (Assuming 

X08720-A10 is in a Footwear) 

After establishing the demand queue, the supply is matched with the demand in a linear 
manner, considering the available supply. Figure 8 illustrates three scenarios regarding the 
available supply: when the supply equals the forecasted demand with the case pack requirement, 
when the supply is less than the demand, and when the supply exceeds the demand. 

 
6 The case pack requirements varied between adults and kids, which was ignored in the model. 
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Figure 8: Matching Supply with Forecasted Demand in the Queue 

In the first scenario, we precisely match the forecasted demand at each node with the available 
supply. However, when the supply is insufficient compared to the demand, we match the supply 
with the demand until the supply is depleted. This approach showcases the advantage of further 
splitting the high-confidence demand into two segments and queuing them by segment, as it 
allows for a fairer allocation of supply across the RDCs. The first segment of of demand is 
fulfilled at each RDC before moving on to fulfill the second segment of demand for the RDC at 
the top of the demand queue. 
 
In the case where the supply exceeds the forecasted demand, the surplus is directed to the PDC. 
For example, even though the demand was only 12 units, 18 units are sent to the PDC. 
Additionally, if a product has an eligible purchase order (PO) but is not covered in the Flow 
Strategy, it is sent directly to the PDC. 
 
By the end of this process, we observe that originally, the PO would have been sent directly to 
the PDC. However, the SupplySoft Solution splits each PO to be sent to a maximum of five 
destinations: three RDCs, CxDF, and PDC. 
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2.2. IAS Decision II: Inventory Transfer from the CxDF  

The IAS engine’s second critical decision involves the allocation of inventory that is diverted 
from the factory and arrives at the CxDF. Upon arrival, the IAS model distributes the inventory 
between the RDCs and the PDC, with the CxDF serving as a juncture for decision 
postponement. This allows for the integration of updated demand signals to inform the 
allocation of inventory. The simulation spans 21 bi-weekly decision periods, stretching from May 
2022 to February 2023. 
 
To understand the IAS’s second decision, it is helpful to consder the demand and supply for a 
SKU. Let’s consider the supply side first. Although we made IAS’s first decision estimating that 
POs would take 13 weeks to arrive at the CxDF from the factory, there is variability in the 
actual arrival dates. Thus, the historical arrival dates of POs are used to determine the actual 
inventory available at the CxDF. Figure 9 presents the timeline of these elements. For this 
decision, the inventory available at the RDCs is also considered as part of the supply to fulfill 
demand. 
 

 

 
Figure 9: Decision Timeline for IAS Decision II 

Regarding demand, the updated short-range demand forecast is taken into account. Moreover, 
for this IAS decision, safety stock levels are also factored into the supply and demand matching 
process. In the baseline scenario, safety stock requirements are set to correspond to one week of 
short-range demand. 
 
The existing inventory at the RDCs is deducted from the short-range demand forecast and the 
safety stock target to determine the inventory needs at the RDCs. The goal is to fulfill these 
requirements from the CxDF’s available supply. Should the CxDF’s supply prove insufficient, the 
inventory at the PDC is then utilized. For the purposes of this decision, the model assumes zero 
lead time for transferring inventory from the CxDF to the RDCs/PDC and from the PDC to the 
RDCs. It also presumes there are no storage or processing capacity constraints at any of the 

T = 0 + 13 wks + 15 wks

Targeted Demand Period

+ 2 wks

13-Week Lead Time for Long-
Range Demand Forecast

Actual PO Arrival Date

+ 2 wks

Actual Demand Period

Decision Date for Inventory 
Allocation from CxDF

T = 0

Estimated PO Arrival Date

Decision Period for 
Diverts from Factory



 25 

network’s nodes. The intricacies of these calculations, along with an illustrative example, are 
detailed in the forthcoming sub-sections. 

2.2.1. Calculating Inventory Required at the RDCs 

As of the time product reaches the CxDF and needs to be diverted, the model calculates the 
inventory required at the RDCs. The first input is the updated forecasted demand for the two-
week decision period. To address the limitation of assuming zero lead time, the model uses the 
demand forecasted one week prior to the decision date (refer to Figure 9). This approach ensures 
the utilization of more realistic forecast data that would be available for determining the 
allocation of inventory arriving at the CxDF. The model calculates the safety-stock target, 
which is set at one week of demand. For simplicity in modeling, the safety stock is determined 
based on the forecasted two-week demand, rather than considering future projected demand for 
the third week. 
 
With demand and safety stock calculated, the model considers the inventory available from the 
last decision period7 and incoming supply from the factory to determine the inventory required 
at the RDCs for the decision period. For instance, taking RDC1 in Figure 10, if the forecasted 
demand for a SKU at an RDC is 30 units, the safety stock target is 15 units, 10 units were in 
stock at the RDC, and 0 units are arrived directly at the RDC from the factory, then the 
inventory required for that SKU at the RDCs is 35 (30+15-10-0) units in total, 20 units to meet 
forecasted demand and 15 units to meet the safety stock target. 

 

 
Figure 10: Inventory Calculation for Meeting Demand and Safety Stock Targets across 3 RDCs for a SKU 

Using this logic, the model calculates the required inventory to meet the forecasted demand and 
safety stock target for each SKU at the three RDCs. 

2.2.2. Matching Demand and Supply at the CxDF and the PDC 

The calculated inventory required to meet the forecasted demand and the safety stock target is 
used to create a demand queue for each SKU in the simulation. In addition to following the 
priorities applied for creating the demand queue for the divert decision from the factory, this 

 
7 For the first decision period, the model uses historical snapshot of inventory available. For the subsequent decision 
periods, the inventory balance at the end of the previous decision period as calculated in the simulation is used. 
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demand queue also prioritizes inventory required for forecasted demand before inventory 
required to meet safety stock targets. Recall that while making divert decisions at the factory, 
we only considered long-range demand forecast, ignoring any safety stock requirements. 
 
Figure 11 shows the demand queue (column Inventory Required) for the SKU, which is used to 
match demand with supply that arrives at the CxDF from the factory. The splitting of high-
confidence demand into two segments and queuing them ensures that the supply available at the 
CxDF is split across the RDCs in an equitable manner. The case pack rounding requirement is 
applied to the demand queue (column Inventory Required with Case Pack Rounding) before 
matching demand and supply. 

 

 
Figure 11: Demand Queue for Inventory Allocation Decision at the CxDF - Prioritizing Forecasted 

Demand over Safety Stock 

The supply available at the CxDF for the SKU is matched to the demand queue in linear order. 
Recall that because the CxDF is a cross-dock facility without storage, any inventory arriving at 
the CxDF must be allocated to the RDCs or PDC. If the supply at the CxDF is more than what 
is needed to fulfill demand and safety stock targets at the RDCs, then the excess is sent to the 
PDC. 
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Finally, if the inventory required at the RDCs cannot be fulfilled using the supply arriving at the 
CxDF, then the model creates another demand queue to fulfill the leftover requirement using 
inventory available at the PDC. The leftover requirement is calculated by netting out demand 
and safety stock requirements that were fulfilled using the inventory arriving at the CxDF. 
 
In the example presented in Figure 11, 42 units are required at RDC 1 and 6 units at RDC 2. If 
54 units of the SKU arrive at the CxDF from factory diverts, then the model will send 48 units 
to the RDCs, with 42 units going to RDC 1 and 6 units going to RDC 2. The excess 6 units 
(CxDF Overage) is sent to the PDC. However, if only 24 units arrive at the CxDF, then 24 units 
are sent to RDC 1 since it comes first in the demand queue. The model then tries to fulfill the 
remaining 24 units required from the inventory available at the PDC.   
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2.3. Validation of Digital Twin 

Iota’s existing supply chain, initially designed for wholesale transactions, operates by routing all 
inventory from the manufacturing sites directly to the PDC. Once at the PDC, this inventory is 
either directed towards replenishing stock at the RDCs or fulfilling digital (and wholesale) 
orders directly. To measure the accuracy of the simulation, the current operational model was 
replicated within the simulation to compare simulated inventory turnover rates at the RDCs 
with the historical acutal figures. 

 
Figure 12: Simulated Status Quo Scenario vs Actual Inventory Turns at RDCs 

Simulated vs. Actual Bi-Weekly Inventory Turns at RDC1 

Simulated vs. Actual Bi-Weekly Inventory Turns at RDC2

Simulated vs. Actual Bi-Weekly Inventory Turns at RDC3
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Figure 12 showcases a side-by-side comparison of inventory turnover rates (calculated as 
annualized sales/average inventory over the two-week decision period)8 from the simulation 
against actual rates for each decision period at the three RDCs. The X-axis presents the start 
date of two-week decision period and y-axis presents the inventory turns with y-scale hidden to 
maintain data privacy. The close alignment between the simulated and actual turnover rates is 
apparent, with the simulation successfully reflecting the spike in turnover during the Black 
Friday period and the subsequent decrease post-Holidays, mirroring the real-life trend. This 
congruence between the simulated and actual data affirms the reliability of the model in 
depicting the nuances of Iota’s supply chain concerning digital orders. 

  

 
8 See Chapter 3 for a detailed description of how the RDC Inventory Turns are calculated in the simulation 
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Chapter 3: Metrics for Evaluating Supply Chain 
Network Performance  
The following key metrics are calculated to evaluate the performance of the supply chain 
network: 
 
• Inventory Turns at RDCs: The inventory turns at the RDCs represent the number of times 

the inventory at the RDCs is replaced within a year. This metric is calculated in the spirit of 
the formula below: 
 

𝑅𝐷𝐶	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝑇𝑢𝑟𝑛𝑠 = 	
𝐴𝑛𝑛𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠	(𝑢𝑛𝑖𝑡𝑠)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	(𝑢𝑛𝑖𝑡𝑠)
 

 
Several intermediate variables in the simulation contribute to the calculation of RDC 
inventory turns. Figure 13 showcases three examples using a single SKU of calculating RDC 
inventory turns using these intermediate variables in the simulation. These simplified cases 
are explained below and subsequently generalized using equations to encompass all SKUs. 
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[D] > 
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otherwise 
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(t) 
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+ [E] – 

[D] 
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[G] = 
([C] + 
[F])/2 

Regional 
Daily 

Fulfilled 
Quantity

(t) 
[H] = 
([D] – 
[E])/14 

RDC 
Invento

ry 
Turns(t

) 
[I] = 

[H]x365
/[G] 

Case 1 50 20 70 40 0 30 50 40/14 20.9 

Case 2 20 30 50 40 0 10 30 40/14 34.8 

Case 3 10 0 10 40 30 0 5 10/14 52.1 

 
Figure 13: Three Cases Showcasing Calculation of RDCs Inventory Turns Using a Single SKU 

In all three cases, the Average Inventory over the two-week decision period is determined by 
calculating the average of the Beginning of Period (BOP) Inventory, which is the inventory 
level at the start of the decision period, and the End of Period (EOP) Inventory, which is 
the inventory level at the end of the decision period. For instance, in the first case, the BOP 
Inventory (70 units) is calculated by taking the EOP Inventory from the last period (50 
units) and adding any arriving units at the RDCs from the factory, CxDF or PDC (20 
units). The EOP Inventory (30 units) is determined by taking the BOP Inventory, 
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subtracting the Actual Sales, and adding back any Lost Regional Sales. This convoluted 
definition of EOP Inventory is due to how the simulation is setup. In the simulation, Lost 
Regional Sales are defined as the difference between Actual sales and BOP Inventory if the 
former exceeded the latter, and 0 otherwise. The simulation assumes that these Lost 
Regional Sales are fulfilled from the PDC. In the first case, Lost Regional Sales are assumed 
to be 0, so the EOP Inventory is simply calculated as 70 units (BOP inventory) – 40 units 
(actual sales) + 0 (lost regional sales) = 30 units. As such, we end up with an Average 
Inventory of (70 + 30)/2 = 50 in period t.  
 
In the third scenario, the BOP Inventory was 10 units, and Actual Sales were 40 units, 
indicating that 30 units must have been sourced from the PDC. Therefore, the EOP 
Inventory is calculated as 10 units (BOP) plus 30 units (lost regional sales) minus 40 units 
(actual sales), resulting in 0 units. The Average Inventory in this case is (10+0)/2 = 5. 
 
To calculate the annual sales in the numerator, the Regional Daily Fulfilled Quantity is defined 
as the difference between Actual Sales and Lost Regional Sales, divided by 14 to convert the 
metric to a daily basis. This figure is then multiplied by 365 to project the annual volume sold 
from the RDCs. In the first case, the Actual Sales are 40 units and Lost Regional Sales are 0 
units. Thus, the Regional Daily Fulfilled Quantity is calculated as (40-0)/14. This metric is 
annualized in the numerator when calculating the RDCs Inventory Turnover. 

 
The three cases discussed above assume a single SKU. If these three cases were combined such 
that the simulation had just 3 of these SKUs, the RDC Inventorty Turns would be caluclated 
as:  

𝑅𝐷𝐶	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝑇𝑢𝑟𝑛𝑠! =	
94014 +

40
14 +	

10
14> 𝑥	365	

50 + 30 + 5
 

 
 

Below, I present the generalized equations used in the simulation to calculate inventory turns 
at the RDCs across all SKUs. 
 

𝑅𝐷𝐶	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝑇𝑢𝑟𝑛𝑠! =	
365 ∗	∑ 𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙	𝐷𝑎𝑖𝑙𝑦	𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑	𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦"#$,!"#$

∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦"#$,!"#$
 

 
Let’s deconstruct the metric in the numerator:  
 

𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙	𝐷𝑎𝑖𝑙𝑦	𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑	𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦"#$,! =
𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,! − 𝐿𝑜𝑠𝑡	𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,!

14
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𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,! is taken from a historical snapshot of data and 
𝐿𝑜𝑠𝑡	𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,! is calculated as:  

 
𝐿𝑜𝑠𝑡	𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,! = 𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,! − 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝑎𝑡	𝐵𝑂𝑃"#$,! 

	𝑖𝑓	𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠	 > 	𝐵𝑂𝑃	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,	 
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 

 
Let’s deconstruct the metric in the denominator: 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦"#$,! =
𝐵𝑂𝑃	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦"#$,! + 𝐸𝑂𝑃	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦"#$,!

2
 

 
 

𝐵𝑂𝑃	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦"#$,!
= 𝐸𝑂𝑃	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦"#$,!&' + 𝐹𝑎𝑐𝑡𝑜𝑟𝑦	𝐷𝑖𝑣𝑒𝑟𝑡𝑠"#$,! + 𝐶𝑥𝐷𝐹	𝐼𝑛𝑏𝑜𝑢𝑛𝑑"#$,!
+ 𝑃𝐷𝐶	𝐼𝑛𝑏𝑜𝑢𝑛𝑑"#$,!	 

 
𝐸𝑂𝑃	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦"#$,!

= 𝐵𝑂𝑃	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦"#$,! + 𝐿𝑜𝑠𝑡	𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,! − 𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,! 
 
• Percentage of Non-PDC Inflows to RDCs: This is the percentage of inventory arriving at 

the RDCs that did not come from the PDC. To relieve capacity and processing constraints 
for digital demand at the PDC, leadership has set a goal of maximizing the inventory 
arriving at the RDCs coming from non-PDC nodes. This metric can be measured reliably in 
the simulation and has become a key metric for identifying improvements to IAS. 
 

• CxDF Overage: This is the percentage of excess inventory sent to the CxDF that is not 
utilized by the RDCs and thus sent to the PDC. 

 
• In-Region Fulfillment Percent: This metric represents the proportion of demand at the 

RDCs that was satisfied using inventory already available at the RDCs. The model, however, 
operates under the assumption of zero lead time for the movement of inventory within and 
between nodes in the US, without considering any capacity or processing constraints. This 
assumption allows inventory from the PDC to be transferred to the RDCs too readily, which 
then contributes to the calculation of in-region fulfillment. Consequently, this metric does 
not provide a reliable measure for gauging progress towards Iota’s strategic goal of 
maximizing in-region fulfillment. Due to this unreliability and despite its relevance to one of 
Iota’s key objectives, this metric is not included in the reporting of the digital twin’s 
findings. 
 

• Variable Network Costs: This metric encompasses the expenses associated with processing, 
transporting, and splitting up POs. These costs are computed for each scenario to facilitate a 
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comparative analysis of performance against costs incurred. Given that fixed costs do not 
vary across scenarios, the focus here is solely on variable costs. The components of the 
network costs include: 

o Processing Cost Per Unit: This covers the variable costs incurred at various 
facilities, such as the RDCs, PDC, CxDF, and Off-Site Storage (OST)9, for handling 
inventory. Processing costs specific to the port in Asia are omitted from this 
calculation since they are constant across all scenarios. Additionally, it is assumed 
that the per-unit processing cost at the CxDF represents an average of the costs at 
the PDC and OST. 

o Shipping Cost Per Unit: This reflects the cost associated with transporting each unit 
across different segments of the supply chain, delineated as first-, middle-, and last-
mile costs: 

§ First-mile: The cost of shipping from the port in Asia to the RDCs, CxDF, or 
PDC. 

§ Middle-mile: The cost of transporting goods from the CxDF to the 
PDC/RDCs/OST; from the OST to the RDCs; and from the PDC to the 
RDCs. For the purposes of this analysis, the OST is posited to be a national 
center strategically located the PDC. This central location enables the OST 
to efficiently serve all RDCs across the US. 

§ Last-mile: The cost of delivery from the RDCs or PDC directly to the 
customer. 

o PO Splitting Costs: Splitting a PO incurs additional expenses that are factored into 
the simulation. These costs are attributed to each new PO created from the division 
of an original PO. As a result, every new PO derived from splitting an original one 
bears a specific cost. For example, if an original PO is divided into y new POs, with 
each split incurring a cost of $x, the total cost associated with splitting the original 
PO would amount to $xy. 

  

 
9 OST is a buffer storage facility that will be described in detail later in the thesis. 
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Chapter 4: Scenario Analysis Using Digital Twin 
The digital twin of Iota’s supply chain, developed as part of this study, is an instrumental 
simulation tool for enhancing the performance of the IAS/CxDF solution. In this section, I will 
detail and examine the results from various scenario analyses conducted with the digital twin. 
These scenarios involved the application of different inventory deployment strategies in the first- 
and middle-mile segments of the distribution network. The specific parameters varied in these 
scenarios will be discussed later in this section. The choice of these variations was informed by 
insights from supply chain leaders at Iota, literature research, and intermediate simulation 
results. The simulation encompasses a total of 32 million units, comprising thousands of SKUs 
arriving between May 2022 and February 2023. Running each scenario in the simulation takes 
approximately 40 minutes. This large run time per scenario constrained the number of scenarios 
that could be run and evaluated in a timely manner. The scenarios analyzed through the digital 
twin fall into three main groups: 

1. Demand-Driven Inventory Deployment: In these scenarios, inventory deployment 
decisions were based on forecasted demand patterns. 

2. Supply-Driven Inventory Deployment: These scenarios focused on deploying inventory 
according to available supply, regardless of forecasted demand. 

3. Demand-Driven Inventory Deployment with Synthetic Data: Similar to the first group, 
these scenarios also revolved around demand forecasts for inventory deployment. 
However, they incorporated synthetic data to evaluate certain policies for which actual 
data was not available. 

  

Figure 14: Demand vs Supply Driven Deployment 
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The terms “Demand-Driven” and “Supply-Driven” require additional clarification to better 
understand their application within this study. As depicted in Figure 14, the decision to divert 
inventory from the factory under a demand-driven strategy considers forecasted demand. For 
instance, with a forecasted demand of 100 units, the IAS strategically allocates a total of 100 
units—divided as 40 high, 35 medium, and 25 low confidence levels—to the RDCs, CxDF, and 
PDC respectively. Any surplus, in this case, 1100 units, is directed to the PDC. The 35 units 
arriving at the CxDF are allocated to satisfy unfulfilled demand at the RDCs, guided by the 
updated demand forecast and the unmet requirements at the CxDF. Any surplus inventory is 
then forwarded to the PDC. The demand-driven scenarios can alternatively be conceptualized as 
pull strategy, where inventory distribution is dictated by forecasted demand, essentially pulling 
inventory through the supply chain. 

Conversely, the supply-driven approach dispatches all 1200 units to the CxDF, disregarding 
forecasted demand. Here, inventory deployment is solely based on the available supply, with 
demand considerations playing no role. The substantial volume of inventory reaching the CxDF 
is distributed among the RDCs, OST, and PDC using various allocation strategies, which are 
explored within the digital twin and will be discussed later in this document. This supply-driven 
approach resembles a push strategy, wherein all inventory is pushed through to the next stage, 
irrespective of forecasted demand. This distinction highlights the underlying strategies of 
responding to actual demand versus prioritizing the movement of available supply. 

The following three sections of this chapter delve into each of the three scenario groups in 
depth. They outline the specific parameters that were adjusted, explain the reasons behind these 
adjustments, and examine the effects on different metrics across the scenarios. The final section 
of this chapter synthesizes the findings from all scenarios to offer broader insights. Figure 16 
presents an overview of the scenarios that will be discussed in the subsequent sections. It's 
important to note that while this chapter provides detailed analysis on 11 scenarios, the study 
encompassed over 50 scenarios in total. 
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Policy 
# 

Inventory Policy Rationale Parameter Modified 

1 Send 100% of supply to 
the PDC. 

Modeling the status quo. None 

Demand-Driven Inventory Deployment 

2 Baseline Flow Strategy 
(FS) Model 

Intended logic of FS in IAS. Use confidence proportions 
as determined by the 
baseline FS model. Send 
supply to cover two weeks 
of forecasted demand split 
across RDCs, CxDF, and 
PDC based on confidence 
proportions. Send excess 
supply to PDC. 

3 Send supply to CxDF for 
High and Medium 
confidence demand. 

Decision postponement for a 
larger volume of supply 
compared to (2). 
 

Add the High proportion 
to Medium proportion in 
the baseline FS model. 

4 Send supply to CxDF for 
High, Medium, and Low 
confidence demand. 

Decision postponement for a 
larger volume of supply 
compared to (3). 

Add the High and Low 
proportions to Medium 
proportion in the baseline 
FS model. 

Supply-Driven Inventory Deployment 

5 Send all POs allocated to 
digital to CxDF. 

Decision postponement for 
all supply allocated for 
digital orders. 

Bypass baseline FS model 
and send all inventory 
allocated to digital to the 
CxDF. 

6 (5) + Increase SS target 
at RDCs from 1 week to 
8 weeks. 

Decision postponement for 
all supply allocated for 
digital orders and address 
“lumpiness” of Iota’s supply 
by using existing RDCs. 

Bypass baseline FS model 
and send all inventory 
allocated to digital to the 
CxDF. Increase SS target 
at RDCs. 
 

7 (5) + Add a new storage 
node – OST -- to store 
some of the excess 
inventory arriving at the 
CxDF. 

Decision postponement for 
all supply allocated for 
digital orders and address 
“lumpiness” of Iota’s supply 
by building a new storage 
facility. 

Bypass baseline FS model 
and send all inventory 
allocated to digital to the 
CxDF. Add a new storage 
node – OST – to the 
network. 

8 (7) + Divert 30% of 
inventory to RDCs for 

Decision postponement for 
all supply allocated for 

Bypass baseline FS model 
and send all inventory 
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products with no forecast 
signal when they arrive 
at the CxDF. 

digital orders. Address 
“lumpiness” of Iota’s supply 
by building a new storage 
facility as well as address 
the lack of forecast 
coverage. 

allocated to digital to the 
CxDF. Add a new storage 
node – OST – to the 
network. Divert 30% of 
inventory for products 
with no forecast upon 
arriving at CxDF to 
RDCs. 

Demand-Driven Inventory Deployment with Synthetic Data 

9 Baseline FS with 
Synthetic Forecast 

Improve the forecast 
coverage and revert to 
demand-driven deployment. 

Create synthetic forecast 
data and use it in lieu of 
original forecast. 

10 Baseline FS with 
Synthetic POs 

Address the lumpiness of 
supply by creating a 
synthetic smooth supply. 

Create synthetic supply 
data and use it in lieu of 
original supply data. 

11 Baseline FS with 
Synthetic Forecast and 
POs 

Address the lumpiness of 
supply as well as lack of 
forecast coverage with 
synthetic data. 

Create synthetic supply 
and forecast data and use 
it in lieu of original data. 

Figure 15 Inventory Deployment Policies Simulated Using the Digital Twin 
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4.1. Scenario Analysis: Demand-Driven Inventory Deployment 

The first set of simulations conducted with the digital twin examine the principles of demand-
driven inventory management. Designed according to the specifications of the IAS/CxDF 
solution, the digital twin directs inventory at the Asian port based on forecasted demand (13 
weeks out) and confidence levels determined by the Flow Strategy model. The inventory from 
the port is routed not just to the PDC but also to the RDCs and CxDF, diversifying the 
distribution channels beyond the original PDC-only approach.  The allocation of inventory 
among these routes is guided by demand confidence proportions, which are specified for each 
product segment by the Flow Strategy model, a process detailed in Chapter 2. 
 
In these scenarios, the primary parameter varied is the quantity of forecasted demand allocated 
to the CxDF. In the baseline scenario, inventory associated with medium-confidence demand 
forecasts is redirected to the CxDF. It is crucial to remember that the CxDF serves as a 
strategic point for delaying final distribution decisions; upon inventory’s arrival at the CxDF, 
the IAS reevaluates updated demand forecasts to decide whether inventory should be forwarded 
to the RDCs or the PDC. Given that the decision to divert inventory from the Asian port is 
made 13 weeks in advance, there exists significant uncertainty within the demand forecast. 
Therefore, the CxDF’s role in postponing decisions becomes pivotal in optimizing the 
distribution of inventory from Asia, ensuring more accurate and efficient routing. 
 
Utilizing the CxDF as a hub for decision postponement, the analyzed scenarios vary the amount 
of inventory rerouted to the CxDF, thus broadening the scope of decision postponement to 
encompass a larger volume and wider range of products. Instead of confining these diversions to 
inventory linked with medium-confidence demand, the scenarios incrementally incorporate 
inventory associated with high-confidence (H) and, ultimately, low-confidence (L) demand into 
the diversion process, enhancing the flexibility and responsiveness of the supply chain to 
fluctuating demand forecasts. 
 
As illustrated in Figure 16, employing this demand-driven approach, which resembles a pull 
strategy, resulted in only 5.4% of the inflows bypassing the PDC to reach the RDCs. When the 
strategy was adjusted to divert a greater volume of inventory to the CxDF, including the high-
confidence segment of demand, this percentage further decreased to 3.1%. This decrease 
indicates that some inventory, initially directed to the RDCs and now rerouted to the CxDF due 
to its high-confidence demand status, turned out to be unnecessary at the RDCs based on 
subsequent demand assessments. The figure modestly improved to 4.1% when inventory 
associated with low-confidence demand was also redirected to the CxDF. Nonetheless, regardless 
of these adjustments, the performance metrics, ranging from 3.1% to 5.4%, are modest at best 
given the objective to maximize the non-PDC inflows to RDCs. 
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Scenario 
% of PO Volume 
Diverted to CxDF 

CxDF 
Overage 

% of Non-PDC 
Inflows to RDCs 

RDC Inventory 
Turns 

Variable Network 
Costs (Scaled) 

Baseline Flow 
Strategy Model 1.6% 58.0% 5.4% 11.6 100.0 
H+M to CxDF, 
RDC SS 1wk 3.7% 31.7% 3.1% 11.8 100.1 
H+M+L to 
CxDF, RDC SS 
1wk 5.7% 39.7% 4.1% 11.8 100.2 

Figure 16: Performance Metrics for Demand-Driven Inventory Deployment 

Remarkably, a mere 1.6% of the inventory leaving the factory was rerouted to the CxDF from 
the Asian port. This figure slightly increases to 5.7% in the third scenario, where the entire 
inventory matching the two-week demand forecast is diverted to the CxDF. Put another way, 
when implementing a demand-driven deployment strategy, over 94% of the inventory ends up 
being directed to the PDC from the port, which is not much different from the previous design 
of routing all inventory to the PDC. This pattern suggests that due to certain complexities 
within the model, most of the inventory is channeled to the PDC. 
 
A closer analysis of the data revealed that the suboptimal performance of the demand-driven 
deployment – espeically the 94% of inventory being diverted to the PDC from the port in Asia –  
was mainly influenced by two critical factors: 

• Lumpiness of Supply: Iota’s POs demonstrate a lumpy pattern, characterized by infrequent 
occurrences but in substantial volumes. This trait reflects Iota’s procurement strategy of 
bulk purchasing for an entire season, a practice rooted in its traditional wholesale business 
model. Within the simulation, 25% of these large POs, each comprising more than 1000 
units, accounted for 74% of the total PO volume. These POs typically covered 8 weeks of 
demand on average. Additionally, an average SKU receives fewer than 5 POs annually 
within the network. This pattern of lumpy supply typically directs the majority of inventory 
to the PDC from the port as the IAS weekly model seeks to distribute inventory based on 
two weeks of demand. As a result, the excess supply in the POs consistently ends up at the 
PDC. While Iota was aware of the lumpy nature of its POs, it had not posed a significant 
concern until the D2C channel began to capture a substantial share of sales. The simulation 
underscored the pronounced impact of this lumpy supply pattern on efficiently fulfilling D2C 
orders, revealing the need for adjustments in Iota’s supply chain design to accommodate the 
growing importance of D2C sales. 
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• Forecast Coverage: The simulation also highlighted a significant number of products lacking 
long-range forecast data necessary for making PO diversion decisions in the digital twin. 
Products devoid of relevant forecast data were excluded from the flow strategy model, 
leading to their POs being automatically rerouted to the PDC. The issue of missing forecast 
data is complex and is partly due to the reliance on a singular source of forecast data in the 
digital twin (and by extension, in the SupplySoft Solution), which does not encompass all 
available forecast information available to Iota for diversion decisions. Another complexity is 
that the comprehensive forecast data intended for input into the SupplySoft Solution may 
not have been consistently maintained in the past. This lack of historical data maintenance 
could have contributed to the elevated level of missing forecasts observed in this simulation. 

 
To address these challenges uncovered from the simulation, two strategies were pursued: (i) 
Transitioning from a demand-driven to a supply-driven deployment, and (ii) Reverting to a 
demand-driven approach but incorporating synthetic data to simulate both the smoothing of 
POs and the comprehensive availability of forecast data. This adjustment aimed to explore 
potential improvements in network performance if the identified obstacles in the initial demand-
driven deployment could be overcome. The next two sections describe the scenarios explored 
and the results of these two appraoches. 
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4.2. Scenario Analysis: Supply-Driven Inventory Deployment 

Given the reliance on accurate, long-term forecasts for making demand-driven inventory 
deployment decisions at the Asian port, this section explores supply-driven inventory 
deployment. This method employs a push strategy, allocating inventory according to available 
supply rather than anticipated demand, a concept elaborated upon earlier in this chapter. It is 
important to highlight that this push strategy is particularly pertinent to the decisions executed 
by the weekly IAS model. Once inventory reaches the CxDF, the inventory allocation decisions 
made by the IAS daily model are made with a one-week lead time, at which point it is assumed 
that demand forecasts are accessible, thus enabling a demand-driven deployment strategy from 
the CxDF onwards. 

4.2.1. Supply-Driven Inventory Deployment: Pushing All Digital POs 
to CxDF 

In this scenario, all POs intended for digital channels were directly diverted to the CxDF from 
the Asian port. This effectively directed the complete supply of a product to the CxDF, 
temporarily disregarding the CxDF’s ability to handle this significant volume of inventory. By 
adopting a supply-driven strategy, this approach allowed for the postponement of decision-
making across the entire inventory. 
 

Scenario 
% of PO Volume 

Diverted to 
CxDF 

CxDF 
Overage 

% of Non-
PDC Inflows 

to RDCs 

RDC 
Inventory 

Turns 

Variable 
Network Costs 

(Scaled) 

Baseline Flow Strategy Model 1.6% 58.0% 5.4% 11.6 100.0 

H+M to CxDF, RDC SS 1wk 3.7% 31.7% 3.1% 11.8 100.1 
H+M+L to CxDF, RDC SS 
1wk 5.7% 39.7% 4.1% 11.8 100.2 
100% digital POs to CxDF, 
RDC SS 1wk 100.0% 89.1% 14.5% 11.8 110.4 

Figure 17: Performance Metrics for Supply-Driven Inventory Deployment I 

As seen in Figure 17, the implementation of a supply-driven deployment strategy resulted in an 
increase in the percentage of non-PDC inflows to the RDCs to 14.5%, a significant rise from the 
maximum of 5.4% observed in demand-driven deployment scenarios. This represents a 
considerable increase in the flow of inventory directly to the RDCs without passing through the 
PDC. However, this scenario also led to a spike in CxDF overage to 89%, indicating that the 
vast majority of inventory sent to the CxDF exceeded the needs of the RDCs, thereby requiring 
redirection to the PDC. Moreover, variable network costs escalated from 100 in the baseline 
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scenario to 110.4, indicating a 10% increase in variable costs under this supply-driven model. 
This increase is attributed mainly to the fact that inventory, which would have been sent 
directly to the PDC in a demand-driven scenario, now incurs extra processing and 
transportation costs due to the initial diversion to the CxDF followed by subsequent rerouting 
to the PDC. 
 
An analysis of the 89% CxDF overage revealed that the primary cause was Iota’s lumpy supply. 
Although the IAS daily model created STOs to cover two weeks of forecasted demand and an 
additional week of safety stock, it was inadequate in aligning with the large supply, which was 
typically planned for the entire season. As a result, a significant portion of the inventory still 
ended up being routed to the PDC after its interim handling at the CxDF. The subsequent two 
scenarios are designed to tackle the challenge of lumpy supply arriving at the CxDF. 

4.2.2. Supply-Driven Inventory Deployment: Increasing SS at RDCs 

To mitigate the issue of lump supply arriving at the CxDF, a scenario was implemented where 
the safety stock target at the RDCs was increased from 1 week to 8 weeks. This adjustment was 
intended to allow a portion of the surplus inventory at the CxDF to be stored at the RDCs, 
rather than being redirected to the PDCs. Such a strategy could prove advantageous if the 
products were later needed at the RDCs, as it would potentially lower transportation costs. 
However, should the inventory remain unused at the RDCs, it would negatively affect the 
inventory turnover rates there and eventually lead to additional expenses associated with 
clearing the surplus inventory from the RDCs. 
 
As shown in Figure 18, this strategy led to an increase in non-PDC flows to RDCs from 14.5% to 
16.9%, as depicted in Figure 19, and a reduction in CxDF overage from 89.1% to 83.5%. 
However, it’s crucial to note that this approach significantly compromised inventory efficiency 
at the RDCs, with median inventory turns plummeting by over 50%, from 11.8 to 4.2. 
Maintaining inventory turnover rates at the RDCs was an implicit goal of the supply chain 
network design, aimed at doing “no harm.” Additionally, variable network costs saw a 5% 
increase to 115 compared to the baseline scenario. While the increase in safety stock target at 
the RDCs did marginally improve non-PDC inflows and CxDF overage, these gains were 
negated by the adverse effects on inventory turnover and a rise in network costs. Therefore, 
raising the safety stock target at the RDCs is not deemed a viable option. 
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Scenario 
% of PO Volume 

Diverted to 
CxDF 

CxDF 
Overage 

% of Non-
PDC Inflows 

to RDCs 

RDC 
Inventory 

Turns 

Variable 
Network Costs 

(Scaled) 

Baseline Flow Strategy Model 1.6% 58.0% 5.4% 11.6 100.0 

H+M to CxDF, RDC SS 1wk 3.7% 31.7% 3.1% 11.8 100.1 
H+M+L to CxDF, RDC SS 
1wk 5.7% 39.7% 4.1% 11.8 100.2 
100% digital POs to CxDF, 
RDC SS 1wk 100.0% 89.1% 14.5% 11.8 110.4 
100% digital POs to CxDF, 
RDC SS 8wk 

100.0% 83.5% 16.9% 4.2 115 

Figure 18: Performance Metrics for Supply-Driven Inventory Deployment II 

4.2.3. Supply-Driven Inventory Deployment: Adding OST Storage 

To address the issue of lumpy supply arriving at the CxDF while preserving inventory turnover 
rates at the RDCs, the concept of establishing a new Off-Site Storage (OST) facility was 
explored. The OST is envisioned as an intermediary storage point within the network, designed 
to house a portion of the overflow inventory received at the CxDF, thereby reducing the 
necessity to reroute all surplus stock to the PDC. 

  
Figure 19: Design of OST Node in the Simulation 

In Figure 19, the integration of the OST into the simulation is presented. The OST is designed 
to receive inventory exclusively from the CxDF based on the safety stock target defined at the 
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PDC

CxDF RDC

CONSUMER

OST

CxDF to OST 
Safety Stock Target: 

7 weeks

CxDF to RDC 
Safety Stock 

Target: 1 week

PDC to RDC 
Safety Stock 

Target: 1 week
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OST. A 7-week10 safety stock target was chosen for OST considering that it takes on average 7 
week of demand to consume a PO based on historical data in recent years. The model calculates 
OST’s safety stock target by extrapolating the two-week forecasted demand at the RDCs.  
 
If there is excess inventory at the CxDF after fulfilling the demand and safety stock target at 
the RDCs, this surplus is sent to the OST based on the safety stock need at the OST. Any 
remaining inventory at the CxDF, after meeting the requirements at the RDCs and OST, 
continues to be dispatched to the PDC. Regarding the matching of demand and supply, the 
model first utilizes the supply available at the CxDF, followed by the supply at the OST, and 
finally, the supply at the PDC. The model assumes that a single national OST serves all three 
RDCs. 
 

Scenario 

% of PO 
Volume 

Diverted to 
CxDF 

CxDF Overage 

% of Non-
PDC 

Inflows to 
RDCs 

RDC 
Inventory 

Turns 

Variable 
Network Costs 

(Scaled) 

Baseline Flow Strategy Model 1.6% 58.0% 5.4% 11.6 100.0 

H+M to CxDF, RDC SS 1wk 3.7% 31.7% 3.1% 11.8 100.1 

H+M+L to CxDF, RDC SS 
1wk 

5.7% 39.7% 4.1% 11.8 100.2 

100% digital POs to CxDF, 
RDC SS 1wk 

100.0% 89.1% 14.5% 11.8 110.4 

100% digital POs to CxDF, 
RDC SS 8wk 

100.0% 83.5% 16.9% 4.2 115.0 

OST+RDC, 8wk, ignore no 
fcst 

100.0% 77.8% 25.7% 11.8 110.5 

Figure 20: Performance Metrics for Supply-Driven Inventory Deployment III 

As illustrated in Figure 20, the addition of the OST with a seven-week safety stock target led to 
notable improvements. This approach increased the proportion of inventory flowing directly to 
the RDCs from 14.5% to 25.7%, while also reducing CxDF overage from 89.1% to 77.8%. 
Crucially, these improvements did not negatively impact the inventory turnover rates at the 
RDCs, and the costs were on par with the scenario where 100% of the supply was directed to 
the CxDF without addressing the issue of uneven supply. However, it’s important to note that 
costs were still 10% higher than those observed in the baseline demand-driven scenario. 

 
10 I explored using a 3-week safety stock target at the OST but settled on a 7-week target given the large size of POs. 
Additionally, it would enable a fairer comparison with the scenario where 8 weeks of SS was diverted directly to the 
RDCs from the factory. 
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4.2.4. Supply-Driven Inventory Deployment: 30% Divert Policy 

Despite efforts to improve forecast coverage at the Asian port and manage the lumpiness of 
supply reaching the CxDF through the addition of the OST, the non-PDC inflows to the RDCs 
stabilized at 27%. Notably, CxDF overage persisted at 78%, suggesting that a significant portion 
of the inventory arriving at the CxDF continued to be redirected to the PDCs, even after 
implementing strategies to route one week of safety stock (SS) to the RDCs and seven weeks of 
SS to the OST. 
 
Analysis of the data revealed that even with the OST in operation, CxDF overage remained at 
78%, largely because more than half of the products arriving at the CxDF lacked updated 
demand forecast data. This deficiency in forecast coverage was notably amplified by disruptions 
related to Covid-19 period covered in the simulation. With POs arriving prematurely at the U.S. 
port due to supply chain adjustments during the Covid era, forecast data was frequently 
unavailable in the period covered. It was observed that acquiring a forecast signal for products 
initially without such data upon reaching the CxDF averaged around six weeks. Consequently, 
the model consistently opted to redirect these POs to the PDC. 
 
To enhance IAS daily model’s functionality, improving both the breadth and precision of 
forecast data is essential. Thus, a specific policy was enacted within the simulation framework. 
This policy mandates that, in the absence of forecast data for a product arriving at the CxDF, 
30% of its associated PO volume should be allocated to the OST. 
 

Scenario 

% of PO 
Volume 

Diverted to 
CxDF 

CxDF Overage 

% of Non-
PDC 

Inflows to 
RDCs 

RDC 
Inventory 

Turns 

Variable 
Network Costs 

(Scaled) 

Baseline Flow Strategy Model 1.6% 58.0% 5.4% 11.6 100.0 

H+M to CxDF, RDC SS 1wk 3.7% 31.7% 3.1% 11.8 100.1 
H+M+L to CxDF, RDC SS 
1wk 5.7% 39.7% 4.1% 11.8 100.2 
100% digital POs to CxDF, 
RDC SS 1wk 100.0% 89.1% 14.5% 11.8 110.4 
100% digital POs to CxDF, 
RDC SS 8wk 100.0% 83.5% 16.9% 4.2 115.0 
OST+RDC , 8wk,  ignore no 
fcst 100.0% 77.8% 25.7% 11.8 110.5 
OST+RDC , 8wk,  30% no 
fcst 

100.0% 65.0% 38.3% 11.8 110.7 

Figure 21: Performance Metrics for Supply-Driven Inventory Deployment IV 
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Figure 21 showcases the significant enhancements in key performance indicators resulting from 
this policy’s enactment. Mandating that 30% of PO volumes be diverted to the OST for 
products lacking a demand forecast at the CxDF resulted in an uplift in non-PDC inflows to the 
RDCs to 38.3% and a reduction in CxDF overage to 65%. The inventory turnover rates at the 
RDCs were maintained at 11.8, and the costs stabilized at 110.7. 
 
In comparison to the baseline demand-driven scenario, the supply-driven deployment scenarios 
marked a significant departure, improving the percentage of non-PDC inflows to the RDCs from 
a high of 5.4% in demand-driven scenarios to 38.3% in the best-performing supply-driven 
scenario, edging closer to goal of maimizing the target. The saturation at 38.3%, despite 
numerous network design modifications, implies that PDC will continue to face significant strain 
as it is utilized to supply inventory to the RDCs. It is also crucial to acknowledge that this 
boost in network efficiency was accompanied by a 10% cost increase, primarily due to 
heightened middle-mile expenses from increased transfers between the CxDF and OST, among 
other factors. 
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4.3. Scenario Analysis: Demand-Driven Deployment With Synthetic 
Data 

In this section, we return to exploring demand-driven inventory deployment, supplementing our 
analysis with synthetic data to tackle the challenges of lumpy supply and inadequate forecast 
coverage. As a reminder, our transition to a supply-driven approach was a deliberate strategy to 
navigate the hurdles posed by sparse forecast data while making divert decision at the port in 
Asia and by the lumpy nature of the POs. This shift towards a supply-driven methodology 
significantly improved network performance, as evidenced by increases in non-PDC inflows to 
RDCs and reductions in CxDF overage, but it also resulted in a noticeable rise in variable 
network costs. Additionally, concerns regarding the CxDF’s capacity to handle all POs allocated 
to digital orders from Asian factories were momentarily overlooked. Consequently, we pivot back 
to a demand-driven deployment strategy, incorporating synthetic data to effectively tackle the 
identified issues and assess the network’s performance. 

4.3.1. Demand-Driven Deployment With Synthetic Data: Synthetic 
Forecast 

The first issue addressed was the absence of comprehensive forecast data. In the original long-
range forecast dataset, merely 24% of products had a forecast signal. This scarcity of forecast 
data stems from the reliance on a single internal data source in the digital twin, despite the 
existence of multiple forecast data sources internally. These varied sources would need to be 
integrated to enhance product coverage. However, due to time constraints and the discovery of 
this issue relatively late in the process, integrating these disparate datasets — managed by 
different teams — into a unified forecast source was unfeasible. Consequently, I opted to create 
a synthetic dataset to improve the forecast coverage. 
 
Synthetic forecasts were generated for products lacking projections for weeks 13 and 14 from the 
decision date for diversion. This process involved applying an imputation factor, derived from a 
scientifically established range, to actual sales data for these weeks. Sales figures were adjusted 
by a factor within the range [0.50, 1.87], corresponding to the 25th and 75th percentiles, 
respectively, of the forecast-to-sales ratio for products with both available forecasts and actual 
sales data for the simulation period. The selection of the imputation factor for a given product 
was random but remained unchanged across different decision dates and regions. 
 
For example, illustrated in Figure 22, by applying an imputation factor of 1.2 to the sales 
figures for weeks 13 and 14, we generated a forecast of 96 and 144 respectively. This imputation 
factor of 1.2 remained unchanged across all the decision dates in the simulation for this product. 
 



 48 

Decision Date Product Code 
Demand 
Week 

Sales Factor 
Synthetic 
Forecast 

2022/02/05 X08720-A10 13 80 1.2 80x1.2 = 96 

2022/02/05 X08720-A10 14 120 1.2 120x1.2 = 144 

Figure 22: Synthetic Forecast Creation Example 

The creation of synthetic forecast data markedly expanded the forecast coverage for products, 
enhancing the dataset’s comprehensiveness. This approach effectively increased the proportion of 
products with a non-zero forecast signal from 24% to 47%. It is important to remember that 
without a positive forecast signal, the IAS weekly model defaults to routing products from the 
factory directly to the PDC. As a result, in the simulation, 53% of the products had their entire 
PO volume dispatched to the PDC from the Asian port due to zero demand forecast. 
Additionally, this percentage reflects the count of products that lacked a non-zero forecast signal 
in each decision period divided by the total number of products in each decision period. It could 
be that a product without a non-zero forecast signal at later decision points might possess a 
positive forecast signal either in the original long-range forecast data set or as a result of the 
sales-based imputation method. 
 
Although the expansion in product forecast coverage is notable, it is important to recognize the 
limitations of this approach. Specifically, the fixed assumption of a fixed 13-week lead time can 
occasionally fail to generate a synthetic forecast signal. For instance, as depicted in Figure 23, a 
forecast signal is present in the first scenario where actual sales data are available for weeks 13 
and 14. However, in the second scenario sales for the product begin only several weeks beyond 
the assumed 13-week lead time, leading to a zero forecast. Thus, 53% of the products had no 
sales in both weeks 13 and 14, which resulted in a zero forecast. 
 
Adopting a variable lead time could serve as a solution, yet its effectiveness remains uncertain, 
as demonstrated in the third scenario. Suppose a variable lead time model determined a 15-week 
lead time. Despite this adjustment, as shown within the red box, the forecast would still be zero 
because sales commenced 16 weeks after the decision date, as indicated in the green box. 
Consequently, the adoption of a variable lead time model does not necessarily ensure improved 
forecast coverage. Given these considerations, I chose to maintain a consistent 13-week lead time 
assumption to sidestep additional complexities. 
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Figure 23: Example Showing Limitations of Synthetic Forecast Creation 

As illustrated in Figure 24, the introduction of synthetic forecast data increased the percentage 
of non-PDC inflows to the RDCs from 5.4% to 8.0%. While this represents an improvement, it 
remains modest, and the proportion of PO volume redirected to the CxDF is still minimal at 
2.2% under a demand-driven deployment strategy enhanced with synthetic forecasts. It is crucial 
to highlight that forecast coverage only reached 47% due to the reliance on sales-based 
imputation. With a forecast coverage of 100%, a greater number of products could have been 
diverted to the CxDF directly from the factory. 
 

Scenario 

% of PO 
Volume 

Diverted to 
CxDF 

CxDF Overage 

% of Non-
PDC 

Inflows to 
RDCs 

RDC 
Inventory 

Turns 

Variable 
Network Costs 

(Scaled) 

Baseline Flow Strategy Model 1.6% 58.0% 5.4% 11.6 100.0 

Baseline Syn Fcst  2.2% 61.3% 8.0% 11.4 99.7 

Figure 24: Performance Metrics: Demand-Driven Deployment with Synthetic Data I 

4.3.2. Demand-Driven Deployment With Synthetic Data: Synthetic 
PO Smoothing 

Although incorporating synthetic forecast data mitigated one of the challenges, addressing 
another significant issue remains crucial: lumpy supply patterns characteristic of Iota’s 
purchasing behavior. To tackle this, I implemented a strategy that involved smoothing out the 
placement of POs by altering purchasing behaviors.  
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0

+ 13 wks + 15 wks

Planned Demand Window

+ 5 wks + 7 wks

Eligible PO GAC 
Window
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Bi-weekly Decision Period
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This modification applied to all POs containing more than 240 units, which were classified as 
“large” POs. Each large PO was uniformly distributed over the remaining “eligible period” of the 
simulation. The remaining eligible period was determined considering the actual arrival date of 
POs and the period covered in the simulation with the goal of ensuring that the total PO 
quantity remained unchanged across scenarios with original and synthetic POs. The details of 
the PO smoothing algorithm are explained in Appendix A. 
 
Figure 25 offers a straightforward example of the PO smoothing process. In this example, an 
initial PO consisting of 486 units of a SKU is divided into seven smaller POs: six of them with 
70 units each, and the final one with 66 units, thereby preserving the total quantity. Each new 
PO is assigned a unique label and is scheduled at two-week intervals, beginning from the 
decision date of the original PO. It is important to note that the arrival date for the first new 
PO has been adjusted to the actual arrival date (6/25), diverging from the estimated arrival 
date (6/22), to account for IAS’s daily decision-making, which is based on the actual arrival 
date of POs. The determination of the exact number of splits takes into account other factors, 
such as the time span between the decision date for the given PO and the simulation’s final 
decision date, as well as the arrival date for the last split PO. Comprehensive explanations of 
these considerations are provided in Appendix A. The fundamental principle maintained is that 
the scope of inventory should remain constant at 486 units, both before and after the 
application of PO smoothing. 

 
Figure 25: Example of Smoothing of a Lumpy Purchase Order (PO) 

Estimated 
Arrival DatePO QtyPO #Product CodeDecision Date

6/20/224864508506611X08720-A103/19/22

Arrival DatePO QtyPO #Product CodeDecision Date

6/25/22704508506611_1
X08720-A10

3/19/22

7/9/22704508506611_2
X08720-A10

4/2/22

7/23/22704508506611_3X08720-A104/16/22

8/6/22704508506611_4X08720-A104/30/22

8/20/22704508506611_5X08720-A105/14/22

9/3/22704508506611_6X08720-A105/28/22

9/17/22664508506611_7X08720-A106/11/22
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Note that the smoothing strategy adopted here was conservative in nature. An approach to 
smoothing without constraints detailed in Appendix A could have led some parts of the POs to 
extend beyond the simulation’s end period. Such an extension would alter the total volume of 
units considered in the simulation, affecting cost calculations and hindering a fair comparison 
between scenarios. Therefore, the chosen method is intentionally restrained. To this end, it is 
important to recall that the smoothing of POs results in the creation of additional PO lines, 
necessitating the application of appropriate PO splitting costs. These costs reflect the increased 
expenses associated with dividing a PO into multiple new ones. 
 

 
Figure 26: Graphical Representation of Smoothing of Multiple Lumpy Purchase Orders 

Figure 26 provides a visual illustration of the impact of PO smoothing on supply. It displays the 
POs for a product subject to diversion decisions, organized by decision date. The 
implementation of synthetic smoothing has resulted in more frequent and smaller POs, as 
evidenced by the comparison between the blue (representing the original lumpy supply) and 
orange (indicating the smoothed supply) lines.  
 

Scenario 

% of PO 
Volume 

Diverted to 
CxDF 

CxDF Overage 

% of Non-
PDC 

Inflows to 
RDCs 

RDC 
Inventory 

Turns 

Variable 
Network Costs 

(Scaled) 

Baseline Flow Strategy Model 1.6% 58.0% 5.4% 11.6 100.0 

Baseline Syn Fcst  2.2% 61.3% 8.0% 11.4 99.7 

Baseline Syn POs 2.4% 53.7% 9.4% 11.3 99.9 

Figure 27: Performance Metrics: Demand-Driven Inventory Deployment with Synthetic Data II 
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When evaluating the effect of smoothing POs on the percentage of non-PDC inflows to RDCs, 
there is a notable increase from the baseline figure of 5.4% to 9.4% as seen in Figure 27. This 
enhancement surpasses the improvement achieved through the implementation of synthetic 
forecasts. Costs remain in line with those of the baseline scenario. However, the proportion of 
PO volume diverted to the CxDF continues to be modest, standing at 2.4%. 

4.3.3. Demand-Driven Deployment With Synthetic Data: Synthetic 
Forecast and PO Smoothing 

The last scenario implemented the baseline demand-driven deployment strategy, enhanced by 
synthetic forecast data to broaden forecast coverage and synthetic POs to even out lumpy 
supply. A notable advantage of supply smoothing was the further extension of forecast coverage. 
Since products might display forecast signals in the original dataset after a lag, dividing large 
POs into several smaller orders allowed more products to eventually exhibit forecast data. This 
smoothing increased non-zero forecast coverage from 47% to 66%. 
 

Scenario 

% of PO 
Volume 

Diverted to 
CxDF 

CxDF 
Overage 

% of Non-
PDC 

Inflows to 
RDCs 

RDC 
Inventory 

Turns 

Variable 
Network Costs 

(Scaled) 

Baseline Flow Strategy 
Model 

1.6% 58.0% 5.4% 11.6 100.0 

Baseline Syn POs 2.4% 53.7% 9.4% 11.3 99.9 

Baseline Syn Fcst  2.2% 61.3% 8.0% 11.4 99.7 

Baseline Syn POs and Fcst 3.6% 57.6% 14.8% 11.2 99.3 

Figure 28: Performance Metrics: Demand-Driven Deployment with Synthetic Data III 

As illustrated in Figure 28, there was a nearly threefold increase in the percentage of non-PDC 
inflows to the RDCs when compared to the baseline scenario, rising from 5.4% to 14.8%. CxDF 
overage stayed relatively stable at around 58%. Despite enhancements in forecast coverage and 
the smoothing of supply, the percentage of PO volume rerouted to the CxDF remained modest 
at 3.6%. However, the percentage of PO volume redirected to the CxDF from the Asian port 
saw a significant improvement relative to the baseline scenario, increasing by a factor of 2.25. 
The persistence of no forecast data for 34% of the products, along with the conservative 
approach to PO smoothing, contributes partly to this outcome. 
 
Given that the synthetic demand forecast employs random sampling of imputation factors from 
a scientifically established range, assessing the robustness of the results for this crucial scenario 
was essential. To accomplish this, I conducted a sensitivity analysis by executing 10 iterations 
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with varied samplings of imputation factors within this key scenario. The outcomes of this 
analysis indicate that the findings—pertaining to network performance and costs—are stable, 
showing minimal variation across all 10 iterations. The details are presented in Appendix B. 
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4.4. Scenario Analysis: Bringing It All Together 

The preceding three sections have elaborated on three distinct sets of scenarios: (i) demand-
driven inventory deployment, (ii) supply-driven inventory deployment, and (iii) demand-driven 
inventory deployment with synthetic data. Utilizing the digital twin, these scenarios were 
analyzed to advance towards achieving the goals set for improving Iota’s supply chain in 
support of D2C expansion, specifically to maximize the percentage of non-PDC inflows to RDCs. 
Although this metric peaked at a modest 38% and 15% in the best performing supply-driven 
and demand-driven scenarios respectively, several important insights have been gleaned for 
reconfiguring Iota’s supply chain to better accommodate the burgeoning demands of D2C 
growth. The analysis of network performance relative to costs, as shown in Figure 29, illustrates 
the trade-offs between enhancing network performance and the associated costs across all 
examined scenarios. The network costs presented in the figure are relative to the baseline 
scenario labeled Baseline Flow Strategy Model. 
 
 

 
 

Figure 29: Supply Chain Network Performance vs Network Costs (Scaled) Across Scenarios Simulated 
Using Digital Twin 
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Comparing the initial set of demand-driven scenarios (without synthetic data) to the supply-
driven scenarios reveals a notable network performance boost, increasing the % of non-PDC 
inflows from a maximum of 5% in demand-driven scenarios to 38% in supply-driven scenarios. 
However, the supply-driven approach, despite achieving the highest network performance at 
38%, also incurred a 11% increase in costs. This cost surge stemmed primarily from higher 
processing and transportation expenses in middle-mile operations, with all inventory routed to 
the CxDF from the Asian port, regardless of forecasted demand. This poses a significant 
dilemma for Iota, balancing enhanced performance against increased costs. Moreover, diverting 
all inventory to the CxDF from factories is theoretical and improbable due to the considerable 
risk of overburdening the facility. 
 
When comparing supply-driven scenarios, both with and without OST, it is evident that merely 
deploying a CxDF cannot singularly address the existing challenges. Although raising the safety 
stock target at RDCs boosted performance slightly from 14% to 17%, it detrimentally impacted 
both inventory turns at the RDCs and slighly increased overall costs. The introduction of OST 
significantly enhanced network performance to 26% with a less substantial cost ($1.11) increase 
than when safety stock targets at RDCs were raised ($1.15). Ultimately, without either adapting 
bulk buying behavior and/or integrating a OST to handle surplus inventory at the CxDF, the 
sought-after gains in supply chain efficiency may remain elusive. 
 
Further analysis between demand-driven scenarios, with and without synthetic data, indicates 
that improved forecast accuracy and smoother POs can substantially boost network 
performance—from 5% in the Baseline Flow Strategy Model scenario to 15% in Baseline Syn 
POs and Fcst scenario—tripling performance and decreasing costs by 1%. Even if 1% may seem 
modest, this cost reduction could translate into significant savings given Iota’s extensive 
operational scale. Notably, while the 15% network performance is less than half of the peak 38% 
observed in the top supply-driven scenario, it contrasts with a cost reduction of 1% rather than 
the 11% cost increase in the supply-driven model. A more aggresive supply smoothing and 
forecast coverage improvement could lead to additional performance gains using demand-driven 
deployment, without the steep cost escalations observed in the supply-driven scenarios.  
 
Likewise, smoothing the supply chain in conjunction with enhancing forecast data availability 
has demonstrated additional benefits, as shown by the demand-driven scenarios using synthetic 
data. Individually, improved forecast coverage boosts performance from 5% to 8%, and smoother 
supply results in an increase from 5% to 9%, marking isolated gains of 3% and 4% points, 
respectively. However, when combined, these adjustments lead to a cumulative increase of 10 
percentage points, elevating performance from 5% to 15%. 
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These outcomes from the scenario analysis underscore the need for a singular, reliable forecast 
data source. The digital twin’s efficacy hinges on such data for precise decision-making. In its 
absence, inventory without a forecast signal will consistently revert to the PDC, countering the 
IAS engine’s targets. Furthremore, it highlights the need for Iota to reconsider and possibly 
adjust its bulk purchasing practices and/or establish an off-site storage in conjucation with the 
cross-dock facility to foster more agile supply chain operations. 
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Chapter 5: Conclusion and Recommendations 

This project undertook an empirical assessment to support the transition of Iota’s supply chain 
from a wholesale-centric to a D2C model, a strategic pivot aimed at meeting contemporary 
consumer expectations in service, cost, and sustainability. The potential enhancements 
considered by Iota involved substantial investments in both physical and digital infrastructures, 
notably the establishment of a cross-dock facility and the development of a decision engine – 
IAS – to determine inventory routing, which signify the commitment to a more decentralized 
and responsive supply chain network. 
 
The study’s fundamental goal was to understand the potential impact of the IAS/CxDF solution 
on achieving Iota’s strategic objectives for its supply chain network, notably the aim for 
maximizing in-region fulfillment and non-PDC inflows to the RDCs. Since the IAS/CxDF 
solution was not operational yet during the research period, the project conducted a 
retrospective analysis using a digital twin that simulated the possible outcomes of these 
significant infrastructure investments. Various demand- and supply-driven scenarios were 
analyzed using the digital twin to understand the impact of potential levers on the network 
performance. 
 
The digital twin served as a robust platform for scenario analysis, revealing key insights into the 
future of Iota’s supply chain under various network configurations. While the scenario analysis 
yielded a modest 38% non-PDC inflows to RDCs in the best push-driven scenario and 15% in 
the best pull-driven scenario, the exploration yielded a deeper understanding of the potential 
levers within Iota’s supply chain. 
 
Based on the findings from the scenario analysis, the following recommendations are proposed 
for Iota: 

1. Integrate Comprehensive Forecast Data: Iota should endeavor to consolidate and utilize 
comprehensive long-range and short-range forecast data, enhancing the IAS engine’s 
ability to make informed decisions across the supply chain. In the absence of a 
comprehensive forecast data, the IAS will simply route the inventory to the PDC, 
defying the objective of minimizing burden on the PDC. 

2. Smoothing Supply Patterns: Iota might consider modifying its bulk purchasing behavior 
to align with a more continuous demand-driven supply chain model. This could involve 
adopting smoother, more frequent POs, a change that the simulations have shown can 
improve network performance and cost efficiency. Smoothing can also be achieved by 
establishing a distribution center in Asia that serves as an intermediary buffer, 
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moderating the lumpy production volumes and enabling a more streamlined 
transportation flow to the US. 

3. Invest in CxDF and OST: The simulations underscored that the CxDF alone will not 
suffice to meet the challenges of Iota’s D2C growth. In the absence of modifying 
purchasing behavior, an additional storage facility like the OST is instrumental in 
managing excess inventory. 

4. Review Target Feasibility: The scenarios suggested that significantly reducing the PDC 
burden might be more challenging than anticipated. As observed in the scenario analysis, 
the % of non-PDC inflows to the RDCs reached a maximum of 38%. In light of this, Iota 
may need to reconsider and potentially recalibrate its specific targets, taking into 
account the inherent challenges, and accordingly adjust its strategies. 

5. Cost-Benefit Analysis of Supply-Driven Deployment: While supply-driven deployment 
has shown promise in improving network performance, it also incurs higher costs. A 
more detailed cost-benefit analysis than what was employed in this study should be 
conducted to weigh the trade-offs of this approach versus demand-driven strategies. 

6. Integration with E2EDT and Continued Scenario Analysis: IAS emulation should be 
enhanced by relaxing simplifying assumptions concerning lead time, capacity, and safety 
stock. Following these improvements, the enhanced IAS should be integrated into the 
E2EDT to conduct further simulations, thereby providing a deeper understanding of 
network performance given the evolving nature of the IAS/CxDF solution.  

Through these recommendations, Iota can continue to refine its supply chain operations to 
ensure agility and responsiveness in the dynamic global retail landscape, thereby maintaining 
its competitive advantage during the era of D2C growth. While the challenges highlighted—
such as the lack of adequate forecast coverage and bulk purchasing behavior—are discussed 
within the context of Iota, they arguably extend to many retailers undergoing similar 
transformations. The insights uncovered like the need to modify bulk purchasing behavior or 
to explore alternative methods of supply smoothing through the establishment of new 
storage facilities are lessons that have broader applicability. Additionally, the use of digital 
twins and synthetic datasets can offer critical insights in a timely and cost-effective manner, 
enhancing decision-making across the supply chains of many companies similar to Iota in the 
industry. 
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Appendix A 

In the effort to address the lumpiness of POs within the digital twin simulation, a methodical 
approach was adopted to generate smoother, more frequent POs by distributing the order 
quantities across the “eligible period” remaining in the simulation. This process, referred to as 
PO smoothing, was executed using synthetic data. 
 
The PO smoothing process involved splitting large, infrequent POs into smaller, more regular 
orders. This was done by staggering the original PO quantity over the “eligible period” in the 
simulation. To ensure that the total supply quantity remained unchanged—thereby permitting 
an equitable comparison across different scenarios—the split was constrained. This meant that 
as the simulation progressed and neared its end period, the algorithm applied a less aggressive 
approach to PO smoothing. 
 
Algorithm Overview: 

1. Identification: The algorithm begins by identifying POs at the style-color-size level with 
quantities of 240 units or more. 

2. Calculation of Last Eligible Divert Date: For each identified PO, the algorithm 
calculates the last eligible date for diverting the PO, defined as the minimum of the last 
decision date in the simulation and the PO’s actual arrival date. 

3. Divert Decision Timing: A divert decision on a PO must be taken before its estimated 
arrival date or before the simulation period ends. 

4. Estimation of Splits: The algorithm estimates the number of splits by dividing the 
difference between the last divert date and the decision date by 14 (the two-week 
period). 

5. Division of POs: The original PO is divided into the number of splits calculated above. 
For each newly created PO resulting from the split, the decision date and arrival date 
are staggered by increments of 14 days. 

6. Arrival Date of the Last Split: The arrival date for the last split of the PO is calculated. 
7. Adjustment for Splits Estimated: If the arrival date of the last split extends beyond the 

simulation’s end date (February 25, 2023), while the original arrival date was within the 
simulation period, the number of splits is adjusted so that all split POs arrive within the 
simulation timeframe. 

8. Final Split: The PO is then split according to the adjusted number of splits. 
 
This smoothing technique aimed to replicate a more smooth flow of POs that would align better 
with a demand-driven supply chain model, which is particularly beneficial for meeting the 
variable demands of D2C channels. 
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Appendix B 

The synthetic forecast was developed by applying an imputation factor to each product, 
randomly selected from a scientifically determined range. The range captured the 25th and 75th 
percentiles of the forecast-to-sales ratio for products with both sets of data available. 
Considering the extensive runtime of the model, I executed 9 additional iterations of the baseline 
scenario, incorporating synthetic forecasts and POs, with each iteration employing a different set 
of imputation factors. As illustrated in Figure 30, the performance metrics across these iterations 
remained consistently stable, demonstrating that the model’s outcomes are not significantly 
influenced by the variation in randomly generated imputation factors. 
 

Scenario 

% of PO 
Volume 

Diverted to 
CxDF 

CxDF 
Overage 

% of Non-
PDC Inflows 

to RDCs 

RDC 
Inventory 

Turns 

Variable 
Network 

Costs 
(Scaled) 

Baseline Syn POs and Fcst  3.56% 57.62% 14.80% 11.20 0.99 
Baseline Syn POs and Fcst 
Iter 1 

3.57% 58.73% 14.80% 11.20 0.99 

Baseline Syn POs and Fcst 
Iter 2 

3.58% 58.75% 14.84% 11.20 0.99 

Baseline Syn POs and Fcst 
Iter 3 

3.54% 59.17% 14.87% 11.20 0.99 

Baseline Syn POs and Fcst 
Iter 4 

3.60% 58.73% 14.84% 11.20 0.99 

Baseline Syn POs and Fcst 
Iter 5 

3.55% 58.88% 14.88% 11.20 0.99 

Baseline Syn POs and Fcst 
Iter 6 

3.59% 58.16% 14.88% 11.20 0.99 

Baseline Syn POs and Fcst 
Iter 7 

3.57% 58.43% 14.86% 11.20 0.99 

Baseline Syn POs and Fcst 
Iter 8 

3.58% 58.45% 14.89% 11.20 0.99 

Baseline Syn POs and Fcst 
Iter 9 

3.54% 58.49% 14.82% 11.20 0.99 

Figure 30: Performance Metrics for Iterations of the Baseline Scenario with Synthetic Forecast and POs 
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Appendix C 

This section describes the underlying algorithm within the flow strategy model in detail. The 
flow strategy model is a two-part framework for allocating products to segments and defining 
the percentage split across high, medium, and low confidence for each segment.  
 
The first part of the model, the segmentation model, divides products into groups based on 
forecast volume and forecast accuracy. The second part of the model, the demand 
proportion/confidence model, defines the percentage split across high, medium, and low 
confidence for each segment. 
 
1. Segmentation Model 

1.1. Metrics Calculation 

The segmentation model uses forecast volume and forecast accuracy and specifies thresholds on 
percentiles for these two metrics to segment the products.  
 
Forecast Volume:  This is the average weekly forecasted volume in weeks 15 to 20 from a 
decision date. This is a forward looking metric as it looks at the forecasted volume for a SKU 
from the decision date. 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑	𝑉𝑜𝑙𝑢𝑚𝑒"#$ =	
∑ 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑	𝑉𝑜𝑙𝑢𝑚𝑒"#$,!()
!*'+

5
 

 
Forecast Accuracy:  This is a retrospective measure that evaluates the accuracy of sales 
forecasts by comparing the forecasted volume to the actual sales. It utilizes the Mean Absolute 
Percentage Error (MAPE) to assess accuracy. Specifically, the comparison is made for weeks 13 
to 16, starting from the forecast creation date (not the same as decision date). To ensure 
sufficient forecast data, the earliest eligible forecast creation date must be at least 16 weeks prior 
to the decision date. The calculation of forecast accuracy incorporates the weighted average of 
actual sales. The equation below demonstrates the computation of forecast accuracy using a 
single forecast creation date (FD). 
 

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦"#$,,-

=
∑ X

𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,,- − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑	𝑆𝑎𝑙𝑒𝑠"#$,,-
𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,,-

X ∗ 𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,,-'.
!*'/

∑ 𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠'.
!*'/ "#$,,-
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Recognizing that relying solely on a single forecast creation date introduces significant 
variability, the model mitigates this issue by averaging the accuracy across the 13 most recent 
forecast creation dates. The following formula illustrates the calculation of the final forecast 
accuracy metric at the SKU level. 
 
𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦"#$

=
∑ ∑ X

𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,,- − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑	𝑆𝑎𝑙𝑒𝑠"#$,,-
𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,,-

X ∗ 𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,,-'.
!*'/

'/
,-*'

∑ ∑ 𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑙𝑒𝑠"#$,,-'.
!*'/

'/
,-*'

 

1.2 Segment Thresholds 

For forecasting volume, products are categorized based on their forecasted weekly volume. This 
categorization is determined by percentiles. Products with forecasted weekly volume falling in 
the bottom 1 percentile are classified as Low (L). Those with forecasted volume between the 2nd 
percentile and the 80th percentile are categorized as Medium (M). Finally, products with 
forecasted volume in the top 20 percentile are classified as High (H). 
 
When it comes to forecast accuracy, a separate categorization is applied based on the forecast 
error. This categorization is also determined by percentiles. Products with forecast errors in the 
top 20 percentile are classified as Low (L), indicating a higher level of forecast inaccuracy. 
Products with forecast errors between the 20th percentile and the 80th percentile are categorized 
as Medium (M), representing a moderate level of forecast accuracy. On the other hand, products 
with forecast errors in the bottom 20 percentile are classified as High (H), indicating a relatively 
higher level of forecast accuracy. 
 
Finally, seven segments are defined by according to the matrix in Figure 31 using High (H), 
Medium (M), and Low (L) categorizations defined above.  
 

 
Figure 31: Thresholds for Flow Segment Codes by Forecast Volume and Accuracy 

Forecast 
Accuracy 
Segment

Forecast 
Volume 
Segment

Flow 
Segment 

Code

HHA

MHB

LHC

HMD

MME

LMF

H, M and 
L

LT (Tail)
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2. Demand Confidence Model 

The concept behind the demand confidence model is to determine which portion of the 
forecasted demand we have a high level of confidence in and can prioritize for the fastest routing 
to the final node, giving it the highest priority. Conversely, it helps us identify the portion of the 
forecasted demand where our confidence is not as high, allowing us to postpone decision making 
on the portions of demand that have medium and low confidence levels. The outcome of the 
demand confidence model provides the percentages of high, medium, and low confidence demand 
for each flow segment. To achieve this, the MVP demand proportion model analyzes historical 
data from the past three non-holiday weeks. 
 
The high, medium, and low demand proportions are calculated for each of the seven segments 
using the algorithm below. Note that since the proportions add up to 1, we just need to 
calculate the proportions for high- and medium-confidence demand. 
 

1. Gather historical sales data for each product over the past 39 weeks, excluding holiday 
sales. 

2. Calculate the sales threshold for each product corresponding to the 20th percentile, 
denoted as H. This value represents the minimum sales level that was met or exceeded in 
80% of cases. 

3. Determine the sales threshold for each product corresponding to the 50th percentile, 
denoted as M. This value indicates the minimum sales level that was met or exceeded in 
50% of cases. 

4. Retrieve the average forecasted volume for products based as calculated in the 
segmentation model, referred to as F. 

5. Compute the percentage of High Demand Confidence (R1) for a product as: 

𝐻𝑖𝑔ℎ	𝐷𝑒𝑚𝑎𝑛𝑑	𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	(𝑅1) =
𝐻
𝐹
	, 𝑖𝑓	𝐻 > 𝐹, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	20% 

6. Calculate the percentage of Medium Demand confidence (R2) for a product as:  

𝑀𝑒𝑑𝑖𝑢𝑚	𝐷𝑒𝑚𝑎𝑛𝑑	𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	(𝑅2) =
(𝑀 − 𝐻)

𝐹
	, 𝑖𝑓	(𝐻 −𝑀) > 𝐹, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	50% 

7. Calculate the percentage of Low Demand confidence (R3) for a product as: 
𝐿𝑜𝑤	𝐷𝑒𝑚𝑎𝑛𝑑	𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	(𝑅3) = 100%− 𝑅1 − 𝑅2	 

8. After estimating R1, R2, and R3 for each product, calculate the average of these ratios 
to obtain segment-level demand confidence percentages. Each segment will now have 
corresponding percentages for High, Medium, and Low demand confidence. 

9. Note that all products within a particular flow segment will share the same demand 
confidence percentages. 


