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Abstract

To facilitate agility in store inventory planning for a brick-and-mortar retail business
with high sales velocity and product portfolio complexity, this project created a Monte
Carlo tool that simulates how upstream shipment decisions impact capacity utilization
and product complexity. The simulation model was built in two steps, first a Monte
Carlo model for aggregated store inventory, followed by machine learning models that
predict the display inventory and the number of store and display unique articles based
on Monte Carlo outputs. In the process of building the Monte Carlo model, the project
examined methods to model inventory trends, developed a quantification technique
for daily demand stochasticity, and explored possibilities to control the simulation
stochasticity. These methods and techniques, novel to retail inventory modeling,
were able to model store inventory with little systematic biases and store daily mean
absolute inventory deviations within 2-4%. Meanwhile for the machine learning models,
the project systematically examined the efficacy of linear regression, tree and fully
connected neural network models at making time series predictions using two time
series as inputs. It also rigorously dives into the limitations and advantages of various
model architectures, including the selection of variables, treatment of multiple time
series, order of predictions, and the scope of loss functions. The final machine learning
model results showed some systematic biases with daily mean absolute deviation
ranging from 3-10% for display inventory and up to 10-20% for unique articles.
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Glossary

Section: there are a total of three sections, women (section 1), men (section 2) and
kids (section 3)

Upstream: company internal movements from the perspective of stores, including
shipments, backstocks and transfers

Downstream: customer facing movements from the perspective of stores, including
sales and returns

Shipment: broadly refers to shipment of products to stores, including new article
shipment and existing article replenishment

Replenishment: shipment of products that already exist in stores (in contrast to
new article shipment)

Backstock: return of products from stores to warehouses

Sales: sales of products to customers, including a variety of online and in-person
channels

Return: return of products from customers, including products purchased from a
variety of online and in-person channels

SINT: orders placed online and shipped from store inventory directly to customers,
as opposed to from warehouse inventory

IPOD: orders placed in-person in store (on tablet devices, hence the name) but
shipped from warehouses, mostly due to lack of store inventory

Click and Collect: orders placed online and picked up in-person with inventory
coming from warehouses (shipped to store); note that there is the option to place
orders online for existing store inventory to be picked up in-person as well, but is
categorized as in-store sales

CD1: a type of distribution center that ships new and existing articles to stores
around the world
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CD2: a new type of secondary distribution center for certain stores

Cycle 1 and cycle 2: all stores receive two new (not already in stores at time of
shipment) product shipments twice a week from CD1; CD1 shipments happen on
Mondays and Thursdays, barring few exceptions, and the period of Monday Tuesday
Wednesday is referred to as cycle 2 and Thursday Friday Saturday Sunday as cycle
1.
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Chapter 1

Introduction

For a brick-and-mortar retail business with omni-channel fulfillment, high sales velocity,
product portfolio complexity, limited store capacity, and inherent demand stochasticity,
agile store inventory planning is crucial to its success. To facilitate such agility
in shipments, backstocks, transfers and in-store movements, this project aims to
create a tool that simulates how these decisions directly impact store operations (i.e.
capacity utilization and product complexity), in order to inform better store inventory
planning.

1.1 Business context

Originally started in northwestern Spain in 1975 by founder Amancio Ortega, who
had been running a dressmaking workshop since 1963, Zara is now a multi-national
fashion retailer with over 1800 stores around the globe [7]. Organizationally, Zara has
been a part of the Inditex Group since 1985, which was started by the same founder
and currently owns fashion brands beyond just Zara [7]. With an annual revenue of
32.6 billion euros in fiscal year 2022, over 70% of which coming from Zara (including
Zara Home), Inditex is the biggest company by market capitalization in Spain [6].
Geographically, Spain accounts for 14% of Inditex revenue, the rest of Europe 48%,
the Americas 20%, and Asia and the rest of the world 18% [6].

A key differentiator for Zara is its large and constantly evolving assortment. Dozens
or hundreds of new products arrive in every store weekly, with differing assortments
for each store to cater to demand. However, managing such a dynamic business comes
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with its challenges. The need to frequently design, source and replenish new products
means constant commercial and operational planning. In addition, a larger assortment
also implies lower volume for each product, which leads to higher variability.

Although traditionally a brick-and-mortar retails, Zara has ventured into online
business, which currently accounts for over 20% of revenue [6]. Online business spans
a number of formats. The point of sales can be either online or in-person, orders can
be fulfilled in warehouses or stores and products can reach customers via parcels or be
picked up in-person. Along with similar considerations for returns, the online business
adds significant complexities to store and warehouse operations.

1.2 Project motivation

Inventory planning is at the heart of any retail business. Too much inventory results in
high holding and overage cost, as well as difficulty in capacity management. Too little
inventory leads to lost sales. In addition to quantity, positioning the right inventory at
the right place at the right time is also highly crucial, since different assortments are
not substitutes for one another. As a result, it is crucial to understand how retail store
inventory will behave in order to more accurately inform store operations planning
and shipment decisions.

Zara currently does not have the capability to precisely model future store inventory.
Store inventory is driven by two sets of inputs and outputs, downstream (customer
facing) and upstream (company internal) movements. Future downstream movements
are currently modeled using machine learning algorithms in the form of sales and
returns forecasts, although they can be on various levels of granularity and not always
available for all channels of sales and returns. Upstream movements are driven by real-
time downstream movements and dynamically calculated for a pre-specified shipment
schedule, with some real-time manual inputs. Using the aforementioned forecasts and
shipment schedule, one can get a sense of how inventory will evolve in the coming
weeks for each store, but not precisely. Details of various sales and returns channels
are discussed in Chapter 2.

Motivated by this lack of modeling capability, this project sets out to build a tool that
integrates modeled downstream movements, upstream movement patterns, as well as
other store and product attributes, in order to understand how store inventory will
vary precisely on a daily basis for a forward-looking period. With such a tool, store
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operations managers would hopefully have more knowledge at their disposal to inform
decisions that impact how stores should be served.

A specific dynamic at Zara is the incorporation of CD2 warehouses in their distribution
network. Most stores receive clothing products twice a week from CD1 warehouses,
including new and existing articles (those that don’t exist in stores at the time of
shipment and those that do). For a small set of stores with tight capacity constraints,
like those in busy commercial districts with small stock rooms and high sales, such a
shipment model can cause significant operational stress, as each bi-weekly shipment
contains large volume of inventory. The connection to CD2 can often be a capacity
solution for these stores, as the store can receive smaller and more frequent shipments
from both CD1 and CD2. Therefore, another motivation for the store inventory
model is to be able to quantify the operational benefits of CD2 replenishment through
simulations, which causes less operational disruptions, compared to the alternative of
putting actual stores through pilots.

1.3 Previous LGO work at Zara

For the last 10+ years, approximately one LGO thesis project per year was carried
out at Zara. Previous work tends to focus on two areas: 1) improving forecasting
capabilities 2) improving inventory shipment and fulfillment policies. A quick synopsis
of thesis projects in the past few years is provided below:

• The 2023 thesis examines possible ways to featurize new articles, using verbal
descriptions of the garments and a combination of natural language processing
(NLP) techniques [15]. New articles always pose challenges for demand forecasting
due to the absence of historical data. By exploring potential correlations between
the verbal descriptions of articles and demand profile, the project aims to provide
better forecast accuracy for new articles.

• The 2022 thesis explores an optimization-based heuristic that dynamically
calculates optimal days of inventory coverage [17]. By using static estimates
of inventory coverage and customer behavior features, the heuristic is able to
reduce inventory with minimal impact on stockouts in a simulation.

• The 2019 thesis focuses on a optimization heuristic approach to calculate inte-
grated target inventory across both online and physical channels [14]. By looking
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at the channels holistically, the heuristic is able to outperform single channel
approaches in a simulated cost analysis.

• 2018 saw two LGO theses at Zara. One focuses on improving demand forecast
using e-commerce data, such as opt-in user tracking data and article age data
[5]. The other explores the potential to increase system-wide profits through a
fulfillment model that leverages multi-period demand information [4].

Fundamentally different from previous LGO theses, this work does not seek to make
direct improvements on business operations. Instead, the goal is to build a simulation
model that accurately approximates store operations, which can be used to inform
real-time decision-making. As a result, success of the project is not measured by how
much incremental improvement can the model achieve on top of current operations.
Instead, it is measured by how accurately can the model simulate current operations.
The higher the accuracy, the more reliable the model will be to inform future decisions.
The literature review for topics relevant for the project will be covered in Section 3.1.1
and 4.2.

1.4 Project methodology and contributions

The simulation model was built incrementally in two steps. An illustration of the
simulation model architecture is provided in Figure 1-1.

Figure 1-1: Illustration of simulation model architecture

First, a Monte Carlo simulation model for aggregated store inventory was built. The
model uses upstream inputs (i.e. shipments, backstocks, transfers) and downstream
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inputs (i.e. sales, returns), calculates daily inventory changes, and arrives at daily
inventory level for each product category in the store. The stochasticity of the
model comes from the inherent uncertainty in customer behavior and downstream
inputs, which is quantified through historical calculations and simulated through a
Monte Carlo sampling process that generates downstream inputs for each trial of
simulation. Due to the complexity of the business and simulation task, a large number
of assumptions were adopted in the model. In order to guide the assumptions, a set of
customized accuracy metrics was introduced to quantify model performance against a
historical time period, when store inventory data is available. Across 6 stores over
a recent time period, no significant systematic biases are observed, while the daily
mean absolute inventory deviation remains under 2-4% for the store total and under
2-8% for the section total (i.e. men, women, kids). Detailed discussion of the Monte
Carlo modeling process and results are covered in Chapter 3.

On top of the Monte Carlo model, machine learning models that take store inventory
as inputs were built to predict the display inventory and the number of unique articles
in both the store and display room. Due to data and modeling complexity, similar
Monte Carlo approaches face logistic challenges and are not expected to perform well.
With machine learning approaches, correlations with store inventory could be learned
using historical data and applied to the store inventory output of the Monte Carlo
model to predict the display inventory and store and display number of unique articles
for the simulation period. Thus, the machine learning models in conjunction with
the store inventory model can provide a complete picture of inventory and product
complexity relevant to store operations. Across the same 6 stores and time period,
machine learning outputs perform worse than store inventory outputs. A slight upward
bias is observed for display inventory and a downward bias for store and display unique
articles. Daily mean absolute deviation ranges from 3-10% for display inventory and
can be up to 10-20% for unique articles, which is quite significant considering how little
number of unique articles tends to fluctuate within a few weeks. The outcome is not
unexpected, given the limit numbers of predictive features available, the complexity of
the prediction tasks, and the machine learning models using store aggregate inventory
as inputs, which is a Monte Carlo output that already contains inaccuracies. Detailed
discussions of the rationale behind machine learning methods, choice of machine
learning models and model performance are covered in Chapter 4.

Last but not least, the Monte Carlo model and the machine learning models are
integrated in a dashboard format to facilitate usability. The dashboard design is
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discussed and presented in detail in Chapter 5.

Overall for the Monte Carlo inventory simulation, the project examined various
methods to model inventory trends, developed a quantification technique for daily
demand stochasticity, and explored possibilities to control the stochasticity in the
simulation. These methods and techniques, novel to inventory modeling in a retail
context, are able to achieve reasonable modeling accuracy for the specific business of
Zara.

For the machine learning models, the project systematically examined the efficacy
of linear regression, tree and fully connected neural network models at making time
series predictions using two time series as inputs. It also dives into various model
architectures, including the selection of variables, treatment of multiple time series,
order of predictions, and the scope of loss functions. This rigorous endeavor shed
light on the various limitations and advantages of each model and architecture, which
allowed the project to arrive at a recommendation for a model that is most suitable
for an inventory simulation tool.
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Chapter 2

Navigating the data landscape

This chapter lays out all of the data used in the project. All data is pulled directly from
Zara’s enterprise systems, using a combination of Scala, SQL and PySpark. The data
discussion is structured with the Monte Carlo model in mind, but is inclusive of data
leverage by the machine learning models, as it is a subset of data used in the Monte
Carlo model. The specifics of machine learning data processing and featurizations are
discussed in Section 4.4.

2.1 Historical store stock and volume flow data

To simulate inventory level and product complexity, it is necessary to know historically
how much inventory there is and how much flows in and out of every store on a daily
article level.

Two types of store inventory data are utilized at Zara:

• RFID inventory: actual inventory counted by scanning the RFID tags in physical
stores. Despite RFID inventory being the “actual” inventory, it is by no means
the single source of truth, because RFID tags and scanners can malfunction,
products can be misplaced, and store associates may improperly conduct the
scanning process. RFID inventory data here is able to distinguish between
articles as well as whether they are placed in stock or display room.

• Theoretical inventory: calculated by summing all the store volume in and out
flows. Due to the discreteness of fashion retail inventory, data for volume in and
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out flows IS generally considered to be accurate. Nonetheless, it is impossible
to fully capture the dynamics of physical stores through theoretical data, as
volume flow can still be improperly recorded.

Store volume in and out flows (inventory movement data), which are used in theoretical
inventory calculations, can be broken down into the following two categories:

• Upstream movements (company internal movements): shipments from ware-
houses, backstocks to warehouses and transfers between stores.

• Downstream movements (customer facing): (gross) sales to customers, returns
from customers.

The identification of upstream movements is straight-forward, as all company internal
movements are recorded under different movement codes at Zara with clear identi-
fication of origin and destination. In contrast, special cautions need to taken when
analyzing downstream movements. For the purpose of the project, any downstream
movement that leads to changes in physical store inventory levels is relevant. Due to
the omni-channel fulfillment model of the business, articles purchased online many
come from store inventory with the point of sales recorded as the e-commerce ware-
house, and vice versa. Similarly, articles returned physically to stores can be purchased
from any sales channel with volume attributed to the point of sales, not point of
returns.

For sales to customers, the following precautions need to be taken:

• In-store sales are relevant. Point of sales is always the stores where physical
inventory comes from.

• SINT sales are relevant. Point of sales needs to be the stores where physical
inventory comes from, not the e-commerce warehouse.

• Click and Collect sales are not relevant. Inventory comes from e-commerce
warehouses, even though point of sales may be recorded as stores.

• IPOD sales are not relevant. Inventory comes from e-commerce warehouses,
even though point of sales may be recorded as stores.

For returns from customers, all channels of sales are relevant, including in-store, SINT,
Click and Collect, IPOD, and general online sales, and should be recorded against
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the point of returns. Specifically for in-store sales, articles that are returned to the
same store or other stores both need to be taken into account in general but are only
relevant if the store of interest receives the returned articles.

To ensure that the inventory movement data is accurate, daily movements can be
aggregated to calculate theoretical inventory for comparison with RFID inventory.
Results for a particular store in Spain over a 4-week period are shown in Figure
2-1. Despite small differences on select days, the two sources agree with each other
very well, thus validating the accuracy and completeness of historical inventory data
sources. Note that the days with the most differences are Sundays and RFID inventory
remains the same on Sundays as the leading Saturdays, which is not surprising given
that Sunday is usually a day with the least retail activity in Spain and stores are
generally open for shorter hours, if not completely closed to foot traffic in many cases.
Therefore, one can reasonably conclude that the cause for discrepancy between the
two sources on select days is simply that RFID inventory is not recorded and updated
on Sundays, especially given that the two data sources converge immediately the
following Mondays. In other words, the data discrepancies on select days between the
two sources are not of concern and should not lead to overall biases.

Figure 2-1: Comparison of theoretical inventory constructed from daily inventory
movements and RFID inventory for a particular store in Spain over a 4-week period
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2.2 Forecast data

Because the goal of the project is to simulate store operations for a forward-looking
4-week period, forecast data is necessary in addition to historical data, for both sales
and returns. Upon discussions with relevant teams, the only available sales and returns
forecasts that meet the forward-looking time horizon are provided on section level (i.e.
women, men and kids). They include products beyond just clothes (i.e. shoes) and do
not strictly take into account all the downstream volume in and out flows that impact
store inventory (i.e. SINT). The inconsistencies with historical sales and returns data
laid out in Section 2.1 are not ideal, but are not of major concerns, because forecast
data is not used verbatim in the simulation. Instead, forecast accuracy parameters are
calculated to adjust for systematic biases between forecasts and actuals, which feed
directly into the Monte Carlo sampling of the stochastic simulation. The sampling
process is discussed in detail in Section 3.1.3.

The forward-looking section-level forecast described above is used in the business for
medium term planning, but do not directly impact shipment decisions on a day-to-day
basis. Section 3.1.7 lays out the simulation model requires a mechanism to correct
shipment volume based on downstream stochasticity in the simulation. One of the ways
to model such a mechanism is through the calculation of historical shipment volumes
and how they actually react to higher/lower demand and higher/lower inventory
level. Actual shipment volume in the business is currently mostly driven by an article
level one-week forward-looking forecast grounded in weighted average historical sales,
commonly referred to as VMP (ventas medias propuestas, or average suggested sales).
This source of data is also utilized in the project.

2.3 Other miscellaneous data

2.3.1 Article master

Article master that contains necessary mapping of various article codes to article
attributes (e.g. buyer categorization, family categorization, hanging vs. folding) is
leveraged throughout the project. Additionally, article codes for the same product
may change within the same campaign or across different campaigns, often due to shift
in suppliers. The article master also serves the purpose to reconcile these different
codes as each article should have a unique identifier.
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2.3.2 Location master

Location master contains necessary mapping of location numbers to attributes (e.g.
name, location, types of location).

2.3.3 Store capacity

In order to translate inventory level to capacity utilization, quantification of store
capacity is necessary. Store capacity is currently modeled separately by section and by
hanging stock room, folding stock room and display room. Each capacity quantity is
dynamic over time, as room staging and product mix can vary. For example, capacity
tends to be lower during the winter campaign due to winter clothes being bulkier than
summer clothes. For simplicity, store capacity is not treated as time-dependent in
this project as they don’t tend to vary much over the simulation time horizon of a few
weeks.
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Chapter 3

Monte Carlo simulation model for
store inventory

The project first simulates daily store aggregate inventory for each buyer-family
combination in the store over a 4-week horizon using a Monte Carlo approach. A
conscious decision was made to model stores on aggregated buyer-family levels.

First of all, the product portfolio of Zara is highly complicated, with up to hundreds of
thousands of unique articles sold every year and most having life cycles of a few weeks
in physical stores. An article level model would not only require a deep understanding
of historically how new products are released and how old products are phased out,
but also predictions of when and how many new products in each product category
will impact store inventory over forward-looking simulation horizons, dramatically
increasing the model complexity. Therefore, building a reasonable store simulation on
an article level within the time frame of the project was deemed impossible, leaving
buyer-family level as the most granular option that is still reasonable.

Secondly, similar inventory behavior can be reasonably expected from articles within
the same buyer and family categorization. Articles are categorized into approximately
20 buyers, 90 families and 320 buyer-family combinations across all three sections.
Buyer categorization indicates natural divisions between styles of clothing (e.g. basic
vs. athletic) and do not span across sections, with each buyer having their own designs
and suppliers. On the other hand, family categorization is used to distinguish between
types of clothing (e.g. t-shirts vs. pants). Although the same family of products may
come from different buyers, they tend to share similarities in demand profiles, such as
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seasonality.

Thirdly, the simulation requires quantification of sales and returns forecast accuracy
and inherent stochasticity in sales and returns, which are calculated from historical
data. With 300+ buyer-family combinations, the majority of which having little daily
volume for a single store, collecting enough data for such quantification is already
challenging. In fact, a volume cutoff threshold was already applied to each buyer-family
for each store, to ensure data availability. Therefore, disaggregating the modeling
beyond buyer-family levels would only be a disservice to the simulation fidelity.

Additionally, a 4-week horizon is also chosen because it strikes the balance between
providing medium term insights that are currently unavailable, and keeping the
simulation tractable. Depending on the store, it may receive 2-6 shipments a week,
and shipment decisions are made one at a time, the night before the shipment, based
on the latest information up to that point. Therefore, store managers don’t typically
have insights into store capacity more than one week in advance, or sometimes even a
few days. A 4-week window would provide a view into the medium term future that
is not currently available.

On the other hand, building simulations of much longer time horizon can also be
problematic. There are two campaigns each year, interspersed with end of campaign
sales, promotions and holiday sales throughout the year. “Steady state” operations
within a year typically only span two 3-month periods, one starting in March and the
other in September. Any simulation on the order of 3 months or longer would have
to take into account the complicated dynamics of changing consumer behaviors and
corresponding operational responses due to sales and promotions, which are not the
main focuses of the project.

Lastly and most importantly, a forward-looking simulation requires some understanding
of future sales and returns, which are modeled by demand forecasts in this case.
Existing sales and returns forecasts of helpful granularity are only 7-weeks forward-
looking. Therefore, any simulation longer than 7 weeks would require extrapolating
the forecasts beyond what is currently available.
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3.1 Building the Monte Carlo model

The store aggregate inventory simulation takes the expected volume in and out flows
and returns the daily store inventory level over 4-weeks. It is a Monte Carlo based
model that derives its stochasticity from sales and returns uncertainty.

3.1.1 Literature review of Monte Carlo simulations

In essence, a Monte Carlo simulation is a “mathematical model that simulates a
real system”, where “a large number of random sampling of the model is applied,
yielding a large number of random samples of output results from the model” [16].
First adopted by scientists working on the Manhattan project, the method was used
to study systems where “input variables, and a series of algorithms that were too
complicated to analytically solve” [16]. With “authentic” algorithms and the proper
“choice of input probability distributions”, a Monte Carlo simulation can inform the
distribution of outcomes, including the average and the range [16].

In the context of inventory management, Monte Carlo methods are typically applied
to model how system-wide behaviors can be optimized in the presence of probabilistic
inputs: Brits and Bekker 2016 uses the Monte Carlo method to introduce stochastic
behavior in power generation and calculates the corresponding optimal coal stockpile
inventory [2]; Montororing and Widyantoro 2022 uses stochastic demand generated
from Monte Carlo methods to identify optimal supermarket inventory with consid-
erations of competitors and in-store stimulus strategies [13]; Mansur, Mar’ah, and
Amalia 2020 examines the optimal inventory replenishment policies for blood used
for transfusion, given demand for blood simulated using Monte Carlo methods [12]
(For more examples of similar work, see Widyadana, Tanudireja and Teng 2017 [18],
Baharom and Hamzah 2018 [1]).

For the aforementioned research in inventory management, the value of Monte Carlo
methods lies in the fact that they can convert variables with analytical distributions
into sets of physical numbers, which can then be optimized over numerically. In
contrast, this project does not have an optimization component. Instead, the value of
Monte Carlo methods is in the range of outcomes. If an inventory simulation is built
deterministically, the outcome will be singular, which allow any insight into neither the
potential inventory variations from uncertainty in customer behaviors, nor the potential
correlations between the stochasticities across categories of products. This information
can be valuable, as capacity and inventory planning does not typically focus on the
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mean outcome, but also the upper and lower estimates. Therefore, despite the vast
literature on Monte Carlo simulations, particularly concerning inventory management,
this project is unique in the sense that Monte Carlo methods are deployed for very
different reasons. Although the fundamentals of quantifying, modeling and sampling
stochasticities are still applicable, many of the difficulties encountered here are specific
to the project, and do have tend of have parallels in most academic literature concerning
Monte Carlo simulations in the context of inventory management.

3.1.2 Reshaping sales and returns forecast

The customer demand input of the Monte Carlo model hinges on forecasts, because
the tool is designed to be forward-looking. As mentioned in Section 2.2, sales and
returns forecasts are provided on section levels and include products beyond clothing.
However, the project is solely focused on clothes and the simulation model is built
on buyer-family levels. To bridge the differences, historical sales and returns actuals
are leveraged to allocate sales and returns forecasts to the right granularity. First, a
specific time period is chosen, from which historical sales and returns data is pulled
for all the product categories that the forecasts include. The historical time period
examined should have similar sales and returns volume breakdowns as the simulation
period, as they can be quite different depending on the season. Then sales and returns
for each buyer-family combination, as a percent of total sales and returns from the
historical period, are calculated, and applied to the sales and returns forecasts to get
to buyer-family level forecasts.

3.1.3 Quantifying sales and returns accuracy and weekly de-

mand stochasticity

Weekly buyer-family level sales and returns forecasts are compared to historical actuals
to calculate weekly forecast accuracy and demand stochasticity.

Percent differences between forecasts and actuals are first calculated on a weekly
aggregate level and normal functions are fitted to the distribution of weekly percent
differences over a time period. The means of the normal fits give us the systematic
bias of the weekly forecast and the standard deviations give us the weekly stochasticity
of demand. An example is included in Figure 3-1 for a specific buyer-family in a
specific store over a 3-5 month period. Normal functions are able to roughly capture
the mean and standard deviations of the distribution.
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The Monte Carlo incorporates two types of sales and returns stochasticity, one for
the weekly aggregate total, and the other for each day within the week, the latter of
which will be discussed in Section 3.1.4.

Figure 3-1: Histogram of weekly sales (left) and returns (right) % difference between
forecast and actuals for a specific buyer-family in a specific store over a 3-5 month
period with normal distribution fit. Both histograms and normal fits are density
functions with area normalized to 1.

3.1.4 Calculating day of week sales and returns proportions

and stochasticity

Sales and returns forecasts are provided daily, but are aggregated to weekly level
before stochastically disaggregating to each day of the simulation. First, a historical
time period is chosen when volume for each day of week as a percent of volume
on an average day of that specific week is calculated for each week. Averages of
the calculated percentages are taken across weeks to calculate average day of week
sales and returns proportions, which are used to disaggregate the weekly total. The
approach to calculate stochasticity is similar to that in Section 3.1.3. Volume on each
day of week as a percent of volume on an average day of that specific week is calculated
and collected across days and weeks. Subsequently, percent differences with regards
to the average of the collected distribution are calculated, to which normal functions
are fitted. The standard deviations of the normal fits provide a quantification of
stochasticity for each day of week. As an example, if Saturday sales are on average
150% of an average day of sales for the week, there may be some Saturdays at 165%
and some at 135%. These percentages are subtracted and divided by the average of
150% to get a percent difference, such as +10% and -10%. The standard deviation
of this percent difference distribution, collected across not just all Saturdays, but all
days of weeks, quantifies the magnitude of stochasticity for each day of week, across
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various weeks. An example of such a distribution is shown in Figure 3-2. Note that
unlike in Figure 3-1, this distribution is centered around 0 by design, and hence the
mean is not of particular interest.

Figure 3-2: Histogram of day of week sales (left) and returns (right) % difference
between each week and the average across weeks for a specific buyer-family in a specific
store over a 6 month period. Histograms are density functions with area normalized
to 1.

Finally in conjunction with weekly demand stochasticity, we now have a way to
introduce stochasticity to each day of the Monte Carlo simulation. Each simulation
trial will sample randomly in both the weekly and day of week normal distributions
and generate different sales and returns profiles that mimic historical uncertainty in
demand.

3.1.5 Quantify sales and returns covariance between buyer-

family combinations

One way to build the simulation bottoms-up from buyer-family levels is to treat each
buyer-family as its own independent mini-model with no correlation, which is implicitly
assumed in the normal function fit approaches described in Section 3.1.3 and 3.1.4.
However, buyer-family independence is not entirely realistic, as there are often demand
correlations between them. For instance, if someone buys a pair of jeans, chances are
they might also buy a denim jacket to go with the jeans. Article level quantification
of this correlation is an incredibly difficult task, since new articles are introduced
frequently and understanding the behavior of these new articles without historical
data is non-trivial. Fortunately, this simulation model is built on buyer-family levels
and it can be reasonably assumed that historical inter-buyer-family correlations will
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hold in the future.

To quantify the correlations, a total of four covariance matrices are calculated: sales
weekly aggregate, sales day of week, returns weekly aggregate, and returns day of
week, corresponding to each type of stochasticity described in Section 3.1.3 and 3.1.4.
The diagonals of the matrices are expected to give us the variance, consistent with the
standard deviations of the normal function fits (due to the equivalence of ordinary least
square approach maximum likelihood estimation approach for normal functions). The
off-diagonals of the matrices are expected give us the covariance, which quantify the
correlations of stochasticity between various buyer-family combinations. By allowing
the Monte Carlo model to sample from the multi-normal distributions with calculated
covariance matrices, inter-buyer-family correlation can be simulated and is expected
to lend more fidelity to the model.

The simulation model is test both with and without multi-normal sampling using
covariance matrices and the comparison of outcomes is discussed in Section 3.3.

3.1.6 Setting up shipment and backstock inputs

Balancing upstream and downstream movements

The simplest approach to model upstream movement is to assume that backstock is
zero and shipment volume is equal to the expected weekly net downstream movements.
By balancing upstream and downstream movements this way, inventory is expected
to stay flat on a weekly basis.

Assuming that a store receives two shipments per week on CD1 shipment model on
Mondays and Thursdays, each shipment needs to cover the expected net downstream
movements before the next shipment comes. Therefore, the Monday shipments should
account for the net downstream movements on Mondays, Tuesdays and Wednesdays
(cycle 2), and the Thursday shipments for Thursdays, Fridays, Saturdays and Sundays
(cycle 1). By looking at the proportions of the expected net downstream movements
of cycle 1 and 2, weekly shipment volume can be broken down into volumes for
the two weekly shipments. This approach to set up shipment and backstock inputs,
perhaps simplistic, is the foundation for the simulation model and more complicated
mechanisms are incrementally built on top of it.
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Inventory build-up and depletion trends

Inventory on buyer-family levels may demonstrate strong seasonal trends. For example,
shorts are generally sold in the summer, not in the winter, and inventory can be
observed increasing around March and April each year. Therefore, to inform shipment
volume for the forward-looking inventory simulation, we hope to extract weekly
historical inventory build-up and depletion trends, preferably from the same time
period of the previous year (e.g. simulation intended for March of 2023, historical
inventory trends extracted from March of 2022). Inventory trends are also particularly
important for the quantitative evaluation of the model, as the outputs are compared to
actuals from historical periods to calculate accuracy metrics. If the model is unable to
capture general inventory trends, the accuracy metrics would not be helpful. A number
of different methods were tested to extrapolate historical inventory trends.

First, a regression based approach using data from the prior year is tested. Despite
averaging over days of the week, weekly historical inventory data still tends to be
noisy due to delayed shipments, promotions, and inherent unpredictability in demand,
especially on buyer-family levels. Therefore, instead of simply subtracting the starting
inventory from the ending inventory of a similar time period the year prior to the
simulation period, a single variable linear regression is applied to each buyer-family
to calculate on average how much the inventory increases or decreases on a weekly
basis. From there, weekly inventory differences are divided by the average weekly
downstream movements (sales minus returns) of the same historical time period to
arrive at the parameter for inventory build-up and depletion trends.

There is no guarantee that historical inventory trends from a similar time period in the
prior year will produce accurate the results from the simulation period. Therefore, an
additional approach is tested using the same linear regression analysis but performed
on the actual simulation period. Although not helpful for forward-looking simulation
time horizons, this approach may allow us to better quantitatively evaluate the model
accuracy. Lastly, it is possible that weekly inventory build-up and depletion trends
are inherently too noisy on buyer-family levels for linear regressions to yield accurate
results. An option is also included in the model to manually input inventory build-up
and depletion trends, which are set to be the exact linear extrapolation of the beginning
and ending inventory of the actual 4-week simulation period. Again, this approach is
also not possible for forward-looking simulations, but may be helpful when calculating
accuracy metrics and quantitatively evaluating the model.
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Shipment and backstock balance

In actual store operations, twice as week shipments are not meant to only cover the
expected amount of sales until the arrival of the next shipment, especially given that
each article is unique and not exactly substitutable. Instead, backstocks are sent
accordingly to adjust for capacity and deplete articles that are not longer needed
in stores. Functionally, this makes total business sense if done carefully without
impacting capacity, as the cost of not having products in stock is almost always higher
than the cost of having to move extra inventory to and from the store, given demand
uncertainty. Therefore, the simple assumption that backstock is zero and shipment
volume matches net downstream movement is almost certainly simplistic.

It is very difficult to tell exactly how each store should balance shipments and
backstocks, as it is an ongoing area of improvement for the business. Therefore, rather
than fixing the model to any pre-calculated value, a functionality is built in, where the
amount of backstock can be adjusted manually. It is set up such that shipment volume
can be manually increased by a given percentage, and the total increased amount for
the week is even split between each day of the week as backstocks. This way, net
upstream movement is conserved, and the shipment and backstock balance mechanism
effectively makes the day of week inventory “spikier” by inflating the volume of each
shipment.

CD2 replenishment

As discussed in Section 1.2, understanding the impact of CD2 replenishment is one of
the key objectives of the simulation model.

To simulate store shipments under a CD2 replenishment model, one must first under-
stand how much volume comes from CD2 versus CD1, if a store is connected to a
CD2, which largely depends on how much volume to the store is replenishment for
existing products and shipment for new products. This quantity can be calculated from
historical data, by looking at the type of origin warehouses of all product shipments
for stores connected to a CD2 over a specified time period. The calculated proportions
can be applied to the simulation to determine how much weekly shipment volume
should come from CD1 versus CD2.

From this point, the allocation logic of weekly to daily volume remains exactly the
same. CD1 weekly volume is allocated to Monday and Thursday, based on the

41



proportions of the expected net downstream movements of cycle 1 and 2. CD2 weekly
volume is allocated to each day, based on based on the proportions of the expected
net downstream movements of every day of week. The logic of setting up CD2
replenishment is illustrated in Figured 3-3.

Figure 3-3: Illustration of CD2 replenishment logic

3.1.7 Shipment and backstock adjustment mechanism

One of the key challenges of building a stochastic store simulation is that there is an
inherent and unavoidable misalignment in the decision timings between the simulation
and reality. Suppose a store gets shipments twice a week. In reality, the volume of the
shipments will be determined based on real-time inventory and sales (forecast) data
twice a week, right before each shipment. If the sales have been higher and inventory
has depleted more than expected, the warehouses would send a little more in the next
shipment and vice versa. Recreating such a decision process exactly is obviously not
possible for a simulation that requires 4 weeks of shipment and backstock volume
up front as inputs. However, if the shipment and backstock volume inputs are used
verbatim, the stochasticity in the sales and returns compounds over time and results
in the Monte Carlo range of the inventory level continuously increasing further into
the simulation. Such an outcome can be observed in the 6th column of Figure 3-7,
where stochasticity is allowed to impact inventory freely.

To properly simulate upstream decision-making, a shipment and backstock adjustment
mechanism is introduced. The mechanism looks at the inventory on Wednesday and
Saturday (when shipment decisions for Thursday and Monday are made), calculates
the difference versus a baseline value, and applies the difference multiplied by an
adjustment coefficient to the following Thursday or Monday, either as extra shipment
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or backstock volume. For example, if inventory is at 1000 on Wednesday, but the
baseline is 1100, and the adjustment coefficient is set to be -0.5, an extra 50 units
will be added to the Thursday shipment. The adjustments are applied twice a week,
resulting in a total of 7 adjustments over the 4-week simulation horizon (not needed
for the first Monday, since the simulation starts on a Sunday).

For the inventory adjustment to function well, the values of baseline inventory and
adjustment coefficient need to be carefully calibrated, yet both of them are parameters
introduced for the simulation and do not have operational equivalences. For the
baseline inventory, a straight-line is extrapolated from the starting inventory of the
simulation (at the end of Sunday) by buyer-family combination and the expected
ending inventory from the inventory trends (assuming no stochasticity). This way, as
the simulation progresses, the baseline inventory can increase and decrease accordingly.
Similarly, the baseline inventory for the Wednesday/Thursday adjustment is set to
be the average of the preceding and following Saturday/Monday adjustment. For
the inventory adjustment coefficient, historical inventory and sales forecast data is
examined. If actual shipment quantity tends to be higher if inventory is low and
sales forecast is high, one might be able to quantify this trend by looking at their
historical correlations. Linear regressions are run using historical shipments and the
corresponding RFID inventory and VMP (see Section 2.2 for details) on the days when
the shipment decisions are made. Of course, it is unclear whether historical calculations
will yield sensible results, as data tends to be noisy, especially on buyer-family levels.
Options to manually input values for the inventory adjustment coefficient are built
into the simulation as well.

3.1.8 Defining minimum and maximum inventory level

Due to the stochasticity introduced in sales and returns, it is possible for inventory
for each buyer-family combination to be unrealistically high or low in each Monte
Carlo trial (e.g. below 0). Therefore, inventory guardrails are necessary in the
simulation.

Dramatic inventory level fluctuation can be observed for each buyer-family over time,
due to seasonalities, business cycles, operational changes, and shifts in consumer
preferences, which make it difficult to predict what the min and max inventory can
be. As a result, an empirical approach is taken, where inventory min and max are
calculated as the inventory of the day with the (2nd percentile) lowest inventory and
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the (100th percentile) highest inventory, for the days when inventory data for that
buyer-family is available (barring data noises).

Nonetheless, the empirical approach can still be problematic for inventory max. In
Figure 3-4, inventory level for a specific buyer-family for a specific store is shown
from January 2022 to June 2023. If the simulation is run for March/April of 2023,
the starting inventory level would be higher than the highest level of inventory on
all of 2022, implying that the empirically calculated inventory max will artificially
suppress the inventory and interfere with the simulation. Unfortunately, this is a
fundamental limitation of the approach. It implicitly assumes that future inventory
levels are similar to historical levels, which is true for the most part, but exceptions
are certainly not uncommon. Therefore, the model is set up in such a way that the
max works as a soft cap, meaning inventory can still go above the max, but backstocks
are added each day, proportional (one-third) to the amount the simulated inventory
exceeds the empirical inventory max. Additionally, inventory max is not enforced
when starting or expected ending simulation inventory is above a certain percent of
the empirically calculated max. In Section 3.3.2, results from different enforcement
thresholds of the inventory max are contrasted to explore the quantitative impact on
simulation accuracy.

Figure 3-4: RFID inventory for a specific buyer-family in a specific store from January
2022 to June 2023

3.1.9 Calculating store and section capacity and utilization

Store capacity, in units of number of articles, is already modeled by Zara. It is
disaggregated into display inventory (hanging only), stock room hanging inventory
and stock room folding inventory. Furthermore, capacity is a dynamic quantity that
is adjusted based on the estimated product bulkiness (e.g. coats are bulkier than
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t-shirts) and the racking and staging of the rooms. Fortunately, capacity is a relatively
stable quantity within the same season, and a simple average can be taken across a
historical time period representative of the simulation period.

To convert store inventory level to utilization, it is necessary to know how much of each
buyer-family is folding or hanging. Each article is designated either folding or hanging
in the article master. Combined with the historical mix of article level inventory in
store, the percent of volume in each buyer-family that is folding versus hanging can
be inferred.

3.2 Qualitative evaluation

To understand whether the model mechanisms are performing as expected, a series of
simulations are run with varying parameters.

First and foremost, Figure 3-5 and 3-6 provide a comparison of daily simulated and
actual sales and returns volume for a specific store over a select simulation time
horizon. The blue lines indicate historical actual sales and returns, the various lines in
the background indicate outcomes from 50 Monte Carlo trials, while the orange line
indicates the average of the Monte Carlo trials. The spikiness results from demand
fluctuation over the days of week, as well as store closure on Sundays. The simulated
trials are based on sales and returns forecasts, with stochasticity introduced using
parameters calculated historically. One would expect actual sales and returns to
generally agree with the simulation averages with little systematic biases, and largely
fall within the range of outcomes of the various Monte Carlo trials, which is exactly
what is observed for sales. The observation is less true for returns, which is not
surprising given that returns forecasting is more difficult due to higher stochasticity.
But given that sales volume is an order of magnitude higher, slight inaccuracies in
returns are not expected to impact model fidelity materially.

Following the verification that the stochastically simulated sales and returns are
generally accurate, Figure 3-7 includes a series of simulation inventory outputs for
two selected buyer-family combinations (both within section 1) and section 1 (women)
total for a specific store with varying forms of stochasticity included. Buyer-family
combination A and B are intentionally chosen as examples with relatively low and high
stochasticity. The x-axes represent days of simulation, y-axes inventory level and lines
with different colors correspond to different trials of Monte Carlo simulation. A total of
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Figure 3-5: Comparison of daily simulated and actual sales volume

Figure 3-6: Comparison of daily simulated and actual returns volume

50 Monte Carlo trials are run for each scenario. Also note that all upstream movement
and inventory adjustment mechanisms are disabled, meaning the inputted shipment and
backstock volume is used verbatim and the store inventory is allowed to evolve freely
without any bounds. Lastly, inventory trend is set to be zero, meaning net upstream
movements are balanced with the expected net downstream movements.

Starting from the no stochasticity scenario in the 1st column, all Monte Carlo trials
converge, as the model becomes fully deterministic with all stochasticity set to zero.
Additionally, inventory remains flat over the course of 4 weeks (day 0 vs. day 7, 14,
21, 28) with spikes over the course of weeks from the two weekly shipments. It is also
interesting to note that day of week variation in week 3 and 4 is higher than in week 1
and 2, despite inventory trend being set to flat. This is due to higher demand forecast
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for week 3 and 4, resulting in bigger shipment volumes during the weeks.

In the 2nd and 3rd column, sales stochasticity is introduced, one with just weekly and
the other with just day of week. Weekly stochasticity is expected to impact weekly
aggregate sales, while day of week is expected to impact individual days within each
week. The difference is evident for buyer-family A. With just weekly stochasticity,
the day of week spikiness is maintained and the differences between Monte Carlo
trials stem from the spiky “shapes” shifting up and down for each week. In contrast,
the day of week spikiness demonstrates very different shapes across Monte Carlo
trials with day of week stochasticity introduced. Similar results can be observed in
buyer-family combination B and section 1 total, but not as clearly. Buyer-family B
has high sales stochasticity compared to its mean, implying that the stochasticity
tends to dominate the day of week spikiness. Section 1 total includes a variety of
buyer-family combinations, which are currently assumed to be independent from each
other (covariance is not included) and the same observations are more difficult when
patterns aggregated.

In the 4th and 5th column, similar stochasticity is introduced but for returns only, and
the same observations still hold. It is worth noting that the magnitude of variations
between Monte Carlo trials dramatically decreases, because the magnitude of returns
is much smaller than sales and therefore impacts a smaller fraction of downstream
volume. Finally in the 6th column, all stochasticities are combined to generate the
daily inventory level over the 4-week simulation horizon. It is fair to say that the
model has behaved as expected so far, thus instilling confidence that it is working as
intended.

Problems arise from the simulation, if the stochasticity is allowed to impact store
inventory freely, as discussed in Section 3.1.7 and 3.1.8. Therefore, a number of
upstream movement and inventory control mechanisms are introduced and their
impacts are visualized in Figure 3-8.

Starting from the 1st column, which is the same as the 6th column of Figure 3-7,
inventory adjustment mechanism as described in Section 3.1.7 is introduced in the 2nd
and 3rd column with two levels of strength. With an adjustment coefficient of -0.5,
half of the deviation from the expected baseline is added to the next shipment, while
with -1, all of the deviation is added. Upon first glance at the inventory time series, it
is clear that the range of Monte Carlo outcomes has been significantly tightened with
the introduction of inventory adjustment mechanism. For instance, the range of the
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Figure 3-7: Impact of various stochasticities on two buyer-family combinations (within
section 1) and section 1 (women) total for a specific store; upstream movement and
inventory adjustment mechanisms disabled and inventory trend set to be flat

Figure 3-8: Impact of various upstream movement and inventory control mechanisms
over the simulation period on two buyer-family combinations (within section 1) and
section 1 (women) total for a specific store

charts for section 1 total decreased from 15,000-45,000 to 22,500-42,500. Comparing
the 2nd and 3rd column, increasing the strength of the inventory adjustment to -1 can
still tighten the bound, but the impact is much smaller. The diminishing return is not
surprising, given the stochastic nature of the simulation and day of week inventory
variations.

The 4th column applies the inventory minimum and maximum to the simulation, as
described in Section 3.1.8. Buyer-family A is not impacted, because the thresholds
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are not reached (chart still looks different because each Monte Carlo trial is unique),
but buyer-family combination B is clearly bounded. Instead of containing negative
inventory, the lower limit is capped at around 10 units. The same impact on the lower
bound can also be observed in section 1 total. On the other hand, the impact on the
upper bound is somewhat limited. This is because the upper bound is only selectively
enforced and as a soft cap, as discussed in Section 3.1.8.

The 5th column applies a calculated inventory trend to the simulation. The trend is
relatively flat for buyer-family combination A, negative for B and overall positive for
section 1 total. Finally, the 6th column combines the inventory adjustment coefficient at
-0.5, inventory min and max, and an inventory trend, along with all the stochasticities.
With all these mechanisms, the model is able to not only introduce stochasicity based
on historical buyer-family level behavior, but also control the stochasticity such that
the inventory does not freely evolve to reflect operational realities.

Lastly, Figure 3-9 visualizes the impact of shipment and backstock balance, CD2
shipments and covariance, on top of the mechanisms already discussed. With shipment
and backstock balance at 1.3 in the 2nd column (meaning shipment volume is 30%
more than before and net weekly upstream volume stays the same), variations within
the weeks are increased. With daily shipments from CD2 in the 3rd column, variations
within the weeks are decreased for each Monte Carlo trial as the volume of the two
weekly CD1 shipments is spread throughout the week. With the incorporation of
covariance between buyer-family combinations, individual buyer-family inventory is
not impacted but the section aggregate spans a wider range. Without covariance,
combining independent stochasticities of each individual buyer-family allows them
to cancel each other out. When each buyer-family is not independent, the effect of
stochasticities cancelling out from aggregating is reduced, resulting in bigger ranges in
the Monte Carlo outcomes.

In conclusion, the qualitative evaluations provide visual verification of the various
mechanisms built into the Monte Carlo simulation model. The outcomes have been
fully consistent with expectation, thus suggesting that the model has been properly
formulated.
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Figure 3-9: Impact of shipment and backstock balance, CD2 shipments and covariance
on two buyer-family combinations (within section 1) and section 1 (women) total for
a specific store

3.3 Quantitative evaluation

3.3.1 Defining simulation accuracy metrics

By running the Monte Carlo simulation on historical time periods and comparing the
results to historical actuals, accuracy metrics can be calculated. That said, precautions
need to be taken to carefully define the accuracy metrics. The Monte Carlo outputs
are given by Monte Carlo trials, by days, and by buyer-family combinations. The
method and order of operations in which they are aggregated as summary accuracy
metrics can lead to dramatically different conclusions. For instance, the store total of
the 75th percentile Monte Carlo outcome is very different from the 75th percentile
Monte Carlo outcome of the store total, because the former aggregates the Monte
Carlo variations across each buyer-family combination, while the latter allows the
variations to cancel each other first within each trial by aggregating them to the store
level.

Therefore, for the sake of consistency and clarity throughout the project, five custom
accuracy metrics are defined:

• Daily % mean absolute difference (MAD), for each buyer-family combination,
section total and store total: calculate the Monte Carlo median by buyer-family
combination by day; aggregate by section and store; find the absolute differences
between the Monte Carlo median and historical actuals; aggregate the absolute
differences across days (e.g. week 1, all 4 weeks); divide the aggregated absolute
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differences by the aggregated historical actuals over the same time period

• Weekly % mean absolute difference (MAD), for each buyer-family combination,
section total and store total: calculate the Monte Carlo median by buyer-family
combination by day; aggregate across days to week level; aggregate by section
and store; find the absolute differences between the Monte Carlo median and
historical weekly actuals; [optional] aggregate the absolute differences across
weeks (e.g. all 4 weeks); divide the aggregated absolute differences by the
(aggregated) historical actuals over the same time period

• Daily % mean difference (MD), for each buyer-family combination, section total
and store total: calculate the Monte Carlo median buyer-family combination by
day; aggregate by section and store; find the differences between Monte Carlo
median and historical actuals; aggregate the differences across days (e.g. week
1, all 4 weeks); divide the aggregated differences by the aggregated historical
actuals over the same time period

• Days out of Monte Carlo estimate range, for each buyer-family combination,
section total and store total: aggregate by section and store; calculate the Monte
Carlo upper estimate (75th percentile) and lower estimate (25th percentile) by
buyer-family combination by day; count the number of days historical actuals
are outside the range given by the upper and lower estimate on each day, over
selected time periods (e.g. week 1, all 4 weeks)

• Monte Carlo estimate range size as % of median, for each buyer-family com-
bination, section total and store total: calculate the Monte Carlo median by
buyer-family combination by day; aggregate by section and store; calculate
the Monte Carlo upper estimate (75th percentile) and lower estimate (25th
percentile) by buyer-family combination by day; calculate the daily upper minus
lower estimate range size; aggregate the range size across selected time periods
(e.g. week 1, all 4 weeks); divide the aggregated range size by the aggregated
median over the same time period

The first two MAD metrics are designed to examine the magnitude of deviation of the
Monte Carlo median from historical actuals. Daily % MAD, as the name suggests,
tells us on how many percent off is the simulation from actuals on an average day.
This metric can be arbitrarily high and can be as low as 0, with lower values indicating
higher accuracy. Note that daily % MAD is expected to be smaller on section and store
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levels, compared to buyer-family levels. While individual buyer-family combinations
can experience significant inaccuracies, aggregating them to store or section levels
before calculating the absolute difference with historical actuals is expected to cancel
out some of the fluctuations, hence stabilizing aggregated metrics. Weekly % MAD
adopts the same concept, except that the comparison between Monte Carlo median
and historical actuals takes place on weekly aggregate levels. Similar to the logic of
aggregating buyer-family combinations to sections and stores, aggregating from day
to week is expected to offset fluctuations between days and result in slightly smaller
weekly % MAD values compared to daily % MAD.

The third metric, daily % MD, is designed to examine the systematic bias of the
Monte Carlo median versus historical actuals. The calculation is exactly the same
as daily % MD, except that the absolute value of the differences is not taken. This
metric can be arbitrarily low or high, with proximity to 0 indicating lower systematic
biases.

The last two metrics are designed to provide insights into the possible ranges of
outcome from the Monte Carlo simulation, as it is difficult to predict inventory level
precisely, given downstream stochasticity. It is crucial to stress that the upper and
lower estimates here do not have statistical significances like confidence intervals. They
can be higher or lower, depending on precise metrics definitions, or model mechanisms.
However, by defining those ranges, we have a way to systematically compare models
with different configurations and parameters, as well as gaining insight into how
historical data may differ from the simulation. For days out of estimate range, the
maximum over the course of 4 weeks is 28 and the minimum is 0. Nonetheless, days
out of estimate range in a vacuum is not a helpful metric, as larger ranges naturally
lead to fewer days out of range. Therefore, Monte Carlo estimate range size as %
of median is introduced as the final metric, and the insights lie in the balance of
days out of range and range size. A very important distinction between these two
metrics compared to the first three is the order in which buyer-family level data is
aggregated for the upper and lower estimate. Specifically, buyer-family level data here
is aggregated first to section and store totals for each Monte Carlo trial, before taking
the 75th or 25th percentile. This order is deliberately chosen for two reasons. First,
the estimate range is much smaller than if the order is reversed, because the Monte
Carlo variations of each buyer-family combination are allowed to cancel each other
out first instead of completely stacked on top of each other. Second, this method
of aggregation allows section and store totals to be susceptible to the incorporation
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of covariance. If each buyer-family is treated independently with upper and lower
estimates taken before aggregation, the correlation introduced with covariance would
be pointless.

Following the same logic, one might wonder why should the Monte Carlo median be
taken before aggregating to section and store totals. With an arbitrarily large number
of buyer-family combinations and Monte Carlo trials, the aggregation order for the
median should not matter. However, with fewer than 100 buyer-family combinations
simulated per store and a few dozen trials per simulation, the section and store
totals of each Monte Carlo trial can carry varying levels of randomness over a large
range, and taking the median across limited Monte Carlo trials can yield higher MAD.
Instead, each buyer-family combination has much smaller range variation and taking
the median first before aggregating to section and store levels ensures more consistent
results and lower MAD.

3.3.2 Accuracy metric results

Equipped with precise definitions of accuracy metrics, the simulation model is run
with various parameters to understand what combinations of model parameters result
in the most desirable accuracy metric results.

Inventory trend options

Section 3.1.6 discussed three options to set up inventory build-up and depletion
trends. Option 1 is a regression based approach using data from one year prior to the
simulation period. Option 2 is the same regression based approach using data from
the simulation period. Option 3 is based on linear extrapolations using the actual
beginning and ending inventory of the simulation period. The daily % MAD and MD
for the three inventory trend options are presented in Figure 3-10 as 1A, 1B and 1C.
The accuracy metrics very clearly point to the inadequacy of the regression based
approach. Significant systematic biases (MD > 10% for section and store totals) can
be observed for 1A and 1B, while 1C shows very small MD and much lower MAD.
This result suggests that buyer-family level inventory build-up and depletion trends
are inherently very noisy from week to week and therefore any pattern extracted using
regressions has little predictive power. Therefore, trying to reproduce the inventory
trends of a time period using observations from prior (or even slightly different) time
periods has proven to be difficult. That said, this inability is not a fundamental issue
for the simulation tool. At the end of the day, the goal of the tool is to produce sensible
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inventory results with known upstream and downstream inputs, rather than predicting
inventory trends itself. If the tool can accurately reproduce inventory levels given
beginning and ending inventory over the simulation period, it can still be effective. To
simulate future time periods when the beginning and ending inventory is not known,
the user would simply have to rely on their domain knowledge.

Figure 3-10: Daily % MAD and MD for various inventory trend options for a 4-week
simulation period for a specific store; 1A: regression inventory trends from previous year,
1B: regression inventory trends from simulation period, 1C: linear extrapolation using
beginning and ending inventory from the simulation period; all inventory adjustment
mechanisms turned off except for inventory minimum and maximum; background dots
indicate individual buyer-family combinations

Shipment adjustment options

Section 3.1.7 discussed the various options to set up inventory adjustment coefficients,
either through historical calculations or manual inputs. Figure 3-11, 3-12 and 3-13
explore how these options impact our defined accuracy metrics.

Figure 3-11 shows that daily median MAD and MD do not vary significantly based
on how the inventory adjustment is set up, nor should it. Because the inventory
adjustment does not have any systematic upward or downward impact, the median
remains unaffected when adjustments of varying levels are introduced. As a result, no
significant difference in MAD or MD is observed across different simulations in Figure
3-11.

The same observation cannot be generalized to the upper and lower inventory estimate.
As illustrated in Figure 3-11, inventory adjustments is effective at tightening the
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Figure 3-11: Daily % MAD and MD for various inventory adjustment options for
a 4-week simulation period for a specific store; 2A/2B/2C: inventory adjustment at
0.5x/1x/1.5x of historically calculated value, 2D/2E/2F/2G/2H/2I/2J/2K: inventory
adjustment at -0.1/-0.25/-0.4/-0.5/-0.6/-0.7/-0.8/-1; inventory trend using the actual
beginning and ending inventory of the simulation period; inventory minimum and
maximum included; background dots indicate individual buyer-family combinations

Figure 3-12: Days out of estimate range and estimate range size for various in-
ventory adjustment options for a 4-week simulation period for a specific store;
2A/2B/2C: inventory adjustment at 0.5x/1x/1.5x of historically calculated value,
2D/2E/2F/2G/2H/2I/2J/2K: inventory adjustment at -0.1/-0.25/-0.4/-0.5/-0.6/-0.7/-
0.8/-1; inventory trend using the actual beginning and ending inventory of the simula-
tion period; inventory minimum and maximum included; background dots indicate
individual buyer-family combinations
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range of Monte Carlo trials further into the simulation horizon. Therefore, as the the
strength of the inventory adjustment is increased (i.e. from -0.1 to -1), it is expected
that the Monte Carlo estimate ranges would decrease as well, providing more precision
to the estimates. The right hand side of Figure 3-12 shows exactly that. Nonetheless,
the size of the estimate range in isolation is not a meaningful metric, as the size
can be arbitrarily reduced by reducing the model stochasticity. It is only relevant
in conjunction with days out of estimate range. The ideal model parameters should
hopefully reduce the size of the estimate range without increasing days out of estimate
range. Upon examination of the left hand side of Figure 3-12, days out of estimate
range seems to increase as the estimate range gets smaller. To more systematically
evaluate the trade-off, days out of estimate range and estimate range size are plotted
against each other in Figure 3-13.

Figure 3-13: Days out of estimate range and estimate range size trade-off for various
inventory adjustment options for a 4-week simulation period for a specific store;
2A/2B/2C: inventory adjustment at 0.5x/1x/1.5x of historically calculated value,
2D/2E/2F/2G/2H/2I/2J/2K: inventory adjustment at -0.1/-0.25/-0.4/-0.5/-0.6/-0.7/-
0.8/-1; same parameters as Figure 3-12

Overall, we see that days out of estimate range and estimate range size largely go hand
in hand with each other. As one increases, the other decreases accordingly, without a
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particular level of inventory adjustment outperforming the rest on both fronts. This
is interesting as it suggests that manually inputted inventory adjustment coefficients
perform just as well as those set to historical calculated values (2B). Thus, for the
sake of simplicity, it is recommended that the model adopts manually inputted values.
As to which manually input value to use, because there isn’t a particular one that
stands out, the choice becomes a subjective matter of balance, rather than optimality.
For the rest of the project, inventory adjustment coefficient of -0.5 (2G in Figure 3-13)
is selected as the default going forward.

Inventory max options

Section 3.1.8 discussed the difficulty of empirically defining a maximum inventory level,
as past inventory levels aren’t always indicative of the future. Nevertheless, the need
to define a inventory max can still be theoretically important, because the enforcement
of inventory minimum alone may cause some systematic biases in the simulation due
to the asymmetries of inventory bounds. Figure 3-14 examines inventory maximum
of varying restrictiveness, and compares their respective accuracy results. We see
that both MAD and MD are practically unaffected regardless of the restrictiveness
of inventory maximum. Intuitively, only a subset of buyer-family combinations will
be noticeably impacted by the inventory maximum. Even if they are, only the ones
deviating much higher than the median will be impacted directly. In this case, the
level of impact is not enough to noticeably affect the median, and thus accuracy
metrics related to the median. Going forward, the least restrictive inventory maximum
(3A) is chosen and applied to all simulations.

Covariance option

Section 3.1.5 discussed how covariance can be added to introduce correlation between
otherwise independent buyer-family combinations in the simulation and the impact
on section and store totals was visualized in Figure 3-9. To quantify this impact
systematically, days out of Monte Carlo estimate range and range size metrics are
calculated with the covariance option in Figure 3-15.

First and foremost, compared to Figure 3-13, the estimate range size is much bigger
in Figure 3-15, which shouldn’t come as a surprise as the effect of covariance widening
range of store and section aggregate estimates was already illustrated in Figure 3-
9. What is worth noting is that covariance with the lowest inventory adjustment
coefficient value (-0.3) tested still produces a larger estimate range than the highest
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Figure 3-14: Daily % MAD and MD for various inventory maximum adjustment
options for a 4-week simulation period for a specific store; 3A/3B/3C: inventory
maximum only enforce if starting or expected ending inventory is below 65/80/95% of
empirically calculated inventory max; inventory trend using the actual beginning and
ending inventory of the simulation period; inventory adjustment coefficient at -0.5

Figure 3-15: Days out of estimate range and estimate range size trade-off for covariance
option for a 4-week simulation period for a specific store; 4A/4B/4C/4D/4E: with
covariance and inventory adjustment coefficient at -0.3/-0.4/-0.5/-0.6/-0.7; inventory
trend using the actual beginning and ending inventory of the simulation period;
inventory minimum and maximum included; inventory adjustment coefficient at -0.5
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inventory adjustment coefficient value (-1) test without covariance. In the meantime,
days out of the estimate range is steadily reduced from the larger estimate range, with
inventory adjustment coefficient of -0.5 (4C) performing among the best. On top of
it, buyer-family level estimate ranges remain tight, because using covariance has no
impact on individual buyer-family combinations and impacts only the aggregates.

In summary, including covariance in the quantification and sampling of downstream
stochasticity with an inventory adjustment coefficient of -0.5 strikes a good balance
between the estimate range size and days out of estimate range on various levels. The
range is reasonably relaxed for store and section aggregate, avoiding unrealistic preci-
sion from the simulation. Meanwhile, the range is relatively tightened for individual
buyer-family combinations, which can have tendencies to be much bigger, due to high
stochasticity of select buyer-family combinations relative to their inventory level. As a
result, this particular configuration is selected for the store inventory simulation.

Shipment and backstock balance options

Section 3.1.6 discussed the potential need to increase shipment volume beyond covering
the expected downstream movements exactly until the next shipment. Accuracy
metrics with varying levels of of shipment and backstock balance are presented in
Figure 3-16, for all days and all Thursdays in the simulation.

Figure 3-16: Daily and Thursday % MAD for various inventory adjustment options
for a 4-week simulation period for a specific store; 5A/5B/5C/5D/5E/5F: shipment
and backstock balance set to +0/10/20/30/40/50%; inventory trend using the actual
beginning and ending inventory of the simulation period; inventory minimum and
maximum included; inventory adjustment coefficient at -0.5; covariance included
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Daily % MAD is not significantly impacted. As shipment volume is increased, backstock
is increased accordingly such that the net weekly upstream movements remain the
same. Therefore, even if accuracy may be increased on some days of the week, it
may also be reduced on other days, thus netting very little improvement on average.
However, if we isolate a few single days, improvements can be observed. Looking at
Thursdays only when new shipments are expected, increasing shipment and backstock
balance is effective at reducing MAD, implying that there is some truth operationally
to sending more shipment than the exact expected demand before the next shipment.
It is difficult to determine the optimal setting for the shipment and backstock balance,
as every store tends to display slightly different behaviors. For the purpose of this
project, it was set to +30% for CD1 stores and +0% for CD2 stores, as CD2 stores
receive shipments daily and purpose of replenishment shipments from CD2 is to restock
exactly what was sold the previous day.

CD2 option

Section 3.1.6 discussed CD2 replenishment as an option for upstream movements and
the impact on day of week inventory level was visualized in Figure 3-9. For a store
during a historical time period on CD2 replenishment, accuracy metrics are calculated
for simulations with and without the CD2 replenishment for comparison in Figure
3-17.

With CD2 shipments, the simulation performs better both in MAD and MD across
the board, meaning it is more accurate with smaller systematic biases. Therefore, the
CD2 shipment option has a quantifiable and positive impact on modeled inventory of
stores connected to CD2s. Thus for model evaluation, CD2 option will only be used
for stores during time periods connected to CD2s. In addition, it is a key feature in
the integrated dashboard, as understanding the inventory impact of serving stores
currently only connected to CD1 with CD2 replenishment is of particular interest to
business planning. The details will be discussed in Section 5.1.

Final store inventory accuracy results

With all the model mechanisms examined individually through quantitative assess-
ments, final store inventory simulation outputs for six select CD1 and CD2 stores
(connected to CD1 and CD2 during the historical time period when the accuracy
metrics are calculated) are presented in Figure 3-18. Approximate ranges of all the
accuracy metrics for the six specific stores are presented in Table 3.1.
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Figure 3-17: Daily % MAD and MD for various inventory adjustment options for a
4-week simulation period for a specific store during a historical time period connected
to a CD2; 6A/6B: upstream inputs without/with CD2 replenishment; inventory trend
using the actual beginning and ending inventory of the simulation period; inventory
minimum and maximum included; inventory adjustment coefficient at -0.5; shipment
and backstock balance and covariance not included

Figure 3-18: Final Monte Carlo store inventory results for a 4-week simulation period
for 6 select stores in Spain; daily % MAD, estimate range size, and days out of estimate
range indicated for simulation; all stores using linearly extrapolated inventory trends,
inventory adjustment coefficient of -0.5, inventory max and min and covariance; CD1
stores include shipment and backstock balance of +30%; CD2 stores includes upstream
inputs with CD2 replenishment
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Store Section Buyer-family median
Daily % MAD 2 to 4% 2 to 8% 10 to 15%
Daily % MD <±3% ±8% ±8%

Weekly % MAD 2 to 3% 2 to 7% 9 to 12%
Estimate range size 3-8% 2 to 10% 10 to 20%

Days out of estimate range 12 to 20 15 to 25 ∼20

Table 3.1: Ranges of store aggregate inventory accuracy metrics for the six specific
stores examined

Overall, the simulation is able to replicate historical store inventory in many cases, but
not always. Therefore, it is particularly important to discuss how this model should
be used and where its limitations lie.

First of all, the simulation model is not a predictive model like a forecast. A forecast
looks at historical patterns, applies a set of assumptions in the form of an underlying
model, and projects certain values forward. In addition to historical patterns, the
store inventory simulation also relies on a set of user inputs, especially to structure
upstream inventory movements, requiring domain knowledge from the users. Once
the model receives the user inputs, it is able to replicate inventory accurately, but it
cannot do so in a vacuum without user inputs. In other words, the model does not
predict inventory purely from historical data. It simply simulates the inventory, with
knowledge of how much inventory is expected to flow in and out of the store over the
simulation period, which is derived from both historical data and user inputs.

Second, the simulation model is currently not able to simulate any non-linear inventory
trends. Take store D as an example in Figure 3-18. Over the 4-week simulation period,
an increase is expected, but it is far from linear as inventory peaks in week 3, which the
model is not able to simulate, resulting in high MAD and MD. Inventory trends are
intentionally designed to be linear for user-friendliness purposes, as they rely on user
inputs for forward-looking time horizons. Therefore, the trade-off that any non-linear
inventory trend behavior like that for store D cannot be simulated is one we have to
accept.

Third, the quantitative and qualitative evaluation of the model is a conceptually a
rigorous approach, but the model parameters and features are far from truly optimized
based on those exercises. As we have observed, many different model options do not
vary significantly in performances, and there isn’t always a clear answer as to which
trade-offs are better. Therefore, the selection of model parameters and features may
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be somewhat subjective and dependent on intuitions. As the model continues to evolve
and is perhaps deployed one day, the subjectivity of some of the model design choices
is worth noting.
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Chapter 4

Machine learning model for display
inventory and product portfolio
complexity

Using store aggregate inventory from the Monte Carlo model, the project proceeds to
disaggregate display inventory and further simulate the number of unique articles in
each buyer-family combination, for both the entire store and the display room, using
machine learning approaches.

4.1 The case for a machine learning approach

A Monte Carlo approach to simulate store aggregate inventory as described in Section
3.1 fundamentally depends on two important aspects about the data and operations.
First of all, historical store volume in and out flows are known, from which inventory
at any given point in time can be reconstructed with accuracy. Without being able to
construct historical inventory, any attempt to simulate future inventory based on store
volume in and out flows would have no ground of credibility. Secondly, future store
volume in and out flows can be reasonably modeled, whether relying on forecasts,
historicals, assumptions, or a combination of all of them. These are inputs that directly
impact inventory level, and therefore are crucial to model fidelity.

Unfortunately, similar data and operations properties cannot be said about display
inventory. Thus, extending the Monte Carlo approach to disaggregate display from
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store inventory has proven to be difficult.

• When in-store sales are made, there is no direct indication of whether the
inventory is coming from the display or stock room from a data perspective.
Although the vast majority is presumably coming from the display room, there
is no way to know for sure and small daily deviations in the data can accumulate
and result in significant inventory deviation over a period of time.

• Although in-store movements between the stock room and display room are
recorded, the data is messy. These movements happen very frequently and store
associates may not follow operational guidelines fully or perform the scanning
process accurately. In fact, to accurately estimate in-store movements in the
business, RFID inventory data at various points in time is often leveraged to
back into store movements. This approach is not helpful for the purpose of
inventory simulation, as using in-store movement data derived directly from
RFID inventory to reconstruct inventory leads to circular logic.

• Some stores have both an internal and external stock room. Internal stock rooms
are physically attached to display rooms while external stock rooms are not, but
rather in close vicinity. Due to physical space limitations, some stores are not
able to fit both the display and stock room in the same space, hence requiring
external stock rooms. Inventory may move first from the external stock room to
the internal stock room and then to the display room, or directly to the display
room. The multitude of in-store movement channels further contributes to the
difficulty of reconciling inventory data.

For all the reasons above, a machine learning approach is adopted to predict display
room inventory, based on store inventory output from the Monte Carlo simulation,
along with other store, product and temporal attributes. Compared to the Monte
Carlo approach, a machine learning approach treats display room volume in and out
flows as a “black box” and predicts display room inventory directly from other features.
Store inventory and display inventory are typically highly correlated, as the display is
meant to showcase articles available in store and the store is meant to carry articles
that will go on display for sale. Therefore, a machine learning model is expected to be
able to learn some of the correlations.

The case for modeling number of unique articles using machine learning approaches
stems from the similar difficulty of not being able to reconstruct the quantity based
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on volume in and out flows. In fact, the obstacles are much more fundamental. The
model is built on buyer-family levels, and it is mathematically impossible to calculate
the number of unique articles with just inventory data of such granularity, hence
requiring machine learning approaches.

For all three prediction tasks at hand (display inventory, unique articles in store, unique
articles in display room), the desired outputs are 4-week time series per buyer-family
combination per store. Time series store inventory data, historical time series of the
prediction quantity, along with temporally static inputs such as display capacity and
day of week will be utilized to make the predictions. An illustration of the display
inventory prediction task is show in Figure 4-1 (i.e. predicting display inventory for
the next day).

Figure 4-1: Illustration of display inventory prediction

4.2 Literature review for time series predictions

4.2.1 Traditional time series techniques

Traditional time series forecast problems typically look at historical patterns of the
same time series (e.g. using historical sales to forecast future sales). In the words
of Lütkepohl 1991, “if time series observations are available for a variable of interest
and the data from the past contain information about the future development of a
variable, it is plausible to forecast it as some function of the data collected in the past”
[9] [10]. Mathematically, this statement can be expressed as Equation 4.1, where 𝑦

denotes predictions and 𝑦 denotes historical data [9]:

𝑦𝑡+ℎ = 𝑓(𝑦𝑡, 𝑦𝑡−1, ...) (4.1)
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Traditional time series prediction tasks are a well studied class of problems and
treatments have also evolved dramatically over the decades, especially with the
development of modern machine learning [19]. But regardless of the specific forecasting
techniques, the general approach remains the same:

• First, a model is proposed to relate any historical time series with future time
series. Broadly speaking, the model can be anything from linear functions to
neural networks.

• Subsequently, the model parameters are optimized using training data. The opti-
mization can be performed analytical or numerical. More traditional forecasting
models can be optimized analytically since solutions can be found symbolically
from model properties. With more advanced and complicated machine learning
approaches, the optimization process is typically performed numerically, usually
through non-linear convex optimization techniques.

• The trained model with optimized parameters is then used to make forecasts.
Because the model has some understanding of the temporal patterns within the
time series, it is able to predict future time series based on historical inputs.

The literature for time series prediction models is vast. For the purpose of brevity,
overview of a select few approaches is presented here, from which the project draws
inspirations.

Auto regressive models with linear functions

Mathematically, auto regressive models with linear functions can be expressed generally
as Equation 4.2, where prediction at time 𝑡 is expressed as a linear combination of
past time series from time 𝑡− 𝑝 until 𝑡− 1, with an offset of 𝜈 and an error term of 𝑢𝑡

[9]. 𝜈 and 𝛼 do not have 𝑡 subscripts, meaning they do not vary across time steps. By
training those coefficients using historical data and applying them to forward-looking
time periods, the model allows us to make 𝑦 predictions incrementally into the future.
For the purpose of this project, auto regressive models are too restrictive and not
suitable for the tasks, as they only use past values of the forecast time series to make
predictions.

𝑦𝑡 = 𝜈 + 𝛼1𝑦𝑡−1 + ...+ 𝛼𝑝𝑦𝑡−𝑝 + 𝑢𝑡 (4.2)
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Linear regressions

The general form of linear regressions looks quite like auto regressive models, as
demonstrated in Equation 4.3, where 𝑦 stands for the target variable to forecast, 𝑥s
the explanatory variables, 𝛽s the linear coefficients and 𝜖 the error term [8]. Unlike
auto regressive models that strictly use past values of the forecast time series to make
predictions, linear regressions build upon the techniques with added flexibility. No
restrictions are placed on explanatory variables 𝑥, as long as they serve the prediction
purpose. Once the explanatory variables are chosen, the process of using linear
regressions to make predictions is exactly the same as that of auto regressive models,
which involves training the linear coefficients and applying them to forward-looking
time periods.

𝑦 = 𝛽0 + 𝛽1𝑥1 + ...+ 𝛽𝑝𝑥𝑝 + 𝜖 (4.3)

Note that linear regression models have a number of regularization options. Without
regularization, the training process typically minimizes the sum of squared differences
between the training 𝑦 and predicted 𝑦 as the loss function. With regularization,
additional terms, typically proportionally to 𝛽 or 𝛽2 are added to the loss function,
which encourages the model to not overfit the training data and may lead to better
performances. The inclusion of regularization only impacts the optimized value of 𝛽
from the training process.

Tree models

The idea of regressive tree models for time series forecasting is very similar to linear
regressions because the two models leverage the same inputs and outputs. Linear
regressions require a set of explanatory variables as scalar inputs, and output a single
scalar prediction at a time. Regressive trees, although different in their fundamental
methodologies, have the same inputs and output dimensions. Therefore, linear
regressions and tree models are direct substitutes for time series predictions, with the
only functional difference being their performances in varying situations.

Regressive trees come in various different forms, the most fundamental one being
decision trees. Using “a long list of if-else statements”, the model is able to “predict some
result x if a certain condition is true, and it will predict y otherwise” [8]. The biggest
differentiation from linear regression is the introduction of non-linearity, because the
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“if-else” statements are not mathematically linear. The training process focuses on
finding the parameters of “if-else” statements that minimize loss functions, specifically
the choice of explanatory variables to examine, the criteria of examination (i.e. bigger
or smaller than a certain value for numerical variables, equal to a certain value or not
for categorical), and the order of the statements.

Decision trees alone do not tend to perform well, because the “if-else” mechanism is
too flexible, but not powerful in small quantities. Random forests and gradient boost
trees are two models based on decision trees with additional mechanisms to improve
model performances.

Random forests consist of a large number of decision trees in parallel and use the
average outcomes as predictions. While one decision tree model “can sometimes be
wrong, the average prediction of a large number of machine learning models is less
likely to be wrong” [8]. For the average to be meaningful, each decision tree needS to
be slightly different, which is achieved by training them on different subsets of training
data acquired through a resampling process called bootstrapping [8].

In contrast, gradient boost trees consist of a large number of decision trees in series
and use the final outcome as predictions. While the first tree is trained exactly like a
decision tree, each subsequent tree is trained on the error of the previous trees, allowing
them “focus on learning the things that are not yet understood” [8]. This incremental
approach ensures that the training error can be further minimized compared to a
single decision tree, but also makes the model much more susceptible to overfitting.
To prevent overfitting, regularization can be adopted to penalize the models with
higher complexity (e.g. more layers of boosted trees). A common example of such a
regularized gradient boost tree model is XGBoost, where complexity scores are given
to each leaf node in the trees and added to the training loss function as regularization
terms [3].

Fully connected neural network models

Fully connected neural networks (FCNNs) take scalar inputs of any dimension, apply
a series of mathematical transformations (typically non-linear), and produce scalar
outputs of any dimension. The inputs, mathematical transformations and outputs are
mapped out layer by layer in the form of nodes, with linear operations connecting all
of them. A visual illustration of a FCNN with 4 input nodes, 1 output node, and 2
hidden layers with 6 nodes each is showed in Figure 4-2 [8].
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Figure 4-2: A fully connected neural network with 4 input nodes, 1 output node, and
2 hidden layers with 6 nodes each; source: Korstanje 2021 [8]

The mathematical transformations are often referred to as “activation functions”, with
tanh, ReLu and sigmoid as common selections. The behaviors of these activation
functions are shown in Figure 4-3 [8].

Figure 4-3: Behavior of tanh, ReLu and sigmoid activation functions; source: Korstanje
2021 [8]

Compared to linear regressions or tree models, FCNNs can be even more effective
at identifying patterns, as the activation functions can approximate any non-linear
function, and any number of them can be included in a model. Furthermore, a major
advantage of FCNNs is the output flexibility. Even though Figure 4-2 shows an output
layer of a single node, there is no limitation on the output dimension as long as the
outputs remain as scalars. In other words, a single model is able to make multiple
predictions at once, unlike linear regressions and tree models.
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Recurrent neural network models

Recurrent neural network models (RNNs) build on the concept of FCNN, but incorpo-
rate a loop, where “the inputs of have a feedback relation with each other” as shown
in Figure 4-4 [8]. The feedback process forces the model to examine the inputs and
make predictions incrementally, which makes it particularly suitable for “data that
has sequences”, such as time series and written texts [8]. How RNNs are able to learn
sequences is a fundamental differentiation of the approach.

Figure 4-4: Illustration of a simple recurrent neural network; source: Korstanje 2021
[8]

For time series predictions, a simple recurrent neural network typically is not used
directly and is further adapted with more complexity. One of the state-or-the-art
example is long short-term memory (LSTM), which is able to understand sequences
on multiple time scales, and hence is suitable for time series predictions with cycles
and seasonalities [8].

4.2.2 Application of traditional techniques to our prediction

tasks

Despite the vast literature on time series predictions, none of them are directly appli-
cable to our predictions tasks, as the problem here is rather uncommon. Specifically,
the difference lies in the fact that our prediction makes use of two different time series
both of importance, namely store inventory and historicals of the prediction time
series, as opposed to just the historicals. Historicals are included such that the time
series can maintain temporal consistency as new predictions are made. Meanwhile,
store inventory is included not only because it is the output of the Monte Carlo store
simulation from Chapter 3, but also because predictions need to vary as store inventory
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varies, as part of the simulation tool. As a result of this need to use two time series as
inputs, two complexities arise.

First of all, not all models are able to easily take two time series as inputs. Take RNNs
for example. Although suitable for time series predictions, ultimately the models look
at historical time series and carry them forward for predictions. Tools like DeepAR
developed by Amazon are able to combine RNNs with extra scalar regressors (e.g.
holidays), but fundamentally are unable to use both time series as inputs with inherent
temporal properties [8]. That said, for models that only take scalar inputs (i.e. linear
regressions and tree models), values at each time step are can be featurized separately.
Although temporal adjancencies are lost, they are able to take multiple time series as
inputs and treat them equally in the training process.

Second, it is difficult to control how much the models will draw from each time series
to inform predictions. All the training process does is finding the combination of
model parameters that minimize the loss function, even if minimizing the loss function
implies putting no weight on one time series and all on the other in the extreme
case. This behavior can be quite problematic for the purpose of our tasks, because
intuitively both time series are important and serve different purposes. Without a way
to control how the models draw upon the two inputs, it is possible that the models do
not learn the patterns as intended.

4.3 Exploring design choices for ML model

Broadly speaking, there are six sets of design choices to be made: 1) how to choose X
and Y features, 2) how to treat multiple time series across buyer-family combinations
and store, 3) how to featurize the temporal aspects of time series, 4) in what order
to make time series predictions, 5) over what scope of predictions to minimize the
loss functions, and 6) which machine learning models to use. The choices are not
truly independent and this section will go through the options and inter-dependencies
considered in this project.

4.3.1 Choice of X and Y variables

The most straight-forward choice of Y features is to simply predict display inventory,
number of unique articles in store and on display directly. Although completely valid,
this approach could potentially lead to lower model performances.
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First of all, historical time series of these prediction quantities are highly correlated.
If the display inventory was high yesterday, it is also very likely that the display
inventory was high the day before, because the level of display inventory tends to
literally carry over to the next day. As shown in Figure 4-1, historical time series of
the prediction quantities are used as X features in the actual predictions, and using
highly correlated X features can lead to degeneracies between variables, which can
lower model performance.

Secondly, this straight-forward selection of Y variables may result in intrinsic incon-
sistencies across various machine learning models. For instance, if the number of
unique articles in store and on display are predicted directly and separately, there
is no guarantee that the number of unique articles on display will be smaller than
that in store for a specific buyer-family and store on a particular day across different
models. Although one can use the number of unique articles in store as additional
inputs to predict the number of unique articles on display, such an approach requires
using the output of one machine learning model as inputs to another for predictions,
which may result in compounding prediction errors.

To alleviate these potential concerns, percent of store inventory on display and percent
of store unique articles on display are selected as Y variables instead of display
inventory and number of unique articles on display. In comparison, these quantities
do not display as much correlation in the historical time series. For example, even if
the quantity of display inventory remains similar in level over a few adjacent days,
the percent of store inventory on display may still vary, due to changes in total store
inventory. Additionally, given that these quantities in the training data will all fall
in the range of 0 to 1, it is less likely that prediction will exceed 1. Similar intuitive
percentage based variables are not available for unique articles in store and therefore
will be predicted directly as Y variables of the ML models.

In terms of X features, the following are explored based on domain knowledge:

• Historical store inventory time series, up until the day of prediction: store
inventory is necessary because the prediction tasks examine in how Y features
will change as a result of store inventory changes.

• Historical time series of Y feature, up until one day before prediction: the model
needs to know the Y feature values in the days leading up to the prediction to
maintain temporal continuity.
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• Day of week of the day of prediction: new product shipments arrive in stores
twice a week (usually Mondays and Thursdays, but can vary by store) and have
significant impact on store inventory level and product assortment.

• Store capacity and display capacity: the capacity of the display and store
is expected to limit what products go on display. Note that this feature is
only relevant for models that involve multiple stores/sections, because each
store/section only has one single capacity.

Note that due to the inherent correlations between time series data, not all of them
will be important in the prediction tasks and the inclusion of too many X features
may result in overfitting the data and lower overall model performance. Therefore,
the time series features will be selectively chosen, based on their relatively importance
to the models.

4.3.2 Multiple time series treatment across buyer-family com-

binations and stores

The prediction tasks involve multiple time series across buyer-family combinations and
stores, and each of them shares some level of common characteristics with another.
Just like with any machine learning model where there is always a trade-off between
allowing enough freedom in the models to pick up desirable patterns and avoiding
overfitting the training data using models with too much freedom, the treatment of
multiple time series here is no exception. If each store and buyer-family combination
is treated as a separate model with its own prediction task, the model will be very
flexible, but may be computationally intensive and result in overfitting, especially if
data is limited for each buyer-family in each store. On the other hand, if a single
model is trained for all buyer-family combinations and stores (with buyer-family and
stores as categorical variables), the model may not be able to pick up patterns that
impact certain buyer-family combinations differently from the others. Unfortunately,
there is no silver bullet to which methods tend to perform the best, since each problem
is unique in its own ways. In this project, five approaches are explored, with varying
level of grouping buyer-family combinations and/or stores before using them to train
the models, the inspirations of which are drawn from Maharaj, D’Urso and Caiado
2019 [11]. Prediction accuracy will be computed for each approach to identify if there
are systematic trends in their performances for the prediction tasks of interest:
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1. Separate ML model for each buyer-family combination for each store. This
approach allows the most freedom, as each model is built independently, using
data only for the specific buyer-family and store.

2. Separate ML model for each section for each store. Sections are natural divisions
of products within stores, often with different operational procedures. Buyer-
family combinations within each section is expected to share more similarity
than across sections, potentially leading to higher prediction performances.

3. Separate ML model for each buyer-family clusters for each store, where the
buyer-family clusters are defined using unsupervised algorithms (K-means, with
varying numbers of clusters). Along the lines of building separate ML model
for each section, models are built on clusters of buyer-family combinations
within each store that share similarities. However, instead of relying on domain
knowledge about sections within stores, the similarities are defined through
an automated process based on distance metrics between each buyer-family
combination in the clustering space. It is worth noting that selecting the right
clustering features is not a trivial task, because the “similarity” of interest between
buyer-family combinations cannot be any similarity, but rather similarity in how
each X feature contributes to the ML model predictions. An example of a bad
clustering feature may be the average price of products within each buyer-family,
as there is no obvious reason to believe that buyer-family combinations with
similar average prices can lead to store inventory at time 𝑡 having similar impact
on the percent of store inventory on display at time 𝑡. In the case here, the
clustering features are selected to be the coefficients of linear regression models
built separately for each buyer-family combination for each store, as laid out
in approach 1. Intuitively, the coefficients can be interpreted as how each X
feature linearly impact the Y predictions and similarity in the coefficients can
imply similarity in how each X feature contributes to the ML model predictions.
This clustering approach is applied to non-linear machine learning models as
well, despite that the coefficients only capture linear contributions. Quantifying
non-linear contributions of each X feature to the Y predictions is difficult, and
simplification assumptions are made here.

4. Separate ML model for each store. If all buyer-family combinations have
considerable similarities but not across stores, this approach is expected to
perform relatively well, given that it allows the freedom for each store to receive
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its own independent model.

5. Separate ML model for each store/section cluster, where store/sections are
defined using unsupervised algorithms. Like buyer-family clusters, store clusters
are defined through a K-means algorithm, where stores with high operational
similarities are grouped together. In order for the algorithm to explore these
similarities, four clustering features are carefully selected: daily unit of sales,
display capacity, total store/section capacity, and store/section classification
(used internally to indicate tiers of stores, which are typically an important
indicator derived from sales velocity, store size, locational importance, volume of
new articles, etc.). Additionally, clusters are built separately for stores connected
to CD1 and CD2 for replenishment because significant operationally differences
are expected.

A visual illustration of the five multiple time series treatments is presented in Figure
4-5.

Figure 4-5: Visual illustration of the five multiple time treatments explored in this
project

4.3.3 Temporal featurization of time series

For the prediction tasks, both the inputs and outputs involve time series. The inherent
temporal correlations in the inputs and outputs lead to choices of embedding and
model output dimensions that may lead to fundamentally different outcomes.

Time series inputs and outputs can be embedded as either vectors or scalars. Temporal
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adjacencies are fundamental properties of time series, as the time series value at time 𝑡

versus 𝑡+ 1 and 𝑡+ 1 versus 𝑡+ 2 share temporal similarities. To accurately represent
the temporal adjacencies in machine learning models, the time series inputs need
be embedded as vectors, which place limitations on the possible choice of machine
learning models as not all of them are compatible with vector embeddings. In contrast,
scalar embeddings allow much more freedom in the choice of machine learning models,
but cannot fully capture the temporal adjacencies like vector embeddings can, because
every single value in the time series becomes its own input and output with no inherent
temporal relationship between each other.

4.3.4 Order of time series predictions

When making time series predictions, the order in which they are generated can have
a large impact on the final outcome.

Suppose that a historical time series is given until time 𝑡. Making a prediction for 𝑡+1

using data up until 𝑡 is straight-forward as it only requires historical data. However,
to adopt the same approach for 𝑡+ 2, 𝑡+ 1 predictions are necessary as inputs. In
other words, each prediction needs to be made incrementally as the next prediction
depends on the previous. This step-by-step method can be problematic at times,
as any systematic bias to each prediction will accumulate and lead to significant
deviations further into the prediction time horizon.

This problem can be circumvented, if each prediction is made only using historical
data, meaning all predictions for 𝑡 + 1 and onward are made simultaneously and
independently from each other using only data at time 𝑡 or before. However, new
challenges are presented with this workaround. Because each prediction is independent,
there needs to be a separate (or at least partially separate) model for each time step in
the prediction horizon and temporally adjacent predictions may not be fully consistent
with each other. Furthermore, model performances may be low, because making time
series predictions using data up until a number of time steps ago can be a difficult
task.

4.3.5 Prediction scope of loss function minimization

Independent from the order of time series prediction, the loss function of the proposed
model can be minimized for each time series prediction individually, or all the pre-
dictions at once in the training process. This choice becomes highly crucial if the
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time series predictions are made incrementally when the next prediction depends on
the value of the previous time step, whether it is data or past predictions. If the
model is trained to minimize each time series prediction and the predictions are made
incrementally, the model only learns to predict the next time series value well, which
can lead to longer term deviations if each prediction is subject to systematic biases.
This problem may be avoided if the loss function can be minimized holistically over the
entire time series prediction at once, since the process of minimizing the loss function
will prevent longer term deviations that may stem from systematically biases. However,
not all models allow loss function minimization over multiple predictions.

Note that if each prediction is made only using store inventory and not historical
time series data, the prediction scope of loss function minimization is not expected to
cause significant differences. Because each prediction is made somewhat independently
from each other, minimizing the loss function for each prediction tends to lead to
minimization globally.

4.3.6 Selection of machine learning models

The discussion of model choices cannot be carried out in a vacuum without the context
of actual machine learning models. Each model has its own specific input and output
limitations and not all permutations of design choice options are possible, nor are
they all useful. Table 4.1 lays out how linear regression, tree, fully connect neural
network and recurrent neural network models are able to accommodate various design
choices.

Featurization Order Scope LRs and trees FCNNs RNNs
Scalars Incremental Individual Standard Standard N/A
Scalars Incremental Holistic N/A N/A N/A

Scalars Simultaneous Individual
Independent model
for each prediction

time step

Independent model
for each prediction

time step
N/A

Scalars Simultaneous Holistic N/A

Single model with
one output layer

node per prediction
time step

N/A

Vectors Incremental Individual N/A N/A N/A
Vectors Incremental Holistic N/A N/A Standard
Vectors Simultaneous Individual N/A N/A N/A
Vectors Simultaneous Holistic N/A N/A N/A

Table 4.1: Machine learning model design choices
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4.3.7 Summary of ML model design choices

Section 4.3 covers various choices that impact the design of machine learning mod-
els.

X and Y variables and multiple time series treatment are choices independent from
the machine learning model selections, as they impact the underlying dataset used
to train models. In contrast, the temporal featurization, prediction order and loss
function scope are closely tied to the machine model selection, as illustrated in Table
4.1. For this project, RNNs will not be explored, because it is unable to accommodate
two time series inputs effectively unless custom architecture is adopted, as explained
in Section 4.2.2.

For linear regressions and trees, only the standard architecture will be explored (Section
4.5.1 and 4.5.2), because training a separate model for each prediction time step is
not practical for simulations. For fully connected neural network models, only the
architecture with simultaneous prediction order and holistic loss function scope will
be explored (Section 4.5.3). FCNNs tend to be computationally intensive and are not
expected to significantly outperform linear regressions and trees for the same tasks in
this project. The advantage of FCNNs lies within their abilities to produce multiple
predictions at the same time and tune the model parameters to minimize loss function
for all predictions holistically. Therefore, only one FCNN architecture will be explored
to complement the standard linear regression and tree model architecture.

4.4 Preparing the dataset

The source of all time series data is article level RFID inventory by day by store, from
which store inventory, percent of store inventory on display, number of unique store
articles and percent of store articles on display can be calculated daily.

As laid out in Section 4.3, historical time series data of the predicted time series is used
to make predictions. For models that make one prediction at a time (linear regressions
and trees), historical data from 𝑡− 1 to 𝑡− 7 is leveraged to make predictions at time
𝑡, meaning the data set used to train the models is constructed by looking at the
RFID time series inventory in the trailing 7 days of each day. In the case that any
data is missing from 𝑡 to 𝑡− 7, it will not be used to train the machine learning model,
because linear regressions and trees cannot handle missing data easily. Note that the
same day can appear multiple times in the data as different time steps (e.g. as 𝑡− 1
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for one data entry, and 𝑡− 2 for another). For models that make one prediction for
each prediction time step all at once (FCNNs), the same historical data is leverage to
make predictions from time 𝑡 until 𝑡+ 27. Because each data entry looks at a total of
35 days and missing data is sometimes inevitable for a time window of this duration,
a linear extrapolator is used to fill in the missing data. Otherwise, the process of
constructing the data set remains the same.

While preparing the data set, two additional assumptions are made:

• If data is not available on a Sunday, it is assumed that Sunday inventory is
the same as the leading Saturday inventory for the buyer-family. A significant
proportion of stores are closed on Sundays and it is not uncommon that RFID
inventory data is not recorded when the stores are closed. It can generally be
assumed that inventory will remain the same as the previous day in these cases.
Sunday extrapolation is performed before the linear extrapolation for the FCNN
data set.

• The data set is only constructed from time periods considered as “steady state”,
without disruption from end of campaign sales and campaign transitions.

For each buyer-family combination and store, approximately 400 data points with
complete X and Y features are compiled from 2021, 2022 and 2023 February to May
and August to mid-November for the linear regression and tree data set. There are
just over 200 stores in Spain and approximately 80 buyer-family combinations are
modeled at a time for the simulation, implying that the entire data set is roughly 6
million rows across relevant buyer-family combinations and stores in Spain from 2021
to 2023 in the selected 6 months for each year. Not all of them are always used in the
models and the specifics depend on the treatment of multiple time series across stores
and buyer-family combinations, as discussed in Section 4.3. The data set is further
split into train, validate and test, at proportions of roughly 60/20/20. The data is
intentionally not extended to 2020 or earlier, given the potential impact of COVID
on store operations during the months following March 2020. For FCNN, the size of
the data set is similar, because the impact of missing data is avoided through linear
extrapolation, while each data entry itself consists of a longer time series (35 time
steps vs. 8) and therefore fewer can be prepared from the same time periods.
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4.5 Machine learning models training and testing

4.5.1 Regression models training and testing

Regression models are first examined as potential candidates for the simulation. All
results presented use L2 regularization, meaning the sum of squares of the regression
coefficients is included in the loss function as an additional term to minimize. The
strength of regularization is optimized using the validation data set.

Multi-colinearity and P values

For linear models, explanatory variables that are highly correlated linearly introduce
redundancy to the model, lower model interpretability, and may lead to lower accuracies
in some cases (although not guaranteed). Therefore the best practice is to look at
the multi-colinearity of the explanatory variables and select the necessary ones first
before evaluating model performances.

In addition, because linear regressions are originally based on statistical theories, P
values can be calculated to examine how statistically significant each explanatory
variable is at explaining the data. Intuitively, P value can be understood as how
likely the natural statistical fluctuations in the underlying data can reproduce the
patterns explained by each explanatory variable, with lower values meaning less
likely for the natural fluctuations and more statistically significant for the explanatory
variables. For a specific store, P values are calculated with all the explanatory variables
included. Along with multi-colinearity, they should inform which variables to keep
when evaluating accuracy results.

For a specific store, the P value and multi-colinearity results for all numerical explana-
tory variables for % of store inventory on display, number of unique articles in store
and % unique articles in store on display are shown in Figure 4-6, 4-7 and 4-8.

For % of store inventory on display, it is not surprising that historical store inventory
is highly correlated. If inventory is high the previous day, it is likely that inventory
is also high the next day. In contrast, historical % of store inventory on display is
significantly lower, because as store inventory changes, display inventory will not
exactly mirror these movements, and therefore as a percentage, historical display
inventory is less correlated. Lastly, the correlation between store inventory and % of
store inventory on display is weak as expected since the two quantities are driven by
different factors.
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In addition, the P values (and regression coefficients, for reference) for each numerical
explanatory variable are provided. Historical % of store inventory on display generally
has low P values, while results for store inventory are mixed. In particular, store
inventory at time 𝑡 (same day as prediction), 𝑡−1 (the day before prediction), and 𝑡−7

(a week before prediction) have the lowest P values. This result makes strong intuitive
sense, and can be generally observed across the same analysis for other stores as well.
Display inventory is strongly influenced by store inventory that same day and the day
before, as well as a week before, due to the weekly cyclical nature of store operations.
Given that store inventory is so highly correlated from the multi-colinearity test, a
decision for the linear regression models is made to keep only store inventory at these
three time steps, while keeping all historical % of store inventory on display.

Figure 4-6: Multi-colinearity, P value and regression coefficients for % of store inventory
on display for a specific store

For number of unique articles in store, the biggest difference in multi-colinearity
compared to % of store inventory on display is that historical number of unique
articles in store itself is much more correlated, for the same reason store inventory is.
Furthermore, number of unique articles don’t tend to fluctuation very much from day
to day, as the size of assortment remains relatively constant over a week.

For explanatory variables with such high multi-colinearity, P values (and regression
coefficients) are not particularly insightful, as the choices will unlikely result in any
meaningful accuracy differences. Store inventory from time 𝑡 to 𝑡− 2 and % of store
inventory on display at time 𝑡 and 𝑡− 1 are selected, as they consistently display low P
values (and non-zero regression coefficients) across stores, including the one examined
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here.

Figure 4-7: Multi-colinearity, P value and regression coefficients for number of unique
articles in store for a specific store

Last but not least, the same tests are performed for % of unique articles in store on
display. Prediction of this quantity is much harder than the previous two as it combines
predictions of unique articles and display room into one, making it challenging using
only historical time series and store inventory.

Figure 4-8: Multi-colinearity, P value and regression coefficients for % of unique
articles in store on display for a specific store

P value results indicate that store inventory at time 𝑡 and 𝑡 − 1 tend to be more
statistically significant. Beyond 𝑡− 1, results are mixed for different stores. P values
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for historical % of unique articles in store on display also tend to be mixed, while
multi-colinearity is lower than that of number of store unique articles, due to larger
relative fluctuations in percentage quantities. Given that there isn’t a strong case for
which explanatory variables to keep or drop, the same set as % of store inventory on
display is used.

Comparison of various multiple time series treatments

Based on the selected numerical explanatory variables, accuracy results of the 5
multiple time series treatments illustrated in Figure 4-5, are shown in Figure 4-9,
4-10, and 4-11. Accuracy results are based on the test data set mean absolute
deviation (MAD), weighted as a percentage of test data values. For multiple time
series treatments based on clusters (buyer-family or store/section), MAD will vary
based on the number of clusters. For store/section clusters (treatment 5), MAD is
calculated for all store sections in the same cluster as the store section of interest, and
for just the store section of interest. Results from the number of clusters that perform
the best for each store section of interest are aggregated for store total results, which
can be compared to outcomes from other multiple time series treatments.

For % of store inventory on display, regressions by section and store aggregate perform
better than regression by buyer-family and buyer-family clusters, an observation
consistently across stores. Store cluster regressions further outperform all other
treatments for this store, and perform at least as well across all other observed stores.
Intuitively, it can be understood that the correlation of store inventory and display
inventory tends to exhibit behavior similar across buyer-family combinations and stores.
Therefore, by running regressions on larger sets of data for multiple buyer-family
combinations and stores, model performance can be improved.

For number of unique store articles, a different multiple time series treatment per-
formance hierarchy is observed. Store/section cluster regressions perform the worst,
followed by regressions by section and by buyer-family. Store aggregate and buyer-
family cluster regressions perform the best, although the margin of improvement is
at most half a percentage point from ∼4% to ∼3.5%. The same hierarchy is not
consistently observed across all stores, but store aggregate and buyer-family cluster
regressions tend to perform well, and store/section cluster regressions at times de-
pending on the stores. This result implies that the number of unique articles in stores
do not tend to have strong linear correlations with store inventory along section or
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Figure 4-9: Linear regression test results for % of store inventory on display for 5
multiple time series treatments

individual buyer-family lines. Instead, patterns are better learned for individual stores,
or groups of buyer-family combinations, or at times groups of store sections.

The behavior observed in % of unique articles in store on display mirrors that in % of
store inventory on display, and is observed consistently across stores. Regressions by
store/section clusters usually perform the best, and as well as if not slightly better
than regressions by section, by buyer-family clusters, and store aggregate regressions,
while regressions by buyer-family combination consistently perform the worse.

Overall, this exercise shows that various treatments of time series can have a profound
impact on linear regression performances, and their relative accuracy sheds light
on how the types of patterns in the data can be similar along store, section and
buyer-family boundaries. Accuracy results in this section will be compared to those in
Section 4.5.2 to determine whether linear regressions or tree models are more suitable
for the project.
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Figure 4-10: Linear regression test results for number of unique store articles for 5
multiple time series treatments

Figure 4-11: Linear regression test results for % of unique articles in store on display
for 5 multiple time series treatments
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4.5.2 Tree models training and testing

Comparison of random forests, gradient boost trees and XGBoost mod-
els

First of all, a comparison of the various tree models is performed. Section 4.2.1
discussed three architectures based on decision trees, namely random forests, gradient
boost trees and regularized gradient boost trees. The performances of the three models
are benchmarked against each other for store aggregate and section aggregate and for
for all three machine learning prediction tasks for a specific store in Figure 4-12.

Figure 4-12: Comparison of store aggregate and section aggregate random forests,
gradient boosted trees, and XGBoost models for all three machine learning prediction
tasks for a specific store

The figure is plotted against number of clusters in the x-axes for consistency with Figure
4-11, but neither multiple time series treatments require clustering. From the figure,
we can see that the performance differences between the three tree models are not
significant, an observation seen across all other stores examined. Because the particular
training package used for XGBoost models has much faster runtime, it is adopted
as the default tree model to examine in this project. Similar to linear regressions,
the validation data set is used to tune the model hyperparameters, including the
learning rate (the amount each incremental tree corrects regression results from the
previous), number of boost stages (number of trees in series), max depth for each
decision tree (max number of “if-else” statements for each branch of each tree), and
the regularization coefficient (strength of regularization). XGBoost models have more
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than four possible hyperparameters, but in the interest of computational resources,
these four are selected as the most important ones.

Shapley values

XGBoost models, due to their complexity like many other machine learning models,
are often difficult to interpret, yet statistical measures like P value are not applicable,
because the models themselves are not linear and thus not suitable for traditional
statistical techniques. To help us understand the factors that drive prediction for
non-linear machine learning models, one commonly adopted method is the Shapley
value. By treating the models as black boxes, Shapley values look at the model
predictions with and without each parameter and derive a linear approximation for
the impact of each parameter on the predictions.

Shapley values can be either negative or positive, with signs indicating the direction of
impact. The mean absolute Shapley value therefore indicates the relative importance
of each parameter, which would hopefully help us better understand the model
mechanisms and select the most important parameters to prevent overfitting, like in
the exercise with P values and multi-colinearity. Results for all three prediction tasks
and six specific stores are presented in Figure 4-13, 4-14, and 4-15.

Figure 4-13: Shapley value for % of store inventory on display for six specific stores

Features with consistently high Shapley values are circled and selected as final ex-
planatory variables in the model training. The features ranked with high importance
are typically very similar across stores, making the selection task relatively straight-
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Figure 4-14: Shapley value for number of unique articles in store for six specific stores

Figure 4-15: Shapley value for % of unique articles in store on display for six specific
stores

forward. Historicals of the prediction value at time 𝑡− 1 (and 𝑡− 2 and 𝑡− 3) and
store stock at time 𝑡 (and 𝑡 − 1) are some of most important features according to
their Shapley values, which agree with the general intuition that more recent time
series values are more important for predictions.

Comparison of various multiple time series treatments

Comparisons of various multiple time series treatments for XGBoost models, similar to
those in Figure 4-9, 4-10, and 4-11, are presented in Figure 4-16, 4-17, and 4-18.
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Figure 4-16: XGBoost test results for % of store inventory on display for 4 multiple
time series treatments

Figure 4-17: XGBoost test results for number of unique store articles for 4 multiple
time series treatments
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Figure 4-18: XGBoost test results for % of unique articles in store on display for 4
multiple time series treatments

Across all three prediction tasks as well as other stores, it is observed that XGBoost
with store section clusters performs better than store aggregate, which is better than
section aggregate. In other words, the model consistently performs better with a
larger training data set, regardless of the prediction task or store. Intuitively, because
XGBoost models are much more flexible than linear regressions and can learn non-
linear patterns in the data, even if behaviors across buyer-family combinations and
store sections don’t demonstrate strong similarities, the models can still parse patterns
more accurately in the presence of more data.

Comparing XGBoost model performance with store section clusters with linear re-
gression performance, XGBoost tends to perform better, but is not guaranteed, as
illustrated by the specific store examined in Figure 4-9, 4-10, 4-11, 4-16, 4-17, and 4-18.
Predicting display inventory, and store and display unique articles, using historical
time series, store inventory and store attributes, is not an easy task itself. Machine
learning models are able to learn patterns, only if the right explanatory features
are fed into the model. Therefore, even with more complicated tree models, better
performance is not guaranteed compared to carefully constructed linear regressions for
our purposes. The advantage of tree models is that performance can be consistently
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improved with more data, and the same cannot be said about linear regressions.
Therefore, considering this benefit, XGBoost models trained on store section cluster
data are selected over XGBoost models with other multiple time series treatments
and linear regression models as a short-list candidate for the final simulation.

4.5.3 Fully connected neural network models training and test-

ing

As laid out in Table 4.1, the advantage of fully connected neural network models is
that they can be trained to produce multiple outputs and optimize the predictions
over all of them at the same time. The outputs leverage the same inputs, input layer
operations and hidden layer operations, but receive their own output layer operations,
which differentiate one output from another. In other words, for each buyer-family
combination, 28 days worth of display inventory, store unique articles and display
unique articles are generated based on 7 days of store inventory and historical time
series of the prediction quantity.

The challenge of training FCNNs lies in the flexibility of the model. Generally speaking,
FCNNs with a specified input and output size are defined by the learning rate (the
numerical impact of each epoch of training on the model weights), the number of
hidden layers, the size of hidden layers and the activation function for each layer in the
network. Unlike regressions or tree models, there isn’t always a simple understandings
of how each hyperparameter impacts the final outcome of the prediction, nor is the
tuning process necessarily rigorous. Based on trial and error, the following parameters
are selected for each prediction task:

• For % of store inventory on display, learning rate of 0.000001, 2 hidden layer
of 150 nodes, ReLU activation for the input and hidden layers and softmax
activation for the output layer are chosen. ReLU activation tends to be the most
versatile and suitable for many purposes, and softmax activation produces an
output between 0 and 1, which matches the range of the prediction quantity.

• For number of unique articles in store, learning rate of 0.00001, 2 hidden layer
of 200 nodes, ReLU activation for the input and hidden layers and no activation
for the output layer are chosen. ReLU activation maps any negative input value
to 0 and can lead to meaningless outputs for a subset of predictions.

• For % of store unique articles on display, learning rate of 0.00001, 2 hidden
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layer of 200 nodes, ReLU activation for the input and hidden layers and sigmoid
activation for the output layer are chosen. Like softmax, sigmoid also maps the
input values to a number between 0 and 1, but follows a different shape. Sigmoid
is found to outperform softmax in this application in practice and therefore
selected.

Because FCNNs optimize the loss not over individual predictions but the entire time
series, the prediction accuracy metrics are not comparable to linear regression or tree
model metrics (MAD). Instead, their accuracies are compared after integration with
the store inventory simulation in the following section.

4.6 Integrating machine learning models with store

inventory simulation

4.6.1 The problem with standard tree models

One of the drawbacks of standard tree models, as discussed in Section 4.3.4 and 4.3.5,
is that they make time series predictions incrementally and are trained to optimize
each prediction individually. This means that if each prediction has some systematic
biases, longer term deviation is possible as the biases compound.

Unfortunately, this drawback has become a reality the three prediction tasks here.
Figure 4-19 shows the display inventory, number of store and display unique articles for
each section and store aggregate, under the scenario that store inventory is expected to
remain flat from the Monte Carlo simulation. For a store with no inventory build-up or
depletion, one would expect display inventory, store unique articles and display unique
articles to remain relatively flat. Contrary to expectations, the XGBoost models result
in slight increase in display inventory and significant decrease in store and display
unique articles.

The decrease in store and display unique articles is likely driven by inventory behavior
throughout each week. Figure 4-14 and 4-15 show that by far the most important
driver for prediction at time 𝑡 is the historical time series value at time 𝑡− 1 and store
inventory in general have relatively weak influence, especially for % of unique articles
in store on display. In other words, what the model does for the most part is using
historical data to make future predictions, more so than using store inventory as an
important predictor. For unique articles in store and display, they tend to decrease
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throughout the week as articles are sold out, except on Mondays and Thursdays when
shipments of new articles are received. As a result, the data set has more entries where
unique store inventory is lower at time 𝑡 than at 𝑡− 1. Even though day of week is
a categorical explanatory variable used in the training process, the model does not
seem to pick up on the correlation between day of week and increasing or decreasing
number of unique articles. It is reasonable to suspect that this asymmetry in data
has led to downward biases on the unique article predictions for the entire simulation
time horizon.

Figure 4-19: Display inventory and number of store and display unique articles for a
specific store assuming store inventory is flat over simulation period; predictions made
using XGBoost models with standard architecture

4.6.2 Workaround for tree models

The downward biases of tree models with standard architecture mean that the simula-
tion is not able to use these machine learning models as is. That said, the problem we
are facing here is fundamental to tree models. Architecturally, they are not designed
to accommodate multiple time series inputs even as scalars, so when asked to do so,
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they are not able to take both of them into account with similar importance. Instead,
they simply find the parameters that minimize the loss functions, even if it means to
take most of the input from one time series and put a lot less emphasis on the other,
which is what took places here.

Unfortunately, with the same model architecture, there is not a simple fix to the
systematic biases. However, there is a practical workaround that is at least capable
of producing intuitive results. The Achilles heel of tree models here lies within its
inability to intelligently take multiple time series as inputs. Historical time series
of the prediction value is provided to ensure temporal continuity. Meanwhile, store
inventory is provided because it is the Monte Carlo store simulation output, which
needs to have influence over prediction values. A natural next step is to observe the
model behavior with store inventory as the only time series input, while temporal
continuity can be enforced afterwards. This way, the model can focus on learning just
the correlation between store inventory and the predicted quantities, which can be
adjusted up and down afterwards to ensure agreement with historical time series.

Figure 4-20: Display inventory and number of store and display unique articles for a
specific store assuming store inventory is flat over simulation period; predictions made
using XGBoost models with standard architecture without historical time series of
the prediction quantities

96



Figure 4-21: Display inventory and number of store and display unique articles for a
specific store assuming store inventory is flat over simulation period; predictions made
using XGBoost models with standard architecture without historical time series of
the prediction quantities and scaled such that day 1 matches day 0

Therefore, the same XBGoost models are trained without historical time series of
the prediction values, and the results are presented in Figure 4-20. As expected, the
systematic biases no longer exists, but huge jumps in values between day 0 and day 1
are observed. Although not a rigorous approach rooted in machine learning theory, the
temporal discontinuity can be addressed by simply scaling up or down the predicted
values from day 1 to day 28 for each buyer-family combination by common factors,
such that the values on day 1 is the same as day 0. By doing so, both objectives of
maintaining temporal continuity and exploring the correlation with store inventory are
achieved. The final results are shown in Figure 4-21. Lastly, the approach is applied to
6 stores during a historical time period and store level (aggregated across buyer-family
combinations) accuracy metrics, consistent with those in the store inventory simulation
in Chapter 3, are calculated and presented in Table 4.2. Compared to Table 3.1, the
accuracy here is overall lower with more systematic biases, which is inevitable given
the difficulty of the prediction tasks as well as the compounding of prediction errors
due to the simulated store aggregate inventory being inputs to the machine learning
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predictions.

Display inventory Store unique articles Display unique articles
Daily % MAD 3 to 11% 3 to 20% 3 to 10%
Daily % MD -4 to 11% -10 to 20% -9 to -1%

Table 4.2: Ranges of display inventory and store and display unique articles accuracy
metrics for the six specific stores examined

4.6.3 Performance of fully connected neural network mod-

els

The prediction results of the FCNNs for a specific store, trained on store section
cluster data, are presented in Figure 4-22.

Figure 4-22: Display inventory and number of store and display unique articles for a
specific store assuming store inventory is flat over simulation period; predictions made
using FCNNs

Despite the model being able to generate predictions for the entire series and optimize
over them at the same time, both temporal discontinuities and systematic biases can
still be observed. As powerful as the model can be, the prediction task itself here has
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proven to be challenging. For instance, predictions for display inventory in week 4
is generated based on store inventory and display inventory in week 0, meaning the
model would have to make predictions almost an entire month out. Therefore, it is
not surprising that the accuracy could be lacking. In addition, FCNNs have the same
problem as other models when it comes to learning features simultaneously from two
time series inputs. Both inputs are treated equally and the model is only incentivized
to learn features that minimize training loss, which does not always translate to
treating the two time series inputs with equal importance.

Figure 4-23: Display inventory and number of store and display unique articles for a
specific store assuming store inventory is flat over simulation period; predictions made
using FCNNs and scaled such that day 1 matches day 0

For a fair comparison with tree models, the same practical workaround to force
temporal continuity as described in Section 4.6.2 is applied to the output of the neural
network models and the results are shown in Figure 4-23. Despite store inventory
being flat over the simulation horizon, store and display unique articles continue to
increase, which is not an intuitive result. Therefore, it is fair to conclude that FCNNs
are not suitable for the time series prediction tasks here.

Last but not least, it is important to mention that even if FCNNs are able to produce
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sensible results, they can be computationally intensive to train. While each XGBoost
model takes less than a minute to train, an FCNN for our prediction tasks can take
up to 20 minutes. Given the need to train a separate FCNN for each section in a
store and each prediction task, the run time can easily be multiple hours, which is
not feasible for a real time simulation, unless the models are pre-trained and stored
beforehand ready to be called upon.

4.6.4 Final model selection for store simulation

In Chapter 4, a number of different machine learning models and architectures are
explored and contrasted. Models that make incremental predictions and optimize over
them individually do not perform well for our purposes as systematic biases can lead to
significant errors further into the prediction time horizon. On the other hand, models
that are able to make many predictions and optimize over all of them at once also
do not perform well, likely due to the difficulty of the tasks and lack of explanatory
features. Upon evaluating all the options available, XGBoost model, trained on store
section cluster data without historical time series of the prediction value, manually
scaled to maintain temporal continuity, is adopted. Despite lack of theoretical machine
learning underpinnings, the approach produces consistently intuitive results with slight
systematic biases across stores and sections, at a speed reasonable for the simulation
purposes, and is hence selected for the store simulation model.
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Chapter 5

Dashboard visualization and
conclusions

5.1 Dashboard visualization

With the Monte Carlo and machine learning model mechanism and architecture
finalized, the simulation is complete with features that the project has set out to
achieve. Nonetheless, the simulation itself is not exactly user-friendly, both its
interface and its outputs. Therefore, to adapt the simulation to the business context,
a dashboard is designed and built atop the models for better usability.

The design of the dashboard is based on a store by store comparison of a baseline
scenario and a custom scenario that the user specifies. The baseline scenario uses a
pre-specified set of inputs, including no inventory build-up or depletion trends and the
status quo of CD1/2 connection. In contrast, the custom scenario allows three custom
inventory trends (additive) for select buyer-family combinations or all of them in the
selected section, CD1/2 connection, and shipment and backstock balance. Inventory
trends only impact one section at a time, because the way business units are structured
within Zara means that each team is only focused on one single section and not the
other two. Additionally, CD1/2 selection not only affects day of week shipment volume,
but it also impacts the machine learning model. If a store section has only been
connected to a CD1 and we are interested in its behavior with CD2 replenishment,
the machine learning models are trained using the closest store connected to a CD2 in
terms of store section clustering distance (metrics laid out in Section 4.3). The layout
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of the input interface is presented in Figure 5-1.

Figure 5-1: Dashboard input interface

Once the inputs are specific, the differences of the baseline and custom scenarios of
the selected store section are calculated and first displayed as high level summaries.
Because the simulation is not perfect and may be biased in some areas, the differences
between two scenario are likely to be even more accurate, as the biases could cancel
each other out. The differences are also easy to interpret, as they directly result from
the user specified inputs in the custom scenario.

For high level summary, section utilization (% of section capacity), inventory differences
(number of units) and % inventory differences between the baseline and custom
scenarios are displayed, for Mondays and Saturdays end of day and weekly average.
Mondays and Saturdays are specifically chosen, because they are typically the highest
and lowest points of inventory in each week due to new article shipment schedules
and demand profiles. A screenshot of the summary view is shown in Figure 5-2.

Figure 5-2: Summary view of the dashboard

In addition to the summary view, specific tables are provided in the detailed view for
quantities in the summary view for both the baseline and custom scenarios. Select
tables in the detailed view are shown in Figure 5-3.

102



Figure 5-3: Detailed view of the dashboard

5.2 Project conclusions

This project sets out to build a store simulation tool that provides a 4-week forward-
looking view of store inventory and assortment complexity, for both a daily and a twice
a week store shipment model. It first uses the Monte Carlo method to simulate store
inventory by buyer-family, based on demand forecasts, quantified demand stochasticity,
and upstream inputs. It then takes the store inventory, along with historical time
series data and store attributes data, and predicts display inventory, and number of
unique articles in store and display room.

To evaluate model performance, the simulation is performed on historical periods to
calculate accuracy metrics that are custom defined specifically for the project. We
see that the simulation can achieve a daily mean absolute deviation of 2-4% for store
aggregate inventory, 2-8% for section inventory and 10-15% for median buyer-family
combination, all with little systematic biases. The prediction accuracy for display
inventory and assortment complexity is lower, due to the nature of the prediction
tasks. For store total (aggregated across buyer-family combinations), MAD of 3-10%
can be expected in general, but can be as high as 20% for some stores, with potential
systematic biases depending on the store.
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In the process of building the store aggregate inventory simulation, the project
examined various methods to model inventory trends, developed a method to quantify
daily demand stochasticity, and explored possibilities to control the stochasticity
further into the simulation time horizon.

• The project examined possibilities to extract inventory trends using historical
data and linear regressions. However, the attempt has proven to be difficult, as
inventory trends on buyer-family levels for the business tend to be noisy and
not precisely replicated from year to year.

• The project looked at how sales and returns vary from week to week and between
days of the week across buyer-family combinations, and was able to calculate
the variance and covariance of the expected sales and returns. By sampling from
these variance-covariance matrices, the simulation is able to quantitatively model
demand stochasticity and the results have been shown to accurately represent
historical sales and returns.

• The project also explored options to prevent the simulations to continuously
diverge from the median further into the simulation time horizon due to the
modeled demand stochasticity. Practical inventory minimums and maximums
are calculated from historical data, and are enforced in the simulation with
considerations to avoid systematic biases. Additionally, various shipment ad-
justments mechanisms that react to the specific demand stochasticity in each
Monte Carlo trial are tested, including both inputs manually specified and
calculated from historical data. Calculated inputs do not contribute to higher
model accuracies and thus manual inputs are adopted in the simulation.

In the process of building machine learning models to predict display inventory and
product portfolio complexity, the project systematically examined the efficacy of
various machine learning models and architectures at making time series predictions
using two time series as inputs.

• Tree models perform better when the models are trained on more time series
data across different categories (stores and buyer-family combinations). The
same conclusion is not consistently observed for linear regressions, presumably
due to them being less flexible.

• Random forest, gradient boost trees and XGBoost do not have any material
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performance differences and tend to outperform linear regressions, although not
always guaranteed. Because limited explanatory features are available due to
the nature of forward-looking simulations, the differentiation between the tree
and linear regression models is not so significant.

• Time series models where predictions are made incrementally and the loss
functions are minimized over each individual prediction can lead to considerable
systematic biases, which accumulate and result in large inaccuracies further into
the prediction horizon.

• Making time series predictions with two different time series of equal significance
as inputs simultaneously is difficult for linear regressions, tree models and FCNNs.
Because of the black box nature of machine learning models, it is difficult to
control how the models will learn the features from the two time series inputs.
As a result, the models tend favor one time series over the other, since the
training objective is simply to minimize loss of the training data. Therefore, it
can be more advantageous to use the time series inputs incrementally in two
steps, even if it means to deviate from rigorous machine learning techniques.

5.3 Potential for future work

From a usability perspective, in order for the tool to be put into production and
fully deployed as a standard tool for the business, a number of hurdles need to be
overcome.

• The tool currently sits in a data platform that is typically only accessed by the
technology and business analytics teams. For store operations managers that are
potential users, it can difficult for them to use the tool logistically or understand
the coding interface.

• Additionally, the tool can only be used one store at a time only for stores
with calculated parameters (e.g. variance, covariance), and the data pipeline to
calculate these parameters requires multiple hours per store. For store operations
managers that oversee not a single store but a large number of them, the tool
can only provide a narrow snapshot of select stores within reasonable time.

Therefore, for the tool to be usable in the day to day work store operations managers,
the data preparation pipeline needs to be streamlined and the final tool needs to be
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built with a more accessible software front end.

From a modeling perspective, three options come to mind as the most meaningful
improvements.

• First of all, downstream forecasts are currently provided on section levels and
allocated to buyer-family combinations based on historical proportions. If the
forecasts are available on more granular levels, buyer-family level accuracy could
be significantly improved, and as a result, section and store aggregate accuracy.

• Furthermore, inventory build-up and depletion trends are currently only modeled
linearly. In reality, inventory trends, especially on buyer-family combination
levels, can demonstrate much more complicated behaviors. Therefore, more
sophisticated inventory trend mechanisms, informed by historical inventory
behaviors, could meaningfully improve model fidelity.

• Third, recurrent neural network models as a potential candidate to predict
display inventory and number of unique items in store and display are not
explored in this project as a potential candidate, due to the difficulty presented
to accommodate multiple time series as inputs. Nonetheless, the model does
have its advantages for time series predictions. If the model can be customized
to fit our prediction needs, improvements to prediction accuracy are certainly
possible.

With all the possibilities in mind, it is also important to remember that the room to
improve model fidelity is endless, and the model after all is only an approximation.
Any improvement to model must also be examined practically in conjunction with
model complexity and usability, especially when the end users may not have the same
level of technically knowledge as the developers.
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