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Abstract

This thesis explores the use of advanced data-driven techniques for dimensioning safety stock
and optimizing inventory in a supply chain. The thesis is based on data and insights for
raw material inventory at Amgen, a biotech company. Resilient inventory management is
important in the biopharma and biotech sector as the repercussions of a drug shortage are
dire. However, the complexity of biomanufacturing processes creates significant variability
and uncertainty around lead times and demand. Amgen currently holds high raw material
inventories across thousands of materials to mitigate risks of stockouts that could delay
production. However, the policies of holding high raw material inventories in Amgen have
resulted in increased holding costs and also tied up working capital.

To address this challenge and find a sustainable method for managing raw materials in
the company and by extension, other stages of production, a novel methodology is developed.
Machine learning models such as CatBoost, Extreme Gradient Boosting (XGBoost) and
Random Forest are proposed to forecast lead times and demand. The models are trained on
datasets of 10,000+ materials, incorporating unique patterns based on factors like suppliers’
historical delivery performance, historical demand pattern and material characteristics. A
segmentation framework is also developed to properly allocate service levels based on risk
tolerance for different category of materials. Stochastic simulation then applies the learned
predictive distributions to quantify optimal safety stock levels under uncertainties. This
considers desired service levels, holding costs, risk tolerance, cost-risk tradeoffs and potential
disruptions in what-if scenario cases to support resilience.

The methodology is validated on sample materials with both short and long lead times.
Results indicate potential inventory reductions of over 25% while still preventing stockouts,
enabling multimillion dollar savings in procurement and holding costs. A phased implemen-
tation plan is also proposed in order to ensure smooth transition using this new data-driven
approach in the organisation, taking into consideration change management.

This solution fuses predictive analytics with simulation and optimization to transform
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safety stock calculation from a cost burden to a competitive advantage. The dynamic
data-driven framework significantly enhances supply chain resilience and efficiency in the
vitally important biopharmaceutical industry, where patient outcomes are at stake. The
methodologies developed could be applied across various production stages and tailored to
other sectors.

Thesis Supervisor: Duane S. Boning
Title: Clarence J. LeBel Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Negin Golrezaei
Title: Associate Professor, Operations Management
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Chapter 1

Introduction

This thesis explores techniques for optimizing inventory and determining safety stock levels

in the biopharmaceutical supply chain. Chapter 1 provides background on the importance

of effective inventory management in the biopharmaceutical industry and outlines the key

challenges Amgen faces regarding demand variability, production defects and supplier perfor-

mance. Chapter 2 extensively reviews relevant literature on common inventory management

methods, inventory segmentation, safety stock dimensioning, demand and lead time forecast-

ing and supply chain resilience strategies. The chapter also discusses different quantitative

and qualitative forecasting methods along with their benefits and limitations. Chapter 3

delineates the proposed data-driven methodology for enhanced safety stock determination,

leveraging machine learning models for demand and lead time forecasting. The disruption

simulation framework for managing risks and what-if scenarios is also discussed. Chapter 4

demonstrates implementation results for sample materials, validating the business value of the

approach. The limitations of the proposed approach are also discussed in this chapter. Finally,

Chapter 5 proposes an operational roadmap for translating the models into organizational

improvements through change management, alignment, and monitoring. This chapter also

discusses further improvement opportunities on the proposed methodology and Amgen’s

inventory management operations.

15



1.1 Background and Project Importance

Efficient inventory and supply chain management is critical in the biopharmaceutical industry

to help improve new drug development pipelines and timelines. The biopharma industry

faces challenges of lengthy and costly R&D processes, with average new drug approval taking

6-9 years and over $1 billion [9]. New drug approvals have decreased in recent decades, falling

from 45 approved in 1996 to just 21 in 2010 [9]. Inventory and supply chain optimization

can help address these inefficiencies. For example, improving inventory availability of needed

research supplies, chemicals, and equipment can help accelerate R&D timelines. Enhancing

supply chain coordination with contract manufacturers can get new drugs to market faster

post-approval. With biopharma companies often operating at a loss during the R&D phase,

inventory and supply chain improvements that reduce costs and increase pipeline throughput

can provide major competitive advantages. This can ultimately enable more new drugs to

reach patients in need. Thus, supply chain and inventory management plays a pivotal role in

supporting the growth and viability of the high-potential yet high-risk biopharmaceutical

industry.

Biopharmaceutical companies face major challenges in aligning capacity to uncertain

demand when designing their supply chains [78]. At the operation stage, responsiveness is a

typical challenge. Most pharmaceutical products involve multi-stage production with a usual

supply lead time of 300 days [78]. Implementing supply chain optimization techniques such

as debottlenecking and decoupling, in tandem with coordinated inventory management, is

essential for agile responses to shifting market conditions. Additionally, a strong comprehen-

sion of the key factors influencing supply chain flows allows for more targeted and impactful

strategies.

Amgen has about 27 finished drug product (FDP) [7] lines manufactured in eight manu-

facturing plants [69] which are distributed globally. Thousands of raw materials are required

to manufacture and package these FDPs and these raw materials are sourced from hundreds

of manufacturers and suppliers. There are three critical drug manufacturing stages in the

Amgen drug manufacturing process. They are drug substance (DS), drug product (DP) and

finished drug product (FDP). The production flow is shown in Figure 1-1.
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Figure 1-1: Product Flow and Different Inventory Stages at Amgen

Amgen, as with other organisations across several industries, uses a top down approach to

determine raw material inventory. In order to plan production of these finished drug products

(FDP), the commercial and planning team forecasts sales of the finished drug products based

on commercial signals and historical sales, using tools called Anaplan [29] and Hyperion [64].

These finished drug product forecasts are used to create bill of materials (BOM) to plan the

raw materials requirement for each month and period. There are also some raw materials

that are used in the production and packaging process such gloves, distribution packaging,

process support. These raw materials are regarded to as non-bill of materials (BOM) category

because their demand plan is not directly derived from the Finished Drug Product Forecast.

The future demand plan of these materials are estimated using their historical consumption

and do not have a direct connection to the FDP forecast.

There are three types of manufacturing inventories: “raw materials, work in process and

finished goods” [60]. The flow chart in Figure 1-1 shows how the planning process is currently

being done at Amgen and the inventory stages.

There are 10,000+ raw materials in Amgen’s raw material inventory portfolio. All the

raw materials are classified into 13 major categories, with eight categories being BOM and 5

Non-BOM. The different category of raw materials required for production and included in

the scope of this project are shown in Table 1.1.

The percentage composition of the number of unique raw materials in each material

category is shown in Figure 1-2. It is important to note that several raw materials are used

in multiple manufacturing plants in the network.

Due to the critical nature of the products being manufactured by Amgen, it is important
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BOM Categories
GM0100 Good Manufacturing Practice (GMP) Chemicals (also has Non-BOM items)
GM0200 Containers (also has Non-BOM items)
GM0300 Devices
GM0600 Filters (also has Non-BOM items)
GM0700 Tubing (also has Non-BOM items)
GM0800 Primary Packaging Components
GM1000 Resin
GM1100 Serum/Media (also has Non-BOM items)

Non-BOM Categories
GM0400 Distribution Packaging
GM0500 GMP Apparel
GM0900 Secondary Packaging Components
GM1300 Non-Critical Chemicals
GM1400 Process Support

Table 1.1: BOM and Non-BOM Categories of Raw Materials

that the stock out risk is reduced and there are enough raw materials to satisfy customer

demand at every point in time. However, the demand of the products required by the customer

is constantly fluctuating, influenced by external factors such as competition, consumer needs

etc., and this affects the demand of the raw materials. Some of these unforeseen fluctuations

in demand are managed by the safety stock that the company holds; however, the company

is currently faced with the dilemma of how much more to hold and if their current safety

stock policies are robust enough or too conservative, risking holding up working capital and

requiring additional warehouse space.

The demand plan for the raw materials is also dependent on the demand plan of the

finished drug product, and variability in the FDP forecast also affects the raw material plan.

Therefore, the challenge is knowing how much safety stock to hold such that one does not

hold too much or too little.

1.2 Problem Statement

Raw material inventory levels have been climbing at Amgen and the company is currently

holding circa $1 textbillion [16] worth of raw material inventory, across all its plants and

sites, with an opportunity to optimize inventory. Amgen’s mantra “Every Patient, Every

18



Figure 1-2: Raw Material Percentage Composition by Material Category

Time” [79] requires that the company does not stock out of raw material inventory to serve

patients. However, inventory holding costs have increased, and long lead times coupled with

demand variability have resulted in expiry and scrap risk. There is an opportunity to reduce

on-hand inventory while managing non-uniformly distributed demand, lead time variability,

production and material defects, supply risk and variability, holding cost, and expiry risk

and ensure that there is a standardized and sustainable way to live up to that mantra.

The following are some of the reasons why Amgen has held a lot of inventory so far.

1. Demand and Production Schedule Variability: The company has a top-down

policy of creating the demand plan from the FDP forecast. As a result, the demand

19



plan for most raw materials (BOM) is highly dependent on the forecast of the finished

drug product (FDP) and the accuracy of those forecasts. Therefore, variability in

the FDP forecast also affects the raw material plan. The challenge here is the FDP

production is based on the internal production schedule in which the company can

make adjustments, whereas for the raw materials required to manufacture the finished

drug products, the availability is based on the supplier lead times and supply plan. Due

to the different lead times for the raw materials and the fact that the supplier plan and

response rate is not completely within Amgen’s control, the company has historically

held an amount of safety stock to account for such unforeseen or unplanned variability

in demand that cannot be mitigated quickly due to the lead time constraints.

2. Production and Material Defects: The production process in the drug manu-

facturing plant is very delicate, and due to the high levels of quality required for

products produced in these facilities, whenever a batch is contaminated, a new batch of

raw materials needs to be requisitioned from the warehouse to fulfill the production

plan. This affects the target inventory levels of the raw materials. Additionally, while

Amgen has quality controls in place to confirm the quality of raw materials when they

are delivered by suppliers, sometimes, during production, some raw materials can be

observed as defective, affecting the inventory levels.

3. Supplier Performance and Supply Planning: The historical performance of the

suppliers have been variable due to several factors, including the supply planning at

Amgen. The supply planning team sometimes places orders early, which can be deemed

as good, and late, which would definitely impact the lead time of the supplier and

subsequently the supply of a raw material. An analysis of orders placed from January

2016 to June 2023 was done on orders placed on time by Amgen, and this showed that

suppliers had an on-time delivery rate of 58.27%. Contextualizing orders placed before

COVID (January 2016 to January 2020), the on-time delivery rate was 55.39% and post

COVID (January 2020 till date) was about 60.86%. This demonstrates that even before

supply chain disruptions, some suppliers had variability in lead times. The on-time

delivery rate (OTD) was measured as the percentage of deliveries that meet or precede

20



the planned delivery time.

Additionally, the agreed delivery times have been changing over the years for some

suppliers due to several factors, such as capacity, competition, and others. An example

of this is shown in Figure 1-3 where the planned/agreed lead times have changed from

order to order for Vendor Z for orders placed for a particular material.

Figure 1-3: Delivery Time Variation for Material X to Plant Y Supplied by Vendor Z

Also, before the pandemic, the actual lead times were very variable, similar to after the

pandemic, as depicted in Figure 1-4.

4. Supply Chain Disruptions and Impact of the Pandemic: The advent of the

pandemic caused significant supply chain disruptions, resulting in a global supply chain

challenge that companies are still addressing. As illustrated in Figure 1-3, orders placed

after 2020, when the pandemic started with that vendor, showed that the actual lead

times were significantly higher than the agreed lead times. Lead times have become

significantly variable, as also indicated in Figure 1-4.
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Figure 1-4: Coefficient of Variation of Lead Times Pre and Post COVID

Inventory levels have also been influenced by the company’s conservative response to

supply chain disruptions and performance. There are raw materials with highly variable

demand.

5. Amgen’s Safety Stock Policy: The company uses a months forward coverage (MFC)

policy to calculate how much safety stock needs to be held every month. This determines

the extra inventory kept on hand. Months forward coverage (MFC) involves setting a

minimum number of months for future demand coverage and adding that to equate to

safety stock for the present month. The current safety stock (SS) policies are manually

set, site-specific, and can have multiple “de-coupled” layers. The safety stock months

forward coverage policy is presented in Equation 1.1.
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Total Safety Stock = Minimum MFC (set target)

+ Buffer (Minimum quantity)

+ Site Specific additional SS

(1.1)

The minimum MFC is based on static off-line risk groupings. The buffer is static,

determined by sites, not standardized, and not coupled with MFC setting. The site-

specific additional safety stock is also determined by sites, not standardized, and not

integrated with other SS factors.

The MFC policy is simple and flexible, and when set as high as possible, it allows

for surplus inventory to mitigate certain risks. However, this policy does not broadly

correlate with lead time and risk profile, which significantly influences inventory level. It

does not account for the non-normal demand distribution of certain materials, promotes

obsolescence which leads to potential high sunk costs, and results in high inventory

costs and tied-up working capital.

Figure 1-5: Demand, Safety Stock and Actual Consumption for a sample material
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For instance, in Figure 1-5, a raw material has a lead time of 40 days, indicating a short

response time. Nevertheless, the company holds safety stock six times the demand,

illustrating that the safety stock policy set by the company does not correlate with the

lead time risk profile of this raw material. However, some materials may have other

strategic factors or supplier risks at play, or deficiencies in data accuracy, making it

difficult to simply and broadly reduce inventory targets.

This safety stock policy, combined with all the sources of variability and risk highlighted

above, has influenced Amgen to maintain high inventory stock levels for raw materials.

Figure 1-6: Amgen Inventory Value from 2018 to 2022 [14] [15] [16]

In Figure 1-6, the raw material and work-in-process inventory values have been increasing

year on year from 2018 until now. In contrast, the finished drug product value has

remained fairly consistent. This reflects the conservative approach the organization has
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taken concerning target inventory levels and safety stock policies. Note that the figure

is not adjusted for growth in FDP stock keeping units (SKUs) over the same period,

which also tend to drive inventory up.

The following chapters delineate in detail supply chain and safety stock challenges in the

biotechnology industry, the proposed methodology to manage Amgen’s inventory and safety

stock policy, and other future improvements that could be made in Amgen’s operations.

25



THIS PAGE INTENTIONALLY LEFT BLANK

26



Chapter 2

Review of Key Concepts

The biotechnology sector presents unique challenges for supply chain management due to the

specific nature of its products and processes. In particular, accurately forecasting demand,

anticipating lead times, and determining appropriate safety stock levels are pivotal in ensuring

that supply chains are both efficient and responsive. With advancements in computational

techniques such as machine and deep learning, there are new opportunities to enhance

these traditional inventory management practices. The review of concepts provided in this

chapter examines the integration of data-driven techniques into the biotechnology supply

chain, focusing on their practical implications, advantages, and potential limitations. This

chapter begins with a review of the challenges and methodologies involved in demand and

lead forecasting, before delving into safety stock.

2.1 Demand Forecasting

Forecasting is an estimation of a particular variable or quantity over a specified future time

period [5]. The role of demand forecasting is pivotal across various industries, serving not only

in demand planning but also in enhancing inventory management and cost optimization [25].

Most organisations rely on the efficiency of demand forecasting to make critical decisions

such as planning, capacity and resource management, etc. [5].

The current state of supply and demand imbalance has increased the volatility of many

raw materials for production [60]. Real data has become ubiquitous and companies have
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abandoned the traditional inventory management and demand prediction approaches, and

are turning to data-driven models because it is more efficient. Variance amplification poses a

common challenge in multi-echelon supply chains, where distortion of demand information

gets amplified as it passes through different stages. Research suggests that machine learning

and other advanced forecasting techniques could help mitigate the variance amplification

effect [35]. Forecasting demand is typically more difficult further upstream in the supply

chain. Information fed through the chain often gets distorted as it passes between partners,

compounding inaccuracies - an effect known as the bullwhip effect [35]. Advanced techniques

that can model complex patterns in demand data could help reduce this distortion. By

enhancing visibility and coordination through improved demand projections, supply chain

efficiency and performance can be significantly improved [35].

The central goal involves minimizing deviations between projected and realized demand.

The efficacy of the employed forecasting methodology is critical in ensuring the minimization

of such deviations. Pronounced deviations in forecasts can have ripple effects on the overall

supply chain. Demand forecasting has typically been performed via judgement and statistical

means. Green et al. [40] categorizes these forecasting methodologies in Figure 2-1. It is a

standard practice to employ a multifaceted approach to forecasting, acknowledging its nature

as both an art and a science.

2.1.1 The Importance of Demand Forecasting

In today’s rapidly evolving market environment, the ability to accurately forecast demand

has become even more crucial. It not only serves as the backbone of effective supply chain

management but also as a critical factor in maintaining competitive advantage. Below are

key reasons highlighting the significance of demand forecasting:

• The need for accuracy in planning: Accurate demand planning is critical to supply

chain management as it influences the ability of a company to balance supply with

demand. Inaccuracy in demand can lead to operation challenges such as stock outs or

overstock. Overstock results in increased inventory carrying costs and potential expiry

risk, while stock outs can lead to lost sales and damage to customer relationships. Pre-
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Figure 2-1: Methodology Tree for Forecasting [40]

cision in demand planning is also important to manage suppliers, inventory, production

schedules and overall an efficient supply chain. Continuous monitoring and alignment

of forecasts with actual demand data is essential to refine and enhance the accuracy of

future predictions.

• Dynamic market conditions: Having precise demand forecasting is typically difficult

due to the level of demand volatility and other uncertainties. Demand volatility

is typically affected by endogenous and exogenous factors [3]. Such factors include

market conditions, dynamic consumer behavior, discounts, etc. Demand volatility

could cause stock outs and increased inventory costs, if demand forecasting is not

as accurate as possible to take into account such volatility. The dynamic nature of

market demand necessitates a rigorous, data-driven approach to demand forecasting,

integrating historical sales data, market trends, and predictive analytics.
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2.1.2 Traditional Approaches to Demand Forecasting

Traditional approaches to demand forecasting typically involve historical data analysis and

various statistical methods. The typical traditional techniques have been segmented into

qualitative and quantitative techniques, as summarised below.

Qualitative Techniques

Some of the common qualitative methods of traditional demand forecasting include:

• Expert Judgement: Expert judgement relies on the knowledge and intuition of

experts to predict future demand. Experts may include industry professionals, sales

personnel, or external consultants with deep understanding and insights into the market,

products, and consumer behavior. Expert judgment is typically used in situations where

there is limited data or dynamic market conditions [40]. It is often used in conjunction

with other forecasting methods to improve reliability and accuracy. Industries like

technology and pharmaceuticals where market conditions and consumer preferences

can change rapidly tend to use this method of forecasting. Limitations of this method

includes inconsistencies in perspectives, bias and over reliance on previous data or

experiences.

• Market Research: Market research involves gathering and analyzing information

directly related to consumer preferences and behaviors for a particular product or

service. This method is typically used when historical data is insufficient or unavailable

for new or existing products or services. However, it can be time consuming and costly

and subject to individual biases [40].

• Delphi Method: Originating in the 1950s at the RAND Corporation, the Delphi

technique has become a prominent methodology in facilitating forecasting and decision-

making across diverse disciplines [74] [93] [41].“The Delphi Method is based on a

structured process for collecting and distilling knowledge from a group of experts by

means of a series of questionnaires interspersed with controlled opinion feedback” [41].

The context in which the Delphi method is to be applied is critical to deciding whether
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to use it or not. Key advantages of the Delphi method in demand forecasting include

its ability to capture a wide range of expert opinions and its flexibility in addressing

complex and uncertain market conditions. Experts can consider factors beyond what

traditional statistical models may capture, such as emerging market trends, technological

advancements, or socio-economic shifts. However, its effectiveness heavily depends

on the selection of experts and their expertise in the relevant field. It can also be

time-consuming and may require several rounds before reaching a consensus. The

outcome of a Delphi sequence is based on opinions which are only as valid as the

credibility of the experts who make up the panel [74] [93] [41].

Quantitative Time Series Analysis

Some of the common quantitative methods of traditional demand forecasting include:

• Moving Averages: One of the commonly used methods of time series forecasting is the

moving average (MA) method, has many variations. Moving average methods are used

to analyze time series data, primarily to smooth out short term fluctuations and reveal

longer term patterns. Some of these variations include simple moving average (SMA),

weighted moving average (WMA), and exponential moving average (EMA) [44]. SMA

calculates the average of a selected range of previous data points in time series data.

The WMA is a modified SMA with an adjustment that allocates higher weight values

to more recent data than the older ones in a linear manner. EWMA helps to smooth

random fluctuations by applying greater weights, similar to WMA but calculating

the weighting factor using an exponential function [44]. Moving average methods are

advantageous due to their simplicity and ease of implementation. However, they are

inherently lagging indicators and may not accurately predict future trends, especially

in volatile markets. They also do not account for any other variables that might

affect the dependent variable, such as macroeconomic factors or seasonal variations.For

example, Merkuryeva et al. [58] utilized an SMA method to forecast the demand for a

pharmaceutical product and showed that the results were greatly influenced by recent

data and could not properly account for historical data or possible future trends. In

practice, moving average methods are often used in conjunction with other forecasting
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techniques to improve accuracy and reliability in predicting future trends [88].

• Exponential Smoothing: The core idea behind exponential smoothing is it assigns

exponentially decreasing weights to past data and assigns the most recent data the

highest weights [46]. It does this through a smoothing constant (alpha), which ranges

between 0 and 1. A higher alpha gives more weight to recent data, making the method

more responsive to changes, while a lower alpha makes the forecast more stable but

less sensitive to recent changes. The equation for exponential smoothing is below [46]:

𝑠0 = 𝑥0

𝑆𝑡 = 𝛼𝑥𝑡 + (1− 𝛼)𝑆𝑡−1, 𝑡 > 0

where:
𝑥𝑡 = observations

𝑡 = time

𝛼 = smoothing factor; 0 < 𝛼 < 1

The three main types of exponential smoothing are single exponential smoothing which

is ideal for data with no clear trend or seasonality [85], double exponential smoothing

which is ideal for data with trends, and triple exponential smoothing for data with both

trends and seasonality.

• Decomposition: Decomposition involves breaking down a time series dataset into

trend, seasonal, and irregular components [90] [56], each representing underlying patterns

in the data. The two main types of decomposition are additive and multiplicative.

Additive decomposition is typically used if the seasonal variations are roughly constant

over time, while multiplicative is used if the seasonal fluctuations change proportionally

to the level of the trend.
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2.1.3 Machine Learning and Modern Analytic Techniques in De-

mand Forecasting

Variance amplification is a common issue in multi-stage supply chains, where distortion of

demand information gets amplified as it passes through different stages. This often negatively

impacts upstream suppliers by making their operations less efficient. Research suggests that

machine learning and other modern analytic techniques could help manage the variance

amplification effect [35]. However, many of these machine learning techniques also have their

shortcomings. Hence, in recent times, researches have combined multiple models and methods

to make hybrid demand forecasting models that offer better accuracy and efficiency [35].

Machine Learning

Machine learning has increasingly become pivotal in enhancing demand forecasting. By

leveraging large datasets and identifying complex, non-linear patterns, machine learning

algorithms offer significant improvements over traditional statistical approaches. These

sophisticated models adapt and learn from new data, enabling businesses to forecast demand

with higher accuracy and efficiency. This adaptability is particularly beneficial in dynamic

market environments where consumer preferences, economic conditions, and other influential

factors evolve rapidly. The application of machine learning in demand forecasting represents

a transformative shift towards more data-driven, predictive analytics in supply chain manage-

ment, opening new avenues for optimization and strategic planning. Aamer et al. [1] discusses

the machine learning methods that have been utilized across different industries and sectors,

and asserts the advantages of machine learning models such as accuracy and efficiency over

traditional models. Machine learning models typically used for demand forecasting have been

delineated below.

• Regression: Regression models are a popular statistical approach for demand fore-

casting across various industries. Regression models establish relationships between

a dependent variable (the forecasted element) and one or more independent variables

(predictors). Various forms of regression include “linear, multiple, weighted, symbolic

(random), polynomial, nonparametric, and robust” [77]. Ingle et al. [46] categorizes
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regression models into multiple regression, poisson regression, lasso regression and

support vector regression. All these models have their applicability depending on

the dataset and complexity of the problem. Regression models are valued for their

interpretability, but their accuracy depends heavily on the choice of relevant predictors

and the correct specification of the model.

• Decision Trees and Random Forests: Decision trees are a non-parametric supervised

learning technique used for classification and regression problems [19]. These models

work by recursively partitioning the data feature space into different regions with the

goal of maximizing homogeneity in the response variable within each region. To build a

decision tree model, the training data features and corresponding demand data labels

are used. At each step in building the tree, the tree construction algorithm evaluates

splits along each feature dimension to pick the one that best separates high and low

demand based on metrics like information gain or gini impurity. In classification,

the algorithm partitions the data to maximize label purity in the child nodes while

regression trees aim to minimize the variance around response variable mean. Decision

trees offer simple yet robust demand predictions, and often serve as base learners within

ensemble techniques like random forests or gradient boosting machines.

A random forest is an ensemble learning method, consisting of multiple decision trees

for supervised classification and regression tasks [87]. Random forest constructs an

ensemble predictive model by training a large set of decision trees, each built randomly

using different subsets of data and variables, and combining their outputs. To build

each individual decision tree, a random subset of features is selected to split each

node. This process introduces randomness into each decision tree and decorrelates

them from each other. During prediction, the random forest aggregates the predictions

from each decision tree to output the overall prediction. By averaging many noisy but

approximately unbiased trees, the variance of the random forest is reduced over a single

decision tree. The main parameters to tune in a random forest are the number of trees

constructed and the maximum depth allowed for each decision tree. Constraining both

these parameters is important to limit overfitting and improve generalization [87] [82].
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• Neural Network-based Models: Neural network-based models are models that

mimic the structure and function of the human brain [45] to recognize patterns and

relationships in data via artificial neurons. In demand forecasting, neural networks

can handle complex, non-linear interactions within large datasets, which is useful in

capturing the nuances of market dynamics [21]. Neural network based models can be

especially effective when traditional forecasting methods fail to capture all relevant

variables or when the relationships between these variables are too complex or non-linear.

Examples of these models that have been used for demand forecasting include multilayer

perceptrons (MLP), recurrent neural networks (RNNs) [49] and long short-term memory

networks (LSTMs) [91].

• Gradient Boost-based Models: Gradient boost-based Models are ensemble-based

machine learning techniques widely used for demand forecasting. They work by building

a series of decision trees sequentially, where each subsequent tree attempts to correct

the errors made by the previous one. This process involves optimizing a loss function by

adding weak learners using a gradient descent-like procedure. Typical gradient-boost

based models include light gradient boosting machine (LightGBM), categorical boosting

(CatBoost) and extreme gradient boosting (XGBoost) [94].

Performance Evaluation for Machine Learning Models

The ability to evaluate and interpret model performance is crucial for understanding and

improving predictive accuracy. In this section, we will explore several key metrics that are

typically used to quantify prediction errors.

1. Mean Absolute Error (MAE)

The Mean absolute error (MAE) measures the average absolute magnitude of the errors

in a set of predictions [85]. It is the average of the absolute difference between the

predicted and actual values [85].

MAE =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|
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2. Mean Squared Error (MSE)

The Mean squared error (MSE) is a measure of the average of the squares of the errors

between the actual and the predicted [85].

MSE =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

3. Root Mean Squared Error (RMSE)

The Root mean squared error (RMSE) is the square root of the average of squared

differences between prediction and actual observation [85].

RMSE =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

4. Coefficient of Determination (R² score)

The coefficient of determination, often referred to as R² score, is a statistical measure

that indicates the percentage of variation in the response variable that is explained by

the predictor variables in a regression model [42].

𝑅2 = 1−
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2

In these formulas, 𝑦𝑖 are the actual values, 𝑦𝑖 are the predicted values, 𝑦 is the mean of

the actual values, and 𝑛 is the total number of data points.

Hybrid Models

Hybrid models have emerged as an important approach for forecasting across a variety of

domains. Hybrid models combine multiple component models in parallel, in series, or in

a parallel-series structure, with the goal of improving forecast accuracy by leveraging the

strengths of different modeling techniques. Key benefits of hybrid models include more

comprehensive pattern detection, reduced risk from model selection, and simplified model

selection processes. Parallel hybrids, which independently run multiple models and combine
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their forecasts, are most common and allow leveraging multiple modeling techniques. Series

hybrids utilize the output of one model as input to a second model, allowing the components

to play different roles. Parallel-series hybrids offer increased flexibility but can be complex to

effectively design and tune. Hybrid techniques have become highly prominent for time series

forecasting, with the structure offering distinct tradeoffs and benefits [43]. Ingle et al. [46]

shares an example of ARIMA models and neural networks combined in series to improve

accuracy in forecasting of daily product sales. Apart from the highlighted benefits, hybrid

models can be complex, computationally intensive and difficult to maintain.

2.2 Lead Time Forecasting

Lead time forecasting is a critical aspect of supply chain management that involves predicting

the amount of time required for a product or material to be delivered from the moment an

order is placed until it reaches its destination. Accurate lead time forecasting is essential for

organisations to optimize their inventory levels, minimize stockouts, and improve customer

satisfaction. By leveraging historical data, analyzing supplier performance, and considering

various factors such as transportation, production, and processing times, companies can

develop robust lead time forecasting models.

2.2.1 The Significance of Lead Time in the Biotechnology Industry

Accurate lead time forecasting is crucial in the biotechnology industry to ensure timely

production and supply of medicines and treatments, because availability of the required

medicine at the right time can save lives. However, predicting lead times is extremely

challenging due to the complexity of biomanufacturing processes and substantial variability in

data [13]. The COVID-19 pandemic has further highlighted the importance of responsive and

resilient biopharmaceutical supply chains that can rapidly scale up production and distribution

to meet urgent patient needs. Current challenges include dealing with uncertainty around

demand surges, raw material availability, logistics disruptions, and coordination across global

supply networks. Supplier lead times have become more variable and lead time forecasting

could allow the biotech companies to predict and avoid stock outs caused by a supplier,
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ensuring better supplier management and mitigation. In addition, lead time performance can

be used as an evaluation criteria when selecting or retaining suppliers. With better prediction,

it is possible for the pharmaceutical companies to define different levels of stock of the goods

and manage challenges with demand variability, making the procurement process leaner and

more cost effective [13]. Improved lead time forecasting through artificial intelligence and

advanced analytics can support more precise capacity planning, inventory optimization, and

proactive risk management. This is vital for biotech companies to cost-effectively deliver

innovative therapies to patients without harmful delays, especially for diseases with narrow

treatment windows or fast progression rates.

2.2.2 Conventional Methods of Lead Time Forecasting

Conventional methods of lead time forecasting typically focuses on statistical and heuristic

techniques. These techniques include historical and moving averages, seasonal indexes,

exponential smoothing and heuristics. These methods are similar to the traditional methods

of demand forecasting discussed in Section 2.1.2.

2.2.3 Advanced Analytics for Lead Time Forecasting

The use of predictive analytics have been prevalent for lead time prediction. Machine learning

models like regression, support vector machines, or neural networks can be used in predicting

lead times based on patterns in historical data. These models have been discussed in detail

in Section 2.1.3

In addition, real-time monitoring can also serve as a method for lead time forecasting.

Internet of Things (IoT) devices and real-time analytics can be used to monitor and predict

lead times based on live data from suppliers or logistic providers. IoT devices, such as sensors

and trackers, can be deployed throughout the supply chain to continuously collect data

on various aspects like inventory levels, shipment locations, environmental conditions, and

production processes. Tracking shipments, production stages, and inventory levels in real-time

allows for a dynamic understanding of lead times. Delays, bottlenecks, and disruptions can

be identified as they occur, enabling immediate and actionable insights [10] [17] [28].
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2.2.4 Factors Impacting Lead Time Variability

Lead time variability, which is critical to the effectiveness of a supply chain, is influenced

by several factors. It is important to understand these factors in order to effectively create

mitigation strategies to optimize a supply chain, thereby improving customer satisfaction,

reducing costs, and most importantly in the case of a biotech company, save lives. The key

factors impacting lead time variability include:

• Supplier Reliability: The consistency and reliability of suppliers significantly impact

lead time variability. Suppliers with inconsistent production schedules or quality issues

can cause fluctuations in lead times. The bullwhip effect, a phenomenon whereby there

is an amplified upstream demand variability due to supply side variability being more

than customer sales, is particularly more pronounced during supplier disruptions due

to natural disasters [32].

• External Factors: Unforeseen events such as natural disasters, strikes, may impact

supplier lead times. For example, as described in Ovezmyradov et al. [65], the COVID-19

pandemic led to significant supply chain disruptions that ultimately affected lead time

variability for many companies. Changes in regulations or compliance requirements,

especially in international trade, can introduce uncertainty and variability in lead times.

Political instability or economic fluctuations in a supplier’s region can unpredictably

affect lead times.

• Logistic Challenges: The efficiency and effectiveness of logistic networks could impact

lead time. Sometimes, logistic such as customs delay and shipping disruptions may

cause massive changes to lead time, increasing its variability.

• Demand Uncertainty: Due to competition, market factors, consumer behavior, there

is uncertainty and possibility variability of demand. This affects demand planning which

could impact the supplier’s ability to deliver, especially for suppliers with constrained

capacity or multiple clients.
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2.2.5 Strategies to Mitigate Lead Time Variability

Fluctuations in lead times make it difficult to reliably plan and meet consumer demands.

However, a number of strategies can be employed to reduce inconsistencies and absorb

variability in lead time. Effective mitigation of lead time variability involves deploying

preventive measures to standardize processes, level workloads, and enhance reliability. It

also requires building resilience through buffers and flexibility to handle the inevitable

uncertainties. This balanced approach across both proactive and reactive policies can greatly

improve predictability. Some of the strategies include having a diversified supplier base and

supplier relationship management, advanced data analytics, and keeping safety stock or buffer

inventory, among others.

Diversified Supplier Base

Having diverse suppliers reduces the risk associated with depending on a single source. This

diversification can protect against disruptions and inconsistencies from any one supplier. This

can be achieved and maintained by:

• Multi Sourcing: Multi-sourcing is a strategic approach in supply chain management

where a company sources a single item or similar items from multiple suppliers. This

strategy helps to mitigate risks and improve supply chain resilience. It also gives compa-

nies leverage for negotiation which could aid in better prices. This also ensures suppliers

strive to improve the quality of their service and products. This strategy, however,

requires more manpower and tools on the company side to manage these suppliers. In

order to ensure proper management of these suppliers, it is important to segment them

to better understand them. Rezaei et al. in [73] and [72] suggest segmenting suppliers

using two criteria: their capabilities, which could span from technical, product quality

to financial factors and their willingness to improve performance or collaborate, or be

in a long-term relationship. Momiwand et al. [59] and Segura et al. [76] suggest using

strategic performance which could cover products and purchase volume and critical

performance, which could cover commercial risk and delays. All these methods of

classifying suppliers ensure that the company is able to manage all its sources in a
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proactive manner [67].

• Supplier Relationship Management (SRM): SRM involves developing closer, more

collaborative relationships with key suppliers to create and capture value and reduce

risks. It involves integration and alignment, communication and information sharing,

and working with suppliers to identify areas of continuous improvement. This helps

foster supply chain resilience because it ensures a company has a deeper understanding

of the suppliers’ operations and risk exposure [59] [2] [11].

• Geographical Diversification: Sourcing from suppliers in different geographic regions

can help to mitigate risks associated with local disruptions, economic downturns and

other unforeseen circumstances that impact lead time.

Advanced Analytics & Forecasting

Advanced analytics methods can aid supply planning. In particular, these can be incorporated

in the following ways:

• Predictive Analytics: Advanced machine learning models can use a multitude of

data sources to better predict potential disruptions and variability. We can factor these

analytics to account for a safety lead time that mitigates risks.

• Simulation: Simulations can be run to help better understand potential variability

which would be instrumental in proactively creating strategies to manage them.

Buffer Inventory

Buffer inventory, also known as safety stock, is an additional quantity of a product or material

kept in the inventory to reduce stock out risks. It acts as a buffer against unforeseen variations

in supply and demand. The main purpose of maintaining buffer inventory is to ensure a steady

supply and protect against uncertainties in the supply chain. Safety stock is extensively

discussed in Section 2.3.
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Vendor-Managed Inventory (VMI)

As described in Govindan et al [39], “Vendor-Managed Inventory (VMI) represents the

methodology through which the upstream stage of a supply chain (vendor) takes responsibility

for managing the inventories at the downstream stage (customer) based on previously agreed

limits.” In a VMI arrangement, the supplier takes responsibility for maintaining appropriate

inventory levels on behalf of the buyer. The buyer provides the supplier visibility into

point-of-sales data, forecasts, and any major events that may impact demand. The supplier

then determines optimal replenishment quantities and frequencies needed to keep the buyer’s

inventory within established minimum and maximum boundaries. Advantages include

increased operational resilience, reduced lead time variability, inventory carrying costs, stock

out costs and demand uncertainty [81]. Challenges in implementing this include data security,

complexity and supplier dependence.

Contractual Agreements and Incentives

Contractual agreements and incentives play a crucial role in managing supplier relationships

and ensuring consistent lead times in the supply chain. Two key components of these

arrangements are service level agreements (SLAs) and incentives for on-time delivery. By

implementing these strategies, companies can foster stronger partnerships with their suppliers,

reduce lead time variability, and improve overall supply chain reliability. The importance of

SLAs and incentives in managing lead time variability are further described as follows:

• Service Level Agreements (SLAs): SLAs establish clear, measurable criteria

for service delivery, ensuring that both parties have a common understanding of

requirements, responsibilities, and performance metrics. SLAs ensure suppliers commit

to specific lead times and reliability standards. SLAs also serve as a means to evaluate

supplier performance.

• Incentives for On-Time Delivery: Incentives for on-time delivery in supplier

management can help reduce lead time variability, thus ensuring a reliable and consistent

supply chain. Effective incentive strategies can include performance-based pricing,
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recognition and awards, early payment and volume incentives, among others. These

incentives can also help foster better supplier relationships.

2.3 Dimensioning Safety Stock

Uncertainty factors such as demand, supply and external events which affects operations are

some of the key issues in supply chain management [37]. There has been much research into

how to better manage such uncertainty especially in this competitive economic landscape,

and safety stocks have been deemed suitable to account for demand and supply variability

and a good strategy to prevent stockouts [37]. In this economic climate, and due to the

recent supply chain disruptions globally, companies have become less tolerant to risk which,

buttresses the need for safety stocks [37].

Safety stock is inventory carried to reduce the risk of or prevent stock outs. Factors

that affect the probability of stock out includes forecast accuracy or inaccuracy, lead time

variability and demand fluctuations. Some operations managers use either gut feel or an

arithmetic sum of probable future demand or historical demand to determine safety stock.

This methodology is prone to errors and does not adequately cover all the factors that affect

stock out [50]. It is important to note that safety stocks are not meant to eliminate all

stockouts, just majority of them [50] [70]. Goncales et al [37] among other authors believe

safety stocks to be one of the best strategies to mitigate the supply and demand risks and

uncertainty.

2.3.1 Existing Approaches for Determining Safety Stock

Goncalves et al. [37] did extensive work to research existing strategies to determine safety

stock and summarise work by supply chain management academics. The authors compiled

modeling techniques that have been studied, classified them, discussed the limitations and

drawbacks, and identified ways to bridge the gaps for future research. As summarised by [37],

and indicated above, the key factors that affect safety stock include service level, lead time,

demand volatility, supply planning, scarcity of components and holding costs.

To address some of these key actors, there are standard stochastic approaches that
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have been developed to determine and calculate safety stock based on normally distributed

parameters. In [75], [50], [37], [53], these approaches have been delineated as seen below.

When the major source of variability is the demand, the standard safety stock formula

is the multiplication of the safety factor, which is dependent on the service level, based on

a normally distributed demand and the standard deviation of the demand during the lead

time [75][50]:

Safety Stock = 𝑧 ·
√
𝐿𝑇 · 𝜎𝐷 (2.1)

where z is the z-score or safety factor dependent on a service level. The z-score is obtained via

the inverse of the standard normal distribution. LT is the lead time, and 𝜎𝐷 is the standard

deviation of demand during the period of the lead time. Equation 2.1 is typically used when

there is a future forecast available over the period of lead time.

In cases where there is historical data and the historical demand has deviated from the

historical forecast, then the forecast error is the required protection to determine safety stock.

Equation 2.2 is the best match to this scenario [75].

Safety Stock = 𝑧 ·
√
𝐿𝑇 · 𝜎𝐹 (2.2)

where 𝜎𝐹 is the standard deviation of the forecast error for the demand during the period of

the lead time [75]. The standard deviation of the error is calculated from the mean squared

deviation of the forecast versus actual demand.

It is important to re-iterate that the Equations 2.1 and 2.2 do not account for lead time

variability.

When the variability in lead time is the major concern, then the formula can be modified

to mitigate for that [75]:

Safety Stock = 𝑧 · 𝜎𝐿𝑇 .𝐷𝑎𝑣𝑔 (2.3)

where 𝐷𝑎𝑣𝑔 is the average demand during the lead time period and 𝜎𝐿𝑇 is the standard

deviation of the lead time.

In cases where there is both lead time and demand variability, which is typically the case
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at Amgen, and both factors are independent, Equation 2.4 is used [50]:

Safety Stock = 𝑧 ·
√︁

𝐿𝑇 · 𝜎𝐷
2
𝑎𝑣𝑔 +𝐷2

𝑎𝑣𝑔 · 𝜎2
𝐿𝑇 (2.4)

where 𝜎𝐷𝑎𝑣𝑔 is the average standard deviation of demand, quantifying the variability in

demand during the lead time. The expression 𝐿𝑇 · 𝜎𝐷
2
𝑎𝑣𝑔 accounts for the variance in demand

over the lead time. The term 𝐷2
𝑎𝑣𝑔 · 𝜎2

𝐿𝑇 accounts for the variance in lead time, weighted by

the square of average demand.

In the event that the variability of lead time and demand are statistically not independent

of each other, the safety stock formula can be defined as [50]:

Safety Stock =
(︁
𝑧 ×
√
𝐿𝑇 × 𝜎𝐷

)︁
+ (𝑧 × 𝜎𝐿𝑇 ×𝐷avg) (2.5)

Goncalves et al [37] reviewed 95 peer-reviewed published papers from 1977 to January

2020 and established that the safety stock determination problem has often been tackled

using analytical and optimisation models (e.g. stochastic methods, linear programming),

simulation models (e.g, Monte Carlo simulation), or hybrid models (i.e. simulation based

optimization techniques). In their review, 88% of the papers reviewed alluded to the use

of analytical methods, while 6% use simulation models, and the rest use hybrid models. In

addition, 35% of the 95 papers reviewed had industrial and practical contexts across the

pharmaceutical, automotive, retail and electronic industry sectors.

In their study, Goncalves et al. [37] found that 35% of the analyzed papers adopted an

approach for determining safety stock that accounts for demand variability. These studies

utilized a range of techniques, from optimization methods to Monte Carlo simulation, aiming

to size safety stock based on criteria such as service level, holding and ordering costs, backorder

and setup costs, as well as the probability of stockouts.

Another approach described in several papers is based on an assumption that safety

stock is proportional to forecasting errors and serves as a buffer strategy against forecast

inaccuracies [37]. Some of the papers utilised the variance of forecast errors during the lead

time demand, utilising techniques such as exponential smoothing to set safety stocks. The

safety stock in Equation 2.2 alludes to this assumption by using the standard deviation of
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the historical forecast errors to calculate safety stock. Some interesting techniques employed

in some of these papers used regression and forecasting methods to forecast demand, utilising

variables like price and other external factors, and then estimating the errors from the models

to set safety stocks. These outputs were fed into optimisation and simulation models to

optimise for costs, stock out and inventory constraints. A third approach considered the

effect to component standardisation and product structure on dimensioning safety stock.

Many of these approaches above have relied upon normally distributed and steady demand.

In cases where the demand is not normally distributed or is intermittent, stochastic models

have been used to address some of these. Zhou et al. [96] propose the use of bootstrapping to

determine the variance of the time period demand, and utilise that to calculate safety stock

at target service levels. The application of bootstrapping used in this case did not perform

better than parametric methods when applied to an aerospace industry data set.

A couple of challenges with the existing methods are discussed in [38]. Some of these

include:

1. Assumption of normally distributed demand: Inventory management relies

on accurate forecast for demand, and demand forecast is an important input into

determining safety stock. However, most of these papers and approaches in the industry

have typically considered stationary or normally distributed demand, which is not

the reality of major supply chains, especially those with multi echelons and products.

Goncalves et al. [37] allude to using artificial intelligence methods to bridge the gap

and perform multivariate demand forecasting.

2. Supplier Disruptions: Lead time plays a critical role in the calculation of safety

stock levels. The unpredictability of supplier performance, especially in light of recent

disruptions due to the pandemic, underscores the importance of employing predictive

and descriptive analytics for risk management. These analytical tools enhance the

reliability of safety stock calculations, addressing variabilities that may not have been

adequately captured in previous approaches.

3. Data Reliability and Quality: As with any data-driven solution, credibility of data

is always important to ensure effectiveness of the solution involved. Forecast variance
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in the case of safety stock relies on the actual and predicted values being accurate and

complete, as this impacts the safety stock levels.

4. Multi-product Evaluations: Most of these research studies have been based on single

product inventory systems, and may not capture the dynamics of a multi-product supply

chain environment. It is important to understand the risk profiles among multiple

products.

2.3.2 Service Level

In inventory management, the service level is used to measure performance of inventory

policies and represents the probability of not stocking out during the lead time [95]. Service

level selection and determination are important, as the service level is directly proportional

to how much buffer inventory should be held. The higher the service level, the higher the

safety stock to be held [70].

Designing with a higher service level will requires higher safety stock. Safety stock

level must be high enough that the company minimise the risk of stock out and is able to

accommodate supplier lead times, but not too high such that the company loses money due

to high holding cost and tied up working capital.

The optimal service level differs for each product. In the case of this project, each raw

material differs from one to another based on customer sensitivity regarding stock outs for

each product [70]. In most industries, the ABC analysis is used to determine an adequate

service level for groups of products. The ABC analysis is typically done based on the revenue

impact of inventory or products. Each category of product is assigned its own service level.

Radasanu et al. [70] has formulated a sample service level segmentation as shown in Table 2.1.

Category Segment Description Recommended Service Level (SL)

A top 20% critical few high e.g. 96-98%
B next 20-30% interclass medium e.g. 91-95%
C last 50-60% trivial many lower e.g. 85-90%

Table 2.1: ABC Service Level Segmentation [70]

Customers will prefer a 100% service level but that is not advisable from a company
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perspective. It is important to understand that the service levels indicate the service

performance of inventory, and are not a direct indicator of the performance of the firm in

servicing a customer on time [22]. Ramos et al. [71] show the relationship between service

and inventory levels in Table 2.2.

Inventory Level
High Low

Service Level High

A (greater than 85%)
Fulfill customer

demand, Carrying
significant inventory

B (70-85%)
Optimum level,
Achieve service

level with
balance inventory

Low
C (70-85%)

Excess inventory and
Carrying nonperforming inventory

D (less than 70%)
Shortage and

Stock-out

Table 2.2: Service Level vs. Inventory Level [71]

Service Factor or z-score

The z-score represents how many standard deviations an element is from the mean. In the

context of service levels in inventory management or logistics, the z-score is referred to as the

service factor, and is used to determine the safety stock level based on a desired service level.

The z-score associated with a particular service level can be found using the inverse of the

cumulative distribution function (often denoted as Φ−1) of the standard normal distribution.

To compute the z-score from a given service level:

1. Determine the service level. For instance, a 95% service level would be represented as

0.95.

2. Use the standard normal distribution function to determine the z-score that corresponds

to the cumulative probability of the service level.

The formula is given by [6]:

𝑧 = Φ−1(Service Level) (2.6)
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where 𝑧 is the z-score, Φ−1 is the inverse of the cumulative distribution function of the

standard normal distribution, and service level is the desired service level (e.g., 0.95 for 95%).

The relationship between z-score and service level is shown in the graph in Figure 2-2.

Figure 2-2: z-score for 70-100% Service Level

For a service level of 95% (or 0.95), 𝑧 is approximately 1.645. This implies that for a 95%

service level, the safety stock should be set at a level that covers 1.645 standard deviations

above the mean demand during the lead time.

The service levels are used as a way to simulate risk tolerance for both inventory and the

organisation. This is also proportional and related to the material or product segment and

its importance and criticality to revenue generation and business value.
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2.4 Integrated Inventory Management Methods in Liter-

ature

Several methods such as traditional forecasting, optimization, and inventory segmentation

have been used by researchers and organisations over the years to manage and optimize

inventory, and by extension the end-to-end supply chain. Methods utilized by researchers in

the literature have been highlighted below.

Lolli et al. [54] proposes a multicriteria framework for inventory control and classification

in manufacturing companies, particularly focusing on intermittent demand, and employs the

analytical hierarchy process (AHP) to select the best alternative. Sinaga et al. [80] utilizes

the traditional approach of simple moving average (SMA) for raw material forecasting using

past consumption data and analytical hierarchy process (AHP) for supplier selection, based

on criteria such as cost, quality and delivery time. The drive for the dual approach is to

improve inventory management and supplier selection in organisations.

Brunaud et al. [18] aimed to reduce the forecast error in planning by using mixed-integer

programming to determine the optimal flows and inventory policy parameters simultaneously.

The researchers propose two inventory policies: the continuous-review (rQ) policy and the

periodic-review (sS) policy, together with four safety stock formulations: “proportional to

throughput, ” “piecewise linear with risk-pooling,” “explicit risk-pooling, ” and “guaranteed

service time” [18]. These models were used for simultaneous optimization of safety stock and

base stock levels alongside material flows in supply chain planning [18]. They ran simulations

on supply chain models and found that the piecewise linear and proportional formulations

were less complex and yielded good results for single and multi echelon supply chains.

Most demand and inventory forecasts methods typically generate point forecasts and

do not account for uncertainties around those forecasts in ensuring robust safety stock

determination. Trapero et al. [86] proposes a novel approach based on combining empirical

methods like the generalized autoregressive conditional heteroskedasticity (GARCH) and

kernel density estimation (KDE) to model and forecast the demand distribution. Their result

show that the optimal combination of these methods reduces the tick loss as it effectively

captures the variability and asymmetry in demand distribution, leading to more robust safety
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stock forecasts and lower costs. Their research is an effort to explore further avenues to

optimally estimate safety stock based on the logic that safety stock has a dependency on

forecast error and its uncertainty.

Carbonneau et al. [20] explored the use of machine learning models like recurrent neural

networks (RNN) and support vector machines (SVM) in comparison with traditional methods

like moving averages and trends for supply chain demand forecasting. They run experiments

on a canadian foundries sales data and found that the RNN and SVM models outperformed

the traditional methods of forecasting by having better forecasting accuracy.Aamer et al.

Aamer et al. [1] also reviewed 77 papers and highlighted that machine learning algorithms

like SVMs, artifical neural networks(ANN), decision trees, random forest, and XGBoost have

been used by researchers over the years for supply chain demand forecasting, with algorithms

like XGBoost common in the healthcare sector.

Using simulation, Warren et al. [92] conducted a study on a three-echelon supply chain to

assess how different combinations of forecasting methods, inventory policies, and lead times

affect the total inventory costs. They explore the ant colony optimization (ACOR) algorithm,

a metaheuristic technique, for demand forecasting and inventory optimization. However, they

identify future exploration of the impact of lead time variability and improved communication

on the supply chain. Wadhwa et al. [89] also used simulation to investigate the performance

of various inventory policies in a four-echelon supply chain. They model the supply chain

as a network of autonomous nodes and simulate these policies under conditions of sudden

demand changes. They discover that independent decision making at each node leads to

the bullwhip effect, distorting demand information in the supply chain. They also assert

that machine learning plays a vital role in transparent collaborative supply chain planning.

Mansur et al. [55] also used Monte Carlo simulation to model inventory cost minimization

and optimization of blood inventory platelet levels.

Fabianova et al. [34] explores the use of quantitative forecasting with methods such

as autoregressive integrated moving average (ARIMA) and Monte Carlo simulations with

optimization for production planning. They implemented these methods on data from a

company producing and selling paper hygenic products. Their study showed that these

methods were effective in production planning and reducing cost. They also identify that the
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simulation was beneficial for risk analysis and was most effective when the input variability

was low.

Zwaida et al. [4] explores the use of deep reinforcement learning (DRL) to automatically

make a drug refilling decision in order to prevent stock outs. The researchers use a Markov

decision process model and a deep Q-learning framework to address the drug shortage problem

and minimize cost in hospital supply chains. Plessis et al. [30] also used reinforcement learning

(RL) to investigate inventory management improvement in pharmaceutical supply chains.

These researchers make use of an agent-based simulation model to evaluate the effectiveness

of various information sharing scenarios in order to mitigate supply chain inefficiencies.

Goncalves et al. [37] made an effort to consolidate and review research on methods of

dimensioning safety stock and highlight gaps and areas for future work. They review 95

academic papers published between 1977 and 2019. They reviewed papers that explored the

variation of normally distributed demands, forecasting errors, component standardization,

stochastic models, simulation-based optimization models and mathematical programming

models to dimension safety stock. Their study identifies a significant gap in current research

regarding the impact of supply chain disruptions on safety stock and inventory management.

In summary, researchers have explored a variety of quantitative techniques for optimizing

inventory management and safety stock determination, including traditional forecasting,

machine learning, simulation, and optimization methods. However, several gaps exist regard-

ing the integration of predictive analytics to account for demand uncertainty and supply

variability, especially amidst disruptions. There is also a need for more practical implementa-

tions that address the constraints of complex multi-product supply chains through custom

segmentation and policy development. As reinforced by the COVID-19 pandemic, building

supply chain resilience requires a balanced approach using advanced analytics while also

exploring organisational and operational methods to mitigate risk. This review highlights

critical opportunities to integrate data-driven insights with simulation of uncertainties and

organizational alignment. The path forward necessitates cross-functional collaboration and

change management to unlock the full potential of inventory optimization and management.
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2.5 Limitations of Data-Driven Approaches

Despite the numerous benefits such as improved accuracy and inventory optimization associ-

ated with implementation of data driven approaches for inventory management, there are

some limitations and challenges to using data as opposed to the traditional approaches. Some

of these limitations are delineated below.

Data Quality, Security and Integration Challenges

• Data Quality and Accuracy: Ensuring data accuracy is paramount. Inaccurate

data can lead to erroneous forecasts and sub-optimal inventory decisions.

• Integration of Diverse Data Sources: Consolidating data from multiple sources (in-

ternal systems and teams, suppliers, market trends) is complex. It requires harmonizing

different data formats and ensuring consistent data quality across sources.

• Legacy Systems Integration: Older enterprise systems pose challenges for data

connectivity needed for optimization and analytics systems.

• Data Security and Privacy: Protecting sensitive supply chain data, especially in

collaborations with third parties, is essential to prevent data breaches.

Technical and Infrastructure Challenges

• Real-Time Data Processing: The need for real-time analytics demands robust

IT infrastructure capable of handling large data volumes easily. This requires expert

personnel and can be costly.

• Cost and Complexity of Implementation: Setting up advanced data analytics

systems involves significant costs, including investments in technology and human

resources.

• Scalability: Systems should be scalable to accommodate growing data volumes and

evolving business requirements.
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Organizational and Human Resource Challenges

• Change Management: Implementing new data-driven approaches can meet resistance

from employees accustomed to traditional methods. This necessitates organizational

changes, including training staff, adapting business processes and behavioral ways of

thinking.

• Analytics and Business Expertise: A shortage of skilled personnel who can both

interpret complex data and derive actionable insights can be a critical bottleneck.

Modeling and Predictive Analysis Challenges

• Predictive Model Selection and Accuracy: Selecting the most appropriate model

for the data context and needs can be complex, and choosing the wrong one can lead

to inaccurate predictions. Developing and maintaining accurate predictive models is

challenging, especially in dynamic market conditions.

• Computational Complexity: Inventory systems with thousands of SKUs, complex

constraints, probability distributions etc. become complex to manage due to large

number of variables.

• Maintenance of Models: Real-time data feeds, frequent retraining of models, updat-

ing business rules, market conditions, etc., are essential but requires manpower. Lack

of adequate maintenance impacts robustness and accuracy of models.

• Interpretability and Explainability: Data-driven models can be complex and

opaque, making it difficult to understand why certain decisions are made. Ensuring

transparency and explainability is crucial for building trust and managing risk. Not

all predictive models are easily explainable and this needs to be factored into decision

making when choosing models if it is a priority for the organisation.

• Accounting for external factors: Forecasts can be heavily affected by external

factors like sales promotions, economic fluctuations, and weather, which can be difficult

to model and predict accurately.
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Chapter 3

Methodology

The scope of this project is limited to raw materials required to produce the drug substance,

drug products and finished drug product which are the higher stages of production in Amgen.

The complexity of this project stems from the fact that the higher stages for drug production

have substantial impact on the lower stages, and this fact informs the raw material planning

strategy of the organisation which influences the safety stock determination. These nuances

inform the approach that will be discussed in this chapter.

As discussed in Chapters 1 and 2, the key sources of variability and fluctuations are

the demand and supplier lead times. The demand plan of the raw materials is, however,

influenced by the finished drug product forecast by the organisation. This forecast is an

internal factor, but is influenced by external factors such as market conditions, consumer

behavior, etc., and the supplier lead times, which is hard to control, but which the company

can influence.

In Chapter 2, approaches researched have been summarised with gaps such as data,

supplier disruption, and demand distributions identified to further enhance the safety stock

determination methodologies.

3.1 Project Context

The context and challenges of this project are as follows:

• Scope: The scope of the project is limited to raw materials; however, the implemented
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methodology is quite applicable to upper echelons in the supply chain at Amgen. This

brings a different level of complexity as the demand forecast is currently done at the top

of the supply chain, which is the finished drug product (FDP) level. The raw material

plan is drawn from the FDP forecast for those on bill of materials (BOMs) and using

historical data for miscellaneous materials such as gloves, secondary packaging, etc.,

that are classified as non-BOM at Amgen.

• Frequency of Forecast Update: Due to the forecast being run at the FDP stage of

production, the forecast gets updated daily, with the monthly cycle captured at the

end of each month. This means that the raw material plan changes and is variable

depending on the FDP forecast and signal from the market. Due to the lead time

constraint for raw materials, if a forecast changes during the period of the lead time of

the raw material, there are limited mitigation or response actions that can be taken to

accommodate the increase or decrease in raw material requirement. These variations

definitely affect the safety stock levels.

• Volume of Raw Materials: This is a multi-product supply chain and the scope of

work covers over 10,000+ raw materials used to produce over 20 finished drug products.

It is also important to note that this is a growing supply chain with the final drug

products at different lifecycle stages and different revenue generation.

• Lead Time Challenges: The agreed lead times at the time of the project were being

used as target lead times by the team for supply planning and thus are not significant

in calculating safety stock. Some of the suppliers do not have an exceptional track

record of keeping to agreed lead times. This ultimately shows a gap in the raw material

planning currently being done in the organisation.

• Segmentation: An ABC inventory type segmentation was developed and implemented

for the finished drug products to determine the safety stock policy in the form of months

forward coverage (MFC) policy. However, for raw materials, there is not a formalized

ABC segmentation process and the safety stock policy is site specific and is currently

being set by the different manufacturing plants. It is important to note that there are
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similar raw materials being used across multiple sites and there is room for network

sharing.

• Data storage: There are currently some data gaps in the historical data. These

are being fixed and a sustainable pipeline is being built to properly store historical

data. The organisation is starting to build and maintain data pipelines to ensure that

data-driven implemented solutions are sustainable in the long run.

3.2 Proposed Methodology for Safety Stock Calculation

The approach is to estimate safety stock as a decision variable, leveraging the formulas

and methodology from the literature, as discussed in Chapter 2. The key inputs into the

safety stock formulas are the lead time and demand models, which are treated as prediction

variables. Machine learning models are built to predict the lead time and the demand, while

addressing the identified challenges and sources of inventory risk and variability. The outputs

of the models feed into the safety stock formula. Amgen currently has a 95% service level

policy which also feed as the baseline to the formula, with a variation of 90% - 100% service

levels to show the difference in inventory levels at those service levels and guide management

decisions. Monte Carlo simulation is also performed on the safety stock, varying the lead

time and demand to show the impact on safety stock and stock levels if the lead times and

demand deviate from target. It is important to note that this work is applied on thousands

of materials, hence, most of the models built are cluster based to ensure sustainability in the

long run. The proposed methodology is illustrated in Figure 3-1.

The proposed methodology presents a unique contribution to the field of inventory

management. While existing approaches often rely on static assumptions and simplified

models, this methodology integrates machine learning-based demand and lead time forecasting

with stochastic simulation and multi-criteria segmentation. This holistic approach allows for

a more accurate and dynamic determination of safety stock levels, considering the complex

interactions and uncertainties in the supply chain. By incorporating real-time data and

adapting to changing conditions, our methodology offers a significant advancement over

traditional inventory management techniques.
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Figure 3-1: Proposed Methodology for Safety Stock Determination

3.2.1 Baseline Methodology

The following steps delineate the procedures followed to determine the optimal safety stock

accounting for demand variability, lead time and what-if scenarios.

• Step 1: Lead time and lead time variance forecasting

• Step 2: Demand forecasting or demand forecast accuracy normalisation on demand

Plan

• Step 3: Service level determination via segmentation

• Step 4: Fit the distribution of demand from step 2 using lead time from step 1

• Step 5: Utilise steps 1 - 4 as input into a Monte Carlo simulation to generate numbers

based on distribution fitting and into the safety stock formula

3.2.2 Step 1: Supplier Lead Time and Lead Time Variance Fore-

casting

The supplier lead time is the time elapsed between when the order is placed and when the

supplier or vendor delivers the items to the plant or warehouse. Since Amgen has limited
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influence on a supplier delivery time, and is not privy to all the other clients or schedule.

or constraints of a supplier, it is important to be able to forecast the supplier lead time

leveraging historical performance.

In the biotech and healthcare sector, timely delivery of services and products are crucial to

saving patients’ lives. The supply chain lead times are directly proportional to the availability

of medicines in healthcare institutions [13]. Being able to ensure that Amgen is able to meet

“Every patient, Every time,” the company needs to anticipate the behavior of external parties,

specifically in this case, the suppliers. Accurate and credible forecasting of the lead time of

raw material supply can assist in optimising production processes, reduce production schedule

changes caused by unavailability and allow for an optimal safety stock level decision.

A couple of techniques have been historically used to determine and predict lead times.

Some companies have simply used the average of actual lead times to determine future

performance. With the advent of artificial intelligence, better data infrastructure available,

less conventional methods have been utilised to predict lead times. These methods have been

delineated in Chapter 2. The organisation has a data science team. However, since Amgen is

not a data science organisation, it is important to demonstrate the business case, and for the

key executives to understand the factors driving the models. Therefore, key factors that have

gone into consideration for the method selection include the data availability, maintainability

and sustainability, and model explainability and interpretability. As a result, regression,

gradient boosting and decision tree models have been utilized for forecasting the lead time.

More details will be discussed in the following sections.

Dataset, Data Sources and Data Preprocessing

The major data sources for the forecasting models are the historical purchase orders for

orders placed from January 2016 to June 2023, and the supplier resiliency index data for

about 10,000 raw materials. These datasets are stored in the company’s enterprise data lake

and were queried using structured query language (SQL). Both datasets were combined and

merged on the material ID to give a combined dataset with 78,913 rows. The combined

dataset contained the following columns as described in Table 3.1.

59



Field Name Description Data Type
purchasing_doc Purchase order ID String
material description Description of the material String
material Raw Material ID String
plant Manufacturing Plant ID String
material category Category of the material String
material_sub_group Sub group of the material category String
Vendor ID The supplier ID String
Vendor Name The name of the supplier/vendor String
po_quantity The quantity of the items in the

purchase order
Float

order_plcmt_dt Date the order was placed Date
pl_deliv_time The planned/agreed delivery time

of the order
Integer (days)

GR_Date The goods receipt date of the raw
material

Date

Invoice_Value The value of the invoice or PO Decimal
actual_LT The actual lead time Integer (days)
placed_days_in_advance Number of days the order was

placed early or late
Integer

material_sourcing_complexity The company’s ranking of the sourc-
ing complexity

Float (Rating)

multi_sourcing The company’s ranking of if there
are multiple sources

Float (Rating)

supplier_relationship The company’s ranking of how the
supplier is easily managed or influ-
enced

Float (Rating)

primary_source If the vendor is the primary source
(Yes/No)

Boolean

Country Match Manufacturer and plant in the same
country (1/0)

Boolean

Region Match Manufacturer and plant in the same
region (1/0)

Boolean

Table 3.1: Descriptive Table of Data Fields for Lead Time Forecasting

Data Preprocessing

The following preprocessing steps were performed on the data:

1. The materials were categorised into bill of materials (BOM) and non-bill of materials

(Non-BOM); yes for BOM, no for non-BOM. Refer to Table 1.1 for categorisation.

2. All columns were converted to their appropriate data types.
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3. There were some observed anomalies in data in which some of the actual lead times

were negative; so those data points were filtered out.

4. Duplicate entries on the purchasing order ID and order_plcmt_dt columns were

removed.

The preprocess_data function below was also created to ensure that all the required

features in the model were properly preprocessed and encoded where appropriate before the

model was trained.

Algorithm 1 preprocess_data
1: procedure preprocess_data(group_data)
2: 𝛼 = Extract month from ‘order_plcmt_dt’ in group_data
3: 𝑋 = Select columns from group_data
4: Create dummy variables from categorical columns in group_data, store in 𝛽, 𝛾, 𝛿, 𝜖, 𝜁
5: 𝑋 = Concatenate 𝑋 with 𝛽, 𝛾, 𝛿, 𝜖, 𝜁
6: 𝑦 = Extract ‘actual_LT’ from group_data
7: return 𝑋, 𝑦
8: end procedure

𝛼 Extracted month from ‘order_plcmt_dt’ in group_data.

𝛽 Dummy variables created from the ‘order_unit’ column in group_data.

𝛾 Dummy variables created from the ‘MATERIAL CATEGORY’ column in group_data.

𝛿 Dummy variables created from the ‘PRIMARY_SOURCE’ column in group_data.

𝜖 Dummy variables created from the ‘COUNTRY_MATCH’ column in group_data.

𝜁 Dummy variables created from the ‘REGION_MATCH’ column in group_data.

The input features used in training 𝑋 are ‘po_quantity’, ‘pl_deliv_time’, ‘placed_days_in_advance’,

‘Material Sourcing Complexity’, ‘Multi-sourcing’, ‘Supplier Relationship’, ‘Month’, ‘or-

der_unit’, ‘material_category’, ‘country_match’, and ‘region_match’. The target variable 𝑦

is the ‘actual_LT’ column.

Model Selection

Explainability was a priority in model selection; therefore, the following models are

considered: light GBM regressor, XGB regressor, random forest regressor, linear regression
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and lasso regression. The dataset for training contained a total of 78,913 points with 46,027

points for the non-BOM cluster and 32,886 points for the BOM cluster. Algorithm 2 is used

to select these models. In this algorithm, 𝛼 are the hyperparameters of the selected model

type. Details of the hyperparameters can be found in Table A.1 in the appendix.

Algorithm 2 get_model_params
!h

procedure get_model_params(model_type)
2: if model_type equals ‘lgb’ then

𝛼 = LGBMRegressor hyperparameters
4: else if model_type equals ‘xgb’ then

𝛼 = XGBRegressor hyperparameters
6: else if model_type equals ‘rf’ then

𝛼 = RandomForestRegressor hyperparameters
8: else if model_type equals ‘linear’ then

𝛼 = LinearRegression hyperparameters
10: else if model_type equals ‘lasso’ then

𝛼 = Lasso hyperparameters
12: end if

return 𝛼
14: end procedure

Training and Testing

The following approach is used to train and test the models. A 70/30 time series split

is used to demarcate the training and testing dataset. The hyperparameter tuning for each

model is based on the hyperparameters as defined for each model in Table A.1. The model

training is cluster based; models are built for BOM materials separately from non BOM

materials.

The evaluate_group function is used to evaluate the training and test data performance

as shown in Algorithm 3. In this algorithm, [𝛼] are the hyperparameters of the selected

model type obtained from the get_model_params function, [𝛽] are the predicted values for

the training set 𝑦train obtained using the best_model, and [𝛾] are the predicted values for the

test set 𝑦test obtained using the best_model.

Performance Evaluation

The MAE, MSE, RMSE and R² score are used to evaluate the model performance for
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Algorithm 3 evaluate_group
1: procedure evaluate_group(BOM, group_data, model_type)
2: (𝑋, 𝑦) = Call preprocess_data with group_data
3: Split 𝑋 and 𝑦 into training and testing sets, store in 𝑋train, 𝑋test, 𝑦train, 𝑦test

4: 𝛼 = Call get_model_params with model_type
5: Initialize model with 𝛼
6: Initialize GridSearchCV with model and 𝛼, store in grid_search
7: Fit grid_search with 𝑋train and 𝑦train

8: best_model = Best model from grid_search
9: 𝛽 = Predict 𝑦train values using best_model

10: 𝑟2train = Calculate R-squared score of 𝑦train and 𝛽
11: 𝛾 = Predict 𝑦test values using best_model
12: 𝑚𝑎𝑒 = Calculate mean absolute error of 𝑦test and 𝛾
13: 𝑚𝑠𝑒 = Calculate mean squared error of 𝑦test and 𝛾
14: 𝑟𝑚𝑠𝑒 = Calculate root mean squared error from 𝑚𝑠𝑒
15: 𝑟2test = Calculate R-squared score of 𝑦test and 𝛾
16: return 𝑚𝑎𝑒, 𝑚𝑠𝑒, 𝑟𝑚𝑠𝑒, 𝑟2train, 𝑟2test, best_model, 𝑋train, 𝑦train

17: end procedure

the five models used in training. The principle and formulas for these evaluation metrics

have been described in Chapter 2. After training and testing, a summary of the performance

evaluation results are shown in Table 3.2.

Model BOM MAE MSE RMSE 𝑅2 train 𝑅2 test

Results for the Non-BOM Cluster

XGBoost no 5.84 292.09 17.09 0.87 0.81
Random Forest no 6.98 270.12 16.44 0.97 0.82

Light GBM no 6.03 300.87 17.35 0.83 0.80
CatBoost no 5.68 241.80 15.55 0.87 0.84

Results for the BOM Cluster

XGBoost yes 38.40 5138.22 71.68 0.90 0.76
Random Forest yes 54.02 7457.08 86.35 0.98 0.65

Light GBM yes 38.78 4997.41 70.69 0.88 0.76
CatBoost yes 37.54 4887.67 69.91 0.88 0.77

Table 3.2: Model Performance Comparison on Test Data for Lead Time Prediction

Comparing all the models with the 𝑅2 performance metric, as shown in Figure 3-2, the

CatBoost models have the best performance for both clusters. The XGBoost and LightGBM

come very close to performing as well as CatBoost. CatBoost also has better performance
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when comparing other metrics in Table 3.2

Figure 3-2: Model Performance Comparison for BOM and Non-BOM

Feature Importance

The feature importance is generated based on the output of the trained models. The

feature importance of the highest performing model, CatBoost is shown in Figures 3-3 and

3-4. We see that the planned or agreed lead time has the highest importance, as expected.

In both clusters, the planned lead time is an important feature. However, more importantly,

we also see that whether an order is placed on time, early, or late (designated by the

placed_days_in_advance feature) has a significant impact on the performance of the model.

Lead Time and Variance Prediction

The model predicts the expected actual lead times for the raw material. However, the

safety stock formula still requires the variance of the lead time. Due to the fact that the

planned lead time at the time of order placement has historically changed and the actual lead

times are compared to the planned, performing a mathematical calculation of the historical

variance will build in bias into the model, because it does not account for the target lead

64



Figure 3-3: CatBoost Model Performance for Non-BOM Cluster

Figure 3-4: CatBoost Model Performance for BOM Cluster

time at the time of order placement. Therefore, since all these data points are part of the

training sample for the model, the likely variance of the prediction based on this historical

performance can be estimated using bootstrap aggregation or model residuals.

Data Preparation for New Prediction

To run the new predictions using the trained models, the data needs to be thoroughly

processed and passed through the prediction functions in the same format and type as

the data used in model training. Therefore, Algorithm 4 is implemented to ensure proper
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preprocessing of new data. In this algorithm, 𝛼] represents the data after converting spe-

cific columns (‘pl_deliv_time’, ‘placed_days_in_advance’, ‘Material Sourcing Complexity’,

‘Multi-sourcing’, ‘Supplier Relationship’) to numerical values. [𝑋] indicates the selected

necessary columns from 𝛼.

The dummy variables 𝛽 are created from the ‘order_unit’ column in 𝛼.

The dummy variables 𝛾 are created from the ‘MATERIAL CATEGORY’ column in 𝛼.

The dummy variables 𝛿 are created from the ‘PRIMARY_SOURCE’ column in 𝛼.

The dummy variables 𝜖 are created from the ‘COUNTRY_MATCH’ column in 𝛼.

The dummy variables 𝜁 are created from the ‘REGION_MATCH’ column in 𝛼.

Algorithm 4 preprocess_data
1: procedure preprocess_data(data)
2: Convert columns in data to numeric values, store in 𝛼
3: 𝑋 = Select necessary columns from 𝛼
4: Create dummy variables from categorical columns in 𝛼, store in 𝛽, 𝛾, 𝛿, 𝜖, 𝜁
5: 𝑋 = Concatenate 𝑋 with 𝛽, 𝛾, 𝛿, 𝜖, 𝜁
6: Scale numerical features in 𝑋 if necessary
7: return 𝑋
8: end procedure

Model Residuals Based Prediction

A way to enhance prediction accuracy is utilization of residuals from a previously trained

model. A residual is the difference between the observed value and the value predicted by

the trained model [85]. Residuals help reveal patterns that the model has not captured.

The prediction intervals are calculated using the percentiles of the residuals. Prediction

intervals provide a range within which future observations are expected to fall with a certain

probability, taking into account the variability that the model has shown on the training data.

The residual_prediction function implemented in Algorithm 5 implemented below is adjusts

new predictions based on the residuals of the model, and then calculates the prediction

intervals to derive the the lead time variance [84].

Bootstrap Aggregation(Bagging)

Bootstrapping is a method of generating prediction intervals for stochastic independent

variables which does not assume normal forecast errors, and explicitly incorporates the
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Algorithm 5 residual_prediction
1: procedure residual_prediction(row, results_df)
2: 𝑋new ← Call preprocess_data with row
3: 𝛼← Extract ‘BOM’ from row
4: 𝛽,𝑋𝛼, 𝑦𝛼 ← Extract ‘model’, ‘X_train’, ‘y_train’ from results_df corresponding to 𝛼
5: for column in 𝑋𝛼 columns do
6: if column not in 𝑋new columns then
7: Add column to 𝑋new and fill with zeros
8: end if
9: end for

10: Update 𝑋new to only include columns present in 𝑋𝛼

11: Fit 𝛽 with 𝑋𝛼 and 𝑦𝛼
12: 𝑦predicted_alpha ← Predict using 𝛽 on 𝑋𝛼

13: 𝛾 ← 𝑦𝛼 − 𝑦predicted_alpha

14: 𝑦pred ← Predict using 𝛽 on 𝑋new

15: Calculate prediction intervals using 𝛾 percentiles
16: 𝛿 ← Calculate standard deviation of 𝛾
17: return Series with row details, 𝑦pred, 𝛾, mean of 𝑦pred, prediction intervals, and 𝛿
18: end procedure

additional uncertainty due to estimation of exogenous variables [57]. Boostrapping can help

improve the forecast accuracy of machine learning models relative to traditional methods [23].

The technique helps to reduce variance without increasing bias of the predictions and therefore

results in more accurate point predictions [68]. Bootstrapping is a versatile and practical

technique that does not make rigid assumptions about data distribution and is applicable

to various types of data and machine learning models. However, it can be computationally

intensive to implement, especially with large datasets and complex models. It also may not

work well if the sample size is too small, and assumes that the sample is a representative of

the population, which is not always true. A way to combat the sampling challenge is to run

many iterations.

To make new predictions, the bootstrap prediction technique is used to generate an

ensemble of predictions for a new observation, each made by a model trained on a different

resample of the training data. The distribution of these predictions is then used to estimate

the uncertainty of the prediction for the new observation.

Algorithm 6 implements the bootstrap aggregation methodology to generate future

predictions.
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Algorithm 6 bootstrap_prediction
1: procedure bootstrap_prediction(row, results_df, n_iterations)
2: 𝑋new = Call preprocess_data with row
3: 𝛼 = Extract ‘BOM’ from row
4: 𝛽,𝑋train, 𝑦train = Extract ‘model’, ‘X_train’, ‘y_train’ from results_df corresponding

to 𝛼
5: Update 𝑋new to include any missing columns present in 𝑋train, fill with zeros
6: Update 𝑋new to only include columns present in 𝑋train

7: Initialize an empty list, 𝛾
8: for i in range(n_iterations) do
9: (𝑋resample, 𝑦resample) = Resample 𝑋train and 𝑦train

10: Fit 𝛽 with 𝑋resample and 𝑦resample

11: 𝑦pred = Predict values using 𝛽 and 𝑋new

12: Add 𝑦pred to 𝛾
13: end for
14: 𝛾 = Convert 𝛾 to array
15: 𝛿 = Calculate percentile of 𝛾
16: 𝜁 = Calculate standard deviation of 𝛾
17: return Series with row details, predictions, mean prediction, prediction interval, and

prediction standard deviation
18: end procedure

Here,

𝛼 is the identifier ‘BOM’ extracted from the input data row, used to select the corre-

sponding model and training data from the results dataframe (results_df),

𝛽 represents the predictive model (best_model) retrieved from the results dataframe

(results_df), which corresponds to the ‘BOM’ identifier found in the input data row,

𝛾 is a list of predicted outcomes (predictions_list) generated from multiple bootstrap-

ping iterations, using the model (best_model) and the processed input data row,

𝛿 represents the prediction interval, calculated based on the percentile of the bootstrapped

predictions list (𝛾 or predictions_list),

𝜁 indicates the standard deviation of the predictions list (𝛾 or predictions_list),

measuring the variability of the bootstrapped predictions.

𝑋new refers to the processed features obtained from the input data row, formatted to

match the model’s (best_model) input requirements, and finally,

𝑋train, 𝑦train denote the training dataset extracted from the results dataframe (results_df),
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which is associated with the ‘BOM’ identifier from the input data row and used for

model retraining and prediction.

It is recommended that bootstrap aggregation be used if there is enough processing power

and storage to run the predictions. However, because the lead time forecasting is cluster

based with different materials in a cluster, a more advanced technique like bootstrapping

is preferred in order to predict the variance, because the assumption that the residuals are

homoscedastic and normally distributed, meaning that they have the same variance for all

predicted values, does not hold for this use case. Also, since the lead time predictions only

need to be run periodically, the additional computational cost for boostrapping is marginal.

3.2.3 Step 2: Demand Forecasting for Raw Materials

The importance of and methods for demand forecasting have been described in detail in

Section 2.1. In order to manage stock inventory to limit losses, organisations have historically

utilised time series forecasting, machine learning algorithms and optimization to predict

demand. The longer the lead time, the lower the forecast accuracy. Therefore, to mitigate

the effects of long lead times, it is important to minimize demand forecast inaccuracy [35].

For the use case of the raw materials, the following models have been selected: light gradient

boosting machine (LightGBM), extreme gradient boosting (XGBoost), Random Forest and

categorical boosting (CatBoost). These models have been selected because they can handle

large datasets, they can capture complex relationships between features and the target

variable, they are robust to overfitting and they have shown high predictive accuracy in use

cases in the literature. Random forest and the boosting algorithms (XGBoost, LightGBM,

CatBoost) use ensemble learning, which combines multiple models to improve predictions and

reduce variance. CatBoost in particular is able to handle categorical data without encoding.

Also, it is easier to explain, interpret and understand the feature importance of these models

than in neural network-based models. In structured data prediction type problems, decision

tree-based algorithms are also more efficient than neural network-based algorithms [60].
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Data Preprocessing

Dataset

The major data sources for the forecasting models are the historical demand plan and

material details from an internal Amgen database managed by Kinaxis Rapid Response [47],

and actual consumption from systems applications and products in data processing (SAP)

with duration August 2019 to June 2023. These datasets are stored in the company’s

enterprise data lake and were queried using SQL. All datasets were combined and merged on

the material and plant ID to give a combined dataset with 384,911 data points or rows of

data. The combined dataset contained the following columns as shown in Table 3.3.

Feature Name Description Type
total_demand Demand plan from the FDP forecast

bill of materials
Integer

material ID of the material String
material description Description of the material String
plant Manufacturing Plant in which the ma-

terial is utilized
String

material category Material category String
material_sub_group Sub group of the material in the cate-

gory
String

year_month Date when the forecast value is required Date
month Month when the forecast value is re-

quired
Integer

months_offset How many months in advance the fore-
cast was made

Integer

uom Unit of measurement in which the de-
mand plan of the raw material is made

String

hist_consumption Actual consumption for each
year_month (target variable)

Integer

Table 3.3: Description of Dataset Features for Demand Forecasting

Data Preprocessing

The following preprocessing steps were performed on the data:

1. The materials were filtered to only contain BOM materials and clustered using their

material category.

2. All of the columns were converted to their appropriate data types.
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3. Null values were removed.

Algorithm 7 implements a function created to ensure that all of the required features

in the model are properly preprocessed and encoded where appropriate before the model is

trained. Also, because the CatBoost algorithm is going to be run, which does not require

encoding of categorical variables, that consideration is accounted for in the preprocessing

step.

Algorithm 7 Preprocess Data
1: procedure PreprocessData(group_data, model_type = ‘lgb’)
2: Extract month from group_data[‘month’]
3: group_data[‘month’] ← Convert to integer
4: cat_cols← {‘material_sub_group’, ‘uom’, ‘month’}
5: num_cols← {‘total_demand’, ‘standard_price’, ‘months_offset’}
6: for each col in num_cols do
7: group_data[col] ← Convert to float
8: end for
9: X← group_data[num_cols + cat_cols]

10: if model_type ̸= ‘catboost’ then
11: for each col in cat_cols do
12: dummies← One-Hot Encode X[col] with prefix col
13: X← Concatenate X (after dropping col) and dummies
14: end for
15: end if
16: Clean column names of X to remove special characters
17: y← group_data[‘sap_hist_consumption’]
18: return X, y
19: end procedure

Model Training and Testing

The following function was used train and test the models. A 80/20 time series split was

used to demarcate the training and testing dataset. The hyperparameter tuning for each

model were based on the hyperparmaters as defined in Table A.2. The model training was

cluster based, models were built for BOM materials separately from non BOM materials.

The function evaluate_group works as follows:

1. Extract features and target variable using the preprocess_data function.

2. Split the data into training and test sets using a predefined ratio.
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3. Based on the model_type, select the appropriate parameter set.

4. Use GridSearchCV for hyperparameter tuning and train the model.

5. Predict on both training and test data to evaluate performance.

6. Return performance metrics such as MAE, MSE, RMSE, and 𝑅2.

Performance Evaluation

The MAE, MSE, RMSE and R² score are used to evaluate the model performance for the

five models used in training. The principles and formulas for these evaluation metrics have

been described in Chapter 2. A summary of the performance evaluation results are shown in

Table 3.4, based on the R² metric. The model with the best performance varies depending

on the cluster data.

Table 3.4: Model Performance by Cluster

Random Forest Cat Boost XG Boost Light GBM

cluster train 𝑅2 test 𝑅2 train 𝑅2 test 𝑅2 train 𝑅2 test 𝑅2 train 𝑅2 test 𝑅2

GM0100 0.83 0.57 0.55 0.47 0.76 0.57 0.81 0.58
GM0200 0.94 0.73 0.80 0.72 0.98 0.74 0.93 0.76
GM0300 0.96 0.68 0.83 0.71 0.97 0.65 0.95 0.65
GM0600 0.87 0.59 0.79 0.70 0.95 0.73 0.90 0.67
GM0700 0.95 0.63 0.93 0.78 0.98 0.81 0.96 0.81
GM0800 0.97 0.73 0.85 0.65 0.90 0.72 0.97 0.74
GM1000 0.97 0.76 0.99 0.77 0.95 0.75 0.97 0.67
GM1100 0.95 0.78 0.88 0.51 0.95 0.75 0.97 0.73

3.2.4 Demand Normalisation using Forecast Error

The demand forecasting models work well for most clusters except for one cluster that

represents about 22% of the materials, as a result of data gaps in the archive for that category.

Therefore, a stop gap was developed for the material category and model that had sub-par

performance. As earlier explained, the major demand forecasting happens at the finished

drug product level, and that is cascaded down to the raw materials required. There have been

instances of historical forecast inaccuracy at the FDP level which affects the raw material

demand plan. Also, sometimes, the production schedule and defects increases or decreases
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the required raw materials.

Therefore, to mitigate these risks, the historical forecast accuracy, using the performance

metric, mean absolute percentage error (MAPE), with the lead time offset for each material

is used to normalise the future demand plan. MAPE is a measure used to assess the accuracy

of forecasting methods in predicting values. It expresses the error as a percentage, making it

easy to understand when comparing the accuracy of different models, especially when the

scales of the datasets differ. MAPE is defined in Equation 3.1.

MAPE =
100

𝑛

𝑛∑︁
𝑡=1

⃒⃒⃒⃒
𝐴𝑡 − 𝐹𝑡

𝐴𝑡

⃒⃒⃒⃒
(3.1)

where 𝑛 represents the number of forecasted points, 𝐴𝑡 is the actual value at time 𝑡, 𝐹𝑡

denotes the forecasted value at time 𝑡, and |·| signifies the absolute value.

The normalisation is done in the following steps:

1. The historical demand plan for each month with the monthly offset (i.e., how many

months in advance the demand was planned) is collated from the current month over

the period of the lead time and smoothed out using exponential smoothing as defined in

the Algorithm 8. This is done to capture the variability in the plan over the period of

the lead time.

In this algorithm,

𝛼 is the filtered dataframe based on material_id, plant_id, and max_offset; and

𝛽 is the resulting dataframe after applying the smoothing function.

2. The monthly forecast error is then calculated by deducting the smoothed forecast from

the actual consumption.

forecast_error = SmoothedForecast− sap_hist_consumption (3.2)

3. The MAPE is then calculated over the period of the lead time of the material using the

Algorithm 9.

Here,
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Algorithm 8 smooth_forecasts
1: procedure smooth_forecasts(df, material_id, plant_id, max_offset)
2: 𝛼← Filter df for material_id, plant_id, and months_offset ≤ max_offset
3: Sort 𝛼 by months_offset and year_month
4: if 𝛼 is empty then
5: return Empty DataFrame with columns year_month, SmoothedForecast, material,

plant
6: end if
7: procedure exp_smooth(row)
8: Set decay_rate to 0.5
9: Calculate weight as decay_raterow[months_offset]

10: return weight × row[total_demand]
11: end procedure
12: Add WeightedForecast to 𝛼 by applying exp_smooth
13: Add Weight to 𝛼 as 0.5months_offset

14: 𝛽 ← Calculate SmoothedForecast for each year_month in 𝛼
15: Convert 𝛽 to DataFrame with columns year_month and SmoothedForecast
16: Add columns material and plant to 𝛽 with values material_id and plant_id respectively
17: return 𝛽
18: end procedure

𝛼 is the list containing tuples of calculated values for each row in the group,

𝛽 is the mean prediction value of the current row,

𝛾 is the lead time in months, derived from the mean prediction,

𝛿 is the starting month index for calculations,

𝜖 represents absolute forecast errors for the current row,

𝜁 represents forecast errors for the current row,

𝜂 is the mean absolute percentage error for each forecast value,

𝜃 is the average mean absolute percentage error, and

𝜄 is the standard deviation of forecast errors.

4. The MAPE is then applied to adjust the demand plan.

The disadvantage of this approach is the normalised demand plan could be higher than

the consumption. The historical error, even though it is based on the most recent period

might not be an accurate representation of future errors especially for products that are in

decline or growth lifecycles. However, this is only a stop gap until a future time when the

data issues have been fixed and historical data can be used as a source of benchmark.
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Algorithm 9 calculate_mape_and_std_dev
1: procedure calculate_mape_and_std_dev(group)
2: Sort group by year_month
3: Reset group’s index
4: Initialize an empty list 𝛼
5: for each row in group do
6: 𝛽 ← row’s mean_prediction
7: 𝛾 ← ⌈ 𝛽

30
⌉

8: 𝛿 ← max(index− 𝛾 + 1, group’s minimum index)
9: 𝜖← absolute values of forecast_error from 𝛿 to index in group

10: 𝜁 ← forecast_error values from 𝛿 to index in group
11: 𝜂 ← 𝜖

absolute value of row’s sap_hist_consumption
12: 𝜃 ← average of 𝜂 × 100
13: 𝜄← 𝜁’s standard deviation
14: if length of 𝜖 is less than 𝛾 then
15: flag ← “incomplete”
16: else
17: flag ← “complete”
18: end if
19: Append tuple to 𝛼 with values: material, plant, year_month, SmoothedForecast,

sap_hist_consumption, mean_prediction, prediction_std, 𝛾, 𝜃, 𝜄, flag
20: end for
21: return DataFrame from 𝛼 with specified columns
22: end procedure
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3.2.5 Step 3: Multicriteria and Service Level Segmentation

Organisations typically save a large portion of their total investment via optimal inventory

control. Inventory control does not just cover financial savings, it also covers space and

manpower savings, and process simplification and transparency [66]. Typical methods used

for inventory control include ABC, XYZ, VED, FSN, HML, SDF, GOLF, SOS as pictures in

Figure 3-5 [61].

Figure 3-5: Inventory control Methods [66]

In order to decide which methods to use or how to combine them, it is important to

understand the application and usage. A description of each method and its application is

shown in Table 3.5.

Analysis
Category

Criteria Application

ABC Annual Usage Value Production Materials Classification
XYZ Inventory investment A category status
HML Unit price Manage high cost items
VED Criticality Managing inventory spare parts
FSN Dispose non-moving

inventory
Managing obsolescence

SDE Sourcing Difficulties Monitor availability and stock levels
GOLF Procurement Source

and procedure
Canalizing Agency can be used

SOS Seasonality Strategise purchase to buy in harvest season

Table 3.5: Inventory Control Methods
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Inventory Control Methods

ABC Analysis

The ABC analysis, popularly known as Always Better Control [61] [27], is a widely used

classification type that groups products and materials based on their frequency of usage and

value. It is the most popular inventory control methodology adopted as Pareto’s Law [61] [83].

The classification strategy is shown in Table 3.6. The annual consumption value is calculated

as the multiplication of the annual demand and the item cost per unit. For A items, it is

recommended that there is a close day to day control; for B items, periodic review; and for C

items, infrequent review.

Category % of Items % of Annual Consumption Value Control
A About 15-20% About 70%-80% Maximum
B About 30% About 15%-20% Moderate
C About 50%-55% About 5%-10% Minimum

Table 3.6: ABC Classification [66][61][48]

XYZ Analysis

The XYZ approach is a dynamic extension of the ABC analysis [66]. The XYZ analysis

helps to evaluate the fluctuations in demand. The coefficient of variation is used as a basis

for this split and is typically 20%: 30%: 50% for 𝑋, 𝑌, 𝑍, respectively.

Figure 3-6: XYZ Patterns of Variability [83]

The X category includes materials that have low variability or fluctuations, the Y category

describes materials that have substantial or medium fluctuations in demand, and the Z

category is used for materials that have irregular and highly variable demand, as illustrated
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in Figure 3-6. The ABC-XYZ analyses are typically combined as shown in Table 3.7. The

recommended inventory levels for the ABC-XYZ classification have been denoted in the

Table 3.8.

A B C

X
High Value Percentage
Continuous Demand
High Predictive Value

Average Value Percentage
Continuous Demand
High Predictive Value

Low Value Percentage
Continuous Demand
High Predictive Value

Y
High Value Percentage
Fluctuating Demand

Average Predictive Value

Average Value Percentage
Fluctuating Demand

Average Predictive Value

Low Value Percentage
Fluctuating Demand

Average Predictive Value

Z
High Value Percentage

Irregular Demand
Low Predictive Value

Average Value Percentage
Irregular Demand

Low Predictive Value

Low Value Percentage
Irregular Demand

Low Predictive Value

Table 3.7: ABC-XYZ Segmentation [66][83]

A B C
X Low Inventory Low Inventory Low Inventory
Y Low Inventory Medium Inventory High Inventory
Z Medium Inventory Medium Inventory High Inventory

Table 3.8: Recommended ABC-XYZ Classification Inventory Levels [83]

SDE (Scarce, Difficult, Easy) Analysis

The SDE methodology is used to classify materials or products based on their availability

in the market. This helps facilitate and formulate appropriate procurement strategies based

on each segment.

• Scarce - This includes items that are in short supply, single source, or are imported

through government agencies. They are typically raw materials, spare parts, and

imported items [61].

• Difficult - They are not easily available locally and have to be procured from distant

places [61].

• Easy - These are items that are readily available and supply typically exceeds demands

for these items [61].
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HML (High, Medium, Low) Analysis

The HML methodology uses price to classify materials. To classify these items, they are

tabulated in the descending order of their unit price. The HML analysis helps managers

decide on their buying policies and ensures that more quantities of H and M items are not

ordered due to their high price [61]. Their typical breakdown and composition is shown in

Table 3.9.

Category Cost Scale % of Items
H High 10% - 15%
M Medium 20% - 25%
L Low 60% - 70%

Table 3.9: HML Analysis [61]

FSN Analysis The FSN analysis method of classification is used to identify surplus/non-

moving items and active items which have to be reviewed on a regular basis [61]. Here, F

indicates fast moving, S indicates slow moving and N indicates non moving.

VED Analysis

The VED analysis is typically used for maintenance spare parts. Here, V stands for

Vital, and is used to classify items for which non-availability cannot be tolerated and a large

stock of inventory is required to be maintained. E (Essential) is used for items in which

non-availability can be tolerated for a few days, and which have alternative sourcing. D

(Desirable) is used to classify items whose non-availability can be tolerated for longer periods

and would not cause an instant loss in production [61].

Applying Segmentation to Service Level

In many industries, such as information technology (IT) [83], Pharmaceuticals [26] [36] [12] [52] [31] [62],

consumer goods [8] and automotive [33], multicriteria and multiple inventory control ap-

proaches have typically been used to manage inventory and improve operational efficiency

from raw material to finished goods. Due to the peculiarity of the raw materials in the Amgen

portfolio and how risk averse Amgen is, we define three criteria, leveraging the different

inventory control methods in Section 3.2.5 and use them to segment the materials in order to

determine appropriate service level (SL). The criteria are the variability, revenue impact, and
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ABC segmentation. The breakdown of service level segmentation based on these criteria is

shown in Table 3.10.

Variability Revenue Impact Scarcity
ABC Segment Base SL. Low Med High Low Med High Y/N

A 95% 0% +1% +2% 0% 1% +2% 99.90%
B 98% -1% 0% +1% -1% 0% +1% 99.90%
C 99% -2% -1% 0% -2% -1% 0% 99.90%

Table 3.10: Multi Criteria Segmentation for Amgen Raw Materials

The ABC segment represents the base service level. The variability and revenue impact

factors serve as increments or decrements on the base service level. The mode in implementa-

tion is to cross reference variability and revenue impact with the ABC segment and apply

the one increment that yields the highest service level. Further details about these criteria

are discussed in the ensuing paragraphs.

ABC Segmentation: The ABC segmentation is based on the holding cost, which is the

sum of the average yearly storage cost and the discounted cost of inventory.This percentile

breakdown of each segment is shown in Table 3.11.

Category Percentage
A Top 10%
B Second 10%
C Remaining 80%

Table 3.11: ABC Segmentation for Amgen Raw Materials

Variability: The variability (low, medium and high) is defined using the lifecycle of the

main finished drug product that the raw material is used for. The breakdown is delineated in

Table 3.12.

Category Phase
High Launch
Med Grow
Low Defend, Decline

Table 3.12: Variability Designation for FDP Lifecycle

Revenue Impact: The revenue impact is based on the distribution in Table 3.13.
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Category Value USD
Low < 500 Mln
Med 500 Mln - 1 bln
High > 1 bln

Table 3.13: Revenue Impact Category for the Raw Materials

Scarcity: Some of the raw materials are custom or single sourced, which means that there

is a greater risk and consequence of stock out, especially for the high revenue impact ones.

These raw materials are being classified as scarce material, leveraging the SDE framework,

and are designated to be at the highest service level, 99.90%, since the company cannot risk

stocking out.

It is important to think of the service level segmentation as management’s control lever

to manage risk and variability. While Table 3.10 recommends a service level for a particular

raw material, the ultimate decision rests with the management team to accept, reduce or

elevate the level of risk of stock out for the raw material.

3.2.6 Step 4 and 5: Distribution Fitting and Monte Carlo Simulation

The outputs of the demand forecasting model, lead time forecasting model and service level

segmentation are combined into a Monte Carlo simulation. Before the information is fed into

the simulation, the distribution of demand is fitted during the period of the lead time. This is

crucial because the safety stock Equation 2.4) is based on the assumption that demand follows

a normal distribution. However, since not all raw materials have demand that neatly fits this

pattern, we cannot directly apply the normal distribution model. Instead, we need to tailor

the distribution model to each material’s actual demand pattern during the lead time. Unlike

traditional methods that often rely on the assumption of normally distributed demand, this

approach recognizes that the demand patterns for raw materials can vary significantly and

may not always follow a normal distribution. By fitting the demand distribution during the

lead time period for each raw material individually, the unique characteristics and variability

of demand are captured, ensuring a more accurate and realistic representation in the Monte

Carlo simulation. This is accomplished using Algorithm 10.

The outputs of the demand forecasting model, lead time forecasting model and service
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level segmentation are combined into a Monte Carlo simulation.

Before the information is fed into the simulation, the distribution of demand is fitted

during the period of the lead time. This is crucial because the safety stock Equation 2.4) is

based on the assumption that demand follows a normal distribution. However, since not all

raw materials have demand that neatly fits this pattern, we cannot directly apply the normal

distribution model. Instead, we need to tailor the distribution model to each material’s actual

demand pattern during the lead time. This is accomplished using Algorithm 10.

Algorithm 10 Get Best Distribution
1: procedure GetBestDistribution(𝑑𝑎𝑡𝑎)
2: 𝑓 ← Fitter(𝑑𝑎𝑡𝑎)
3: Call 𝑓.fit()
4: 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡← 𝑓.get_best()
5: (𝑏𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒, 𝑏𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑝𝑎𝑟𝑎𝑚𝑠)← first item of 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡
6: return (𝑏𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒, 𝑏𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑝𝑎𝑟𝑎𝑚𝑠)
7: end procedure

The output of the distribution fitting of the demand over the lead time period, the

lead time and variance data, and the service level are fed into the Monte Carlo simulation

Algorithm 11. In this algorithm, 𝜁 represents the confidence levels for safety stock calculation

and 𝜈 represents the number of simulations in the Monte Carlo approach.

The output of the Monte Carlo simulation is the recommended distribution of the safety

stock level.The cost benefit analysis can be performed to help management better understand

the cost of stock out. Implementation of this would be demonstrated in Chapter 4.

Smoothing Safety Stock Target Changes

In practical inventory management, abrupt changes in safety stock targets from one month to

another can be challenging to implement effectively. For example, if the safety stock target

for a raw material is set at 100 units in month 1 and then reduced to 50 units in month 2, it

may not be feasible to achieve this reduction immediately. The excess inventory that might

have been been procured cannot be instantly eliminated and will remain in stock until it is

consumed through normal production processes.

To address this practical limitation, a smoothing mechanism is created as an element of
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Algorithm 11 Monte Carlo Simulation for Safety Stock
1: function MonteCarloSimulation(row, 𝜈 = 1000)
2: 𝜁 ← [90, 95, 97, 98, 99.9]
3: Initialize results map with 𝜁 as keys and empty lists as values
4: if row[‘best_distribution_params’] is None or equals ‘0’ then
5: return None
6: end if
7: for sim = 1 to 𝜈 do
8: random_lead_time_mean ← RandomNormal(row[‘Mean’], row[‘Std’])
9: distribution_name ← row[‘best_distribution_name’]

10: distribution_params← ConvertStringToOriginal(row[‘best_distribution_params’])
11: Print “Error occurred with parameters”
12: return None
13: distribution ← GetDistribution(distribution_name)
14: if distribution_params is a dictionary then
15: dist_sample ← DistributionSampleWithParams
16: dist_std ← DistributionStdWithParams
17: random_forecast_mean ← dist_sample(distribution, distribution_params)
18: demand_std ← dist_std(distribution, distribution_params)
19: else
20: dist_sample ← DistributionSampleWithArgs
21: dist_std ← DistributionStdWithArgs
22: random_forecast_mean ← dist_sample(distribution, distribution_params)
23: demand_std ← dist_std(distribution, distribution_params)
24: end if
25: demand_std ← row[‘forecast_std’]
26: for each 𝑧 in 𝜁 do
27: lead_term ← max(0, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑙𝑒𝑎𝑑_𝑡𝑖𝑚𝑒_𝑚𝑒𝑎𝑛)× 𝑑𝑒𝑚𝑎𝑛𝑑_𝑠𝑡𝑑2

28: forecast_term ← max(0, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡_𝑚𝑒𝑎𝑛)2 × 𝑟𝑜𝑤[‘𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒′]
29: safety_stock ← 𝑧-percentile ×

√
𝑙𝑒𝑎𝑑_𝑡𝑒𝑟𝑚+ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡_𝑡𝑒𝑟𝑚

30: Append safety_stock to results under key 𝑧
31: end for
32: end for
33: return results
34: end function
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the proposed methodology. The smoothing process aims to gradually adjust the safety stock

targets over time, avoiding drastic changes that may be difficult to implement in real-world

scenarios. By considering the previous month’s safety stock level and the current month’s

target, the smoothing mechanism calculates a more achievable safety stock value for each

month. The smoothed safety stock target for a given month is determined using Equation 3.3.

smoothed_ss_target = 𝛼× current_month_target + (1− 𝛼)× previous_month_ss (3.3)

where 𝛼 is a smoothing factor between 0 and 1, which determines the weight given to the

current month’s target and the previous month’s safety stock level. A higher value of 𝛼 gives

more weight to the current month’s target, while a lower value of 𝛼 gives more weight to the

previous month’s safety stock level.

This smoothing approach ensures a more gradual transition between safety stock targets,

aligning with the practical constraints of inventory management. It allows for a more realistic

implementation of the proposed methodology, considering the limitations of reducing excess

inventory levels instantaneously.

The smoothing mechanism has some limitations that may impact its effectiveness in

real-world scenarios over time. The effectiveness of the smoothing mechanism is also heavily

dependent on the choice of the smoothing factor 𝛼. There is also a potential risk of over-

smoothing. To address these limitations, adaptive smoothing factor that adjusts based on

the magnitude and direction of changes, incorporating external factors can be implemented.

The smoothing parameters needs to be monitored and adjusted over time. The efficacy of

the mechanism can also be improved when combined with safety stock optimization models,

like the model that is described in Step 4. The methodology is however designed to allow the

team have the capability to decide whether or not to use the smoothing mechanism for the

Monte Carlo simulation results.
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3.3 Disruption/What-If Framework

Managing a multiechelon supply chain internal and supply risks is already a herculean

task. However, in the event of a disruption, it becomes an almost impossible task as the

sustainability of the supply chain could be compromised due to reactive measures to the

disruption [24]. Major disruptions that have negatively affected most industries across the

globe include massive floods, chemical explosions, industrial strikes, extreme winters [24],

and most recently the COVID pandemic. The COVID-19 and lockdown measures resulted

in increased demand of domestic products. This led to the bullwhip effect, especially for

companies and industries that had not succeeded in predicting the increase in demand [63].

In order to mitigate or manage such disruptions and help the company make more informed

decisions to minmize stock outs, a framework is developed to guide the company through

such scenarios.

The disruption simulation framework is designed to manage inventory and safety stock

levels in the event of potential disruptions, such as pandemics or natural disasters. This

framework extends beyond existing studies by explicitly modeling the interactions and

dependencies between raw materials. While previous works often treat raw materials in

isolation, this framework captures the complex network of relationships and potential cascading

effects of disruptions. By incorporating supply chain network dynamics and considering

the propagation of risks across multiple tiers, the simulations provide a more realistic and

comprehensive assessment of the impact of disruptions on inventory levels and overall supply

chain performance. The disruption framework is delineated in the following steps.

Step 1: Risk Identification

• Supplier Failures: Identifying risks associated with the failure of suppliers, which

could be due to financial troubles, operational issues, or external events affecting the

supplier’s ability to deliver. Maintaining a risk register can help with this. Amgen

already has a risk management team that helps with risk identification.

• Pandemics & Natural Disasters (Black Swans): Recognizing the potential for

rare but high-impact events like pandemics and natural disasters that can disrupt

85



operations in unpredictable ways.

Step 2: Risk Assessment

• Leverage COVID data to provide historical maximum lead times: Using data

from the COVID-19 pandemic to understand the worst-case scenarios for supplier lead

times.

• Use Risk Matrix to quantify potential impact and likelihood (range of

probabilities): Employing a risk matrix to evaluate the severity of potential impacts

and their probabilities, providing a structured approach to risk assessment.

Step 3: Monte Carlo Simulation

• Use output of risk assessment (probabilities and impact): Utilize the output of

the risk assessment to as inputs into the Monte Carlo simulation, such as the likelihood

of certain events and their potential impacts on lead time.

• Run the simulation for each scenario and record the results: Perform the

simulation across various scenarios to understand the cost and volume implications and

the likelihood of stock out, helping to understand the range of potential outcomes.

This can be implemented using the Algorithm ??, where 𝜁 represents the confidence

levels for safety stock calculation, 𝜈 represents the number of simulations in the Monte Carlo

approach, 𝜋 represents the probability of a disruption and 𝜉 represents the potential impacts

of disruptions.

Step 4: Stochastic Programming (optimal safety stock level)

• Determining the decision variable (safety stock level).

• Objective function (minimize holding stock & minimize lost sales).

• Defining clear constraints (service level for each disruption scenario).
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Algorithm 12 Disruption Monte Carlo Simulation for Safety Stock
1: function DisruptionMonteCarloSimulation(row, 𝜈 = 1000, 𝜋 = 0.4, 𝜉 =

[1, 1.2, 1.5])
2: 𝜁 ← [90, 95, 97, 98, 99.9]
3: Initialize results map with 𝜁 as keys and empty lists as values
4: if row[‘best_distribution_params’] is None or equals ‘0’ then
5: return None
6: end if
7: for sim = 1 to 𝜈 do
8: random_lead_time_mean ← RandomNormal(row[‘Mean’], row[‘Std’])
9: random_lead_time_std ←

√︀
row[‘Variance’]

10: distribution_name ← row[‘best_distribution_name’]
11: distribution_params← ConvertStringToOriginal(row[‘best_distribution_params’])
12: Print “Error occurred with parameters”
13: return None
14: distribution ← GetDistribution(distribution_name)
15: if distribution_params is a dictionary then
16: random_forecast_mean ← DistributionSampleWithParams(distribution, dis-

tribution_params)
17: else
18: random_forecast_mean ← DistributionSampleWithArgs(distribution, distri-

bution_params)
19: end if
20: demand_std ← row[‘forecast_std’]
21: disruption_event ← RandomUniform(0, 1)
22: if disruption_event < 𝜋 then
23: disruption_impact ← RandomChoice(𝜉)
24: random_lead_time_mean × = disruption_impact
25: random_lead_time_std × = disruption_impact
26: end if
27: for each 𝑧 in 𝜁 do
28: variance_factor ← max(0, random_lead_time_mean) × demand_std2 +

max(0, random_forecast_mean)2 × random_lead_time_std2

29: safety_stock ← 𝑧 percentile value ×
√

variance_factor
30: Append safety_stock to results under key 𝑧
31: end for
32: end for
33: return results
34: end function
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Optimization Algorithm for Amgen Use Case

The main aim of the optimization algorithm is to minimize the total cost associated with a

particular level of safety stock, while ensuring that the safety stock is greater than or equal

to the maximum possible demand. The optimization problem is formulated as:

minimize
𝑆𝑧𝑖

𝐶(𝑆𝑧𝑖) = ℎ× 𝑆𝑧𝑖

subject to 𝑆𝑧𝑖 ≥ 𝐷max, ∀𝑧 ∈ 𝑍, 𝑖 ∈ {1, 2, . . . , 1000}

where: ℎ is the holding cost per unit,

𝐷max is the maximum possible demand,

𝑍 represents a list of possible confidence levels ‘[90, 95, 97, 98, 99.9]‘,

𝑆𝑧𝑖 is the safety stock for the ith simulation at z confidence level, and

𝐶(𝑆𝑧𝑖) represents the total cost of holding a safety stock level 𝑆𝑧𝑖.

Step 5: Risk Mitigation

The following are risk mitigation strategies in the event of a disruption.

• Segmentation: Categorizing inventory or suppliers to prioritize actions.

• Communicate More: Improving communication channels within the supply chain

for better coordination and faster response to changes.

• Diversification: Reducing reliance on single sources and diversifying suppliers to

mitigate the impact of any one supplier failing.

• Visualisation: Using visual tools to better understand and communicate risks and

their potential impacts on the supply chain to upper level management.

• Production Plan changes: Adjusting production plans to be more resilient to

disruptions, for example by increasing flexibility or capacity.
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Chapter 4

Implementation of Methodology and

Results

The goal of this project is to determine the optimal safety stock to be held for different raw

materials at every point in time in the organisation. The different sources of variability such

as lead time and demand variability that affect the volume of safety stock to be held have

been discussed in Chapter 1. This chapter shows how data-driven methodologies discussed in

Chapter 2 and the models trained in Chapter 3 have been implemented to determine safety

stock for select raw materials, and discusses the implication for the overall supply chain for

Amgen.

4.1 Safety Stock Determination: Test Cases

There are over 10,000 raw materials that are managed by the Amgen supply chain team.

These raw materials have been categorized and segmented as shown in Chapters 2 and 3. To

demonstrate how the proposed methodology runs and the impact of the proposed methodology

versus the old methodology used by Amgen, a set of test cases are considered.
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4.1.1 Test Case 1: Raw Material A with Short Lead Time

This Raw material A is selected due to its short lead time of circa 40 days, to demonstrate

how important changes in decisions made by the organisation in how much safety stock

should be held can have a significant impact on savings and inventory control compared to

status quo. The raw material details are shown in Table 4.1.

Parameter Details
Material Category Serum/Media (GM1100)
Material Description Drug Substance Media A
Number of Finished Drug Products 23
Manufacturing Plants Using It 5
Lifecycle of Main Finished Drug Product Decline
Holding Cost Segment A (Top 10%)
Revenue Impact High
Variability Low
Unit of Measurement milliliter (ml)
Current Company Safety Stock Policy 6 Months Forward Coverage plus buffer

Table 4.1: Raw Material A Details

Current Demand Plan

Figure 4-1 represents the demand plan of this raw material as of February 2022. It is

important to note that this raw material has a lead time of about 40 days, which means it

has a relatively shorter response period, and the demand plan is updated monthly in the

system. Therefore, changes in the demand for future months are updated subsequently to

capture any variability. The figure also shows the actual consumption, with company safety

stock at six times the demand plan of the raw material (6 MFC). This raw material has

relatively low variability and with a shorter lead time, one could say the six months forward

coverage safety stock plan with buffer is an overkill.

Simulation Results

A test is run on the same historical demand plan of February 2022 to compare how the

methodology performs with the company’s methodology for safety stock. The demand is

run through the models trained in Chapter 3 and fitted during the lead time period using
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Figure 4-1: Raw Material Plan, Actual Consumption and Safety Stock for Material A

the lead time and variance predicted using models as also trained in Chapter 3. This test is

run at different service levels, 90%, 95% and 97%, to understand the differences between the

output for each service level. The results are shown in Figure 4-2.

The box plots in Figure 4-2 represent the recommended safety stock levels based on the

results of the implementation of the methodology proposed in Chapter 3. For each time

period, there are differences in quantities between the results of the simulation at 90%, 95%

and 97% service level due to the magnitude of the service level z-scores. However these

differences are not glaring due to the short lead time of this raw material and the variance of

the prediction in that time period.

The characteristics of this material shows that this raw material falls in the top 10%

holding stock category based on the segmentation framework presented in Section 3.2.5. It

also has a high revenue impact and relatively low variability. Based on the recommended

service level segmentation framework, the service level is proposed to fall between 95% and

97%.
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Figure 4-2: Box Plots of Simulation Results of Safety Stock at Different Service Levels for
Material A

Comparison with Company Safety Stock

Further diving into the results and using the 95th percentile of the box plots (the upper

whiskers) for both the 95% and 97% service levels results, the simulated safety stock is

compared the company safety stock, actual consumption, and demand plan in Figure 4-3.

This helps to check if there is any risk of stock out using the new model results, and also

compare the model and company safety stock levels.

The demand plan which is also the cycle stock, is not so variable. Comparing the model

outputs at both 95% and 97% service levels with the actual consumption, the plot shows

that the model safety stock is more than enough to cover any changes in demand during that

period. It is also important to note that the model further refines its output when tested on

the demand plan for the next planning period, as the demand plan is updated monthly. Raw

materials with a short lead time period like material A, would have short recovery periods,

as errors in demand for months outside the lead time period can be adjusted using both the

machine learning model and the monthly update of the demand plan.
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Figure 4-3: Comparison of Model Safety Stock with Company Inventory Levels for Material
A

Cost Impact

It is important to understand the cost implication of the company’s policy versus the model

outputs, in terms of inventory value. Comparing the proposed safety stock levels by the

model, the results show that the company has been sinking excess money into purchasing

unrequired stock of inventory, shown in Figure 4-4, which is essentially the holding cost

of inventory. We see the cost of this excess inventory shows that the company could have

saved up to $1.5 million monthly on cost of procurement of this raw material. Note that this

does not account for holding cost in warehouses, which signifies more working capital being

expended on inventory purchasing.

There are two key elements of holding cost. The first element is the cost of capital of the

cash “tied up” in inventory. The cost of capital used will vary over time but typically can

be in the range of 8-10%. The second element is the cost of warehouse space, which can be

estimated by the average cost of leasing external warehouse pallet positions. Making the

right inventory management decisions is important to ensuring a sustainable supply chain in
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Figure 4-4: Safety Stock Cost Impact for Material A

the long run.

4.1.2 Test Case 2: Raw Material B with Long Lead Time

Raw material B is next selected as a test case due to its long lead time of about 11 months

and its criticality in Amgen’s supply chain. The parameters in Table 4.2 describe this raw

material.

Current Demand Plan

Figure 4-5 shows the demand plan of the raw material as at February 2022. This raw material

has a lead time of about 348 days, which means it has a relatively longer response period

compared to that of raw material A due to its longer lead time. The demand plan of this

material is also updated monthly in the system. Therefore, any changes in the demand for

future months are updated subsequently to capture variability.

However, this raw material has very medium to high variability as demand plan actual

consumption in some months are 0 (see months May to August 2022 in Figure 4-5). De-
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Parameter Details
Material Category Filter (GM0600)
Material Description Filter B
Number of Finished Drug
Products 3

Manufacturing Plants Using
It 5

Lifecycle of Main Finished
Drug Product Grow

Holding Cost Segment A (Top 10%)
Revenue Impact High
Variability Medium
Unit of Measurement Each (EA)
Current Company Safety
Stock Policy 8 Months Forward Coverage plus buffer

Table 4.2: Raw Material B Details

Figure 4-5: Demand Plan, Actual Consumption and Safety Stock for Material B

termining the safety stock for such a material is challenging and using a judgment based
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approach could result in underestimating or overestimating how much stock is required which

could result in stockouts, especially with its long lead time.

Simulation Results

A test is run using historical data to compare how the new methodology performs, compared

with the company’s methodology for safety stock. The simulation is run similar to the process

utilized for Test Case 1. The results are shown in Figure 4-6

Figure 4-6: Box Plots of Simulation Results of Safety Stock at Different Service Levels for
Material B

The box plots in Figure 4-6 represent the safety stock levels based on the results of the

Monte Carlo simulation. There is a wide range of values for each of the box plots, and a

significant difference between the results across the different service levels compared to that

of Test Case 1, due to the long lead time and variability of this material. To further explain

this, the histogram for the simulation results for July 2022 is shown in Figure 4-7.

The segmentation framework delineated in Chapter 2 shows that this raw material falls in

the top 10% holding stock category; it also has a high revenue impact and medium variability.
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Figure 4-7: Stochastic Safety Stock for Material B - July 2022 at 95% Service Level

Based on the segmentation framework put together, the service level is proposed to fall

between 95%, 96% and 97%.

Comparison with Company Safety Stock

To further analyze the results, the 95th percentile of the box plots for the 95% and 97%

service levels is examined. The simulated safety stock is then compared to the company’s

safety stock, as shown in Figure 4-8.

The demand plan for this raw material is highly variable. Comparing the model outputs

at both 95% and 97% service levels with the actual consumption, Figure 4-8 shows that the

model safety stock was more than enough to cover any changes in demand during that period.

However, due to the long lead time for this material, the model results are significantly higher

than the demand plan to account for any possible lead time variability and variability in

demand during the lead time. It is also important to note in Figure 4-8 that the model

simulated higher safety stock than what the company policy was in March 2022 (for instance)

based on the data-driven approach utilised by the model. This also demonstrates the fact

that the model does not always give a lower volume than what the company policy is, but

rather utilizes data and takes into account the variability in demand, and the value and

variance of the lead time, at the point of forecast to estimate what the safety stock should be.

This supports the credibility and efficacy of the proposed methodology.
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Figure 4-8: Comparison with Company Inventory Levels for Material B

Cost Impact

This material is in the top 10% of materials in terms of holding cost rate (i.e. “A” segment).

Figure 4-9 shows the cost impact when comparing the company safety stock with the simulated

safety stock at 95% and 97% service levels and this indicates that Amgen had excess safety

stock of about $1 million for this raw material.

4.2 Disruption Analysis

Managing a multi-echelon supply chain’s internal and supply risks is a challenging task, which

becomes even more difficult in the event of a disruption that threaten its sustainability. Such

disruptions include events such as floods, strikes, extreme weather, and the COVID pandemic.

To address this, a disruption simulation framework is created, as described in Section 3.3.

The disruption simulation framework is applied to raw material A. Supply disruption risks

with probabilities of 40% and 80%, and lead time low, medium and high impact of 1x, 1.2x
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Figure 4-9: Safety Stock Cost Impact for Material B

and 1.5x the base lead time, is simulated on the raw material safety stock levels. Figure 4-10

shows the results of the simulation under these conditions.

In each iteration of the disruption simulation algorithm, it samples random values for lead

time mean and standard deviation based on the input data. It also checks if a disruption

event occurs and if yes, it applies a random disruption impact to the lead time. Because of the

way the algorithm runs, it does not just assume a multiplicative effect when the probability

is increased from 40% to 80% as shown in Figure 4-10. Instead, a more refined estimate of

impact is seen. This simulation capability will help the company to adapt and understand

the impact of possible risks and scenarios.

4.3 Projected Business Value of Project

In the ever-evolving landscape of global business, maintaining an efficient and responsive

inventory system is paramount. This project represents a novel step towards redefining the

approach to safety stock determination. By harnessing the predictive power of machine
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Figure 4-10: Disruption Simulation for Safety Stock of Material A at 95% Service Level

learning and the robust analytical capabilities of stochastic simulation, this initiative promises

to deliver substantial business value. It not only offers a significant reduction in inventory

costs but also provides a resilient framework for managing supply chain disruptions. The

benefits that a data-driven strategy affords Amgen, and by extension, other companies in the

biotechnology industry where there are grave implications of stock outs are profound. The

approach is also scalable to other industries.

Cost Savings through Reduced Target Inventory

By using data-driven approaches to predict demand and optimize safety stock levels, there

can be significant cost cutting. Based on a subset of about 50 materials, Amgen can achieve a

minimum of 25% in holding cost savings. This optimization reduces holding costs and capital

tied up in inventory, enabling the allocation of resources to other value-generating activities.
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Enhanced Supplier Management with Historical Data Insights

The integration of historical data into machine learning models allows for the anticipation and

planning of supply chain disruptions. The lead time models developed also help predict lead

times based on historical performance of the supplier, which will be instrumental in supply

and procurement planning, and mitigate lead time variability risks. The simulation of various

scenarios provides Amgen with improved supplier management capabilities, reducing the

impact of potential future disruptions. This proactive approach can enhance the reliability of

the overall supply chain.

Realistic Demand Distribution Assumptions

Traditional inventory management methods often incorrectly assume a normal distribution of

demand. The proposed methodology utilizes key data packages to identify the true demand

distribution, which may be non-normal. Stochastic simulation then applies these distributions,

yielding more realistic and accurate results that better reflect demand variability.

Informed Decision-Making with Cost Implication Analysis

This project facilitates strategic decision-making by providing a clear understanding of the

cost implications associated with different inventory scenarios. Managers are empowered

to make informed decisions that align with the company’s financial goals, considering the

trade-offs between holding costs and the risk of stock-outs.

Industry and Production Level Adaptability

The methodologies developed in this project are applicable across a wide range of industries

and production levels such as the drug substance, drug product and finished drug product.

The adaptability of machine learning and stochastic simulation means that the models can

be tailored to meet the unique demand and supply dynamics of various business operations.
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Utilization of Existing Infrastructure

The data-based approach can be integrated with current IT infrastructure, utilizing existing

data systems and processes such as data lake and SAP. This means that Amgen can leverage

their current data systems and processes to feed into the models, allowing for a more seamless

implementation and reducing the need for additional investments in new infrastructure.

4.4 Challenges and Drawbacks of New Methodology

The new methodology for safety stock determination combines machine learning models for

demand and lead time forecasting with Monte Carlo simulation and multi-criteria segmen-

tation. While this approach offers several benefits and business value (refer to Section 4.3)

such as improved accuracy, cost savings, and risk mitigation, there are some challenges

and potential drawbacks. These drawbacks are discussed, along with potential mitigation

strategies that are and can be implemented.

Complexity and Interpretability

Advanced machine learning models, such as CatBoost, can capture complex patterns and

relationships in the data, leading to improved predictive performance. However, this com-

plexity often comes at the cost of interpretability. These models may be perceived as a “black

box,” where the internal workings and decision-making process are not easily understandable

by business stakeholders. This lack of interpretability can pose challenges in building trust

and adoption of the methodology. Stakeholders may be hesitant to rely on a model they do

not fully comprehend, especially when it comes to critical decisions like inventory levels.

To mitigate this challenge, efforts are made to enhance the models’ interpretability.

Techniques like feature importance analysis are applied to identify the key factors influencing

the models’ predictions. This provides stakeholders with valuable insights to better understand

the outputs. In addition, clear documentation are developed to help stakeholders understand

the inputs, outputs, and limitations, promoting transparency and building trust in the

methodology.
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Robustness across diverse materials

Amgen’s vast portfolio of raw materials encompasses a wide range of characteristics, demand

patterns, and supply chain dynamics. The proposed methodology must demonstrate robust-

ness and reliability across this diverse spectrum of materials. A one-size-fits-all approach

may not suffice, as the model’s performance could vary depending on the unique attributes

of each material.

To ensure robustness, extensive testing and validation across a representative sample

of materials is done. This process not only involved assessing the models’ performance

on historical data but also stress-testing it under various scenarios and assumptions. By

rigorously evaluating the model’s behavior across different material categories, the team is

able identify potential weaknesses and take steps to address them.

One approach incorporated in the methodology is the development of specialized models

for different material categories. By tailoring the model architecture, feature selection,

and hyperparameters to the specific characteristics of each category, the system can better

capture the nuances and complexities of diverse materials. This modular approach allows for

fine-tuning and optimization based on the unique requirements of each group.

Furthermore, the models developed incorporate a wide range of relevant data sources

can help improve the model’s robustness. In addition to historical demand and supply data,

the models consider factors such as supplier performance and external events (disruption

simulation framework). Future work can incorporate market trends and regulatory changes

that may impact material availability.

Continuous monitoring and feedback loops are also critical for maintaining the methodol-

ogy’s robustness over time. As new data becomes available and business conditions evolve,

the models should be regularly updated and retrained.

Subjectivity in Risk Quantification

The disruption simulation framework provides a valuable tool for testing the impact of

different risk scenarios on inventory levels and costs. However, precisely quantifying the

likelihood and impact of various risks remains challenging and subjective.
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To address this, the methodology leverages a combination of historical data and expert

judgment to simulated quantified risks. Collaborating with the risk management team,

suppliers, and other stakeholders to gather relevant data and insights is important to ensure

robustness of quantification. In addition, sensitivity analysis should also be performed to

understand how changes in risk assumptions affect the simulation results. This can help

identify the most critical risks and prioritize mitigation efforts accordingly.

Management Trust and Acceptance

Even if technical measures are in place to control for variability and ensure model robustness,

a significant barrier to the implementation of machine learning models is gaining the trust of

management and decision makers. Overcoming this trust hurdle requires not only technical

solutions but also strategic communication and education efforts to demonstrate the reliability

and benefits of these models. A multi-pronged and phased approach to manage this is discussed

in Chapter 5. In addition, establishing robust governance and monitoring mechanisms is

critical. Clear policies and procedures should be put in place to ensure the models’ outputs

are regularly reviewed, validated, and adjusted as needed. Showcasing the tangible benefits

and success stories of the methodology can help overcome the psychological barriers.

In summary, this project offers a technologically advanced solution to optimize inventory

and safety stock levels, ultimately leading to enhanced operational efficiency and improved

bottom-line performance. The business value derived from this project is manifested in cost

savings, improved supply chain resilience, and enhanced decision-making capabilities, which

are applicable across various industries. Key drawbacks of this methodology are discussed

and mitigation strategies identified. Other operational improvements that will be beneficial

to ensure that this project is a success and further contributes to Amgen’s supply chain

transformation goals are delineated in Chapter 5.
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Chapter 5

Operational Improvements and

Conclusion

This chapter delineates the operational implementation strategy for the proposed inventory

management methodology at Amgen discussed in Chapters 3 and 4. A phased implementation

plan is developed to ensure a seamless transition, starting with a pilot phase to quantify safety

stock, and up to full scale deployment. In addition, warehouse operational improvements are

addressed, highlighting the need for upgraded inspection systems, stringent supplier policies,

and a shift to a first expiry first out (FEFO) system for dispensing raw materials, all designed

to minimize scrap and align with the overarching goal of a more resilient supply chain.

5.1 Operational Implementation Strategy of Proposed

Methodology

As discussed in Chapters 2 and 3, the organization has commenced systematic steps to

refine inventory policies by applying segmentation techniques to reduce the months forward

coverage (MFC) designation for each raw material. In contrast, the methodology proposed in

Chapters 3 and 4 is a paradigm shift towards deriving safety stock quantities, and then using

that to set the months forward coverage policy for a material, as opposed to the other way

around that is currently being done at Amgen. This approach will not only help determine
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robust safety stock levels, but also ensure a more sustainable inventory management model.

To implement the proposed inventory management strategy effectively, a phased approach

is essential. Each phase should leverage insights gained from the preceding phase in order to

ensure a smooth transition. The following steps delineate suggested phases for implementation.

Phase 1: Pilot Safety Stock Quantification and MFC Determination

• Select pilot materials and determine safety stock levels by using the stochastic simulation

model and overall framework proposed.

• Translate safety stock quantities into MFC and compare with exisiting policy.

Phase 2: Model Output Integration and MFC Optimization

• Utilize the model outputs to identify areas of improvement and MFC policy optimization

across different material categories.

• Implement targeted reductions in MFC based on the model insights, ensuring that

stock levels align with the actual demand patterns and reduce excess inventory, with

minimized stock out risk.

Phase 3: Lead Time Management and Supply Planning

• Deploy the lead time forecasting model outputs to refine supply planning processes.

• Manage supplier lead times proactively by using forecasted times to mitigate risks

associated with supply delays or disruptions.

Phase 4: Continuous Monitoring and Model Updates

• Monitor the performance of the proposed inventory policies against key performance

indicators (KPIs) to gauge their effectiveness.

• Data science team to continuously train and update the machine learning models with

updated data to improve forecast accuracy.
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Phase 5: Training and Change Management

• Train key staff such as raw material planning team to familiarize them with the new

methodology and results, emphasizing the thinking shift from MFC-to-quantities to

quantities-MFC.

• Develop a change management plan to support the transition, addressing any concerns

and reinforcing the benefits of the new approach.

Phase 6: Full Scale Deployment and Organizational Alignment

• Upon successful validation of the models and policies in the initial phases and pilots,

proceed with a full scale deployment across all raw materials and other production

stages of the supply chain.

• Ensure alignment across all key stakeholders such as the supply chain and raw material

planning team and the warehouses.

Transitioning the organisation to a data-driven approach for raw material planning in

phases will provide further insights into challenges that a full scale deployment could have.

This will also ensure that all key stakeholders are on board and the solution is actually

tailored to the risk tolerance level of Amgen, paving the way for a more resilient and efficient

supply chain.

5.2 Warehouse Operational Improvements

In addition to the methodology devised for the raw material inventory management challenge,

areas of operational improvement are identified below based on observations of operations in

the warehouses.

Upgrade Inspection Systems in the Warehouse to Reduce Scrap: During a visit

to one of Amgen’s manufacturing plants, and discussing with the warehouse team, a key

realization emerged: many of the contributions to the scrap from warehouses stems from

material defects that are observed when the materials are dispatched to the manufacturing

plant and labs. Another insight emerging from the visit is the inability to inspect every single
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item from all the suppliers due to infeasible manpower. Therefore, a recommendation is for

the warehouses to implement automated vision inspection (AVI) or machine vision systems to

help detect defects and minimize scrap and waste of raw materials. Konstantinidis et al. [51]

utilized digital twins and machine vision to detect defects during the dairy manufacturing

process. Implementing advanced technologies like machine vision can help drastically reduce

stock out issues and scrap volumes in Amgen manufacturing plants, as these systems can

detect anomalies more efficiently than the typical manual processes.

Impose Strict Policies for Suppliers: Another observation is that there are instances

where suppliers deliver a batch of materials only to follow with another shipment, containing

materials that have an earlier expiration date than those delivered previously. This potentially

contributes to the scrap problem Amgen has, as the warehouses dispenses raw material to

the manufacturing plants in a first in first out (FIFO) manner. Therefore it is recommended

that a clause be included in supplier agreements, specifying minimum shelf life requirements

upon receipt to ensure that received items have a consistent or longer shelf life than existing

inventory. Also, Amgen should deploy a compliance tracking system to monitor supplier

adherence to these policies.

First-Expiry-First-Out Warehouse Dispensing: The warehouse currently dispenses

materials based on goods receipt date (GRD) which is a logical approach. However, due

to some of the instances where recently received materials could have an earlier expiration

date than older materials, the FIFO methodology of dispensing might not be the optimal

strategy to reduce scrap. Therefore, implementing a first expiry first out (FEFO) system in

the warehouse is recommended, to automatically dispense materials based on expiry dates

rather than receipt dates.

5.3 Future Work

Multi-Echelon Inventory Optimization

This project focused purely on raw materials. However, the methodology developed can be

applied to the drug Substance, drug product and finished drug product stages of production,
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which would enable better coordination of targets across the supply chain. Understanding

stock levels, constraints, and variability at each point allows balancing risk across all stages

instead of locally optimizing stages. This takes a systems view to support Amgen’s “Every

Patient, Every Time” policy while optimizing working capital.

Network Inventory Optimization

Effective inventory planning across Amgen’s network of manufacturing plants and warehouses

is important for ensuring operational efficiency, minimizing costs, and maintaining a reliable

supply chain. Amgen could implement a centralized system to track inventory levels across

all manufacturing plants and warehouses. This could also help foster coordination and

communication across the manufacturing plants and warehouses to ensure efficient use of

inventory. Amgen could also implement a redistribution strategy for transferring inventory

between locations in response to demand fluctuations or supply chain disruptions, which

would only be seamless with a centralized system.

5.4 Conclusion

This research makes significant contributions to the field of inventory management and supply

chain optimization in the biotechnology industry. In an industry like biotech where the

consequences of material unavailability are high, it is important to use data-driven approaches

to ensure optimal inventory levels, while also deploying proper risk management strategies for

risk mitigation. Operational efficiency is also key to ensure that there is no bullwhip effect

and the entire supply chain runs smoothly.

By developing a comprehensive methodology that integrates machine learning, stochastic

simulation, and multi-criteria segmentation, this work addresses the some of the limitations

of existing approaches and provides a more dynamic, and risk-aware framework for safety

stock determination. The integration of demand and lead time forecasting, Monte Carlo

and disruption simulation framework, and raw material segmentation approach offer unique

insights and practical solutions to the challenges faced by organizations in managing complex

supply chains. The results and case studies presented demonstrate the potential impact of
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this work in driving cost savings, improving customer service levels, and enhancing overall

supply chain resilience. A combination of data management, advanced data analytics, supplier

relationship management, operational efficiency and effective communication will go a long

way in reducing stock outs in companies like Amgen.
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Appendix A

Tables

Model Parameter Values
LGBMRegressor n_estimators [50, 100, 200]

max_depth [3, 5, 7]
num_leaves [8, 32, 128]
learning_rate [0.01, 0.1, 0.2]
subsample [0.6, 0.8, 1.0]
colsample_bytree [0.6, 0.8, 1.0]

XGBRegressor n_estimators [50, 100, 200]
max_depth [3, 5, 7]
learning_rate [0.01, 0.1, 0.2]
subsample [0.6, 0.8, 1.0]
colsample_bytree [0.6, 0.8, 1.0]

RandomForestRegressor n_estimators [50, 100, 200, 300]
max_depth [None, 5, 10, 20, 30, 50]
min_samples_split [2, 5, 10]
min_samples_leaf [1, 2, 4, 6]
max_features [’sqrt’, ’log2’]

Lasso alpha [0.1, 1.0, 10.0]
CatBoostRegressor iterations [100, 300, 500]

learning_rate [0.01, 0.05, 0.1]
depth [4, 6, 8]
l2_leaf_reg [1, 3, 5, 7]
border_count [32, 64, 128]

Table A.1: Hyperparameters of Lead Time Forecasting Machine Learning Models
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Model Hyperparameter Values

LightGBM (get_lgb_params)
n_estimators 10, 50, 100
max_depth -1, 3, 5, 7
num_leaves 31, 63, 127
learning_rate 0.001, 0.01, 0.1

XGBoost (get_xgb_params)
n_estimators 50, 100, 200
max_depth 3, 5, 7
learning_rate 0.01, 0.1, 0.2
subsample 0.6, 0.8, 1.0
colsample_bytree 0.6, 0.8, 1.0

Random Forest (get_rf_params)
n_estimators 50, 100, 200, 300
max_depth None, 5, 10, 20, 30, 50
min_samples_split 2, 5, 10
min_samples_leaf 1, 2, 4, 6
max_features sqrt, log2

CatBoost (get_catboost_params)
iterations 50, 100, 300
learning_rate 0.001, 0.01, 0.05, 0.1
depth 4, 6, 8, 10
l2_leaf_reg 1, 3, 5, 7
border_count 32, 64, 128

Table A.2: Hyperparameters of Demand Forecasting Machine Learning Models
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