
Resilient by Design: A Supply Chain Digitalization
Journey

by

Carlos David Vela González
B.S. in Industrial Engineering with minor in Systems Engineering

Tecnológico de Monterrey, 2017

Submitted to the MIT Sloan School of Management and
Department of Civil and Environmental Engineering

in partial fulfillment of the requirements for the degrees of

Master of Business Administration

and

Master of Science in Civil and Environmental Engineering

in conjunction with the Leaders for Global Operations program
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2024

© 2024 Carlos David Vela González. All Rights Reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free

license to exercise any and all rights under copyright, including to reproduce,
preserve, distribute and publicly display copies of the thesis, or release the thesis

under an open-access license.

Authored by .
MIT Sloan School of Management and

Department of Civil and Environmental Engineering
May 10, 2024

Certified by. .
Dr. Thomas Roemer, Thesis Supervisor

Senior Lecturer in Operations Management

Certified by. .
Dr. David Simchi-Levi, Thesis Supervisor

Professor of Civil and Environmental Engineering

Accepted by .
Heidi Nepf

Donald and Martha Harleman Professor of Civil and Environmental Engineering;
MacVicar Faculty Fellow; Graduate Officer

Accepted by .
Maura Herson

Assistant Dean, MBA Program MIT Sloan School of Management

2

Resilient by Design: A Supply Chain Digitalization Journey

by

Carlos David Vela González

Submitted to the MIT Sloan School of Management and
Department of Civil and Environmental Engineering

on May 10, 2024, in partial fulfillment of the
requirements for the degrees of

Master of Business Administration
and

Master of Science in Civil and Environmental Engineering

Abstract

In an era where supply chain disruptions have become increasingly relevant due to
geopolitical and environmental factors, resilience has emerged as a critical focus for
organizations worldwide. This is particularly true in the pharmaceutical sector, where
ensuring an uninterrupted supply of medical products is not only a business necessity
but also a moral imperative, given the direct impact on patients’ health and well-being.

This thesis presents the development of a digital tool designed to enhance the
resilience of AstraZeneca’s supply chain, employing a design thinking approach. The
tool leverages simulation and business intelligence, providing a versatile platform for
conducting stress tests and evaluating response mechanisms across a spectrum of
scenarios. This capability is instrumental in refining business continuity plans and
informing strategic decisions on disruption response and capacity investments.

While the tool was initially conceived to address the specific needs of AstraZeneca,
its architecture is inherently generic and modular. This deliberate design choice
ensures that the tool can be seamlessly adapted and scaled for use across various
industries, transcending the initial scope of application. Additionally, the tool lays a
solid foundation for future developments in the realm of supply chain digital twins.

The thesis also contributes a comprehensive framework for boosting supply chain
resilience through the lens of digitalization. It offers a strategic blueprint that organi-
zations can adopt to proactively navigate and mitigate the intricacies of global supply
chain disruptions.

Thesis Supervisor: Dr. Thomas Roemer
Title: Senior Lecturer in Operations Management

Thesis Supervisor: Dr. David Simchi-Levi
Title: Professor of Civil and Environmental Engineering

3

4

Acknowledgments

I would like to extend my heartfelt gratitude to the LGO program for giving me

this once-in-a-lifetime opportunity and to AstraZeneca for hosting my internship and

entrusting me with this project.

Special thanks to Thomas Wheatley, my supervisor, for playing a decisive role in the

success of my project, for his remarkable mentorship and friendship, and for immersing

me in British culture. Many thanks to Jo Kirby and the ESM team for sponsoring my

project, to Bastien Hermes for his unparalleled support and camaraderie, to Ian Clegg

and the Steering Committee for their unwavering guidance, and to Magnus Torstensson,

his team, and AZDP’s suppliers, for facilitating my visits to their manufacturing sites

and for providing invaluable insights into the brand supply chain.

I am also grateful to Thomas Roemer and David Simchi-Levi, my academic

advisors, for their commitment to my project. Their time, expertise, and constructive

suggestions were instrumental in shaping the trajectory of my research.

I want to express my deepest appreciation to Lari, my dear wife. Thank you for

filling my heart with happiness every day, for embarking with me on this journey, and

for demonstrating your unconditional love and support at all times. Thank you for all

these wonderful years and those to come - for always glowing in the dark.

To my mom, thank you for pushing me to strive for excellence in all that I do and

for being my source of inspiration. I am eternally grateful for everything you do for

me and my sisters, for your absolute love and devotion, for being your son.

To my sisters, thank you for always being there, for being a pillar of love in my life,

and for sharing infinite laughs - I am truly blessed to have you. To my GOM family,

thank you for showing me the utmost meaning of family - you hold a special place in

my heart and I am forever indebted to you. To my father, thank you for teaching me

valuable life lessons. To those who are no longer here, thank you for shaping my life.

And to my in-laws, thank you for welcoming me into your family from day one.

Finally, I wish to thank everyone, from friends to faculty, at MIT, ITESM, and

CVH who has contributed to my academic, professional, and personal development.

5

https://www.astrazeneca.com/

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

List of Figures 9

List of Tables 13

Acronyms 14

1 Introduction 17

1.1 Company Overview . 17

1.2 Project Motivation . 19

1.3 Problem Statement . 21

1.4 Thesis Overview . 21

2 Background 25

2.1 Product Brand Overview . 25

2.1.1 Devices . 26

2.1.2 Supply Chain . 27

2.2 Supply Chain Disruptions Overview 29

2.3 Digital Landscape Overview . 31

3 Literature Review 33

3.1 Supply Chain Resilience . 33

3.2 Digital Twins . 36

4 Methodology 39

4.1 Approach . 39

7

4.2 Empathize Stage: Understanding Stakeholders 40

4.3 Define Stage: Clarifying Objectives 42

4.3.1 Data Collection . 43

4.3.2 Metrics . 45

4.4 Ideate Stage: Conceptualizing Solutions 46

4.4.1 Tool Logical Framework . 47

4.4.2 Supply Chain Model . 49

4.4.3 Supply Chain Model Boundaries and Assumptions 50

4.4.4 Stress Test Considerations . 51

4.5 Prototype Stage: Tool Building . 52

4.5.1 Tool Back End . 53

4.5.2 Tool Front End . 61

4.6 Test Stage: Assessing Impact . 70

4.6.1 Business Case . 70

5 Results 81

5.1 Supply Chain Resilience Tool Building Framework 82

5.2 Supply Chain Digital Twin Transition 85

6 Conclusions 87

A Company Appendix 89

A.1 Brand Details . 89

A.2 Product Details . 90

B Back End Appendix 93

B.1 Code . 93

C Front End Appendix 141

C.1 Input File Tabs . 141

C.2 Input File Code . 147

C.3 Data Visualization - Dashboard . 152

8

List of Figures

1-1 Description of the high-level overview of a medicine’s life-cycle 18

1-2 AstraZeneca Global Presence . 19

2-1 Simplified design of a pMDI . 26

2-2 Simplified representation of an pmdiTech supply chain 28

2-3 Global supply chain disruptions effect on inflation 30

3-1 Choosing Supply Chain Risk/Reward Trade-offs 34

3-2 Conceptual model of a digital twin 37

3-3 Design Thinking Process . 38

4-1 Initial conceptual framework of the tool logic 47

4-2 Final conceptual framework of the tool logic 48

4-3 Conceptual model of the supply chain 49

4-4 Example of how to reconfigure the supply chain 62

4-5 Business case: context of supplier . 71

4-6 Business case: input file . 73

4-7 Business case: quarterly capacity utilization 74

4-8 Business case: inventory coverage by node 78

4-9 Business case: inventory coverage by set of scenarios 79

5-1 General framework for developing supply chain resilience digital tools 84

A-1 pmdiTech Portfolio . 90

A-2 Device A2 models comparison . 91

9

A-3 Parts of Device A2 inhaler . 91

C-1 Reconfigure Supply Chain Tab . 141

C-2 Disruption Parameters Tab . 142

C-3 Processes Tab . 142

C-4 Machines Tab . 143

C-5 Machine Updates Tab . 143

C-6 Raw Materials Tab . 144

C-7 Finished Goods Tab . 144

C-8 Suppliers Tab . 145

C-9 Bill of materials Tab . 145

C-10 Demand Tab . 146

C-11 Holidays Tab . 146

C-12 VBA Form for adding nodes . 147

C-13 VBA Form for adding components . 148

C-14 VBA Form for adding processes . 148

C-15 VBA Form for creating component actions 149

C-16 VBA Form for creating node actions 149

C-17 VBA Form for creating process actions 150

C-18 VBA Form for removing components 150

C-19 VBA Form for removing nodes . 151

C-20 VBA Form for removing processes . 151

C-21 Summary Tab . 152

C-22 Capacity Utilization Tab . 153

C-23 Asset Utilization Tab . 153

C-24 Inventory Coverage Scenarios Tab . 154

C-25 Inventory Coverage Components Tab 154

C-26 Inventory Tab . 155

C-27 Node Analysis Tab . 155

C-28 Simulation Demand Tab . 156

10

C-29 Brand Tab . 156

C-30 Supply Chain Network Tab . 157

C-31 Bill of Materials Tab . 157

C-32 Supply Chain Map Tab . 158

C-33 Installed Capacity Tab . 158

C-34 Disruption Parameters Tab . 159

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

List of Tables

3.1 Ideal digital tool features to achieve resilience 35

4.1 Key data collected and used by the final version of the tool 45

4.2 Stress Test Considerations . 52

4.3 Summary of objects in the code . 55

4.4 Business case: on-time deliveries results 76

A.1 pmdiTech Global Presence . 89

A.2 pmdiTech Reported Sales by Product and Year 89

A.3 Product Components . 90

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

Acronyms

AI artificial intelligence. 31, 36, 85

API active pharmaceutical ingredient. 26–28

AZ AstraZeneca. 5, 17–19, 21, 25–28, 31, 32, 39–41, 45, 46, 66, 70, 71, 81, 82, 87, 89

AZDP AstraZeneca Dunkerque Production. 5, 27, 43, 69, 71

BCP business continuity plan. 20, 21, 25, 39–42, 46–48, 51, 65, 66, 68, 70, 77, 81, 87

BOM bill of materials. 26, 45, 46, 63, 64

DT digital twin. 9, 36–38, 41, 42, 81, 85, 86, 88

ESM External Supply and Manufacturing. 5, 19, 21, 40, 41, 66, 67, 71

GSC&S Global Supply Chain and Strategy. 19, 21, 40, 66

OEE overall equipment effectiveness. 41, 45, 52, 55, 57, 63, 65

pMDI pressurised metered-dose inhaler. 9, 25, 26

POC proof of concept. 21, 32, 41, 42, 48

PT&D Pharmaceutical Technology and Development. 19

R&D research and development. 17, 31

TAFD time-away-from-design. 43, 46, 75

TTR time-to-recover. 34, 35, 43, 45, 65, 72, 75

TTS time-to-survive. 35, 43, 45, 46, 73, 82

VSM value stream mapping. 41

WIP work in progress. 45, 55–57, 61, 64, 72

15

https://www.astrazeneca.com/
https://www.astrazeneca.fr/notre-groupe/astraZeneca-france.html

THIS PAGE INTENTIONALLY LEFT BLANK

16

Chapter 1

Introduction

1.1 Company Overview

AstraZeneca (AZ) is a pharmaceutical company that serves over 116 million patients

across 125 countries, focusing on three major therapy areas: oncology, biopharmaceu-

ticals1, and rare diseases [1].

The company follows a business model that revolves around the entire medicine’s

life-cycle, shown in Figure 1-1. It starts by investing in research and development

(R&D) to discover drugs that can potentially treat diseases. Promising discoveries

then go through a series of trials to prove the safety and effectiveness of the drug in

scope, after which the company requests regulatory approval. Once a medicine gains

authorization, AZ typically has a period of manufacturing exclusivity during which

the company can recover most of the investment through their high-profit margin, over

80% according to the company’s full-year 2023 results [2]. A significant portion of the

sales revenue is later reinvested into R&D to help fund discoveries, kick-starting a new

cycle. This business model translates into a virtuous cycle of innovation that enables

AZ to fulfill their purpose "[to] push the boundaries of science to deliver life-changing

medicines" and stay true to one of their key values "put patients first" [3].

On top of AZ’s existing broad portfolio of medicines, they have a robust pipeline

1Encompasses three therapy areas: cardiovascular, renal and metabolism; respiratory and im-
munology; vaccines and immune therapies

17

https://www.astrazeneca.com/

of 178 potential new medicines that are undergoing clinical trials, launched three new

medicines in 2023, and, according to their CEO Pascal Soriot, are on track to launch

at least 12 more by 2030 [1].

Figure 1-1: Description of the high-level overview of a medicine’s life-cycle [1]

To mass-produce their existing brands, as of December 2023, AZ had 27 manu-

facturing sites spread across 16 countries, as shown in Figure 1-2, but those sites do

not cover the entire value of production; therefore, the company also has a network

of 57,000 suppliers worldwide [1][4]. To ensure impeccable execution throughout

18

the entire supply chain and on-time delivery to the patients, three main functions

collaborate within the broader AZ Global Operations department: (1) External Supply

and Manufacturing (ESM), responsible for handling the relationship with suppliers

and accountable for the suppliers’ performance; (2) Global Supply Chain and Strategy

(GSC&S), responsible for the brands’ P&L and end-to-end supply chains; and (3)

Pharmaceutical Technology and Development (PT&D), responsible for the technical

development of the products.

Figure 1-2: AstraZeneca Global Presence [1]

Note: adapted figure from the original source to include footnotes

1.2 Project Motivation

AZ, and pharmaceutical companies in general, have the inherent responsibility to have

an impeccable service level because, most times, patients’ lives depend on it. Meeting

this standard is very challenging because unpredictable events constantly threaten to

disrupt supply chains for prolonged periods.

A simplistic way to address this concern, and possibly the only solution that

guarantees no stockouts, would be maintaining infinite amounts of inventory for

19

each finished good that a pharmaceutical company manufactures, but this idea

is economically infeasible and physically impossible. Instead, companies focus on

reducing the stockout risk by understanding the potential impact associated with

various disruptions and defining a business continuity plan (BCP) for their supply

chains.

Implementing a BCP is a good management practice to improve the resilience of a

supply chain; however, outlining the BCP is not trivial because of three main reasons:

1. Supply chains are dynamic. The number of nodes - entities - in the supply chain

and the location of such nodes change over time. For example: a company may

need to add more suppliers to meet the increasing demand for a product, change

suppliers after a contract expires, or even cut suppliers if they decide to vertically

integrate. Outlining a BCP requires recurrent revisions to reevaluate risks.

2. Decisions are path-dependent. Actions taken today may limit what can be done

in the future. For example, if a company decides to expand the warehouse at a

manufacturing site, that may cause spatial constraints to install more production

lines in the future or financial constraints for several months before being able

to invest in other backup mechanisms throughout the supply chain. Outlining a

BCP requires pondering present and future risks.

3. Visibility across supply chain tiers is limited. The further away a supply chain

node is from a company, the more difficult it becomes to access information

about such a node. For example: if a company wants to know what the capacity

of a tier-two supplier is, they first need to approach the tier-one supplier to know

who their tier-two suppliers are and ask for a contact. Outlining a BCP requires

collaborating with external stakeholders.

Moreover, while defining and before implementing a BCP, testing the effectiveness

of the prevention and reaction strategies included in a BCP is crucial. Yet, in

most supply chains, understanding the ripple effect of one or multiple disruptions is

not straightforward. Consequently, defining BCPs usually becomes a sophisticated

20

decision-making exercise that takes several days, involves large teams, and barely

convinces stakeholders.

1.3 Problem Statement

Managing supply chains at AZ is an ongoing challenge that balances two responsibilities:

delivering medicines to patients at the right time and contributing towards a positive

P&L statement. The expanding portfolio of medicines, the large global network of

suppliers, the component interdependencies across brands, the intellectual property of

hardware and software, and the pharmaceutical regulatory compliance exacerbate the

complexity for supply chain managers of the ESM and GSC&S teams.

The objective of the underlying project of this thesis was to develop an in-house

tool that could mainly:

1. Allow AZ supply chain managers to test a product’s end-to-end supply chain

under different stress scenarios for BCP purposes

2. Serve as the proof of concept (POC) for a supply chain digital twin

1.4 Thesis Overview

This thesis presents a comprehensive exploration of the development and application of

a digital tool designed to enhance supply chain resilience within AstraZeneca (AZ). The

following chapters detail the journey from conceptualization to realization, reflecting

on the broader implications of digital innovation in supply chain management.

Chapter 2 introduces AZ’s brand portfolio that motivated this thesis project,

providing a high-level overview of the products and the supply chain in scope. It also

provides context about why supply chain resilience has become relevant and why any

supply chain stakeholder should care about resilience. Finally, it gives background on

how this project fits within the company given their ongoing digitalization strategy.

Chapter 3 studies the ideal features and basic considerations that the thesis project

tool should encompass to be effective and solve the problem in scope. First, it

21

https://www.astrazeneca.com/

examines the concept of supply chain resilience, identifies two major strategies for

embracing supply chain resilience, recognizes the difficulty of convincing stakeholders

to adopt resilience, and pinpoints two widely adopted metrics to expose supply chain

risks. Then, it develops a better understanding of the digital twin by dissecting its

characteristics and clarifying misconceptions.

Chapter 4 provides a comprehensive narrative of the tool’s development journey

following a design thinking approach. It explains how each stage of the methodology

builds upon the previous, showcasing an iterative process that culminates in a func-

tional tool aimed at enhancing supply chain resilience practices. It is divided into five

stages, from understanding user needs to testing its efficacy in a real-world business

scenario.

• Chapter 4.2 introduces the Empathize Stage, a foundational phase where stake-

holder interviews were conducted to gather insights and establish the project’s

baseline requirements. It details the main considerations accounted for while

developing the tool.

• Chapter 4.3 introduces the Define Stage, a phase focused on narrowing down

the problem and setting clear objectives for the tool. It details the key decisions

made regarding the types of disruptions to assess, performance metrics, and the

scope of the supply chain to be included in the tool.

• Chapter 4.4 introduces the Ideate Stage, a phase for designing the tool’s logical

framework and conceptualizing a model for simulating the supply chain logic

under various disruptions. It explains some of the main assumptions and

boundaries set to ensure the model’s manageability and applicability, focusing

on the essential elements that would allow for effective stress testing and BCP

development.

• Chapter 4.5 introduces the Prototype Stage, a phase centered on translating

the conceptual model into a working simulation tool. It details the coding

process, the creation of a user-friendly interface, and the development of a visual

dashboard for analyzing the supply chain.

22

• Chapter 4.6 introduces the Test Stage, a phase serving as a practical demon-

stration of the tool’s capabilities within a real business context. It bridges the

gap between the theoretical development in the earlier stages and the tool’s

practical application, aligning with the project’s goals of enhancing supply chain

resilience practices.

Chapter 5 recapitulates the methodical development of the tool and outlines a

framework for organizations looking to bolster supply chain resilience through digital

innovation. It also discusses the evolution of digital models in supply chain management

towards digital twins and touches on the strategic considerations organizations must

make when developing supply chain digital twins.

Chapter 6 concludes by highlighting the creation of a digital tool that enhances

supply chain resilience and underscores the importance of collaboration and the

potential for broader adoption of such digital tools in supply chain management.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

Chapter 2

Background

2.1 Product Brand Overview

In 2016, the FDA approved ‘Device A1’ (name redacted for this thesis), AZ’s first

pressurised metered-dose inhaler (pMDI) that delivers the drug using a new patented

technology - referred to as ‘pmdiTech’ for this thesis [5]. Up to date, two more products

based on the same delivery technology have been FDA approved; ‘Device A2’ (name

redacted for this thesis) in 2020 [6] and ‘Device A3’ (name redacted for this thesis) in

early 2023 [7]. This family of products is used to treat respiratory conditions such as

asthma or chronic obstructive pulmonary disease.

The pmdiTech portfolio of devices was selected as the brand in scope for this thesis

project because it exemplifies the complexity of performing BCPs. The products’

multinational presence is vast and still growing (see Table A.1), each product is

configured differently (see Figure A-1 and Table A.3), and the supply chains are

extensive.

The case of Device A2, the most relevant product of the portfolio in terms of sales

(see Table A.2), makes the brand further interesting from a supply chain management

perspective. First, the aggressive growth it has seen so far may be boosted if approved

for additional purposes that are currently undergoing Phase III trials [8][9], adding

uncertainty to the portfolio’s demand forecast and incentivizing the company to invest

in a new manufacturing site in China [10]. Second, the device is completing a transition

25

to a newer design (see Figure A-2). Third, it is the pmdiTech product with the most

complex bill of materials (BOM). Fourth, the product is expected to experience further

changes soon as part of AZ sustainability initiatives [11].

2.1.1 Devices

pMDIs have existed since the 1950s and have certainly evolved; nevertheless, the

general illustration provided by Newman (2006), shown in Figure 2-1, remains valid.

Newman describes a pMDI as "a small portable device ... ready for use" consisting of

"an aluminum can mounted in a plastic actuator" that delivers doses of a drug "as

a spray via a sophisticated metering valve" and such drug "is usually a micronized

suspension of drug particles but may be a solution dissolved in propellants, ethanol,

or another excipient" [12].

Figure 2-1: Simplified design of a pMDI [12]

To obtain nearly all the components that make up the inhaler, AZ relies on external

suppliers and groups them into five different categories:

• Starting Materials - chemical substances required to produce the active pharma-

ceutical ingredient (API)

• API and Excipients

26

• Formulation - propellants

• Devices - canister, valve, and plastic components

• Assembly and Packing - aluminum foil pouch and desiccant

Although all suppliers are critical for manufacturing the inhalers, the current design

of pmdiTech products (see Figure A-3) suggests there may be further risks within the

valve supplier and the dose counter supplier. Both are sub-assembled components

with various smaller pieces and, potentially, more complex manufacturing processes.

2.1.2 Supply Chain

The commercial production of the pmdiTech inhalers starts at some of the multiple

AZ facilities around the world that specialize in making APIs using starting materials.

Once produced, the APIs are shipped to the AstraZeneca Dunkerque Production

(AZDP) manufacturing site in France - the main pmdiTech facility for the scope of

this thesis - specialized in putting together the rest of the inhaler components.

AZDP has filling, assembly, and packing lines:

• Filling lines perform three activities: formulate the drug by mixing the APIs

with some excipients and propellants, seal the aluminum canisters with a valve,

and fill the cans with the drug through the valves.

• Assembly lines place the filled cans inside the plastic actuator and attach the

plastic dose counter to the bottom side of the can.

• Packing lines place the assembled inhaler inside an aluminum foil pouch alongside

a desiccant. Then, the sealed pouch goes inside a cardboard box alongside an

Instructions for Use manual.

Finally, the finished goods are shipped and stored in distribution centers at the

corresponding destination country to fulfill the local demand.

The production process described above applies to most product-customer combina-

tions, but local pharmaceutical regulations in the destination country may constrain the

27

https://www.astrazeneca.fr/notre-groupe/astraZeneca-france.html

real supply chains. For example, to comply with Japanese regulations, the pmdiTech

inhalers must be packed in Japan; therefore, at the end of the assembly lines at the

main pmdiTech facility, some inhalers are segregated and shipped to Japan, where

another AZ site takes care of the packing process.

Figure 2-2: Simplified representation of an pmdiTech supply chain

A sample supply chain for the pmdiTech portfolio can be seen in Figure 2-2. Such

representation contemplates two caveats. First, the number of boxes in the diagram

is not necessarily the number of nodes that the real supply chains have. Second,

the number of components shown in the diagram, as well as the quantity of starting

materials, APIs, excipients, propellants, and destination countries may vary depending

on the product.

Moreover, AZ already implements a multi-sourcing strategy for most components

to diversify operational risks, meet the growing demand, and comply with the ongoing

product changes. Multi-sourcing strategies prove effective in increasing supply chain

resilience as long as no upstream interdependencies exist between the suppliers provid-

ing the same component. The intricacy of these interactions is not always intuitive and

it modifies how ripple effects propagate through the supply chain when disruptions

occur, which translates into an opportunity to develop visualization solutions for

supply chain management.

28

2.2 Supply Chain Disruptions Overview

Supply chains have always been exposed to disruptions of greater or lesser scale, but

recent global events have revealed the critical need for supply chain resilience.

The COVID-19 pandemic served as a large-scale experiment to demonstrate the

disproportionate effects that a prolonged disruption can have on the financial health of

any industry that prioritizes cost minimization without concern for building resilience

into its supply chains; it served to confirm the proverb that a supply chain is as

fragile as its weakest link. Sanitary measures imposed by governments prevented the

production of non-essential goods for weeks or even months, depending on the state

and country, leading to shortages and consequently higher prices that later translated

into inflation.

Figure 2-3 illustrates the correlation between inflation and supply chain disruptions

by overlaying the year-over-year change in the Consumer Price Index and the Global

Supply Chain Pressure Index, an indicator developed by the Federal Reserve of New

York over two years after the pandemic started [13].

Pre-pandemic, both indices followed a lateral trend, but the public health emergency

generated a new dynamic from 2020 onwards. The Global Supply Chain Pressure

Index jumped immediately and, although the inflation remained muted for a few

months given the recessive economic activity, towards 2021 the Consumer Price Index

started mirroring the supply chain index behavior with a lag. New COVID-19 strains

and frequent lockdowns interrupted global commerce through labor and material

shortages, stressing both indices during 2021 and 2022, but those pressures eventually

eased as vaccinations were administered. By early 2023, the Global Supply Chain

Pressure Index returned to average levels, whereas the year-over-year change in the

Consumer Price Index reached zero almost a semester later.

The pandemic revealed, through inflation, a severe consequence of supply chain

disruptions that in hindsight may seem obvious, but was not. The fact that government

agencies, such as The White House, became concerned about supply chain resilience

speaks volumes about its relevance [14].

29

Figure 2-3: Supply chain disruptions effect on inflation [14]

Aside from the global pandemic, other recent disruptions of various types have

also had a major impact:

• On the geopolitical front, two ongoing armed conflicts, one between Russia

and Ukraine and the other in the Gaza Strip, are displacing supply chains

operating in those areas. Tension has also escalated between China and Taiwan,

a relationship in which the United States is involved, and the mere potential for

conflict is prompting the semiconductor industry to diversify; TSMC, an Apple

supplier, is building factories outside Taiwan [15], while the U.S. government

enacted the CHIPS and Science Act to encourage the manufacture of these

semiconductors on U.S. soil [16].

• On the environmental front, strong earthquakes and hurricanes, such as those

in Turkey-Syria or Acapulco, Mexico in 2023 respectively, are usually the most

devastating natural disasters. However, global warming is causing wildfires,

floods, landslides, and winter storms to occur more frequently and become more

relevant in establishing logistical routes [17].

• On the operational front, a ship ran aground in the Suez Canal blocking for six

days, in March 2021, the route through which 12% of global trade travels [18].

30

Human error or machine failure can also affect other nodes in the supply chain.

• On occasions, multiple types of disruptions overlap. Recently, the Panama

Canal has suffered from droughts, while terrorist attacks in the Red Sea have

discouraged traffic through the Suez Canal [19]. Beyond affecting delivery times

and prices, these two events exemplify that disruptions may be uncorrelated but

simultaneous.

The combined effect of all the disruptions mentioned above may feel unprecedented

but created a much-needed sense of awareness about the importance of resilience in

supply chains.

A McKinsey survey of supply chain leaders in May 2020 showed that 93% of

the respondents indeed "plan(ned) to increase resilience across the supply chain"

[20]. Reponses from subsequent surveys show that the most common actions were to

increase inventories and implement dual-sourcing strategies, but the most effective

actions revolved around gaining end-to-end visibility, scenario planning, and having

good-quality data [21].

The unpredictable nature of disruptions only suggests that supply chain resilience

is here to stay. The goal is to find ways to incorporate resilience smoothly into the

everyday lives of supply chain managers and identify opportunities to build competitive

advantages throughout the process.

2.3 Digital Landscape Overview

When thinking about AZ’s business model, one inevitably thinks about R&D at the

core. Naturally, most of the technological advancements are applied toward creating

novel medicines more efficiently. For instance, they are using artificial intelligence

(AI) to analyze pathologies, grow their drug pipeline, and design better clinical trials;

they are developing new therapeutic modalities; and they even created a dedicated

health-tech business unit to continue improving their products and services [22] [23].

To keep up to speed with their growing pipeline, in 2021 AZ decided to undertake

31

an Operations 2025 plan that focused on "leveraging the benefits of new manufacturing

technology and digital innovation" among other goals [24].

During the first phase of the plan, AZ identified seven priority areas - ‘building

blocks’ - where the company should focus its technological development efforts. More

importantly, the company defined sites - ‘digital lighthouses’ - that will verify if the

proof of concept (POC) of such technological initiatives drives business value before

scaling the technology and implementing it across the organization [25] [26].

As a follow-up to their Operations 2025 plan, in 2023 AZ announced Opera-

tions 2030. This new stage of their supply chain digitalization journey will focus on

"implementing next-generation manufacturing technologies and smart factory capabili-

ties" [27]. This imminent supply chain transformation suggests that right now is an

appropriate moment to try to introduce resilience into the agenda.

32

Chapter 3

Literature Review

3.1 Supply Chain Resilience

Pomonarov and Holcomb [28] comprehensively defined supply chain resilience as "The

adaptive capability of the supply chain to prepare for unexpected events, respond to

disruptions, and recover from them by maintaining continuity of operations at the

desired level of connectedness and control over structure and function".

Sheffi [29] identified two avenues to improve supply chain resilience: redundancy

and flexibility - with the latter offering a competitive edge. Redundancy usually comes

as excess inventory or capacity, such as dual-sourcing strategies or having backup

tools, machines, or sites. Flexibility has more to do with designing or reconditioning

products and processes to serve more than one purpose; an analogous example would

be training employees to operate any machine at a site in case of unplanned staff

shortages in one area.

Both supply chain resilience strategies are effective, but a common tradeoff worth

considering is that flexibility requires more effort to implement, while redundancy

comes at a higher cost. Industry constraints may incentivize moving towards a certain

approach, for instance, pharmaceutical companies have to keep regulatory minimum

inventories for some products; regardless, hybrid approaches can also be implemented

since these can be effective as studied by Simchi-Levi et al. [30].

A challenge when implementing supply chain resilience initiatives is selling the

33

risk-reward tradeoff to stakeholders because it is not straightforward. In finance,

any investor would expect to receive a higher payoff when investing in riskier assets.

Inversely, in supply chain resilience, investing in reducing the impact on revenue of

future risks would mean increasing costs and reducing profits in the present. Figure

3-1 represents how typically achieving resilience requires increasing costs, although

opportunities exist to devise smarter alternatives that reduce risks without directly

impacting profits.

Chopra [31] ponders on such a dilemma and shows how undermining disruption

impacts results economically worse than over-allocating resources on resilience, but

acknowledges the challenge of measuring resilience within an organization to bring

stakeholders on board.

Figure 3-1: Choosing Supply Chain Risk/Reward Trade-offs [32]

Note: adapted figure from an exhibit of the original source

Simchi-Levi et al. [33] demonstrate how to overcome such a challenge by developing

a novel model that relies mainly on two resilience metrics: (1) time-to-recover (TTR),

"the time it would take for a particular node (such as a supplier facility, a distribution

center, or a transportation hub) to be restored to full functionality after a disruption"

34

[34]; and (2) time-to-survive (TTS), "the maximum duration that the supply chain can

match supply with demand after a node disruption" [35].

The model has been widely adopted across several industries as Simchi-Levi

mentions [36]. Much of the model’s success can be attributed to its ability to help

organizations identify risks throughout their supply chains. Risks are determined by

calculating and comparing the TTS and TTR at a node level. If a TTR takes longer

than the corresponding TTS, the node requires attention.

To close the gap between the TTR and TTS, organizations could opt to increase

inventories; however, Chopra [32] suggests that certain mitigation strategies may be

more effective depending on the underlying risk at the node.

Consequently, the digital tool presented in this thesis intends to encompass features,

described in Table 3.1, that allow organizations to identify risks in their supply chains

and adopt a proactive supply chain resilience stance.

These features were selected considering that companies may want to implement

redundant or flexible strategies, measure their end-to-end supply chain resilience,

leverage the results to gain buy-in from leaders within their organizations, evaluate

different response mechanisms, and recurrently evaluate their supply chain network

risks.

Tool Feature Underlying Objective
Configurable Test any desired combination of

disruptions and response mechanisms
Modular Represent as many nodes and tiers in

a supply chain as desired
Practical Expedite the preventive and

responsive decision-making processes
Universal Applicable to any desired product and

set of products
Visual Support communication with

stakeholders

Table 3.1: Ideal digital tool features to achieve resilience

35

3.2 Digital Twins

The idea of a DT centers around having a virtual environment that enables users to

experiment with a representation of a system in the physical world in a setting without

consequences. Such a virtual environment would be a safe space for learning and

any insights gained could be applied to the physical entity, accelerating continuous

improvement and reducing costs.

The idea of a DT, if materialized, unleashes countless applications for any industry.

For instance, in the pharmaceutical industry companies could test therapies on digital

organs instead of real patients to learn how those organs respond to medicines and

modify the treatments to increase their effectiveness, reduce side effects, and shorten

clinical trials to reach patients sooner.

Although the term digital twin (DT) has existed for more than two decades [37];

nevertheless, a proper definition accepted by the research community is yet to be

agreed upon [38]. Unfortunately, the absence of a standardized definition of what a

DT is, can lead to unintended misusage of the term among those unfamiliar with the

core idea. The lack of common understanding, in hand with the DTs advancement,

has made ‘digital twin’ a fashionable term - a buzzword.

Tozanli and Saénz [39] describe DTs as "virtual replicas of physical entities and

their interactions". This definition is succinct and adequately captures the essence

that Grieves conceptualized [37].

Moreover, Tozanli and Saénz [40] provide three other facts - generally mystified -

to further clarify the concept and to incentivize a wider adoption among corporations:

1. DTs consist of a "combination of enabling technologies and analytics capabilities"

[40].

Many current technologies are applicable for developing DTs, for instance: cam-

eras, sensors, RFIDs, and LiDARs allow data collection from the physical entity;

virtual reality, augmented reality, and 3D modeling software allow visualizing

the physical entity in a digital environment; AI, machine learning, simulation,

optimization, and business intelligence provide the analytics capabilities; and

36

Figure 3-2: Conceptual model of a digital twin

cloud, edge or fog computing enable transferring between both entities. The

technologies listed are not exhaustive but help illustrate why a combination is

needed to fulfill the DT spirit.

2. The DT technology "has become more accessible and affordable" and is "com-

pelling and deliver[s] value" in supply chain management [40].

DTs are already in use across various industries. NASA utilizes DTs for au-

tonomous in-space assembly [41], San Francisco to operate its airport [42],

Rolls-Royce to predict engine behavior [43], Renault to manage its manufactur-

ing lines [44].

For supply chain management, the opportunities are also vast and present.

Tozanli and Saénz highlight examples for supply chain planning, warehouse

management, and transportation management [39].

3. DTs "can be created before its equivalent physical asset is built or acquired"

[40].

37

Every design process goes through a prototype phase before launching a product

to the market, as shown in Figure 3-3, and developing a DT is no different.

Kritzinger et. al [45] describe three levels of integration of DTs: (1) digital

models - the stage where the changes of one entity do not affect its twin and

data exchanges occur manually; (2) digital shadows - the stage where changes

in the physical entity translate automatically to the DT, but not the other way

around; and (3) digital twins - the stage where both entities are fully connected

and improve each other automatically.

Understanding what a DT is and what it is not becomes crucial when implementing

the technology. It helps define a better use case, design a more reasonable action plan,

and build a stronger business case to convince stakeholders.

Figure 3-3: Design Thinking Process [46]

38

Chapter 4

Methodology

4.1 Approach

The thesis project addressed a dual challenge. On the one hand, it involved developing

an in-house digital tool for AZ to stress-test the supply chain resilience of their brands

and define BCPs. On the other hand, the tool needed to serve as a building block for

a supply chain digital twin.

The essence of the problem was to create a product with existing company software

that would deliver business value to stakeholders. As Brown explained, design thinking

can be a powerful technique for solving those desirability, feasibility, and viability

challenges [47]. Hence, the approach taken to develop the tool was design thinking, a

problem-solving methodology consisting of five stages:

1. Empathize: this stage enabled uncovering opportunities, limitations, and expec-

tations.

2. Define: this stage enabled narrowing the scope and breaking down the problem

into manageable activities.

3. Ideate: this stage enabled exploring ways to add value.

4. Prototype: this stage enabled the tool creation according to users’ needs.

5. Test : this stage enabled the tool validation for business applications.

39

Since design thinking is a human-centered approach, a Steering Committee was

formed to reinforce the methodology. The Steering Committee comprised members

from GSC&S and ESM, including the pmdiTech brand director. Having such a group

of stakeholders was fundamental for reaching a consensus on key decisions, obtaining

constant feedback and guidance, and increasing the project’s likelihood of success.

Subsequent sections will delve into the specific activities, challenges, and insights

of each stage.

4.2 Empathize Stage: Understanding Stakeholders

Empathizing required perspective-taking. To achieve this, the first thing to do was to

segment the stakeholders involved into groups according to their connection with the

tool and arrange individual meetings with all of them.

The first group consisted of the direct users of the tool, starting with pmdiTech’s

brand director and other stakeholders who would benefit the most from the project.

Members of this group belonged to GSC&S, the functional area that owned pmdiTech’s

P&L and BCP. Their strong interest in the project’s outcome provided crucial insights.

The most valuable lesson was understanding the BCP process1. The objective of

the process was to evaluate if a node could survive an outage of a certain pre-defined

length. If the node couldn’t survive, the GSC&S team along with the corresponding

ESM manager, would evaluate potential corrective actions such as increasing inventory,

investing in backup tools, or implementing dual sourcing. To calculate if a node could

survive, they employed a spreadsheet to perform arithmetic operations on inventory

policies, lead times, and outage durations.

The process was manual, tedious, and did not provide much value; it was then

clear why the project existed. Moreover, the group’s initial expectations of the tool

were to measure the impact of demand surges or shortages and test the effectiveness

of the potential corrective measures. A challenge to building a more comprehensive

1The process description intends to provide a high-level overview, but it does not precisely reflect
the way AZ works

40

model was gathering data due to the absence of a value stream mapping (VSM) for the

external supply chain. A positive aspect was that the team was also responsible for

generating demand forecasts for both the short and long term, so they could facilitate

the information if needed.

The second group consisted of the leaders of AZ’s Operations department, the

stakeholders with sufficient authority to endorse the tool and its progression beyond the

POC phase. Reaching out was challenging given their busy schedules, but interacting

with them was essential to create awareness of the project’s existence since they would

advocate for adopting the tool at an organization-wide level. This group made clear

their interest was in the tool’s result rather than the development process.

The third group consisted of the ESM managers, the stakeholders who were

indirectly affected by the tool given their involvement in the BCP process. Members

of this group handled the relationship with suppliers and owned information about

pmdiTech’s external supply chain, such as the number of lines at each site, the capacity

of each machine, the manufacturing schedules, the investment timeline for acquiring

new equipment, the overall equipment effectiveness (OEE), and more; however, instead

of having a central repository for the data, it was spread out in files; there was no

single source of truth.

This group’s deep understanding of the manufacturing processes, their close

relationship with the suppliers, and the information they held made them extremely

valuable for developing a successful tool. Interacting with them revealed their interest

in being involved in the project and an opportunity to expand the tool’s use case.

The fourth and final group consisted of members from the IT department, the

stakeholders with very little interest in the project but who had vast experience

in digital developments. Members of this group were already working on DTs for

other use cases, so the goal of the conversations was to understand if there was a

conventional method within the company. Three extremely valuable insights emerged:

(1) using external tools2 required authorization and a lengthy validation process; (2)

the company was only working on product DTs, so if the tool met the POC standards,

2Not found in the AZ Software Store

41

it would become the first process DT in the pipeline; (3) a digital tool needed to satisfy

a business case and had financial support from their department leaders to gain POC

status and, then, the tool would be scaled by IT within a 6-12 month period, with the

caveat that the IT department would only use it to understand how it worked but

they would build a new solution from scratch.

The Empathize Stage demonstrated that interviewing stakeholders provides valu-

able insights and generates interest regardless of their connection with the project. It

also provided the minimum expectations and standards for the project to be deemed

successful. It further highlighted the opportunities to improve the current BCP process

and the limitations regarding data availability. Finally, it allowed for understanding

that the path to a digital twin POC was to think big but start small.

4.3 Define Stage: Clarifying Objectives

Defining sought to narrow down the problem in scope. After several weeks of em-

pathizing with stakeholders, some characteristics of the tool were already known, but

the problem was still very broad.

On the one hand, the tool was intended to measure the resilience of the supply

chain under stress scenarios, but neither the types of supply chain disruptions the

company wanted to assess nor the metrics to quantify the performance impact - crucial

for senior stakeholder engagement, as discussed in Chapter 3.1 - had been established.

In addition, the goal of including all the nodes in the pmdiTech supply chain in the

model was still very ambitious due to the limited access to information, so it was

necessary to prioritize the nodes to be included in the initial model and gradually add

them to the model.

On the other hand, the tool was intended to be the basis of a digital twin, but the

enabling technologies that would be part of it had not been selected, as outlined in

Chapter 3.2. At the same time, since there was the limitation of working only with

pre-approved software, a survey was conducted to classify the most important features

expected from the tool, such as intuitiveness of use, cost per user, and speed to obtain

42

results, among others.

The aforementioned points were discussed at the Steering Committee and the

initial agreements were as follows:

• Disruption types: tool malfunction, machine breakdown, site closure, demand

upsurge, region-wide disruptions (i.e. limited energy usage across EU)

• Performance metrics : impact on revenue

• Resilience metrics : time-to-survive and time-away-from-design - new concept

• Supply chain scope: from formulation to packing, including tier-one suppliers

for devices, assembly and packing (refer to Figure 2-2)

• Nodes to map: AZDP and two device suppliers

• Enabling technologies : simulation and business intelligence

• Software features ranking : intuitive user interface (most important), free, cus-

tomizable views, response time (least important)

The Design Stage proved useful for making complex decisions in an unbiased

manner and considering the users’ needs. It further set the project boundaries,

simplifying the problem. It paved a clear path for gathering data and brainstorming

possible solutions.

4.3.1 Data Collection

After reaching a consensus on most aspects of the tool and a newer scope, it became

possible to start gathering data - a crucial activity for obtaining reliable results.

Although the data collection process started immediately after the Define Stage, the

activity progressed slowly, overlapping with the Ideate and Prototype stages.

Before collecting information, the first step was to create a list of the key data for

developing the tool. These items were selected mainly based on the Simchi-Levi et. al

TTR and TTS models [33], although items identified as potentially valuable in the

43

Empathize Stage and others suggested by Simchi-Levi et. al [34] were also included.

Table 4.1 shows the summary of the items collected and ended up being used by the

tool.

The second step was to obtain information from internal sources, with the help of

ESM managers, and minimize the time suppliers would spend collecting everything

requested. Finally, formal approaches were made to suppliers to obtain the remaining

information and validate some of the items already collected.

Requesting information from third parties presented challenges, as data sharing

could be perceived as intrusive and potentially harmful to business relations.

To persuade suppliers, meetings were arranged at their manufacturing sites. During

the visits, Gemba walks were key to understanding the logical order of the manufac-

turing process of the device and to validate some data points that had already been

identified.

Additionally, these visits served to discuss business matters and the project’s

potential operational advantages, highlighting how digital twins had been effectively

utilized by other organizations. A particular emphasis was placed on the fact that the

project would ultimately benefit patients, streamlining the collaboration given the

common mission across supply chain entities in the pharmaceutical industry.

Following supplier alignment, questionnaires were distributed to capture any

outstanding data. Surveying through questionnaires required precise language and

illustrative examples, often necessitating additional clarification to interpret the results

accurately.

Moreover, another powerful source of data was to review contracts of the tier-one

suppliers. This was not considered until later in the project, but it allowed collecting

data from any tier-one supplier and not just the ones in scope. Contracts accelerated

the data collection because several times minimum or maximum inventory policies,

lead times, minimum order quantities, or even service level agreements were specified

there; however, if contracts prove to be out of reach, the methods described above

demonstrated being useful. Furthermore, reviewing contracts in advance could have

facilitated identifying risky suppliers during the Gemba walks.

44

Item Description
BOM For the product and components
Demand Consumer-only data
Inventory Policy Bookmarked for the company and the brand in

scope, at each supply chain stage (raw materials,
WIP, finished goods)

Installed capcity Theoretical machine capacity dedicated for the
company, assuming 24/7 operation at 100% OEE

Machine availability Operating schedule (e.g., 24/5, 24/7)
OEE Current and projected, considering machine age

and ramp-ups
Minimum order quantity As required by tier-one suppliers
Lead times For manufacturing and delivery
Scheduled downtime Holidays, annual shutdowns
TTR Estimated time range for recovery from disruptions

requiring tool, equipment, or site replacement
Additional resources Extra capacity options (e.g., extra shifts, shared

machines)
Location Of tier-one and tier-two suppliers
Capacity utilization Average per machine

Table 4.1: Key data collected and used by the final version of the tool

4.3.2 Metrics

Performance Metrics

To measure the impact on revenue the tool kept track of the on-time and late deliveries

of each product across the simulation period. The on-time deliveries were then

multiplied by the price of each product and the total revenue across the simulation

was displayed on the visualization dashboard. Users could then filter across scenarios

and compare the results to calculate the impact.

To complement the metric, the costs of goods sold were also calculated and

displayed in the visualization dashboard of the tool. The tool multiplied the cost of

each component by the number of components purchased by AZ during the simulation.

Resilience Metrics

Given the limited access to data, building an accurate optimization model within the

tool, such as the TTS model suggested by Simchi-Levi et al. [33], proved challenging.

45

Moreover, the objective of the tool was not specifically to find the best solution given

a set of constraints.

Instead, developing a tool with simulation capabilities added a time dimension

to the analysis that facilitated understanding the system’s behavior under different

stress conditions and facilitating comparisons.

Adding visualization capabilities to the tool on top of simulation yielded a powerful

tool for analysis, especially in the context of dealing with complex systems and metrics.

Thus, visualizing the evolution of the inventory coverage of each component instead

of calculating the actual TTS was deemed appropriate among the Steering Committee.

The tool calculated the inventory coverage as the inventory on hand at the beginning

of the period divided over the weekly estimated demand for the component in scope.

The weekly estimated demand was the forecasted demand for the product over the

following 12 months divided over 52 weeks. Given that the demand was only forecasted

for the final products of the supply chain the calculation started there and rippled to

the rest of the components required for such product according to the BOM.

The company also wanted to understand how long inventory stayed below the

baseline scenario - the time-away-from-design. Since the concept was not a metric in

itself, the idea was also to provide visualizations that allowed users to visually identify

the concept.

Consequently, the focus shifted to developing visualizations that allowed users to

easily interpret data and informed decision-making.

4.4 Ideate Stage: Conceptualizing Solutions

Ideating called for thinking big within a narrow scope and in compliance with some

constraints. After the Define stage, the project objective became to develop an in-

house tool that allowed AZ to stress test the supply chain resilience of their brands for

defining BCPs, leveraging simulation and visualization capabilities. This entailed two

primary tasks: (1) designing the tool’s logical framework and selecting appropriate

software to fit such a framework; (2) conceptualizing a model for simulating supply

46

chain operations and disruptions.

4.4.1 Tool Logical Framework

The first activity of the Ideate Stage required conceiving a logical framework of how

the tool could solve the general objective. A concept of this logic, shown in Figure

4-1, would be as follows: users would collect data and upload it to a data repository,

the tool would take the data from the repository, run the simulations, and display the

results, enabling the user to define a BCP, run more scenarios for further analysis,

or collect more data to expand the model before starting over. A challenge with this

framework was finding software that allowed users to modify scenarios in the front

end of the tool without accessing the back end of the tool.

Figure 4-1: Initial conceptual framework of the tool logic

Note: dotted lines represent manual tasks

Python was chosen as the main engine of the tool due to its widespread use

within the organization, its versatility, and its relative simplicity compared to other

languages. Python added the simulation capabilities to the tool but lacked visualization.

Integrating Python with some libraries3 like Dash or Streamlit would have made the

solution technically feasible, but a mock version of a dashboard created with one of

those visualization libraries raised data privacy concerns and was unfamiliar to the

Steering Committee.

As the tool’s responsiveness was not critical, since the tool would already enhance

and simplify the BCP process, an alternative was to keep Python as the tool engine,

using Visual Studio Code as the development environment, and pair it with Power
3Collections of predefined functions.

47

BI or Tableau for visualization purposes. Both business intelligence solutions were

equally intuitive, but Tableau did not meet the cost requirements and stakeholders

were generally more familiar with Power BI. Hence, the software combination for the

tool resulted in Python for the simulation and Power BI for the visualization, but two

other problems arose.

Python could not directly export the results to Power BI, while Power BI could

not directly alter the disruption parameters and initiate a Python script. To solve

the first half of the problem, Python would export the results to a spreadsheet in a

predefined layout, so the user could only refresh the Power BI dashboard and visualize

the latest results. The second half of the problem was more complicated and deemed

not worth solving given that the tool was in a POC phase, and the value added would

come from its business applications.

To keep the solution streamlined and effective without adding more software

components, spreadsheets were also used as a repository for data. However, this

implied that after getting the simulation results, the user had to manually adjust the

spreadsheet before simulating more scenarios.

Consequently, the tool consisted of a combination of three software: Python, Power

BI, and Excel. The user-facing part of the tool was called the Front End, while the

computational aspects were designated as the Back End. The final logical framework

of how the tool could be applied for BCP purposes is shown in Figure 4-2.

Figure 4-2: Final conceptual framework of the tool logic

Note: dotted lines represent manual tasks

48

4.4.2 Supply Chain Model

The second activity of the Ideate Stage required modeling a logic to simulate the

supply chain. Since a model is just a representation of how something works, the

supply chain model was built upon the subsequent three observations:

1. Source, Make, and Deliver can be found anywhere in the supply chain. Any node

in any supply chain can perform three main processes: order materials from a

supplier (Source), transform the materials into products (Make), and deliver the

products to its customers (Deliver). The idea holds within a node; processes are

connected in the same way.

2. Demand triggers the flow of products in the supply chain. For instance, fulfilling

a demand order reduces finished goods inventory, creating a manufacturing order

to replenish the lost inventory, and further creating a source order (demand for

the tier-one supplier) to replenish the raw material required to manufacture the

goods, and so on. The idea holds if the node does not have inventory policies.

3. Each node behaves differently. The first two observations dominated the behavior

of the overall supply chain, but nodes have specific characteristics that regulate

their behavior. No two nodes are identical, and the same idea applies to processes.

Those three observations helped depict a conceptual model of the supply chain, as

seen in Figure 4-3.

Figure 4-3: Conceptual model of the supply chain

49

4.4.3 Supply Chain Model Boundaries and Assumptions

Including all the specific behaviors of each node was not possible nor was it the intention

of the model - it would have defeated the purpose of developing a tool applicable to

more than just the brand in scope. Hence, making reasonable assumptions and setting

boundaries was necessary to avoid going down a neverending spiral of specifics. Each

assumption and boundary is explained in detail below:

1. Boundary: shipment capacity and allocation were out of scope. The problem

focused on manufacturing capacity, not on transportation capacity. Although

disruptions could impact vehicle availability or mobilization, it was easier to

replace such a service than to find more manufacturers with regulatory approvals

to produce medical devices. Thus, Deliver was the least detailed process.

2. Assumption: unconstrained supply from nodes not included in the simulation. Not

every node was going to be included in the model at once because information was

not available for the end-to-end supply chain across all tiers. Nodes lying outside

of the model boundaries were not measured and should not have influenced the

model.

3. Assumption: orders were placed at a weekly level. Using a weekly granularity to

represent the time frame at which processes occurred was consistent with the

time horizon of the data collected, for example, inventory policies were measured

in weeks of supply and inventory coverage also used weeks. A more specific

time frame would have increased the computational time of the model without

adding much value when analyzing the results, while modeling processes at a

more aggregate time frame would not have represented the processes adequately.

4. Assumption: orders were automatically received and accepted. This implied

that processes within a node were coordinated or even connected through

systems. Moreover, it was considered that node-to-node communication during

a disruption would increase; therefore, it was not worth detailing how each node

accepted or rejected orders.

50

5. Assumption: orders were prioritized by due date. The underlying intention of not

stocking out was to maximize service level; therefore, the focus was on reducing

late deliveries. Backlogs had to be resolved before working on new orders and

orders were never cancelled.

6. Assumption: production occurred as soon as possible. Nodes did not intend to

incur any unnecessary delay. This also assumed that the holding cost for raw

material and finished goods were not too different to change the behavior of a

node.

7. Assumption: inventory never went obsolete. Obsolence had not been a problem

before. Most products in scope were not perishable and the expiration date

of those that were was much later than what inventories kept would last. For

example, holding six months of inventory of a product with an expiration date

of two years does not impact.

8. Assumption: warehouses had infinite capacity. Warehouse capacity could have

been incorporated into the model; however, losing such a constraint allowed

illustrating visually the volume impact of changing a policy, especially towards

the future as demand grew.

9. Assumption: partial deliveries were allowed. Prioritizing responsiveness was

considered more important in the model than the transportation cost.

10. Assumption: deliveries never arrived ahead of time. Adding this assumption was

required to balance the previous one. Supply chains would try to benefit from

economies of scale, but disruptions would potentially modify such behavior.

4.4.4 Stress Test Considerations

Stress testing scenarios was a main component of the project’s objective. Recalling

the discussion in Chapter 4.2, the original BCP process only evaluated node outages

and did not test any corrective mechanisms. To enhance the BCP process, more

alternatives had to be provided both for creating disruptions and taking action.

51

To model supply chain disruptions, the examples discussed during the Define Stage

were grouped according to the consequence it would generate on the node directly

affected. Three categories resulted: capacity disruptions, inventory disruptions, and

demand disruptions. Moreover, an opportunity to include the option to affect lead

times was considered, but such an idea was left out since the delivery process had

been deemed out of scope for the project.

Meanwhile, the response mechanisms included in the model followed were related to

increasing capacity or adding inventory, both redundant approaches. The four policies

considered for the tool were the following: changing inventory policies, changing a

machine’s availability (i.e. shifts), changing a machine’s OEE, or adding a dual source.

The Prototype Stage would then try to configure the tool to allow stress testing

of any number of disruptions and any combination of disruptions and response

mechanisms shown in Table 4.2.

Item Type
Disruptions Capacity

Inventory
Demand

Response Mechanisms Changing inventory
Changing a machine’s availability
Changing a machine’s OEE
Adding a dual source

Table 4.2: Stress Test Considerations

This table and the preceding assumptions guided the development of the tool’s

capabilities to simulate and analyze different stress scenarios effectively.

4.5 Prototype Stage: Tool Building

Prototyping sought to develop the Front End and Back End components of the tool,

while trying to incorporate the tool features identified in Chapter 3.1: configurable,

modular, practical, universal, and visual.

52

4.5.1 Tool Back End

The first piece of the puzzle required translating the supply chain model into a

simulation code. To simulate the conceptual model of the supply chain, a discrete

event simulation approach was deemed appropriate. A goal throughout the code

development process was to design a script that enabled modularity and reusability.

Code Main Logic

The main logic of the code was built upon the observed supply chain behaviors;

therefore, at each period of the simulation: (1) each node would Source, Make, and

Deliver; (2) a demand order would be generated and the most downstream node

would receive it; (3) disruptions would modify how certain nodes behaved during

the simulation period. Those actions were embedded in a larger loop, allowing users

to test multiple disruption scenarios simultaneously. At the end of each disruption

scenario, the results were recorded, and after completing all disruptions the results

were exported to the Solutions Spreadsheet (refer to 4-2).

The main logic described was represented in the mock code below. For the actual

code described in this section, please refer to Appendix B.

for s c ena r i o in Disrupt ion Scenar i o s :

for per iod in Simulat ion Length :

Disrupt

Generate demand order

for node in Nodes :

Source

for node in Nodes :

Make

for node in Nodes :

De l i v e r

Record r e s u l t s

Export r e s u l t s to Excel

53

While writing down the logic, it was observed that each Source, Make, and Deliver

process had to occur ‘simultaneously’ for all nodes but these processes would take

place sequentially. That meant that orders would be placed at the start of the period,

nodes would work on outstanding orders throughout the period, and goods would

be delivered at the end of the period. Otherwise, there would have been a lag of

one period in the production, for instance, a node went through the Make process

without necessarily having the most updated orders from its customer or without

having received raw materials from its suppliers.

To execute the logic it was necessary to represent objects and write functions. The

use of external libraries was kept at a minimum to facilitate reading and maintenance.

Code Objects

Objects in the code were considered the elements of the logic that carried particular

data - attributes. Classes were used to represent instances of objects, enabling

tracking changes in the attributes of each object instance throughout the simulation,

and providing the necessary flexibility and modularity to make changes as the code

was written.

Each class stored the data of each attribute using different data structures. More-

over, each class also had small functions - methods - to facilitate its use, although

those are not relevant to the discussion.

A class was created for each of the following objects: nodes, products, processes,

orders, and disruptions. The attributes of each class are summarized in Table 4.3.

Nodes represented all the sites in the supply chain. Nodes were a robust class

because they contained classes of products, processes, and orders. Through a node, it

was possible to determine what processes had to be followed to create a process, when

to place orders, and how much to request from suppliers. Leaf nodes - nodes that

were at the boundary of the supply chain (i.e. consumer nodes) and were included in

the model - did not necessarily use all the attributes but did use the same class. A

special list kept track of the leaf nodes at the upstream boundary to exclude them

from sourcing, while consumer nodes only played a role in the demand generation part

54

Class Attributes
Node Name, raw materials, finished goods, bill of materials,

processes, process sequence, holidays, orders
Product Name, customers, suppliers, inventory, design stock,

inventory gap, annual demand, inventory coverage, late
deliveries, replenishment time

Process Name, inventory, design stock, inventory gap, annual
demand, inventory coverage, capacity available, orders,
machines

Machines* Production, utilization, availability, OEE, capacity,
availability, capacity available, capacity threshold,
percent available, start date, end date

Order ID, status, internal (created within node), date
received, supplier, customer, product, demand, date
due, process, amount produced, date production starts,
process amounts required, date production end, amount
shipped, date shipped, amount delivered, date
delivered, date fulfilled

Disruption Start date, end date, node name, product name,
process name, machine name, capacity threshold,
inventory loss, design stock, demand variation, machine
availability, machine OEE, type

Table 4.3: Summary of objects in the code

*Machines are not a general class, but data was tracked for individual machines

of the code.

Products represented either finished goods, raw materials, or work in progress

(WIP) products in between production steps. Accounting for WIP products was

necessary because sometimes the flow of products did not occur within the same

site. Moreover, products kept track of their own inventory over time, as well as the

inventory coverage at each period and the accumulated late deliveries.

Late deliveries were tracked by the model so users could determine if a portion of

the unmet demand would be lost for subsequent periods, penalizing long-term revenue.

A harsh penalty, but potentially true depending on the brand and the country, given

that doctors would just prescribe another brand or governments would find other

suppliers.

55

Processes represented all the activities performed at a certain node. In the model,

processes kept track of how many WIP products had finished the activity but had not

been taken by the subsequent process, avoiding the need to create a product for each

WIP part.

Processes also contained machines. Depending on the amount of data collected,

users would be able to track each manufacturing line instead of the process as a whole,

allowing for testing disruptions on specific equipment if desired. Machines were not

classes per se, but did keep track of several statistics about utilization.

Orders held information about the product, customer, and supplier involved in the

transaction. Although these items were just meant to trigger the supply chain flow, it

was also possible to use them for tracking partial deliveries and other statistics for

analysis.

Disruptions served two purposes. First, to keep track of when a disruption would

occur, how long would it last, what type of disruption it was, and what nodes would

be affected. Second, to keep track of the corrective measures users wanted to test.

However, it was not possible to have an instance of this class that was both a disruption

and a corrective measure at once, multiple instances had to be created. Using classes

to represent disruptions and response mechanisms also facilitated applying multiple

disruptions within the same period.

Code Main Functions

The interconnectivity between classes facilitated building functions that required very

few arguments. The main functions of the code represented the activities of the general

code logic: disrupt, source, make, and deliver. Generating demand was not a function

per se, because it was a much more simplified version of Source and it was directly

coded in the main logic block of the code.

The Disrupt function occurred once per period. The function took the list of all

the disruptions and iteratively checked, for each disruption, if the start or end date

matched the simulation period. If it did, then the function would check the type of

disruption, check which nodes had to be affected, and modify an attribute of the node

56

depending on the type of disruption.

A capacity-type disruption would modify the capacity threshold of a machine or

process, limiting the capacity available to a certain percentage of the capacity installed;

an inventory-type disruption would reduce the inventory of a product or process by a

certain percentage; a demand-type disruption would intensify or weaken a consumer

demand by a certain percentage; a policy-type disruption, a response mechanism,

modified the design stock of a product or process; and a machine-type disruption, a

response mechanism, changed the availability or OEE of a machine.

A representation of the function logic can be seen below:

for d i s rup t i on in d i s r up t i on s :

i f s imu la t i on per iod = d i s rup t i on . start_date :

i f d i s rup t i on . type = ’ capac i ty ’ :

Find Node

Reduce Capacity Threshold

e l i f d i s rup t i on . type = ’ inventory ’ :

Find Product or Process

Reduce Inventory

. . .

e l i f s imu la t i on per iod = d i s rup t i on . end_date :

i f d i s rup t i on . type = ’ capac i ty ’ :

Find Node

Capacity Threshold = 1

e l i f d i s rup t i on . type = ’demand ’ :

. . .

The Source function was applied once per period to each node except consumer

nodes or leaf nodes. The objective of the function was to determine if orders needed

to be placed, either for raw materials, finished goods, or to WIP inventory.

The function calculated the inventory gap for each product as the difference

between the target and actual inventory levels, adjusted by the pending inflows and

57

outflows of the product. The target inventory level was the design stock, in weeks of

supply, multiplied by the average weekly demand of the next 52 weeks. The on-hand

inventory level was the inventory at the end of the previous simulation period. The

pending outflows were the product quantity allocated to outstanding orders from

customers, while the pending inflows were the product orders that suppliers had

not delivered yet. A positive result would trigger an order, otherwise nothing would

happen because the node had excess inventory.

Furthermore, in the case of raw materials, the function divided the orders among

suppliers based on their capacity, inventory, and minimum order quantity for the raw

material. The function tried to source from as many suppliers as possible, as long

as the split amounts met the minimum order quantity required. While doing so, the

function tried to balance the order allocation among the suppliers, according to their

proportion of the total capacity and inventory available.

A representation of the function logic can be seen below:

for raw mate r i a l in node . raw_materials :

Ca l cu la te inv r equ i r ed

i f inv r equ i r ed > 0 :

Def ine order s p l i t

Assign o rde r s to s upp l i e r s

for f i n i s h e d good in node . f in i shed_goods :

Ca l cu la te inv r equ i r ed

i f inv r equ i r ed > 0 :

Create i n t e r n a l product ion order

for proce s s in node . p r o c e s s e s :

Ca l cu la te inv r equ i r ed

i f inv r equ i r ed > 0 :

Create i n t e r n a l product ion order (p a r t i a l)

The Make function was applied once per period to each node. The objective of the

function was to produce as many products as necessary according to the outstanding

58

orders but limited by the inventory available at the beginning of the period and the

capacity available.

To validate if an order would be produced, the function calculated how many raw

material units were necessary to fulfill the order, considering the bill of materials,

and compared it to the inventory available of such raw material. If there was enough

inventory, the function then verified if the machines within the process had enough

capacity available for production during the simulation period. The function then

maximized the production and adjusted the order status, the raw material and finished

goods inventory levels, and the machine production.

A representation of the function logic can be seen below:

for order in outstanding_orders :

Assign order to p r o c e s s e s

for proce s s in manufacturer . p r o c e s s e s :

for order in proce s s . o rde r s :

i f inventory a v a i l a b l e > 0 :

i f capac i ty a v a i l a b l e > 0 :

Reduce raw mate r i a l inventory

In c r e a s e f i n i s h e d goods inventory

Update order s t a tu s

Update machine product ion o f per iod

The Deliver function was applied once per period to each node. The objective

of the function was to determine when to ship finished goods from a supplier to a

customer according to the inventory available and the delivery lead times, ensuring

timely deliveries.

The function first identified the orders that needed to be shipped based on the

due date and the delivery lead time. Then, it shipped the orders according to the

available inventory and the remaining demand. Afterward, it updated the shipped

order status and the supplier’s inventory. It then checked the orders that were in

transit and delivered them to the customers, updating the customer’s inventory and

59

the order status.

A representation of the function logic can be seen below:

for order in s upp l i e r . o rde r s [’ not␣ shipped / d e l i v e r e d ’] :

i f sim per iod >= order . date_due − del ivery_lead_time :

Reduce inventory at s upp l i e r

Update order s t a tu s

for order in s upp l i e r . o rde r s [’ in ␣ t r a n s i t ’] :

i f sim per iod − del ivery_lead_time = order .

date_shipped :

I n c r e a s e inventory at customer

Update order s t a tu s

Code Auxiliary Functions and Solution Spreadsheet

Auxiliary functions were required to initialize objects, reset the objects in between

each disruption scenario, record results, and update the expected demand on a rolling

basis.

Furthermore, the code had some blocks to read the data from the spreadsheet

where the data was stored, to create the instances of each object, and to print the

outputs into the Solutions Spreadsheet.

Leveraging Pandas4 allowed importing and exporting data from spreadsheets. To

export the simulation results, the data contained in the classes was captured in Pandas

DataFrames5. Those DataFrames were printed in the Solutions File across three tabs:

1. Production Tab. Included a column for: Date, Scenario Name, Node, Process,

Machine, Machine Utilization (units), Machine Utilization (%), Capacity Avail-

able (units), Capacity Available (%), Machine Start Date, and Machine End

Date

4An open source Python library for manipulating data efficiently.
5A tabular data structure with labeled rows and columns, similar to the one in spreadsheets.

60

2. Inventory Tab. Included a column for: Date, Scenario Name, Node, Type (raw

material, WIP, or finished goods), Component (product), Design Stock (weeks

of supply), Inventory (units), and Inventory Coverage (weeks of supply)

3. Orders Tab. Included a column for: Scenario Name, Order ID, Node (customer),

Supplier, Component (product), Internal (boolean), Demand (units), Production

(units), Date Placed, Date Production Started, Date Production Ended, Date

Fulfilled, Due Date, Date Shipped, Amount Shipped (units), Date Delivered,

Amount Delivered (units), Late (binary)

4.5.2 Tool Front End

So far the Back End of the tool encompassed the modular and universal features

desired for resilience. The second piece of the puzzle required developing a Front End

that reinforced those features, while incorporating the other three ideal attributes:

configurable, practical, and visual.

Input Template - Data Storage

Building the Input Template after having a code structure was not complicated, but it

was tedious. It was necessary to design the tool in an interactive and user error-proof

way, which required adding macros, conditional formatting, dynamic dropdown lists,

data validation rules, a README tab, and protecting cells.

The first step was to create a tab that would allow users to add or remove nodes,

processes, or products to the model quickly and easily. This tab dubbed Reconfigure

Supply Chain, shown in Appendix C-1, included three buttons: Node, Process, and

Component (product). Naturally, each button had the option to add or delete; however,

the Process and Component buttons had to be added to a node. Dropdown menus

were added to select from the existing list of items and errors would pop up if an

invalid action was performed, such as removing items that did not exist or duplicating

names.

The macros on the Reconfigure Supply Chain tab would fill another tab with the

61

keys for each node, process, and product. These key tabs were hidden from the users

and enabled adding the data validation rules and conditional formatting to the rest

of the file. In every other tab, wherever a node, product, or process, was required,

dropdown lists were available and updated automatically if the supply chain was

reconfigured. Figure 4-4 displays an example of how these macros and the validation

rules worked from a user perspective.

Figure 4-4: Example of how to reconfigure the supply chain

The second step was to create a set of nine tabs where users could modify the

characteristics of the supply chain as necessary, such as the availability of a machine

or the initial inventory of a raw material. Almost all these tabs followed a similar

format: the first row specified the column header and each subsequent row was used

to enter data. To facilitate adding rows while keeping the conditional formatting

and validation rules, a macro button was included at the top of each tab. Cells that

required values had data validation rules to ensure the data complied with the criteria,

such as keeping percent values between 0 and 1, prohibiting negative values, allowing

only integer values of inventory units, and more.

The Processes tab, shown in Appendix C-3, defined the processes contained within

a node. This tab required: selecting a node and a process from the dropdown lists;

determining the initial inventory units held at the end of the process; and specifying

the design inventory in weeks of supply. Furthermore, this tab would flag whenever a

62

user added an inventory value greater than zero to a leaf process, an ending process,

by cross-referencing the BOM tab; instead, the inventory should have been inserted in

the Finished Goods tab.

The Machines tab, shown in Appendix C-4, defined the manufacturing equipment

for each process within a node. This tab required: selecting a node and a process

from the dropdown lists; adding a name for the machine; determining the installed

capacity in units per day, the availability in days per week, the OEE in percentage;

and defining the start and end date of the machine, the time interval during which

the machine was intended to exist in the supply chain. This tab would flag if machine

names were duplicated.

The Machine Updates tab, shown in Appendix C-5, kept track of future changes

in a machine’s attributes to affect the simulation accordingly. This tab required:

selecting a node, a process, and a machine from the dropdown lists; redefining the

availability in days per week and the OEE in percentage; and the date that changes

would become effective.

The Raw Materials tab and the Finished Goods tab, shown in Appendix C-6 and

C-7 respectively, defined if a product was sourced (raw material) or manufactured

(finished good) by a node. Both tabs required: selecting a node and a component

(product) from the dropdown lists; determining the initial inventory units held at the

node; and specifying the design inventory in weeks of supply. The Raw Materials tab

would flag whenever a component was selected but the node did not appear in the

Suppliers tab as a customer for such component. The Finished Goods tab would flag

whenever a component was added to a node but the component did not appear as a

finished good for the node in the BOM tab.

The Suppliers tab, shown in Appendix C-8, managed the relationship between

nodes through the products exchanged. This tab required: selecting a node for the

customer, a component (product), and a second node for the supplier; determining

the minimum order quantity in units; and defining the delivery lead time in weeks.

This tab would flag whenever a component was not in both, the Raw Materials tab

for the Customer node, and in the Finished Goods tab for the supplier node.

63

The BOM tab, shown in Appendix C-9, managed the relationship between com-

ponents and processes within a node. This tab required: selecting a node and a

finished good from the dropdown lists; selecting either a required raw material or

a required WIP component from their respective dropdown lists; determining the

quantity required from the raw material or WIP component to produce the finished

good; and selecting from a dropdown list the immediate process that required the raw

material or WIP component. This tab would flag whenever a finished good and the

raw material required were not in their respective tabs for the node selected, and it

would also black out the required raw material or required WIP component cell if the

other cell in the same row was occupied.

The Demand tab, shown in Appendix C-10, contained the monthly estimated

values for each consumer (i.e. a country). This tab allowed the user to add as many

rows (months) and columns (consumer) as desired. The Back End of the tool would

determine the length of the simulation according to the number of rows; however, a

column was included to allow users to determine if the simulation should end at a

specific period without the need to delete rows, which also helped reduce the simulation

runtime. The demand forecasts for the long term were disaggregated at a monthly

level from an annual estimate according to the seasonality observed in previous periods

to represent a more realistic behavior than simply using the average demand.

The Holidays tab, shown in Appendix C-11, tracked how many days of each week

of any given year a node would shut down. Capturing this information would also

enable modeling more accurate behaviors from each node.

The information in these nine tabs produced the Baseline Scenario of the model -

a scenario without any disruptions. The third and last step was to create a tab where

users could specify the disruption scenarios desired.

The Disruption Parameters tab, shown in Appendix C-2, was the most important

tab of the file. The general idea of the tab was that each row would represent a

disruption or a response mechanism. To group disruptions/response mechanisms

within a scenario, users would only need to repeat the scenario name across the desired

rows. To facilitate adding or removing disruptions/response mechanisms from the

64

model without removing the row from the tab, a boolean column was embedded in

the tab.

To guide the user through the process of adding disruptions/response mechanisms

in the Disruption Parameters tab, each row would highlight in yellow the cells that

required a value. First, the user would select the start date of the disruption/response

mechanism, choose a node to disrupt from a dropdown list and determine the impact

on the node from one of six different columns: capacity threshold (disruption),

inventory loss (disruption), demand variation (disruption), new design stock (response

mechanism) or new availability and OEE (response mechanism). Depending on the

type of disruption/response mechanism the user was creating, other columns would

blackout to indicate the user data is not necessary on those cells. Finally, users could

complete the rest of the blank cells or leave them empty, which defaulted to applying

that disruption/response mechanism to all the items of the blank column within the

node selected.

Additionally, some extra tabs were included. One was for gathering the location

of all nodes in the supply chain to later include it in the visualization dashboard.

Another one was for collecting the price of the components, to calculate the impact

on revenue of the simulation results. And two more with the suggested additional

capacity and TTR that suppliers filled out on the survey, to provide a reference for

users when defining disruption scenarios.

Overall, the Input File reinforced the modular and universal features of the tool.

It further incorporated the configurable feature by empowering users to test any

combination of scenarios and response mechanisms, add as many nodes to the model

as possible or desired, and apply the tool to other brands.

For the project in scope, the tool was also considered practical because it enabled

reducing the order of magnitude of the BCP process length from days to hours6.

From a practical standpoint, perhaps configuring the file for the first time would be

time-consuming for a user, but afterward, the user would only need to focus on playing

6Minutes for running scenarios. For reference: 2.11 min/scenario (simulation + print time to
spreadsheet), considering 30 total nodes, a 9.5y simulation length, using an M3 Mackbook Pro.

65

with the Disruption Parameters tab, and updating the initial inventories and expected

demand. Even if structural changes were required, which occurred infrequently, the

Reconfigure Supply Chain tab and the error-preventing mechanisms would accelerate

such a process.

An opportunity to further improve the tool’s practicality would have been connect-

ing the file to the company’s system to automatically update the inventory position.

Although doing so was considered, it was not implemented due to time constraints.

Data Visualization

Creating a data visualization dashboard was the missing piece towards completing

the tool framework depicted in Figure 4-2. Doing so would also provide the visual

feature the tool lacked so far. The creation process was iterative and incorporated

user feedback in between versions.

To allow users to visually perform a comprehensive analysis of the supply chain,

two sets of tabs were created within the business intelligence software: analytical and

informational.

Analytical tabs. These tabs focused on showing the impact of each disruption

scenario on revenue, capacity, and inventory to augment BCP practices. The goal

of this section of the dashboard was to provide new insights about the pmdiTech

supply chain to the GSC&S and ESM members at AZ, while helping them understand

the consequences of a disruption on the performance and resilience indicators they

considered valuable during the Define Stage. The data source for these tabs was

primarily the Solutions Spreadsheet of the simulation.

• A Summary tab, shown in Appendix C-21, was designed to guide users on their

analysis. In this tab, users were able to filter per scenario and view both the

revenue and the costs of goods sold for each product. The tab also provided a

high-level overview of how stressed inventory and capacity were throughout the

simulation at AZ and tier-one supplier sites by leveraging RAG7 indicators.

7Red, Amber, Green.

66

The capacity indicator displayed green whenever the machine capacity utilization

at the node was below an ideal utilization level, amber when utilization was

above the ideal level, and red whenever a site was running at maximum capacity.

The inventory indicator displayed green when the inventory level was at or above

the design stock level, amber when inventory dropped up to 50% below the

design, and red when the inventory level fell more than that.

• A Capacity Utilization tab, shown in Appendix C-22, was designed to contrast

the percentage utilization of any node, at a process or even machine level, across

scenarios. An area chart, for each scenario selected, displayed three metrics: the

capacity available, the ideal utilization, and the actual utilization.

The ideal utilization was the capacity utilization percentage at which a machine

would need to run to fulfill the estimated demand under normal circumstances,

as designed per the ESM team. Such a parameter was included only in the

dashboard, not in the simulation; therefore, it allowed validating if the simulation

was behaving in line with what users had planned.

• An Asset Utilization tab, shown in Appendix C-23, was designed to complement

the Capacity Utilization tab. This tab followed the same structure, but the

difference was that the charts were in units of material instead of percentages.

Charts within this tab facilitated identifying the periods when additional capacity

investments were required at a node for a certain process.

• An Inventory Coverage Scenarios tab, shown in Appendix C-24, was designed to

display the evolution of the weeks of supply of a component held at a node. The

area chart in this tab overlayed scenarios to understand the impact that each

disruption scenario had on inventory. This tab would show users if a product

ran out of inventory and when that would happen, in case it did.

• An Inventory Coverage Components tab, shown in Appendix C-25, was designed

to complement the previous tab. Beyond comparing the effect of a disruption

scenario on an individual component, overlaying the inventory coverage of

67

multiple components within a node was also considered relevant.

• An Inventory tab, shown in Appendix C-26, was designed to mimic the Inventory

Coverage Scenarios tab by displaying the chart in inventory units instead of

weeks of supply. One of the assumptions of the model was that warehouses had

unlimited capacity. Although in reality that is not true, such an assumption gave

users perspective of the consequences of maintaining an inventory policy based on

weeks of supply. The chart in this tab exposed the warehouse capacity required

in the future to maintain such policies or the time by which complementary

resilience preventive measures had to come into effect to cover the risk.

• A Node Analysis tab, shown in Appendix C-27, was designed to display both

inventory and capacity charts at a node level. The inventory charts showed the

inventory coverage of each component compared to the amber and red RAG

indicator thresholds, while the capacity tabs tracked the capacity utilization and

the capacity installed at a process level.

• Finally, a Simulation Demand tab, shown in Appendix C-28, was designed to let

users visualize their forecasted demand per brand compared to the simulation

demand and the on-time deliveries within the simulation. This tab supported

users to analyze the impact on lost sales, particularly when the demand penalty

condition was active in the model.

Informational tabs. These tabs focused on showcasing additional aspects of the

brand. The objective of this section of the dashboard was to enable users to validate

if the supply chain configuration they wanted to model was accurate. Beyond BCP,

these tabs would be able to enrich conversations within the organization. The Input

File was the primary source of data for these tabs.

• The Brand tab, shown in Appendix C-29, displayed a breakdown of the demand

for the brand portfolio. Charts in this tab displayed the expected demand

growth by product, the evolution of the portfolio composition by product, and

the demand split by country.

68

• The Supply Chain Network tab, shown in Appendix C-30, used a Sankey chart

to show the relationships between the nodes included in the model. This tab

included a component filter, to visualize which nodes traded such components,

and a node filter to identify who were the suppliers of the node in scope.

• The Bill of Materials tab, shown in Appendix C-31, used a Sankey chart to

show the flow of components through processes across the value chain up to

the brand’s products. By filtering by nodes it was possible to visualize the

connection of raw materials with processes and finished products within the

node. By filtering by product it was possible to identify the components and

processes required to manufacture the inhaler at the AZDP site.

• The Supply Chain Map tab, shown in Appendix C-32, showed the geographic

location of the nodes represented in the model to identify clusters and potential

regional risks. This display also allowed filtering the map by the external supplier

categories described in Chapter 2.1.1.

• The Installed Capacity tab, shown in Appendix C-33, displayed the installed

capacity over time. This tab provided a breakdown of the capacity by machine

and product, according to the selected node. These visuals helped identify the

supply chain bottlenecks and potential shifts in the bottlenecks over time.

• Finally, a Disruption Parameters tab, shown in Appendix C-34, was included

to help users remember which were the parameters of each disruption scenario

simulated.

To leverage chart interactions of business intelligence solutions, as those filters

mentioned along the dashboard tabs description, relational structures between data

sets were necessary. Those relationships were built within the software and facilitated

the connectivity between the Input File and the Solutions Spreadsheet.

Overall, the dashboard created to analyze the supply chain simulation solutions

provided the visual element the tool was missing. The dashboard views described

above exemplify how business intelligence tools provide a broad range of possibilities

69

for users to play with data, generate insights, and augment their BCP practices by

further improving the tool’s modular feature.

User Guide

An extra step to enhance the tool and improve its practicality was defining a user

guide. This guide was built on a spreadsheet and had four tabs: (1) the instructions

to set up the Back End of the tool; (2) the instructions to set up the Front End of

the tool; (3) the instructions on how to run simulations; and (4) a set of Frequently

Asked Questions.

Further explaining this guide would be out of scope for this thesis. Nevertheless, it

was generally appreciated among stakeholders and it unveiled opportunities to improve

the tool throughout the Prototype Stage.

In the end, the Prototype Stage proved how valuable the Ideate Stage was for

conceiving a useful product. It also allowed identifying some of the tool’s limitations

objectively. It further demonstrated that the Design Thinking methodology truly is

iterative.

4.6 Test Stage: Assessing Impact

Testing sought to validate if the tool met the business needs. So far, the tool already

served its first purpose; it was an in-house tool that allowed AZ to stress-test the

supply chain resilience of their brands for defining BCP. The second purpose was to

make the tool a viable building block for a supply chain digital twin. To achieve this,

it had to prove that it satisfied a business case.

4.6.1 Business Case

Disclaimer: The business case evaluated in this thesis is based on actual events.

However, to preserve the confidentiality of proprietary information and ensure the

privacy of the organization, certain details have been modified, altered, or concealed,

and sensitive data have been omitted.

70

Around the time the tool was being developed, the ESM team was having conver-

sations with Supplier A to decide if it was worth investing in capacity at a second site.

Supplier A, an AZDP tier-one supplier with multiple tier-two suppliers as highlighted

in Figure 4-5a, manufactured a device component used in the assembly process at

AZDP as highlighted in Figure 4-5b.

Filtering Figure 4-5a by component would illustrate all the unique nodes supplying

the part to AZ; however, in this case, the chart was not included for simplicity because

Supplier A was AZDP’s sole provider for such a component and only manufactured it

at one site.

(a) Suppliers Sankey (b) Components Sankey

Figure 4-5: Business case: context of supplier

Note: Goods flow towards the right of the charts

AZ had three machines at Supplier A’s first site and had already planned on

having a fourth machine up and running by 2027. Investing in capacity at Supplier

A’s second site was not necessary, but would serve as a backup mechanism in case

of disruption - it would be redundant capacity. The company was further skeptical

about the investment because the redundant capacity would be available from 2026

onwards and would only provide one-third of the main site’s output.

Although financial considerations mattered, the decision driver was serving patients.

Therefore, the main question was how much difference in on-time delivery would the

investment in additional capacity make?

To evaluate the benefit of having the second site, in addition to having the fourth

71

machine, two scenarios were simulated in addition to the baseline:

• One with a fire at Supplier A’s main site on New Year’s Eve 2025. Assuming

that the company did not invest in the redundant capacity, that the finished

goods warehouse was not affected, and that the TTR for Supplier A would have

been 2 years, accounting for the site’s reconstruction and the regulatory approval

process. The scenario also considered that the fourth machine was installed at

the second site.

• One with a fire at Supplier A’s main site on New Year’s Eve 2025. Assuming

that the company did invest in the redundant capacity, that the finished goods

warehouse was not affected, and that the TTR for Supplier A would have been

2 years, accounting for the site’s reconstruction and the regulatory approval

process. The scenario also considered that the fourth machine was installed at

the second site.

To represent the problem in the Input File, as shown in Figure 4-6, the capacity

at the supplier was equally divided into three machines:

• For the first scenario, ‘Fire at Supplier A - no backup’, the capacity for all three

machines was limited to zero from Jan 2026-Jan 2028, and any WIP inventory

was completely depleted.

• For the second scenario, ‘Fire at Supplier A - with backup’, only the capacity

of two machines was limited to zero from Jan 2026-Jan 2028, and any WIP

inventory was completely depleted.

The third machine was not affected in this scenario because it represented the

redundant capacity at the backup site. This assumed operational conditions

would have been identical at the second site, compared to the first site, although

those details would not be relevant unless the results suggested that shortages

were avoided for only a few weeks or days under this scenario.

Those scenarios were then simulated with the tool and analyzed in the Power BI

dashboard.

72

Figure 4-6: Business case: input file

From a capacity perspective, looking only at Supplier A was worrisome, as seen in

Figure 4-7. The case without a backup machine showcased how nothing was produced

during the first year of the disruption, how the fourth machine produced at maximum

capacity during the second year of the disruption, and how Supplier A continued

producing as much as possible for the rest of the simulation even after recovering from

the fire. The case with a backup also suggested that capacity at Supplier A would

have remained stressed despite having relied on the redundant machine during the

two years the main site was offline.

At the company’s site, the story was different. In the case with no backup, the

capacity utilization fell to nearly half the level of the baseline although there was

capacity available, implying that a limited supply of the component manufactured by

Supplier A was capping the production. After Supplier A recovered, the company’s

utilization jumped almost to the maximum levels for more than a year before normal-

izing. Meanwhile, the scenario with a backup machine suggested there was no impact

when compared to the baseline.

To validate the insights from the capacity charts, a similar analysis was also

conducted on the inventory coverage charts in Figure 4-8 by following the path from

Supplier A to the consumer. Doing so would demonstrate the time-to-survive in case

of stockout.

Supplier A’s inventory coverage chart displayed how in the scenario without a

backup, the device component’s inventory depleted after four months, while the

same inventory lasted nearly a quarter longer in the scenario with a backup. At

the company’s site, the depletion took longer because they held a larger amount

73

(a) Supplier A

(b) Company Site

Figure 4-7: Business case: quarterly capacity utilization

of inventory. In the scenario without a backup, the company had used all their

component’s inventory by 2026 and ran out of finished goods inventory for Product

X approximately a semester later; they stocked out despite leveraging the capacity

from the fourth machine during 2027. Meanwhile, in the scenario with a backup, the

production of the redundant machine helped the company resume their operations as

normal, even without affecting the finished goods inventory position.

All these inventory charts also helped explain why utilization at Supplier A’s site

never returned to the ideal levels. In the case with a backup machine, it took the

company more than five years to get back to their designed stock level, while in the

case without a machine the inventory reached the baseline level until the end of the

simulation period. In turn, Supplier A was never able to return to the baseline because

of the ripple effect from the disruption. Such behavior illustrated the concept of

74

time-away-from-design that the company was interested in analyzing.

So far the analysis depended on the assumption that the fire would not have

impacted the warehouse and that the fourth machine would fit at the supplier’s

secondary site. Leveraging the tool, it was possible to test these assumptions and

further enhance the analysis by evaluating four more scenarios:

• One with a fire at Supplier A’s main site on New Year’s Eve 2025. Assuming

that the company did not invest in the redundant capacity, that the finished

goods warehouse was affected, and that the TTR for Supplier A would have been

2 years, accounting for the site’s reconstruction and the regulatory approval

process. The scenario also considered that the fourth machine was installed at

the second site.

• One with a fire at Supplier A’s main site on New Year’s Eve 2025. Assuming

that the company did invest in the redundant capacity, that the finished goods

warehouse was affected, and that the TTR for Supplier A would have been

2 years, accounting for the site’s reconstruction and the regulatory approval

process. The scenario also considered that the fourth machine was installed at

the second site.

• One with a fire at Supplier A’s main site on New Year’s Eve 2025. Assuming

that the company did not invest in the redundant capacity, that the finished

goods warehouse was affected, and that the TTR for Supplier A would have been

2 years, accounting for the site’s reconstruction and the regulatory approval

process. The scenario also considered that the fourth machine was not installed

at the second site.

• One with a fire at Supplier A’s main site on New Year’s Eve 2025. Assuming

that the company did invest in the redundant capacity, that the finished goods

warehouse was affected, and that the TTR for Supplier A would have been

2 years, accounting for the site’s reconstruction and the regulatory approval

process. The scenario also considered that the fourth machine was not installed

at the second site.

75

Beyond similarly analyzing these scenarios as the previous two, it was important

to compare the impact of each on the on-time deliveries. Visually, a chart overlaying

the inventory coverage of the products manufactured by the company helped ratify

that scenarios without a backup machine performed worse and that removing the

assumptions from the analysis the consequences worsened. Figure 4-9 shows such

charts across each set of scenarios.

Visual insights created awareness, provided a strong storyline behind each scenario

and showcased the tool’s versatility. Nevertheless, linking the impact to performance

metric insights was crucial to garner support from key stakeholders.

To answer how much difference in on-time delivery would the investment in

additional capacity make, data from each simulated scenario was presented in a table

comparing the percentage of products delivered on time to patients with respect to

the baseline scenario.

The results in Table 4.4 demonstrated how investing in backup capacity could

substantially increase the percentage of timely deliveries within the context of this

case example. The average value for on-time deliveries across all scenarios with a

redundant machine was 97.5% compared to 90.2% in all the cases when the fourth

machine was installed at the second site, 69% when no fourth machine was available,

and 61.7% when no backup was available.

No 4th machine With 4th machine Difference
No backup 70.5% 88.6% 18.1%

With backup 98.9% 100.0% 1.1%
Difference 28.4% 11.4%

(a) Scenarios without warehouse impact at Supplier A’s main site

No 4th machine With 4th machine Difference
No backup 14.8% 72.9% 58.0%

With backup 91.9% 99.4% 7.4%
Difference 77.1% 26.5%

(b) Scenarios with warehouse impact at Supplier A’s main site

Table 4.4: Business case: on-time deliveries results

76

Regardless of the conclusions of this particular example, overall, the case presented

above proved valuable to stakeholders given the tool’s potential to augment BCP

practices across the organization. Although the performance and resilience metrics

were not explicitly stated in the tool, the case showcased how the business intelligence

dashboard was well designed to effectively understand the impact of disruptions and

support decision-making.

The Test Stage demonstrated the importance of presenting the tool’s capabilities

in a relevant business context and with well-founded arguments. It demonstrated how

the tool matched users and business needs, while showcasing the potential benefits and

applications of scaling this digital development. It further validated the achievement

of the thesis project’s goals.

77

(a) Supplier A - component finished good

(b) Company Site - component raw material

(c) Company Site - product finished good

Figure 4-8: Business case: inventory coverage by node

78

(a) Scenarios with fourth machine and without warehouse impact at Supplier A’s main site

(b) Scenarios with fourth machine and with warehouse impact at Supplier A’s main site

(c) Scenarios without fourth machine and with warehouse impact at Supplier A’s main site

Figure 4-9: Business case: inventory coverage by set of scenarios

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

Chapter 5

Results

The tool presented in this thesis was designed to enable AZ to conduct stress tests

and define BCPs for their brands, laying the groundwork for developing a supply

chain DT. The tool’s alignment with the Define Stage scope agreements was evident

in several aspects:

• The configuration of the tool allowed users to test all the desired disruption

scenarios and it also included response mechanisms to test potential BCP policies.

• Although the performance and resilience metrics were not explicitly included

in the tool’s dashboard, the tabs designed allowed users to inspect the desired

metrics visually.

• Besides including the supply chain nodes between the filling and packing stages,

this version of the tool also captured the demand at a country level and included

some nodes upstream in the API and Excipients stage.

• The tool encompassed both enabling technologies, simulation and business

intelligence, ensuring the compatibility for further development toward DT

status.

Beyond enabling AZ to outline BCPs more effectively, the tool provides additional

use cases. In case of disruption, it would allow AZ to understand the extent of the

81

potential impact and respond swiftly. When launching medicines, AZ would be able

to better design resilient supply chains since their inception and validate that the

supply chain design is robust enough to meet the expected demand. Similarly, the tool

would be able to support planning for equipment investments or divestments. More

importantly, when working with suppliers, it would facilitate collaboration towards

resilience.

While the tool achieved its primary objectives, it presents several enhancement

opportunities due to constraints in time, data, and budget. Future iterations could

connect the tool to the company’s databases for streamlining data updates, extend the

simulation script to encompass TTS calculations for all nodes or other optimization

models, integrate flexibility-based resilience mechanisms alongside existing redundancy

mechanisms, and even incorporate sustainability metrics.

Nevertheless, the resilience features embedded in the tool provide a solid foundation

to expand the tools’ use to other resilience cases beyond disruption testing, depending

on the experience and maturity of the organization.

Additionally, beyond the objectives of the thesis project, the approach to the

problem is generalizable to any organization seeking to improve its supply chain

resilience practices through the use of digital developments.

5.1 Supply Chain Resilience Tool Building Frame-

work

The methodology chapter detailed the systematic approach employed to develop and

test the supply chain resilience tool.

The process began with extensive stakeholder interviews to gather insights into the

challenges and needs related to supply chain resilience, ensuring the tool addressed

real-world problems and user requirements.

Subsequently, a more detailed project’s scope was defined along with the desired

tool’s characteristics and functionalities, leading to a blueprint of the data required

82

for developing the tool.

Data collection followed, focusing on gathering information from internal and

external sources. Meetings with suppliers, defining questionnaires, and reviewing

contracts were unveiled as a means to fill data gaps.

In parallel, creative solutions were brainstormed, and a conceptual framework for

the tool was developed. Assumptions and boundaries were established to create a

model that was both robust and flexible, capable of simulating a variety of supply

chain scenarios.

The process continued with the development of a Front End and a Back End for

the tool.

• In this case, the Back End leveraged discrete event simulation for its effectiveness

in modeling complex supply chain dynamics over time. This simulation was

coded with an emphasis on modularity and reusability, ensuring the tool could

be adapted for various scenarios.

• For this project, the Front End was divided into two. First defining a user

interface design, focusing on creating an intuitive and error-resistant experience

through dynamic dropdown lists, data validation, and protective measures

against user input errors. Then, constructing a comprehensive data visualization

dashboard within business intelligence software, enabling users to analyze supply

chain performance visually. These portions of the tool were developed with

an emphasis on configurability and practicality, within the constraints of the

project.

Finally, the tool was tested in a business context, showcasing the potential use

cases for enhancing resilience practices within the organization.

The design thinking methodology applied to supply chain resilience underpinned

the tool’s development, ensuring it was robust, user-friendly, and capable of providing

meaningful insights into supply chain resilience.

Figure 5-1 illustrates a general framework for applying the methodology to digital

developments in supply chain resilience.

83

Figure 5-1: General framework for developing supply chain resilience digital tools

84

5.2 Supply Chain Digital Twin Transition

The solution presented for this thesis project leveraged simulation and visualization

capabilities. However, the tool developed was limited to visual diagnostic analysis.

The tool virtually represented the physical supply chain and encompassed some

enabling technologies to analyze data, but the tool only achieved a digital model

status given the manual interactions between the physical and the digital entities.

For organizations aspiring to upgrade their digital models, a robust data infrastruc-

ture is essential because continuous access to data opens the possibility of incorporating

predictive and prescriptive analytical capabilities through machine learning and artifi-

cial intelligence.

To transition from a static digital model to a dynamic digital shadow, the natural

step forward would involve investing in sensors to collect data and cloud computing

to update the digital tool automatically. However, doing so in a supply chain context

requires data sharing between organizations because a single entity rarely constitutes

an entire supply chain.

A valuable lesson while gathering data was that by communicating the long-term

advantages of DTs in supply chain contexts, discussions evolved from data ownership

concerns to proactive collaboration on data integration. Conversations shifted from

‘Why do you want our data?’ to ‘How can we streamline data connections between

our facilities?’.

Fostering a collaborative mindset unlocks the potential to develop supply chain

digital shadows, and organizations that successfully develop digital shadows stand to

gain competitive advantages through enhanced decision-making capabilities. More

importantly, collaboration also enhances visibility, which is crucial for augmenting

resiliency.

For organizations aspiring to further upgrade their digital shadows, implementing

the necessary technology to modify the physical supply chain should prove time-

consuming but not an impediment to achieving digital twin status. However, since

the essence of a DT is to enable automatic enhancement between physical and digital

85

entities in the twin, the challenge will be facilitating the unsupervised interaction

between these entities because supply chains are generally not vertically integrated.

• To overcome the challenge, most organizations will opt for a practical approach:

developing individually owned DTs that address the supply chain priorities of

the organization. These DTs shall make decisions based on what they consider

optimal for a single supply chain entity and affect only the physical portion

of the supply chain controlled by that entity, while leveraging data from the

multiple supply chain entities.

This solution implies that entities in the supply chain still collaborate to collect

and share data, but each entity develops its own DT for specific supply chain

applications, such as inventory management or production planning. Thus,

organizations following this approach will have a ‘digital twin for supply chain

applications’.

• Alternatively, some organizations may try to follow a more holistic approach:

developing a single DT that makes decisions based on what it considers optimal

for the entire supply chain, affecting any physical portion of the supply chain

regardless of whom it belongs to.

This solution implies that entities in the supply chain align incentives and agree

upon the underlying metrics for which the DT optimizes, particularly because

the decisions made by the DT will usually involve cost tradeoffs. Thus, following

the holistic approach should prove difficult, but organizations that successfully do

so will have a true ‘supply chain digital twin’.

The main difference between the two approaches organizations may follow when

upgrading their digital shadows to digital twins is that the practical approach leads

to having a DT that optimizes locally (‘digital twin for supply chain applications’),

while the holistic approach leads to having a DT that optimizes globally (‘supply

chain digital twin’). Although both strategies should drive value for organizations,

aspiring for a ‘supply chain digital twin’ arguably unlocks the potential to generate

larger benefits.

86

Chapter 6

Conclusions

In conclusion, the thesis documented the successful development of a digital tool

aimed at bolstering supply chain resilience through simulation and business intelligence

capabilities. The tool - characterized by its configurability, modularity, practicality,

universality, and visuality - enabled supply chain managers at AZ to proactively

manage disruptions. By integrating design thinking and a thorough methodology that

included stakeholder interviews, data collection, and creative problem-solving, the

project yielded a robust and flexible tool that not only fulfilled the initial objectives

but also offered broader applications for supply chain management.

The tool was tested in real-world business applications, illustrating its capacity to

significantly enhance BCP processes, facilitate swift responses to disruptions, and assist

in the strategic planning of supply chain designs and investments. It addressed the

dynamic nature of supply chains by allowing for continuous revisions and updates to

the BCPs as nodes and relationships evolve. It also aided in navigating path-dependent

decisions by simulating various disruption scenarios, thus informing strategic choices

that consider both present and future risks. Moreover, the tool enhanced visibility

across supply chain tiers, facilitating collaboration with external stakeholders and

enabling a more comprehensive understanding of the supply chain network.

Beyond AZ, the methodologies and principles applied in this project are indicative

of their potential for widespread adoption across various organizations, signaling

a move towards a more resilient and digitally-enabled supply chain management

87

approach. Consequently, this thesis also provided a framework for developing digital

tools that foster supply chain resilience.

The digitalization of supply chain management is advancing, and this project

demonstrated that the journey from a digital model to a digital shadow, and ulti-

mately to a digital twin, is a transformative process that requires not only technological

innovation but also a cultural shift towards collaboration and data sharing. Organiza-

tions that embrace these changes are poised to reap the benefits of enhanced agility,

efficiency, and competitive advantage in an increasingly complex global market.

While this thesis has laid a solid foundation for adopting resiliency through

digital models, future research could explore incentive alignment models to harmonize

stakeholder objectives across the supply chain with aims at impulsing the development

of supply chain digital twins that operate holistically at a network level instead of

at a node level. In the end, seeking supply chain resilience should be a collaborative

effort, not an individual one.

88

Appendix A

Company Appendix

A.1 Brand Details

Product Total 2022 Total 2023
Device A1 44 46
Device A2 45 73
Device A3 - 1

Table A.1: pmdiTech Global Presence1

[1][23]
1 number of countries where the product
has been approved

Product 2016 2017 2018 2019 2020 2021 2022 2023
Device A1 2 16 33 42 48 54 58 58
Device A2 - - - 2 28 203 398 677
Device A33 - - - - - - - -

Table A.2: pmdiTech Reported Sales by Product and Year 1 2

1 in millions of dollars
2 data from AZ Annual Reports 2016-2023 [48] [49] [50] [51] [24] [52] [23]
[1]

3 launched until 2024

89

A.2 Product Details

Product API Starting Material Propellant
Device A1 Glycopyrrolate

Formoterol fumarate
DSPC [1,2-Distearoyl-sn-
glycero3-phosphocholine]
Calcium chloride

Hydrofluoroalkane
(HFA 134a)

Device A2 Budesonide
Glycopyrrolate
Formoterol fumarate

DSPC [1,2-Distearoyl-sn-
glycero3-phosphocholine]
Calcium chloride

Hydrofluoroalkane
(HFA 134a)

Device A3 Albuterol sulfate
Budesonide

DSPC [1,2-Distearoyl-sn-
glycero3-phosphocholine]
Calcium chloride

Hydrofluoroalkane
(HFA 134a)

Table A.3: Product Components [53] [54] [55]

(a) Device A1 [56] (b) Device A2 [57] (c) Device A3 [58]

Figure A-1: pmdiTech Portfolio

90

(a) Original inhaler (b) New look inhaler

Figure A-2: Device A2 models comparison [57]

(a) Front View (b) Top View

Figure A-3: Parts of Device A2 inhaler [59]

91

THIS PAGE INTENTIONALLY LEFT BLANK

92

Appendix B

Back End Appendix

B.1 Code

1 # %% [markdown]

2 # # Libraries

3

4 # %%

5 import pandas as pd

6 import math

7 import uuid

8 import datetime

9 import warnings

10

11 # %%

12 warnings.simplefilter(action=’ignore ’, category=FutureWarning)

13 warnings.simplefilter(action=’ignore ’, category=UserWarning)

14

15 # %% [markdown]

16 # # Objects

17

18 # %% [markdown]

19 # ## Node

20

21 # %%

93

22 class Node: # supply chain node

23 def __init__(self , node_name):

24 self.name = node_name

25 self.raw_materials = {}

26 self.finished_goods = {}

27 self.bill_of_materials = {}

28 self.holidays = []

29 self.processes = {} # add in order!

30 self.process_sequence = {}

31 self.orders = {’received ’:[], ’wip’:[], ’completed ’:[], ’

shipped ’:[], ’delivered ’:[], ’placed ’:[]}

32

33 def addOrder(self , order , type):

34 self.orders[type]. append(order)

35

36 def removeOrder(self , order , type):

37 self.orders[type]. remove(order)

38

39 def addRawMaterial(self , product):

40 self.raw_materials[product.name] = product

41

42 def addFinishedGoods(self , product):

43 self.finished_goods[product.name] = product

44 self.process_sequence[product.name] = []

45 self.bill_of_materials[product.name] = {}

46

47 def addProcess(self , process):

48 self.processes[process.name] = process

49

50 def addProcessSequence(self , product_name , process_sequence_list

):

51 self.process_sequence[product_name] += process_sequence_list

52

53 # component = required component (product or process); process =

process where the component is required

54 def addBOM(self , finished_good_name , component_name , quantity ,

94

process_name):

55 if component_name not in self.bill_of_materials[

finished_good_name].keys():

56 self.bill_of_materials[finished_good_name][

component_name] = {process_name: quantity}

57 else:

58 self.bill_of_materials[finished_good_name][

component_name][process_name] = quantity

59

60 # %% [markdown]

61 # ## Process

62

63 # %%

64 class Process: # manufacturing process

65 def __init__(self , process_name , initial_inventory =0,

design_stock =10, generic=False):

66 self.name = process_name

67 self.inventory = [initial_inventory]

68 self.design_stock = [design_stock]

69 self.inventory_gap = design_stock - initial_inventory

70 self.annual_demand = 0

71 self.time_to_survive = [design_stock]

72 self.machines = {}

73 self.generic = generic

74 self.orders = []

75 self.capacity_available = 0

76

77 if generic:

78 self.addMachine(’generic ’)

79

80 def addMachine(self , machine_name , capacity =1e10 , availability

=7, oee=1.0, start_date =0, end_date =624):

81 self.machines[machine_name] = {}

82 self.machines[machine_name][’production ’] = [0]

83 self.machines[machine_name][’utilization ’] = [0]

84 self.machines[machine_name][’initial_availability ’] =

95

availability

85 self.machines[machine_name][’initial_oee ’] = oee

86 self.machines[machine_name][’capacity ’] = capacity

87 self.machines[machine_name][’availability ’] = availability

88 self.machines[machine_name][’oee’] = oee

89 self.machines[machine_name][’capacity_available ’] = [math.

floor(capacity*availability*oee)]

90 self.machines[machine_name][’percent_available ’] = [1]

91 self.machines[machine_name][’start_date ’] = start_date

92 self.machines[machine_name][’end_date ’] = end_date

93 self.machines[machine_name][’capacity_threshold ’] = 1

94 self.capacity_available += math.floor(capacity*availability*

oee)

95

96 def addOrder(self , order):

97 self.orders.append(order)

98

99 def removeOrder(self , order):

100 self.orders.remove(order)

101

102 # %% [markdown]

103 # ## Product

104

105 # %%

106 class Product: # finished goods/raw material

107 def __init__(self , item_name , initial_inventory =0, design_stock

=10):

108 self.name = item_name

109 self.inventory = [initial_inventory]

110 self.design_stock = [design_stock]

111 self.inventory_gap = design_stock - initial_inventory

112 self.annual_demand = 0

113 self.time_to_survive = [design_stock]

114 self.late_delivery = 0

115 self.replenishment_time = 0

116 self.suppliers = {}

96

117 self.customers = {}

118

119 def addSupplier(self , supplier , minimum_order_quantity =1,

order_lead_time =6, accelerated_lead_time =5):

120 self.suppliers[supplier.name] = (supplier ,

minimum_order_quantity , order_lead_time , accelerated_lead_time)

121 self.replenishment_time = max(self.replenishment_time ,

order_lead_time)

122

123 def addCustomer(self , customer , delivery_lead_time =1):

124 self.customers[customer.name] = (customer ,

delivery_lead_time)

125

126 # %% [markdown]

127 # ## Order

128

129 # %%

130 class Order: # purchase/production order

131 def __init__(self , id , date_received , supplier , customer ,

product , demand , due_date , internal=False , process=None):

132 self.id = id

133 self.status = ’received ’

134 self.internal = internal

135 self.date_received = date_received

136 self.supplier = supplier

137 self.customer = customer

138 self.product = product

139 self.demand = demand

140 self.date_due = due_date

141 self.process = process

142 self.amount_produced = 0

143 self.date_production_start = 0

144 self.process_amounts_required = []

145 self.date_production_end = 0

146 self.amount_shipped = []

147 self.date_shipped = []

97

148 self.amount_delivered = []

149 self.date_delivered = []

150 self.date_fulfilled = 0

151

152 # %% [markdown]

153 # ## Disruption

154

155 # %%

156 class Disruption:

157 def __init__(self , date_start =0, date_end =1000, node_name=’’,

product_name=’’, process_name=’’, machine_name=’’,

capacity_threshold =1.0, inventory_loss =0.0, demand_variation =0.0,

design_stock =0, new_availability =7, new_oee =0.60 , type=’’):

158 self.date_start = date_start

159 self.date_end = date_end

160 self.node_name = node_name

161 self.product_name = product_name

162 self.process_name = process_name

163 self.machine_name = machine_name

164 self.capacity_threshold = capacity_threshold

165 self.inventory_loss = inventory_loss

166 self.design_stock = design_stock

167 self.demand_variation = demand_variation

168 self.machine_availability = new_availability

169 self.machine_oee = new_oee

170 self.type = type

171

172 # %% [markdown]

173 # # Functions

174

175 # %% [markdown]

176 # ## Initialize Objects

177

178 # %%

179 def initSim(sim_duration , nodes_dict):

180 ’’’

98

181 Expands lists within node according to the simulation duration.

182

183 Parameters

184 ----------

185 sim_duration : int

186 The number of weeks the simulation will run.

187 nodes_dict : dict

188 Dictionary with all Nodes (class) involved in the

simulation.

189 ’’’

190

191 for node in nodes_dict.values ():

192 for p_key , process in node.processes.items():

193 process.inventory += [0]*(sim_duration)

194 process.design_stock += [process.design_stock [0]]*(

sim_duration)

195 process.time_to_survive += [0]*(sim_duration)

196 for m_key , machine in process.machines.items ():

197 machine[’capacity_available ’] += [0]*(sim_duration)

198 machine[’production ’] += [0]*(sim_duration)

199 machine[’utilization ’] += [0]*(sim_duration)

200 machine[’percent_available ’] += [0]*(sim_duration)

201 for key , raw_material in node.raw_materials.items ():

202 raw_material.inventory += [0]*(sim_duration)

203 raw_material.design_stock += [raw_material.design_stock

[0]]*(sim_duration)

204 raw_material.time_to_survive += [0]*(sim_duration)

205 for key , finished_good in node.finished_goods.items ():

206 finished_good.inventory += [0]*(sim_duration)

207 finished_good.design_stock += [finished_good.

design_stock [0]]*(sim_duration)

208 finished_good.time_to_survive += [0]*(sim_duration)

209

210 return

211

212 # %% [markdown]

99

213 # ## Reset Objects

214

215 # %%

216 def resetSim(sim_duration , nodes_dict , demand_distortion):

217 ’’’

218 Clear orders at the nodes.

219 Set inventories and machine capacity utilization / production

back equal to zero.

220

221 Parameters

222 ----------

223 sim_duration : int

224 The number of weeks the simulation will run.

225 nodes_dict : dict

226 Dictionary with all Nodes (class) involved in the

simulation.

227 ’’’

228

229 for node in nodes_dict.values ():

230 for o_key , order_list in node.orders.items():

231 order_list.clear ()

232 for p_key , process in node.processes.items():

233 process.orders.clear()

234 process.inventory [1:] = [0]*(sim_duration)

235 process.design_stock [1:] = [process.design_stock [0]]*(

sim_duration)

236 process.time_to_survive [1:] = [0]*(sim_duration)

237 process.annual_demand = 0

238 for m_key , machine in process.machines.items ():

239 machine[’capacity_available ’][1:] = [0]*(

sim_duration)

240 machine[’production ’][1:] = [0]*(sim_duration)

241 machine[’utilization ’][1:] = [0]*(sim_duration)

242 machine[’percent_available ’][1:] = [0]*(sim_duration

)

243 machine[’availability ’] = machine[’

100

initial_availability ’]

244 machine[’oee’] = machine[’initial_oee ’]

245 machine[’capacity_threshold ’] = 1

246 for rm_key , raw_material in node.raw_materials.items ():

247 raw_material.inventory [1:] = [0]*(sim_duration)

248 raw_material.design_stock [1:] = [raw_material.

design_stock [0]]*(sim_duration)

249 raw_material.time_to_survive [1:] = [0]*(sim_duration)

250 raw_material.late_delivery = 0

251 raw_material.annual_demand = 0

252 for fg_key , finished_good in node.finished_goods.items():

253 finished_good.inventory [1:] = [0]*(sim_duration)

254 finished_good.design_stock [1:] = [finished_good.

design_stock [0]]*(sim_duration)

255 finished_good.time_to_survive [1:] = [0]*(sim_duration)

256 finished_good.late_delivery = 0

257 finished_good.annual_demand = 0

258

259 demand_distortion = [1]* len(demand_distortion)

260

261 return demand_distortion

262

263 # %% [markdown]

264 # ## Record Results

265

266 # %%

267 def recordSim(simulation_scenario , sim_duration , nodes_dict , dates ,

inventory_df , production_df , order_df):

268 ’’’

269 Captures inventories and production of the simulated scenario to

its corresponding output dataframe.

270

271 Parameters

272 ----------

273 simulation_scenario : str

274 The name of the simulation scenario.

101

275 sim_duration : int

276 The number of weeks the simulation will run.

277 nodes_dict : dict

278 Dictionary with all Nodes (class) involved in the

simulation.

279 dates : list

280 List with the dates of each simulation period.

281 inventory_df : dataframe

282 Pandas Dataframe where the simulation inventory

indicators will be recorded.

283 production_df : dataframe

284 Pandas Dataframe where the simulation production

indicators will be recorded.

285 order_df : dataframe

286 Pandas Dataframe where the simulation orders indicators

will be recorded.

287 disruption_df : dataframe

288 Pandas Dataframe where the simulation disruption

indicators will be recorded.

289

290 Returns

291 -------

292 Updated inventory , production , order and summary frameworks.

293 ’’’

294

295 for n_key , node in nodes_dict.items():

296 for p_key , process in node.processes.items():

297 output_df = pd.DataFrame ()

298 output_df[’Date’] = dates

299 output_df[’Scenario ’] = simulation_scenario

300 output_df[’Node’] = n_key

301 output_df[’Type’] = ’Process ’

302 output_df[’Component ’] = p_key

303 output_df[’Design Stock’] = process.design_stock [1:]

304 output_df[’Inventory ’] = process.inventory [1:]

305 output_df[’Time to Survive ’] = process.time_to_survive

102

[1:]

306

307 inventory_df = pd.concat ([inventory_df , output_df])

308

309 for rm_key , raw_material in node.raw_materials.items ():

310 output_df = pd.DataFrame ()

311 output_df[’Date’] = dates

312 output_df[’Scenario ’] = simulation_scenario

313 output_df[’Node’] = n_key

314 output_df[’Type’] = ’Raw Material ’

315 output_df[’Component ’] = rm_key

316 output_df[’Design Stock’] = raw_material.design_stock

[1:]

317 output_df[’Inventory ’] = raw_material.inventory [1:]

318 output_df[’Time to Survive ’] = raw_material.

time_to_survive [1:]

319

320 inventory_df = pd.concat ([inventory_df , output_df])

321

322 for fg_key , finished_good in node.finished_goods.items():

323 output_df = pd.DataFrame ()

324 output_df[’Date’] = dates

325 output_df[’Scenario ’] = simulation_scenario

326 output_df[’Node’] = n_key

327 output_df[’Type’] = ’Finished Good’

328 output_df[’Component ’] = fg_key

329 output_df[’Design Stock’] = finished_good.design_stock

[1:]

330 output_df[’Inventory ’] = finished_good.inventory [1:]

331 output_df[’Time to Survive ’] = finished_good.

time_to_survive [1:]

332

333 inventory_df = pd.concat ([inventory_df , output_df])

334

335 for p_key , process in node.processes.items():

336 for m_key , machine in process.machines.items ():

103

337 output_df = pd.DataFrame ()

338 output_df[’Date’] = dates

339 output_df[’Scenario ’] = simulation_scenario

340 output_df[’Node’] = n_key

341 output_df[’Process ’] = p_key

342 output_df[’Machine ’] = m_key

343 output_df[’Utilization ’] = machine[’production ’][1:]

344 output_df[’Utilization %’] = machine[’utilization ’

][1:]

345 output_df[’Capacity Available ’] = machine[’

capacity_available ’][1:]

346 output_df[’Capacity Available %’] = machine[’

percent_available ’][1:]

347 output_df[’Machine Start’] = dates [0] + pd.

DateOffset(weeks=machine[’start_date ’])

348 output_df[’Machine End’] = dates [0] + pd.DateOffset(

weeks=machine[’end_date ’])

349

350 production_df = pd.concat ([production_df , output_df

])

351

352 for order in node.orders[’placed ’]:

353 output_df = pd.DataFrame ()

354 output_df[’Scenario ’] = [simulation_scenario]

355 output_df[’ID’] = [order.id]

356 output_df[’Node’] = [order.customer.name]

357 output_df[’Supplier ’] = [order.supplier.name]

358 output_df[’Component ’] = [order.product.name]

359 output_df[’Internal ’] = [order.internal]

360 output_df[’Demand ’] = [order.demand]

361 output_df[’Production ’] = [order.amount_produced]

362 output_df[’Date Placed ’] = [dates [0] + pd.DateOffset(

weeks=order.date_received -1)]

363 output_df[’Date Production Started ’] = [dates [0] + pd.

DateOffset(weeks=order.date_production_start -1)]

364 if order.date_production_end >= order.

104

date_production_start:

365 output_df[’Date Production Ended ’] = [dates [0] + pd.

DateOffset(weeks=order.date_production_end -1)]

366 else:

367 output_df[’Date Production Ended ’] = [math.nan]

368 if order.date_fulfilled >= order.date_received:

369 output_df[’Date Fulfilled ’] = [dates [0] + pd.

DateOffset(weeks=order.date_fulfilled -1)]

370 else:

371 output_df[’Date Fulfilled ’] = [math.nan]

372 if not order.internal:

373 output_df[’Date Due’] = [dates [0] + pd.DateOffset(

weeks=order.date_due -1)]

374 for count , date in enumerate(order.date_shipped):

375 output_df[’Date Shipped ’] = [dates[order.

date_shipped[count]-1]]

376 output_df[’Amount Shipped ’] = [order.

amount_shipped[count]]

377 if count < len(order.date_delivered):

378 output_df[’Date Delivered ’] = [dates[order.

date_delivered[count]-1]]

379 output_df[’Amount Delivered ’] = [order.

amount_delivered[count]]

380 if order.date_delivered[count] > order.

date_due:

381 output_df[’Late’] = [True]

382 else:

383 output_df[’Late’] = [False]

384 else:

385 output_df[’Date Delivered ’] = [math.nan]

386 output_df[’Amount Delivered ’] = [0]

387 output_df[’Late’] = [math.nan]

388 order_df = pd.concat ([order_df , output_df])

389 else:

390 output_df[’Date Due’] = [math.nan]

391 output_df[’Date Shipped ’] = [math.nan]

105

392 output_df[’Amount Shipped ’] = [math.nan]

393 output_df[’Date Delivered ’] = [math.nan]

394 output_df[’Amount Delivered ’] = [math.nan]

395 output_df[’Late’] = [False]

396 order_df = pd.concat ([order_df , output_df])

397

398 return inventory_df , production_df , order_df

399

400 # %% [markdown]

401 # ## Initialize Period

402

403 # %%

404 def initPeriod(sim_period , node , dates):

405 # initialize inventories and capacities for the period

406 for key , product in node.finished_goods.items ():

407 product.inventory[sim_period] += product.inventory[

sim_period -1]

408 if product.annual_demand > 0:

409 product.time_to_survive[sim_period] += product.inventory

[sim_period -1]/(product.annual_demand /52)

410 for key , product in node.raw_materials.items ():

411 product.inventory[sim_period] += product.inventory[

sim_period -1]

412 if product.annual_demand > 0:

413 product.time_to_survive[sim_period] += product.inventory

[sim_period -1]/(product.annual_demand /52)

414 for key , process in node.processes.items():

415 process.inventory[sim_period] += process.inventory[

sim_period -1]

416 if process.annual_demand > 0:

417 process.time_to_survive[sim_period] += process.inventory

[sim_period -1]/(process.annual_demand /52)

418 process.capacity_available = 0

419 for m_key , machine in process.machines.items ():

420 if (machine[’start_date ’] <= sim_period) and (machine[’

end_date ’] > sim_period):

106

421 capacity_threshold = machine[’capacity_threshold ’]

422 week = dates[sim_period -1]. week

423 availability = machine[’availability ’]

424 if week <= 52:

425 availability -= node.holidays[week -1]

426 availability = max(availability , 0)

427 machine[’percent_available ’][sim_period] +=

capacity_threshold * availability/machine[’availability ’]

428 machine_capacity_available = machine[’capacity ’]*

availability*machine[’oee’]

429 machine[’capacity_available ’][sim_period] += math.

floor(machine_capacity_available*capacity_threshold)

430 process.capacity_available +=

machine_capacity_available

431

432 # %% [markdown]

433 # ## Update Demand

434

435 # %%

436 def updateDemand(demand , supplier , raw_material_name):

437 supplier.finished_goods[raw_material_name]. annual_demand +=

demand

438 for process_name in reversed(supplier.process_sequence[

raw_material_name]):

439 if process_name in supplier.bill_of_materials[

raw_material_name]:

440 quantity = sum([qty for qty in supplier.

bill_of_materials[raw_material_name][process_name]. values ()])

441 supplier.processes[process_name]. annual_demand += demand

*quantity

442 for c_key in supplier.bill_of_materials[raw_material_name]:

443 if c_key in supplier.raw_materials:

444 raw_material = supplier.raw_materials[c_key]

445 quantity = sum([qty for qty in supplier.

bill_of_materials[raw_material_name][c_key]. values ()])

446 component_demand = demand*quantity

107

447 raw_material.annual_demand += component_demand

448 if len(raw_material.suppliers) > 0:

449 for s_key , supplier_tuple in raw_material.suppliers.

items():

450 updateDemand(component_demand //len(raw_material.

suppliers), supplier_tuple [0], c_key)

451

452 # %% [markdown]

453 # ## Source

454

455 # %%

456 def source(sim_period , customer):

457 ’’’

458 Checks the raw materials inventory at the customer and places

orders according the inventory design.

459 Checks the finished goods inventory at the node and places

production orders according the inventory design.

460 Splits the required amount among suppliers according to the

contractual agreements.

461 In case of disruption , the undisrupted supplier gets preference

according to its available capacity.

462

463 Parameters

464 ----------

465 sim_period : int

466 The time at which the orders are generated.

467 customer : Node (class)

468 Node of the supply chain sourcing goods.

469 ’’’

470

471 # determine raw material orders required

472 for rm_key , raw_material in customer.raw_materials.items():

473 inv_target = (raw_material.design_stock[sim_period] +

raw_material.replenishment_time /2) * raw_material.annual_demand

//52

474 inv_on_hand = raw_material.inventory[sim_period -1]

108

475 outstanding_outflows = 0

476 for order in set(customer.orders[’wip’]+ customer.orders[’

shipped ’]):

477 if rm_key in customer.bill_of_materials[order.product.

name].keys():

478 for p_key , quantity_required in customer.

bill_of_materials[order.product.name][rm_key].items ():

479 index = customer.process_sequence[order.product.

name].index(p_key)

480 outstanding_outflows += order.

process_amounts_required[index] * quantity_required

481 outstanding_inflows = sum([order.demand - sum(order.

amount_delivered)

482 for order in customer.orders[’

placed ’]

483 if (order.product.name == rm_key

and not order.internal)])

484 inv_required = inv_target - (inv_on_hand -

outstanding_outflows) - outstanding_inflows

485 raw_material.inventory_gap = inv_required

486

487 if inv_required > 0:

488 # define order split

489 supplier_keys = [s_key for s_key in raw_material.

suppliers.keys()]

490 split = len(supplier_keys)

491 inv_tracker = inv_required

492 order_allocation = [1] * len(supplier_keys)

493 order_multiples = [1] * len(supplier_keys)

494 suppliers_capacity_available = []

495 suppliers_moq_multiples = []

496

497 for s_key , item in raw_material.suppliers.items ():

498 supplier = item [0]

499 moq = item [1]

500 order_lead_time = item [2]

109

501 delivery_lead_time = supplier.finished_goods[rm_key

]. customers[customer.name][1]

502 supplier_inventory = 0

503 supplier_capacity = 1e15

504 booked_cap = 0

505

506 for count , process_name in enumerate(supplier.

process_sequence[rm_key]):

507 booked_cap = sum([order.process_amounts_required

[count]

508 for order in customer.orders[’

placed ’]

509 if (order.product.name ==

rm_key and order.supplier == supplier)])

510 supplier_capacity = max(0, min(supplier_capacity

, supplier.processes[process_name]. capacity_available * max(1,(

order_lead_time -delivery_lead_time)) - booked_cap))

511 booked_inv = sum([order.demand - sum(order.

amount_shipped)

512 for order in customer.orders[’

placed ’]

513 if (order.product.name == rm_key

and order.supplier == supplier)]) - booked_cap

514 supplier_inventory = max(supplier_inventory ,

supplier.finished_goods[rm_key]. inventory[sim_period] -

booked_inv)

515 suppliers_capacity_available += [supplier_capacity +

supplier_inventory]

516 suppliers_moq_multiples += [inv_required / moq]

517

518 if (max(suppliers_moq_multiples) < 1) or (sum(

suppliers_capacity_available) == 0):

519 break

520

521 for count , cap in enumerate(suppliers_capacity_available

):

110

522 order_allocation[count] = cap/sum(

suppliers_capacity_available)

523 order_multiples[count] = order_allocation[count] *

suppliers_moq_multiples[count]

524

525 while sum ([1 for multiple in order_multiples if multiple

>= 1]) < split:

526 split -= 1

527 suppliers_moq_multiples = [multiple if

order_allocation[count] > 0 else 1e10 for count , multiple in

enumerate(suppliers_moq_multiples)]

528 if min(suppliers_moq_multiples) < 1:

529 min_index = suppliers_moq_multiples.index(min(

suppliers_moq_multiples))

530 else:

531 min_index = order_multiples.index(min(

order_multiples))

532 suppliers_capacity_available[min_index] = 0

533 for count , cap in enumerate(

suppliers_capacity_available):

534 order_allocation[count] = cap/sum(

suppliers_capacity_available)

535 order_multiples[count] = order_allocation[count]

* suppliers_moq_multiples[count]

536

537 # assign orders

538 for s_key , items in raw_material.suppliers.items ():

539 index = supplier_keys.index(s_key)

540 if order_allocation[index] > 0:

541 supplier = items [0]

542 order_lead_time = items [2]

543 order_id = uuid.uuid4 ()

544 demand = math.ceil(inv_required*order_allocation

[index])

545 inv_tracker -= demand

546 order = Order(order_id , sim_period , supplier ,

111

customer , raw_material , demand , int(sim_period+order_lead_time))

547 supplier.addOrder(order , ’received ’)

548 customer.addOrder(order , ’placed ’)

549 if inv_tracker > 0:

550 print(customer.name , sim_period , rm_key)

551

552

553 # determine finished goods orders required

554 for fg_key , finished_goods in customer.finished_goods.items():

555 inv_target = finished_goods.design_stock[sim_period] *

finished_goods.annual_demand //52

556 inv_on_hand = finished_goods.inventory[sim_period -1]

557 outstanding_outflows = sum([order.demand - sum(order.

amount_shipped)

558 for order in (customer.

orders[’wip’] + customer.orders[’completed ’])

559 if (order.product.name

== fg_key and not order.internal)])

560 outstanding_inflows = sum([order.process_amounts_required

[-1]

561 for order in set(

customer.orders[’wip’]+ customer.orders[’shipped ’]+ customer.orders

[’delivered ’])

562 if order.product.name ==

fg_key and len(order.process_amounts_required) > 0])

563 inv_required = inv_target - (inv_on_hand -

outstanding_outflows) - outstanding_inflows

564 finished_goods.inventory_gap = inv_required

565

566 if inv_required > 0:

567 order_id = uuid.uuid4()

568 order = Order(order_id , sim_period , customer , customer ,

finished_goods , inv_required , int(sim_period +1e6), internal=True)

569 customer.addOrder(order , ’received ’)

570 customer.addOrder(order , ’placed ’)

571

112

572 # determine wip orders required

573 for p_key , process in customer.processes.items ():

574 inv_target = process.design_stock[sim_period] * process.

annual_demand //52

575 if inv_target > 0:

576 inv_on_hand = process.inventory[sim_period -1]

577 outstanding_outflows = 0

578 outstanding_inflows = 0

579 for order in process.orders:

580 product = order.product

581 index = customer.process_sequence[product.name].

index(p_key)

582 outstanding_inflows += order.

process_amounts_required[index]

583 if p_key not in customer.bill_of_materials[product.

name]:

584 outstanding_outflows += order.demand - sum(order

.amount_shipped)

585 else:

586 for next_key , quantity_required in customer.

bill_of_materials[product.name][p_key]. items ():

587 if next_key in customer.process_sequence[

product.name]:

588 next_index = customer.process_sequence[

product.name].index(next_key)

589 outstanding_outflows += order.

process_amounts_required[next_index] * quantity_required

590 inv_required = inv_target - (inv_on_hand -

outstanding_outflows) - outstanding_inflows

591 process.inventory_gap = inv_required

592

593 if inv_required > 0:

594 for fg_key , process_list in customer.

process_sequence.items():

595 if p_key in process_list:

596 product = customer.finished_goods[fg_key]

113

597 break

598 order_id = uuid.uuid4()

599 order = Order(order_id , sim_period , customer ,

customer , product , inv_required , int(sim_period +1e6), internal=

True , process=process)

600 customer.addOrder(order , ’received ’)

601 customer.addOrder(order , ’placed ’)

602

603 return

604

605 # %% [markdown]

606 # ## Make

607

608 # %%

609 def make(sim_period , manufacturer):

610 ’’’

611 Assigns received orders to the corresponding processes at the

manufacturing node.

612 Produces at each process of the node according to the available

inventories and process available capacity.

613 Updates finished goods inventory at node according to the

production during the period.

614

615 Parameters

616 ----------

617 sim_period : int

618 The time at which the orders are manufactured.

619 supplier : Node (class)

620 Node of the supply chain making goods.

621

622 Returns

623 -------

624 None

625 ’’’

626

627 # assign received orders to processes

114

628 outstanding_orders = [order for order in manufacturer.orders[’

received ’] if order.date_received == sim_period]

629 outstanding_orders.sort(key = lambda order: order.date_due)

630

631 for order in outstanding_orders:

632 product = order.product

633 demand_to_allocate = order.demand

634 index = len(manufacturer.process_sequence[product.name]) - 1

635

636 if not order.internal:

637 inventory_gap = manufacturer.finished_goods[product.name

]. inventory_gap

638 if inventory_gap < 0:

639 manufacturer.finished_goods[product.name].

inventory_gap += min(demand_to_allocate , -inventory_gap)

640 demand_to_allocate = max(demand_to_allocate+

inventory_gap , 0)

641 elif order.process == None:

642 manufacturer.finished_goods[product.name]. inventory_gap

-= demand_to_allocate

643 else:

644 index = manufacturer.process_sequence[product.name].

index(order.process.name)

645 manufacturer.processes[order.process.name]. inventory_gap

-= demand_to_allocate

646

647 if demand_to_allocate == 0:

648 order.process_amounts_required += [0]* len(manufacturer.

process_sequence[product.name])

649 order.date_production_start = sim_period

650 order.date_production_end = sim_period

651 manufacturer.removeOrder(order , order.status)

652 order.status = ’completed ’

653 manufacturer.addOrder(order , order.status)

654 else:

655 manufacturer.removeOrder(order , order.status)

115

656 order.status = ’wip’

657 manufacturer.addOrder(order , order.status)

658 for count , process_name in reversed(list(enumerate(

manufacturer.process_sequence[product.name]))):

659 if count > index:

660 order.process_amounts_required.insert(0, 0)

661 elif count == index:

662 order.process_amounts_required.insert(0,

demand_to_allocate)

663 elif count < index:

664 inventory_gap = min(manufacturer.processes[

process_name]. inventory_gap , 0)

665 process_demand = 0

666 for next_key , quantity_required in manufacturer.

bill_of_materials[product.name][process_name].items ():

667 if next_key in manufacturer.process_sequence

[product.name]:

668 next_index = manufacturer.

process_sequence[product.name].index(next_key)

669 if next_index <= index:

670 process_demand += order.

process_amounts_required[next_index -(count +1)] *

quantity_required

671 if inventory_gap < 0:

672 manufacturer.processes[process_name].

inventory_gap += min(process_demand , -inventory_gap)

673 process_demand = max(process_demand+

inventory_gap , 0)

674 order.process_amounts_required.insert(0,

process_demand)

675 if order.process_amounts_required [0] > 0:

676 manufacturer.processes[process_name]. orders.

append(order)

677

678 # produce at each process

679 for p_key , process in manufacturer.processes.items ():

116

680 if process.capacity_available > 0:

681 for order in process.orders:

682 product = order.product

683 index = manufacturer.process_sequence[product.name].

index(p_key)

684 production_amount_required = order.

process_amounts_required[index]

685

686 if production_amount_required > 0:

687 period_production = 0

688 dummy_limit = 1e15

689 inventory_limit = 0

690

691 # validate how much inventory is available to

produce

692 for component_name in manufacturer.

bill_of_materials[product.name]:

693 if p_key in manufacturer.bill_of_materials[

product.name][component_name].keys():

694 if component_name in manufacturer.

raw_materials.keys():

695 inventory_availabe = manufacturer.

raw_materials[component_name]. inventory[sim_period]

696 quantity_required = manufacturer.

bill_of_materials[product.name][component_name][p_key]

697 else:

698 inventory_availabe = manufacturer.

processes[component_name]. inventory[sim_period]

699 quantity_required = manufacturer.

bill_of_materials[product.name][component_name][p_key]

700 inventory_limit = min(dummy_limit ,

inventory_availabe // quantity_required)

701 dummy_limit = inventory_limit

702 if inventory_limit == 0:

703 break

704

117

705 # produce according to machine capacities

706 for m_key , machine in process.machines.items ():

707 if inventory_limit > 0 and

production_amount_required > 0:

708 machine_capacity_available = machine[’

capacity_available ’][sim_period] - machine[’production ’][

sim_period]

709 if machine_capacity_available > 0:

710 production = min(

production_amount_required , inventory_limit ,

machine_capacity_available)

711 machine[’production ’][sim_period] +=

production

712 machine[’utilization ’][sim_period]

+= production/machine[’capacity_available ’][sim_period]

713 production_amount_required -=

production

714 inventory_limit -= production

715 period_production += production

716

717 # make changes according to production

718 if period_production > 0:

719 order.process_amounts_required[index] -=

period_production

720

721 # reduce raw material/preceeding process

inventory according to production

722 for component_name in manufacturer.

bill_of_materials[product.name]:

723 if p_key in manufacturer.bill_of_materials[

product.name][component_name].keys():

724 if component_name in manufacturer.

raw_materials.keys():

725 quantity_required = manufacturer.

bill_of_materials[product.name][component_name][p_key]

726 manufacturer.raw_materials[

118

component_name]. inventory[sim_period] -= period_production*

quantity_required

727 else:

728 quantity_required = manufacturer.

bill_of_materials[product.name][component_name][p_key]

729 manufacturer.processes[

component_name]. inventory[sim_period] -= period_production*

quantity_required

730

731 # update finished goods inventory

732 if index + 1 == len(manufacturer.

process_sequence[product.name]):

733 manufacturer.finished_goods[product.name].

inventory[sim_period] += period_production

734 order.amount_produced += period_production

735 else:

736 process.inventory[sim_period] +=

period_production

737

738 # change order status

739 if order.date_production_start == 0:

740 order.date_production_start = sim_period

741

742 if production_amount_required == 0:

743 process.orders.remove(order)

744 if sum(order.process_amounts_required) == 0:

745 if order.internal:

746 order.date_fulfilled = sim_period

747 order.date_production_end = sim_period

748 if order.status != (’shipped ’ or ’

delivered ’):

749 manufacturer.removeOrder(order ,

order.status)

750 order.status = ’completed ’

751 manufacturer.addOrder(order , order.

status)

119

752 return

753

754 # %% [markdown]

755 # ## Deliver

756

757 # %%

758 def deliver(sim_period , supplier):

759 ’’’

760 Ships and delivers finished goods according to the supplier ’s

available inventory and delivery lead times.

761 Registers shipped and delivered orders accordingly.

762 Updates finished goods inventory of the supplier according to

shipments.

763 Updates raw materials inventory of customer according to

deliveries.

764

765 Parameters

766 ----------

767 sim_period : int

768 The time at which the orders are shipped/delivered.

769 supplier : Node (class)

770 Node of the supply chain delivering goods.

771

772 Returns

773 -------

774 None

775 ’’’

776

777 # check orders that need to be shipped at the beginning of the

period

778 orders_to_be_shipped = []

779 for order in supplier.orders[’completed ’] + supplier.orders[’wip

’] + supplier.orders[’received ’]:

780 if order.customer.name != supplier.name:

781 delivery_lead_time = supplier.finished_goods[order.

product.name]. customers[order.customer.name][1]

120

782 if sim_period >= order.date_due - delivery_lead_time -

1:

783 orders_to_be_shipped.append(order)

784

785 # update supplier ’s inventories and order shipped amount

786 for order in orders_to_be_shipped:

787 ship_amount = min(supplier.finished_goods[order.product.name

]. inventory[sim_period], order.demand - sum(order.amount_shipped)

)

788 if ship_amount > 0:

789 supplier.finished_goods[order.product.name]. inventory[

sim_period] -= ship_amount

790 order.amount_shipped += [ship_amount]

791 order.date_shipped += [sim_period]

792

793 if order not in supplier.orders[’shipped ’]:

794 supplier.addOrder(order , ’shipped ’)

795

796 # when shipped in full , update order status

797 if order.demand == sum(order.amount_shipped):

798 supplier.removeOrder(order , order.status)

799 order.status = ’shipped ’

800

801

802 # check orders in transit and update customer ’s inventories

after delivery

803 orders_to_be_delivered = []

804 for order in supplier.orders[’shipped ’]:

805 delivery_lead_time = supplier.finished_goods[order.product.

name]. customers[order.customer.name][1]

806 for date_shipped in order.date_shipped:

807 if sim_period - delivery_lead_time == date_shipped:

808 index = order.date_shipped.index(sim_period -

delivery_lead_time)

809 if sum(order.amount_delivered) == 0:

810 order.product.late_delivery += order.demand -

121

order.amount_shipped[index]

811 order.amount_delivered += [order.amount_shipped[

index]]

812 order.date_delivered += [sim_period]

813 order.product.inventory[sim_period] += order.

amount_shipped[index]

814 if sum(order.amount_delivered) == order.demand:

815 orders_to_be_delivered.append(order)

816

817 # when delivered in full , update order status

818 for order in orders_to_be_delivered:

819 supplier.removeOrder(order , order.status)

820 order.status = ’delivered ’

821 supplier.addOrder(order , order.status)

822 order.date_fulfilled = sim_period

823 return

824

825 # %% [markdown]

826 # ## Disrupt

827

828 # %%

829 def disrupt(sim_period , disruptions , nodes_dict , consumers ,

demand_distortion):

830 ’’’

831 Modify capacity , inventory , design stock level , machine

availability and oee , or demand at the corresponding node

according to the disruption.

832

833 Parameters

834 ----------

835 sim_period : int

836 The time at which the disruptions starts/stops.

837 disruptions : list

838 List with the disruptions that in the corresponding

simulated scenario.

839 nodes_dict : dict

122

840 Dictionary with all Nodes (class) involved in the

simulation.

841 consumers : list

842 List with the names of the end consumer Nodes.

843 demand_distortion : list

844 List with the demand distortions that applies for each

end consumer.

845

846 Returns

847 -------

848 None

849 ’’’

850

851 for disruption in disruptions:

852 if disruption.date_start == sim_period:

853 node = nodes_dict[disruption.node_name]

854 if disruption.type == ’capacity ’:

855 if disruption.process_name == ’’:

856 for p_key , process in node.processes.items()

:

857 for m_key , machine in process.machines.

items():

858 machine[’capacity_threshold ’] =

disruption.capacity_threshold

859 else:

860 process = node.processes[disruption.

process_name]

861 if disruption.machine_name == ’’:

862 for m_key , machine in process.machines.

items():

863 machine[’capacity_threshold ’] =

disruption.capacity_threshold

864 else:

865 process.machines[disruption.machine_name

][’capacity_threshold ’] = disruption.capacity_threshold

866

123

867 elif disruption.type == ’demand ’:

868 consumer_names = [consumer.name for consumer in

consumers]

869 index = consumer_names.index(disruption.

node_name)

870 demand_distortion[index] += disruption.

demand_variation

871

872 elif disruption.type == ’policy ’:

873 if disruption.product_name != ’’:

874 if disruption.product_name in node.

finished_goods.keys():

875 product = node.finished_goods[disruption

.product_name]

876 product.design_stock[sim_period :] = [

disruption.design_stock]*len(product.design_stock[sim_period :])

877 elif disruption.product_name in node.

raw_materials.keys():

878 product = node.raw_materials[disruption.

product_name]

879 product.design_stock[sim_period :] = [

disruption.design_stock]*len(product.design_stock[sim_period :])

880 elif disruption.process_name != ’’:

881 process = node.processes[disruption.

process_name]

882 process.design_stock[sim_period :] = [

disruption.design_stock]*len(process.design_stock[sim_period :])

883

884 elif disruption.type == ’inventory ’:

885 if disruption.product_name == ’’ and disruption.

process_name == ’’:

886 for fg_key , product in node.finished_goods.

items():

887 product.inventory[sim_period] -= math.

ceil(product.inventory[sim_period -1]* disruption.inventory_loss)

888 for rm_key , product in node.raw_materials.

124

items():

889 product.inventory[sim_period] -= math.

ceil(product.inventory[sim_period -1]* disruption.inventory_loss)

890 for p_key , process in node.processes.items()

:

891 process.inventory[sim_period] -= math.

ceil(process.inventory[sim_period -1]* disruption.inventory_loss)

892 elif disruption.product_name != ’’:

893 if disruption.product_name in node.

finished_goods.keys():

894 product = node.finished_goods[disruption

.product_name]

895 product.inventory[sim_period] -= math.

ceil(product.inventory[sim_period -1]* disruption.inventory_loss)

896 elif disruption.product_name in node.

raw_materials.keys():

897 product = node.raw_materials[disruption.

product_name]

898 product.inventory[sim_period] -= math.

ceil(product.inventory[sim_period -1]* disruption.inventory_loss)

899 elif disruption.process_name != ’’:

900 process = node.processes[disruption.

process_name]

901 process.inventory[sim_period] -= math.ceil(

process.inventory[sim_period -1]* disruption.inventory_loss)

902

903 elif disruption.type == ’machine ’:

904 process = node.processes[disruption.process_name

]

905 process.machines[disruption.machine_name][’

availability ’] = disruption.machine_availability

906 process.machines[disruption.machine_name][’oee’]

= disruption.machine_oee

907

908

909 elif disruption.date_end == sim_period:

125

910 node = nodes_dict[disruption.node_name]

911 if disruption.type == ’capacity ’:

912 if disruption.process_name == ’’:

913 for p_key , process in node.processes.items()

:

914 for m_key , machine in process.machines.

items():

915 machine[’capacity_threshold ’] = 1

916 else:

917 process = node.processes[disruption.

process_name]

918 if disruption.machine_name == ’’:

919 for m_key , machine in process.machines.

items():

920 machine[’capacity_threshold ’] = 1

921 else:

922 process.machines[disruption.machine_name

][’capacity_threshold ’] = 1

923

924 elif disruption.type == ’demand ’:

925 consumer_names = [consumer.name for consumer in

consumers]

926 index = consumer_names.index(disruption.

node_name)

927 demand_distortion[index] -= disruption.

demand_variation

928 return demand_distortion

929

930 # %% [markdown]

931 # # Inputs (Read Excel)

932

933 # %%

934 df = pd.read_excel(’Input Template.xlsm’, sheet_name=None)

935

936 # %%

937 df[’Holidays ’] = df[’Holidays ’]. fillna (0)

126

938

939 # %% [markdown]

940 # ## Variables

941

942 # %%

943 nodes_dict = {}

944 consumers = []

945 leaf_nodes = []

946 max_lead_time = 0

947 demand_distortion = []

948 machine_updates = []

949 sim_start = df[’Demand ’][’Date’].iloc [0]

950

951 # %% [markdown]

952 # ### Supply Chain Nodes

953

954 # %% [markdown]

955 # #### All Nodes

956

957 # %%

958 for index , row in df[’Node Keys’]. iterrows ():

959 node_name = row.iloc [0]

960 nodes_dict[node_name] = Node(node_name)

961 nodes_dict[node_name]. holidays += df[’Holidays ’][node_name].

to_list ()

962

963 # %% [markdown]

964 # #### End Consumer Nodes

965

966 # %%

967 for count , column_name in enumerate(df[’Demand ’]. columns):

968 if count > 1:

969 consumers += [nodes_dict[column_name]]

970 demand_distortion += [1]

971

972 # %% [markdown]

127

973 # #### Leaf Nodes

974

975 # %%

976 for n_key , node in nodes_dict.items():

977 if df[’Raw Materials ’].loc[df[’Raw Materials ’].iloc [:,0]. isin([

n_key])].size == 0:

978 leaf_nodes += [node]

979

980 # %% [markdown]

981 # ### Processes

982

983 # %%

984 for index , row in df[’Processes ’]. iterrows ():

985 node_name = row.iloc [0]

986 process_name = row.iloc [1]

987 generic = row.iloc [2]

988 initial_inventory = row.iloc [3]

989 design_stock = row.iloc [4]

990

991 process = Process(process_name , initial_inventory , design_stock ,

generic)

992 nodes_dict[node_name]. addProcess(process)

993

994 # %% [markdown]

995 # #### Machines

996

997 # %%

998 for index , row in df[’Machines ’]. iterrows ():

999 node_name = row.iloc [0]

1000 process_name = row.iloc [1]

1001 machine_name = row.iloc [2]

1002 capacity = row.iloc [3]

1003 availability = row.iloc [4]

1004 oee = row.iloc [5]

1005 start_date = row.iloc [6]

1006 end_date = row.iloc [7]

128

1007

1008 start_date = max(0, (start_date.to_pydatetime () - sim_start.

to_pydatetime ()).days //7 + 1)

1009 end_date = max(0, (end_date.to_pydatetime () - sim_start.

to_pydatetime ()).days //7 + 1)

1010

1011 process = nodes_dict[node_name]. processes[process_name]

1012 process.addMachine(machine_name , capacity , availability , oee ,

start_date , end_date)

1013

1014 # %% [markdown]

1015 # #### Machine Updates

1016

1017 # %%

1018 for index , row in df[’Machine Updates ’]. iterrows ():

1019 node_name = row.iloc [0]

1020 if not isinstance(node_name ,str):

1021 continue

1022 process_name = row.iloc [1]

1023 machine_name = row.iloc [2]

1024 availability = row.iloc [3]

1025 oee = row.iloc [4]

1026 change_date = row.iloc [5]

1027

1028 change_date = max(0, (change_date.to_pydatetime () - sim_start.

to_pydatetime ()).days //7 + 1)

1029 machine_updates += [(node_name , process_name , machine_name ,

availability , oee , change_date)]

1030

1031 # %% [markdown]

1032 # ### Products

1033

1034 # %% [markdown]

1035 # #### Raw Materials

1036

1037 # %%

129

1038 for index , row in df[’Raw Materials ’]. iterrows ():

1039 node_name = row.iloc [0]

1040 product_name = row.iloc [1]

1041 initial_inventory = row.iloc [2]

1042 design_stock = row.iloc [3]

1043

1044 product = Product(product_name ,initial_inventory ,design_stock)

1045 nodes_dict[node_name]. addRawMaterial(product)

1046

1047 # %% [markdown]

1048 # #### Finished Goods

1049

1050 # %%

1051 for index , row in df[’Finished Goods’]. iterrows ():

1052 node_name = row.iloc [0]

1053 product_name = row.iloc [1]

1054 initial_inventory = row.iloc [2]

1055 design_stock = row.iloc [3]

1056 product = Product(product_name ,initial_inventory ,design_stock)

1057 nodes_dict[node_name]. addFinishedGoods(product)

1058

1059 # %% [markdown]

1060 # #### Suppliers and Customers

1061

1062 # %%

1063 for index , row in df[’Suppliers ’]. iterrows ():

1064 customer_name = row.iloc [0]

1065 product_name = row.iloc [1]

1066 supplier_name = row.iloc [2]

1067 minimum_order_quantity = row.iloc [3]

1068 order_lead_time = row.iloc [4]

1069 delivery_lead_time = row.iloc [5]

1070 accelerated_lead_time = row.iloc [6]

1071

1072 max_lead_time = max(order_lead_time , max_lead_time)

1073

130

1074 customer = nodes_dict[customer_name]

1075 supplier = nodes_dict[supplier_name]

1076

1077 raw_material = customer.raw_materials[product_name]

1078 raw_material.addSupplier(supplier , minimum_order_quantity ,

order_lead_time , accelerated_lead_time)

1079

1080 finished_good = supplier.finished_goods[product_name]

1081 finished_good.addCustomer(customer , delivery_lead_time)

1082

1083 # %% [markdown]

1084 # ### Bill of Materials

1085

1086 # %%

1087 for index , row in df[’BOM’]. iterrows ():

1088 node_name = row.iloc [0]

1089 product_name = row.iloc [1]

1090 raw_material_name = row.iloc [2]

1091 process_name = row.iloc [3]

1092 quantity = row.iloc [4]

1093 step_name = row.iloc [5]

1094

1095 if isinstance(raw_material_name , str):

1096 component_name = raw_material_name

1097 else:

1098 component_name = process_name

1099

1100 nodes_dict[node_name]. addBOM(product_name , component_name ,

quantity , step_name)

1101

1102 # %% [markdown]

1103 # ### Process Sequence

1104

1105 # %%

1106 for node_name , node in nodes_dict.items():

1107 for finished_good_name in node.finished_goods.keys():

131

1108 process_sequence = []

1109 filtered_list = df[’BOM’].loc[df[’BOM’].iloc [:,0]. isin([

node_name])]

1110 filtered_list = filtered_list.loc[df[’BOM’].iloc [:,1]. isin([

finished_good_name])]

1111 process_set = set([row.iloc [5] for index , row in

filtered_list.iterrows ()])

1112

1113 if len(process_set) == 1:

1114 node.addProcessSequence(finished_good_name , [*

process_set ,])

1115 elif len(process_set) > 1:

1116 while len(process_set) > 0:

1117 for process_name in process_set:

1118 short_list = filtered_list.loc[df[’BOM’].iloc

[:,3]. isin([process_name])]

1119 short_list = set([row.iloc [3] for index , row in

short_list.iterrows ()])

1120 if len(short_list) == 0:

1121 process_set.discard(process_name)

1122 process_sequence.insert(0, process_name)

1123 filtered_list = filtered_list.loc[df[’BOM’].

iloc [: ,5]. isin ([* process_set ,])]

1124 break

1125 node.addProcessSequence(finished_good_name ,

process_sequence)

1126

1127 # %% [markdown]

1128 # ## Parameters

1129

1130 # %%

1131 sim_duration = 0

1132 sim_years = []

1133 weeks = []

1134 dates = []

1135

132

1136 # %%

1137 for index , row in df[’Demand ’]. iterrows ():

1138 if not row.iloc [0]:

1139 break

1140 date = row.iloc [1]

1141 weeks += [(date.to_pydatetime () - sim_start.to_pydatetime ()).

days //7 + 1]

1142 weeks += [weeks [-1]+4]

1143

1144 # %%

1145 sim_duration = max_lead_time + weeks[-1]

1146

1147 # %%

1148 dates = [sim_start]

1149 for period in range(1, sim_duration):

1150 dates += [dates [0] + pd.DateOffset(weeks=period)]

1151

1152 # %% [markdown]

1153 # ## Disruptions

1154

1155 # %%

1156 disruption_scenarios = {’Baseline ’:[]}

1157

1158 # %%

1159 for index , row in df[’Disruption Parameters ’]. iterrows ():

1160 include = row.iloc [0]

1161 scenario_name = row.iloc [1]

1162 if not include or not isinstance(scenario_name ,str):

1163 continue

1164 date_start = (row.iloc [2]. to_pydatetime () - sim_start.

to_pydatetime ()).days //7 + 1

1165 date_end = (row.iloc [3]. to_pydatetime () - sim_start.

to_pydatetime ()).days //7 + 1

1166 node_name = row.iloc [4]

1167 product_name = row.iloc [5]

1168 process_name = row.iloc [6]

133

1169 machine_name = row.iloc [7]

1170 capacity_threshold = row.iloc [8]

1171 inventory_loss = row.iloc [9]

1172 demand_variation = row.iloc [10]

1173 design_stock = row.iloc [11]

1174 new_availability = row.iloc [12]

1175 new_oee = row.iloc [13]

1176

1177 if not isinstance(product_name ,str):

1178 product_name = ’’

1179 if not isinstance(process_name ,str):

1180 process_name = ’’

1181 if not isinstance(machine_name ,str):

1182 machine_name = ’’

1183

1184 if not math.isnan(capacity_threshold):

1185 disruption_type = ’capacity ’

1186 disruption = Disruption(date_start , date_end , node_name ,

product_name , process_name ,

1187 machine_name , capacity_threshold=

capacity_threshold , type=disruption_type)

1188 elif not math.isnan(inventory_loss):

1189 disruption_type = ’inventory ’

1190 disruption = Disruption(date_start , date_start , node_name ,

product_name , process_name ,

1191 inventory_loss=inventory_loss , type=

disruption_type)

1192 elif not math.isnan(demand_variation):

1193 disruption_type = ’demand ’

1194 disruption = Disruption(date_start , date_end , node_name ,

product_name , process_name ,

1195 machine_name , demand_variation=

demand_variation , type=disruption_type)

1196 elif not math.isnan(design_stock):

1197 disruption_type = ’policy ’

1198 disruption = Disruption(date_start , date_start , node_name ,

134

product_name , process_name ,

1199 design_stock=design_stock , type=

disruption_type)

1200 elif not math.isnan(new_availability) and not math.isnan(new_oee

):

1201 disruption_type = ’machine ’

1202 disruption = Disruption(date_start , date_start , node_name ,

product_name , process_name , machine_name ,

1203 new_availability=new_availability ,

new_oee=new_oee , type=disruption_type)

1204

1205

1206

1207 if scenario_name not in disruption_scenarios.keys():

1208 disruption_scenarios[scenario_name] = [disruption]

1209 else:

1210 disruption_scenarios[scenario_name] += [disruption]

1211

1212 # %% [markdown]

1213 # # Simulation

1214

1215 # %% [markdown]

1216 # ### Initialize Simulation (only once)

1217

1218 # %%

1219 initSim(sim_duration , nodes_dict)

1220 inventory_df = pd.DataFrame ()

1221 production_df = pd.DataFrame ()

1222 order_df = pd.DataFrame ()

1223

1224 # %% [markdown]

1225 # ### Reset Simulation (only if running the logic block for a second

+ time without restarting kernel)

1226

1227 # %%

1228 # demand_distortion = resetSim(sim_duration , nodes_dict ,

135

demand_distortion)

1229 # inventory_df = pd.DataFrame ()

1230 # production_df = pd.DataFrame ()

1231 # order_df = pd.DataFrame ()

1232

1233 # %% [markdown]

1234 # ### Logic

1235

1236 # %%

1237 demand_penalty = 0 # decimal

1238

1239 print(f"Simulation started at {datetime.datetime.now()}.")

1240 for simulation_scenario , disruptions in disruption_scenarios.items ()

:

1241 for sim_period in range(1, sim_duration +1):

1242

1243 # UPDATE ANNUAL DEMAND

1244 if sim_period in weeks [: -13]:

1245 index = weeks.index(sim_period)

1246 for node in nodes_dict.values ():

1247 for p_key , process in node.processes.items():

1248 process.annual_demand = 0

1249 for key , raw_material in node.raw_materials.items ():

1250 raw_material.annual_demand = 0

1251 for key , finished_good in node.finished_goods.items

():

1252 finished_good.annual_demand = 0

1253 for consumer in consumers:

1254 for rm_key , raw_material in consumer.raw_materials.

items():

1255 demand = max(sum(df[’Demand ’][consumer.name].

iloc[index +1: index +13]) - math.floor(raw_material.late_delivery*

demand_penalty), 0)

1256 raw_material.annual_demand += demand

1257 if len(raw_material.suppliers) > 0:

1258 for s_key , supplier in raw_material.

136

suppliers.items ():

1259 updateDemand(demand //len(raw_material.

suppliers), supplier [0], rm_key)

1260

1261 # UPDATE MACHINES

1262 for item in filter(lambda x: x[-1] == sim_period ,

machine_updates):

1263 nodes_dict[item [0]]. processes[item [1]]. machines[item

[2]][’availability ’] = item [3]

1264 nodes_dict[item [0]]. processes[item [1]]. machines[item

[2]][’oee’] = item [4]

1265

1266 # APPLY DISRUPTIONS

1267 demand_distortion = disrupt(sim_period , disruptions ,

nodes_dict , consumers , demand_distortion)

1268

1269 # GENERATE DEMAND AND DISCOUNT PENALTIES (undelivered)

1270 if sim_period in weeks [: -1]:

1271 index = weeks.index(sim_period)

1272 for count , consumer in enumerate(consumers):

1273 for rm_key , raw_material in consumer.raw_materials.

items():

1274 for s_key , items in raw_material.suppliers.items

():

1275 supplier = items [0]

1276 order_lead_time = items [2]

1277 demand = max(df[’Demand ’][consumer.name][

index] * demand_distortion[count] - math.floor(raw_material.

late_delivery*demand_penalty), 0)

1278 order_id = uuid.uuid4 ()

1279 order = Order(order_id , sim_period , supplier

, consumer , raw_material , demand , sim_period+order_lead_time)

1280 supplier.addOrder(order , ’received ’)

1281 customer.addOrder(order , ’placed ’)

1282

1283 # INITIALIZE INVENTORY AND CAPACITY FOR PERIOD

137

1284 for node in nodes_dict.values ():

1285 initPeriod(sim_period , node , dates)

1286

1287 # SOURCE MATERIALS

1288 for node in nodes_dict.values ():

1289 if node not in consumers+leaf_nodes:

1290 source(sim_period , node)

1291

1292 # MAKE PRODUCTS

1293 for node in nodes_dict.values ():

1294 make(sim_period , node)

1295

1296 # DELIVER GOODS

1297 for node in nodes_dict.values ():

1298 deliver(sim_period , node)

1299

1300 inventory_df , production_df , order_df = recordSim(

simulation_scenario , sim_duration , nodes_dict ,

1301 dates ,

inventory_df , production_df , order_df)

1302 demand_distortion = resetSim(sim_duration , nodes_dict ,

demand_distortion)

1303 print(f"Finished running the ’{simulation_scenario}’ scenario at

{datetime.datetime.now()}")

1304 print(f"... {len(disruption_scenarios) - list(

disruption_scenarios.keys()).index(simulation_scenario) - 1}

scenarios remaining")

1305

1306 # %% [markdown]

1307 # # Outputs (Write Excel)

1308

1309 # %%

1310 print(f"Started printing outputs at {datetime.datetime.now()}")

1311 with pd.ExcelWriter("Output Template.xlsx",

1312 mode="a",

1313 engine="openpyxl",

138

1314 if_sheet_exists="replace",

1315) as writer:

1316 inventory_df.to_excel(writer , sheet_name="Inventory")

1317 production_df.to_excel(writer , sheet_name="Production")

1318 order_df.to_excel(writer , sheet_name="Orders")

1319 print(f"Finished printing outputs at {datetime.datetime.now()}")

1320

1321 # %%

139

THIS PAGE INTENTIONALLY LEFT BLANK

140

Appendix C

Front End Appendix

C.1 Input File Tabs

Figure C-1: Reconfigure Supply Chain Tab

141

Figure C-2: Disruption Parameters Tab

Figure C-3: Processes Tab

142

Figure C-4: Machines Tab

Figure C-5: Machine Updates Tab

143

Figure C-6: Raw Materials Tab

Figure C-7: Finished Goods Tab

144

Figure C-8: Suppliers Tab

Figure C-9: Bill of materials Tab

145

Figure C-10: Demand Tab

Figure C-11: Holidays Tab

146

C.2 Input File Code

Figure C-12: VBA Form for adding nodes

147

Figure C-13: VBA Form for adding components

Figure C-14: VBA Form for adding processes

148

Figure C-15: VBA Form for creating component actions

Figure C-16: VBA Form for creating node actions

149

Figure C-17: VBA Form for creating process actions

Figure C-18: VBA Form for removing components

150

Figure C-19: VBA Form for removing nodes

Figure C-20: VBA Form for removing processes

151

C.3 Data Visualization - Dashboard

Figure C-21: Summary Tab

152

Figure C-22: Capacity Utilization Tab

Figure C-23: Asset Utilization Tab

153

Figure C-24: Inventory Coverage Scenarios Tab

Figure C-25: Inventory Coverage Components Tab

154

Figure C-26: Inventory Tab

Figure C-27: Node Analysis Tab

155

Figure C-28: Simulation Demand Tab

Figure C-29: Brand Tab

156

Figure C-30: Supply Chain Network Tab

Figure C-31: Bill of Materials Tab

157

Figure C-32: Supply Chain Map Tab

Figure C-33: Installed Capacity Tab

158

Figure C-34: Disruption Parameters Tab

159

THIS PAGE INTENTIONALLY LEFT BLANK

160

Bibliography

[1] AstraZeneca. AstraZeneca Annual Report and Form 20-F Information 2023.
2024. url: http://www.astrazeneca.com/annualreport2023 (visited on
02/27/2024).

[2] AstraZeneca. “Full Year and Q42023 Results”. Feb. 8, 2024. url: https:
//www.astrazeneca.com/investor-relations/full-year-and-q4-2023-
results-event.html (visited on 02/11/2024).

[3] AstraZeneca. Our Company. url: https://www.astrazeneca.com/our-
company.html (visited on 11/11/2023).

[4] AstraZeneca. AstraZeneca’s Sustainability Partner Guide and Framework. url:
https://www.astrazeneca.com/content/dam/az/PDF/Sustainability/
2019/Sustainability%20Toolkit%20and%20Framework_A4_Digital_191218.
pdf (visited on 02/20/2024).

[5] AstraZeneca. ‘Device A1’ approved by the US FDA for patients with COPD.
Apr. 25, 2016. url: https://www.astrazeneca.com/media-centre/press-
releases/2016/bevespi- aerosphere- approved- by- the- us- fda- for-
patients-with-copd-25042016.html (visited on 06/15/2023).

[6] Adrian Kemp. ‘Device A2’ approved in the US for the maintenance treatment
of COPD. July 24, 2020. url: https://www.astrazeneca.com/media-
centre/press-releases/2020/breztri-aerosphere-approved-in-the-us-
for-copd.html (visited on 06/16/2023).

[7] Adrian Kemp. ‘Device A3’ approved in the US for asthma. Jan. 11, 2023.
url: https://www.astrazeneca.com/media- centre/press- releases/
2023/airsupra-pt027-approved-in-the-us-for-asthma.html (visited on
06/21/2023).

[8] AstraZeneca. AstraZeneca Development Pipeline as at 8 February 2024. url:
https://www.astrazeneca.com/content/dam/az/Investor_Relations/
annual-report-2023/pdf/AstraZeneca_Development_Pipeline_2023.pdf
(visited on 02/23/2024).

[9] AstraZeneca. AstraZeneca announces initiation of THARROS – a Phase III
clinical trial investigating the potential of ‘Device A2’ to improve cardiopul-
monary outcomes in people with COPD. Mar. 13, 2024. url: https : / /
www.astrazeneca.com/media- centre/medical- releases/astrazeneca-
announces-initiation-tharros-phase-iii-clinical-trial-investigating-

161

http://www.astrazeneca.com/annualreport2023
https://www.astrazeneca.com/investor-relations/full-year-and-q4-2023-results-event.html
https://www.astrazeneca.com/investor-relations/full-year-and-q4-2023-results-event.html
https://www.astrazeneca.com/investor-relations/full-year-and-q4-2023-results-event.html
https://www.astrazeneca.com/our-company.html
https://www.astrazeneca.com/our-company.html
https://www.astrazeneca.com/content/dam/az/PDF/Sustainability/2019/Sustainability%20Toolkit%20and%20Framework_A4_Digital_191218.pdf
https://www.astrazeneca.com/content/dam/az/PDF/Sustainability/2019/Sustainability%20Toolkit%20and%20Framework_A4_Digital_191218.pdf
https://www.astrazeneca.com/content/dam/az/PDF/Sustainability/2019/Sustainability%20Toolkit%20and%20Framework_A4_Digital_191218.pdf
https://www.astrazeneca.com/media-centre/press-releases/2016/bevespi-aerosphere-approved-by-the-us-fda-for-patients-with-copd-25042016.html
https://www.astrazeneca.com/media-centre/press-releases/2016/bevespi-aerosphere-approved-by-the-us-fda-for-patients-with-copd-25042016.html
https://www.astrazeneca.com/media-centre/press-releases/2016/bevespi-aerosphere-approved-by-the-us-fda-for-patients-with-copd-25042016.html
https://www.astrazeneca.com/media-centre/press-releases/2020/breztri-aerosphere-approved-in-the-us-for-copd.html
https://www.astrazeneca.com/media-centre/press-releases/2020/breztri-aerosphere-approved-in-the-us-for-copd.html
https://www.astrazeneca.com/media-centre/press-releases/2020/breztri-aerosphere-approved-in-the-us-for-copd.html
https://www.astrazeneca.com/media-centre/press-releases/2023/airsupra-pt027-approved-in-the-us-for-asthma.html
https://www.astrazeneca.com/media-centre/press-releases/2023/airsupra-pt027-approved-in-the-us-for-asthma.html
https://www.astrazeneca.com/content/dam/az/Investor_Relations/annual-report-2023/pdf/AstraZeneca_Development_Pipeline_2023.pdf
https://www.astrazeneca.com/content/dam/az/Investor_Relations/annual-report-2023/pdf/AstraZeneca_Development_Pipeline_2023.pdf
https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html
https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html
https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html
https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html
https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html

potential-breztri-improve-cardiopulmonary-outcomes-people-with-
copd.html (visited on 04/30/2024).

[10] AstraZeneca. 阿斯利康加码在华投资，建设青岛生产供应基地并设立区域总
部[Translated to English]. June 20, 2022. url: https://www.astrazeneca.
com.cn/zh/media/press-releases/2022/_.html (visited on 02/02/2024).

[11] AstraZeneca. AstraZeneca progresses Ambition Zero Carbon programme with
Honeywell partnership to develop next-generation respiratory inhalers. Feb. 22,
2022. url: https://www.astrazeneca.com/media-centre/press-releases/
2022/astrazeneca-progresses-ambition-zero-carbon-programme-with-
honeywell - partnership - to - develop - next - generation - respiratory -
inhalers.html (visited on 12/19/2023).

[12] S. P. Newman. “AEROSOLS”. In: Encyclopedia of Respiratory Medicine. Ed. by
Geoffrey J. Laurent and Steven D. Shapiro. Oxford: Academic Press, 2006,
pp. 58–64. isbn: 978-0-12-370879-3. doi: https://doi.org/10.1016/B0-
12-370879-6/00019-3. url: https://www.sciencedirect.com/science/
article/pii/B0123708796000193.

[13] Gianluca Benigno et al. The GSCPI: A New Barometer of Global Supply
Chain Pressures. 1017. May 2022. url: https://www.newyorkfed.org/
medialibrary/media/research/staff_reports/sr1017.pdf?sc_lang=en
(visited on 02/05/2024).

[14] Council of Economic Advisers. Issue Brief: Supply Chain Resilience. The White
House. Nov. 30, 2023. url: https://www.whitehouse.gov/cea/written-
materials/2023/11/30/issue-brief-supply-chain-resilience/ (visited
on 02/05/2024).

[15] HIDEAKI RYUGEN. TSMC speeds diversification push with new Japan chip
plant. Nikkei Asia. Feb. 8, 2024. url: https://asia.nikkei.com/Business/
Tech/Semiconductors/TSMC- speeds- diversification- push- with- new-
Japan-chip-plant (visited on 02/25/2024).

[16] The White House. FACT SHEET: CHIPS and Science Act Will Lower Costs,
Create Jobs, Strengthen Supply Chains, and Counter China. The White House.
Aug. 9, 2022. url: https://www.whitehouse.gov/briefing-room/statements-
releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-
costs- create- jobs- strengthen- supply- chains- and- counter- china/
(visited on 11/25/2023).

[17] Sandor Boyson et al. “How Exposed Is Your Supply Chain to Climate Risks?”
In: Harvard Business Review (May 2, 2022). issn: 0017-8012. url: https:
//hbr.org/2022/05/how-exposed-is-your-supply-chain-to-climate-
risks (visited on 01/25/2024).

[18] Lawson Brigham. The Suez Canal and Global Trade Routes. U.S. Naval Institute.
May 1, 2021. url: https://www.usni.org/magazines/proceedings/2021/
may/suez-canal-and-global-trade-routes (visited on 01/22/2024).

162

https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html
https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html
https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html
https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html
https://www.astrazeneca.com/media-centre/medical-releases/astrazeneca-announces-initiation-tharros-phase-iii-clinical-trial-investigating-potential-breztri-improve-cardiopulmonary-outcomes-people-with-copd.html
https://www.astrazeneca.com.cn/zh/media/press-releases/2022/_.html
https://www.astrazeneca.com.cn/zh/media/press-releases/2022/_.html
https://www.astrazeneca.com/media-centre/press-releases/2022/astrazeneca-progresses-ambition-zero-carbon-programme-with-honeywell-partnership-to-develop-next-generation-respiratory-inhalers.html
https://www.astrazeneca.com/media-centre/press-releases/2022/astrazeneca-progresses-ambition-zero-carbon-programme-with-honeywell-partnership-to-develop-next-generation-respiratory-inhalers.html
https://www.astrazeneca.com/media-centre/press-releases/2022/astrazeneca-progresses-ambition-zero-carbon-programme-with-honeywell-partnership-to-develop-next-generation-respiratory-inhalers.html
https://www.astrazeneca.com/media-centre/press-releases/2022/astrazeneca-progresses-ambition-zero-carbon-programme-with-honeywell-partnership-to-develop-next-generation-respiratory-inhalers.html
https://doi.org/https://doi.org/10.1016/B0-12-370879-6/00019-3
https://doi.org/https://doi.org/10.1016/B0-12-370879-6/00019-3
https://www.sciencedirect.com/science/article/pii/B0123708796000193
https://www.sciencedirect.com/science/article/pii/B0123708796000193
https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr1017.pdf?sc_lang=en
https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr1017.pdf?sc_lang=en
https://www.whitehouse.gov/cea/written-materials/2023/11/30/issue-brief-supply-chain-resilience/
https://www.whitehouse.gov/cea/written-materials/2023/11/30/issue-brief-supply-chain-resilience/
https://asia.nikkei.com/Business/Tech/Semiconductors/TSMC-speeds-diversification-push-with-new-Japan-chip-plant
https://asia.nikkei.com/Business/Tech/Semiconductors/TSMC-speeds-diversification-push-with-new-Japan-chip-plant
https://asia.nikkei.com/Business/Tech/Semiconductors/TSMC-speeds-diversification-push-with-new-Japan-chip-plant
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://hbr.org/2022/05/how-exposed-is-your-supply-chain-to-climate-risks
https://hbr.org/2022/05/how-exposed-is-your-supply-chain-to-climate-risks
https://hbr.org/2022/05/how-exposed-is-your-supply-chain-to-climate-risks
https://www.usni.org/magazines/proceedings/2021/may/suez-canal-and-global-trade-routes
https://www.usni.org/magazines/proceedings/2021/may/suez-canal-and-global-trade-routes

[19] Costas Paris. Two Canals, Two Big Problems—One Global Shipping Mess. WSJ.
Section: Business. Mar. 10, 2024. url: https://www.wsj.com/business/
logistics/shipping-panama-red-sea-suez-canal-edc91172 (visited on
03/22/2024).

[20] Knut Alicke, Richa Gupta, and Vera Trautwein. Resetting supply chains for the
next normal | McKinsey. July 21, 2020. url: https://www.mckinsey.com/
capabilities/operations/our-insights/resetting-supply-chains-for-
the-next-normal (visited on 01/05/2024).

[21] Knut Alicke et al. Tech and regionalization bolster supply chains, but compla-
cency looms | McKinsey. Nov. 3, 2023. url: https://www.mckinsey.com/
capabilities/operations/our- insights/tech- and- regionalization-
bolster-supply-chains-but-complacency-looms (visited on 02/02/2024).

[22] AstraZeneca. Data Science & Artificial Intelligence: Unlocking new science
insights. Sept. 2022. url: https://www.astrazeneca.com/r- d/data-
science-and-ai.html (visited on 01/25/2024).

[23] AstraZeneca. AstraZeneca Annual Report and Form 20-F Information 2022.
2023. url: www.astrazeneca.com/annualreport2022 (visited on 01/13/2024).

[24] AstraZeneca. AstraZeneca Annual Report and Form 20-F Information 2020.
2021. url: www.astrazeneca.com/annualreport2020 (visited on 01/13/2024).

[25] AstraZeneca. Developing the next generation of drug delivery technologies.
July 12, 2023. url: https : / / www . astrazeneca . com / what - science -
can-do/topics/next-generation-therapeutics/developing-the-next-
generation-of-drug-delivery-technologies.html (visited on 08/12/2023).

[26] AstraZeneca. Smart factories - delivering more for patients worldwide. Aug. 25,
2022. url: https : / / www . astrazeneca . com / what - science - can - do /
topics/technologies/smart-factories-delivering-more-for-patients-
worldwide.html (visited on 10/24/2023).

[27] AstraZeneca. AstraZeneca launches Evinova, a health-tech business to accelerate
innovation across the life sciences sector, the delivery of clinical trials and better
health outcomes. Nov. 20, 2023. url: https://www.astrazeneca.com/media-
centre/press-releases/2023/astrazeneca-launches-evinova-health-
tech-business-to-accelerate-innovation-across-the-life-sciences-
sector.html (visited on 12/14/2023).

[28] Serhiy Y. Ponomarov and Mary C. Holcomb. “Understanding the concept of
supply chain resilience”. In: The International Journal of Logistics Management
20.1 (Jan. 1, 2009). Publisher: Emerald Group Publishing Limited, pp. 124–143.
issn: 0957-4093. doi: 10.1108/09574090910954873. url: https://doi.org/
10.1108/09574090910954873 (visited on 08/28/2023).

[29] Yossi Sheffi and James B. Rice Jr. “A Supply Chain View of the Resilient
Enterprise”. In: MIT Sloan Management Review (Fall 2005 Oct. 15, 2005). url:
https://sloanreview.mit.edu/article/a-supply-chain-view-of-the-
resilient-enterprise/ (visited on 09/28/2023).

163

https://www.wsj.com/business/logistics/shipping-panama-red-sea-suez-canal-edc91172
https://www.wsj.com/business/logistics/shipping-panama-red-sea-suez-canal-edc91172
https://www.mckinsey.com/capabilities/operations/our-insights/resetting-supply-chains-for-the-next-normal
https://www.mckinsey.com/capabilities/operations/our-insights/resetting-supply-chains-for-the-next-normal
https://www.mckinsey.com/capabilities/operations/our-insights/resetting-supply-chains-for-the-next-normal
https://www.mckinsey.com/capabilities/operations/our-insights/tech-and-regionalization-bolster-supply-chains-but-complacency-looms
https://www.mckinsey.com/capabilities/operations/our-insights/tech-and-regionalization-bolster-supply-chains-but-complacency-looms
https://www.mckinsey.com/capabilities/operations/our-insights/tech-and-regionalization-bolster-supply-chains-but-complacency-looms
https://www.astrazeneca.com/r-d/data-science-and-ai.html
https://www.astrazeneca.com/r-d/data-science-and-ai.html
www.astrazeneca.com/annualreport2022
www.astrazeneca.com/annualreport2020
https://www.astrazeneca.com/what-science-can-do/topics/next-generation-therapeutics/developing-the-next-generation-of-drug-delivery-technologies.html
https://www.astrazeneca.com/what-science-can-do/topics/next-generation-therapeutics/developing-the-next-generation-of-drug-delivery-technologies.html
https://www.astrazeneca.com/what-science-can-do/topics/next-generation-therapeutics/developing-the-next-generation-of-drug-delivery-technologies.html
https://www.astrazeneca.com/what-science-can-do/topics/technologies/smart-factories-delivering-more-for-patients-worldwide.html
https://www.astrazeneca.com/what-science-can-do/topics/technologies/smart-factories-delivering-more-for-patients-worldwide.html
https://www.astrazeneca.com/what-science-can-do/topics/technologies/smart-factories-delivering-more-for-patients-worldwide.html
https://www.astrazeneca.com/media-centre/press-releases/2023/astrazeneca-launches-evinova-health-tech-business-to-accelerate-innovation-across-the-life-sciences-sector.html
https://www.astrazeneca.com/media-centre/press-releases/2023/astrazeneca-launches-evinova-health-tech-business-to-accelerate-innovation-across-the-life-sciences-sector.html
https://www.astrazeneca.com/media-centre/press-releases/2023/astrazeneca-launches-evinova-health-tech-business-to-accelerate-innovation-across-the-life-sciences-sector.html
https://www.astrazeneca.com/media-centre/press-releases/2023/astrazeneca-launches-evinova-health-tech-business-to-accelerate-innovation-across-the-life-sciences-sector.html
https://doi.org/10.1108/09574090910954873
https://doi.org/10.1108/09574090910954873
https://doi.org/10.1108/09574090910954873
https://sloanreview.mit.edu/article/a-supply-chain-view-of-the-resilient-enterprise/
https://sloanreview.mit.edu/article/a-supply-chain-view-of-the-resilient-enterprise/

[30] David Simchi-Levi, He Wang, and Yehua Wei. “Increasing Supply Chain
Robustness through Process Flexibility and Inventory”. In: Production and
Operations Management 27.8 (2018), pp. 1476–1491. issn: 1937-5956. doi:
10.1111/poms.12887. url: https://onlinelibrary.wiley.com/doi/abs/
10.1111/poms.12887 (visited on 07/26/2023).

[31] Sunil Chopra and ManMohan S. Sodhi. “Reducing the Risk of Supply Chain
Disruptions”. In: MIT Sloan Management Review (Mar. 18, 2014). url: https:
//sloanreview.mit.edu/article/reducing-the-risk-of-supply-chain-
disruptions/ (visited on 09/08/2023).

[32] Sunil Chopra and ManMohan S. Sodhi. “Managing Risk to Avoid Supply-Chain
Breakdown”. In: MIT Sloan Management Review (Oct. 15, 2004). url: https:
//sloanreview.mit.edu/article/managing-risk-to-avoid-supplychain-
breakdown/ (visited on 09/08/2023).

[33] David Simchi-Levi et al. “Identifying Risks and Mitigating Disruptions in the
Automotive Supply Chain”. In: Prof. Simchi-Levi via Anne Graham (Oct. 2015).
Accepted: 2016-03-24T23:41:10Z Publisher: Institute for Operations Research
and the Management Sciences (INFORMS). issn: 0092-2102. url: https:
//dspace.mit.edu/handle/1721.1/101782 (visited on 07/28/2023).

[34] David Simchi-Levi, William Schmidt, and Yehua Wei. “From Superstorms to
Factory Fires: Managing Unpredictable Supply-Chain Disruptions”. In: Harvard
Business Review (January–February 2014 2014). url: https://hbr.org/
2014/01/from-superstorms-to-factory-fires-managing-unpredictable-
supply-chain-disruptions (visited on 07/12/2023).

[35] David Simchi-Levi. “Find the Weak Link in Your Supply Chain”. In: Harvard
Business Review (June 9, 2015). Section: Operations strategy. issn: 0017-8012.
url: https://hbr.org/2015/06/find-the-weak-link-in-your-supply-
chain (visited on 07/13/2023).

[36] David Simchi-Levi. “A New Approach to Manage Supply Chain Risk”. In:
Harvard Business Review (Oct. 21, 2015). Section: Operations and supply chain
management. issn: 0017-8012. url: https://hbr.org/webinar/2015/11/a-
new-approach-to-manage-supply-chain-risk (visited on 07/07/2023).

[37] Michael W. Grieves. “Digital Twins: Past, Present, and Future”. In: The Digital
Twin. Ed. by Noel Crespi, Adam T. Drobot, and Roberto Minerva. Cham:
Springer International Publishing, 2023, pp. 97–121. isbn: 978-3-031-21343-4.
doi: 10.1007/978-3-031-21343-4_4. url: https://doi.org/10.1007/978-
3-031-21343-4_4 (visited on 09/23/2023).

[38] Eric VanDerHorn and Sankaran Mahadevan. “Digital Twin: Generalization, char-
acterization and implementation”. In: Decision Support Systems 145 (June 1,
2021), p. 113524. issn: 0167-9236. doi: 10.1016/j.dss.2021.113524. url:
https://www.sciencedirect.com/science/article/pii/S0167923621000348
(visited on 11/20/2023).

164

https://doi.org/10.1111/poms.12887
https://onlinelibrary.wiley.com/doi/abs/10.1111/poms.12887
https://onlinelibrary.wiley.com/doi/abs/10.1111/poms.12887
https://sloanreview.mit.edu/article/reducing-the-risk-of-supply-chain-disruptions/
https://sloanreview.mit.edu/article/reducing-the-risk-of-supply-chain-disruptions/
https://sloanreview.mit.edu/article/reducing-the-risk-of-supply-chain-disruptions/
https://sloanreview.mit.edu/article/managing-risk-to-avoid-supplychain-breakdown/
https://sloanreview.mit.edu/article/managing-risk-to-avoid-supplychain-breakdown/
https://sloanreview.mit.edu/article/managing-risk-to-avoid-supplychain-breakdown/
https://dspace.mit.edu/handle/1721.1/101782
https://dspace.mit.edu/handle/1721.1/101782
https://hbr.org/2014/01/from-superstorms-to-factory-fires-managing-unpredictable-supply-chain-disruptions
https://hbr.org/2014/01/from-superstorms-to-factory-fires-managing-unpredictable-supply-chain-disruptions
https://hbr.org/2014/01/from-superstorms-to-factory-fires-managing-unpredictable-supply-chain-disruptions
https://hbr.org/2015/06/find-the-weak-link-in-your-supply-chain
https://hbr.org/2015/06/find-the-weak-link-in-your-supply-chain
https://hbr.org/webinar/2015/11/a-new-approach-to-manage-supply-chain-risk
https://hbr.org/webinar/2015/11/a-new-approach-to-manage-supply-chain-risk
https://doi.org/10.1007/978-3-031-21343-4_4
https://doi.org/10.1007/978-3-031-21343-4_4
https://doi.org/10.1007/978-3-031-21343-4_4
https://doi.org/10.1016/j.dss.2021.113524
https://www.sciencedirect.com/science/article/pii/S0167923621000348

[39] Özden Tozanli and María Jesús Sáenz. “Unlocking the Potential of Digital Twins
in Supply Chains”. In: MIT Sloan Management Review (Aug. 18, 2022). url:
https://sloanreview.mit.edu/article/unlocking-the-potential-of-
digital-twins-in-supply-chains/ (visited on 07/23/2023).

[40] Özden Tozanli and María Jesús Sáenz. “Four Misconceptions are Hampering
the Advancement of Digital Twins”. In: Supply Chain Management Review
(July/August 2022 July 7, 2022), pp. 10–13. url: https://www.scmr.com/
article/four_misconceptions_are_hampering_the_advancement_of_
digital_twins (visited on 07/23/2023).

[41] B. Danette Allen. “Digital Twins and Living Models at NASA”. NTRS Author
Affiliations: Langley Research Center NTRS Meeting Information: Digital Twin
Summit; 2021-11-03 to 2021-11-04; undefined NTRS Document ID: 20210023699
NTRS Research Center: Langley Research Center (LaRC). Nov. 3, 2021. url:
https://ntrs.nasa.gov/citations/20210023699 (visited on 01/17/2023).

[42] Jackie Snow. “What Is a Digital Twin? And How Can It Make Companies—and
Cities—More Efficient?” In: Wall Street Journal (Mar. 17, 2023). issn: 0099-9660.
url: https://www.wsj.com/articles/what-is-digital-twin-making-
companies-cities-more-efficient-92e551b6 (visited on 01/29/2024).

[43] Rolls-Royce. Rolls-Royce | Pioneering the IntelligentEngine. Feb. 5, 2018. url:
https://www.youtube.com/watch?v=9CcbYQ5QA70 (visited on 01/15/2024).

[44] Groupe Renault. Digital twin of vehicles: when physical and digital models
come together. July 11, 2022. url: https://www.youtube.com/watch?v=J-
edZjYQors (visited on 01/08/2024).

[45] Werner Kritzinger et al. “Digital Twin in manufacturing: A categorical literature
review and classification”. In: IFAC-PapersOnLine. 16th IFAC Symposium on
Information Control Problems in Manufacturing INCOM 2018 51.11 (Jan. 1,
2018), pp. 1016–1022. issn: 2405-8963. doi: 10 . 1016 / j . ifacol . 2018 .
08.474. url: https://www.sciencedirect.com/science/article/pii/
S2405896318316021 (visited on 01/08/2024).

[46] Hasso Plattner. An Introduction to Design Thinking. url: https://web.
stanford.edu/~mshanks/MichaelShanks/files/509554.pdf (visited on
01/17/2024).

[47] TED. Tim Brown urges designers to think big. Sept. 30, 2009. url: https:
//www.youtube.com/watch?v=UAinLaT42xY (visited on 02/01/2024).

[48] AstraZeneca. AstraZeneca Annual Report and Form 20-F Information 2016.
2017. url: www.astrazeneca.com/annualreport2016 (visited on 01/13/2024).

[49] AstraZeneca. AstraZeneca Annual Report and Form 20-F Information 2017.
2018. url: www.astrazeneca.com/annualreport2017 (visited on 01/13/2024).

[50] AstraZeneca. AstraZeneca Annual Report and Form 20-F Information 2018.
2019. url: www.astrazeneca.com/annualreport2018 (visited on 01/13/2024).

165

https://sloanreview.mit.edu/article/unlocking-the-potential-of-digital-twins-in-supply-chains/
https://sloanreview.mit.edu/article/unlocking-the-potential-of-digital-twins-in-supply-chains/
https://www.scmr.com/article/four_misconceptions_are_hampering_the_advancement_of_digital_twins
https://www.scmr.com/article/four_misconceptions_are_hampering_the_advancement_of_digital_twins
https://www.scmr.com/article/four_misconceptions_are_hampering_the_advancement_of_digital_twins
https://ntrs.nasa.gov/citations/20210023699
https://www.wsj.com/articles/what-is-digital-twin-making-companies-cities-more-efficient-92e551b6
https://www.wsj.com/articles/what-is-digital-twin-making-companies-cities-more-efficient-92e551b6
https://www.youtube.com/watch?v=9CcbYQ5QA70
https://www.youtube.com/watch?v=J-edZjYQors
https://www.youtube.com/watch?v=J-edZjYQors
https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.1016/j.ifacol.2018.08.474
https://www.sciencedirect.com/science/article/pii/S2405896318316021
https://www.sciencedirect.com/science/article/pii/S2405896318316021
https://web.stanford.edu/~mshanks/MichaelShanks/files/509554.pdf
https://web.stanford.edu/~mshanks/MichaelShanks/files/509554.pdf
https://www.youtube.com/watch?v=UAinLaT42xY
https://www.youtube.com/watch?v=UAinLaT42xY
www.astrazeneca.com/annualreport2016
www.astrazeneca.com/annualreport2017
www.astrazeneca.com/annualreport2018

[51] AstraZeneca. AstraZeneca Annual Report and Form 20-F Information 2019.
2020. url: www.astrazeneca.com/annualreport2019 (visited on 01/13/2024).

[52] AstraZeneca. AstraZeneca Annual Report and Form 20-F Information 2021.
2022. url: www.astrazeneca.com/annualreport2021 (visited on 01/13/2024).

[53] AstraZeneca. ‘Device A1’ Patient Information. Mar. 2023. url: https://
den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/
fe60bf8d- 1354- 42c8- 8f3c- 5b4ea85ed161/fe60bf8d- 1354- 42c8- 8f3c-
5b4ea85ed161_pi_med_guide_rendition__c.pdf (visited on 09/01/2023).

[54] AstraZeneca. ‘Device A2’ Patient Information. Jan. 2022. url: https://
den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/
9d44f9af- 438a- 448b- bb5c- dae506e17e49/9d44f9af- 438a- 448b- bb5c-
dae506e17e49_pi_med_guide_rendition__c.pdf (visited on 09/01/2023).

[55] AstraZeneca. ‘Device A3’ Patient Information. Jan. 2023. url: https://
den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/
fe598cda- d255- 4446- 998e- 617607f61552/fe598cda- d255- 4446- 998e-
617607f61552_pi_med_guide_rendition__c.pdf (visited on 09/01/2023).

[56] AstraZeneca. ‘Device A1’ (glycopyrrolate 9 mcg/ formoterol fumarate 4.8 mcg).
url: https://www.bevespi.com/ (visited on 09/01/2023).

[57] AstraZeneca. Using Inhalers for COPD | ‘Device A2’. Oct. 2023. url: https:
//www.breztri.com/administration/using-your-inhaler.html (visited on
01/21/2024).

[58] AstraZeneca. About ‘Device A3’ (albuterol 90 mcg/budesonide 80 mcg) Inhalation
Aerosol. url: https://www.airsupra.com/about-airsupra/about-airsupra
(visited on 09/01/2023).

[59] AstraZeneca. Instructions for Use ‘Device A2’. Jan. 2022. url: https :
//www.breztri.com/content/dam/open-digital/breztri-consumer/en/
pdf/instructions.pdf (visited on 02/21/2024).

166

www.astrazeneca.com/annualreport2019
www.astrazeneca.com/annualreport2021
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/fe60bf8d-1354-42c8-8f3c-5b4ea85ed161/fe60bf8d-1354-42c8-8f3c-5b4ea85ed161_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/fe60bf8d-1354-42c8-8f3c-5b4ea85ed161/fe60bf8d-1354-42c8-8f3c-5b4ea85ed161_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/fe60bf8d-1354-42c8-8f3c-5b4ea85ed161/fe60bf8d-1354-42c8-8f3c-5b4ea85ed161_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/fe60bf8d-1354-42c8-8f3c-5b4ea85ed161/fe60bf8d-1354-42c8-8f3c-5b4ea85ed161_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/9d44f9af-438a-448b-bb5c-dae506e17e49/9d44f9af-438a-448b-bb5c-dae506e17e49_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/9d44f9af-438a-448b-bb5c-dae506e17e49/9d44f9af-438a-448b-bb5c-dae506e17e49_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/9d44f9af-438a-448b-bb5c-dae506e17e49/9d44f9af-438a-448b-bb5c-dae506e17e49_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/9d44f9af-438a-448b-bb5c-dae506e17e49/9d44f9af-438a-448b-bb5c-dae506e17e49_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/fe598cda-d255-4446-998e-617607f61552/fe598cda-d255-4446-998e-617607f61552_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/fe598cda-d255-4446-998e-617607f61552/fe598cda-d255-4446-998e-617607f61552_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/fe598cda-d255-4446-998e-617607f61552/fe598cda-d255-4446-998e-617607f61552_pi_med_guide_rendition__c.pdf
https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/fe598cda-d255-4446-998e-617607f61552/fe598cda-d255-4446-998e-617607f61552_pi_med_guide_rendition__c.pdf
https://www.bevespi.com/
https://www.breztri.com/administration/using-your-inhaler.html
https://www.breztri.com/administration/using-your-inhaler.html
https://www.airsupra.com/about-airsupra/about-airsupra
https://www.breztri.com/content/dam/open-digital/breztri-consumer/en/pdf/instructions.pdf
https://www.breztri.com/content/dam/open-digital/breztri-consumer/en/pdf/instructions.pdf
https://www.breztri.com/content/dam/open-digital/breztri-consumer/en/pdf/instructions.pdf

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Company Overview
	Project Motivation
	Problem Statement
	Thesis Overview

	Background
	Product Brand Overview
	Devices
	Supply Chain

	Supply Chain Disruptions Overview
	Digital Landscape Overview

	Literature Review
	Supply Chain Resilience
	Digital Twins

	Methodology
	Approach
	Empathize Stage: Understanding Stakeholders
	Define Stage: Clarifying Objectives
	Data Collection
	Metrics

	Ideate Stage: Conceptualizing Solutions
	Tool Logical Framework
	Supply Chain Model
	Supply Chain Model Boundaries and Assumptions
	Stress Test Considerations

	Prototype Stage: Tool Building
	Tool Back End
	Tool Front End

	Test Stage: Assessing Impact
	Business Case

	Results
	Supply Chain Resilience Tool Building Framework
	Supply Chain Digital Twin Transition

	Conclusions
	Company Appendix
	Brand Details
	Product Details

	Back End Appendix
	Code

	Front End Appendix
	Input File Tabs
	Input File Code
	Data Visualization - Dashboard

