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Abstract

This thesis explores the realm of computational imaging, focusing on the critical
problems of phase retrieval and optical scattering—essential for accurately extract-
ing physical information from photons. It aims to enhance the understanding and
computational efficiency of existing models by addressing the fundamental challenges
encountered due to diffraction effects, multiple scattering, and noise. Specifically, the
thesis proposes improvements and comprehensive analyses of models related to phase
retrieval, such as the Transport-of-Intensity Equation (TIE), and optical scattering
approximations, including the Lippmann-Schwinger Equation (LSE).

For phase retrieval, this work introduces mathematical approaches to reduce the
TIE’s sensitivity to experimental conditions and provides a quantitative comparison
with other methods to clarify its applicability. It also explores the adjoint method
for solving the TIE, which significantly enhances numerical stability, and discusses
the analytical relationship between non-paraxial formulations and conventional phase
retrieval methods, deepening our understanding of the field.

In the domain of optical scattering, where information in photons is further en-
coded via complex light-matter interactions, this thesis examines several models de-
rived from the scalar wave equation such as the LSE, the Born series, and the beam
propagation method. It provides a direct and quantitative analysis of their rela-
tionships and numerical stability, highlighting the strengths and weaknesses of these
models in various experimental contexts, which has not been discussed thoroughly in
previous studies.

Additionally, the thesis tackles the computational challenges associated with the
LSE by proposing numerical strategies and integrating neural networks as a learnable
regularization. This approach aims to reduce computational demands while main-
taining generalizability across different scattering objects.

Overall, this work contributes to the field of computational imaging by offering a
deeper understanding of phase retrieval and optical scattering models, alongside pre-
senting solutions to overcome their limitations. It sets the stage for further theoretical
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analysis and practical applications in physics, where accurate information retrieval
from photons is crucial.
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Chapter 1

Introduction

1.1 Motivation

In many branches of physics, photons have been considered as one of the most im-

portant carriers of physical information. In very small scales, we use so-called X-rays

to obtain information on the atomic structure or composition of materials. On the

other hand, even in larger scale, we use infrared light sources to retrieve hints on the

universe far from our planet. This is because valuable information about physical

characteristics of objects is encoded in photons via complex light-matter interactions,

which we often refer to as the optical scattering.

The main objective of computational imaging is to facilitate the retrieval of the

physical information from photons in quantitative ways. Fig. (1-1) is a simple de-

scription on computational imaging, which consists of four parts: light sources and

corresponding illuminations, scattering with objects, propagation in space toward de-

tectors, and lastly measurements at detectors. Contrary to the simple structure of

the description, we face multiple difficult problems for the accurate retrieval of infor-

mation in photons. One of the well-known problems is the phase retrieval problem,

estimating the phase part 𝜑 of an electromagnetic wave 𝜓. To be more specific, note

that what is usually collected at detectors is the intensity of such wave and thus, the

phase data is lost. However, it carries indispensable information on characterizing a

physical system, which leads to extensive studies in many branches of physics regard-
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Figure 1-1: Simplified overview on the computational imaging. In computational
imaging, the main objective is to retrieve physical information on objects of our
interest from optical measurements using computational methods. Core components
in computational imaging are: photon sources and corresponding illumination, optical
wave 𝜓 with an intensity 𝐼 and a phase 𝜑 that originates from an interaction between
an illumination and an object, and a detector for optical measurements.

ing the problem. For example, the phase part is required to estimate the scattering

cross-section and corresponding atomic structure in X-ray crystallography, and with-

out an appropriate phase retrieval process, the estimation is limited to objects under

special assumptions [28].

Oftentimes, the connection between 𝜓 and physical properties of objects is not

straightforward, implying that the retrieval of the phase information is not sufficient.

This is because of the complex optical scattering noted above and one should look for

scattering models to have such connection. For instance, signals collected in space

telescopes suffer from dusts and gravitational effects, which should be decrypted to

unveil the physics of stars from photons. In computational imaging, such decryption

is conducted by, first, analyzing the forward scattering representing the mapping from

an object to 𝜓, and subsequently the inverse scattering that one tries to approximate

an object from 𝜓.

These problems, the phase retrieval and the inverse scattering, would constitute

the most fundamental and important parts in computational imaging. In particular,

when the characteristic length scale of objects ranges from a few to thousands wave-

lengths and the scalar wave approximation applies, diffraction effects and multiple

scattering inside objects become important, which may add another layer of diffi-
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culty in computational imaging [79]. Accordingly, there have been numerous studies

proposing computational models on how to take such difficulties into account. How-

ever, some of such models still require improvements, or even if they are shown to be

applicable, there are cases for which quantitative analysis should be conducted further

for better understanding on models. Based on phenomenal models in the phase re-

trieval and the optical scattering, this thesis proposes concrete analysis and possible

improvements for such models, alleviating well-known difficulties in computational

imaging. It should be emphasized that, as illustrated above, the phase retrieval and

optical scattering problems have also been crucial parts in many branches of physics

involving imaging. It is expected that techniques developed in this work can be

directly applied on various research, facilitating more accurate characterization of

physical systems.

1.2 Thesis overview

As illustrated in the previous section, this thesis is dedicated to proposing compu-

tational improvements and better analysis on various models regarding the phase

retrieval and the approximation of optical scattering. For the phase retrieval, the

transport-of-intensity equation (TIE) is considered. As TIE is known to sensitive to

experimental conditions, a few mathematical ways to alleviate such problems are pro-

posed. In addition, it is quantitatively compared to relevant methods with different

assumptions on the wave propagation for better understanding on its applicability.

Furthermore, when it comes to optical scattering, several different models are also

discussed. Such models have different properties and these properties are known

to have significant influence on our estimation on objects. Yet, there has not been

detailed and quantitative analysis on their relationship. Subsequently, this thesis pro-

poses concrete description on the relationship. Finally, based on the description, a

model called the Lippmann-Schwinger equation (LSE) is discussed for its accuracy

but limited applicability due to the heavy computational burden. Consequently, this

thesis suggests numerical tricks and neural networks to mitigate the computational
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problems regarding the LSE.

In Chapter 2, TIE is proposed as a model for the phase retrieval. Compared

to other phase retrieval models, origins of its sensitivity on experimental conditions

are reviewed. In turn, a new idea to interpret and solve TIE is proposed through the

adjoint method. It is shown that this idea can greatly improve the numerical stability

of TIE. Furthermore, another formulation that is non-paraxial but closely related

with the proposed idea is considered, and the analytical relationship between these

methods is discussed for better understanding on various phase retrieval methods.

In Chapter 3, three models, in the scalar scattering theory are discussed. They

are all originated from the scalar wave equation, but the direct and quantitative

relationship between them has not been proposed in detail. Starting from the LSE,

other famous models such as the Born series and the beam propagation method

(BPM) are derived. In addition, the reason that they exhibit different numerical

stability is discussed. Compared to LSE, BPM has distinct strengths and weaknesses,

whose applicability on different experimental situations are presented in analytical

ways.

In Chapter 4, numerical strategies to alleviate heavy computational requirements

in the LSE are shown. The most significant component is to leverage formulations

proposed in the proximal gradient descent where regularziations can be applied to

facilitate the convergence of the LSE. In turn, it is proposed to use neural networks

as a learnable regularization as appropriate forms of regularizations for such problem

are not known. In addition, the structure of neural networks is carefully designed to

consume far less amount of computational power compared to classical approaches

and to promote generalizability on various scattering objects.

Altogether, this thesis show quantitative descriptions on famous models in com-

putational imaging, providing more fundamental understanding on advantages and

disadvantages regarding them. Furthermore, this work presents mathematical ideas

on significantly alleviating disadvantages in phenomenal models that have not been

resolved very well. While it is not easy to convey an unified description on all existing

models in the phase retrieval and the optical scattering, it is expected that such mod-
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els can still be regarded as extensions to models discussed in this work, promoting

theoretical analysis on such models.
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Chapter 2

Noise robust phase retrieval via the

transport-of-intensity equation with

adjoint method

2.1 Introduction

As introduced in Chapter 1, the transport-of-intensity equation (TIE) has been one

of the important models in the phase retrieval. It is an equation that relates intensity

derivatives to information on the phase of a wave:

−𝑘0𝑛𝑏
𝜕𝐼(x, 𝑧)

𝜕𝑧
= ∇x ·

(︁
𝐼(x, 𝑧)∇x𝜑(x, 𝑧)

)︁
, (2.1)

where 𝑘0 = 2𝜋/𝜆, 𝑛𝑏 is the refractive index of background, 𝜆 is the vacuum wave-

length, and ∇2
x denotes the Laplacian applied on the lateral dimensions x, 𝑧 is the

optical axis. Here, 𝐼 and 𝜑 denote the intensity and the phase part of a wave 𝜓

respectively, i.e.

𝜓(x, 𝑧) =
√︀
𝐼(x, 𝑧)𝑒𝑖𝜑(x,𝑧). (2.2)

Compared to other phase retrieval algorithms, TIE has several advantages. In

principle, the phase 𝜑 can be obtained by just collecting multiple intensities at

27



different defocused positions 𝑧. Hence, experiments can be conducted in a non-

interferometric way; there is no need for a reference beam, making the experimental

setting very simple. Furthermore, unlike methods like [16], TIE does not require many

measurements, though collecting more measurements may alleviate the ill-posedness

from noise. Compared to famous methods such as the Gerchberg-Saxton algorithm,

TIE is not based on iterative projections, so the numerical convergence is always

guaranteed. Lastly, if necessary, TIE can even be applied on incoherent cases [80].

Accordingly, TIE has been utilized in many phase retrieval problems, due to its simple

setting and deterministic convergence.

However, TIE also suffers from serious drawbacks. Such drawbacks originate from

inherent assumptions behind TIE and such assumptions are strongly coupled with

the solution process, resulting in various numerical instabilities. In this chapter,

some theoretical bottlenecks in TIE are reviewed and a new interpretation on the

equation is proposed to mitigate drawbacks of the equation.

2.2 Inherent assumptions in TIE and its comparison

to propagation models

Though TIE has been mainly used for the phase retrieval because of its simplicity,

it can also be thought as a model that estimates the wave propagation under the

scalar wave approximation. Accordingly, it is closely related to the scalar Helmholtz

equation,

∇2𝜓(𝑟) + (𝑘0𝑛(𝑟))
2𝜓(𝑟) = 0 (2.3)

where 𝑛 is the refractive index of objects and we denote 𝑟 = (x, 𝑧). A special solution

to Eq. (2.3) under uniform media is the so-called the paraxial wave form:

𝜓(r)⇒ 𝜓(x, 𝑧)𝑒𝑖𝑘0𝑛𝑏𝑧. (2.4)

28



where 𝜓(x, 𝑧) is a slowly-varying wavefront in the lateral dimensions. Substituting

the paraxial form to Eq. (2.3) results in the paraxial wave equation:

∇2
x𝜓(x, 𝑧) + 2𝑖𝑘0𝑛𝑏

𝜕𝜓(x, 𝑧)

𝜕𝑧
+𝒪

(︂⃦⃦⃦⃦
𝜕𝜓2(x, 𝑧)

𝜕𝑧2

⃦⃦⃦⃦)︂
= 0. (2.5)

Here, ∇2
x denotes the Laplacian applied on the lateral dimensions.

To derive TIE, we multiply Eq. (2.5) by 𝜓⋆(x, 𝑧) and take the complex conjugate:

𝜓⋆
[︀
∇2

x𝜓
]︀
+ 2𝑖𝑘0𝑛𝑏𝜓

⋆𝜕𝜓

𝜕𝑧
= 0

𝜓
[︀
∇2

x𝜓
⋆
]︀
+ 2𝑖𝑘0𝑛𝑏𝜓

𝜕𝜓⋆

𝜕𝑧
= 0,

(2.6)

where ⋆ denotes the complex conjugate. If the two equations in Eq. (2.6) are added,

taking the real part of the paraxial equation, we can obtain the TIE [97]. Consid-

ering the Poynting vector, it can be shown that the TIE in Eq. (2.1) represents the

conservation of energy during the propagation [80].

TIE can be connected to other well-known propagation models such as the angular

spectrum propagation and the Fresnel propagation via Eqs. (2.3) and (2.5). For

example, the solution to Eq. (2.3) in the free space can also be expressed by the

angular spectrum propagation:

𝜓(x,∆𝑧) = ℱ̂ †ℋΔ𝑧ℱ̂𝜓(x, 𝑧) (2.7)

where the notation † represents the adjoint. The operators ℱ̂ and ℋΔ𝑧 represent the

Fourier transform and the angular spectrum kernel corresponding to a propagation

by ∆𝑧, respectively. More specifically,

ℱ̂ : 𝜓(x, 𝑧)→
∫︁
𝑑x 𝜓(x, 𝑧)𝑒−2𝜋𝑖⟨u,x⟩

ℋΔ𝑧 : 𝜓(u, 𝑧)→ 𝑒𝑖Δ𝑧
√

(𝑘0𝑛𝑏)2−(2𝜋)2⟨u,u⟩𝜓(u, 𝑧)

(2.8)

where ⟨·, ·⟩ is the inner product. On the other hand, the Fresnel propagation is the
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paraxial version of the angular spectrum propagation:

𝜓(x, 𝑧 +∆𝑧) = ℱ̂ †ℋΔ𝑧ℱ̂𝜓(x, 𝑧)

≈ ℱ̂ †
[︁
𝑒𝑖𝑘0𝑛𝑏Δ𝑧𝑒−𝑖𝜋𝜆/𝑛𝑏Δ𝑧⟨u,u⟩+𝒪(𝑢4)

]︁
ℱ̂𝜓(x, 𝑧)

Δ𝑧→0
≈ ℱ̂ †

[︂
1− 𝑖𝜋 𝜆

𝑛𝑏

∆𝑧 ⟨u,u⟩+𝒪
(︀
(∆𝑧)2𝑢4

)︀]︂
ℱ̂𝜓(x, 𝑧)

≈ 𝜓(x, 𝑧) + 𝑖
∆𝑧

2𝑘0𝑛𝑏

∇2
x𝜓(x, 𝑧),

(2.9)

where the term 𝑒−𝑖𝜋𝜆/𝑛𝑏Δ𝑧⟨u,u⟩ corresponds to the Fresnel kernel in the Fourier space.

Note that Eq. (2.9) is the finite-difference version of Eq. (2.5). In the third line

in Eq. (2.9), the constant phase term 𝑒𝑖𝑘0𝑛𝑏Δ𝑧 is dropped for the simplicity. This

corresponds to an additional term 2(𝑘0𝑛𝑏)
2𝜓(x, 𝑧) to Eq. (2.5),

∇2
x𝜓(x, 𝑧) + 2𝑖𝑘0𝑛𝑏

𝜕𝜓(x, 𝑧)

𝜕𝑧
+ 2(𝑘0𝑛𝑏)

2𝜓(x, 𝑧) +𝒪
(︂⃦⃦⃦⃦

𝜕𝜓2(x, 𝑧)

𝜕𝑧2

⃦⃦⃦⃦)︂
= 0, (2.10)

which some of the original studies on the TIE such as [97] use for the derivation of

the TIE, instead of Eq. (2.9). To explicitly show the relationship between the terms,

perform the Taylor expansion on 𝑒𝑖𝑘0𝑛𝑏Δ𝑧 as well and drop (∆𝑧)2 dependencies, which

gives

𝜓(x,∆𝑧) ≈ 𝜓(x, 𝑧) + 𝑖
∆𝑧

2𝑘0𝑛𝑏

∇2
x𝜓(x, 𝑧) + 𝑖𝑘0𝑛𝑏∆𝑧𝜓(x, 𝑧). (2.11)

This equation reveals the relationship. In the following sections, the x subscript in ∇

is dropped for the notational simplicity, unless this can cause mathematical confusion.

Consequently, it is clear how the angular spectrum propagation, the Fresnel prop-

agation, and the TIE are related to each other. Particularly, the Fresnel propagation

and the TIE both stem from the same paraxial approximation. In addition, TIE

can be regarded as a convenient version of the Fresnel propagation by deliberately

ignoring information on the imaginary part of the wave, making itself be easily ap-

plicable to non-interferometric experiments. When it comes to their behaviors, they

will converge to the same solution under the paraxial approximation, but the angular

spectrum propagation is the only model that can give correct propagation estima-
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tions when such approximation is no longer valid. In practice, however, the accurate

estimation of the wave propagation can be a subtle problem, as it would depend

on conditions such as the sampling frequency, numerical aperture, and aberrations

[74, 105]. Under the paraxial approximation, it has been extensively suggested that

the deviation between paraxial and non-paraxial methods becomes negligible [35, 105],

while the high-order frequency terms in non-paraxial methods might lead to unex-

pected side effects compared to paraxial methods. Hence in the following sections,

the performance of TIE is compared with the angular spectrum to demonstrate its

validity, but at the same time, it should be noted that the angular spectrum can be

an overkill and may have numerical side effects in practice.

2.3 Numerical instabilities in using TIE

Based on previous studies on TIE, the typical experimental procedure can be sum-

marized as follows.

• Collect intensities from different positions (defocused intensities) on the optical

axis, i.e. 𝐼𝑖 = 𝐼(x, 𝑧𝑖), 𝑖 ∈ {1, 2, · · ·𝑁}.

• Estimate the intensity derivative at the position of interest (usually at the in-

focus position) using the measurements 𝐼𝑖.

• Solve for 𝜑 in Eq. (2.1), which is the phase at the position of interest. The

equation can be solved either by directly inverting differential operators ∇· and

∇, or in a variational way [8].

During the procedure, one can face a few numerical instabilities. First, estimating

the intensity derivative from measurements can become a non-trivial problem under

noise. For example, using the first-order central difference,

𝜕𝐼

𝜕𝑧
=
𝐼(x,∆𝑧)− 𝐼(x,−∆𝑧)

2∆𝑧
+𝒪

(︀
(∆𝑧)2 + 𝜀/∆𝑧

)︀
(2.12)

where 𝜀 represents noise. Here, we face a dilemma:
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• If we use very small ∆𝑧, the error term 𝜀/∆𝑧 dominates, and we should be very

careful about the precision on defocus positions.

• If we use large ∆𝑧, (∆𝑧)2 becomes no longer negligible. Likewise, our assump-

tion in Eq. (2.9) for the paraxial wave equation is violated.

In addition, the combination of the divergence and the gradient operators on the

right hand side of Eq. (2.1) exhibits numerically unfavorable behaviors. Introducing

an auxilliary function 𝜉 [97] such that

∇𝜉(x, 𝑧) ≡ 𝐼(x, 𝑧)∇𝜑(x, 𝑧), (2.13)

TIE can be reformulated as
𝜕𝐼

𝜕𝑧
= − 1

𝑘0𝑛𝑏

∇2𝜉

∇2𝜑 = ∇ ·
[︂
1

𝐼
∇𝜉
]︂
.

(2.14)

Subsequently, the direct solution to 𝜑 can be expressed by using Fourier transform:

𝜑 =
𝑛𝑏𝑘0
(2𝜋)2

ℱ̂ † [u·]
⟨u,u⟩

ℱ̂
(︀
𝐼−1
)︀
ℱ̂ † u

⟨u,u⟩
ℱ̂ 𝜕𝐼
𝜕𝑧
, (2.15)

where with slight abuse of notation, [u·] means the dot product with the frequency

components in the lateral dimensions. For convenience, if is further assumed that 𝐼

is nearly uniform at the position of interest,

𝜑 =
𝑛𝑏𝑘0
(2𝜋)2𝐼

ℱ̂ † 1

⟨u,u⟩
ℱ̂ 𝜕𝐼
𝜕𝑧
. (2.16)

The kernel ⟨u,u⟩−1 has a singularity at the origin and significantly penalizes high

frequency information from 𝜕𝐼
𝜕𝑧

. It is well-known that due to the singularity at the

origin, the low frequency part of noise in 𝜕𝐼
𝜕𝑧

can be amplified, resulting in cloud-like

artifacts in the estimation of 𝜑. On the other hand, due to the high-frequency penalty,

TIE often has difficulty in recovering sharp features. In particular, such behavior is

exacerbated as we use large ∆𝑧. Of course, poor 𝜕𝐼
𝜕𝑧

estimation under large ∆𝑧

can be one cause of such behavior, but in addition, note that the quadratic penalty
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⟨u,u⟩−1 originates from the paraxial approximation in Eq. (2.9). As we increase

∆𝑧, 𝒪((∆𝑧)2) terms are no longer negligible and the propagation kernel becomes

not quadratic but oscillatory, implying that the deviation between the TIE and the

angular spectrum propagation becomes large especially in the high frequency regime.

In other words, the slowly-varying envelope approximation becomes invalid and high-

frequency components of the wavefront would not be well estimated. Previous studies

like [8] discuss the behavior with the transfer function.

In summary, TIE has useful advantages over other phase retrieval methods, but

due to inherent limitations in its kernel and the choice of ∆𝑧, it is prone to producing

infeasible estimations. In what follows, a new technique is proposed to alleviate the

numerical problems regarding the TIE reviewed in this section, which can greatly

help the phase retrieval process.

2.4 Interpreting TIE as an ordinary differential equa-

tion coupled with transport-of-phase equation

To mitigate the major problems in TIE discussed in the last section, one may require

an idea that can satisfy the following conditions:

• Avoid estimating 𝜕𝐼
𝜕𝑧

explicitly from (possibly noisy) measurements.

• Adopt arbitrarily small ∆𝑧 for the validity of the Fresnel approximation, without

worrying about the precision on the measurement positions.

• Leverage information from multiple measurements; it is an inefficiency in the

information-theory sense if such information is all fused into 𝜕𝐼
𝜕𝑧

.

In this section, a new interpretation on the TIE is proposed to tackle the aforemen-

tioned problems. That is to treat the TIE as an ordinary differential equation (ODE)

with respect to 𝑧:

−𝑘0𝑛𝑏
𝑑𝐼(𝑧)

𝑑𝑧
= ∇ ·

(︁
𝐼(𝑧)∇𝜑(𝑧)

)︁
, (2.17)
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where the boldfaced functions corresponds to the discretized version of the original

functions on the Cartesian coordinates, i.e.

𝐼(𝑧) ≡

⎛⎜⎝· · · , 𝐼(𝑥𝑖, 𝑦𝑗, 𝑧)⏟  ⏞  
[𝑖+𝑁𝑦(𝑗 − 1)]th element of a vector

, · · ·

⎞⎟⎠
⊺

, (2.18)

where 𝑁𝑦 is the number of discretization points along the 𝑦 axis. Subsequently, we

consider the following procedure:

• Starting from our initial guess on 𝐼 and 𝜑 at some point, integrate Eq. (2.17).

This requires information on 𝜑 over the optical axis, assume that we have such

information for now.

• Compute a loss function between estimated 𝐼’s and the measurements at the

designated defocus positions.

• Evaluate the gradient of the loss function with respect to 𝜑(𝑧∘) where 𝑧∘ cor-

responds to the position of interest at which one wants to retrieve the phase.

During the procedure, 𝜕𝐼
𝜕𝑧

is not directly computed from measurements. Rather, it

is only approximated based on current estimations on 𝐼 and 𝜑, which can even be

regularized. Moreover, the choice on ∆𝑧 is no longer a critical problem; ∆𝑧 can be

set arbitrarily small, or the adaptive step size can be leveraged based on the current

slope (variance of 𝐼 over 𝑧). Lastly, all individual measurements contribute to the loss

function, not just fused into 𝜕𝐼
𝜕𝑧

, resulting in estimations on 𝐼 and 𝜑 being adequately

penalized based on measurements.

However, solving Eq. (2.17) has non-trivial problems. First, as mentioned above,

any information on 𝜑 on arbitrary positions on the optical axis is not generally avail-

able in experimental conditions of TIE, while it is necessary to integrate the equation.

Second, the computation of the gradient of the loss function may not look straight-

forward. Intuitively, one has to imagine a flow of gradients over 𝑧 in the opposite

direction to the integration (e.g. backpropagation with layers where each layer can

correspond to an integration step).
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For the first problem regarding the ODE interpretation, note that TIE is the

real part of the paraxial wave equation. From Eq. (2.6), the imaginary part of the

wave equation can also be derived, leading to the transport-of-phase equation (TPE)

[113, 97, 114]:

2𝑘0𝑛𝑏𝐼
2𝜕𝜑

𝜕𝑧
=

1

2
𝐼∇2𝐼 − 1

4
(∇𝐼)2 − 𝐼2(∇𝜑)2 + 𝑘0𝑛𝑏𝐼

2. (2.19)

Subsequently, a system of coupled ODEs consisting of TIE and TPE can be presented:

𝜙 = 𝐼 ⊕ 𝜑 ⇐⇒ 𝑑𝜙

𝑑𝑧
=
𝑑𝐼

𝑑𝑧
⊕ 𝑑𝜑

𝑑𝑧

−𝑘0𝑛𝑏
𝑑𝐼(𝑧)

𝑑𝑧
= ∇ ·

(︁
𝐼(𝑧)∇𝜑(𝑧)

)︁
2𝑘0𝑛𝑏𝐼

2𝑑𝜑

𝑑𝑧
=

1

2
𝐼∇2𝐼 − 1

4
(∇𝐼)2 − 𝐼2(∇𝜑)2 + 𝑘0𝑛𝑏𝐼

2.

(2.20)

where ⊕ represents the concatenation of two vectors. Starting from the position of

interest over the optical axis and corresponding estimations on 𝜙, Eq. (2.20) can be

integrated, and the loss function is evaluated. In this manner, information on the

phase propagation is no longer ignored; all information contained in the original wave

equation is leveraged. While the theoretical existence of TPE has been mentioned

in previous studies [113, 114], it is of limited usage or often requires serious assump-

tions as it is difficult to detect how the phase of a wave varies in the propagation in

conventional imaging systems. Furthermore, this makes overall experimental settings

complex, which reduces one of the main advantages in TIE. By considering TIE and

TPE as coupled ODEs, such limitations are remediated.

For the concrete review on the solution process regarding the coupled TIE and

TPE, computational methods on the gradient of the loss function in an ODE-constrained

problem should also be discussed. Here, an ODE-constrained problem implies a min-

imization of a loss function whose estimations are constrained to be related to a

solution of an ODE. Appendix A illustrates a method called the adjoint method

[87, 18], evaluating the gradient of the loss function for general equality-constrained

optimization problems. Intuitively, the adjoint method tells that the core compo-
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nent of such evaluation is an equation on the adjoint of an operator that constitutes

equality constraints. In physics, adjoints or physical operators usually imply a re-

versal of domains; the adjoint of the projection in computational tomography is the

backprojection, and that of the wave propagation is the backpropagation, etc. In a

similar manner, the adjoint method results in another ODE that should be solved in

the opposite direction to an original ODE, which is described in Eq. (A.14).

2.5 Performance of the coupled TIE-TPE for phase

retrieval problems

2.5.1 Numerical experiments

Evaluating the performance of the proposed method, the coupled TIE and TPE,

numerical experiments are designed. In particular, previous techniques to solve the

TIE are considered to see potential benefits from interpreting the TIE as an ODE.

Furthermore, as illustrated in Chapter 2.2, the proposed method is further compared

with non-paraxial methods for checking its theoretical validity and applicability under

paraxial circumstances. To this end, four methods are tested:

• TIE, which corresponds to solving Eq. (2.15). 𝑑𝐼
𝑑𝑧

is estimated by the finite

difference of multiple measurements 𝐼𝑚(𝑧).

• TIE-iterative, which is based on TIE, but tries to iteratively adjust the phase

estimation [109].

• TIE-TPE, which is the ODE consists of TIE and TPE with a composite loss

denoted as 𝐿1:

𝐿1(𝜑(0)) = argmin
𝜑(0)

∑︁
𝑖

𝑙

(︂
𝒮𝐼
[︂
𝜙(0) +

∫︁ 𝑧𝑖

0

𝑑𝑧
𝑑𝜙

𝑑𝑧

]︂
, 𝐼𝑚(𝑧𝑖)

)︂
, (2.21)

where 𝑙 is a loss function, 𝒮𝐼 : 𝜙 → 𝐼 is an intensity selection operator, where

the position at which the phase should be estimated is set 0.
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• Angular spectrum (AS), which is similar to TIE-TPE but we estimate the prop-

agation of the light field with the angular spectrum method, i.e.

𝐿2(𝜑(0)) = argmin
𝜑(0)

∑︁
𝑖

𝑙

(︃⃦⃦⃦⃦
𝒫𝑧𝑖

[︂√︀
𝐼(0)𝑒𝑖𝜑(0)

]︂⃦⃦⃦⃦2
, 𝐼𝑚(𝑧𝑖)

)︃
, (2.22)

where 𝒫𝑧𝑖 stands for the angular spectrum propagation by distance 𝑧𝑖.

The paraxiality of light propagation can be evaluated by the Fresnel number:

𝐹 =
𝑎2

𝜆𝐷
, (2.23)

where 𝑎 is the characteristic size of an object, 𝐷 is the propagation distance from

the object. Without much loss of generality, the Fresnel number is adjusted by

changing𝐷 to observe behaviors of the different phase retrieval methods under various

paraxiality conditions. Specifically, setting 𝜆 = 1.0, the propagation of the light

field from a square aperture at 𝑧 = 0 with size 𝐿 = 500 is considered. At 𝑧 = 0,

the intensity is assumed as a Gaussian beam whose standard deviation is two times

the field of view. Then defocused intensities at 𝑧 = −𝑛𝑧∆𝑧, −(𝑛𝑧 − 1)∆𝑧, · · · ,

(𝑛𝑧 − 1)∆𝑧, 𝑛𝑧∆𝑧 are collected, constituting 2𝑛𝑧 + 1 images, by considering the

angular spectrum propagation as a ground truth model. The ground truth phases are

randomly selected from the ImageNet dataset [90]. The loss 𝑙 is the mean squared

error. The regularization parameter at the sinularity for TIE and TIE-iterative is

chosen as 5× 10−9.

The ODEs in TIE-TPE are solved by using the so-called tsit5 integration method

[99], with adaptive step sizes. To obtain estimated 𝜙 at the designated defocused

positions on the optical axis, the 4th order interpolation scheme is adopted, which is

implemented as the Runge-Kutta method.

2.5.2 Results

To check the validity of TIE implementations and their performance in ideal situa-

tions, a very basic experiment is considered; 𝑛𝑧 = 1 and ∆𝑧 is adjusted so that the
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Figure 2-1: An example phase image at 𝑧 = 0. The range of phase values is [0, 0.4]
in radian.

Fresnel number ranges from 1200 to 2800. In addition, it is assumed that there is

no noise in measurements. For the visualization, Fig. (2-1) shows an example for the

ground-truth phase image. Fig. (2-2) and Table 2.1 presents the phase estimation re-

sults. For quantitative analysis, three metrics are considered: the peak signal-to-noise

ratio (PSNR), the structural similarity index (SSIM), and the normalized root mean

square error (NRMSE) [104, 51]. Under such ideal situations, the non-gradient meth-

ods, TIE and TIE-iterative, exhibit better performance than other methods. This

can be mainly attributed to two reasons. First, at high 𝐹 , TIE and TIE-iterative will

not show significant discrepancy from the actual propagation of the light field, as the

Fresnel approximation holds. In addition,
⃦⃦
𝑑𝐼
𝑑𝑧

⃦⃦
is expected to be very small, which

makes the gradient 𝜕𝐿1,2

𝜕𝜑(0)
also small accordingly. This can easily stagnate the update

of 𝜑(0). In Table 2.1, TIE and TIE-iterative seem to show better performance in

overall regardless of 𝐹 .

Next, the case that the intensity measurements are contaminated with noise is

considered. To alleviate the difficulty in estimating the phase under high noise, mul-

tiple measurements are collected, i.e. 𝑛𝑧 = 3. In this condition, based on [103], a

better approximation on 𝑑𝐼
𝑑𝑧

can be obtained for TIE and TIE-iterative as

𝑑𝐼

𝑑𝑧
=

𝑛𝑧∑︁
𝑛=−𝑛𝑧

𝑏𝑛
∆𝑧

𝐼𝑚(𝑛∆𝑧) (2.24)

where 𝑏𝑛 is the finite difference coefficient. As a side effect, it can be expected that
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Table 2.1: The quality assessment of estimated phases from three measurements
𝐼𝑚(∆𝑧), 𝐼𝑚(0), and 𝐼𝑚(−∆𝑧) without noise. Intensity measurements are simulated
by using the angular spectrum method. Numbers presented here represent averaged
metrics over 30 phase images randomly selected from the ImageNet dataset. The
range of phase in each image is [0, 0.4] in radian.

Metric 𝐹 TIE TIE-iterative TIE-TPE Angular spectrum
2800 24.2696 18.6079 11.1241 11.5336

PSNR 1700 23.8639 28.9110 11.3525 11.7244
1200 22.8106 25.5628 11.2890 11.7719
2800 0.9061 0.6033 0.6533 0.7356

SSIM 1700 0.8712 0.8399 0.6728 0.7448
1200 0.8237 0.7964 0.6395 0.7492
2800 0.1350 0.2816 0.5687 0.5532

NRMSE 1700 0.1440 0.832 0.5508 0.5360
1200 0.1586 0.1207 0.5532 0.5323

the estimation on 𝑑𝐼
𝑑𝑧

becomes more stable to noise. Figs. (2-3)-(2-5) and Table 2.2

summarize estimation results. Now, TIE and TIE-iterative suffer from the well-

known cloudy artifacts that originate from the low-frequency noise amplification in

the Fourier space. Such amplification exists despite using Eq. (2.24) for more accurate

derivative estimation and noise reduction. In contrast, results from AS and TIE-TPE

contain significantly smaller amount of cloudy artifacts and maintain crisp features

and the dynamic range of the original image, e.g. Fig (2-4). In other words, the

figure demonstrates that the extreme sensitivity of classical TIE solvers results in not

only generation of artifacts but significant deviation in terms of the dynamic range

of the phase value. Such behavior is also reflected in quantitative metrics reported in

Table 2.2.

In overall, AS and TIE-TPE exhibit far better performance than TIE and TIE-

iterative, unless being in a very ideal situation: 𝐹 is high and intensities are measured

in great accuracy. In other words, AS and TIE-TPE show comparable results to each

other regardless of the inclusion of noise. This demonstrates that TIE-TPE is able to

stabilize numerical problems regarding the original TIE formulation, and attains the

comparable quality to AS under the paraxial condition; in fact, Table 2.2 tells that

TIE-TPE can exhibit even better precision. This may be attributed to an empirical
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Figure 2-2: Estimated phases (𝑛𝑧 = 1) from different phase retrieval methods without
noise. For qualitative visualization, each phase estimation is normalized to [0.0, 1.0].
For quantitative comparison of estimations from different methods presented in this
figure, see Tab. 2.1. The ground truth phase image is presented in Fig. (2-1).

observation that AS tends to overestimate the maximum value of the phase in images

during the experiments. Qualitatively, such behavior is also depicted in Fig. (2-4).

In addition to the experimental results, the gradient of the loss functions in AS

and TIE-TPE can be analyzed further to better understand the retrieval process and

corresponding mathematical properties behind each model. To start, the gradient of

the loss is presented:
𝑑𝐿1,2

𝑑𝜑(0)
=
𝑑𝐿1,2

𝑑𝐼(𝑧)

𝑑𝐼(𝑧)

𝑑𝜑(0)
. (2.25)
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Table 2.2: The quality assessment of estimated phases from seven measurements
𝐼𝑚(3∆𝑧), 𝐼𝑚(2∆𝑧), · · · , and 𝐼𝑚(−3∆𝑧) with noise. Intensity measurements are sim-
ulated by using the angular spectrum method. For the noise, we assume 1000 photon
counts per pixel. Numbers presented here represent averaged metrics over 30 phase
images randomly selected from the ImageNet dataset. The range of phase in each
image is [0, 0.4] in radian.

Metric 𝐹 TIE TIE-iterative TIE-TPE Angular spectrum
2800 -19.1852 -20.2212 8.4090 7.2116

PSNR 1700 -15.9884 -16.7825 8.6958 6.7882
1200 -17.1122 -19.1091 8.7023 6.3468
2800 0.211 0.182 0.4010 0.3904

SSIM 1700 0.391 0.329 0.3403 0.2686
1200 0.426 0.312 0.3073 0.2239
2800 18.3249 20.6283 0.8344 0.9152

NRMSE 1700 12.7417 13.9629 0.7983 0.9626
1200 14.4368 18.1587 0.8013 0.9958

From Eq. (A.14), we can derive the analytical expression for Eq. (2.25):

𝑑𝐿1

𝑑𝜑(0)
= −𝒮𝜑

[︂
ℎ†(0)

]︂
𝑑ℎ

𝑑𝑧
=

(︂
− 𝜕𝑦
𝜕𝜙

)︂†

ℎ+

[︂
2
(︀
𝐼(𝑧)− 𝐼𝑚(𝑧)

)︀
𝛿(𝑧 − 𝑧𝑖)⊕ 0

]︂ (2.26)

where 𝑦 represents the expression for 𝑑𝜙
𝑑𝑧

in Eq. (2.20), 𝒮𝜑 : 𝜙 → 𝜑 is a phase

selection operator, and 𝑧𝑖 represents measurement points on the optical axis. The

adjoint equation on ℎ should be integrated from ℎ(𝑛𝑧∆𝑧) = 0 to ℎ(0) backwards to

compute the final derivative of the loss. For mathematical simplicity, it is assumed

that ∆𝑧 is reasonably small and 𝑛𝑧 = 1. Under such condition, the intensity difference

term on the right hand side of 𝑑ℎ
𝑑𝑧

would only be nonzero at 𝑧 = ∆𝑧, and the light field

strongly satisfies the paraxial approximation. In addition, it may be also assumed

that the gradient of 𝐼 is negligible compared to other terms in Eq. (2.20), as often

proposed in classical solutions to TIE. Then,

𝑦 : 𝜙 →
approximately

[︂
− 1

𝑘0𝑛𝑏

𝐼(𝑧)∇2𝜑

]︂
⊕
[︂

2

𝑘0𝑛𝑏

(∇𝜑)2 + 1

2

]︂
, (2.27)
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and

ℎ(0) ≈
(︂
∆𝑧

𝜕𝑦

𝜕𝜙

†)︂[︂
2
(︀
𝐼(∆𝑧)− 𝐼𝑚(∆𝑧)

)︀
⊕ 0

]︂
, (2.28)

where

𝜕𝑦

𝜕𝜙

†
≈

⎛⎝𝒟 (︁− 1
𝑘0𝑛𝑏
∇2𝜑

)︁
− 1

𝑘0𝑛𝑏
𝐼(𝑧)∇2

0 2
𝑘0𝑛𝑏

(∇𝜑) ∘ ∇

⎞⎠†

, (2.29)

and 𝒟(v) represents a diagonal matrix whose diagonal elements are v, and ∘ cor-

responds to the Hadamard product applied on each column. Subsequently, from

Eq. (2.26), it can be deduced that

𝑑𝐿1

𝑑𝜑(0)
≈ −2𝐼(∆𝑧)∆𝑧

𝑘0𝑛𝑏

∇2
(︀
𝐼(∆𝑧)− 𝐼𝑚(∆𝑧)

)︀
. (2.30)

Under the Fresnel approximation, Eq. (2.9), taking∇2 on the components (𝐼 and 𝜑) of

the light field would imply the degree of propagation. In other words, if the Laplacian

is large, the phase difference between the current position to the next position on

the optical axis is expected to be large. Hence, intuitively, the term ∇2
(︀
𝐼(∆𝑧) −

𝐼𝑚(∆𝑧)
)︀

would contain some information on the difference between the estimated

phase change and the real phase change near 𝑧 = 0. Subsequently, Eq. (2.30) may

be interpreted that one should adjust the phase so that such difference is minimized,

which is physically plausible.

In AS, one can also derive the expression for the gradient of the loss:

𝜕𝜓(∆𝑧)

𝜕𝜑(0)
= 𝑖𝒫Δ𝑧

[︂√︀
𝐼(0)𝒟

(︁
exp (𝑖𝜑(0))

)︁]︂
, (2.31)

and

𝜕𝐿2

𝜕𝜑(0)

†
= 4Im

[︁√︀
𝐼(0)𝒟

(︁
exp (𝑖𝜑(0))

)︁
𝒫−Δ𝑧𝒟

(︁
𝜓*(𝑧)

)︁(︁
𝐼(∆𝑧)− 𝐼𝑚(∆𝑧)

)︁]︁
. (2.32)

The core component that appears both in Eqs. (2.30) and (2.32) is the back-propagation
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of the wavefront represented by the error in intensities,

∇2
(︀
𝐼(∆𝑧)− 𝐼𝑚(∆𝑧)

)︀
⇐⇒ 𝒫−Δ𝑧 · · ·

(︁
𝐼(∆𝑧)− 𝐼𝑚(∆𝑧)

)︁
, (2.33)

where just different degrees of the paraxiality are assumed. At initial stages of the

optimization process, it is expected that the phase estimation first tries to recover

high-frequency features such as edges in measurements, as such features result in a

very large Laplacian. This would be the reason that AS and TIE-TPE tends to focus

on reconstructing edges in Fig (2-2), under ideal situations without noise. Subse-

quently, it can be deduced that such behavior, combined with the variational formu-

lation that can suppress effects from noise, leads to better performance under the

existence of noise. Eq. (2.33) also emphasizes that AS and TIE-TPE back-propagate

information contained in measurements in different ways. Specifically, AS includes

higher-order frequency components compared to TIE-TPE, and it may be expected

that such behavior would have negative effects under noise due to its discontinuous

nature. In this manner, TIE-TPE can exhibit extra numerical stability under the

paraxial approximation, which can be one of the prospective reasons that TIE-TPE

achieves better accuracy, presented in Table 2.2. However, additional analysis should

be conducted, because other factors such as the numerical stability of ODE solvers

can also be influenced in practice.

In summary, the proposed method, TIE-TPE, is successful in improving the per-

formance of the original TIE. Prospective reasons that TIE-TPE exhibits better per-

formance compared to relevant phase retrieval methods are also discussed in analytical

ways. While further studies are required for more concrete investigation behind dif-

ferent phase retrieval models and their relationship to TIE-TPE, it is expected that

this work can facilitate the phase retrieval problem.
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Figure 2-3: Estimated phases (𝑛𝑧 = 3) from different phase retrieval methods where
the measurements are contaminated with shot noise. For the noise generation, we
assume 1000 photon counts per pixel. For qualitative visualization, each phase esti-
mation is normalized to [0.0, 1.0]. For quantitative comparison of estimations from
different methods presented in this figure, see Tab. 2.2. It can be seen that estimations
from TIE and TIE-iterative greatly suffer from the cloudy artifacts originating from
numerical instabilities in classical TIE. The ground truth phase image is presented in
Fig. (2-1).
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Figure 2-4: Enlarged views of the areas marked with red dotted boxes in Fig. (2-
3) where 𝐹 = 1200. The unif ot the phase is in radian. Note that TIE-iterative
not only suffers from the cloudy artifacts, but the dynamic range of the estimated
phase greatly deviates from that of the ground truth. Such behavior is also described
quantitatively in Table 2.2.
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Figure 2-5: Estimated phases (𝑛𝑧 = 3, 𝐹 = 1200) corresponding to various im-
ages sampled from the ImageNet dataset. The measurements are contaminated with
shot noise. For the noise generation, we assume 1000 photon counts per pixel. For
qualitative visualization, each phase estimation is normalized to [0.0, 1.0]. For quan-
titative comparison of estimations from different methods presented in this figure, see
Tab. 2.2. It can be seen that estimations from TIE and TIE-iterative greatly suffer
from the cloudy artifacts originating from numerical instabilities in classical TIE.
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Chapter 3

Quantitative analysis on scalar

optical scattering theory

This chapter contains contents from a journal publication: Pang, S. & Barbastathis,

G. Unified treatment of exact and approximate scalar electromagnetic wave scattering.

Phys. Rev. E 106, 045301 (2022). The original copyright is credited to American

Physical Society.

3.1 Introduction

In Chapter 2, improvements on models regarding the phase retrieval problem are

proposed, which enables the extraction of the phase information. Though this can

greatly facilitate the use of information contained in the electromagnetic field, there

are situations where additional procedures are required to decrypt such information

into a useful form. An example situation is, as shown in Fig. (1-1), when the field

faces complex scattering interaction with objects of interest. Here, just the recovery

of the phase information is not sufficient, and the approximation on the scattering

effect is indispensable.

In principle, the complex light-matter interactions leading to scattering are gov-

erned by Maxwell’s equations or, under some assumptions, by the scalar Helmholtz

equation, Eq. (3.1), that describes optical elastic scattering from objects that are large
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compared to the wavelength. To simplify the process of modeling optical scattering

and estimating object properties, there have been many studies on approximating

solutions to the scalar Helmholtz equation. One of the most primitive is the pro-

jection approximation, where the scattered field is assumed to maintain the incident

wavefront, e.g. a plane or spherical wave, while attenuation and phase delay accu-

mulate proportional to the optical path length of rays through the object. When

the incident wavefront is planar or spherical, this assumption leads to the Radon

transform formulation, and is the basis of computed tomography. When it comes to

relatively thin objects with non-negligible scattering, a more appropriate description

is provided by the so-called single scattering approximations, including the first Born

and Rytov methods [71]. As objects become dense and highly scattering, as expected,

even single scattering methods start to fail, and models accounting for multiple scat-

tering are required. Representative approaches are the Lippmann-Schwinger equation

(LSE) [84, 15, 66], the multi-slice method [27, 41, 26, 59] and the beam propagation

method (BPM) [88, 55, 56, 43], and the Born series [78, 95]. The multislice and beam

propagation methods are very closely related, with the important distinction that the

former was motivated by solving Schrödinger’s equation, whereas the latter was for

the Helmholtz equation.

Multiple scattering models can all be formulated starting from the scalar Helmholtz

equation, but they rely on different approximations on the scattering process [60, 50,

37, 79, 25]. Subsequently, all three aforementioned methods may exhibit certain draw-

backs compared to exact solutions of the scalar Helmholtz equation, and the discrep-

ancies evidence themselves differently for each method. For example, the multislice

method that preceded BPM historically often does include backscattering [20, 93] at

the cost of added computational complexity. On the other hand, it has been reported

that BPM cannot account for backscattering or reflection of fields and it would not be

suitable for experimental conditions that significantly deviate from the paraxial ap-

proximation [64, 21]. Born series is numerically unstable, unless the optical potential

is sufficiently weak. On the contrary, the LSE, by virtue of originating simply as an

integral formulation of the scalar Helmholtz equation under the standard Rayleigh-
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Sommerfeld radiation condition, requires no further assumptions. In principle, this

can lead to high-precision solutions in numerically ideal cases [25, 50, 107]. However,

solving the LSE may still be subject to numerical artifacts resulting from the inversion

of the integral equation, and requires relatively intensive computational resources.

Hence, while the LSE promises the most reliable approximations of scattered fields

and optical objects [84], BPM or Born series can also be considered if an error com-

pared to LSE is bounded below a given acceptable threshold. In previous studies,

conditions that can make such small error achievable are usually summarized qual-

itatively, e.g. laterally large objects, small illumination angles, and weak potential.

This is because LSE, BPM, and Born series originate from different approximations

and derivations. Subsequently, explicit and quantitative relationships between the

different methods, especially between LSE and BPM, have not been addressed very

clearly. For example, would there be a theoretical parameter that can be used for es-

timation deviations? What would be the relation between the successive application

of phase delays [37] and the three-dimensional volume integral in LSE, Eq. (3.3)?

In fact, comparing the solution under the paraxial approximation to the original

wave equation in the differential form, there have been multiple studies to provide

quantitative measures. However, they often assume special conditions, or do not

provide direct insight on the deviation from the integral formulation. One of the

earliest studies to apply the paraxial approximation on the wave equation is [62],

where the atmospheric propagation of electromagnetic fields in the troposphere is

discussed. Subsequently, the very origin of the approximation is mathematically re-

alized as a relationship between two differential operators that constitute the wave

equation, e.g. 𝑃 and 𝑄̂ in Chapter 3.4.2, in not only optics but related areas such

as acoustics [96, 36, 61]. However, the impact of the operators on the validity of the

paraxial approximation lacks of a quantitative measure on the error and its connec-

tion to the integral formulation. Studies like [98, 37] extend the idea and tries to

provide an estimation on the paraxial error, but only under special conditions such as

collimating illuminations on stratified media. There exist discussions that include the

three-dimensional integration for a wave field in media [88, 10], but they are limited
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to apply such integration only on the free-space propagation part in paraxial meth-

ods. It is also worth noting that studies that stem from quantum mechanics (e.g.

electron optics) start from slightly different formulations and logical flows based on

the first-principle [27, 41, 72]; however, their results can also be summarized by the

operators above and the paraxial error is not further extended to the form in LSE.

More recently, there have been studies that analyze the paraxial propagation operator

in mathematically rigorous ways [30, 31, 77], which include meticulous bounds on the

error in the paraxial propagation. However, the error discussed in these studies are,

strictly speaking, corresponds to an accumulated error over the space in modeling a

wavefront emanating from a source. While such wavefront can be viewed as a scat-

tered wave from an object via the Huygens-Fresnel principle, successive scattering

inside media, e.g. how a wave field from a source is refracted by an nearby object,

is not directly described by the studies. In addition, they, and other relevant stud-

ies [111], do not develop the error bound toward the integral formulation, i.e. the

very origin of the deviation in the process that non-paraxial methods are rewritten

as paraxial methods and vice versa, if such rewriting is possible.

Note that the precision of a scattering model may not be the sole parameter to

determine the quality of field or object estimations. This is because such estima-

tions consist of complex optimization procedures, which would also depend on vari-

ous mathematical conditions e.g. preconditioning and regularization. Nevertheless,

a more concrete understanding of the relationships and relative strengths and weak-

nesses of each method would be beneficial for us to analyze estimation results, review

numerical settings, and track origins of artifacts and errors by evaluating applicability

of scattering models.

Therefore, in this section, a definitive and quantifiable relationship among LSE,

Born series, and BPM is proposed. In addition, concrete conditions where the scat-

tered fields estimated respectively from the three methods exhibit insignificant differ-

ences are introduced. Specifically, a simple and dimensionless parameter is suggested

to test the validity of Born series solution. Furthermore, the BPM is directly derived

from the LSE and its corresponding Born series. This leads to another dimensionless
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Figure 3-1: An example geometry for optical scattering from an optical potential 𝑉 .

parameter based on explicit approximations adopted along the derivation.

3.2 Formulation of LSE

For mathematical convenience, the scalar Helmholtz equation Eq. (2.3) can be rewrit-

ten as [︀
∇2 + (𝑛b𝑘0)

2
]︀
𝜓(𝑟) = −(𝑛b𝑘0)

2

[︃(︂
𝑛(𝑟)

𝑛b

)︂2

− 1

]︃
𝜓(𝑟). (3.1)

As a reminder, the phase velocities are obtained by dividing the vacuum light speed

by the respective indices. Using the Green’s function that satisfies the radiation

condition [91],

𝐺(𝑟 − 𝑟′) = exp (𝑖𝑛b𝑘0 ‖𝑟 − 𝑟′‖)
4𝜋 ‖𝑟 − 𝑟′‖

, (3.2)

an integral formulation identical to Eq. 3.1 may be derived, which is the LSE:

𝜓(𝑟) = 𝜓0(𝑟) +

∫︁
𝑑𝑟′ 𝐺(𝑟 − 𝑟′)𝑉 (𝑟′)𝜓(𝑟′). (3.3)

Here, 𝑉 (𝑟) = (𝑛b𝑘0)
2

[︂(︁
𝑛(𝑟)
𝑛b

)︁2
− 1

]︂
is the optical scattering potential and 𝜓0 is the

incident field.

The BPM describes the scattering process as a sequential application of 2D scat-

tering layers, so it is not obvious how it can relate to the above LSE development.

To develop the relationship later, it will be convenient to re-express the 3D Green’s
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function in terms of its Fourier spectrum. To this end, the Weyl expansion [7] is used,

e𝑖𝑛b𝑘0𝑟

𝑟
=

𝑖

2𝜋

∫︁
𝑑𝑘𝑥𝑑𝑘𝑦

e𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧 |𝑧|)

𝑘𝑧
, (3.4)

where 𝑟 = ‖𝑟‖, 𝑘𝑧 =
√︁
(𝑛b𝑘0)2 − 𝑘2𝑥 − 𝑘2𝑦, and 𝑘𝑥 and 𝑘𝑦 are coordinates in the

Fourier space. Setting 𝑧 to be the optical axis, denote ℱ̂𝑥𝑦 as the 2D Fourier transform

operator in the lateral dimensions. From the Weyl expansion, the original LSE can

be rewritten as a composition of 2D Fourier transforms as

𝜓(𝑟)− 𝜓0(𝑟) =
𝑖

2

∫︁
𝑑𝑧′ ℱ̂ †

𝑥𝑦

[︂
e𝑖𝑘𝑧 |𝑧−𝑧′|

𝑘𝑧
𝛽(𝑘𝑥, 𝑘𝑦, 𝑧

′)

]︂
, (3.5)

where the subscript 𝑥𝑦 is to emphasize that the Fourier transform is applied on lateral

dimensions, and

𝛽(𝑘𝑥, 𝑘𝑦, 𝑧) = ℱ̂𝑥𝑦 [𝑉 (𝑟)𝜓(𝑟)] . (3.6)

The full derivation is in Appendix B.1. Without much loss of generality, it can be

assumed that 𝜓0 is incident from 𝑧 = −∞ and the optical detectors are located

outside the support of 𝑉 . In addition, set 𝑧0 as an arbitrary point on the optical axis

between the illumination source and the scattering potential 𝑉 . Fig. 3-1 depicts the

overall geometry. Consequently, it is obtained that

𝜓(𝑟)− 𝜓0(𝑟)

=

∫︁
𝑑𝑟′𝐺(𝑟 − 𝑟′)𝑉 (𝑟′)𝜓(𝑟′)

=

∫︁ 𝑧

𝑧0

𝑑𝑧′
∫︁
𝑑𝑥′𝑑𝑦′𝐺(𝑟 − 𝑟′)𝑉 (𝑟′)𝜓(𝑟′)

=
𝑖

2

∫︁ 𝑧

𝑧0

𝑑𝑧′ ℱ̂ †
𝑥𝑦

[︂
e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
𝛽(𝑘𝑥, 𝑘𝑦, 𝑧

′)

]︂
,

(3.7)

i.e. the 3D convolution with the Green’s function becomes a cascade of 2D convolu-

tions at each 𝑧-slice.
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3.3 From LSE to Born series

To derive a connection between LSE and BPM, we are required to express the original

Born series in terms of the cascade of 2D convolutions in Eq. (3.7). For this, Eq. (3.7)

is slightly modified first. Following the small-wavelength approximation underlying

the scalar Helmholtz equation or noting that the wavefront envelope of 𝜓0 would be

much larger than objects in many imaging systems, it may be assumed that 𝜓0 =

exp(𝑖𝑛b𝑘0𝑧), i.e. a pure plane wave. Dividing both sides of Eq. (3.7) by 𝜓0 leads to

𝜙(𝑟) = 1 +
𝑖

2

∫︁ 𝑧

𝑧0

𝑑𝑧′ ℱ̂ †
𝑥𝑦

[︃
e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
𝛾(𝑘𝑥, 𝑘𝑦, 𝑧

′)

]︃
, (3.8)

where 𝜙 = 𝜓/𝜓0, 𝑘𝑧 = 𝑘𝑧 − 𝑛b𝑘0, and

𝛾(𝑘𝑥, 𝑘𝑦, 𝑧) = ℱ̂𝑥𝑦 [𝑉 (𝑟)𝜙(𝑟)] . (3.9)

From Eqs. (3.7) and (3.8), define an LSE integral operator ̂︂GV𝛼 as

̂︂GV𝛼 : 𝜙→ 1

𝜓0

∫︁ 𝑧

𝛼

𝑑𝑧′
∫︁
𝑑𝑥′𝑑𝑦′ 𝐺(𝑟 − 𝑟′)𝑉 (𝑟′)𝜓(𝑟′)

=
𝑖

2

∫︁ 𝑧

𝛼

𝑑𝑧′ ℱ̂ †
𝑥𝑦

[︃
e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
𝛾(𝑘𝑥, 𝑘𝑦, 𝑧

′)

]︃
, (3.10)

e.g. 𝜙 = 1+̂︂GV𝑧0𝜙. In addition, using that e𝑖𝑘𝑧(𝑧−𝑧′) = 1 at the origin of the Fourier

space and setting 𝑧0 = −∞, Eq. (3.8) is converted to a more generalized form as

𝜙(𝑟) = 1 +
𝑖

2

∫︁ 𝑧1

−∞
𝑑𝑧′ ℱ̂ †

𝑥𝑦

[︃
e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
𝛾(𝑘𝑥, 𝑘𝑦, 𝑧

′)

]︃

+
𝑖

2

∫︁ 𝑧

𝑧1

𝑑𝑧′ ℱ̂ †
𝑥𝑦

[︃
e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
𝛾(𝑘𝑥, 𝑘𝑦, 𝑧

′)

]︃

= ℱ̂ †
𝑥𝑦e

𝑖𝑘𝑧(𝑧−𝑧1)ℱ̂𝑥𝑦

[︃
1 +

𝑖

2

∫︁ 𝑧1

−∞
𝑑𝑧′ ℱ̂ †

𝑥𝑦

[︂
e𝑖𝑘𝑧(𝑧1−𝑧′)

𝑘𝑧
𝛾(𝑘𝑥, 𝑘𝑦, 𝑧

′)

]︂]︃
(3.11)

+
𝑖

2

∫︁ 𝑧

𝑧1

𝑑𝑧′ ℱ̂ †
𝑥𝑦

[︃
e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
𝛾(𝑘𝑥, 𝑘𝑦, 𝑧

′)

]︃
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= ℱ̂ †
𝑥𝑦e

𝑖𝑘𝑧(𝑧−𝑧1)ℱ̂𝑥𝑦𝜙(𝑥, 𝑦, 𝑧1) +
𝑖

2

∫︁ 𝑧

𝑧1

𝑑𝑧′ ℱ̂ †
𝑥𝑦

[︃
e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
𝛾(𝑘𝑥, 𝑘𝑦, 𝑧

′)

]︃
,

where 𝑧1 ≤ 𝑧 is a point on the optical axis.

Assuming that the operator norm of ̂︂GV𝑧0 is less than 1, the solution of the Fred-

holm integral equation of the second kind, Eq. (3.8), can be described as a convergent

geometric series (Born series or Liouville-Neumann series) [52]:

𝜙(𝑟) =
∞∑︁
𝑗=0

(︂
𝑖

2

)︂𝑗

𝑓𝑗(𝑟), (3.12)

where

𝑓0(𝑟) = ℱ̂ †
𝑥𝑦e

𝑖𝑘𝑧(𝑧−𝑧0)ℱ̂𝑥𝑦𝜙(𝑥, 𝑦, 𝑧0) (3.13a)

𝑓𝑗(𝑟) =

∫︁ 𝑧

𝑧0

𝑑𝑧′ ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
ℱ̂𝑥𝑦 [𝑉 (𝑟′)𝑓𝑗−1(𝑟

′)]

=
2

𝑖
̂︂GV𝑧0𝑓𝑗−1. (3.13b)

This may be shown by substituting Eq. (3.12) into Eq. (3.11). That 𝑓𝑗 represents the

𝑗-th order scattering term becomes obvious if Eq. 3.12 is rewritten as

𝜙(𝑟) = 𝑓0(𝑟) +̂︂GV𝑧0 𝑓0(𝑟) +
(︁̂︂GV𝑧0

)︁2
𝑓0(𝑟) + · · · , (3.14)

using Eq. (3.13). Eqs. (3.12) and (3.13) are the core connection between LSE and

BPM that will be established in the next section.

3.3.1 Convergence of the Born series

Before discussing the BPM, briefly take a pause to consider the validity of the Born

series. Assuming that solutions of the LSE are continuous, the convergence of the

Born series can be shown in a few different ways, e.g. using the Banach-Keissinger

theorem [69], again given that the operator norm of ̂︂GV𝑧0 is less than 1. Otherwise,

the convergence of the series cannot be guaranteed and due to the divergent behavior
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of
(︁̂︂GV𝑧0

)︁𝑗
as 𝑛 ≫ 𝑛b and 𝑗 → ∞ it would be difficult to obtain the error bound

between the series expansion and the true solution of the LSE. Hence, it is important

to estimate the dependency of the operator norm on 𝑉 . In other words, it is necessary

to estimate conditions on 𝑉 that make the operator norm of ̂︂GV𝑧0 less than 1 in some

domain. In numerical computations, the evaluation of 𝜙(𝑟) is usually treated in a

bounded subset 𝒟 of R3, e.g. a box

𝒟 =

[︂
−𝐿1

2
,
𝐿1

2

]︂
×
[︂
−𝐿2

2
,
𝐿2

2

]︂
×
[︂
−𝐿3

2
,
𝐿3

2

]︂
, (3.15)

which contains the support of 𝑉 . We now evaluate the operator norm in 𝒟.

From the definition of ̂︂GV𝑧0 , Eq. (3.10),

⃦⃦⃦̂︂GV𝛼𝜙
⃦⃦⃦
≤
⃦⃦⃦
Ĝ
⃦⃦⃦
‖𝜙‖ sup

𝒟
(𝑉 ) (3.16)

where
⃦⃦⃦
Ĝ
⃦⃦⃦

is the operator norm of

Ĝ : 𝜙→
∫︁
𝒟
𝑑𝑟′ 𝐺(𝑟 − 𝑟′)𝜙(𝑟′). (3.17)

It is difficult to get an analytical expression for
⃦⃦⃦
Ĝ
⃦⃦⃦
, particularly due to the singularity

of 𝐺 at the origin. Instead, [76] suggests using a numerical method, which is a crude

approximation on the true norm. To achieve a more analytical approach, it is possible

to first try to remove the singularity using the discussion in [102]. It can be easily

shown that

̂︂GV𝑧0𝜙 =
1

𝜓0

∫︁
𝒟
𝑑𝑟′ 𝐺(𝑟 − 𝑟′) rect

(︂
‖𝑟 − 𝑟′‖
2𝐿𝑀

)︂
𝑉 (𝑟′)𝜓(𝑟′), (3.18)

where 𝐿𝑀 is the diagonal length of the smallest box containing the support of 𝑉 , e.g.√︀
𝐿2
1 + 𝐿2

2 + 𝐿2
3. Then

⃦⃦⃦
Ĝ
⃦⃦⃦

becomes the norm of a convolution with a new kernel,

𝐺̄(𝑟) = 𝐺(𝑟) rect

(︂
‖𝑟‖
2𝐿𝑀

)︂
, (3.19)
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whose Fourier transform is entire by virtue of the Paley-Wiener theorem:

ℱ̂𝐺̄(𝑟)(𝑘) = 1

𝑘

1

(𝑛b𝑘0 − 𝑘)(𝑛b𝑘0 + 𝑘)

[︀
e𝑖𝑛b𝑘0𝐿𝑀 (𝑘 cos 𝑘𝐿𝑀 − 𝑖𝑛b𝑘0 sin 𝑘𝐿𝑀)− 𝑘

]︀
.

(3.20)

Since the Fourier transform is unitary,
⃦⃦⃦
Ĝ
⃦⃦⃦

would be bound by the largest Fourier

coefficient of 𝐺̄(𝑟). Under the small wavelength approximation on which the scalar

Helmholtz equation is based, 𝑛b𝑘0𝐿𝑀 ≫ 1 and subsequently, the absolute value of

ℱ̂𝐺̄(𝑟)(𝑘) has two peaks at 𝑘 = 𝑛b𝑘0 (from surface of momentum conservation) and

𝑘 = 0 (from regularization of the singularity), which asymptotically approach 𝐿𝑀

𝑛b𝑘0

and 𝐿𝑀

2𝑛b𝑘0
, respectively. Therefore,

⃦⃦⃦
Ĝ
⃦⃦⃦
≤ 𝐿𝑀

𝑛b𝑘0
, (3.21)

and subsequently, ⃦⃦⃦̂︂GV𝑧0

⃦⃦⃦
≤ 𝐿𝑀

𝑛b𝑘0
sup
𝒟

(𝑉 ) . (3.22)

However, Eq. (3.22) would be too loose an estimate on the operator norm, i.e. the

use of sup
𝒟

(𝑉 ) in Eq. (3.16). Hence it is suggested to alternatively use

⃦⃦⃦̂︂GV𝛼

⃦⃦⃦
≲

𝐿𝑀

𝑛b𝑘0
mean

𝒟
(𝑉 ) (3.23)

as an approximation if the potential 𝑉 is mostly smooth. Setting

𝑉 (𝑟) = (𝑛b𝑘0)
2

[︃(︂
𝑛(𝑟)

𝑛b

)︂2

− 1

]︃
, (3.24)

Eq. (3.23) can be rewritten as

⃦⃦⃦̂︂GV𝛼

⃦⃦⃦
≲ 𝐿𝑀𝑛b𝑘0

⎡⎣(︃mean
𝒟

(𝑛)

𝑛b

)︃2

− 1

⎤⎦ . (3.25)

That is, roughly speaking, the validity of the Born series guarantee is inversely pro-
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portional to the object scale with respect to the incident wavelength and the square of

the refractive index. The estimation of the norm in Eq. (3.25) is tighter and simpler

than previous reports e.g. [69, 57] as the size of optical objects becomes large. A

detailed discussion is presented in Appendix B.2. The tightness of the bound also

helps improve the truncation error estimate expressed as geometric series of the norm,

e.g. [69], ⃦⃦⃦⃦
⃦𝜙−

𝑁∑︁
𝑗=0

(︁̂︂GV𝑧0

)︁𝑗
𝑓0

⃦⃦⃦⃦
⃦ ≤

⃦⃦⃦̂︂GV𝑧0

⃦⃦⃦𝑁+1

1−
⃦⃦⃦̂︂GV𝑧0

⃦⃦⃦ ‖𝑓0‖ . (3.26)

3.4 From Born series to BPM

As discussed in the previous section, Eq. (3.13) plays a key role in connecting LSE

and BPM. Further derivations on such connection begin with analyzing 𝑓1, the first

term in the Born series, representing a single scattering event:

𝑓1(𝑟) =

∫︁ 𝑧

𝑧0

𝑑𝑧′ ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
ℱ̂𝑥𝑦

[︁
𝑉 (𝑟′)ℱ̂ †

𝑥𝑦e
𝑖𝑘𝑧(𝑧′−𝑧0)ℱ̂𝑥𝑦 [𝜙(𝑥

′, 𝑦′, 𝑧0)]
]︁
. (3.27)

To derive the BPM, it is required that the two operators

ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
ℱ̂𝑥𝑦 and 𝑉 (𝑟)× (3.28)

commute. When it comes to their physical intuitions, these operators imply the

propagation and change of momentum of photons, respectively. More specifically,

note that the kernel e𝑖𝑘𝑧(𝑧−𝑧′)/𝑘𝑧 originates from the Weyl expansion on the three-

dimensional convolution with the Green’s function. Hence, the commutation entails

that original momentum of incoming photons does not change much, especially in

terms of its direction.

Using the convolution theorem, it can be shown that

ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
ℱ̂𝑥𝑦𝑉 (𝑟′) =

1

(2𝜋)2
ℱ̂ †

𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧

[︁
𝑉𝑧′⋆

]︁
ℱ̂𝑥𝑦, (3.29)
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where 𝑉𝑧′⋆ is a convolution operator:

𝑉𝑧′⋆ : 𝜙(𝑘)→
∫︁
𝑑𝑘′ℱ̂𝑥𝑦 [𝑉 (𝑥, 𝑦, 𝑧)] (𝑘 − 𝑘′)𝜙(𝑘′). (3.30)

Here, assume that 𝑉 is band-limited in each of its 𝑥𝑦-slices. For brevity, first define

the boxcar function in R2 as

rect(𝑥) =

⎧⎪⎨⎪⎩0, if ‖𝑥‖ > 1
2

1, otherwise,
(3.31)

and approximate ℱ̂𝑥𝑦𝜓 and 𝑉𝑧′ as

ℱ̂𝑥𝑦𝜙 ≈ 𝐶𝜙 rect

(︂
𝑘

2𝐾𝜙

)︂
(3.32a)

𝑉𝑧′ ≈ 𝐶𝑉 rect

(︂
𝑘

2𝐾𝑉

)︂
, (3.32b)

i.e. their support is confined to spheres of size 𝐾𝜙 and 𝐾𝑉 , respectively, while 𝐶𝜙

and 𝐶𝑉 are upper bounds on the approximate operator amplitudes. It follows that

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧

[︁
𝑉𝑧′⋆

]︁
ℱ̂𝑥𝑦𝜙 ≈ 𝐶𝜙𝐶𝑉

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
(𝜋𝐾2

𝑉 ) rect

(︂
𝑘

2(𝐾𝑉 +𝐾𝜙)

)︂
. (3.33)

On the other hand,

[︁
𝑉𝑧′⋆

]︁ e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
ℱ̂𝑥𝑦𝜙

≈ 𝐶𝜙𝐶𝑉 rect

(︂
𝑘

2(𝐾𝑉 +𝐾𝜙)

)︂[︃
e−𝑖𝑛b𝑘0(𝑧−𝑧′)

∫︁
𝐵𝐾𝑉

(𝑘)

𝑑𝑘′ e𝑖(𝑧−𝑧′)
√

(𝑛b𝑘0)2−(𝑘′𝑥)
2−(𝑘′𝑦)

2√︁
(𝑛b𝑘0)2 − (𝑘′𝑥)

2 − (𝑘′𝑦)
2

]︃
,

(3.34)

where 𝐵𝐾𝑉
(𝑘) is a ball of radius 𝐾𝑉 centered at 𝑘. Comparing Eqs. (3.33) and (3.34),
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the two operators in Eq. (3.28) would commute if

𝜋𝐾2
𝑉

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
≈ e−𝑖𝑛b𝑘0(𝑧−𝑧′) ×

∫︁
𝐵𝐾𝑉

(𝑘)

𝑑𝑘′ e𝑖(𝑧−𝑧′)
√

(𝑛b𝑘0)2−(𝑘′𝑥)
2−(𝑘′𝑦)

2√︁
(𝑛b𝑘0)2 − (𝑘′𝑥)

2 − (𝑘′𝑦)
2
, (3.35)

i.e. if the propagator (2D Fourier spectrum of the Green’s function) is nearly constant

in 𝐵𝐾𝑉
(𝑘) for every 𝑘 in 𝐵𝐾𝜙+𝐾𝑉

(0). This is consistent with the weak scattering

approximation applied separately on each slice of the BPM. To satisfy condition

(3.35), it is sufficient to require that

𝑧 − 𝑧′ and 𝐾𝑉 are small. (3.36)

To further simplify the integrand in Eq. (3.35) toward obtaining an estimate of its

validity bound, let us assume that 𝑧−𝑧′ is sufficiently small so that the term e𝑖𝑘𝑧(𝑧−𝑧′)

can be considered locally constant in 𝐵𝐾𝑉
(𝑘) and describe this term as a constant

𝐶𝑧. Then, at 𝑘 = 0,

∫︁
𝐵𝐾𝑉

(0)

𝑑𝑘′ e𝑖𝑘𝑧(𝑧−𝑧′)√︁
(𝑛b𝑘0)2 − (𝑘′𝑥)

2 − (𝑘′𝑦)
2

=

∫︁ 2𝜋

0

𝑑𝜃

∫︁ 𝐾𝑉

0

𝑟𝑑𝑟
𝐶𝑧√
𝑘2 − 𝑟2

(3.37)

= 2𝜋𝐶𝑧

(︂
𝑛b𝑘0 −

√︁
(𝑛b𝑘0)2 −𝐾2

𝑉

)︂
,

and, subsequently,⃒⃒⃒⃒
⃒𝜋𝐾2

𝑉

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
−
∫︁
𝐵𝐾𝑉

(0)

𝑑𝑘′ e𝑖𝑘𝑧(𝑧−𝑧′)√︁
(𝑛b𝑘0)2 − (𝑘′𝑥)

2 − (𝑘′𝑦)
2

⃒⃒⃒⃒
⃒

≈ 𝜋𝐶𝑧𝑛b𝑘0

(︁
2− 2

√
1− 𝒮2 − 𝒮2

)︁
, (3.38)

where 𝒮 is the dimensionless parameter

𝒮 ≡ 𝐾𝑉

𝑛b𝑘0
. (3.39)
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The last term in Eq. (3.38) shall be referred to as

𝛿0 = 2− 2
√
1− 𝒮2 − 𝒮2 ≈ 𝒮

4

2
. (3.40)

The behavior of 𝛿0 vs. 𝒮 is shown further down in Fig. 3-2 as part of a longer dis-

cussion on the BPM’s validity. The approximation applies for 𝒮 ≪ 1. As previously

mentioned, 𝒮 regulates the magnitude of the commutation error, illustrating the im-

pact of the optical potential on the propagation of incoming photons. In other words,

𝒮 refers to the scattering angle, which represents the degree of scattering from the

original path. Note that 𝐾𝑉 and 𝑘0 are reciprocals of the size of objects and the

wavelength, respectively; hence, 𝒮 is closely connected to

𝜆

𝐿𝑥𝑦

, (3.41)

where 𝐿𝑥𝑦 stands for the size of objects in lateral dimensions. The equation refers to

the angular resolution (diffraction limit). In this sense, 𝒮 can be viewed as the degree

of diffraction under an aperture, or an object in a general setting. The connection

between 𝒮, scattering angle, and the diffraction may become more clear in extremities.

For example, 𝒮 = 0 in free space, leading to the angular spectrum method (Rayleigh-

Sommerfeld diffraction) in BPM, i.e. Eq. (3.47). Incoming photons just propagate

as they are without any perturbation. On the other hand, 𝒮 = 1 when the size of

an object, or an aperture, matches the wavelength, which suffers from the largest

amount of scattering that the scalar scattering theory can handle. In principle, 𝒮

can be larger than 1 in Rayleigh scattering, but then scattering may no longer be

described adequately by the scalar theory; instead, polarization and evanescent wave

contributions must be taken into account.

From Eqs. (3.33) and (3.34), Eq. (3.38) corresponds to the error of the commuta-

tion at 𝑘 = 0 (more precisely, the error normalized by 𝐶𝜙 and 𝐶𝑉 that are average

amplitudes of 𝜙 and 𝑉 in the Fourier space). When 𝑘 ̸= 0 it is not straightforward to

derive an analytical expression for the error, but it can be anticipated that it would
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Figure 3-2: Dependence of 𝛿0 on 𝒮. As 𝒮 increases, 𝛿0 approaches its maximum value,
1. This implies that the Fourier transform of 𝑉 has significant effects on the validity
of the BPM.

be proportional to ‖𝑘‖. This is because 1/
√︁

(𝑛b𝑘0)2 − (𝑘′𝑥)
2 − (𝑘′𝑦)

2 in Eq. (3.34)

changes rapidly as the domain of integral, 𝐵𝐾𝑉
(𝑘), moves away from the origin in

the Fourier space. Hence,⃒⃒⃒⃒
⃒e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧

[︁
𝑉𝑧′⋆

]︁
ℱ̂𝑥𝑦𝜙−

[︁
𝑉𝑧′⋆

]︁ e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
ℱ̂𝑥𝑦𝜙

⃒⃒⃒⃒
⃒

≈ 𝜋𝐶𝜙𝐶𝑧𝐶𝑉 𝑛b𝑘0𝛿0⏟  ⏞  
𝜀0

+𝜀 (𝐾𝑉 , 𝐾𝜙) , (3.42)

where 𝜀 represents the additional error originating from 𝑘 ̸= 0 regions, which depends

on the effective support of both 𝑉 and 𝜙 in the Fourier space and increases more

rapidly than 𝜀0.

From now on, assume that Eq. (3.36) is satisfied in our system. Then, Eq. (3.27)

becomes

𝑓1(𝑟) =

∫︁ 𝑧

𝑧0

𝑑𝑧′ 𝑉 (𝑥, 𝑦, 𝑧′)ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧0)

𝑘𝑧
ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)]

=

{︂∫︁ 𝑧

𝑧0

𝑑𝑧′ 𝑉 (𝑥, 𝑦, 𝑧′)

}︂
ℱ̂ †

𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧0)

𝑘𝑧
ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)] . (3.43)
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Subsequently, evaluating 𝑓2 yields

𝑓2(𝑟) =

∫︁ 𝑧

𝑧0

𝑑𝑧′ ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
ℱ̂𝑥𝑦

[︃
𝑉 (𝑟′)

{︃∫︁ 𝑧′

𝑧0

𝑑𝑧′′ 𝑉 (𝑟′′)

}︃
ℱ̂ †

𝑥𝑦

e𝑖𝑘𝑧(𝑧′−𝑧0)

𝑘𝑧
ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)]

]︃

=

{︃∫︁ 𝑧

𝑧0

𝑑𝑧′ 𝑉 (𝑥, 𝑦, 𝑧′)

∫︁ 𝑧′

𝑧0

𝑑𝑧′′ 𝑉 (𝑥, 𝑦, 𝑧′′)

}︃
ℱ̂ †

𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧0)

𝑘2𝑧
ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)]

=
1

2!

{︂∫︁ 𝑧

𝑧0

𝑑𝑧′ 𝑉 (𝑥, 𝑦, 𝑧′)

}︂2

ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧0)

𝑘2𝑧
ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)] , (3.44)

where the last equality is derived using integration-by-parts [52]. Repeating the same

procedure, it can be deduced that

𝑓𝑗(𝑟) =
1

𝑗!

{︂∫︁ 𝑧

𝑧0

𝑑𝑧′ 𝑉 (𝑥, 𝑦, 𝑧′)

}︂𝑗

ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧0)

𝑘𝑗𝑧
ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)] . (3.45)

From the analysis on the commutation error, BPM requires 𝐾𝜙 and 𝐾𝑉 to be small.

Hence, |𝑘𝑥|, |𝑘𝑦| ≪ 𝑛b𝑘0 and 𝑘𝑧 ≈ 𝑛b𝑘0. Subsequently,

𝑓𝑗(𝑟) ≈
1

𝑗!

{︂∫︁ 𝑧

𝑧0

𝑑𝑧′ 𝑉 (𝑥, 𝑦, 𝑧′)

}︂𝑗

ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧0)

(𝑛b𝑘0)𝑗
ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)] . (3.46)

Inserting Eq. (3.46) to Eq. (3.12) gives

𝜙(𝑟) = exp

(︂
𝑖

2𝑛b𝑘0

{︂∫︁ 𝑧

𝑧0

𝑑𝑧′ 𝑉 (𝑥, 𝑦, 𝑧′)

}︂)︂
ℱ̂ †

𝑥𝑦e
𝑖𝑘𝑧(𝑧−𝑧0)ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)]

= exp

(︃
𝑖𝑛b𝑘0
2

{︃∫︁ 𝑧

𝑧0

𝑑𝑧′

[︃(︂
𝑛(𝑥, 𝑦, 𝑧′)

𝑛b

)︂2

− 1

]︃}︃)︃
ℱ̂ †

𝑥𝑦e
𝑖𝑘𝑧(𝑧−𝑧0)ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)]

≈ exp

(︃
𝑖𝑛b𝑘0
𝜉

(𝑧 − 𝑧0)

[︃(︂
𝑛(𝑥, 𝑦, 𝑧)

𝑛b

)︂𝜉

− 1

]︃)︃
ℱ̂ †

𝑥𝑦e
𝑖𝑘𝑧(𝑧−𝑧0)ℱ̂𝑥𝑦 [𝜙(𝑥, 𝑦, 𝑧0)] ,

(3.47)

where 𝜉 = 2. Comparing Eqs. (3.13) and (3.46), it is implied that the 𝑗-th order

scattering term in Born series corresponds to the 𝑗-th order polynomial in the Taylor

expansion of the exponential modulation in the BPM. This successive application of

the diffraction and phase modulation is also reminiscent of a similar result derived

according to the multislice method [41, 59].
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3.4.1 Difference between Born series and BPM

Though Born series and BPM both originate from the LSE and their mathematical

structures are closely related, BPM imposes different assumptions on the scattering

process. First, due to Eq. (3.36), it is required that |𝑧− 𝑧0| be small. Hence, previous

studies on BPM suggest slicing a thick 𝑉 along the optical axis and applying BPM

on each slice consecutively. However, this violates our assumption that 𝑧 is outside

of the support of 𝑉 , as in Fig. 3-1. In other words, at each 𝑗th slice inside 𝑉 , BPM

has a numerical discrepancy

𝑖

2

∫︁ 𝑧

𝑧0

𝑑𝑧′ ℱ̂ †
𝑥𝑦

e𝑖𝑘𝑧(𝑧−𝑧′)

𝑘𝑧
ℱ̂𝑥𝑦

[︂
𝑉 (𝑟′)

[︀
𝜙𝑗−1 − 𝜙

]︀
(𝑟′)

]︂
, (3.48)

where 𝜙𝑗−1 is a field at the (𝑗−1)th slice in BPM and 𝜙 is that of LSE. The difference

𝜙𝑗−1 − 𝜙 would approximately amount to backscattered fields from 𝑉 (𝑥, 𝑦, 𝑧) where

𝑧 ≥ 𝑧𝑗 and 𝑧𝑗 is the 𝑧-coordinate of the 𝑗th slice. There have been studies on including

backscattering effects in BPM [59], which may be an extension to the present work.

Despite Eq. (3.47) suggesting a close connection between Born series and BPM,

they do exhibit different numerical convergence. Specifically, BPM is known to be

numerically stable with high 𝑉 , compared to the Born series. One may be able to

speculate that such behavior can be attributed to the following conditions. First, in

BPM, it is assumed that 𝐾𝜙 and 𝐾𝑉 are small, which makes 1/𝑘𝑧 as small as possible

in the expansion. In other words, all Fourier coefficients that are multiplied with large

1/𝑘𝑧 are effectively ignored, and that promotes convergence. Second, as in Eq. (3.48),

BPM does not consider backscattered fields. This would decrease the norm of the LSE

operator. We present numerical experiments on comparing the convergence behavior

of Born series and BPM in Section 3.5.
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3.4.2 On the appearance of a different value of 𝜉 in BPM’s

wave modulation term

According to Eq. (3.47), BPM consists of two operations. First, an incident field is

propagated with small distance 𝑧−𝑧0. Subsequently, the field undergoes a phase mod-

ulation. The modulation is proportional to (𝑛/𝑛b)
𝜉/𝜉 where 𝜉 = 2. This resembles

BPM in previous studies except they suggest 𝜉 = 1 [79, 37].

The difference in the assumed values of 𝜉 originates from the respective assump-

tions. To track the differences, let us again start with the Helmholtz equation

Eq. (3.1), rewritten here for convenience as

[︂
𝜕2

𝜕2𝑧
+∇2

𝑥𝑦 + 𝑘20𝑛
2

]︂
𝜓 = 0, (3.49)

where ∇𝑥𝑦 refers to the gradient in the lateral dimensions. Setting 𝑃 2 = 𝜕
𝜕𝑧

and

𝑄̂2 = ∇2
𝑥𝑦 + 𝑘20𝑛

2, the equation can be further simplified as

[︁
(𝑃 + 𝑖𝑄̂)(𝑃 − 𝑖𝑄̂) + 𝑖 ⟨𝑃,𝑄⟩

]︁
𝜓 = 0, (3.50)

where ⟨, ⟩ is the commutator. If the variation of 𝑛 along the optical axis is negligible,

then ⟨𝑃,𝑄⟩ → 0 [37], which requires

[︁
𝑃 − 𝑖𝑄̂

]︁
𝜓 = 0. (3.51)

In fact, there is another set of solutions from
[︁
𝑃 + 𝑖𝑄̂

]︁
𝜓 = 0, but this represents

fields propagating backwards [97]. Consequently, from Eq. (3.51), 𝜓 can be expressed

as

𝜓(𝑥, 𝑦, 𝑧) = exp
[︁
𝑖(𝑧 − 𝑧0)

(︀
∇2

𝑥𝑦 + 𝑘20𝑛
2
)︀1/2]︁

𝜓(𝑥, 𝑦, 𝑧0). (3.52)

Note that 𝑛 = 1 leads to the propagation in free space, as shown in [97]. To derive

the BPM, it is required to separate ∇2
𝑥𝑦 from 𝑛2 in the square root. A straightforward
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way to separate them is to use the Taylor expansion:

(︀
∇2

𝑥𝑦 + 𝑘20𝑛
2
)︀1/2

= 𝑘0

(︂
1 +

1

𝑘20
∇2

𝑥𝑦 + (𝑛2 − 1)

)︂1/2

≈ 𝑘0 +
1

2𝑘0
∇2

𝑥𝑦 +
𝑘0
2
(𝑛2 − 1). (3.53)

Eq. (3.53) would be satisfied if
⃦⃦⃦

1
𝑘20
∇2

𝑥𝑦 + (𝑛2 − 1)
⃦⃦⃦

is small, i.e. both the scattering

angle and the lateral variation of 𝑛 are small [98]. Eq. (3.53) corresponds to the

phase modulation with 𝜉 = 2, which uses the same assumptions on fields leading to

the derivation of Eq. (3.47). On the other hand, [36, 37] suggest that

(︀
∇2

𝑥𝑦 + 𝑘20𝑛
2
)︀1/2 ≈ (∇2

𝑥𝑦 + 𝑘20)
1/2 + 𝑘0(𝑛− 1), (3.54)

which can be justified if the lateral variation of 𝑛 is small. This corresponds to the

phase modulation with 𝜉 = 1.

Summarizing, Eqs. (3.53) for 𝜉 = 2 and (3.54) for 𝜉 = 1 require different assump-

tions. The former requires both ∇2
𝑥𝑦𝜓 and ∇2

𝑥𝑦𝑛 to be small; whereas the latter does

not need the small scattering angle condition. However, the small lateral variation of

𝑛 indirectly implies that the scattering angle of 𝜓 in the potentials also needs to be

small. Hence, it is expected that the 𝜉 = 1 modulation would not result in significant

difference over the 𝜉 = 2 modulation, especially when 𝒮 is small. This was confirmed

empirically by our numerical observations. Explicitly, the effect of 𝜉 on spherical

potentials is presented in Appendix B.3.

3.4.3 Validity of the BPM

Eqs. (3.36) and (3.42) imply that the BPM approaches the LSE as 𝐾𝑉 , the upper

bound of diffraction away from the optical axis, becomes smaller. Hence, the dif-

ference between BPM and LSE would also depend on 𝐾𝑉 and 𝒮. Since, again, the

exact evaluation of such difference can be difficult, here we devise some simplifying
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approximations that also lend some insight to the problem. From Eq. (3.32b),

𝑉𝑧(𝑥) ≈ 𝐶𝑉𝐾
2
𝑉 sinc

(︁
2𝐾𝑉 ‖𝑥‖

)︁
≈ (𝑘0𝑛b)

2

(︂
𝑛𝑧(𝑥)

𝑛b

)︂2

(3.55)

where the subscript 𝑧 is used to represent a 𝑧-slice. In other words, 𝑉 is a function

whose amplitude is (𝑘0𝑛𝑧)
2 and effective support is 𝐾−1

𝑉 . Assuming that the gradient

of 𝑛𝑧 in the 𝑥𝑦 plane is negligible, it may be derived that

𝜀0 ≈ 𝐶𝜙𝐶𝑧𝒮−2

(︂
𝑛𝑧

𝑛b

)︂2

(𝑛b𝑘0)𝛿0. (3.56)

This is the commutation error at 𝑘 = 0 in Eq. (3.42). If 𝒮 is sufficiently small,

Eq. (3.40) gives

𝜀0 ≈ 𝐶𝜙𝐶𝑧

(︂
𝑛𝑧

𝑛b

)︂2

(𝑛b𝑘0) 𝒮2. (3.57)

Neglecting the diffraction effect between 𝑧 and 𝑧0, the commutation error in the first

order scattering term, Eq. (3.27), becomes

𝜀𝑧,𝑧0 =

∫︁ 𝑧

𝑧0

𝑑𝑧′ ℱ̂ †
𝑥𝑦

[︃
𝐶𝜙𝐶𝑧

(︂
𝑛𝑧′

𝑛b

)︂2

(𝑛b𝑘0)𝒮2 + 𝜀

]︃

≈ (𝑧 − 𝑧0)ℱ̂ †
𝑥𝑦

[︃
𝐶𝜙𝐶𝑧

(︂
𝑛𝑧0

𝑛b

)︂2

(𝑛b𝑘0)𝒮2 + 𝜀

]︃
, (3.58)

where the subscripts in 𝜀𝑧,𝑧0 are used to emphasize that now we consider the total

commutation error from a potential slice. If we approximate 𝜀 as a function whose

amplitude is 𝜀0 and effective support is mostly governed by 𝜙, then Eq. (3.58) finally

becomes

𝜀𝑧,𝑧0 ≈ 𝐶(𝑧 − 𝑧0)
(︂
𝑛𝑧0

𝑛b

)︂2

(𝑛b𝑘0) 𝒮2, (3.59)

where 𝐶 is a dimensionless number that is almost independent of the system con-

figuration. In addition, since it is required that e𝑖𝑘𝑧(𝑧−𝑧0) is nearly constant in the

derivation of BPM, 𝑛b𝑘0(𝑧 − 𝑧0) can be regarded as another dimensionless number
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that is independent of the system configuration. Subsequently, one can further sim-

plify 𝜀𝑧,𝑧0 as

𝜀𝑧,𝑧0 ≈ 𝐶

(︂
𝑛𝑧0

𝑛b

)︂2

𝒮2. (3.60)

Using 𝜀𝑧,𝑧0 , the total commutation error, 𝜀𝑡, in the first order scattering term from

an entire potential can be expressed. Let us denote as 𝑧1, · · · , 𝑧𝑁 th locations of the

𝑧-slices along the optical axis. Then

𝜀𝑡 =
𝑁∑︁

𝑚=1

𝜀𝑧𝑚,𝑧𝑚−1

= 𝐶
𝑁∑︁

𝑚=1

(︂
𝑛𝑧𝑚−1

𝑛b

)︂2

𝒮2(𝑧𝑚−1)

≈ 𝐶(𝑛b𝑘0)

∫︁ 𝑅𝑧/2

𝑅𝑧/2

𝑑𝑧

(︂
𝑛𝑧

𝑛b

)︂2

𝒮2(𝑧) (3.61)

where the 𝑧 dependency of 𝒮 is due to 𝐾𝑉 in 𝒮, and that is approximately reciprocal

to the size of the potential in the 𝑥𝑦 plane; whereas 𝑅𝑧 is the size of the potential

along the optical axis.

Eq. (3.61) implies that the error of BPM increases as the thickness of the potential

increases and the lateral size of the potential decreases, which agrees with previous

studies on optical scattering. What is important is that the effect of the lateral size is

larger than that of the thickness. To be more specific, a case of Mie scattering can be

considered where an incident planewave is scattered by a spherical potential of radius

𝑅𝑧 with constant refractive index 𝑛. Then

𝐾𝑉 (𝑧) ∼
1√︀

𝑅2
𝑧 − 𝑧2

, 𝑧 ∈
[︂
−𝑅𝑧

2
,
𝑅𝑧

2

]︂
, (3.62)

which gives

𝜀𝑡 ≈ 𝐶

(︂
𝑛

𝑛b

)︂2
1

𝑛b𝑘0𝑅𝑧

ln 3. (3.63)

In other words, as the sphere becomes large with respect to the incident wavelength,

the error decreases though the thickness of the potential grows. This is because the

average error at each potential slice decreases more rapidly.
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LSE BPM Born

(a)

(b)

z

xy(Length per wavelength)

(Diverge)

Figure 3-3: Comparison of scattered fields from LSE, BPM, and Born series. Two
different dielectric spheres are considered where 𝑛 is only changed to adjust the esti-
mated norm of the LSE operator in Eq. (3.25). (a) The norm is 0.9. (b) The norm is
15.

Overall, Eq. (3.61) entails that BPM approximates the LSE if the magnitude

of the refractive index 𝑛 and the dimensionless parameter 𝒮 are both small enough.

Qualitatively, small 𝒮 implies that the variation of 𝑛 along the lateral direction should

be small in the scale of the wavelength. In addition, Eq. (3.47) suggests that the

variation of 𝑛 should also be small along the optical axis. These ideas agree with

previous studies [36, 37]. Due to the complex behavior of 𝜀 and the accumulation of

commutation error in high order scattering terms in Eq. (3.46), the actual dependency

of the difference between BPM and LSE may deviate from 𝜀𝑡. Nevertheless, it can

serve as a useful lower bound for the accuracy of the BPM.
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LSE BPM Di�erence LSE BPM Di�erence

(a) (b)

z

xy

(Length per wavelength)

Figure 3-4: Scattered fields estimated from LSE and BPM when the size 𝐿 of a cubic
computational box changes. Here, two distinct potentials are considered, marked as
(a) and (b), both consisting of dielectric spheres. The mean refractive index is 1.02.
The difference refers to the elementwise absolute error divided by the maximum field
amplitude.
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(a) (b)

18λ

45λ 45λ

18λ

LSE BPM Elementwise relative L1 LSE BPM Elementwise relative L1
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Figure 3-5: 𝑥𝑧-view of scattered fields estimated from LSE and BPM for the objects
as in Fig. 3-4, marked as (a) and (b).

3.5 Numerical discussion

In this section, numerical validations are conducted for previous discussions on LSE,

Born series, and BPM. The Fourier transform in BPM is efficiently evaluated by using

the fast Fourier transform (FFT). Similarly, the convolution integral with the Green’s

function in the Born series and the LSE is evaluated using the convolution theorem

and FFT [102, 100]. We consider a uniform and cubic computational grid where

6 pixels per wavelength are used to discretize fields and refractive index functions.

The LSE is solved using the QMRCGSTAB algorithm [19] until
⃦⃦⃦
𝐴𝜓 − 𝜓0

⃦⃦⃦
2
/ ‖𝜓0‖2

reaches 10−5 where 𝐴𝜓 = 𝜓 − 𝐺̂(𝑉 𝜓). Without much loss of generality, we set

𝑛𝑏 = 1. Before proceeding further, we first demonstrate that LSE well approximates

the finite-difference time-domain (FDTD) solutions in Appendix B.4.

In Section 3.4.1, we discuss the stronger convergence behavior of BPM compared

to Born series. Mainly, this is because BPM neglects high 1/𝑘𝑧 portions in the field

propagator, though both methods originate from the same polynomial series of 𝑓𝑗.

Fig. 3-3 shows how scattered field estimations depend on the magnitude of 𝑛. As 𝑛

increases, the upper bound of the operator norm of the LSE operator in Eq. (3.25)

becomes high, which indicates the divergence of Born series. On the other hand,
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BPM does not exhibit such divergence.

Subsequently, the difference between LSE and BPM is further investigated. Qual-

itatively speaking, it is controlled by the dimensionless parameter 𝒮, which tells

that large size and small refractive index induce small difference. In Fig. 3-4, it can

seen that complex interference patterns near small objects are not well estimated

in BPM. By measuring SSIM, PSNR, and the relative 𝐿1 error (also referred to as

MAE, mean absolute error), Table 3.1 additionally presents quantitative comparison

between them. The quantitative metrics follow the same trend as the qualitative

analysis, except the 𝐿1 error in amplitude. This can be attributed to high frequency

oscillations along the optical axis when 𝜓0 is scattered by relatively large objects. For

example, in Fig. 3-5, the good agreement between LSE and BPM is again presented

as the size of potentials increases. At the same time, fine stripes of high relative 𝐿1

errors appear, which originates from oscillatory patterns in amplitudes along the op-

tical axis. Such patterns are numerically subtle to estimate accurately. On the other

hand, Fig. 3-6 and Table 3.2 demonstrates strong reciprocity between the magnitude

of the refractive index and the error between LSE and BPM, which agrees with our

theoretical analysis.

Corroborating results in Fig. (3-4) and Table 3.1, conduct additional experiments

are conducted regarding the size dependency of the error between LSE and BPM

under a higher refractive index 𝑛 condition. Specifically, 𝑛 = 1.08 is considered. In

Fig. (3-7), the expected tendency of BPM well approximates interference patterns

of LSE as size increases, except at strong focal points. Table 3.3 lists corresponding

quantitative results, which show decrease in SSIM and PSNR for the phase from large

potentials. This may be attributed to the increased ill-conditionedness of the LSE

operator [108] and fine oscillatory features, which reduces the numerical stability of

the simulation.

In the aforementioned discussions, numerical results are mainly based on spherical

objects. To further check the applicability of such discussions, tori are considered,

which are topologically distinct to spheres while not containing edges that are sharp

enough to destabilize numerical solvers [12]. In Fig. 3-8, it can be seen that high-
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Table 3.1: Image quality metrics on fields from LSE and BPM when the size 𝐿 of a
cubic computational box changes. 15 different potentials are considered, which consist
of dielectric spheres. The mean refractive index is 1.02. The phase is unwrapped along
the optical axis. The full width at half maximum of the Gaussian window in SSIM is
𝜆/2.

SSIM PSNR Relative 𝐿1

𝐿 = 16𝜆, amplitude 0.948 37.996 6.683× 10−3

𝐿 = 24𝜆, amplitude 0.965 40.147 6.909× 10−3

𝐿 = 32𝜆, amplitude 0.974 41.732 7.127× 10−3

𝐿 = 40𝜆, amplitude 0.977 42.616 7.400× 10−3

𝐿 = 16𝜆, phase 0.991 38.067 4.101× 10−2

𝐿 = 24𝜆, phase 0.995 41.617 2.698× 10−2

𝐿 = 32𝜆, phase 0.997 44.126 2.010× 10−2

𝐿 = 40𝜆, phase 0.998 46.067 1.602× 10−2

frequency interference patterns start to appear in BPM as 𝐿 increases. On the other

hand, Fig. 3-10 depicts the difference between LSE and BPM as 𝑛 changes. The

agreement between LSE and BPM deteriorates in a high index setting and near the

focal points, which implies that BPM may be inappropriate in this case. Table 3.4

and 3.5 provide quantitative analysis on the effects of 𝐿 and 𝑛. Except for the relative

𝐿1 error in amplitude seen in Fig. 3-9 and what is discussed already with reference

to Fig. 3-5, the quantitative results are in a good agreement with the theoretical

analysis.
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Figure 3-6: Scattered fields estimated from LSE and BPM when the mean refractive
index 𝑛 of spherical potentials changes. Here, potentials consist of spheres. The size
of a cubic computational box is 16𝜆. We show two different objects, which are marked
with (a) and (b). Difference refers to the elementwise absolute error divided by the
maximum field amplitude.
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Figure 3-7: Scattered fields estimated from LSE and BPM when the size 𝐿 of
a cubic computational box changes. 15 different potentials are considered, which
consist of spheres. The mean refractive index of spherical potentials is 1.08. We show
two different objects, which are marked with (a) and (b). Difference refers to the
elementwise absolute error divided by the maximum field amplitude.
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Figure 3-8: Scattered fields estimated from LSE and BPM when the size 𝐿 of a
cubic computational box changes. Two distinct potentials are considered, marked
as (a) and (b), both consisting of dielectric tori. The mean refractive index is 1.02.
The difference refers to the elementwise absolute error divided by the maximum field
amplitude. For more visibility, we show the shape of objects where the scattered field
boxes correspond to the regions enclosed with dotted black lines.
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Table 3.2: Image quality metrics on fields from LSE and BPM when the mean re-
fractive index 𝑛 of spherical potentials changes. 15 different potentials are considered,
which consist of dielectric spheres. The size of the cubic computational box is 16𝜆.
The phase is unwrapped along the optical axis. The full width at half maximum of
the Gaussian window in SSIM is 𝜆/2.

SSIM PSNR Relative 𝐿1

𝑛 = 1.07, amplitude 0.931 36.722 2.790× 10−2

𝑛 = 1.12, amplitude 0.888 34.429 6.291× 10−2

𝑛 = 1.17, amplitude 0.838 32.394 9.715× 10−2

𝑛 = 1.22, amplitude 0.812 31.137 12.076× 10−2

𝑛 = 1.07, phase 0.990 39.126 4.114× 10−2

𝑛 = 1.12, phase 0.971 36.198 4.339× 10−2

𝑛 = 1.17, phase 0.933 31.826 5.272× 10−2

𝑛 = 1.22, phase 0.910 29.105 6.042× 10−2

Table 3.3: Image quality metrics on fields from LSE and BPM when the size 𝐿
of a cubic computational box changes. 15 different potentials are considered, which
consist of spheres. The mean refractive index of spherical potentials is 1.08. The
phase is unwrapped along the optical axis. The full width at half maximum of the
Gaussian window in SSIM is 𝜆/2.

SSIM PSNR Relative 𝐿1

𝐿 = 16𝜆, amplitude 0.923 36.243 3.392× 10−2

𝐿 = 24𝜆, amplitude 0.930 37.200 4.170× 10−2

𝐿 = 32𝜆, amplitude 0.932 37.691 4.932× 10−2

𝐿 = 40𝜆, amplitude 0.937 38.330 5.528× 10−2

𝐿 = 16𝜆, phase 0.989 38.068 4.121× 10−2

𝐿 = 24𝜆, phase 0.990 40.656 2.769× 10−2

𝐿 = 32𝜆, phase 0.986 41.105 2.220× 10−2

𝐿 = 40𝜆, phase 0.983 40.212 1.938× 10−2
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Table 3.4: Image quality metrics on fields from LSE and BPM when the size 𝐿 of a
cubic computational box changes. This table considers 15 different potentials which
consist of dielectric tori. The mean refractive index is 1.02. The phase is unwrapped
along the optical axis. The full width at half maximum of the Gaussian window in
SSIM is 𝜆/2.

SSIM PSNR Relative 𝐿1

𝐿 = 16𝜆, amplitude 0.947 39.372 7.497× 10−3

𝐿 = 24𝜆, amplitude 0.965 41.841 7.795× 10−3

𝐿 = 32𝜆, amplitude 0.972 42.954 8.147× 10−3

𝐿 = 40𝜆, amplitude 0.975 43.626 8.514× 10−3

𝐿 = 16𝜆, phase 0.991 38.066 4.102× 10−2

𝐿 = 24𝜆, phase 0.995 41.622 2.699× 10−2

𝐿 = 32𝜆, phase 0.997 44.137 2.011× 10−2

𝐿 = 40𝜆, phase 0.998 46.081 1.603× 10−2

Table 3.5: Image quality metrics on fields from LSE and BPM when the mean
refractive index 𝑛 of spherical potentials changes. This table considers 15 different
potentials which consist of dielectric tori. The size of the cubic computational box is
16𝜆. The phase is unwrapped along the optical axis. The full width at half maximum
of the Gaussian window in SSIM is 𝜆/2.

SSIM PSNR Relative 𝐿1

𝑛 = 1.07, amplitude 0.915 36.019 3.534× 10−2

𝑛 = 1.12, amplitude 0.835 32.101 8.188× 10−2

𝑛 = 1.17, amplitude 0.740 29.499 13.925× 10−2

𝑛 = 1.22, amplitude 0.657 27.537 17.640× 10−2

𝑛 = 1.07, phase 0.986 37.707 4.143× 10−2

𝑛 = 1.12, phase 0.951 33.572 4.681× 10−2

𝑛 = 1.17, phase 0.899 28.539 5.971× 10−2

𝑛 = 1.22, phase 0.852 25.029 8.073× 10−2
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Figure 3-9: 𝑥𝑧-view of scattered fields estimated from LSE and BPM for the objects
as in Fig. 3-8, marked as (a) and (b).
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Figure 3-10: Scattered fields estimated from LSE and BPM when the mean refractive
index 𝑛 of a cubic computational box changes. In this figure, potentials consist of
tori. The size of a cubic computational box is 16𝜆. This figure considers two different
objects, which are marked with (a) and (b). Difference refers to the elementwise
absolute error divided by the maximum field amplitude. For more visibility, we show
the shape of objects where the scattered field boxes correspond to the regions enclosed
with dotted black lines.
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Chapter 4

Neural regularization on LSE for fast

and differentiable forward scattering

4.1 Introduction

In the approximation of optical scattering under the scalar wave approximation, LSE

has been studied as one of the most accurate methods. Furthermore, in Chapter 3,

the theoretical analysis on such accuracy is presented. In fact, due to its equivalency

to the scalar Helmholtz equation, it has been used not only in optical scattering but

many branches of physics such as acoustics [25, 73], seismic imaging [68], microscopy

[14], and quantum scattering [3, 38].

Despite of such importance, however, alternative scattering models are often

adopted instead of the LSE. As illustrated previously, this is mainly due to compu-

tational complexities in the LSE; it stands out as a complex integral equation when

compared to simpler models, lacking a general analytical solution. Subsequently,

the resolution of the LSE necessitates the application of iterative methods for linear

systems, which may result in very slow convergence.

Consider𝒟 in Eq. (3.15) as a domain of scattered waves in LSE. For computational
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purposes, the domain 𝒟 is discretized into a lattice, defined by

𝐷𝑁 =

{︂(︂
𝐿1

𝑁1

𝑗1,
𝐿2

𝑁2

𝑗2,
𝐿3

𝑁3

𝑗3

)︂
: j ∈ ℐN

}︂
, (4.1)

where 𝐿𝑑 and 𝑁𝑑 represent the size and the number of grid points in the 𝑑-th dimen-

sion, and

ℐ𝑁 =
{︁
(𝑗1, 𝑗2, 𝑗3) : −𝑁𝑑

2
≤ 𝑗𝑑 <

𝑁𝑑

2
, 𝑗𝑑 ∈ Z, 𝑑 ∈ {1, 2, 3}

}︁
, (4.2)

i.e. 𝒟𝑁 represents a cubic grid with 𝑁𝑖 divisions along each dimension of length 𝐿𝑖.

In this condition, a reformulation of the Lippmann-Schwinger equation is considered

to treat it as a linear system:

[︂
𝐼 −

∫︁
𝑑r′ 𝐺(r− r′)𝑉 (r′) ·

]︂
𝜓(r) = 𝜓0(r). (4.3)

where 𝐼 symbolizes the identity operator. This equation has an equivalent form to:

𝐴𝑥 = 𝑏, (4.4)

where 𝑏 corresponds to 𝜓0 and 𝑥 to 𝜓, with a linear operator 𝐴. Accordingly, the

LSE can be iteratively solved with iterative solvers, including Krylov subspace tech-

niques like the conjugate gradient (CG) or the generalized minimal residual method

(GMRES), as reviewed in literature [32, 42].

However, the convergence of Eq. 4.3, also referred to as Eq. 4.4, is highly depen-

dent on the numerical conditions present within the system. In short, the condition

number of 𝐴 has a proportionality to the scale of the system and the strength of the

scattering potential 𝑉 [107, 108], which can also be expected from a scenario where

the eigenvalues of 𝐴 correlate directly with the strength of the convolution kernel

[33]. This is exemplified by the quadratic relationship observed in the convergence

of the CG method, as illustrated in Fig. (4-1). Beyond the number of iterations, the

operational time required for applying 𝐴 to a field becomes a critical consideration,
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Figure 4-1: The number of CG iterations required to solve the LSE. Spherical objects
with various radii are considered. Their refractive index contrast is 1.03. 3 pixels per
wavelength are used to sample 𝜓. The iteration is stopped when the relative 𝐿2 norm
error, ‖𝐴𝜓 − 𝜓0‖2 / ‖𝜓0‖2, reaches 10−6. Retrieved from [81].

with the computational effort approximately increasing in proportion to 𝐿3 with each

iteration.

Given these considerations, despite the LSE’s capability to accurately model light-

matter interactions, the computational demands for analyzing relatively large objects

are prohibitive. This challenge underscores the necessity for the development of a

more efficient LSE solver. In fact, the very origin of the slow convergence under

ill-conditioned 𝐴 is that it is difficult to express the solution 𝑥 in terms of basis

vectors in the Krylov subspace. In other words, mathematical characteristics of the

optical scattering phenomenon requires many basis vectors. Hence, one may think of

ways to promote mathematical properties that scattered waves may share during the

optimization. Such promotion, which regularizes the prospective form of the solution

𝑥, constitutes the primary aim of this section. As a result, it is further presented that

the regularization on the solution can lead to better convergence.
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4.2 Motivation on using regularizers in solutions to

LSE

In the simplest condition, one can think of an optimization problem to solve Eq. (4.4),

as

𝑥⋆ = argmin
𝑥

𝐿(𝐴𝑥, 𝑏), (4.5)

where 𝐿 is a convex loss function. If 𝐴 is Hermitian and positive-definite, one of the

prevalent examples of 𝐿 is

𝐿(𝐴𝑥, 𝑏) =
1

2
⟨𝑥,𝐴𝑥⟩ − ⟨𝑥, 𝑏⟩ . (4.6)

It is well-known that CG is effectively minimizing this form of 𝐿 where the residual

at each iteration becomes the direction of the gradient descent. On the other hand, if

𝐴 is not Hermitian or positive-definite, 𝐴 may be multiplied by its adjoint to form a

new Hermitian operator 𝐴†𝐴 and CG can be applied, resulting in a formulation that

can be translated to a minimization of the 𝐿2 loss:

𝐿(𝐴𝑥, 𝑏) =
1

2
‖𝐴𝑥− 𝑏‖2 . (4.7)

Hence, roughly speaking, simple optimization problems like Eq. (4.5) may be com-

pared to the application of CG without additional considerations, such as precondi-

tioners. Accordingly, it can be expected that the convergence rate of gradient-based

methods on Eq. (4.5) would be comparable to that of CG, which can be a problem

for the ill-conditioned LSE.

As discussed in the previous section, problems originating from the ill-conditionedness

of 𝐴 can be represented by the difficulty in expressing the optical scattering in math-

ematical ways, e.g. via basis vectors in Krylov subspaces or additional information

per each gradient descent step. To guide the solution of Eq. (4.5) toward a space of
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scattered waves, one can introduce an additional function:

𝑥⋆ = argmin
𝑥

𝐿(𝐴𝑥, 𝑏) +𝑅(𝑥), (4.8)

where 𝑅 is often referred to as the regularizer. In recent studies, one of the well-known

regularizers in the sense of the convex optimization and the inverse problem is the

sparsifying regularizer, in combination with the compressive sensing (CS) in the signal

processing. CS leverages the concept that signals, which are sparse or can be made

sparse through transformation with a particular basis set, can be reconstructed with

fewer samples than traditionally dictated by the Nyquist-Shannon criterion [17]. It

should be emphasized that CS targets ill-posed situations, e.g. non-negligible noises

and 𝐴 with very small number of rows. This innovative approach has had a profound

impact not only on the field of signal processing but also across a broad spectrum of

disciplines that deal with the challenge of solving ill-posed inverse problems [17, 94].

In particular, the use of wavelets for image processing, predicated on the sparsity of

natural images in the wavelet domain, exemplifies an application of this principle [67].

Moreover, the emergence of dictionary learning methods, which derive optimal sparse

representations from training data, represents another significant stride in leveraging

sparsity for signal processing [2, 34].

Without promoting the sparsity, the minimization of the original loss function

would be stuck at several degenerate solutions. In this sense, the regularizer, roughly

speaking, promotes desirable mathematical properties during the solution process,

consequently leading to a good solution. Similarly, if there exist some mathematical

properties that solutions to the LSE share, such properties can also be promoted by

a regularizer. Furthermore, if such properties are related to degeneracies that can

appear during the solution process on Eq. (4.5), the inclusion of 𝑅 may be able to

help the minimization. The core idea of this work is to adopt 𝑅 as in Eq. (4.8), and

to find 𝑅 suited for the LSE.
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4.3 Learning regularization with neural networks

As illustrated in the previous section, the introduction of 𝑅 can be helpful in solving

the LSE by promoting certain mathematical properties that may be beneficial to reach

the solution. However, it is not straightforward to apply 𝑅 on the LSE, because the

form of an appropriate regularizer 𝑅 is not known a priori in many cases, including

the LSE. Furthermore, the appropriate form of 𝑅 can be very complex, which would

make the choice of 𝑅 infeasible. Hence, studies often assume 𝑅 in an ad hoc manner;

one of the well-known examples is the total variation regularization under a prior

that objects are piecewise continuous and have sharp edges. When it comes to the

LSE, 𝑅 is introduced to represent a physical prior on different entities, scattered

fields, but such prior is still connected to the information from the space of objects

that scatter incident fields. In this sense, 𝑅 in LSE also implies a certain physical

prior on objects of interest as in previous studies, while its definition becomes even

more involved. Specifically, it is difficult to design a prior that can be helpful in

evaluating the validity of a scattered field, where such prior is influenced by some

physical properties of objects that are not well-known. Thus, instead of knowing 𝑅 a

priori, 𝑅 may be learned from examples by approximating it as a sufficiently complex

function. A neural network can a candidate for this purpose, because of its good

ability to approximate arbitrarily complex functions.

However, substituting 𝑅 as a neural network has its own problems. For example,

𝑥⋆ = argmin
𝑥

𝐿(𝐴𝑥, 𝑏) + 𝒞(𝑥), (4.9)

where 𝑅 is substituted by a neural network 𝒞 in Eq. (4.8). In this scheme, one has

to face two optimization problems at the same time, the original problem and the

optimization of weights of 𝒞, which can be extremely difficult. Hence, it would be

helpful if the equation above can be approximated or expressed as simple steps. For

such purpose, in the following sections, a method called the proximal gradient method

(PGM) is introduced and a corresponding architecture for 𝒞 is proposed.
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4.3.1 Proximal gradient descent

Originally, PGM has been introduced for convex optimization problems where the

regularization 𝑅 is non-differentiable or the direct evaluation of the gradient of 𝐿+𝑅

in Eq. (4.8) is not trivial. Assume that 𝐿 is convex and everywhere differentiable,

and 𝑅 is convex but not necessarily differentiable. Denoting 𝑥(𝑖) as a current guess

on 𝑥⋆, solving the following problem

𝑥(𝑖+1) = argmin
𝑥

𝐿(𝐴𝑥, 𝑏) +𝑅(𝑥) s.t. 𝑥 is close to 𝑥(𝑖), (4.10)

may improve 𝑥(𝑖), as both 𝐿 and 𝑅 are convex. A simple intuition behind PGM is to

approximate 𝐿 as a quadratic function near 𝑥(𝑖):

𝐿(𝑥) ≈ 𝐿(𝑥(𝑖)) +
⟨︀
∇𝐿(𝑥(𝑖)), (𝑥− 𝑥(𝑖))

⟩︀
+

1

2𝑡

⃦⃦
𝑥− 𝑥(𝑖)

⃦⃦2
2
+𝑅(𝑥). (4.11)

Accordingly, Eq. (4.10) becomes

𝑥(𝑖+1) = argmin
𝑥

1

2𝑡

⃦⃦
𝑥−

(︀
𝑥(𝑖) − 𝑡∇𝐿(𝑥(𝑖))

)︀⃦⃦2
2
+𝑅(𝑥), (4.12)

which implies that the next guess is a point that minimizes 𝑅 while being close to

the gradient update with respect to 𝐿. In what follows, the proximal operator is

introduced [83]:

prox𝑅[𝑣] ≡ argmin
𝑥

𝑅(𝑥) + ‖𝑥− 𝑣‖22. (4.13)

Subsequently, the expression for 𝑥(𝑖+1) can be rewritten as

𝑥(𝑖+1) = prox2𝑡𝑅
[︀
𝑥(𝑖) − 𝑡∇𝐿(𝑥(𝑖))

]︀
, (4.14)

which is referred to as the PGM. Returning to Eq. (4.8), Eq. (4.14) can be applied to

find a regularized solution to LSE. Substituting the 𝐿2 loss in Eq. (4.7) to Eq. (4.14)

87



gives
𝑥(𝑖+1) = prox2𝑡𝑅

[︀
𝑡𝐴†𝑏+ (𝐼 − 𝑡𝐴†𝐴)𝑥(𝑖).

]︀
= prox2𝑡𝑅

[︀
𝐴† (︀𝑡(𝑏− 𝐴𝑥(𝑖)))︀+ 𝑥(𝑖)

]︀
.

(4.15)

In some cases, the analytical form of prox2𝑡𝑅[𝑣] is already known, e.g. the soft-

thresholding operator when 𝑅 is the 𝐿1 norm, which enables the fast computation

of Eq. (4.15) regardless of the non-differentiability of 𝑅. Under a choice of 𝑡, if the

iteration in Eq. (4.15) leads to a stationary point, such point corresponds to the

minimizer of Eq. (4.8). The convergence behavior of Eq. (4.15) has been discussed in

many studies, e.g. [4, 29, 83].

4.3.2 Recurrent networks for proximal operator

By the virtue of the PGM Eq. (4.15), one may be able to solve Eq. (4.8) using

𝑥(𝑖+1) = 𝒞
[︀
𝑡𝐴†𝑏+ (𝐼 − 𝑡𝐴†𝐴)𝑥(𝑖)

]︀
= 𝒞

[︀
𝐴† (︀𝑡(𝑏− 𝐴𝑥(𝑖)))︀+ 𝑥(𝑖)

]︀
,

(4.16)

where the proximal operator is substituted by a neural network 𝒞. By setting the

proximal operator learnable, Eq. (4.16) has a more convenient form than Eq. (4.9),

as the optimization with respect to 𝑥 is changed to the iteration of a simple gradient

step and an application of 𝒞.

When it comes to the inverse problem with 𝑏 (measurements) contaminated with

external perturbations such as noises, there have been several studies have discussed

possible ways to learn 𝑅 from available data in a similar manner to the previous

sections (and solving LSE should be referred to as a forward problem). However,

they are not directly applicable to solve the LSE. For example, it has been suggested

to assume specific forms on 𝑅, e.g. using basis functions or parameterizing a part of

a proximal operator corresponding to a known regularizer [46, 54, 53, 110]; however,

such 𝑅 would be too simple to be used for the regularization in the LSE. Learning

dictionaries is another popular approach, but is also of limited use because it assumes

a specific representation; the sparse basis itself is learned from the data by imposing
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a sparsity criterion on the representation [2, 34]. On the other hand, there have

been studies that use neural networks, not basis functions, to extend the scope of

functions that can be learned [70, 106, 44, 75, 22]. However, they typically leverage

large neural networks, which require significant amount of computation compared

to iterative linear solvers. Furthermore, they often presume an equality constraint

𝐴𝑥 = 𝑏 under ill-posed conditions, which is not perfectly suitable for systems without

ill-posed measurements.

Accordingly, it is not computationally efficient if 𝒞 is represented by a conventional

neural network with large computational requirements. Furthermore, successive ap-

plication of neural networks at each iteration of the proximal gradient process leads

to the destabilization of the network training, i.e. numerical issues regarding naive

recurrent networks [48]. Consequently, it is recognized that the recurrence can achieve

numerical stability when the neural network incorporates a specific configuration: a

long short-term memory (LSTM) where the ability to selectively forget over time

is crucial [49]. Furthermore, the LSTM’s capability to maintain historical informa-

tion across iterations allows it to respond variably at different iteration stages, which

could be advantageous during the proximal gradient process. Based on the structure

of the LSTM, there have been proposed multiple closely relevant architectures for

the recurrent process such as GRU [24], and others [112, 63, 89]. Subsequently, 𝒞 in

Eq. (4.16) is substituted by a recurrent neural network with considerations on the

numerical stability and sequential information as in the LSTM. To summarize, the

expected advantages of adopting the recurrence-stable architecture can be listed as

follows:

• The amount of computation required in each step of the architecture is usually

significantly lightweight compared to conventional neural networks.

• The architecture can alleviate the gradient problem regarding conventional neu-

ral networks with naive recurrence, and it is aware of iteration stages. In ad-

dition, it has been shown that the architectural design is suitable for handling

sequential processing of information.
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• The physical information is directly provided through the operator 𝐴, which

means that it would not be required for the neural network to learn the physics

of a system as in simple end-to-end networks.

In particular, the fact that the physical information is fused into the training process

can greatly benefit the generalizabiilty of 𝒞. Put differently, with proper training, 𝒞

can act as an optimal regularizer for a specific system 𝐴 when dealing with a care-

fully chosen category of objects 𝑥. This category should be wide enough to maintain

relevance yet narrow enough to preserve the strength of the prior. Under these con-

ditions, Eq. (4.16) is capable of delivering satisfactory outcomes and exhibiting good

generalization capabilities. This implies that the system can accurately process inputs

that were not part of the training data, even if these inputs slightly deviate from the

exact category of the training set. The aspect of network generalizability is explored

in more depth in subsequent sections.

4.3.3 Mathematical inspiration from preconditioned CG

Algorithm 1 CG with a preconditioner 𝑀−1 and a tolerance 𝜀
1: 𝑟(0) ← 𝑏− 𝐴𝑥(0)
2: 𝑧(0) ←𝑀−1𝑟(0)

3: 𝑝(0) ← 𝑧(0)

4: 𝑖← 0

5: while ‖𝑟
(𝑖)‖
‖𝑏‖ ≤ 𝜀 do

6: 𝛼(𝑖) ← ⟨𝑟(𝑖),𝑧(𝑖)⟩
⟨𝑝(𝑖),𝐴𝑝(𝑖)⟩

7: 𝑥(𝑖+1) ← 𝑥(𝑖) + 𝛼(𝑖)𝑝(𝑖)

8: 𝑟(𝑖+1) ← 𝑟(𝑖) − 𝛼(𝑖)𝐴𝑝(𝑖)

9: 𝑧(𝑖+1) ←𝑀−1𝑟(𝑖+1)

10: 𝛽(𝑖) ← ⟨𝑟
(𝑖+1),𝑧(𝑖+1)⟩
⟨𝑟(𝑖),𝑧(𝑖)⟩

11: 𝑝(𝑖+1) ← 𝑧(𝑖+1) + 𝛽(𝑖)𝑝(𝑖)

12: 𝑖← 𝑖+ 1
13: end while

As illustrated previously, Krylov subspace methods are well-known methods to

solve the LSE in many previous studies. Hence, the mathematical intuition behind 𝒞
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in Eq. (4.16) in terms of such methods would be beneficial for us to better understand

the role of 𝒞. Moreover, one may be able to obtain useful inspiration from such

methods to improve Eq. (4.16) further.

In this section, the CG with a preconditioner is considered, because it has one

one of the simplest structures and it has a direct relationship to the gradient descent.

Algorithm 1 depicts the process in the CG with a preconditioner 𝑀−1, i.e.

𝑀−1𝐴𝑥 =𝑀−1𝑏. (4.17)

Note that CG requires 𝐴 to be positive-definite and Hermitian. Otherwise, one can

substitute 𝐴→ 𝐴†𝐴 and 𝑏→ 𝐴†𝑏, converting the line 7 and 8 in Algorithm 1 as

𝑥(𝑖+1) = 𝑥(𝑖) + 𝛼(𝑖)𝑝(𝑖)

= 𝑥(𝑖) + 𝛼(𝑖)𝑀−1𝑟(𝑖) − 𝛼(𝑖)𝛽
(𝑖−1)

𝛼(𝑖−1)
(𝑥(𝑖) − 𝑥(𝑖−1))⏟  ⏞  

Heavy-ball method [85]

, (4.18)

and

𝑟(𝑖) = 𝐴†𝑏− 𝐴†𝐴𝑥(𝑖). (4.19)

These equations can be closely related to Eq. (4.16), if one assumes that

𝒞 : 𝑡𝑟(𝑖) + 𝑥(𝑖) → 𝑡𝑀−1𝑟(𝑖) + 𝑥(𝑖), (4.20)

and 𝑡 = 𝛼(𝑖). Specifically, Eq. (4.16) can be roughly viewed as a preconditioned CG

with a nonlinear preconditioner1 and without the Heavy-ball acceleration.

Under this view, Eq. (4.16) can be interpreted as learning a nonlinear precon-

ditioner with respect to a matrix 𝐴†𝐴. However, taking 𝐴†𝐴 squares the condition

number of the original matrix 𝐴, which is mathematically unfavorable. Furthermore,

applying 𝐴†𝐴 doubles the amount of the matrix-vector multiplication at each itera-

tion. Hence, inspired by the CG, it is proposed that 𝒞 in Eq. (4.16) has the following

1Though it is not mathematically robust to call this as a preconditioner anymore.
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form:

𝒞 : 𝐴† (︀𝑡(𝑏− 𝐴𝑥(𝑖)))︀+ 𝑥(𝑖) → 𝑡NN(𝑏− 𝐴𝑥(𝑖)) + 𝑥(𝑖), (4.21)

where NN represents a recurrent neural network part and the application of 𝐴† is

implicitly fused into NN. The form in Eq. (4.21) may also be interpreted as the

residual learning [47], which has been shown to improve the gradient flow in deep

neural networks.

4.4 Numerical experiments

4.4.1 Architecture of neural regularizer

In this study, the minimal gated unit (MGU) [112] is chosen as the architecture of 𝒞.

The cell consists of the following key equations:

𝑓 (𝑖+1) = 𝜎
(︀
𝑊𝑦𝑓,𝑗 ⋆ 𝑦

(𝑖) +𝑊ℎ𝑓,𝑗 ⋆ ℎ
(𝑖)
)︀

𝑜(𝑖+1) = tanh
(︀
𝑊𝑦𝑜,𝑗 ⋆ 𝑦

(𝑖) +𝑊ℎ𝑜,𝑗 ⋆ ℎ
(𝑖)
)︀

ℎ(𝑖+1) = (1− 𝑓 (𝑖+1)) ∘ ℎ(𝑖) + 𝑓 (𝑖+1) ∘ 𝑜(𝑖+1)

(4.22)

where 𝑊 , 𝜎, and ∘ represent the weight, the sigmoid function, and the element-wise

product. The subscript 𝑗 in weights is to distinguish different cells if multiple MGU

cells are used. Here, ⋆ is represented by the Fourier convolution [86]:

𝑊⋆ : 𝑦 → ℱ̂ †(𝑊∘)ℱ̂𝑦. (4.23)

Note that the bias terms in the original MGU are omitted. At each iteration, 𝒞

receives two inputs: 𝑦(𝑖) and ℎ(𝑖). 𝑦(𝑖) represents input information provided to the

network at each iteration. In this work, information on the optical potential 𝑉 is

delivered; however, as a potential and a scattered field have mathematically distinct

properties, naively passing 𝑉 to the network can induce extra difficulty in estimating
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fields. Hence, 𝑦(𝑖) is set as the first-Born approximation with 𝑉 :

𝑦(𝑖) = 𝑏+

∫︁
𝑑r′ 𝐺(r− r′)𝑉 (r′)𝑏(r′). (4.24)

On the other hand, ℎ(𝑖) is referred to as the hidden state, where the cell extracts

useful information based on 𝑦(𝑖). Based on Eq. (4.21), the input hidden vector is set

as 𝑏− 𝐴𝑥(𝑖), i.e.

ℎ(𝑖) = 𝑏− 𝐴𝑥(𝑖). (4.25)

The final output from 𝒞 is then expressed by using the hidden state ℎ(𝑖+1):

𝑥(𝑖+1) = ℎ(𝑖+1) + 𝑥(𝑖), (4.26)

i.e. 𝑡 = 1 in Eq. (4.21).

In every step, the most expensive operation in 𝒞 is Eq. (4.23). Thus, denoting 𝑁

as the number of voxels in the uniform discretization, Eq. (4.1), the amount of com-

putation 𝑁𝑐 in every step is approximately proportional to ≈ 4𝑁 log𝑁 + 8𝑁 log 8𝑁 :

• 4𝑁 log𝑁 originates from four operations of 𝑊⋆ in 𝒞.

• 8𝑁 log 8𝑁 stems from 𝐴, which is evaluated by the Fourier convolution with

zero-padding [102, 84].

The network is deliberately designed to consist of relatively cheap operations, com-

pared to classical linear solvers. Specifically, Table 4.1 presents approximated values

on 𝑁𝑐 in well-known Krylov subspace methods, showing the computational efficiency

of the proposed method.

4.4.2 Training procedure

For training of 𝒞, scattering of a planewave, 𝜓0(x) = 𝑒𝑖𝑘𝑧, is considered. 9600 examples

of 𝑉 are generated and split into 9000 training, 300 validation, and 300 test examples.

For each example, the refractive index 𝑛 consists of 1 to 3 spherical objects whose

magnitude ranges from 1.01 to 1.13 and diameter from 11𝜆 to 21𝜆. The index and
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Table 4.1: The amount of computation 𝑁𝑐 required per each iteration in differ-
ent methods. Here, two Krylov subspace methods are compared with the proposed
method: BiCGSTAB-2 and QMRCGSTAB. 𝑁𝑐 is approximated by counting the num-
ber of matrix-vector multiplications and considering their computational complexity.
For instance, 𝑁 log𝑁 and 8𝑁 log 8𝑁 originate from the Fourier convolution without
and with zero-padding, respectively.

BiCGSTAB-2 QMRCGSTAB Proposed
𝑁c 4× (8𝑁 log 8𝑁) 2× (8𝑁 log 8𝑁) 4× (𝑁 log𝑁) + (8𝑁 log 8𝑁)

diameter ranges are chosen based on previous studies regarding the LSE [84, 55, 56,

21], where experimental conditions in such studies are well covered (and even worse

in this study). The background index 𝑛𝑏 is set 1. The computational domain 𝐷𝑁 in

Eq. (4.1) is set as a cubic box with length 64𝜆 in each dimension.

Starting from 𝑥(0) = 𝑏 = 𝜓0, Eq. (4.16) is repeated eight times with four different

MGU cells (two iterations per cell), i.e. until 𝑥(8) is obtained. In other words, the

total amount of computation during the inference is

𝑁𝑐 = 32𝑁 log𝑁 + 64𝑁 log𝑁. (4.27)

Subsequently, the difference between 𝐴𝑥(8) and 𝑏 is measured based on the training

loss function [65], which is the negative Pearson correlation coefficient (NPCC) [43].

In this way, the preparation of ground truth fields corresponding to training potentials

can be skipped, which is computationally expensive in practical situations. For the

update of weights in the network based on the difference, the Adam optimizer [58]

with an initial learning rate 10−3 is utilized. For the efficient evaluation of the operator

𝐴 in the LSE during the training, additional numerical techniques have been applied,

as illustrated in Section C.1 and Section C.2.

4.4.3 Results

The training result is summarized in Table 4.2 where the proposed model is checked

with test examples consisting of spherical objects. Since ground truth scattered fields

are not prepared during the training (and such preparation may not be feasible in
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practice), all metrics listed in the table are evaluated between 𝐴𝑥(8) and 𝑏. In addition,

for the comparison to the classical linear solvers, BiCGSTAB-(𝑙) [101, 92] with 𝑙 =

2 and QMRCGSTAB [45] are chosen. When it comes to BiCGSTAB-2, there are

four matrix-vector multiplications per iteration, which approximately leads to 𝑁𝑐 ≈

32 log 8𝑁 per iteration. Table 4.1 summarizes estimations of 𝑁𝑐 in different methods,

where similar calculation is done on QMRCGSTAB. 𝑁𝑐 in Table 4.2 is the gross

amount of computation over all iterations required to achieve the same tolerance

to the proposed method. While the relative 𝐿2 error may not be extremely low,

the convergence to feasible solutions implies that 𝒞 is able to learn a regularization

that promotes a space of scattered fields. As a result, it is worth noting that in the

proposed model, 𝑁𝑐 is approximately 7-10 times smaller than BiCGSTAB-2 and 2-3

times smaller than QMRCGSTAB, significantly reducing the computational resource.

In Fig. (4-2), the convergence behavior of the proposed model is depicted in more

detail. As the iteration in Eq. (4.16) proceeds, the relative 𝐿2 error decreases expo-

nentially. However, it has been also observed that increasing the number of iterations

in Eq. (4.16) does not further decrease the error; rather, the error shows an oscillating

behavior. Hence, it is speculated that the behavior of 𝒞 is subject to the number of

iterations chosen during the training, e.g. 𝒞 tries to achieve the training objective in

8 iterations and information on the iteration via ℎ(𝑖) may be valid only up to the 8th

iteration.

In addition to the faster convergence by specifically setting the role of 𝒞 to learn

a regularization, the inclusion of the physical information 𝐴 during the training may

have other advantages, compared to conventional neural networks. Note that the

network is initially trained using objects composed of several spheres. From a super-

vised learning perspective, one might anticipate inaccuracies in the scattering fields

generated by the network when it encounters objects devoid of spherical components.

Surprisingly, the network demonstrates a robust ability to closely estimate scattering

fields for test cases involving shapes vastly different from those seen during training,

such as polyhedra.

Fig. (4-3) depicts the network’s output when it processes combinations of polyhe-
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dral objects. For a comparison, an estimation on the scattered field from BiCGSTAB-

2 is also depicted whose relative 𝐿2 error is 10−3. The resulting fields exhibit certain

imperfections near sharp edges, possibly due to the network’s unfamiliarity with sharp

edges and vertices of polyhedral shapes during its training phase, which could degrade

the quality of its estimations. Nevertheless, the qualitative performance on unseen

objects does not exhibit a serious deviation from the solution with lower tolerance.

Furthermore, both Table 4.2 and Fig. (4-2) confirm that the network’s estimated

fields align numerically with the spherical case. This level of adaptability suggests

that the network efficiently incorporates physical principles from 𝐴 throughout its

training, with the MGU layer acting as a suitable proximal operator for the problem

at hand. This is in contrast to a scenario where the network’s parameters are simply

too closely fitted to spherical training samples. In such a case, 𝜓 from the physics

layer would be inaccurately regularized, leading to suboptimal convergence outcomes.

In overall, the proposed method Eq. (4.16) is inspired by the proximal gradient

process where the role of 𝒞 is implicitly set as a regularizer for the LSE. Furthermore,

unlike conventional neural networks, 𝒞 can leverage information from the physical

part 𝑏 − 𝐴𝑥 in the architecture, potentially alleviating the need for networks to ap-

proximate 𝐴 (or relevant operations such as the adjoint and the inverse). Though

the current performance may require further improvement in terms of the residual

error, it exhibits promising generalizability with tolerable performance in the qual-

itative manner. It may be emphasized that 𝒞 is fast and easily differentiable with

respect to 𝑉 and 𝜓. Hence, the application of Eq. (4.16) in the inverse scattering is

straightforward and may be able to improve the performance of the object retrieval.

Lastly, there are many systems in physics that can be expressed as a linear problem,

Eq. (4.4). It should be noted that the proposed technique in this work can be directly

applied on such systems. The technique exhibits a stable convergence via a learned

regularization, while linear solvers such as BiCGSTAB and QMRCGSTAB discussed

in this work may have erratic convergence behaviors depending on a system [39].

Hence, it is expected that this work may be able to facilitate other studies in relevant

fields of physics.
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Table 4.2: Image quality metrics based on fields estimated by the proposed method.
Each potential consists of up to 3 spherical or polyhedral objects. The range of the
refractive index is [1.01, 1.1]. For each spherical or polyhedral object, the metrics are
evaluated with 30 random potentials. In this table, 𝑁𝑐 is used to denote the amount
of computation (see, Section 4.4.1) required to achieve the same residual tolerance to
the proposed method. In the proposed method, 𝑁𝑐 = 32𝑁 log𝑁 + 64𝑁 log 8𝑁 . The

relative 𝐿2 error corresponds to ‖𝐴𝑥(8)−𝑏‖
‖𝑏‖ .

Relative 𝐿2 𝑁c via BiCGSTAB-2 𝑁c via QMRCGSTAB
Spherical 0.017 1032𝑁 log 8𝑁 336𝑁 log 8𝑁

Polyhedral 0.016 712𝑁 log 8𝑁 211𝑁 log 8𝑁

Figure 4-2: Convergence behavior of the proposed method on different objects, (a)
spherical objects and (b) polyhedral objects, depending on the iteration number of 𝒞.
This figure shares the same experimental condition to Table 4.2, where 10 example
potentials are randomly selected for the visualization.
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Figure 4-3: Scattered intensities estimated from the proposed method and the
BiCGSTAB-2 with the relative 𝐿2 error 10−3. The incident wave propagates down-
ward in the illustration. The figure considers two types of objects: (a) objects con-
sisting of dielectric spheres and (b) objects consisting of dielectric polyhedra.
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Chapter 5

Conclusion

In computational imaging, information on various physical systems are carried by

photons and there have been many studies on how to retrieve such information from

photons in a numerical sense. However, due to the difficulty in capturing the phase

part of photons, loss of some information is inevitable in many scenarios. Moreover,

the relationship between the wave function of photons and systems becomes complex,

the characterization of systems often requires sophisticated decoding of information

in photons. These issues lead to two important problems in computational imaging:

the phase retrieval problem and the approximation on the optical scattering. In this

thesis, phenomenal models on each problem are considered and several improvements

are suggested to mitigate numerical obstacles behind them.

Regarding the phase retrieval, TIE is one of the famous models, due to its simplic-

ity and guaranteed convergence. TIE is originated from the paraxial wave equation

and relates the intensity derivative to the phase, which enables the estimation of the

phase from multiple intensity measurements. However, because of its sensitivity to

the choice of defocus distances ∆𝑧 and the singularity at the origin of the Fourier

space in its kernel, it has been studied that TIE is vulnerable to experimental con-

ditions and noises. The proposed model, TIE-TPE, can mitigate such problems by

interpreting TIE as an ODE, theoretically leading to reduced ∆𝑧-dependency and

better suppression of artifacts from noises. In numerical experiments, it is shown

that classical algorithms on TIE only work in very ideal situations, e.g. very small
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∆𝑧 and noises. Otherwise, TIE-TPE greatly stabilizes the phase estimation process,

showing good performance regardless of experimental conditions. As a non-paraxial

extension from TIE-TPE, a method based on the angular spectrum propagation is

also discussed. It is expected that TIE-TPE and the angular spectrum-based method

may be connected to famous iterative methods in the phase retrieval problem; ac-

cordingly, a more unified treatment on various algorithms on the problem may be

possible in the future.

As illustrated above, optical scattering models should be considered to further de-

crypt information in photon wave functions, as their intensities and phases undergo

serious interaction with systems in intangible ways. LSE, BPM, and Born series

are three scattering models that have been widely used in previous studies. How-

ever, detailed relationships between them have remained obscure, though they are all

originated from the scalar Helmholtz equation. This is because they have different

assumptions, leading to a deviation in their forms. For more accurate and quan-

titative comparison between different models, estimating discrepancies in a robust

way, analytical relationships between LSE, BPM, and Born series are discussed. It

is shown that BPM and Born series both can originate from the series expansion of

LSE. However, they exhibit different convergence behavior. Analyzing this behavior,

a simple and dimensionless condition is suggested to guarantee the convergence of

Born series that is tighter than previous studies. Furthermore, assumptions behind

BPM that field propagation and modulation from optical potentials commute can

effectively reduce the operator norm of the LSE operator, leading to a stronger con-

vergence than Born series. The errors resulting from such commutation assumption

can be estimated by a dimensionless parameter 𝒮. Subsequently, numerical exper-

iments are conducted, which corroborate the feasibility of our theoretical analysis.

It is expected that approaches in this section can be extended to other models e.g.

[11, 21] that are not discussed here but closely relate to LSE, Born series, and BPM.

Lastly, this study may be able to help analysis not only of scattering models but also

field and object estimations in the inverse scattering.

Consequently, LSE can be considered as one of the most accurate models for es-
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timating of the optical scattering. However, as outlined in previous studies, it has a

serious drawback, which is its large computational requirement. Such drawback orig-

inates from the ill-conditionedness and the large 3D integral regarding the forward

operator in the LSE. Numerous studies have already ventured into solving relevant

problems through the utilization of neural networks with large size and computational

cost. Nonetheless, this strategy might not yield high-quality predictions due to the

challenge of adequately capturing the physics of the systems. In this thesis, a neural

network with an alternative architecture is proposed for the LSE, which is inspired

from the proximal gradient descent and partially from the classical linear solvers.

Within this inspiration, a neural network is implicitly regarded as an efficient regu-

larizer for the LSE and knowledge on the physics of the LSE is conveyed via separate

physics layers. In turn, this architecture exhibits significant improvement in terms

of the computational cost compared to one of the well-known iterative linear solvers.

Moreover, having been trained on entities like dielectric spheres, the proposed net-

work demonstrates a generalizability in predicting scattered fields from objects that

are unseen during the training, both from a visual and numerical standpoint. This

superiority is attributed to the integration of the physical operator 𝐴 during the

training phase, a decision rooted in solid mathematical principles. Furthermore, our

approach deliberately designs tunable parameters to serve as a regularizing factor,

enhancing the model’s ability to generalize. Though the absolute performance of the

proposed model may require further optimization, we underscore the importance of

incorporating physical principles into neural networks, not just for the LSE but for

tackling general physical inverse problems.
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Appendix A

Adjoint method in

equality-constrained optimizations

A.1 Adjoint equation from method of Lagrange mul-

tipliers

In various fields of mathematics and physics, we are often interested in the following

optimization problem:
argmin

u
𝑓(u)

subject to 𝑔(u) = 0

(A.1)

where 𝑓 : u ∈ H𝑓 → R, 𝑔 : u ∈ H → H𝑔, and H𝑓 and H𝑔 are Hilbert spaces. For

simplicity, we assume that 𝑓 is convex. We often call 𝑓 and 𝑔 as the objective and

the equality constraint, respectively. Intuitively, in physical applications, 𝑓 can be

considered as the deviation between our estimation and observations. 𝑔 is a physical

system that governs observations or an ad-hoc model such as neural networks.

The minimization problem Eq. (A.1) can be regarded as an unconstrained opti-

mization problem using the Lagrange formulation:

ℒ(u,h) ≡ 𝑓(u) + ⟨h, 𝑔(u)⟩ (A.2)
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where h is the Lagrange multiplier1. It is well studied that finding the saddle points

of Eq. (A.2), i.e. points that are minima with respect to 𝑢 and at the same time, are

maxima with respect to h, is the necessary condition to finding an optimal solution to

Eq. (A.1). Roughly, if 𝑓 and 𝑔 are differentiable, the derivative of ℒ will be zero with

respect to u and h, if we are at an optimal point. This is quantitatively expressed as

follows.

Definition 1 (Frechet derivative). Let 𝑓 : X→ Y where X and Y are Hilbert spaces.

If there exists a linear operator 𝑓 ′(u) that satisfies

lim
‖𝜂‖𝑋→0

‖𝑓(u+ 𝜂)− 𝑓(u)− 𝑓 ′(u)(𝜂)‖2𝑋
‖𝜂‖X

= 0 𝜂 ∈ X, (A.3)

the operator is called the Frechet derivative of 𝑓 at u.

Definition 2 (Gradient). For a function 𝑓 : X → R where X is a Hilbert space,

assume that 𝑓 has the Frechet derivative at u ∈ X. If there exists a vector ∇𝑓(u) ∈ X

that satisfies

𝑓 ′(u)(𝜂) = ⟨∇𝑓(u),𝜂⟩ ∀𝜂 ∈ X (A.4)

then it is called the gradient of 𝑓 at u.

Definition 3 (Jacobian). Let 𝑓 be a function between R𝑛 and R𝑚. If 𝑓 is Frechet

differentiable at x, there exists a matrix 𝐹 such that

𝑓 ′(u)(𝜂) = 𝐹𝜂 ∀𝜂 ∈ R𝑛. (A.5)

𝐴 is a 𝑛-by-𝑚 matrix and it can be shown that its elements are 𝐹𝑖𝑗 = 𝜕𝑓𝑖(u)/𝜕𝑢𝑗

where 𝑓𝑖 is the 𝑖th element of the column-vector representation of 𝑓 . 𝐹 is called the

Jacobian of 𝑓 . If 𝑚 = 1, we can show that 𝐹 = ∇𝑓 .

Theorem 1. Let X and Y be Hilbert spaces. Assume that 𝑓 : X → R is convex

and continuously Frechet differentiable. In addition, assume that 𝑓 has an extremum
1In a more general sense, h is the linear functional on 𝑔(u), but by the virtue of the Riesz

representation theorem in Hilbert spaces, we use the notion of the inner product to interpret h as a
vector.
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at u⋆ subject to a constraint 𝑔(u) = 0 where 𝑔 : X → Y is continuously Frechet

differentiable. If 𝑓 ′(u) maps X onto Y, there exists h such that the Lagrangian

ℒ(u;h) = 𝑓(u) + ⟨h, 𝑔(u)⟩ (A.6)

is stationary at u⋆ [5, 13], i.e.

ℒ′(u⋆)(𝜂) = 𝑓 ′(u⋆)(𝜂) + ⟨h, 𝑔′(u⋆)(𝜂)⟩ = 0 ∀𝜂 ∈ X. (A.7)

Note that the stationarity of ℒ is automatically implied in the constraint 𝑔(u) = 0.

In practice, the optimizable vector u may be decomposed into two parts, 𝜙 and p,

each of which represents a state variable and an adjustable parameter, respectively.

They are generally not independent to each other, as they are coupled by the system

𝑔(𝜙,p) = 0. Considering the Cartesian space for simplicity, we can derive another

version of Theorem 1 for such decomposition:

Corollary 1. From Theorem 1, let X and Y be R𝑛 and R𝑚, respectively. Let u be

decomposable into 𝜙 and p, i.e. u = 𝜙⊕p and 𝑓(u) = 𝑓(𝜙,p). Then at u⋆ = 𝜙⋆⊕p⋆,

we have the stationarity condition expressed as [13]

Forward equation 𝑔(𝜙,p) = 0

Adjoint equation ∇𝜙𝑓(𝜙
⋆,p⋆) +𝐺†

𝜙h = 0

Control equation ∇p𝑓(𝜙
⋆,p⋆) +𝐺†

ph = 0,

(A.8)

where 𝐺†
𝜙 is the Jacobian of 𝑔 with respect to 𝜙 at 𝜙⋆ ⊕ p⋆. † denotes the matrix

adjoint.

Similar versions with X and Y being non-Cartesian spaces exist. All such versions

decompose the original stationary condition into two parts: the adjoint equation and

the control equation. In practice, we want to optimize for p where 𝜙 is a variable with

an indirect dependency via 𝑔. Hence, ∇p𝑓 in the control equation usually becomes the

entity we want to compute; the equation controls our optimization process by giving
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feedback on our guess on p. Subsequently, we may adjust p to reach an optimal point

via the gradient descent as follows.

1. From our current estimation on p, solve for 𝜙 using the forward equation.

2. To satisfy the stationary condition, we first solve the adjoint equation from the

current 𝜙 and p to get h.

3. Evaluate ∇p𝑓 using h and the control equation.

4. Adjust the current estimation on p to reach a point p⋆ that satisfies the sta-

tionary condition and can be an optimal solution.

As noted above, because Theorem 1 only tells us about the necessary condition

for optimal solutions, satisfying Eq. (A.8) does not necessarily mean that we are at

an optimal point. However, in practice, we will approach to a point p where the

objective becomes invariant near p (as ∇p𝑓 → 0) and the stationary condition is

satisfied, which would lead to the good estimation on the parameter that we can

obtain from observations in most cases.

A.2 Adjoint equation for ordinary differential equa-

tion

Consider an ordinary differential equation:

𝑑𝜙

𝑑𝑧
= 𝑦(𝜙, 𝑝, 𝑧), 𝜙(𝑧0) = 𝜙0, (A.9)

where 𝜙 and 𝑦 are arbitrary functions and 𝑝 is a parameter of interest. Note that this

equation is the same form to the coupled TIE-TPE (the former can easily be extended

for multi-dimensional functions). Suppose that we want to minimize an objective

𝑓(𝜙, 𝑝) =

∫︁ 𝑍

𝑧0

𝑑𝑧 𝑙(𝜙, 𝑝), (A.10)
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where 𝑙 stands for a loss per each 𝑧. Then, it is straightforward to derive the corre-

sponding stationary condition:

Forward equation
𝑑𝜙

𝑑𝑧
− 𝑦(𝜙, 𝑝, 𝑧) = 0, 𝜙(𝑧0) = 𝜙0, 𝑧0 ≤ 𝑧 ≤ 𝑍

Adjoint equation
∫︁ 𝑍

𝑧0

𝑑𝑧
𝜕𝑙(𝜙, 𝑝)

𝜕𝜙
+

[︂
𝑑

𝑑𝑧
− 𝜕𝑦

𝜕𝜙

]︂†
ℎ = 0

Control equation ∇𝑝𝑓 =

∫︁ 𝑍

𝑧0

𝑑𝑧
𝜕𝑦

𝜕𝑝

†
ℎ

(A.11)

One caveat in the equations above is that we should evaluate the adjoint of the

derivative operators. Roughly speaking, using the definition of the adjoint in the

Hilbert space, one can show that

𝑑

𝑑𝑧

†
→ − 𝑑

𝑑𝑧
s.t. additional boundary conditions, (A.12)

which, in fact, adds a boundary condition ℎ(𝑍) = 0 in the adjoint equation above.

Moving one step forward from ∇𝑝𝑓 , one can evaluate the total differential of 𝑓

with respect to 𝑝. Note that the adjoint equation above implies that the Lagrangian

multiplier ℎ satisfies

𝑑ℎ

𝑑𝑧
= − 𝜕𝑦

𝜕𝜙

†
ℎ+

𝜕𝑙(𝜙, 𝑝)

𝜕𝜙
, ℎ(𝑍) = 0. (A.13)

With the forward equation, 𝑑𝑓
𝑑𝑝

is equivalent to 𝑑ℒ
𝑑𝑝

. Subsequently, by removing terms

in the adjoint equation from 𝑑ℒ
𝑑𝑝

, one can derive that [87]

𝑑𝑓

𝑑𝑝
= −ℎ†(𝑧0)

𝑑𝜙

𝑑𝑝
(𝑧0) +

∫︁ 𝑍

𝑧0

𝑑𝑧
𝜕𝑙

𝜕𝑝
− ℎ†𝜕𝑦

𝜕𝑝
. (A.14)

Note that in reality, 𝑙 is usually discrete in 𝑧; i.e. we only have discrete observations:

𝑙(𝜙, 𝑝) =
∑︁
𝑖

𝑙𝑖(𝜙, 𝑝, 𝑜𝑖)𝛿(𝑧 − 𝑧𝑖) (A.15)

Hence, 𝜕𝑙
𝜕𝜙

in Eq. (A.13) should be applied as spikes. The integral on the right hand
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side of Eq. (A.14) is equivalent to solve an ODE such that

𝑑𝑎

𝑑𝑧
=
𝜕𝑙

𝜕𝑝
− ℎ†𝜕𝑦

𝜕𝑝
, (A.16)

where 𝑎(𝑍) becomes the integration value.

108



Appendix B

Supplemental materials on

comparison between optical

scattering models

B.1 LSE as a composition of 2D Fourier transforms

In this section, we derive Eq. (3.5). Fourier transforming 𝜓 − 𝜓0 yields

ℱ̂𝑥𝑦 [𝜓(𝑟)− 𝜓0(𝑟)] (𝑘𝑥, 𝑘𝑦, 𝑧)

=

∫︁
𝑑𝑥 𝑑𝑦 e−𝑖𝑘𝑥𝑥−𝑖𝑘𝑦𝑦 [𝜓(𝑟)− 𝜓0(𝑟)]

=

∫︁
𝑑𝑥 𝑑𝑦 e−𝑖𝑘𝑥𝑥−𝑖𝑘𝑦𝑦

∫︁
𝑑𝑟′ 𝐺(𝑟 − 𝑟′)𝑉 (𝑟′)𝜓(𝑟′). (B.1)

Using the Weyl expansion, Eq. (3.4), the Green’s function can also be expressed as a

2D Fourier transform. Then we obtain

ℱ̂𝑥𝑦 [𝜓(𝑟)− 𝜓0(𝑟)] (𝑘𝑥, 𝑘𝑦, 𝑧)

=
𝑖

8𝜋2

∫︁
𝑑𝑥 𝑑𝑦

∫︁
𝑑𝑟′
∫︁
𝑑𝑘′𝑥𝑑𝑘

′
𝑦 e−𝑖𝑘𝑥𝑥−𝑖𝑘𝑦𝑦
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× e𝑖(𝑘
′
𝑥(𝑥−𝑥′)+𝑘′𝑦(𝑦−𝑦′)+𝑘′𝑧 |𝑧−𝑧′|)

𝑘′𝑧
𝑉 (𝑟′)𝜓(𝑟′)

=
𝑖

8𝜋2

∫︁
𝑑𝑟′𝑉 (𝑟′)𝜓(𝑟′)

∫︁
𝑑𝑘′𝑥𝑑𝑘

′
𝑦

× e−𝑖(𝑘′𝑥𝑥′+𝑘′𝑦𝑦
′−𝑘′𝑧 |𝑧−𝑧′|)

𝑘′𝑧

∫︁
𝑑𝑥 𝑑𝑦 e𝑖(𝑥(𝑘

′
𝑥−𝑘𝑥)+𝑦(𝑘′𝑦−𝑘𝑦))⏟  ⏞  

(2𝜋)2𝛿(𝑘𝑥−𝑘′𝑥)𝛿(𝑘𝑦−𝑘′𝑦)

=
𝑖

2

∫︁
𝑑𝑟′𝑉 (𝑟′)𝜓(𝑟′)

e−𝑖(𝑘𝑥𝑥′+𝑘𝑦𝑦′−𝑘𝑧 |𝑧−𝑧′|)

𝑘𝑧

=
𝑖

2

∫︁
𝑑𝑧′

e𝑖𝑘𝑧 |𝑧−𝑧′|

𝑘𝑧

∫︁
𝑑𝑥′𝑑𝑦′𝑉 (𝑟′)𝜓(𝑟′) e−𝑖(𝑘𝑥𝑥′+𝑘𝑦𝑦′)

=
𝑖

2

∫︁
𝑑𝑧′

e𝑖𝑘𝑧 |𝑧−𝑧′|

𝑘𝑧
ℱ̂𝑥𝑦 [𝑉 (𝑟)𝜓(𝑟)] (𝑘𝑥, 𝑘𝑦, 𝑧

′). (B.2)

Taking the inverse Fourier transform in Eq. (B.2) finalizes the derivation leading to

Eq. (3.5).

B.2 Potential bound for convergence of the Born se-

ries

Previous studies discuss how to estimate the operator norm of the LSE integral op-

erator and thus guarantee the convergence of the Born series. For example, [69]

requires

2

∫︁
max
𝜃,𝜑
|𝑉 (𝑟, 𝜃, 𝜑)| 𝑟𝑑𝑟 < 1, (B.3)

where 𝑟, 𝜃, and 𝜑 are radial distance, polar angle, and azimuthal angle in the spherical

coordinate system. Considering the simplest case, let us assume a Mie scattering

condition in which a sphere of radius 𝑅 scatters a plane wave. Then Eq. (B.3)

becomes (︂
𝑛

𝑛b

)︂2

< 1 +
1

(𝑛b𝑘0𝑅)2
. (B.4)

Similarly, [57] suggests

(︂
𝑛

𝑛b

)︂2

< 1 +
1

17/2(𝑛b𝑘0𝑅)2 + 2
√
74(𝑛b𝑘0𝑅) + 105

. (B.5)
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By comparison, our discussion in Sec. 3.3.1 concludes that it is sufficient to satisfy

(︂
𝑛

𝑛b

)︂2

< 1 +
1

2
√
3(𝑛b𝑘0𝑅)

(B.6)

to make the Born series convergent. The scalar wave approximation already requires

𝑛b𝑘0𝑅 ≫ 1, which means that (𝑛b𝑘0𝑅)
2 terms in Eqs. (B.3)-(B.5) increase quickly.

This makes the estimation on the upper bound of 𝑛 too close to 1. On the contrary,

Eq. (B.6) shows the first-order dependency on 𝑛b𝑘0𝑅, which relaxes the requirement

on 𝑛.

B.3 Numerical comparison on different 𝜉 in BPM’s

wave modulation

Based on the discussion in Chapter 3.4.2, we compare field estimations from different

𝜉 in BPM. In Fig. B-1, it is shown that there is no significant difference in scattered

amplitudes and the elementwise difference is less than one percent of maximum am-

plitude value. This can be quantitatively validated in Table B.1 where SSIM and

PSNR exhibit very high values. Hence, we may conclude that 𝜉 = 1 and 𝜉 = 2 in the

phase modulation term would not significantly influence the field estimation, except

some unusual cases.

B.4 Comparison between FDTD and LSE

To test the estimation quality of LSE, we compare it with FDTD solutions from

the Lumerical [1] 3D Electromagnetic Simulator. In Fig. (B-2), it can be observed

that the high frequency interference patterns are approximated well by the LSE. The

numerical difference in each voxel is less than one percent of the maximum amplitude

value. In Table B.2, we list quantitative results considering six different potentials.

These results further corroborate the validity of the LSE.
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ξ=1 ξ=2 Di�erence ξ=1 ξ=2 Di�erence

(a) (b)
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(Length per wavelength)

x10-3 x10-3

Figure B-1: Scattered fields estimated from BPM with different 𝜉 choices: 𝜉 = 1
and 𝜉 = 2. We consider potentials which consist of spheres. The size 𝐿 of a cubic
computational box is changed from 16𝜆 to 40𝜆. The mean refractive index of spherical
potentials is 1.02. We show two different objects, which are marked with (a) and (b).
Difference refers to the elementwise absolute error divided by the maximum field
amplitude.
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FDTD LSE Di�erence
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Figure B-2: Comparison of scattered fields from FDTD and LSE. Two different
potentials are considered where the mean refractive index is 1.02. These potentials
are marked with (a) and (b). Difference refers to the elementwise absolute error
divided by the maximum field amplitude.

113



Table B.1: Image quality metrics on fields from BPM with 𝜉 = 1 and 𝜉 = 2 when
the size 𝐿 of a cubic computational box changes. We consider 15 different potentials
which consist of spheres. The mean refractive index of spherical potentials is 1.02.
The phase is unwrapped along the optical axis. The full width at half maximum of
the Gaussian window in SSIM is 𝜆/2.

SSIM PSNR Relative 𝐿1

𝐿 = 16𝜆, amplitude 1.000 64.461 2.911× 10−4

𝐿 = 24𝜆, amplitude 1.000 62.679 3.636× 10−4

𝐿 = 32𝜆, amplitude 1.000 62.884 4.319× 10−4

𝐿 = 40𝜆, amplitude 1.000 62.849 4.999× 10−4

𝐿 = 16𝜆, phase 1.000 91.573 1.944× 10−5

𝐿 = 24𝜆, phase 1.000 91.587 1.882× 10−5

𝐿 = 32𝜆, phase 1.000 91.601 1.841× 10−5

𝐿 = 40𝜆, phase 1.000 91.416 1.813× 10−5

Table B.2: Image quality metrics on fields from LSE and FDTD. We consider 6
different potentials which consist of spheres. The mean refractive index of spherical
potentials is 1.02. The size of a cubic computational box is 24𝜆. The phase is
unwrapped along the optical axis. The full width at half maximum of the Gaussian
window in SSIM is 𝜆/2.

SSIM PSNR Relative 𝐿1

Amplitude 0.982 42.162 3.592× 10−3

Phase 0.999 42.465 2.486× 10−2
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Appendix C

Supplemental materials for neural

regularization of LSE

C.1 Convolution integral without explicit zero-padding

where 𝐿𝑑 and 𝑁𝑑 represent the size and the number of grid points in the 𝑑-th dimen-

sion, and

ℐN =
{︁
(𝑗1, 𝑗2, 𝑗3) : −𝑁𝑑

2
≤ 𝑗𝑑 <

𝑁𝑑

2
, 𝑗𝑑 ∈ Z, 𝑑 ∈ {1, 2, 3}

}︁
. (C.1)

It is assumed that 𝑁𝑑 is a even number. As in Eq. 3.3, vectors are denoted with

boldfaced letters, e.g. j = (𝑗1, 𝑗2, 𝑗3) and N = (𝑁1, 𝑁2, 𝑁3).

Using the convolution theorem, the integral in Eq. 3.3 can be rewritten as

𝜓(x)− 𝜓0(x) = 𝜉(x) = ℱ−1
(︁
𝐺̃(𝜈)𝜓(𝜈)

)︁
=

∫︁
R3

𝑑𝜈 𝑒2𝜋𝑖⟨𝜈,x⟩𝐺̃(𝜈)𝜓(𝜈), (C.2)

where 𝜓 refers to the Fourier transform of 𝜓 and ⟨·, ·⟩ represents the inner product.

The direct discretization of Eq. C.2 is to assume that 𝜈 = diag (L)−1m where m ∈ ℐM
and diag (L) is a diagonal matrix whose diagonal elements are L. Note that each entry

of M, which is the number of grid points in the Fourier space, should be larger than

that of N. This is because 𝐺̃(𝜈) is oscillatory in the Fourier space and one has to
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prevent the periodic folding of 𝜓, which requires M = 4N, i.e. the zero-padding of

a factor 4 in the spatial grid. In Chapter C.2, precomputation steps are adopted,

which are suggested in [102, 84] to reduce the zero-padding factor from 4 to 2 and to

mitigate singularities in the analytical expression of 𝐺̃(𝜈). Hence, at this moment, it

is assumed that M = 2N where 𝑁𝑑 zeros are added to 𝜓 in the 𝑑th dimension.

Explicitly, Eq. C.2 is discretized as

𝜉𝑝(j) =
1

𝑀1𝑀2𝑀3

∑︁
m∈ℐM

𝑒2𝜋𝑖⟨diag(M)−1m,j⟩𝐺̃(m)𝜓𝑝(m), (C.3)

where the subscript 𝑝 is used to denote the zero-padding and 𝜓𝑝 is the discrete Fourier

transform of 𝜓𝑝, which is a periodic extension of the zero-padded version of 𝜓:

𝜓𝑝(j) =
∑︁
q∈Z3

𝜓𝑝(j+ diag (M)q), (C.4)

where

𝜓𝑝(j) =

⎧⎪⎨⎪⎩𝜓(j) j ∈ ℐN,

0 otherwise,

(C.5)

for j ∈ 𝐷M. Here, with a slight abuse of notation, the arguments of functions are

set as discrete indices in the spatial and Fourier grids, since the spatial sampling rate

𝐿𝑑/𝑁𝑑 in each 𝑑th dimension is considered fixed. However, Eq. C.5 indicates that the

evaluation of Eq. C.3 requires memory 16 times larger than that to store 𝜓(j) (8 from

𝜉𝑝 and 8 from 𝜓𝑝). Furthermore, additional array slicing is required to make 𝜓𝑝 from

𝜓 and 𝜉 from 𝜉𝑝, which may not be handled in a straight-forward manner especially

with graphic processing units (GPU).

[9] suggests a way to calculate 𝜉 in 𝐷N without any explicit zero-padding. The

basic idea is to decompose the summation over M to multiple summations over N

in the discrete Fourier transform. All implementation examples discussed in [9] are

described in terms of one-dimensional operations, but calling small array operations

many times is not favorable compared to calling large operations small times in mas-

sively parallel setups, e.g. GPU. Moreover, in many numerical simulations, it is often
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more convenient to store functions 𝜓(j ∈ ℐN) indexed as j+N/2, contiguously in nu-

merical arrays. With these considerations, one can extend the idea as follows. Using

the definition of the discrete Fourier transform,

𝜓𝑝(m−N) =
∑︁
j∈ℐM

𝑒−2𝜋𝑖⟨diag(M)−1(m−N),j⟩𝜓𝑝(j)

=
∑︁
j∈ℐ′

N

𝑒−2𝜋𝑖⟨diag(M)−1(m−N),(j−N
2 )⟩𝜓𝑝

(︂
j− N

2

)︂
(C.6)

= 𝑒
𝜋𝑖
2
(𝑚1+𝑚2+𝑚3)𝑒−

𝜋𝑖
2
(𝑁1+𝑁2+𝑁3)

×
∑︁
j∈ℐ′

N

𝑒−2𝜋𝑖⟨diag(M)−1m,j⟩𝑒𝜋𝑖(𝑗1+𝑗2+𝑗3)𝜓𝑝

(︂
j− N

2

)︂

where ℐ ′N is ℐN shifted by N/2, i.e.

ℐ ′N =
{︁
(𝑗1, 𝑗2, 𝑗3) : 0 ≤ 𝑗𝑑 < 𝑁𝑑, 𝑗𝑑 ∈ Z, 𝑑 ∈ {1, 2, 3}

}︁
, (C.7)

and m ∈ ℐ ′M. Similarly, Eq. C.3 can be rewritten as

𝜉𝑝

(︂
j− N

2

)︂
=

1

𝑀1𝑀2𝑀3

∑︁
m∈ℐ′

M

𝑒2𝜋𝑖⟨diag(M)−1(m−N),j−N
2 ⟩𝐺̃(m−N)𝜓𝑝(m−N)

=
1

𝑀1𝑀2𝑀3

𝑒
𝜋𝑖
2
(𝑁1+𝑁2+𝑁3)𝑒−𝜋𝑖(𝑗1+𝑗2+𝑗3) (C.8)

×
∑︁

m∈ℐ′
M

𝑒2𝜋𝑖⟨diag(M)−1m,j⟩𝑒−
𝜋𝑖
2
(𝑚1+𝑚2+𝑚3)𝐺̃(m−N)𝜓𝑝(m−N),

where j ∈ ℐ ′N. To evaluate Eqs. C.6 and C.8 using FFT, one can decompose m as

2t+ s where t ∈ ℐ ′N and s ∈ {0, 1}3, leading to

𝜓𝑝

(︂
2t+ s− N

2

)︂
= 𝑒𝜋𝑖(𝑡1+𝑡2+𝑡3)𝑒

𝜋𝑖
2
(𝑠1+𝑠2+𝑠3)𝑒−

𝜋𝑖
2
(𝑁1+𝑁2+𝑁3)

×
∑︁
j∈ℐ′

N

𝑒−2𝜋𝑖⟨diag(N)−1t,j⟩𝑒𝜋𝑖(𝑗1+𝑗2+𝑗3)𝑒−𝜋𝑖⟨diag(N)−1s,j⟩𝜓𝑝

(︂
j− N

2

)︂
, (C.9)
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and

𝜉𝑝

(︂
j− N

2

)︂
=

1

𝑀1𝑀2𝑀3

𝑒
𝜋𝑖
2
(𝑁1+𝑁2+𝑁3)𝑒−𝜋𝑖(𝑗1+𝑗2+𝑗3)

×
∑︁

s∈{0,1}3
𝑒−

𝜋𝑖
2
(𝑠1+𝑠2+𝑠3)𝑒𝜋𝑖⟨diag(N)−1s,j⟩ (C.10)

×
∑︁
t∈ℐ′

N

𝑒2𝜋𝑖⟨diag(N)−1t,j⟩𝑒−𝜋𝑖(𝑡1+𝑡2+𝑡3)𝐺̃(2t+ s−N)𝜓𝑝(2t+ s−N).

Note that 𝜉𝑝 (j−N/2) and 𝜓𝑝 (j−N/2) corresponds to 𝜉 and 𝜓 in 𝐷N that are

contiguously indexed in numerical arrays, respectively. Eqs. C.9 and C.10 imply

that the original padded convolution can be expressed as 23 convolutions without

explicit padding. Terms such as 𝑒±𝜋𝑖(𝑡1+𝑡2+𝑡3), 𝑒±𝜋𝑖(𝑠1+𝑠2+𝑠3)/2, and 𝑒±𝜋𝑖(𝑁1+𝑁2+𝑁3)/2 are

canceled each other, hence they can be omitted in the actual implementation. The

other additional terms, e.g. 𝑒±2𝜋𝑖⟨diag(N)−1t,j⟩, only require small amount of memory,

since they are separable in each dimension. Application to dimensions other than 3

is straightforward.

C.1.1 Application to vectorial optical scattering

In optics, Eq. 3.3 originates from the scalar Helmholtz equation where the birefrin-

gence is negligible. On the contrary, this section considers objects whose refractive

index depends on the polarization. Under time-independent and non-magnetic sys-

tems, an eigenproblem for the electric field E can be derived from the Maxwell’s

equations as

[︁
∇2 + (𝑛𝑏𝑘0)

2 +∇∇ ·
]︁
E(x) = −(𝑛𝑏𝑘0)

2

[︃(︂
𝑛(x)

𝑛𝑏

)︂2

− 1

]︃
E(x), (C.11)

where 𝑘0 = ‖k0‖ and 𝑛 is the refractive index tensor. The dyadic Green’s function

for Equation C.11 is

𝐺(x) = diag (𝐺(x)) +
1

(𝑛𝑏𝑘0)2
𝐻𝐺(x), (C.12)
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where 𝐻𝐺 is the Hessian matrix for 𝐺 [23]. Here, two-rank tensors are described as

matrices for notational simplicity. Subsequently, the response function in Eq. C.12

leads to an integral form of the eigenproblem,

E(x) = E0(x) +

∫︁
dx′ 𝐺 (x− x′)𝑉 (x′)E (x′) , (C.13)

where 𝑉 (x) = (𝑛𝑏𝑘0)
2

[︂(︁
𝑛(x)
𝑛𝑏

)︁2
− 1

]︂
and E0 is the incident electric field.

Obviously, Eq. C.13 has a similar form to Eq. 3.3, which can be referred to as the

vectorial LSE. Hence, a demodulation technique E(x) = 𝑒𝑖⟨𝑛𝑏k0,x⟩ℰ(x) may also be

applied under monochromatic illumination and ℰ would require a small number of

Fourier components. However, unlike the scalar LSE, the computation of Eq. C.13

now suffers from additional singularities from the Hessian of 𝐺 in 𝐺. In fact, 𝐺 itself

has singularities both in the spatial and Fourier domain, but they can be mitigated

by the virtue of the Paley-Wiener theorem, as reviewed in Chapter C.2. Application

of the same strategy on 𝐺 gives

rect

(︂
x

2𝐿𝑑

)︂
𝐺(x) = diag

(︂
rect

(︂
x

2𝐿𝑑

)︂
𝐺(x)

)︂
+

1

(𝑛𝑏𝑘0)2
rect

(︂
x

2𝐿𝑑

)︂
𝐻𝐺(x), (C.14)

where 𝐿𝑑 is a constant larger than the diagonal length of the box 𝐷N. The first term

on the right side of Eq. C.14 corresponds to a simple multi-dimensional extension

of Chapter C.2, while it is not straightforward to derive the Fourier transform of

the second term. Instead of numerically evaluating the rect function and the partial

derivatives in the spatial grid, one can consider a practical trick. Due to the property

of the rect function,

rect

(︂
x

2𝐿𝑑

)︂
𝐻𝐺(x) ≈ 𝐺𝐻 ≡ 𝐻

[︂
rect

(︂
x

2𝐿𝑑

)︂
𝐺(x)

]︂
, (C.15)

i.e. the rect function may be interchangeable with the partial derivatives except at

the boundary of support of the rect function, which is barely touched by grid points

in 𝐷N. Compared to the original Hessian, it is now straightforward to evaluate the

Fourier transform of 𝐺𝐻 .
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C.1.2 Application to quantum scattering

In the Hartree atomic units, the time-independent and non-relativistic Schrödinger

equation is written as

[︂
∇2 − 2𝑚𝑃 (x)

𝑚𝑒

]︂
𝜓(x) = −𝑘20𝜓(x), (C.16)

where 𝑚 and 𝑚𝑒 are the mass of a particle of interest and an electron, respectively.

Specifically, Eq. C.16 considers an elastic scattering of a particle with an incident

kinetic energy ℏ2𝑘20
2𝑚

by a potential 𝑃 where ℏ is the reduced Planck constant. Since

Eq. C.16 has the same form to the scalar Helmholtz equation in optics, the cor-

responding LSE can be derived under the radiation condition, i.e. by converting

𝑉 = 2𝑚𝑃/(𝑚𝑒𝑘
2
0). Similar interpretation on a scattering event is also possible, using

the matter wave formulation in quantum mechanics.

However, compared to optical scattering, some additional issues should be ad-

dressed in quantum scattering. First, it is general that quantum mechanical poten-

tials are not compactly supported in a strict sense. Hence, the naive application of the

Paley-Wiener theorem is not valid, which requires different approaches to mitigate

singularities in 𝐺, e.g. [6]. However, if 𝑃 decays fast or can be approximated as zero

at boundaries of 𝐷, it would not cause significant errors to apply window functions on

𝑃 and to use methods in Chapter C.2. For example, one may consider a large 𝐷 or a

Coulomb potential with non-negligible screening effects [40]. Another issue regarding

quantum scattering is to estimate the degree of refraction, which would require more

sophisticated analysis than optical scattering. For example, one of the quantitative

ways to deal with the refraction strength in quantum mechanics is to consider the

angular dependency of the scattering cross section. On the other hand, one expects

that empirical knowledge on quantum scattering might also be used, which would not

cause critical errors in similar experimental setups to optical cases.
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C.2 Precomputation steps for scalar Green’s func-

tion

To solve the LSE using numerical techniques in Chapter C.1, the analytical expression

on 𝐺̃ is required. This is not straightforward, since both 𝐺 and 𝐺̃ contain singular-

ities. In addition, the aperiodic convolution should be evaluated on 𝐷4N to avoid

the aliasing error, which consumes computational memory significantly. This section

briefly reviews previous studies [102, 84] to mitigate these issues, following discussions

in [81].

First, the singularities of𝐺 are mitigated in the following way. As 𝑉 is a compactly

supported function in 𝐷, Equation 3.3 can be re-expressed as

𝜓(x) = 𝜓0(x) +

∫︁
dx′ 𝐺 (x− x′) rect

(︂
x− x′

2𝐿𝑑

)︂
𝑉 (x′)𝜓 (x′) , (C.17)

where 𝐿𝑑 is a constant larger than the maximum distance between any two points

in 𝐷. For example, for a rectangular domain, 𝐿𝑑 should be larger than the diagonal

length of the three-dimensional box. Eq. C.17 implies a new kernel,

𝐺 (x) rect

(︂
x

2𝐿𝑑

)︂
, (C.18)

which is compactly supported. According to the Paley-Wiener theorem, the Fourier

transform of this new kernel is entire. For the analytic form of the transform, refer

to [81].

The zero-padding of factor 4 can be reduced to 2 via some precomputation steps.

Such precomputation leverages a similar technique to Chapter C.1, which decom-

pose a large Fourier grid into small grids. For simplicity in notation, consider the

computation of 𝜉(j) in a one-dimensional space. Extension to higher dimensions is

straightforward. Then,

𝜉(𝑗) =
1

4𝑁

∑︁
𝑘∈[0,4𝑁)Z

𝐺̃[𝑘]𝜓𝑝[𝑘] exp

(︂
2𝜋𝑖

4𝑁
𝑗𝑘

)︂
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=
1

4𝑁

∑︁
𝑘∈[0,4𝑁)Z

𝐺̃[𝑘]
∑︁

𝑞∈[0,4𝑁)Z

𝜓𝑝[𝑞] exp

(︂
−2𝜋𝑖

4𝑁
𝑞𝑘

)︂
exp

(︂
2𝜋𝑖

4𝑁
𝑗𝑘

)︂

=
1

4𝑁

∑︁
𝑘∈[0,4𝑁)Z

𝐺̃[𝑘]
∑︁

𝑞∈[0,𝑁
2
)Z

⋃︀
[4𝑁−𝑁

2
,4𝑁)Z

𝜓𝑝[𝑞] exp

(︂
2𝜋𝑖

4𝑁
𝑘(𝑗 − 𝑞)

)︂

=
1

4𝑁

∑︁
𝑞∈[0,𝑁

2
)Z

⋃︀
[4𝑁−𝑁

2
,4𝑁)Z

𝜓𝑝[𝑞]
∑︁

𝑘∈[0,4𝑁)Z

𝐺̃[𝑘] exp

(︂
2𝜋𝑖

4𝑁
𝑘(𝑗 − 𝑞)

)︂

=
1

4𝑁

∑︁
𝑞∈[0,𝑁

2
)Z

⋃︀
[4𝑁−𝑁

2
,4𝑁)Z

𝜓𝑝[𝑞]
∑︁

𝑘∈[0,2𝑁)Z

∑︁
𝑠∈[0,1]Z

𝐺̃[2𝑘 − 𝑠] exp
(︂
2𝜋𝑖

4𝑁
(2𝑘 − 𝑠)(𝑗 − 𝑞)

)︂

=
1

4𝑁

∑︁
𝑞∈[0,𝑁

2
)Z

⋃︀
[4𝑁−𝑁

2
,4𝑁)Z

𝜓𝑝[𝑞]

×
∑︁

𝑘∈[0,2𝑁)Z

∑︁
𝑠∈[0,1]Z

𝐺̃[2𝑘 − 𝑠] exp
(︂
2𝜋𝑖

4𝑁
2𝑘(𝑗 − 𝑞)

)︂
exp

(︂
−2𝜋𝑖

4𝑁
𝑠(𝑗 − 𝑞)

)︂
,

(C.19)

where a subscript Z is used to denote that only integers are considered in an interval.

Let us further denote that

𝐺(𝑠)[𝑞] ≡ 1

2𝑁
exp

(︂
−2𝜋𝑖

4𝑁
𝑠𝑞

)︂ ∑︁
𝑘∈[0,2𝑁)Z

𝐺̃[2𝑘 − 𝑠] exp
(︂
2𝜋𝑖

2𝑁
𝑘𝑞

)︂
, (C.20)

which is just a discrete inverse Fourier transform of 𝐺̃[2𝑘−𝑠] indexed at 𝑘 ∈ [0, 2𝑁)Z,

modulated by a factor of exp
(︀
−2𝜋𝑖

4𝑁
𝑠𝑞
)︀

at each index 𝑞. Subsequently, Eq. C.19 can

be formulated as

𝜉(𝑗) =
1

2

∑︁
𝑠∈[0,1]Z

∑︁
𝑞∈[0,𝑁)Z

⋃︀
[3𝑁,4𝑁)Z

𝜓𝑝[𝑞]
ˆ̃𝐺(𝑠)[𝑗 − 𝑞], (C.21)

because𝐺(𝑠) has a period of 2𝑁 . Eq. C.21 is simply a aperiodic convolution, effectively

in a domain 𝐷2N. Hence, with a preconditioning step as in Eq. C.20, one can reduce

the number of zeros from 3𝑁𝑑 to 𝑁𝑑 in each 𝑑th dimension.
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Figure C-1: Illustration of optical scattering in the spatial and Fourier domain. Dot-
ted circles represent the Ewald sphere. (a) A monochromatic illumination with the
wavevector k0 can be approximately represented by low-frequency wavefront in the
spatial domain while it would appear as a delta-like peak in the Fourier domain.
(b) As the illumination approaches an object (gray circle), it is refracted from the
original illumination direction, denoted by green arrows. These green arrows indicate
the degree of refraction. The scattered field has new wavevectors represented by red
arrows and its Fourier transform is mostly supported on the area covered by the red
circle.

C.2.1 LSE with demodulated fields

Though the memory requirement of the LSE can be reduced by the decomposition of

the padded FFT, it still significantly depends on the size scale of scattering objects

with respect to the incident field wavelength. In other words, the number of grid

points becomes large as we describe high-frequency scattered fields in large objects.

Under monochromatic illumination, scattering of the incident field is described

by the refraction from the original wavevector direction as illustrated in Fig. C-1.

Accordingly, the scattered field 𝜓 can be demodulated as illumination and refraction

parts,

𝜓(x) = 𝑒𝑖⟨𝑛𝑏k0,x⟩𝜙(x), (C.22)

where k0 and 𝑛𝑏 represent the vacuum wavevector of illumination and the background
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refractive index. Similarly, 𝜓0(x) = 𝑒𝑖⟨𝑛𝑏k0,x⟩𝜙0(x) where 𝜙0(x) is a low-frequency

wavefront of illumination. Compared to the original field 𝜓, it is expected that the

Fourier transform of 𝜙 is centered at the origin and decays fast as the size scale of

𝑉 becomes large with respect to the wavelength [82]. That the refraction would not

be significant is based on physics, which is naively validated with the lens equation.

These considerations imply that it is more convenient to use 𝜙 to describe scattering.

In fact, one can derive the LSE with respect to 𝜙 by dividing the both sides of Eq. 3.3

with the high-frequency carrier field 𝑒𝑖⟨𝑛𝑏k0,x⟩,

𝜙(x) = 𝜙0(x) +

∫︁
dx′ 𝒢 (x− x′)𝑉 (x′)𝜙 (x′) , (C.23)

where

𝒢(x) = 𝐺 (x) 𝑒−𝑖⟨𝑛𝑏k0,x⟩. (C.24)

Eq. C.23 is a low-frequency version of the original LSE and the sampling rate to

prevent significant aliasing error depends on not 𝑛𝑏‖k0‖ but the degree of refraction

from objects 𝑉 . It is straightforward to apply Eqs. C.9 and C.10 to this low-frequency

LSE. 𝜓 is substituted by 𝜙 and we consider the analytical Fourier transform of the

new kernel 𝒢 instead of 𝐺.

An exact description on the degree of refraction (green arrows in Fig. C-1) may not

be simple. Hence, determination of N given L for 𝜙 would not always be completely

concrete, but we expect that the degree of refraction can be deduced from empirical

knowledge without critical errors. If Eq. C.23 is applied on the inverse scattering,

information on the Fourier components of 𝜙 is retrieved from intensity/field at detec-

tors. However, the effective maximum frequency of 𝜙 at optical detectors is further

limited by the optical bandwidth of systems, which depends on aperture setups and

detector pixel sizes, etc. Hence, it can be anticipated that moderate estimation on

the degree of refraction would be sufficient in real experiments.
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