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 Abstract 

Emissions from the industrial sector are a major contributor to climate change 
around the world. Many of these industrial emissions are attributable to the supply chain 
and will need to be drastically reduced to meet emission goals set forth by the United 
Nations Paris Agreement. Possibilities including renewable energy technologies for 
manufacturing and sustainable vehicles for transportation already exist and can help to 
reduce emissions across the supply chain, but few solutions have been evaluated regarding 
re-organizing supply chains as a whole to minimize carbon footprint. This thesis focuses 
on adapting sourcing strategies in a multi-echelon supply chain network to minimize 
Greenhouse Gas emissions. An approach using a multi-objective mixed-integer linear 
program that balances emission reduction along with other objectives such as sourcing 
cost, lead time, and supply risk is conducted to test the feasibility of the developed 
strategy in a business context. Opportunities for improvement of the model and 
possibilities for implementation in other organizations are evaluated. 
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Chapter 1  

Introduction 

For the protection of the host company of this project, the company will be referred 

to as Iota for the remainder of this thesis. 

1.1 Company Overview 

Iota is an athletic footwear, apparel, and equipment company based in the United 

States of America that services countries around the world with its products. It is 

responsible for the design and marketing of products, but it does not own its 

manufacturing or upstream distribution network. Historically, its products have been 

manufactured in Asia using multiple manufacturing partners and then distributed from 

Asia to the rest of the world. While Iota does not own its suppliers, it does have a degree 

of influence over where and how its products are made, and which modes of transportation 

are used to distribute them. 

Iota’s upstream supply chain is a multi-echelon manufacturing and distribution 

network. Materials flow from high manufacturing tiers in the network (Tier 3+ or T3+), 

which are mostly comprised of raw material harvesting and processing, to the network’s 

mid manufacturing tier (Tier 2 or T2), which includes weaving, dying, and finishing 

processes. From T2 manufacturing, materials flow to the final manufacturing tier (Tier 1 

or T1), where finished goods are assembled. After T1 manufacturing, finished goods flow 
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to customer ports called GEOs. The flow of materials through the network has been 

illustrated in Figure 1-1 below: 

 

 

Figure 1-1: Iota’s Multi-echelon Manufacturing and Distribution Network 

1.2 Project Drivers and Motivation 

In 2015, 196 groups at the United Nations Climate Change Conference entered into 

a legally binding international treaty on climate change called the Paris Agreement. The 

Paris Agreement was designed to keep the world’s average temperature rise within 2 

degrees Celsius of pre-industrial levels. In order to meet this goal, the world’s greenhouse 

gas (GHG) emissions must reach their peak before 2025 and drop by at least 43% by 

2030.1 Additional Paris Agreement goals call for net zero GHG emissions by the year 

2050.2 

The aggressive emissions reductions set forth by the Paris Agreement have created 

pressure for companies to meet ambitious reductions in emissions by 2030 to lead the 

change. Iota serves consumers across the globe who are demanding these reductions and 

Raw 
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has pledged to significantly reduce its absolute GHG emissions by 2030, both internally 

(Scope 1 emissions) and in the upstream, outsourced, supply chain of its operations (Scope 

3 emissions). Iota’s goal for Scope 3 GHG emissions is a 30% absolute reduction by 2030. 

It is critical for Iota to strategically plan for the difficult task of reducing the GHG 

emissions of its outsourced manufacturing and distribution network in order to meet its 

30% reduction target. 

1.3 Problem Statement 

The problem of focus in this thesis is the minimization of GHG emissions across 

Iota’s product manufacturing and distribution network while maintaining desirable levels 

of alternate objectives such as sourcing cost, lead time, and supply risk across the network. 

Iota has committed to a percentage reduction of both its own GHG emissions and the 

GHG emissions of non-Iota manufacturing and distribution entities within its supply 

chain. Iota has already begun taking steps to reduce the GHG emissions across its supply 

chain with initiatives such as renewable energy implementation at manufacturing facilities. 

While Iota is moving in the right direction toward its emissions targets, additional steps 

will be required to meet the ambitious goals. 

The Securities and Exchange Commission (SEC) has proposed regulations to 

require businesses to provide more detailed disclosures of their Scope 1 - 3 GHG emissions 

and include detailed plans for emissions reduction. In order to remain compliant with the 

SEC and maintain their position as an environmentally conscious firm within the market, 
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Iota believes it is critical to develop a complete plan that can be followed to achieve its 

pledged emissions reduction. While Iota has a well-developed plan to reduce the emissions 

of its own facilities, a plan to reduce Scope 3 emissions across the supply chain requires 

additional analysis and optimization. 

Iota has already designed a digital twin of its manufacturing and distribution 

network, hereby referred to as the Digital Twin, with a multi-objective optimization 

algorithm that considers sourcing cost, lead time, and supply risk across the network as 

key performance metrics. The focus of this thesis is the addition of GHG emissions as 

another key performance metric in the optimization algorithm so that GHG emissions can 

be considered in conjunction with sourcing cost, lead time, and supply risk. Using a multi-

objective minimization approach, Iota can determine how much it can reduce its GHG 

emissions while keeping supply risk, sourcing cost, and lead time in desirable ranges. 

1.4 Thesis Overview 

This thesis is comprised of seven (7) chapters, including this one. The chapters 

following this section are outlined below: 

Chapter 2 – Literature Review: The literature review outlines the reason for 

selecting GHG emissions as a focus in this thesis, and describes the motive for focus 

on corporations, and their supply chains, specifically. Additionally, a review of prior 

works in supply chain GHG emissions optimization is conducted. 
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Chapter 3 – Digital Twin Optimization Model Background: This chapter describes 

the configuration of the Digital Twin model before the commencement of work on 

this thesis. Motivation for the model and scope are provided along with a high-

level description of model variables, constraints, and optimization methodology. 

Chapter 4 – Incorporation of Responsibility in the Digital Twin Model: In this 

chapter, a detailed explanation of the methodology behind the addition of GHG 

emissions into the Digital Twin model is given. The processes for data collection, 

emission factor selection, 2030 emission forecasting, and data extrapolation is 

described along with the calculation method for network GHG emissions and 

updates to the model objective function. 

Chapter 5 – Analysis: The Analysis chapter reviews four (4) scenarios in which 

Pareto frontiers are generated to explore the optimal supply chain network for Iota 

along varying weights on the objectives of sourcing cost and GHG emissions. A 

baseline scenario is compared to a constraint-reduced scenario, a sustainable energy 

mix scenario, and a combined scenario with both sustainable energies and 

constraint reduction. All scenarios are compared to Iota’s 2030 Scope 3 GHG 

emissions reduction target. Additionally, example outputs describing an optimized 

network in further detail are displayed. 
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Chapter 6 – Recommendations for Model Expansion and Implementation: In the 

recommendations chapter, future options to improve and add to the model are 

discussed in depth. 

Chapter 7 – Conclusion: The conclusion chapter reviews the insights from prior 

chapters and describes how the methodology developed in this thesis could be used 

in institutions beyond the host company.  
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Chapter 2  

Literature Review 

2.1 Greenhouse Gas Emissions as a Key Metric 

 GHG emissions, primarily the result of burning fossil fuels, are a major contributor 

to global warming.3 Rising global temperatures contribute to increasing glacial melt, rising 

sea levels, and other adverse environmental impacts.4 The major components of GHG 

emissions are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated 

gases such as hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, and nitrogen 

trifluoride.5 These gases trap heat in the Earth’s atmosphere, contributing to warming of the 

planet.  

 GHG emissions are measured by weight and are multiplied by a Global Warming 

Potential (GWP). The GWP is a measure of the warming impact of a gas compared to CO2.6 

For example, N2O has a warming impact that is 273 times that of CO2, so it is assigned a 

GWP of 273. By measuring the weight of emissions of each gas and multiplying by that gas’ 

GWP, a meaningful sum of GHG emissions can be calculated in the units of Carbon Dioxide 

Equivalent (CO2e). This thesis focuses heavily on CO2e as a sustainability metric because it 

is an aggregated representation of a company’s contribution toward global warming. All 

references to GHGs in the analyses performed in this thesis are measured in units of CO2e. 
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2.2 Corporate Industry Environmental Responsibility 

 In the United States in 2021, the industrial sector’s direct and indirect GHG 

emissions were the largest of any sector and accounted for 30% of the country’s GHG 

emissions.7 The emissions of the industrial sector are far higher in magnitude than that of the 

commercial, residential, and agricultural sectors, making it one of the biggest areas of 

opportunity for climate change mitigation. The Environmental Protection Agency (EPA) lists 

opportunities such as improved energy efficiency, switching to low GHG fuels, and recycling 

as core opportunities for emission reductions, along with a multitude of other possibilities.8 

Despite the tangible steps available for corporations in the industrial sector to reduce 

emissions, a recent trend of greenwashing, which means making misleading statements about 

a company’s environmental practices or benefits, has arisen as a tactic for corporations to 

appear environmentally friendly but evade the burden of actual emission reduction.9 

 One of the top tactics for corporations to appear environmentally friendly is to pledge 

net zero carbon using carbon offsets or carbon credits. This strategy allows a corporation to 

buy a certificate that is linked to an effort to lower GHG emissions somewhere else, outside 

of their value chain, instead of taking steps to lower their own carbon emissions. Recently, 

studies have shown that offsets are guilty of promising more emission reductions than they 

can actually achieve.10 The carbon credit market lacks appropriate standards and regulations, 

which makes it concerning and unreliable.11 Unfortunately, carbon credits are a major tactic 

leveraged by the industrial sector, where actual emission reduction is urgently needed. 
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 In an attempt to be transparent with consumers and avoid greenwashing, Iota has 

pledged to reduce its actual emissions instead of relying on carbon offsetting. The focus of 

this thesis is the reduction of actual GHG emissions within Iota’s supply chain. Through the 

rest of this thesis, carbon offsets are not included in any reports of GHG emissions reduction 

efforts. 

2.3 Greenhouse Gases in the Supply Chain 

 According to the EPA, an organization’s supply chain is often responsible for more 

than 90 percent of the organization’s GHG emissions, making it the biggest source of 

emissions, by far, for many corporations.12 Additionally, the Consumer Packaged Goods 

(CPG) market is anticipated to grow at an average annual rate of 5.3%, which will contribute 

to additional increases in GHG emissions from their supply chains.13 Because such a high 

percentage of corporate emissions stem from the supply chain, in order to meet aggressive 

GHG emissions reduction, corporations will need to begin making drastic reductions to their 

supply chain emissions. Analysts such as McKinsey predict that the CPG industry will need 

to reduce their GHG emissions by more than half to meet 2050 targets.14 To address the 

magnitude of change that will be required within the corporate supply chain, specifically, this 

thesis focuses on emission reductions within the corporate supply chain. 

2.4 Prior Work in Supply Chain GHG Emissions Optimization 

 Optimization modeling for GHG emissions reduction across the supply chain is not 

a fundamentally new concept. Studies in various countries have been performed to determine 
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how to balance GHG emissions with risks in cost, quality, and lead times.15,16 In an 

international study of collaborative supply chains, researchers studied the network GHG 

emissions of multi-echelon manufacturing networks, very similar to those at Iota, and 

discovered that a robust optimization approach could be used to reduce the GHG emissions 

of collaborative networks over non-collaborative networks.17 While Iota is traditionally a non-

collaborative network where each tier of manufacturing in the multi-echelon network is 

confined to communicate only with the tiers directly above and below them, the Digital Twin 

project under development by Iota would encourage deeper network collaboration. This 

platform for collaboration makes the Digital Twin an ideal host for the GHG emissions 

reduction study undergone in this thesis. 

 Case-based studies of carbon mitigation in supply chain management have been 

conducted throughout the foreign automobile industry.18,19,20 An additional study on global 

supply chain explored integer programming to strategically optimize location, scheduling, and 

transportation flow while minimizing GHG emissions, and the authors were able to achieve 

significant reduction in GHG emissions using this method.21 Studies demonstrating GHG 

emissions reduction using similar programing techniques to Iota’s Digital Twin are validating 

that this platform could be used to achieve significant GHG emissions reduction at Iota, 

itself. In the apparel industry and in the United States in general, research on the topic 

remains limited, so Iota could be at the forefront of its industry with respect to sustainable 

supply chain design, which would pose a strategic advantage.  



 
27 

Chapter 3  

Digital Twin Optimization Model Background 

3.1 Motivation for the Digital Twin Optimization Model 

Iota’s manufacturing network is highly concentrated in Southeast Asia. This has 

traditionally served the purpose of providing a low-cost network. However, the historic 

network was not optimized for resilience, responsiveness, or responsibility. The Digital 

Twin model was created to enable the re-design of a network that is optimized for sourcing 

cost, resiliency, and responsiveness. The responsibility element was not included in the 

first generation of the Digital Twin model and is therefore not discussed further in this 

background chapter. Instead, it will be discussed in later chapters as a primary focus of 

the current thesis. It is important to note that the Digital Twin model has been designed 

to plan growth on the 2030 horizon and is not intended to be used for short term network 

planning. The Digital Twin model will reconfigure the supply footprint within T1 and T2 

factories and will assess the impact of adding factories in existing and new Manufacturing 

Countries of Origin (MCOs). 

3.2 Model Scope 

The Digital Twin model is concentrated in scope to the T2 to T1 to GEO segments 

of the supply chain. This includes T2 material weaving, dying, and finishing processes, 
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transportation of finished materials to T1 facilities where they are assembled into finished 

goods, and transportation of finished goods to destination ports. Figure 3-1 depicts the 

series of supply chain operations that are included in the Digital Twin model. Tiers 3 and 

higher of the supply chain network have not been included in the Digital Twin model at 

this time. These high tiers have been excluded from the first-generation model because it 

becomes increasingly more difficult for Iota to trace the sourcing of materials that are 

multiple tiers in the supply chain beyond their control, and because optimization becomes 

more complex with additional levels of sourcing. Iota may add higher tiers to the Digital 

Twin model in future iterations, but for the purpose of this thesis, the scope has been 

limited to the elements included in the first-generation version of the Digital Twin, shown 

below: 

 

Figure 3-1: Digital Twin Model Scope 
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3.3 Model Elements 

As previously discussed, the Digital Twin model optimizes for cost, resiliency, 

responsiveness, and responsibility. The element of responsibility is the newest addition to 

the model and falls under the work of this thesis. The elements of cost, resiliency, and 

responsiveness were integrated into the Digital Twin prior to the beginning of this thesis. 

The responsiveness metric is measured by lead time, the resiliency metric is measured by 

supply risk, and the cost metric is measured by sourcing cost. These three measurements 

used in the Digital Twin algorithm are discussed in the subsections below. 

Additionally, the subsections below describe how the sourcing cost, lead time, and 

supply risk metrics are all tracked across “units” in the multi-echelon manufacturing and 

distribution network. At the T2 level of the network, a “unit” refers to a piece of material 

which undergoes dyeing, weaving, finishing, etc., whereas a “unit” in the T1 level of the 

network refers to a finished good unit. The total network is comprised of both T2 material 

“units” and T1 finished good “units,” both of which are referred to as “units” below. 

3.3.1 Sourcing Cost 

The sourcing cost metric is quantified by total sourcing cost. The total sourcing 

cost is measured as the sum of the cost to manufacture and distribute each unit in the 

network, which includes material cost, labor cost, transportation cost, and duty rate. The 

equation for total sourcing cost is expressed in equation 3-1 below. 
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Total Sourcing Cost = S [(Material Cost + Labor Cost)	×	(1 + Duty Rate) 

+ Transportation Cost]      (3-1) 

Material cost, labor cost, and transportation cost are measured on a per-unit basis 

and summed over all units in the network to calculate the total sourcing cost. 

3.3.2 Lead Time 

A unit’s lead time is calculated at a finished good unit level and is comprised of 

four components including: 1) T2 materials production time, 2) transit time of materials 

from T2 node to T1 node, 3) T1 finished good production time, and 4) transit time from 

T1 node to marketplace GEO. Because the lead time is calculated at a finished good unit 

level and finished goods are comprised of multiple materials coming from different T2 

nodes, the maximum lead time for all the required materials used for each finished good 

is utilized in the calculation of each finished good lead time. The exact equation and 

methodology of the finished good unit lead time is outside of the scope of this thesis, 

proprietary to Iota, and not discussed in further detail. Once each unit’s lead time is 

calculated, total lead time of the network is then measured as the sum of each finished 

good unit’s lead time over all units in the network. Because the total lead time of the 

network aggregates a set of times to manufacture and distribute many kinds of materials 

and finished goods, which can occur in parallel, the total lead time is not a 1 to 1 

representation of actual time to get a set of goods from point to point and should not be 

interpreted as such. The equation for total lead time is expressed in equation 3-2 below. 
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Total Lead Time = S (Unit Lead Time)    (3-2) 

3.3.3 Supply Risk  

Each unit is given a country-specific unit supply risk score that is based on a 

Country Risk Index created by Iota. The Country Risk Index is a weighted average of 

nine (9) factors including climate risk, corruption risk, natural disaster risk, economics 

risk, cargo risk, labor risk, business risk, property risk, and individual risk. These nine (9) 

factors are updated by Iota for each country on a quarterly basis. Total supply risk is then 

measured as the sum of each unit’s supply risk score over all units in the network. Further 

details behind the supply risk metric are also proprietary to Iota, and the metric is not 

the primary metric of focus in this thesis, so it is not discussed in further detail. The 

equation for total supply risk is expressed in equation 3-3 below. 

Total Supply Risk = S (Unit Supply Risk Score)        (3-3) 

3.4 Model Decision Variables 

The Digital Twin optimization model aims to determine the optimal sourcing plan 

for Iota and therefore must provide Iota with the following information: 

1) The quantity and type of each material to be manufactured in each T2 factory 

(or the decision to not use the factory); 
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2) The quantity and type of each finished good to be manufactured in each T1 

factory (or the decision to not use the factory); 

3) Transportation routes and modes between T2 and T1 factories and the quantity 

and types of materials being transported in each route and mode; and  

4) Transportation routes and modes between T1 factories and GEOs and the 

quantity and types of finished goods being transported in each route and mode. 

These four (4) pieces of information constitute the decision variables in the Digital 

Twin algorithm and comprise the optimal sourcing plan for Iota once optimization has 

occurred. 

3.5 Model Constraints 

The Digital Twin optimization model employs multiple constraints that help guide the 

algorithm toward practical solutions. The constraints employed in the original Digital 

Twin model are outlined below: 

1) Demand by GEO. Iota is able to estimate consumer demand of all products in each 

of their GEOs. The model is constrained to exactly meet the estimated demand in 

each GEO so there are no supply shortages nor excess supply compared to the 

demand estimate in any region. 

2) Maximum number of new MCOs. This constraint limits the number of new MCOs 

that can be added to the existing supply chain infrastructure. This constraint is in 
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place because of additional expenditure, negotiation, and research required for Iota 

to expand into new countries. It would be impractical to suggest moving into an 

all-new set of countries at once and abandoning existing partnerships, so the Digital 

Twin model limits the number of new MCOs that can be suggested. 

3) Maximum or minimum demand fulfilled by a factory or factory group. Some of 

Iota’s historic factory partnerships require that a minimum amount of demand be 

fulfilled by certain factories or groups of factories. To ensure relations with factory 

partners remain healthy, the Digital Twin model ensures those historic agreements 

are not broken using a minimum demand constraint. Additionally, Iota desires to 

avoid risk stemming from factories closing unexpectedly, so Iota limits the percent 

of their total demand that can be served from any one factory or factory group. As 

a result, the Digital Twin model includes maximum demand percentage constraints 

for factory groups. 

4) Maximum demand percentage fulfilled by MCO. Iota wants to diversify the risk 

from factory shutdowns by limiting the percentage of its demand that is fulfilled 

by any one MCO. If any MCO ceases fulfilling orders due to political shutdown, 

natural disaster, or other country-wide problems, Iota can continue operating from 

factories in other MCOs by spreading the demand fulfillment over the remaining 

non-disrupted MCOs. 
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5) Minimum percentage of GEO demand fulfilled by nearshore T1 capacity. Iota hopes 

to move toward a nearshoring approach for its finished goods. To this end, the 

Digital Twin model imposes a minimum demand percentage constraint to make 

sure nearshore production reaches an acceptable level. 

6) Maximum or minimum factory capacity. Each factory can only accommodate a 

certain level of capacity, limited by the factory’s size and labor force. In order to 

ensure more capacity is not allotted to a factory than is physically possible, the 

Digital Twin model limits the maximum capacity of each factory. Additionally, 

factories have minimum order size limits that must be met in order to place orders 

from those factories, so the Digital Twin model requires that the minimum capacity 

be ordered from a factory if orders are placed at the factory. 

3.6 Model Multi-Objective Optimization 

The current Digital Twin model optimizes for total sourcing cost, total supply risk, 

and total lead time using a single, weighted objective function. Because total sourcing 

cost, total supply risk, and total lead time are all measured in different units, the weighted 

objective function normalizes the individual objectives before they are added together 

using the maximum and minimum possible values for each objective. The model calculates 

the extreme values for each objective by solving the model for each objective individually 

then uses those calculated values in the weighted objective function. The multi-objective 

function is expressed in equation 3-4 below.  
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   	   min( WC × 
Total Sourcing Cost - Min Possible Total Sourcing Cost

Max Possible Total Sourcing Cost - Min Possible Total Sourcing Cost
 	

          + WLT ×
 Total Lead Time - Min	Possible Total Lead Time

Max	Possible Total Lead Time - Min	Possible Total Lead Time
 	

          + WR ×
 Total Supply Risk - Min	Possible Total Supply Risk

Max Possible	Total Supply Risk - Min Possible	Total Supply Risk
 ) 

where WC + WLT + WR = 1                                                      (3-4) 

In the weighted objective function, each individual objective is assigned its own 

weight based on priority of that objective. The weighting of total sourcing cost is 

represented by WC, the weighting of total lead time is represented by WLT, and the 

weighting of total supply risk is represented by WR. The weighting of the three objectives 

must add to one (1), and the weights can be changed to generate a set of optimal solutions 

based on priority. If any one weight is set to one (1) and the others set to zero (0), the 

model can be executed to optimize for just that one objective to reveal the cheapest, 

fastest, or least risky solution without the influence of the other objectives. Alternatively, 

each weight could be set to one third to result in a solution balanced equally across all 

three objectives. By testing different combinations of weightings, a three-dimensional 

Pareto frontier can be generated to visualize the set of optimal solutions along the three 

performance metrics.  
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Chapter 4  

Incorporation of Responsibility in the Digital Twin Model 

This section focuses on the addition of the responsibility element to the Digital 

Twin model. As previously discussed, GHG emissions were selected as the metric of 

interest to measure responsibility. In order to minimize Iota’s GHG emissions in the Digital 

Twin model, the model requires GHG emissions information on a per-unit basis for each 

facility and for each transportation route considered by the model. Additionally, because 

the model is designed to produce an optimal network for the year of 2030, the per-unit 

GHG emissions were forecasted to the year of 2030 before integration into the Digital 

Twin. The following subsections review the detailed methodology for data and emission 

factor sourcing, data extrapolation, emission calculations, emission forecasting, and 

optimization. 

4.1 Data Collection 

An initial collection of internal GHG emissions related data was required so GHG 

emissions measures could be incorporated in the Digital Twin model. The following sources 

of internal data were the foundation of information that fed the Digital Twin model: 

1) T1 and T2 Manufacturing Energy Data. For all T1 and T2 manufacturing 

facilities, Iota had received reports of actual energy usage from the facilities for 

the previous five (5) years. To maintain an accurate depiction of the most recent 
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energy trends, only the trailing twelve months (TTM) of data were used in the 

model. This energy usage includes both on-site energy usage and energy 

purchased from the grid. On-site energy usage includes the combustion of fossil 

fuels and biofuels, on-site renewable energy generation, and other on-site energy 

sources. Energy purchased from the grid includes both purchased renewable 

energy and purchased standard grid energy. 

2) Transportation Distances, Loads, and Fuel Types. For all cargo routes occurring 

by truck and ship in Iota’s transportation network, Iota had collected 

information on the historic load quantities, load masses, travel distances, and 

fuel types used. 

Additionally, public sources of data were collected to fill knowledge gaps in internal 

data sources. The following public data were fed into the Digital Twin algorithm: 

1) European Energy Mix. Because Iota is not currently operating any 

manufacturing facilities in Europe, a reasonable extrapolation of the energy mix 

in this region could not be made using actual T1 and T2 manufacturing energy 

data. Instead, data was sourced from Eurostat,22 an official database of the 

European Union which contains publicly available energy information. Records 

detailing the total consumption of energy by industry in the European Union, 

separated by energy source and industrial sector, was retrieved from Eurostat 

and was filtered to the textile and leather sector, the closest option of industrial 
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sector to Iota, and was filtered to the most recent available year, 2020. The 

types and ratios of historic consumption of energy were used to extrapolate the 

available energy mix. 

2) Oceania Energy Mix. Similar to Europe, Iota does not currently operate any 

manufacturing facilities in Oceania. As such, data detailing the total 

consumption of energy by industry in Oceania, separated by energy source and 

industrial sector, were also outsourced for this region. This information was 

sourced from the Australian Government’s Department of Climate Change, 

Energy, the Environment and Water.23 Final energy consumption was filtered 

by the most recent available date range, 2020-2021, and was filtered by the 

closest industrial sector to Iota, which was food, beverages, and textiles. The 

types and ratios of historic consumption of energy were used to extrapolate the 

available energy mix. 

4.2 Emission Factors 

Emission factors were used to calculate GHG emissions from energy and fuel usage. 

The following databases were used to source emission factors:  

1) Intergovernmental Panel on Climate Change (IPCC): For stationary sources of 

emissions, such as those at the T1 and T2 manufacturing levels, emission factors 

for on-site energy generation were sourced from IPCC,24 the United Nations 
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body for assessing the science related to climate change. Emission factors were 

provided on a kg CO2e per kwh basis. 

2) International Energy Agency (IEA): To calculate emissions from T1 and T2 

factory consumption of off-site energy from the grid, emission factors were 

sourced from IEA25 on a country-specific basis. Factors were provided in grams 

of CO2e per kwh. 

3) Global Logistics Emissions Council (GLEC) Framework: Emissions from the 

truck and ship-based transportation of materials between T2 and T1 

manufacturing facilities were calculated using emission factors from the GLEC 

Framework.26 Emission factors were provided for material transport on a kg 

CO2e per tonne-kilometer basis. 

4) The United States Department of Transportation Research and Special 

Programs Administration: Emissions from the truck transport of finished goods 

between T1 manufacturing facilities and GEOs were calculated using emission 

factors from The United States Department of Transportation Research and 

Special Programs Administration.27 These emission factors were sourced on a 

grams of CO2e per Twenty Foot Equivalent Unit (TEU)-mile basis. 

5) Clean Cargo Working Group (CCWG): Finally, the emissions from the ship-

based transport of finished goods between T1 manufacturing facilities and 

GEOs were calculated using emission factors from CCWG.28 Factors were 
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provided in units of grams of CO2e per TEU-kilometer and were specific to the 

origin region to destination region route. 

4.3 Grid Emission Factor Forecasting 

As described in section 4.2, emission factors for T1 and T2 factory consumption of 

off-site energy from the grid were sourced from IEA on a country-specific basis. These 

emission factors are estimates of grid energy for the year 2020 and require forecasting to 

estimate grid emissions for the year 2030. Year over year (YOY) predicted percent changes 

to grid emission factors were sourced from IHS Markit29 and applied to 2020 Emission 

Factors (EF2020) to estimate 2030 Emission Factors (EF2030), as shown in equation 4-1, 

below. 

EF2030 = EF2020 × YOY2020-2021 × YOY2021-2022 × YOY2022-2023 × YOY2023-2024 ×    

YOY2024-2025 × YOY2025-2026 × YOY2026-2027 × YOY2027-2028 × YOY2028-2029 × YOY2029-2030  

             (4-1) 

4.4 Regional Extrapolation 

All MCOs considered by the Digital Twin algorithm had corresponding IEA 2020 

emission factors for consumption of off-site grid energy. However, not all of the MCOs had 

corresponding YOY percent changes in the IHS database. In order to arrive at an estimate 

of 2030 emission factors for those countries, the YOY percent changes were regionally 

extrapolated by averaging the known YOY percent changes from other MCOs in the same 
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region (e.g. Central America, South America, Middle East, etc.). The regional average 

YOY percent changes were then applied to IEA 2020 emission factors using equation 4-1 

to arrive at 2030 emission factors for the MCOs with missing YOY percent change values. 

With the exception of Europe and Oceania, Iota contracts with T1 and T2 

manufacturing facilities in all other global regions where MCOs are being considered by 

the Digital Twin. For the MCOs being considered with no current T1 or T2 manufacturing 

facilities in the country, a regional average of T1 and T2 manufacturing energy data was 

calculated to extrapolate the mix of energy that would most likely be used by the facility 

(e.g. 82% standard grid energy, 3% on-site solar, 8% on-site diesel energy generation, 7% 

purchased renewable energy from the grid). Additionally, the efficiency, measured as 

kilowatt-hours of energy required to make one unit (kwh/unit), was regionally averaged 

as an extrapolation for those same facilities with no current manufacturing data. 

4.5 Energy Mix Forecasting 

After the present-day energy mixes were extrapolated to include all T1 and T2 

facilities, these energy mixes could be manually altered to better represent the 2030 

renewable energy plans of the facilities. For example, if a facility had disclosed to Iota 

that it planned to switch completely to renewable power via a Power Purchase Agreement 

(PPA) by 2030, the energy mix for that facility could be changed to 100% renewable power 

in the Digital Twin model. Iota is able to change the energy mixes manually as it continues 

to receive information from its facilities about their 2030 sustainability efforts. This lever 
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allows for a higher degree of predictive accuracy to be used as information becomes 

available. 

As an added benefit to the energy mix being optionally manually altered in the 

model, Iota can test scenarios in which its T1 and T2 facilities meet aggressive renewable 

energy targets, and scenarios in which they fail to meet targets. The comparison of these 

scenarios gives Iota an understanding of how upstream facility actions will impact their 

own success.  

4.6 Manufacturing GHG Emissions Calculation 

Once the energy mix (percentage of each energy type used by a facility), emission 

factors (kg CO2e/kwh), and efficiency (kwh/unit) were estimated for all facilities, a 

calculation of CO2e/unit could be performed for each facility using equation 4-2, below: 

 kg CO2e/unit  =  

[Percent Energy A × Emission Factor Energy A + 

Percent Energy B × Emission Factor Energy B +     

Percent Energy C × Emission Factor Energy C + … ] × Efficiency     (4-2) 

Note that kg CO2e/unit can take the form of kg CO2e per finished good unit (FGU) 

or kg CO2e per kilogram of material, depending on the scenario described in Section 4.7 

below. 
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4.7 Final Data Entry 

The final GHG emissions data fed into the Digital Twin model to facilitate GHG 

emissions optimization takes the following forms: 

1) T1 Manufacturing GHG Emissions: The final T1 Manufacturing GHG emissions 

data used as inputs for the Digital Twin model are in the form of kg CO2e per 

finished good unit. These data are factory specific for MCOs where there are 

current Iota T1 manufacturing operations and country specific for MCOs where 

regional extrapolations were used in place of actual energy data because of lack 

of Iota T1 manufacturing operations in the MCO. These data are also product 

specific (i.e., differentiated by footwear vs. apparel vs. equipment). The data 

are all forecasts for the year 2030. 

2) T2 Manufacturing GHG Emissions: The final T2 Manufacturing GHG emissions 

data used as inputs for the Digital Twin model are in the form of kg CO2e per 

kilogram of material. These data are factory specific for MCOs where there are 

current Iota T2 manufacturing operations and country specific for MCOs where 

regional extrapolations were used in place of actual energy data because of lack 

of Iota T2 manufacturing operations in the MCO. These data are also material 

specific. The data are all forecasts for the year 2030. 

3) T2 to T1 Transportation GHG Emissions: T2 to T1 transportation emissions 

were inputted into the Digital Twin model in the units of kg CO2e per kilogram 



 
44 

of material shipped. These emissions were inputted on a route-specific and 

mode-specific (i.e., truck vs. ship) basis, independent of material type. 

4) T1 to GEO Transportation GHG Emissions: T1 to GEO transportation 

emissions were inputted into the Digital Twin model in the units of kg CO2e 

per finished good unit shipped. The average number of Iota’s finished good units 

per TEU in their historic supply network was used to convert the emission 

factors with TEU to finished good units in calculations. The kg CO2e per 

finished good unit emissions were then inputted on a route-specific, mode-

specific, and product-specific basis. 

The final calculation of total network GHG emissions including the above four (4) 

listed elements is shown in equation 4-3, below: 

Total GHG Emissions =            

∑ (T1 Manufacture GHG Emissions/FGUi + T1 to GEO Transportation GHG Emissions/FGUi)+u
i=1  

∑ (T2 Manufacture GHG Emissions/kg materialj + T2 to T1 Transportation GHG Emissions/kg materialj)k
j=1  

Where i is in the set of all u FGUs and j is in the set of all k materials              (4-3) 

4.8 Optimization 

4.8.1 Optimization Strategies Considered 

Two approaches were considered for the optimization of the Digital Twin model 

with GHG emissions included: 
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1) Add GHG Emissions as a Weighted Objective: One approach was to re-optimize 

the Digital Twin model with GHG emissions added as an additional objective in 

the weighted objective function. Using this method, a weight of 100% could be 

selected for the GHG emissions objective to determine the configuration with the 

lowest possible GHG emissions. Alternatively, a weight of 25% could be used on 

each objective to identify a network balanced over sourcing cost, lead time, supply 

risk, and GHG emissions. The drawback of this method is that solutions become 

much more difficult to interpret and visualize on a Pareto frontier when a fourth 

axis is added, so weights become more difficult to select. Adding GHG emissions as 

a weighted objective is attractive, though, because it allows for the identification 

of the best possible scenario for GHG emissions reduction. 

2) Add GHG Emissions as a Constraint: An alternative approach is to leave the 

objective function as-is with only sourcing cost, lead time, and supply risk included, 

then add a maximum amount of acceptable GHG emissions as a constraint to the 

model. Iota’s target of 30% Scope 3 GHG emissions reduction by 2030 could be 

used as the constraint, meaning the model would not be allowed to produce 

solutions in which Iota would fail its 2030 GHG emissions pledge. This strategy is 

attractive because it allows the model to optimize for traditional corporate 

priorities such as sourcing cost, lead time, and supply risk while meeting the exact 

maximum acceptable levels of emissions. The main drawback of this approach is 



 
46 

that the model will never provide a solution that helps Iota reduce its emissions to 

the largest extent, so Iota would never get an idea of how well it could be doing 

with respect to sustainability. Additionally, meeting the exact maximum allowable 

GHG emissions for 2030 may not adequately prepare Iota to meet its aggressive 

2050 GHG emissions targets the way the minimization approach could. 

4.8.2 Implemented Optimization Strategy 

Ultimately, the option to add GHG emissions as an additional objective was 

selected for use in the Digital Twin model. Because Iota wanted to reduce their emissions 

as much as feasible rather than simply achieving their 2030 disclosed target, it was 

essential to understand how much they could feasibly reduce their emissions. 

The objective function described in Section 3.6 was updated with a fourth weighted 

term with GHG emissions added. The new objective function is outlined in equation 4-4, 

below. 

 min ( WC × 
Total Sourcing Cost - Min Possible Total Sourcing Cost

Max Possible Total Sourcing Cost - Min Possible Total Sourcing Cost
  	

    	+ WLT ×
 Total Lead Time - Min	Possible Total Lead Time

Max	Possible Total Lead Time - Min	Possible Total Lead Time
 	

    + WR ×
 Total Supply Risk - Min	Possible Total Supply Risk

Max Possible	Total Supply Risk - Min Possible	Total Supply Risk
 

  		+ WGHG ×
 Total GHG Emissions - Min Possible Total GHG Emissions

Max Possible Total GHG Emissions - Min Possible Total GHG Emissions
) 

 where WC + WLT + WR + WGHG = 1                                       (4-4) 
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Again, each objective is assigned its own weight based on priority of that objective. 

The weighting of total GHG emissions is added and represented by WGHG. The weighting 

of the four objectives must add to one (1), and the weights can be changed to generate a 

set of optimal solutions based on priority. By testing different combinations of weightings, 

now a four-dimensional Pareto frontier could be generated to understand the set of optimal 

solutions along the four performance metrics. Because four-dimensional Pareto frontiers 

are difficult to conceptualize, other strategies can be used to visualize outcomes, such as 

setting two of the weights to zero and visualizing the tradeoff between the remaining two 

metrics in isolation. This strategy was used to visualize results for the purpose of this 

thesis and is discussed in the following chapter.  



 
48 

Chapter 5  

Analysis 

This section shows various results of solving the responsibility-integrated Digital 

Twin optimization model described in the previous section. In all of the results discussed 

in the subsections below, a 2030 footwear demand forecast generated by Iota’s business 

stakeholders was used as the customer demand constraint. The demand was limited to 

footwear for all model runs and excluded apparel and equipment to showcase the results 

in a simplified manner and to avoid redundant discussions of similar results across the 

apparel and equipment categories.  

Additionally, the results discussed in the following subsections showcase the 

difference between model runs with GHG emissions as the sole objective, sourcing cost as 

the sole objective, and a weighted sum of GHG emissions and sourcing cost as the 

objective. The results do not include model runs with supply risk and lead time as 

additional objectives (though network supply risk and network lead time values were still 

calculated) for the purpose of simplifying illustration in the thesis (i.e., visualizing a two-

dimensional Pareto frontier versus a three- or four-dimensional pareto frontier). Sourcing 

cost was chosen as the objective to balance with GHG emissions because it produces the 

most interesting tradeoffs on a Pareto frontier. Solutions that are ideal for GHG emissions 

also tend to be ideal for both supply risk and lead time, so less interesting tradeoffs tend 

to be produced with those metrics. Additionally, the transportation GHG emissions model 
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inputs correlate strongly with lead time inputs, and there was concern about running the 

model with correlated variables in the objective function. This concern is discussed in 

more detail in Section 6.1. For all the model results showcased below, the lead time weight 

(WLT) and the supply risk weight (WR) were set to zero. 

5.1 Baseline 2030 Scenario 

In this subsection, the Baseline 2030 Scenario results are discussed. In the Baseline 

2030 Scenario, the estimated emission factors for country energy grids in the year 2030 

were used, but the present-day ratios of each of the energy types used were assumed to 

stay unchanged. To illustrate, if a factory currently uses 20% onsite diesel fuel with the 

remaining 80% of energy coming from the grid, the baseline scenario would preserve this 

20%/80% ratio, while the emission factor used for the 80% of energy coming from the grid 

would be forecasted to that of the year 2030. Additionally, Iota’s historic partner sourcing 

contract quantities with factories in its supply chain are preserved in this scenario. This 

means that if Iota has historically contracted to source a certain number of finished goods 

from a factory each year and wishes to maintain a healthy partnership with that factory 

into the long-term future, the historic contract quantity has been used as a constraint in 

the optimization. This scenario was designed to represent the 2030 emissions that would 

occur if neither Iota nor its suppliers took any action to alter the emissions of the supply 

chain. 
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Presented in Figure 5-1, below, is the Pareto frontier generated from running the 

digital twin optimization model with various combinations of weights on the GHG 

emissions and sourcing cost objectives. The x-axis displays the network sourcing cost, 

measured as a percentage increase from the lowest-cost scenario. The y-axis displays the 

network GHG emissions, measured as a percentage increase from the lowest GHG 

emissions scenario. Each point represents an optimized scenario with objective function 

weights labeled as (sourcing cost weight, GHG emissions weight). 

Figure 5-1: Baseline 2030 Scenario - Network GHG Emissions & Sourcing Cost Tradeoff 

 

As depicted, the network sourcing cost increases as the network GHG emissions 

decreases scenario-by-scenario, revealing a non-linear trade-off between sourcing cost and 

GHG emissions. By comparing the (1,0) and (0,1) weight points, the Baseline 2030 

Scenario reveals that Iota could reduce its projected 2030 GHG emissions by as much as 
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15% just by re-organizing the supply allocation within its available supply chain, but at 

a nearly 6% increase in sourcing cost.  

 While it is Iota’s prerogative to determine if the 15% reduction in GHG emissions 

is worth the near 6% increase in sourcing cost, Figure 5-1 reveals more cost-effective 

solutions. When comparing the (1,0) point, representing the scenario optimized solely for 

sourcing cost, to the (0.8,0.2) point, a reduction of approximately 12% in GHG emissions 

can be achieved at less than half a percent increase in sourcing cost. This (0.8,0.2) point, 

representing an 80% objective weight for sourcing cost and 20% objective weight for GHG 

emissions, reveals a far more cost-effective solution for GHG emissions reduction than 

optimizing solely for GHG emissions, though the final reduction in GHG emissions is 

slightly smaller. Iota must consider all the points along the Pareto frontier and select the 

point that best fits their needs for sourcing cost and GHG emissions reduction.  

Below in Figure 5-2, Iota’s 2030 target of a 30% reduction in GHG emissions 

compared to their 2015 GHG emissions is plotted with the 2030 baseline Pareto frontier 

from Figure 5-1. The y-axis has been re-marked such that the 2015 actual GHG emissions 

fall at the 100% mark, the 2030 target of a 30% reduction in GHG emissions is plotted at 

the 70% mark, and the Pareto frontier falls where the optimized points lie compared to 

these two standards. 
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Figure 5-2: Baseline 2030 Scenario with 2015 GHG Emissions & 2030 GHG Emissions Target 

 

Figure 5-2 reveals that the entire Pareto frontier corresponding to the Baseline 2030 

Scenario lies far above the 2015 GHG emissions line and farther yet from the 2030 GHG 

emissions target. This result is largely attributed to the increase in product demand from 

2015 to 2030. Because Iota is producing more products year-over-year, its total emissions 

will grow if no steps are taken to deliberately reduce those emissions. Given this insight, 

Iota hoped to explore additional strategies to reduce its emissions. Those additional 

strategies are discussed in the subsections below. 

5.2 No Contract Constraints 2030 Scenario 

In this subsection, a new scenario that builds on the Baseline 2030 Scenario is 

discussed. The No Contract Constraints 2030 Scenario is the same as the Baseline 2030 
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Scenario except that the contract constraints, which represent Iota’s historic agreements 

to source minimum quantities of finished goods from certain partner factories in its supply 

chain, are removed. This modified scenario allows Iota to understand the potential impact 

on emissions if it considers re-evaluating the historic contracts with its partners. In Figure 

5-3 below, the No Contract Constraints 2030 Scenario is plotted with squares along with 

the Baseline 2030 Scenario, 2015 GHG emissions, and 2030 GHG emissions target from 

Figure 5-2. In Figure 5-3, the x-axis has been re-marked such that the new lowest network 

sourcing cost represents the 0% mark, and all other sourcing costs are shown as a 

percentage increase from that point. 

Figure 5-3: No Contract Constraints 2030 Scenario 

 

As shown in Figure 5-3, the No Contract Constraints 2030 Scenario shows a 

reduction in GHG emissions compared to the Baseline 2030 Scenario. Additionally, the 
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No Contract Constraints 2030 Scenario’s Pareto frontier is more extensive in length along 

the sourcing cost and GHG emissions axes because it reveals a more diverse set of solutions 

as constraints are removed. The No Contract Constraints 2030 Scenario does not, however, 

cross the 2030 GHG emissions target line, meaning that re-evaluation of sourcing contracts 

itself is not sufficient to satisfy the target. In order to meet the aggressive GHG emissions 

reduction target, Iota again has to consider additional measures to reduce its emissions.   

5.3 Sustainable Energy Mix 2030 Scenario 

The next scenario is another that builds from the Baseline 2030 Scenario. In order 

to create this scenario, Iota surveyed factories in its supply chain about plans, realistic 

expectations, and ambitious expectations for sustainable energy additions and other 

changes to their energy mixes for the year 2030, given that Iota is placing pressure on 

them to improve sustainability metrics by that year. In the Sustainable Energy Mix 2030 

Scenario, the present-day energy mixes for factories were substituted with the factories’ 

realistic expectations for 2030. All other details were equivalent to that of the Baseline 

2030 scenario, meaning contract constraints were utilized. The Sustainable Energy Mix 

2030 Scenario is intended to depict the realistic picture of the supply chain in 2030 in 

which Iota is pressuring its factories to be more sustainable, and it can be compared to 

the Baseline 2030 Scenario in which there is no change to factory energy mixes from the 

present. In Figure 5-4 below, the Sustainable Energy Mix 2030 Scenario is plotted with 

diamonds along with the Baseline 2030 Scenario, 2015 GHG emissions, and 2030 GHG 
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emissions target from Figure 5-2. In Figure 5-4, the x-axis has been re-marked such that 

the new lowest network sourcing cost represents the 0% mark, and all other sourcing costs 

are represented as a percentage increase from that point. 

Figure 5-4: Sustainable Energy Mix 2030 Scenario 

 

Figure 5-4 reveals that six of the seven cases analyzed within the Sustainable 

Energy Mix 2030 Scenario meet the 2030 GHG emissions target set by Iota. All but point 

(1,0), which corresponds to optimizing solely for sourcing cost, allow Iota to meet the 

target. This result is exciting for Iota because it means that with their realistic 

expectations for the factories’ energy mixes by 2030, they are on-track to meet their 

emissions reduction target as long as they do not optimize solely for sourcing cost. Because 

optimization for sourcing cost only is a tempting and common strategy in the industry, 

this result highlights the importance of explicitly considering emissions performance 
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during sourcing optimization as proposed in this thesis. Without that explicit 

consideration, Iota would not be on track to meeting its GHG emissions target. 

5.4 Sustainable Energy Mix and No Contract Constraints 2030 Scenario 

The final scenario discussed is the Sustainable Energy Mix and No Contract 

Constraints 2030 Scenario. This scenario adapts from the Baseline 2030 Scenario with 

both the exclusion of contract constraints described in Section 5.2, and the substitution 

for realistic 2030 energy mixes described in Section 5.3. The Sustainable Energy Mix and 

No Contract Constraints 2030 Scenario presents the possible outcomes if Iota considers 

both the future likely outlook of its factories’ energy mixes and re-evaluating its historic 

sourcing contracts with factories. In Figure 5-5, the Sustainable Energy Mix and No 

Contract Constraints 2030 Scenario has been plotted with triangles along with the 

Baseline 2030 Scenario in circles, the No Contract Constraints 2030 Scenario in squares, 

and the Sustainable Energy Mix 2030 Scenario in diamonds. These four scenarios, along 

with the 2015 GHG emissions and 2030 GHG emissions target give the full picture of 

emissions reduction possibilities for Iota’s supply chain. In Figure 5-5, the x-axis has been 

re-marked such that the new lowest network sourcing cost represents the 0% mark, and 

all other sourcing costs are shown as a percentage increase from that point. 
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Figure 5-5: Sustainable Energy Mix and No Contract Constraints 2030 Scenario 

 

As depicted in Figure 5-5, the Sustainable Energy Mix and No Contract 

Constraints 2030 Scenario reveals the lowest possible GHG emissions for 2030. In all seven 

(7) cases examined within the scenario, Iota is projected to meet its 2030 GHG emissions 

target. This scenario would allow Iota to optimize for sourcing cost and meet its emissions 

targets. The downside to re-evaluating contracts with factories could be diminished 

relations with existing factory partners. Iota has the flexibility to continue its historic 

contracts and optimize its supply chain partially for GHG emissions if it wishes to meet 

its targets without re-evaluation. Even if it is undesirable for Iota to re-evaluate the 

current contracts, the methods and analysis developed in this thesis can provide helpful 

insights when the company negotiates new long-term contracts with its suppliers going 

forward. 
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5.5 Detailed Findings Underlying the Optimal Solutions 

The preceding subsections detailed four (4) scenarios in which Pareto frontiers were 

generated with points that each represented an optimized network based on a given set of 

weights used on the two objectives (sourcing cost and GHG emissions). This subsection 

describes the underlying insights behind those points. Within each optimized point is a 

sourcing solution detailing how many of each finished good and material should come from 

each factory in the multi-echelon manufacturing network, and how many of each finished 

good and material should use each transportation route and mode within the distribution 

network. This solution can be used by Iota to create a mapping of the ideal flow of goods 

throughout the network. When Iota selects the optimized point that meets their sourcing 

cost and GHG emissions needs, they can use its detailed material flow as a sourcing plan 

within their supply network. 

The subsequent discussion illustrates an example of the detailed solution underlying 

one of the optimized points. The output can be visualized in many different ways. Aside 

from a detailed table of sourcing quantities, transportation routes, and modes, a Sankey 

diagram can be generated to help visualize the quantities of goods flowing from T2 

factories to T1 factories, and eventually to GEOs. Sankey diagrams display the flow of 

resources through networks and are useful for depicting high-level views of complex 

networks.30 These diagrams can be interpreted as flows of goods from upstream (left) to 

downstream (right) and the thickness of each line indicates the relative quantity of goods 
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flowing from a source (left) to a destination (right). An example Sankey diagram of an 

optimized network is displayed in Figure 5-6. The Sankey diagram presented here has been 

aggregated to the country-GEO level for the protection of Iota’s factory network, but it 

can be viewed on a factory-GEO basis by Iota to gain a detailed understanding of the flow 

of goods throughout the optimized network. In this diagram, the countries with utilized 

T2 factories are listed on the left side of the figure, the quantity and direction of goods 

flowing from T2 factories to T1 factories are depicted by the bars extending from left to 

center figure, the countries with utilized T1 factories are shown in the center of the figure, 

and the quantity and direction of goods flowing from T1 factories to GEOs are shown by 

the bars extending from center to right figure. 

Figure 5-6: Example Optimized Network Sankey Diagram

 

This kind of Sankey diagram provides insight to Iota about the manufacturing 

locations that are being most heavily utilized in their optimized network. It also provides 
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a high-level depiction of which trade lanes are being identified as optimal so Iota can grasp 

the overall strategy that would be required to employ the optimized network in its supply 

chain. 

In addition to the Sankey diagram, a more geographically-oriented map can be 

generated to visualize the network’s configuration and the locations generating the most 

GHG emissions. Bar charts or lists of the most heavily emitting factories per unit or 

highest contributors to emissions total can also be generated to raise awareness of the 

most heavily emitting elements of the optimized network. These visuals provide aide to 

Iota’s management to recognize the parts of the network that require the most attention 

to reduce emissions. Management can use this information to either divert manufacturing 

and distribution away from high emitting factories or negotiate with those factories to 

encourage them to reduce their GHG emissions. For Iota’s protection, detailed maps will 

not be depicted in this thesis. 
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Chapter 6  

Recommendations for Model Expansion and Implementation 

This section provides recommendations for Iota’s current model improvements and 

expansion along with suggestions for model implementation should other entities decide 

to adapt the methodology described in this thesis. 

6.1 Explore Supply Risk and Lead Time as Concurrent Objectives with GHG 

Emissions 

In the results discussed in the Analysis section, the objective function weights for 

supply risk and lead time were set to zero and the model was optimized only for 

combinations of GHG emissions and sourcing cost. The business stakeholders at Iota were 

most concerned about the trade-off between these two objectives, so most of the time 

dedicated to model runs and analysis were focused on these objectives. 

It is recommended that Iota take further steps to explore GHG emissions vs supply 

risk and GHG emissions vs lead time objectives in the future, given more time, to check 

for meaningful results. A cautionary remark is warranted for this study, though. In many 

instances, travel distance is used to calculate both transportation GHG emissions and lead 

time, making these two metrics strongly correlated. When optimizing for GHG emissions 

and lead time, the algorithm may be double-counting the effects of travel distance in the 

optimization, and results may be unintentionally skewed as an effect. Because total GHG 
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emissions are not solely comprised of transportation GHG emissions (i.e., manufacturing 

GHG emissions also contribute to total GHG emissions and are not affected by travel 

distance), it is unclear how much of an effect the double-counting of travel distance will 

have in the overall optimization results. In order to make this determination, it is 

recommended that Iota perform a study to clarify the magnitude of correlation between 

total GHG emissions and lead time variables before performing the optimization with 

both GHG emissions and lead time as weighted objectives. 

6.2 Input Data Improvements 

One of the biggest challenges faced in the integration of GHG emissions as a metric 

in the Digital Twin model was data availability. Data was available on a granular level for 

T1 manufacturing facilities, but it became less granular and less reliable at the T2 

manufacturing level. This is because T2 data is reported by a T2 facility to its 

corresponding T1 facilities before being provided to Iota, so there is a muti-step chain of 

reporting occurring in the data collection process. Iota considers the T2 data to be less 

reliable than T1, which makes the model’s results less reliable when including T2 in scope. 

Iota is taking steps to improve the granularity and reliability of this T2 data, which will 

improve confidence in the Digital Twin’s results in future iterations. This effort is critical 

for Iota to gain more accurate GHG emissions predictions for comparison to GHG 

emissions reduction targets, especially as it nears its 2030 target year. 
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It is recommended that any institution beginning to use the methodology described 

in this thesis for multi-echelon networks first ensure that it has sufficient and reliable data 

from upper echelons in its network. Without reliable data, the institution cannot be 

confident in the exact values of the results of the model. 

It is also recommended that Iota conduct a formal sensitivity analysis on the Digital 

Twin model to adequately understand its variability and reliability. Iota should first 

understand the sensitivity of the model so its management team understands the risks 

and degree of accuracy before using the model for its supply planning efforts.  

6.3 Additional Tier Scope 

In the future, as more information on higher echelons of Iota’s network becomes 

available, it is recommended that Iota integrate higher tiers in the Digital Twin model to 

optimize all of its Scope 3 emissions, traceable to the farm level. At this point, Iota’s 

emissions data above the Tier 2 level may not be granular enough to be added to the 

Digital Twin model, but it is recommended that Iota make additional high-tier data 

gathering efforts to make this a possibility.  

Additionally, as a next step, Iota would benefit from integrating its middle and last 

mile distribution network into the Digital Twin model. Integration of these elements would 

allow for an end-to-end optimization of the entire network. With both higher tier 
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capability and middle/last mile capabilities, the Digital Twin model could help to optimize 

GHG emissions for the entire supply chain. 

6.4 Refresh Energy Mix Forecasting 

The projections of network GHG emissions utilized in the Sustainable Energy Mix 

2030 Scenario are dependent on the energy mix forecasting from the T1 and T2 factories. 

As 2030 approaches, the factories’ estimations of their feasible changes to energy mixes 

will evolve. Refreshing those forecasts in the model as they change at the factory level will 

allow for a more accurate network GHG emissions estimate into 2030. 

6.5 Allocate Supply According to Optimized Plan 

The final recommendation for Iota and any other entity attempting to make use of 

the methodology described herein is to integrate the GHG emissions optimized supply 

plan created by the Digital Twin into business supply planning decisions. This seems like 

an intuitive suggestion, but some businesses experience a disconnect between tech-focused 

divisions and stakeholders making planning decisions. It is imperative for Iota to ensure 

that the Digital Twin’s supply planning outputs make it into the hands of the right 

stakeholders to support decisions for Iota to meet its 2030 GHG emissions targets.   
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Chapter 7  

Conclusion 

This thesis strove to use a multi-objective optimization strategy to minimize GHG 

emissions across Iota’s multi-echelon product manufacturing and distribution network 

while maintaining desirable levels of alternate objectives such as sourcing cost, lead time, 

and supply risk. GHG emissions were incorporated as a new element into Iota’s existing 

multi-objective mixed-integer linear program Digital Twin model and the minimization of 

GHG emissions was added as a new part of the multi-objective function. Execution of the 

revised multi-objective mixed-integer linear program with GHG emissions resulted in 

multiple scenarios for Iota to utilize in their supply planning and emissions reduction 

efforts. 

The Baseline 2030 Scenario analyzed in this thesis revealed that without any action 

on Iota or its factories’ part, it would not likely be able to meet its supply chain 2030 

Scope 3 GHG emissions targets given the growth of the company. The Sustainable Energy 

Mix 2030 Scenario demonstrated that, with the current plans for more sustainable energy 

options at the factories, Iota will likely be able to achieve its 2030 Scope 3 GHG emissions 

targets despite its growth. With the current projections for energy mixes, it is 

recommended that Iota stray from the option to optimize solely for sourcing cost, and 

that it begins using the Digital Twin model described in this thesis to optimize in part for 

GHG emissions to meet its target. If Iota wishes to optimize solely for sourcing cost, 
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opportunity to meet GHG emissions targets also exists by negotiation of sourcing contracts 

and promoting low carbon energy options to those factories with contracts. 

At the commencement of this project, a path to meet the 2030 Scope 3 GHG 

emissions target was unclear, though Iota was determined to do whatever it took to meet 

the target. This project was a large success in providing sourcing strategies to meet the 

GHG emissions target and validating that the sustainable energy efforts of Iota’s network 

factories would be sufficient to support Iota in meeting the target. The Digital Twin model 

can be used to help make sourcing roadmaps for Iota’s future sustainability efforts, such 

as its 2050 net zero GHG emissions target, so it has clear direction and can make early 

strides toward meeting the target. 

It is worth acknowledging that the Digital Twin model is not perfect, but it provides 

value nonetheless. The model could be improved with better data inputs and additions of 

upstream and downstream tiers within the multi-echelon network. Because of limitations 

in data inputs, the exact magnitudes of GHG emissions estimates may not come to precise 

fruition, but they are helpful in making strategic sourcing decisions and selecting certain 

factories over others in the network. 

This thesis served as a proof of concept for the idea of optimization of GHG 

emissions within a global multi-echelon manufacturing and distribution network. The 

Digital Twin model was the in-situ implementation of this concept within Iota’s network. 

The product will continue to serve Iota, but its concept could be instituted within 



 
67 

networks of other organizations. With good access to data, other organizations could 

utilize the framework described herein to reduce their carbon footprints, which would be 

a great service to the planet and help in meeting the Paris Agreement. 
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