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Abstract

Following NextEra Energy Resources’ accelerated growth and disruptions in the solar panel supply chain,
their solar panel allocation process is becoming more complex. This process results in a schedule that
determines when to deliver close to 150 million solar panels to more than fifty project sites under development
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and helping NextEra Energy Resources adapt to future supply chain disruptions.
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Chapter 1

Introduction

This thesis presents and implements a novel optimization model to determine the

optimal schedule for delivering solar panels to NextEra Energy Resources’ project

sites. Due to NextEra Energy Resources’ accelerated growth and disruptions in the

supply chain, their solar panel allocation process is becoming more complex. The

schedule that orchestrates this process determines when to simultaneously deliver

close to 150 million solar panels to more than fifty project sites under development

and construction. It balances the requirements from multiple stakeholders, including

Commercial (Development), Contracting (Supply Chain, Early Stage, and Late Stage),

Construction, and Logistics. Modifying the equipment delivery schedule results in

costs that have consequential impacts across the portfolio because of project and

contract interdependencies.

The model improves NextEra Energy Resources’ supply chain resiliency by

responding faster to disruptions and adapting to changes with greater flexibility.

Manufacturing delays disrupt equipment deliveries, in turn disrupting the projects’

development. By quantifying the impact of potential changes to the delivery schedule
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in a short amount of time, the model can select the schedule with the least disruptive

change. An automated approach to scheduling and allocation has the potential to

minimize costs and make prompt strategic decisions across a growing portfolio.

In this thesis, Chapter 1 introduces the company, industry, and project motivation.

Chapter 2 explains the process of developing and testing the model. Chapter 3

presents the mathematical formulation of the optimization used to automate the

solar panel allocation process. Chapter 4 shows the results of running the model with

different scenarios. Finally, Chapter 5 presents future work, additional considerations,

and a conclusion.

1.1 Background

1.1.1 NextEra Energy, Inc.

The history of NextEra Energy, Inc. [1] dates back to 1925 when Florida Power

& Light (FPL) was established to provide utility services in the state. Initially a

privately owned enterprise, FPL steadily expanded its operations and has grown to

become Florida’s most prominent electric utility, catering to more than 12 million

customers as of 2021.

With the growth in size also came an expansion in territory and capabilities. The

business that is now NextEra Energy Resources (NEER) was launched to develop,

construct, and operate renewable energy assets, such as wind, solar, and battery

projects, throughout the US and Canada. NEER is NextEra Energy’s second-largest

business and the world’s largest generator of renewable energy from the wind and

sun. Today, FPL and NEER are NextEra Energy’s principal businesses, owning over

50 GW of generation capacity [2]. Together, FPL and NEER have a net owned

20



generation capacity of more than 6.5 GW of solar energy [3].

A main difference between FPL and NEER is that the Florida Public Service

Commission (PSC) regulates the former, while the latter competes in regulated and

deregulated markets across the country. The PSC provides oversight to ensure that

FPL’s investments constitute a prudent investment of ratepayer money, and FPL

provides long-term visibility to its investment plans through a Ten Year Site Plan.

As such, the solar panel allocation model in this thesis focuses on projects from the

NEER portfolio, which tends to be more dynamic. NEER’s customers are primarily

utilities and Commercial and Industrial (C&I) companies.

1.1.2 Solar energy industry

Solar energy has been steadily penetrating the US energy market. Every year, the

share of the total energy generated by solar sources has grown. As Figure 1-1 shows

[4], the current solar energy generation is approximately 3% of the net US energy

generation at a utility-scale [5].
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Figure 1-1: US net generation by energy source [4].

In 2022, the US generated approximately 205 billion kilowatt hours of solar energy

from utility and small-scale facilities. As Figure 1-2 shows, this represents seven times

the electricity that solar sources generated in 2014.
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Figure 1-2: US estimated solar generation [4].

The solar energy industry growth is expected to continue. Since 2019, solar energy

has had the highest share of new capacity additions in the US. In 2023, solar energy

accounted for 53% of the total new capacity generation additions [6]. This massive

growth resulted from multiple causes, including government incentives, regulations,

and the steady reduction of prices because of technological improvements until 2020

[5, 7]. In particular, the weighted average cost of constructing utility-scale solar

projects dropped from nearly 4 to 1.6 thousand dollars per kilowatt from 2013 to

2020 [8].

However, the disruptions to the world supply chain that COVID-19 caused also

affected the solar panel industry. The global solar supply chain is heavily concentrated

in China. Chinese manufacturers produce every step of the solar panels, from the raw

materials like silicon and polysilicon to the actual panel modules. Factory shutdowns

and labor shortages heavily delayed panel manufacturing [9, 10]. Additionally, the

conventional downward trend in solar panels reversed. Prices skyrocketed due to
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increasing shipping and component costs. In particular, the cost of polysilicon tripled

from 2020 to 2021 [11]. The volatile pricing created uncertainty for solar project

developers, including NEER.

In the years following 2021, new trade actions limited the import of solar panels

from China into the US, mainly:

• Antidumping and Countervailing Duty (AD/CVD) [12]: The law was established

to protect US businesses from unfair competition due to unfair foreign pricing

and distorting government subsidies in 2012. In 2022, the US Department of

Commerce (DOC) investigated whether several solar module manufacturers

circumvented tariffs imposed on China. The investigation sought to determine

if suppliers had used parts of the solar panels manufactured in China and

assembled the panels in other countries to avoid the tariffs. In 2023, the DOC

ruled that some imports from Cambodia, Thailand, Vietnam, and Malaysia

circumvented the antidumping and countervailing duties. Thus, some companies

were circumventing the AD/CVD law. It also published a list of companies that

were found not to be circumventing. Solar panel imports from the investigated

countries, which account for around 80% of US imports, were halted during the

investigation [13].

• Uyghur Forced Labor Prevention Act (UFLPA) [14]: In December 2021, the

UFLPA was signed into law to prevent importing goods mined, produced, or

manufactured, wholly or in parts, with forced labor, especially from the Xinjiang

Uyghur Autonomous Region. The law was implemented in June 2022, and

more than one thousand shipments of solar energy equipment were detained

by October 2023 under UFLPA [15]. Increasingly, solar manufacturers have

been required to provide documentation affirmatively demonstrating that they

24



did not use forced labor to source the polysilicon or underlying raw materials

in their solar panels. Some manufacturers have successfully had their panels

released from customs and imported into the US [16].

The global solar industry’s heavy reliance on Chinese manufacturers and the limited

mechanisms to trace steps in the supply chain resulted in additional delays and costs.

Nevertheless, the Inflation Reduction Act (IRA) was introduced in August 2022

to accelerate the transition to clean energy, including rejuvenating US manufacturing

and supply chains for decarbonization [17]. The bill became effective in January 2023,

offering monetary incentives amounting to hundreds of billions of dollars for clean

energy [18], potentially increasing the cost competitiveness and availability of solar

panels manufactured in the US [6]. While the IRA is effective, many of the details of

its implementation are still being defined, adding complexity to which projects qualify

for the bill’s benefits [19]. In the meantime, NEER plans to develop new projects of

up to 19 GW of solar energy capacity by 2026, many of which will be eligible for tax

credits under the IRA [20].

1.2 Solar project development

At a certain point in time, multiple NEER teams are simultaneously working on

different steps to develop a solar energy project. These teams include Commercial

(Development), Contracting and Project Management (Supply Chain and Early

Stage), Construction, and Logistics. Each team has a critical task within the project

development process; they collaborate across activities, and their decisions impact

one another. Figure 1-3 presents a simplification of the development process to help

understand its intricacies.
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Figure 1-3: Solar project development process.

The development team starts by evaluating potential projects’ strategic and

financial viability and seeks out potential customers to sell the projects’ attributes

to (e.g., capacity, energy). They aim to reach commercial agreements for NEER’s

customers that allow the projects to be developed profitably. The main components of

the agreement include the details that make up a project, including the Commercial

Operation Date (COD), which refers to the date when the project will go online and

start producing energy, the amount of power that the project will produce, and the

location and price of the project. If NEER and their customer coordinate to develop

a project, a Power Purchase Agreement (PPA) is signed. PPAs are signed several

years before their COD. As such, NEER has ample time to plan for project demand.

Next, the Supply Chain team procures equipment to build the projects one to

three years in advance for all projects that NEER will develop. The contracts with

the suppliers are bulk; that is, NEER buys equipment from the same supplier for
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multiple projects. This approach helps NEER maintain collaborative relationships

with their suppliers and use their scale to have a strong negotiating position. A

contract that services various projects is a Master Supplier Agreement (MSA).

NEER uses MSAs to define overall governing terms for panel supply and develop a

general production schedule that a supplier is expected to meet. As projects receive

governance approval—signaling that the project has a risk low enough to support

entire capital investment—these MSAs are then broken down into specific Project

Supplier Agreements (PSA), which adopt the terms of the MSA. The PSAs detail the

weekly schedule, along with the supplier that will be required to deliver solar panels

to a given project. Subsection 1.2.1 details how panels are allocated from MSAs and

PSAs to the projects.

Before starting construction, NEER contracts an Engineering, Procurement, and

Construction company (EPC). NEER outsources the construction of solar projects

to the EPC, including receiving and installing solar panels. NextEra Energy’s

Engineering and Construction team oversees the EPC. Additionally, the Engineering

and Construction team manages the project’s on-site development and dictates the

EPC’s construction schedule based on the delivery schedule. Figure 1-4 shows an

illustrative view of the activities during the project’s construction.
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Figure 1-4: Solar project construction schedule.

In parallel, the Logistics team oversees the timely delivery of the equipment,

mainly solar panels, to each project. They work hand in hand with the suppliers

to monitor the factory production, track the location of different shipments, and

troubleshoot any delivery problem. The supplier produces panels and delivers them

to each site every week. Across the board, the Pricing & Analytics team supports

and communicates strategic decisions regarding project developments, including any

changes they make to the solar panel delivery schedule.

1.2.1 Solar panel allocation process

The solar panel allocation process is an iterative approach to assign suppliers to each

project and determine when the suppliers will deliver the panels. At the beginning of

the process, NEER makes high-level decisions, and as time progresses, the level of

detail increases so that exhaustive engineering and project scheduling can be completed.

There are four main steps within the solar panel allocation process: demand planning,

MSA contracting, PSA allocation, and adaption to disruptions. Figure 1-5 visualizes

these processes. All processes are done manually and simultaneously depending on
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the different project timelines.

Figure 1-5: Solar panel allocation process.

• Demand planning: This process calculates the MW that projects will need to

help the procurement team negotiate contracts. It happens three to five years

before the COD. The demand is calculated monthly and assumes that, at this

point, NEER has the potential to access an unlimited supply of solar panels. It

is a process that is agnostic of suppliers.

• MSA contracting: NEER establishes a high-level contract with the suppliers

based on the required volume to complete the projects. While they assign

projects to a contract, they are not bound to deliver the panels to the projects

in this contract. They can change the schedules and projects they deliver to

but cannot change the amount contracted for the MSA without a renegotiation.

NEER optimizes these contracts for profitability and deliverability based on

technology, geography, and price. At this stage, NEER can create an MSA with
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any supplier it wants, so it can select suppliers based on strategic supply portfolio

objectives (e.g., geographic diversification). However, there are limitations based

on the production capacity of each supplier and the panel technology.

• PSA allocation: Once the CODs of projects approach, NEER creates a detailed

schedule of weekly deliveries to the projects based on the MSA characteristics.

One MSA typically corresponds to multiple PSAs, but a PSA does not correspond

to multiple MSAs. In this step, the suppliers’ monthly capacities and the

projects’ receiving capacities limit the potential allocations. This step happens

three to eighteen months before the first deliveries of projects start.

• Adaption to disruptions: In this step, NEER modifies the schedule if deviations

occur. There are ongoing deliveries, but they cannot happen as per the contract.

The remaining volume in each MSA limits the available volume to shuffle, but

NEER can add capacity from other MSAs with extra costs. The process of

adaption happens by manually updating the schedule using heuristics. They

look at the affected projects and decide which project’s deliveries should be

prioritized based on the volume not affected by the disruption. The prioritization

is done based on PPA contractual requirements, experience, strategy, and time

to COD. Typically, volume for projects that have later deadlines is shuffled.

In extraordinary circumstances, NEER can negotiate deadlines for projects

affected by the disruption. Minor disruptions are typical and happen regularly.

Major disruptions are less frequent, but their occurrence increased starting with

the COVID-19 pandemic.

The model in this thesis focuses on PSA allocation and adaptation to disruption

steps. Note that these steps always occur simultaneously throughout NEER’s portfolio,
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as projects have different timelines. For example, some projects will be in the demand

planning step while others are in the MSA allocation step.

1.3 Problem statement

Continuing to use a manual process to create the schedule that coordinates equipment

delivery for solar projects is becoming unviable. This effort is heavily time-consuming

and unlikely to achieve optimal cost solutions. It also limits NEER’s capability to

respond promptly to the solar industry’s changes to achieve its development goals.

NEER’s pipeline for solar projects has steadily grown, and they expect it to grow

as more businesses pledge to reduce their carbon emissions. However, NEER will need

to realize this growth in a volatile solar energy industry. Not only will the scheduling

process need to incorporate a more extensive portfolio, but it will also have to be

flexible to increasingly frequent disruptions.

Since there is not an infinite supply of panels, and the projects must conform to a

set timeline, deciding the schedule to deliver solar panels has different ramifications,

including monetary, strategic, and operational impacts. The most evident consequence

is NEER’s monetary costs if the deliveries do not align with their contracts with the

customer, supplier, and EPC.

NEER has the scale and capabilities to handle these complexities. In contrast to

competitors with a single solar panel contract with one supplier, NEER sources its

solar panels from multiple contractors. As such, if there is a disruption in the supply

chain, it can adapt to those disruptions by redirecting unaffected supply to support

imminent, high-priority projects. It leads to a cumbersome, albeit functional, manual

exercise of allocating contracted supply to satisfy project demands.

This thesis proposes an optimization model that can automate the allocation
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process, which results in a schedule to deliver solar panels to the required projects.

The model seeks to produce a schedule that can minimize the total project cost

impacts of a disrupted panel supply in a timely manner.
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Chapter 2

Methodology

As previously mentioned, the various teams that collectively develop solar projects

must use the schedule to deliver solar panels. We divided the project into two phases

since we required the teams’ involvement and approval to create the model that

automated the process. The initial phase built a “sandbox” model to develop early

insights, and the second phase refined the model to generate pragmatic solutions that

better suited the company’s actual needs and context. In addition to collaboration

with key stakeholders, each phase had iterative components of data management,

cost calculation, and model development. The result of each phase was a functioning

optimization model.

Figure 2-1 shows the project timeline chart, and this chapter provides a detailed

explanation of each activity in the chart.
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Figure 2-1: Project timeline chart.

The initial phase’s “sandbox” model used a smaller dataset and had cost values

based on qualitative interviews. While the results only provided a rough approximation

to real panel deliveries, they served to gain an understanding of the problem, scope

the model, define an initial formulation, and test sample small-sized scenarios.

Additionally, by capturing the hypothesis from internal stakeholders, the optimization

helped generate interest from high-level executives. Finally, it revealed the gaps

remaining to complete the final model:

• Increase the size of the model to process the complete project portfolio.

• Add detail to overly simplified elements of the model’s formulation.

• Estimate costs with higher accuracy.

Altogether, these objectives were required to produce actionable estimates of the

minimal cost of a schedule given different disruptions to the solar supply chain. Some
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examples of the disruptions that the final model could process were the results of a

new trade action that limited the panels available for deliveries or the acceleration of

a COD for a prioritized project.

2.1 Activities within the phases

2.1.1 Cost calculation

In order to obtain cost terms for the optimization model, we identified, prioritized,

and estimated the different types of costs in both the initial and the refinement phases.

In the initial phase, we based the cost calculation on interviews with stakeholders

inside NEER; in the refinement phase, we based it on a workshop we ran with a

trusted EPC. We describe these activities next.

2.1.1.1 Initial phase: Collaboration with internal stakeholders

Before any activity, we conducted a series of interviews with internal stakeholders. The

main themes of the interviews were understanding which part of the process each team

owned, identifying the interdependencies between different teams, and investigating

the cost drivers in various parts of the processes for each team interviewed.

After we developed some parts of the model formulation, we reviewed them with

internal teams to receive feedback on how they captured the key takeaways from the

interviews. We iteratively incorporated the feedback into the model.

Identifying costs During the interviews with the internal stakeholders, we identified

elements that impacted the internal teams’ expenses. This resulted in an inventory of

potential costs that we grouped into recurring themes. This categorized list informed

35



the input for the following prioritization step. Table C in Appendix C shows the list.

We based the model’s constraints on recurring themes and simplified elements that

could cause expenses to represent the model’s costs.

Prioritizing costs Given the project timeline, not all costs identified were immediately

actionable. We used prioritization of two criteria, ease of quantification and monetary

impact, to select the costs to implement in the model. Filtering the high-scoring costs

in both criteria narrowed the project’s focus while leveraging the most financially

impactful measures to prevent costs. Figure 2-2 shows the result of the prioritization.

The costs in figure 2-2 were included in the model, and they are explained in detail

in chapter 3.

Figure 2-2: Cost prioritization with internal stakeholders.

This prioritization method resulted in some of the most impactful costs being

excluded from the base model because they were hard to quantify, perhaps making one

question the model’s validity. We included cost types like last-minute procurement,

commissioning acceleration, and termination in the final model to prevent this. The

final model can also quantify the impact of cost types like strategy towards the

supplier and the customer, COD renegotiation, and changes to project economics
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through scenario testing as described in Chapter 4. Finally, not including other cost

types like force majeures, provisions, re-permitting, and political restrictions is not a

significant concern because they occur with a low frequency.

Estimating costs The first cost estimation exercise used high-level assumptions.

There was less concern about the accuracy of the costs, but rather, the aim was to

have a working model that could directionally give cost insights. The data required

to make accurate cost estimations was scattered across different company teams, and

the effort required to collect all of that data was longer than the time allocated for

the first phase. This resulted in simplifications; for example, we calculated some

costs with averages for which project-specific or contract-specific information was

unavailable.

Without going into detail about the meaning of each cost, as we will intricately

describe them in Chapter 3, Figure 2-3 presents the costs that we estimated during

the initial phase and gives a brief description of each cost.
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Figure 2-3: Cost estimation with internal stakeholders.

2.1.1.2 Refinement phase: Workshop with EPC and follow-up sessions

During the refinement phase, we used a higher degree of collaboration with an EPC

with a strong partnership with NextEra Energy. The EPC selected for collaborative

development is one of NextEra Energy’s strategic partners for solar execution; NextEra

Energy and the selected EPC jointly navigated the trade disruptions that impacted

the US solar industry in 2021 and 2022 and gained valuable first-hand insight into

the costs that are incurred when material delivery schedules are disrupted. As such,

we replicated the cost identifying, prioritizing, and estimating steps with them in

a guided manner. The interactions with the EPC included a one-day in-person

workshop and multiple remote follow-up sessions.

During the workshop, we presented the EPC with five delivery scenarios, which

Figures 2-4 to 2-8 show. Each scenario included a planned schedule with desired
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deliveries, which are defined as deliveries where the volume remains the same each

month, there are no gaps in months delivered, and deliveries are finished with enough

time to be commissioned before the planned COD date.1 Each scenario approximates

a real disruption that NEER has observed. The scenarios included a schedule

resulting from one of the following disruptions, which we carefully constructed to be

as orthogonal as possible to test for the impact of different cost coefficients efficiently:

1. Early deliveries: The solar panels arrived three months before planned, with

some arriving before the planned mobilization (Figure 2-4).2

Figure 2-4: Early deliveries scenario.

2. Late deliveries: The solar panels arrive two months later than planned, leaving

less time to commission before the planned COD (Figure 2-5).
1Commissioning is an intensive process of testing all of the equipment at the site to confirm that

it can deliver power according to the requirements of the system it will be dispatching into. Projects
must reserve a significant amount of time for commissioning.

2The mobilization date refers to the date when the EPC starts working on a project site. Section
3.8 presents more information about the mobilization concept.
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Figure 2-5: Late deliveries scenario.

3. Compressed deliveries: No solar panels arrive in the first three months expected,

and all arrive in the remaining two months, with the majority arriving in the

last expected month. While the deliveries finish in the same month as expected,

this schedule causes logistic challenges (Figure 2-6).

Figure 2-6: Compressed deliveries scenario.
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4. Minor changes to technology: The amount of solar panels that arrive each

month is the same, but 40% of the panels have technology changes that are

considered minor. Examples of these changes are minor revisions to electrical

specifications, which do not result in changing the construction layout of the

project (Figure 2-7).

Figure 2-7: Minor technology changes scenario.

5. Major changes to technology: Similarly, the amount of solar panels that arrive

each month is the same, but 40% of the panels have technology changes that

are considered significant. Examples of these changes are major form factor

revisions, which require a different racking solution (Figure 2-8).3

3The reader can find more information about racking in A.10.3.2.

41



Figure 2-8: Major technology changes scenario.

Based on these figures, the EPC shared potential results from each disruption

that NEER team members recorded.

Identifying costs To identify costs, the EPC team brainstormed on the potential

costs that a project would face, given different disruptions. Individual team members

first identified these costs. Afterward, we gathered and combined them based on

similarities. Figure 2-9 presents an example of the individual costs resulting from the

exercise.4

4This figure’s objective is not to focus on the post-it details but rather to showcase the nature of
the ideation exercise.
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Figure 2-9: Cost ideation with EPC.

We collected 180 cost types from individual team members and combined them

into 26 cost types across the team.

Prioritizing costs We prioritized the 26 cost types that resulted in the identifying

exercise using the same criteria as in the initial phase. Recall that these criteria were

“ease to quantify” and “cost impact.” The EPC team identified eight costs as the

most important to incorporate into the final model. We incorporated these costs as

main costs or part of a cost that we had previously identified. Figure 2-10 shows the

results from this exercise.5 The criteria are labeled on each axis.
5This figure’s objective is not to focus on the post-it details but rather to showcase the nature of

the prioritization exercise.
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Figure 2-10: Cost prioritization with EPC.

This diagram was later simplified and transcribed into a digital format, shown in

Figure 2-11. In this matrix, the colors denote the disruption exercise from which the

cost resulted.

Figure 2-11: Transcribed cost prioritization with EPC.

44



Estimating costs Several insights on how the disruptions impacted costs resulted

from the workshop. One of them was that any changes to the date that panels are

delivered would affect the cost. The higher the time difference, the higher the cost

will be. Figure 2-12 shows a simplification of this idea.

Figure 2-12: Cost impact of the delivery time.

In Figure 2-12, the delivery time is on the x-axis, and the impact on the cost

is on the y-axis. The midpoint on the x-axis represents deliveries that are on time.

Everything left to the mid-point is delivered before expected and is an early delivery,

and everything on the right to the mid-point is a late delivery. Cost increases for

late deliveries are generally more impactful than cost increases for early deliveries. If

there are compressed deliveries, changes in the time delivered will cause higher costs.

Another insight from the workshop was that the impact will differ depending on

when the decision to change the deliveries is made. That is, not only is the degree of

the change critical, but the time when the NEER teams and the EPC are notified of

the change can also heavily impact the costs. The earlier the change is decided, the

more flexibility the teams have to adapt. This concept is simplified in Figure 2-13.
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Figure 2-13: Cost impact of the notification time.

As seen in Figure 2-13, the x-axis is the timing of a decision to change the schedule,

and the y-axis is the cost impact. In this case, if the decision to change is made before

the EPC is contracted, then there are no costs from the external stakeholders. The

cost gradually increases until the EPC is mobilized. Until this stage, the magnitude

of the change does not impact the cost. However, once the EPC crew has been

mobilized, a change of higher magnitude results in a higher cost. In Chapter 3, we

will explore how the model approximates the non-linearity shown in Figures 2-12 and

2-13 using piecewise linear functions.

The workshop concluded with the agreement that the EPC would help exhaustively

estimate the six essential costs that characterize the majority of the impact incurred

when panel disruptions occur. Figure 2-14 shows these costs.
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Figure 2-14: Cost estimation with external stakeholders.

Collaboratively, we defined each cost using a formula, a coefficient based on

segmentation, and a scaling unit that the EPC provided. We used the cost coefficient

segmentation when different categories of sites required different coefficients. For

example, there are some instances when changing a project’s panel bin type results in

the EPC having to create trenches to place the cables that connect the solar panels

underground. In this case, the cost would be much higher if the project site had

rocky soil than if it had sandy soil because it would require higher power equipment

to create the trenches. This is one of the segmentations we used to make the cost

coefficients more precise.

The cost scaling unit is the variable the coefficient multiplies in the model. Taking

trenching as an example, if the cost is to be calculated in an actual project, it will be

calculated by multiplying the coefficient by the meters of cable that need to be placed

underground. Since this calculation depends so much on the characteristics of each

project, the team decided to simplify the calculation by using an abstraction based on
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𝑀𝑊𝑑𝑐.6 For each 𝑀𝑊𝑑𝑐 requires a change, the EPC trenches certain meters of cable.

We can approximate this calculation for all projects using the average cable meters

trenched per 𝑀𝑊𝑑𝑐. Therefore, the cost can then be scaled with 𝑀𝑊𝑑𝑐 as a unit.

We took a similar approach to calculate the rest of the cost coefficients. In the

follow-up sessions with the EPC, an explicit formula for each cost was produced,

presented in Chapter 3 and Appendix A.

2.1.2 Model development

The main activities during the model development were the creation of the model

formulation and its translation into code. The details of this formulation are not

presented here. We present them in Chapter 3 and Appendix A. However, since

the model will be used in a real-life application that requires quickly getting to the

optimal solution, we had to make significant technical efforts to ensure that the model

could run at scale within the required time frame of less than two hours. We describe

these efforts next.

2.1.2.1 Boost processing performance

Solvers We considered two options when choosing the computational solver: CBC

(COIN-OR branch-and-cut) [23] and Gurobi [24]. The former is an open-source

solver based on the branch-and-cut algorithm. We chose it for its flexibility and easy

access[25]. CBC solved the initial problems to optimality at a fast rate. However,
6An electric current can be direct or alternating [21]. The alternating and direct currents are

abbreviated as AC and DC, respectively. Since solar panels generate electricity in the form of
direct current [22], NEER plans their projects using 𝑀𝑊𝑑𝑐 units. As the electric grid uses 𝑀𝑊𝑎𝑐,
NEER converts DC to AC using inverters to meet customer needs. They account for the loss in the
conversion by having more 𝑀𝑊𝑑𝑐 than the 𝑀𝑊𝑎𝑐 the customers are expecting. The remainder of
this thesis will use 𝑀𝑊 and 𝑀𝑊𝑑𝑐 interchangeably to refer to 𝑀𝑊𝑑𝑐.
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once the model was required to run at full scale (around 90 projects), the solving

time using CBC was more prolonged than needed (more than 2 hours), and we sought

an alternative. We chose Gurobi, a leading commercial solver. NEER was required

to complete legal and procurement processes to use Gurobi. Once they were finished,

the solver reached optimal solutions in the time magnitude of minutes despite the

problem’s scale.

Decomposition sequential approach This approach sought to break the main

problem into more basic problems and then iteratively add variables and constraints

to build the entire problem progressively. The model first found a solution to a more

straightforward problem quickly. Then, when more variables and constraints were

added to the problem, this “hot start” solution was used as a starting point to solve

the next step in the process. We constructed the sequence to add variables and

constraints into the model so that the hot starts would always be a feasible solution

for the next step, albeit perhaps not optimal. Appendix B explains the details of the

compositional sequential approach.

2.1.3 Data management

2.1.3.1 Input format

The internal data comprised the current and historical delivery schedule, the contracted

volume per supplier, the production schedule per supplier, and the cost-estimating

assumptions. We gathered these data through the interviews mentioned before with

the Pricing & Analytics project sponsor team and other internal stakeholders. The

external data were the cost-estimated assumptions resulting from the previously

described collaboration with the EPC.
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We compiled both data sources into a series of Excel spreadsheets, which served as

the input format for all parameters in the model. We used Excel for easy access and

availability to users with less coding experience. In future iterations of the project,

the input data will be uploaded into a server that is automatically updated to avoid

the need for manual computations in Excel.

The input data for the initial phase included nine projects and two types of panel

bins. We expanded the input data for the final phase into 86 projects and 31 types of

panel bins.

2.1.3.2 Preprocessing workflow

The preprocessing workflow uses R to transform the Excel input file into a format

that can be used to define the model with the given parameters. For context, the

model formulation first defines an abstract model, and only when it is populated

with parameters does it become a concrete model [26]. For example, the abstract

model could be defined as having projects in general, but the concrete model may

be determined to have projects A, B, and C specifically. This gives the model the

flexibility to change with new parameters based on an input source without having

to make changes to the code. However, the data must have a specific format, so we

developed a script during the project to adjust the input to this format.

The workflow first reads the data from Excel as a CSV into R. It then does a

series of cleaning and processing steps, including removing projects with incomplete

values and calculating implicit parameters used in the model. Figure 2-15 shows the

broad steps in the preprocessing workflow.
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Figure 2-15: Preprocessing workflow diagram.

2.1.3.3 Output workflow

We produced a series of outputs to aid the interpretation of the model results. These

consisted of tables and visualizations with the optimized schedule and the breakdown

of the costs incurred by each project. We post-processed the output in Python and

created the visualizations in Tableau. Figure 2-16 presents the output process.
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Figure 2-16: Output workflow diagram.

2.1.3.4 Reduce solution space

When increasing the size of the model in the refinement phase, we made an effort to

reduce the size of the solution search space to avoid high runtimes. Two approaches

were implemented and are presented next.

Calculate minimal big-ℳ The model uses many variables whose value is dependent

on that of another variable. These variables can be calculated using logical statements

of the form if-else. However, the if-else statements are non-linear and must be modified

for a linear program. This model uses the big-ℳ method, which is widespread in

mixed-integer linear programming, to solve for these variables. It introduces a

parameterℳ large enough to make some constraints redundant [27]. Appendix A.1

presents a detailed explanation of how this method works.

While the method is called the big-ℳ method, having a largerℳ than needed

causes problems when searching for a solution [28]. The larger theℳ is, the larger

the linear programming solution space will be. As such, for everyℳ that we used

in the model, we calculated the minimal possibleℳ so that the problem remained
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feasible. For example, the model uses a big-ℳ to determine if deliveries have been

finished for each project. In this case, the big-ℳ parameter takes the value of the

maximum deliveries that a project can have plus one.

Create sparse subsets Some sets were made more sparse to avoid using unnecessary

variables. Only the variables and constraints that could happen were declared, thereby

reducing the model size. An example of how the sparse subset of a set was created

was the delivery of certain bin types. Suppose that bin type A panels have never been

produced before the fifth period. Then, panels of this bin type cannot be delivered

to projects in the first four periods. In this case, we can remove all variables that

denote that the bin type A panels are delivered to a project in the first four periods.

Analogously, all other bin types do not need a variable pertaining to the delivery of

panels that have not been produced before. Similar efforts were made to decrease the

size of the variable sets.
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Chapter 3

Solar panel allocation model

The solar panel allocation model seeks to minimize the costs arising from creating a

new schedule after a disruption to the original schedule. This chapter progressively

introduces the components required to calculate the costs in the objective function,

including sets, variables, parameters, and constraints.

3.1 Objective function

The objective function is defined as the sum of the costs that NEER could incur due

to a disruption:
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min
∑︁
𝑝,𝑡,𝑏

𝑓(𝑥𝑝,𝑡,𝑏) =
∑︁
𝑝,𝑡,𝑏

𝑐_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏+

∑︁
𝑡,𝑏

𝑐_𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒_𝑠𝑢𝑝𝑝𝑙𝑦𝑡,𝑏+

∑︁
𝑝

𝑐_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑐𝑟𝑒𝑤𝑝+

∑︁
𝑝,𝑡

𝑐_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡+

∑︁
𝑝

𝑐_𝑙𝑎𝑡𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝+

∑︁
𝑝,𝑡

𝑐_𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝,𝑡+

∑︁
𝑝

𝑐_𝑟𝑒𝑚𝑜𝑏𝑝+

∑︁
𝑝

𝑐_𝑐ℎ𝑎𝑛𝑔𝑒_𝑡𝑦𝑝𝑒𝑝 (3.1)

where the subscripts 𝑝, 𝑡, and 𝑏 represent the project, period, and bin type that define

the solar panel deliveries, respectively.1

Based on the structure of the objective function, this chapter is divided into

nine sections, as shown in the following list, along with a short description of the

components of each section.

3.2 Delivery basics: Presents the fundamental delivery variables in the model

and primary constraints tied to them. The model derives all other variables

and constraints from those in this section. 𝑐_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 is included in this

section.
1These subscripts are defined in detail in the next section.
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3.3 Minimum MW per bin type and form type: Introduces the components

that ensure that projects receive at least the minimum amount of MW per bin

type and form type depending on the characteristics of the project.

3.4 Supplier capacities: Defines the components that handle the potential

decisions arising from a supplier with limited or surplus production capacity.

𝑐_𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒_𝑠𝑢𝑝𝑝𝑙𝑦𝑡,𝑏 is defined in this section.

3.5 Changes to the weeks that the EPC crew works: Incorporates the

concept of work weeks and shows how changes in the deliveries can affect the

number of planned work weeks (𝑐_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑐𝑟𝑒𝑤𝑝).

3.6 Compressed deliveries: Calculates the cost of delivering too many MW

to a project in a limited time (𝑐_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡).

3.7 Late deliveries: Implements the logic required to address the consequences

of deliveries arriving later than expected due to a disruption (𝑐_𝑙𝑎𝑡𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝).

3.8 Early deliveries: Implements the logic required to address the impact

of deliveries arriving on a date earlier than expected due to a disruption

(𝑐_𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝,𝑡).

3.9 Remobilization: Introduces the constraints to compute the cost of not

having deliveries for multiple periods, resulting in having to demobilize the

workforce first to remobilize it again later (𝑐_𝑟𝑒𝑚𝑜𝑏𝑝).

3.10 Bin type changes: Explains how the model builds the capabilities so

that projects can exchange panels between projects, discard panels, and buy

new ones (𝑐_𝑐ℎ𝑎𝑛𝑔𝑒_𝑡𝑦𝑝𝑒𝑝).
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This chapter describes the costs that are part of the objective function in its

remainder. Appendix A gives a more detailed explanation of the concepts presented

in this chapter. Figure 3-1 can help the reader visualize the key milestones a project

goes through and how the milestones segment the costs in each section.
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3.2 Delivery basics

The model’s fundamental variables determine when and how many panels from each

supplier should be delivered to each project to produce the output delivery schedule.

We call these variables 𝑥, and all other variables depend on them. The subsequent

sets index the 𝑥 variables:

• Set P, a list of the names of projects 𝑝 to which the suppliers deliver panels.

• Set T , which is a list of the periods 𝑡 ∈ Z during which the decisions in the

model take place.2

• Set B, which represents the bin type 𝑏 for solar panels. A bin type classifies

the solar panels to be delivered based on the supplier’s name, watts per module,

and production year.

Based on these index sets, 𝑥𝑝,𝑡,𝑏 ∈ R≥0 represents the MW allocated to project 𝑝

in time 𝑡 using panels with bin type 𝑏.3

3.2.1 Pre-negotiated contracts and new procurement

Using the 𝑥 variables as a base, we add more constraints to the model. We determine

if the panels sent to a project come from a pre-negotiated contract or directly from a

supplier without a pre-existing contract. In other words, a project has two potential

sources to receive MW: the negotiated volume or the new volume the project buys.

The model introduces these sources using the variables 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 and
2This thesis uses months as the periods. However, other periods, including weeks and days, could

be used with the same model formulation.
3More details about bin types and how they impact the design of a project site are presented in

Appendix A.10.2.
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𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏. Explicitly, 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 ∈ R≥0 is the amount of MW

sourced from a contract and allocated to project 𝑝 in time 𝑡 using panels with bin

type 𝑏. 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 ∈ R≥0 is the amount of MW bought outside of a contract

and allocated to project 𝑝 in time 𝑡 using panels with bin type 𝑏. They constrain the

𝑥 using:

𝑥𝑝,𝑡,𝑏 = 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 + 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 ∀𝑝, 𝑡, 𝑏 (3.2)

The model does not account for the solar panel cost since NEER already negotiated

and paid for the 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 volume.4 Across every period, we introduce

the ensuing constraint to ensure that projects cannot source more MW from a contract

than those that are actually in the contract:

∑︁
𝑝,𝑡

𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 ≤
∑︁
𝑝,𝑡

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 ∀𝑏 (3.3)

Without constraint (3.3), a project could source unlimited free volume.

On the other hand, NEER still needs to pay a cost associated with 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏.

The model estimates it using the variable 𝑐_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 ∈ R≥0, defined as the cost

of buying new panels with bin type 𝑏 outside of a contract to deliver them to project

𝑝 in time 𝑡.

We calculate the cost of buying additional MW outside of a contract by multiplying

the amount of MW that projects bought times a cost coefficient. The model defines

this cost coefficient as 𝑐𝑜𝑒𝑓𝑓_𝑛𝑒𝑤_𝑏𝑢𝑦𝑡,𝑏 ∈ R≥0, or the cost per MW of buying solar

panels outside of a contract from a supplier with the production capacity to deliver
4While the cost of these panels may not truly be sunk, the assumption is that the financial and

reputational cost to terminate these panels and re-procure is such that NEER will always prefer to
utilize existing contracts before adding incremental contracted volume.
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panels with bin type 𝑏 in time 𝑡. That is, the cost of buying new deliveries has a

linear relationship with the volume bought. With this in mind, the model calculates

𝑐_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 with the constraint:

𝑐_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 = 𝑐𝑜𝑒𝑓𝑓_𝑛𝑒𝑤_𝑏𝑢𝑦𝑡,𝑏 · 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏, ∀𝑝, 𝑡, 𝑏 (3.4)

3.2.2 Minimum delivery

The 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑎𝑚𝑜𝑢𝑛𝑡 ∈ R+ parameter states the minimum amount of MW of

each bin type 𝑏 that can be delivered to any project at any time 𝑡. Since the unit for

𝑥 is MW and not a number of panels, we want to avoid situations where the model

allocates unrealistically low MW to a project.

We constrain the model to allocate at least this minimum amount of MW if it

allocates any panels to any project in a certain period. In other words, deliveries

will be either 0 or a value greater than or equal to the minimum amount, avoiding

deliveries of an unrealistically small MW amount. The reader can find details behind

the use of MW as a unit and the constraints that enforce the minimum delivery logic

in Appendix A.2.1.

3.2.3 Past decisions

Another aspect that the model takes into account is that some decisions have been

made in the past that cannot be changed after the model runs. For example, the

model cannot change past deliveries to a project. As such, it introduces the parameter

𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ Z≥0, which is the period at which the algorithm runs. Periods smaller

than 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 are in the past, and periods larger than 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 are in the future.

Generally, the model can only make decisions for periods in the future.
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To enforce the logic of past deliveries, the model uses the 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 variables.

The model defines 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡,𝑏 ∈ R≥0 as the amount of MW a supplier delivered

to project 𝑝 using panels with bin type 𝑏 in time 𝑡. If a period is in the past, then

the MW that a project allocates in the model should be exactly equal to what it

delivered during that period.

𝑥𝑝,𝑖,𝑏 = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑖,𝑏 for 𝑖 = 1, ..., 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡, ∀𝑝, 𝑏 (3.5)

Notice that the 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡,𝑏 variables help reduce the decision space because they

constrain 𝑥 to a single value. Similarly, a project cannot buy new MW of a bin type

if a period has passed:

𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑖,𝑏 = 0 for 𝑖 = 1, ..., 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡, ∀𝑝, 𝑏 (3.6)

3.2.4 Completing projects

We introduce the concept of whether NEER can and should complete all projects.

If a project receives all the MW required, we say we complete it. In other words,

each project has a required total number of MW to receive to complete, or NEER

must terminate the project. We say we terminate the project if it gets less MW than

needed. The parameter 𝑀𝑊𝑝 ∈ R≥0 defines the number of MW worth of panels to

complete project 𝑝, also known as project demand.

To track if the model terminates projects or not, it defines the 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 ∈ {0, 1}

binary variable, which takes the value of 1 if the model recommends terminating

project 𝑝 and 0 if it recommends completing it. The model introduces the concept
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with the subsequent constraint:

∑︁
𝑡,𝑏

𝑥𝑝,𝑡,𝑏 ≥𝑀𝑊𝑝 · (1− 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝) ∀𝑝 (3.7)

On the left-hand side of the constraint, we have the MW that project 𝑝 will receive

from all of the suppliers in all periods. If the sum equals or exceeds the MW required

to complete the project, the variable 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 can take values one or zero. It is

unconstrained. However, if 𝑝 receives less MW than required to be completed, then

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 will necessarily equal one. The termination of a project results in a high

cost. We will dive into its details in a future section.

3.3 Minimum MW per bin type and form type

In most cases, a project contracts only panels with one bin type. Having one bin

type simplifies many aspects of the project development process. For example, the

delivery routes are the same for all panels, the entire project has the same hardware

and electric requirements, and the installing crew does not need to learn installation

nuances specific to different bin types.

However, there are instances in which having multiple bin types in one solar site

can be beneficial or even necessary. An example would be if NEER can no longer

import panels with a particular bin type for a project that has already had deliveries.

In this case, NEER would need to import new panels with a different bin type to

complete the project. As we allow some flexibility for projects to have panels with

varying bin types, it is crucial to avoid a situation where we have an excess of bin types

with very little MW. This section introduces the constraints that handle situations

like the one just mentioned.
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Additionally, we introduce a new concept: the panel form type. A form type

classifies the panels to be delivered based on the watts per module and the panels’

paradigm or shape. The set F encodes the list of form types used in the model. A

form type is a broader category that can classify multiple bin types under it. In other

words, the model can classify several bin types under the same form type, but it

cannot classify several form types under the same bin type.

3.3.1 Minimum MW per bin type

First, we introduce the parameter 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 ∈ R+, which is the threshold that

establishes how many MW per bin type is each project’s minimum. In other words,

if a project receives any MW from a bin type, it has to receive at least 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛.

The following example can help us visualize the logic behind the constraints in

this section. Suppose we complete projects A, B, and C with 140MW, parameter

𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 = 40, and the projects can receive panels with bin type 1, 2, or 3. Table

3.3.1 and Figure 3-2 illustrate how the projects allocate the volume by bin type.

𝑝
∑︀

𝑡 𝑥𝑝,𝑡,1

∑︀
𝑡 𝑥𝑝,𝑡,2

∑︀
𝑡 𝑥𝑝,𝑡,3

A 140 0 0

B 52 48 40

C 120 0 20

Table 3.3.1: Example of a schedule of three projects with deliveries of different bin
types.
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Figure 3-2: Example of a schedule of three projects with deliveries of different bin
types.

In this example, projects A and B have a valid allocation. Project A uses only

bin type: bin type 1. It is not a problem since the bin type it uses receives more MW

than the minimum (140 > 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 = 40). Project B uses all bin types: 1, 2, and

3. Again, this is not a problem since it receives more than the minimum MW with

all bin types. However, project C does not have a valid allocation since it is trying to

receive 20MW, which is less than the minimum. In Figure 3-2, the stacked bar from

project C and bin type 3 is below the red 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 line. We can generalize this

visualization into a rule where every positive bin type amount must touch the red

𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 line for a project’s allocation to be valid. If an amount is below the line,

then it must be zero.

Although this concept is simple, there are some exceptions to consider, which

result in the following rule: for every bin type a project uses, it must receive at least

the minimum established quantity unless it has less than the minimum quantity

overall, or it must have a contract that states otherwise. The reader can find the
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constraints that implement this rule in Appendix A.3.1.

3.3.2 Minimum MW per form type

Similar to the previous subsection, projects prefer to have panels with one form

type, but there is flexibility in having multiple form types. All constraints for the

minimum MW per form type follow the same structure as the minimum MW bin

type constraints with some modifications. Additionally, a project must receive at

least the minimum established quantity per form type for every form type it uses

unless it has less than the minimum quantity overall, or it must have a contract that

states otherwise. We present the constraints to codify the minimum MW per form

logic in the model in Appendix A.3.2 to avoid repetition.

3.4 Supplier capacities

In a given period, a supplier might have the capacity to produce fewer solar panels

than it had initially planned. Its production might be limited by external causes

like weather or trade controls or by internal causes like the efficiency in a factory.

Limitations can result in the supplier’s failure to deliver part of its contract. In

parallel ways, its production may be increased. Therefore, NEER’s deliveries can be

limited by a supplier’s restricted production, but they can also be expanded using

the supplier’s overcapacity.

The main cost in this section is 𝑐_𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒_𝑠𝑢𝑝𝑝𝑙𝑦𝑡,𝑏 ∈ R≥0, which is defined as

the cost per MW of expediting the delivery of panels with bin type 𝑏 so that the

supplier can deliver them in time 𝑡. The cost of expediting deliveries scales linearly in

the expedited volume. Expediting deliveries is different from procuring new supplies
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because the expedited deliveries use volume that is part of the pre-negotiated contract.

While there is a cost of expediting panel deliveries since the supplier will have to rush

to ship them before they are established in the contract, it tends to be less than the

cost of procuring new panels.

The rest of this section introduces two examples to capture the volatility of the

suppliers’ production capacities and the costs that arise from it.

3.4.1 Limited supply

First, suppose that a project that is complete with 160MW and a supplier that sends

40MW in periods 1 to 4 (illustrated in Figure 3-3).

Figure 3-3: Example of a simple schedule without a disruption.

Suppose that in period 4, one of the machines in the supplier’s factory broke

down, and they could not send the scheduled 40MW, so they sent them in period 6

(illustrated in Figure 3-4).
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Figure 3-4: Example of a simple schedule with a disruption.

Then, in this example, the project could not receive the scheduled MW because

of the supplier’s production capacity limitations. We introduce the parameters

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 and 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 to model instances similar to the example.

Specifically, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 ∈ R≥0 is the amount of MW the suppliers expect

to produce and have ready for delivery in time 𝑡 to any project using panels with bin

type 𝑏. Note that 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 is not related to any specific project, but

it is the overall supply of that bin type in time 𝑡. 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 ∈ R≥0 is the amount

of MW project 𝑝 contracted for delivery in time 𝑡 using panels with bin type 𝑏. We

also introduce the constraint coming up to ensure that the model does not allocate

more MW across all projects in any period than the overall expected production for

each bin type:

∑︁
𝑝

𝑥𝑝,𝑡,𝑏 ≤ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 ∀𝑡, 𝑏 (3.8)

In the example illustrated by Figure 3-4, we would have the values for the

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 and 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 and the variable 𝑥 shown in Table 3.4.1.
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𝑡 1 2 3 4 5 6

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 40 40 40 0 0 40

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 40 40 40 40 0 0

𝑥𝑝,𝑡,𝑏 40 40 40 0 0 40

Table 3.4.1: Values of an example of a simple schedule with a disruption.

3.4.2 Expedited contract supply

In the previous scenario, the supplier owed the project 40MW in period 6, so it did

not charge an additional cost for that delivery. Let us explore a scenario where the

supplier can meet its delivery obligations for this and future periods. Again, the

project is complete with 160MW, and the supplier schedule is to send 40MW in

periods 1 to 4. However, in this example, the model decides that delivering all panels

in period 1 is better, and the supplier can do so. Figure 3-5 illustrates this example,

and Table 3.4.2 presents its values.

Figure 3-5: Example of simple schedule with expedited deliveries.
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𝑡 1 2 3 4

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 360 360 360 360

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 40 40 40 40

𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 160 0 0 0

Table 3.4.2: Values of an example of a simple schedule with expedited deliveries.

For additional explanations of how the 𝑐_𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒_𝑠𝑢𝑝𝑝𝑙𝑦𝑡,𝑏 variable is calculated,

refer to Appendix A.4.1.

3.5 Changes to the weeks that the EPC crew works

When an EPC is contracted, NEER shares the original delivery schedule with them

so that they can plan the size of the work crew they require in each period to receive

and install the solar panels and commission the project. If there is a disruption, the

labor necessary for product development will likely change. However, the EPC tends

to have the flexibility to move crews around to different projects, resulting in fewer

additional costs for NEER. On a high level, NEER incurs a fee related to the work

crew if it makes changes that result in more crews than they had initially contracted.

The model uses the “work weeks” unit to standardize the number of crews needed

to receive and install the panels in all the costs related to additional labor. A work

week captures the labor required to receive and install a certain number of solar

panels in one week. Typically, a standard crew can receive and install 10MW in one

week. As such, contracting one work week is equivalent to hiring a crew to receive

and install 10MW. Two work weeks would be required to receive and install 20MW.

Depending on the project’s needs, the same amount of work can be done in more or

less periods. That is, installing 20MW can be done in one week if two crews work
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simultaneously or in two weeks if one crew is working each week, but both cases have

used two work weeks.

The model calculates the cost of additional labor required for each project based

on additional work weeks, inefficiency weeks, and weeks where commissioning needs

to be accelerated. Figure 3-6 shows a timeline of when each labor cost is activated.

Figure 3-6: Work weeks costs timeline.

To summarize these concepts, the model uses the 𝑐_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑐𝑟𝑒𝑤𝑝 ∈ R≥0
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variable and determines it through the following constraint:

𝑐_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑐𝑟𝑒𝑤𝑝 =

𝑐𝑜𝑒𝑓𝑓_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 · 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝+(︃∑︁
𝑡

𝑐𝑜𝑒𝑓𝑓_𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑒𝑠 · 𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡

)︃
+⎛⎜⎜⎝ ∑︁

𝑡>𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑡≥𝑡_𝑐𝑜𝑚𝑚𝑝

𝑐𝑜𝑒𝑓𝑓_𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔_𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 · 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡

⎞⎟⎟⎠
∀𝑝 (3.9)

The cost coefficients that partake in the previous constraint are:

• 𝑐𝑜𝑒𝑓𝑓_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 ∈ R≥0 is the cost of hiring an additional crew

for one week’s work.

• 𝑐𝑜𝑒𝑓𝑓_𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑒𝑠 ∈ R≥0 is the cost of having one week’s worth of work with

inefficiencies. A period has inefficiencies if it is after or during the inefficiency

period (𝑡_𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) and requires more work weeks than contracted initially.

• 𝑐𝑜𝑒𝑓𝑓_𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔_𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∈ R≥0 is the cost of hiring a crew for

one week’s work to accelerate the commissioning. A project must accelerate

the commissioning if it has deliveries after the commissioning start period

(𝑡_𝑐𝑜𝑚𝑚).

Appendix A.5 explains how the components of the 𝑐_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑐𝑟𝑒𝑤𝑝 variable are

calculated, and it presents an example that captures the compilation of the concepts

in this section.
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3.6 Compressed deliveries

Having more deliveries than expected affects how the EPC installs panels. If the

project crew is tasked with receiving more panels than they usually manage, they

will need to compress the deliveries. Compressing deliveries in this context means

implementing measures allowing a crew to receive more MW than anticipated. Some

examples of these measures are digging ground trenches to place the cables that

connect the panels underground (these typically go above ground) and working

overtime.

There is a maximum delivery size in MW beyond which the model defines deliveries

as compressed. It is defined in the model using the 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ parameter.

In Figure 3-7, we show an example of compressed deliveries where the area shaded

with red represents the zone with compressed deliveries. A period can receive a

maximum of 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ MW in one period without incurring a cost for a

high volume of deliveries.

Figure 3-7: Example of compressed deliveries in a project schedule after a disruption.
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It is worth noting that while a project may want to receive a large amount of

MW, there is a limit to the MW it can receive per period. In other words, a project

can receive up to a set amount per period, even if the project is willing to pay an

additional cost. The threshold of the maximum amount of MW a project can receive

in one period is 𝑚𝑎𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑒 ∈ R+.

That way, 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ acts as a soft maximum for the number of MW

a project can receive in one period, whereas 𝑚𝑎𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑒 is a hard maximum. In

other words, NEER can pay for delivery sizes that exceed 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ but

cannot exceed 𝑚𝑎𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑒 under any circumstance. By definition, 𝑚𝑎𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑒 ≥

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ. Figure 3-7, along with the rest of the constraints used to

calculate the cost of compressed deliveries, 𝑐_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡, are explained in more

detail in Appendix A.6.

3.7 Late deliveries

The model includes two costs resulting from having delays in panel deliveries:

Liquidated Damages (LD) and termination. The LDs refer to the penalty that

NEER has to pay to a customer if they do not finish a project by the contractual

COD. Not finishing a project results in a breach of contract, so NEER monetarily

compensates the customer by paying LDs every period NEER is late. The termination

penalty is the compensation that NEER has to pay the customer if they do not finish

the project, that is, if they terminate the project. We define a project as terminated

if it does not finish deliveries by the outside COD. Figure 3-8 shows the timeline of

when NEER incurs each cost.

75



Figure 3-8: Late deliveries cost timeline.

Appendix A.7 analyzes the costs of LDs and termination penalties in detail.

3.8 Early deliveries

Suppose a project makes deliveries before the EPC mobilization date, which we define

as the date the EPC arrives on-site, as paid by NEER. In that case, the supplier

must deliver the panels to a warehouse because the EPC does not yet have access to

the solar site. Since the MW are stored in a warehouse, NEER will have to pay for

cumulative deliveries each month. The cumulative nature of the cost results from

the MW needing to be stored in the warehouse from their delivery until the EPC

has access to the project site. So, if a project stores 10 MW starting period 1 and

the EPC mobilization date is in period 5, it will have to pay to store 10 MW for five

periods.

Suppose a project receives deliveries before its first contracted delivery period.

In that case, the EPC will need to build a laydown yard since the assigned location

for the panels will not be ready. A laydown yard is an empty plot of land inside

the project where the EPC can unload the solar panel packages from the containers
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where they arrived. It tends to be a large yard towards the far edges of a project.

The cost of a laydown yard is not cumulative because once the EPC builds it, it can

store MW for as many periods as needed.

Visually, the costs of having early deliveries can be seen in the timeline in Figure

3-9.

Figure 3-9: Early deliveries cost timeline.

Appendix A.8 details the parameters, variables, and constraints that calculate

the costs of early deliveries.

3.9 Remobilization

There are instances when a project may stop receiving solar panels for several periods.

If this happens, the EPC may need to dismiss or demobilize part of its workforce.

When deliveries start again, the EPC will have to rehire this workforce to remobilize

it. Remobilizing the workforce may require the EPC to pay a premium on top of the

standard salaries. Typically, if the workforce demobilization lasts for two months or

more, the work crew will have sought supplementary jobs elsewhere. The EPC pays

the premium to rehire the crew back into the project.
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The formal definition of a remobilization in the model is an instance where all of

the following three conditions occur:

• A project has a delivery in this period 𝑡.

• The project had already had deliveries in previous periods.

• The project did not have a delivery for a certain number of consecutive periods,

2 periods in this thesis, in the immediate last periods.

ℎ𝑎𝑠_𝑟𝑒𝑚𝑜𝑏_𝑔𝑎𝑝𝑝,𝑡 ∈ {0, 1} is the binary variable that indicates if all three previous

conditions happen to project 𝑝 in time 𝑡.

The overall remobilization costs scale with the number of remobilizations a project

has. In other words, every time a remobilization in a project happens, the project

incurs a cost. The 𝑐_𝑟𝑒𝑚𝑜𝑏𝑝 ∈ R≥0 variable calculates the total cost incurred due to

project 𝑝 remobilizations. The constraint that enforces the logic for 𝑐_𝑟𝑒𝑚𝑜𝑏𝑝 is:

𝑐_𝑟𝑒𝑚𝑜𝑏𝑝 = 𝑐𝑜𝑒𝑓𝑓_𝑟𝑒𝑚𝑜𝑏𝑝 ·
∑︁
𝑖

ℎ𝑎𝑠_𝑟𝑒𝑚𝑜𝑏_𝑔𝑎𝑝𝑝,𝑖 for 𝑖 > 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡, ∀𝑝

(3.10)

where 𝑐𝑜𝑒𝑓𝑓_𝑟𝑒𝑚𝑜𝑏𝑝 ∈ R≥0 is the cost of remobilizing project 𝑝 after stopping

deliveries for 𝛿_𝑟𝑒𝑚𝑜𝑏𝑝 periods. The details of how the variables in this section are

calculated are in Appendix A.9.

3.10 Bin type changes

There are some instances where NEER may want to send a different number of solar

panels of a particular bin type to a project than the one they contracted for that
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project. For example, if a project urgently requires deliveries but its supplier has

delays, NEER can send panels from a different supplier (and, as such, a different bin

type) to the project.

NEER has well-established relationships with its suppliers and has significant

flexibility in the delivery location for its contracts. Therefore, NEER can reroute

panels to different projects without incurring a cost from the adjustments that the

suppliers make to deliver the panels. However, the EPCs have less flexibility in

adjusting to bin type changes. The costs that NEER will incur from changing a bin

type result from the adjustments that the EPCs have to make. These include change

orders and reracking costs, as shown in Figure 3-10.

Figure 3-10: Type changes costs timeline.

Change orders When NEER signs the project construction contract with an EPC,

they establish the solar panels the project will use in the contract. The EPC makes

plans for the project based on the panels in the contract, which include calculations

around the project’s electrical requirements and drawing the project’s map. So, if

NEER needs to make a bin type change, the EPC will have to redo some of their work.

The process of including the modifications of the bin type changes in a document is

called a change order. There is a cost associated with every change order. If NEER
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makes a bin type change after contracting the EPC, they will incur a change order

cost. A change order has a fixed cost, regardless of the MW worth of panels that

change. If they change the bin type before contracting the EPC for the project,

NEER can avoid the change order cost.

Reracking costs Before the EPC installs a project’s solar panels, they need to

install the racking equipment for the project. The racking equipment is the foundations

that hold the solar panels in place [29]. Each panel bin type uses different rackings as

each has a different shape and size. Therefore, if a project changes a bin type after the

EPC installs the racking, the EPC will have to adjust the racking equipment. They

will likely have to make other adjustments, but we include the cost of the different

adjustments in the racking costs to simplify the model. The cost of reracking will

vary depending on the level of change that the EPC needs to make to the racking

equipment. If NEER decides to make the bin type changes before placing the racking,

they do not pay reracking costs.

Timing of the changes As mentioned, a project may incur change orders and

reracking costs depending on when the model runs. There is no cost if a bin type

change happens before the EPC hiring. If the change occurs after the EPC hiring

but the racking has yet to start, then there is only a change order cost. If the change

occurs after the racking starts, there is a change order and a reracking cost. This

timing concept alludes to cost non-linearity visualized in Figure 2-13.

To gather the change orders and the reracking costs, we introduce the variable

𝑐_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝 as the total cost project 𝑝 incurs because of changes it had to receive
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panels with different bin types than initially anticipated. We calculate it with:

𝑐_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝 = 𝑐𝑜𝑒𝑓𝑓_𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑟𝑑𝑒𝑟𝑝 · 𝑛𝑒𝑒𝑑𝑠_𝑐ℎ𝑎𝑛𝑔𝑒_𝑜𝑟𝑑𝑒𝑟𝑝+
∑︁
𝑏

𝑐_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏 ∀𝑝

(3.11)

Appendix A.10 presents the elements required to enforce constraint (3.11).

In summary, this chapter presented the objective function of the model along

with a description of the costs that comprise it. The next chapter will apply these

concepts to different scenarios.
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Chapter 4

Implementation and results

The main criterion for evaluating the model’s performance was the runtime required

to reach an optimal solution. As a baseline, we assumed that creating a manual

schedule takes ten to twelve working hours. We established that a suitable runtime

would be less than two hours long. A supplemental evaluation criterion was the

cost that the optimal model calculated. The costs in the model are directional, and

the reader should not interpret them as estimations of the actual costs. However,

evaluating if the model’s proposed schedule costs align with NEER’s expectations

serves as an audit for the schedule’s validity.

We ran three different scenarios to evaluate the model:

1. We derived an optimal schedule based on actual production expectations and the

planned NEER solar project portfolio, and we evaluated it against a schedule

that the NEER team manually created.

2. We removed the entire production of one supplier to simulate a manufacturing

delay disruption.
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3. We modified the CODs of some projects to simulate a reprioritization of contracts

by accelerating the COD of one project and delaying the COD of three others.

In all three scenarios, the model took less than 15 minutes to find the minimal

cost schedules.1 These results signify success since the model produced a potential

schedule with minimal, albeit directional, costs in a fraction of the time it would take

to make a manual schedule.

This chapter describes the dataset we used to define the model’s parameters and

presents the model implementation’s results in detail for each of the scenarios.

4.1 Implementation

Description of data We collected the data required to run this exercise from the

NEER team. This thesis modifies the names of the projects and suppliers and does

not include many parameters we used in the model to preserve confidentiality. Table

4.1.1 shows the size and elements of each set in the model.
1The NEER team continued to test the performance of the model beyond the scenarios presented

in this thesis. In the scenarios that they tested, most runtimes were around 30 minutes, with a
minimum of 5 minutes and a maximum of 60 minutes.
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Set Description Elements Size

P Projects

𝐴𝑀 , 𝐴𝑆, 𝐶𝑊 , 𝐶𝑉 , 𝐶𝑃 , 𝐶𝑂, 𝐷𝐸, 𝐷𝑆, 𝐷𝐵,

𝐸𝑋, 𝐹𝐹 , 𝐹𝑇 , 𝐹𝑉 , 𝐹𝐶, 𝐹𝐺𝐴, 𝐹𝐺𝐼, 𝐹𝑆𝐵,

𝑇𝑈 , 𝐺𝐴, 𝐺𝑅𝐼, 𝐺𝑅𝐼𝐼, 𝐺𝑅, 𝐺𝐿, 𝐺𝑅𝐸, 𝐻𝐼,

𝐾𝐶, 𝐾𝑀 , 𝑀𝐴, 𝑀𝑂𝐼, 𝑀𝑂𝐼𝐼, 𝑁𝑀 , 𝑃𝐸, 𝑃𝐵,

𝑃𝐶, 𝑅𝑈 , 𝑆𝐸𝐼, 𝑆𝐸𝐼𝐼, 𝑆𝐼, 𝑆𝐾, 𝑆𝐿𝐼, 𝑆𝐿𝐼𝐼,

𝑆𝑇 , 𝑇𝑅, 𝑇𝐵, 𝑊𝐴, 𝑊𝑇𝐼, 𝑊𝑇𝐼𝐼, 𝑊𝐶, 𝑊𝐺,

𝑊𝑀 , 𝑊𝑊 , 𝑊𝐼𝐼, 𝑌 𝐴, 𝑌 𝑃𝐼𝐼, 𝑌 𝑃𝐼𝐼𝐼, 𝑌 𝑃𝐼𝑉

56

T Periods 1, 2, ..., 36 36

B Bin types
𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3, 𝐶1, 𝐶2, 𝐷1, 𝐷2, 𝐸1,

𝐺1, 𝐺2
13

F Form types 𝐹1, 𝐹2, 𝐹3, 𝐹4 4

Z
Unallocated project

representation
By definition: 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 1

G
None bin type

representation
By definition: 𝑁𝑜𝑛𝑒 1

Table 4.1.1: Size and elements of the model sets.

We assumed that no periods were in the past. That is, we assumed that

𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 0. As such, we did not restrict the model to making decisions in

any period. As previously mentioned, we use months for the periods in this thesis.

The Gantt chart in Figure 4-1 shows the values for the suppliers’ expected production

parameters.
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Figure 4-1: Values of the 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 parameter.

The Gantt chart in Figure 4-2 presents the parameter values for the volume that

each project contracted. All but one of the projects source their panels from one bin

type, as it is simpler to manually allocate one bin type per project.
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Figure 4-2: The 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 parameter values.
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Note that as time progresses, the projects start to phase out some bin types (e.g.,

𝐵1). As solar panel technology improves, projects have fewer incentives to keep using

older bin types.

To analyze the volume in the system, we can plot the 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 and

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 parameters in the same graph and compare them, as is done in Figure

4-3. In Figure 4-3, the colored bars represent the MW of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏, and

the horizontal black dash represents the MW of 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏.

For every period in Years 1 and 2, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 = 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏. In

those years, the projects contracted all suppliers’ available production. Year 3 has

1000 MW of additional bin type 𝐹2 production volume. So, in Year 3, the system will

have 1000 MW for projects to buy (i.e., the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 abstraction will have a value

of 1000 MW for the 𝑡𝑎𝑟𝑔𝑒𝑡𝑝,𝑏 parameter2 for more information on the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

abstraction and the 𝑡𝑎𝑟𝑔𝑒𝑡𝑝,𝑏 parameter). The last year has more volume because the

bin type 𝐹2 supplier has enough time to ramp up its production if needed.

2See Appendix A.10.1
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Figure 4-3: Comparison between the 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 and 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏
parameters.
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4.2 Results

4.2.1 Scenario: Actual production expectations

In the first scenario, we compared the optimal schedule that the model produced to

one that the NEER team had manually crafted based on actual supplier productions.

We deliberately abstained from introducing any major disruptions to the supplier

production to evaluate the model in a quotidian environment.

The runtime to produce the optimal schedule was 473 seconds. Even without a

major supply chain disruption, the algorithm finds a schedule with lower costs than

the manual schedule, as Figure 4-10 presents.

Figure 4-4: Comparison of the costs from the manual and optimal schedules by cost
category.
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The manual schedule we used as a baseline is equivalent to the 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏

parameter values. It is the schedule that the team was using to coordinate the deliveries

at the moment that we developed the model. While it might be counterintuitive, this

schedule has costs because it is not optimal according to the model. The suppliers

face changes to their production regularly, and NEER has to adapt its schedule to

these. As such, the schedule that determined the 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 parameter results

from adapting to changes in a sub-optimal way. Figure 4-5 shows the costs of the

baseline schedule.

Figure 4-5: Costs of the baseline schedule by project and cost category.

Figures 4-6 and 4-7 present the optimal schedule from the optimization.
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Figure 4-7: 𝑥𝑝,𝑡,𝑏 variable values (Part 2 of 2).

A difference when comparing the optimal solution to the manual solution is that

the projects use up to five different bin types in the optimal schedule, for example, in

projects 𝐸𝑋 and 𝑃𝐶. Additionally, the optimal schedule tends to have more projects

with delivery gaps of one month, such as projects 𝐹𝐺𝐴 and 𝐹𝐶. No project has

more than one month’s gap, avoiding a remobilization cost. Figure 4-8 shows the

manual and optimal schedule for project 𝐹𝐺𝐴 based on the portfolio optimization.
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In it, we can visualize how the deliveries of project 𝐹𝐺𝐴 result in a gap in deliveries.

Figure 4-8: Manual and optimal schedules for 𝐹𝐺𝐴 project.

The model is pushing for earlier and larger deliveries. Take the example of project

𝑆𝐸𝐼. In the manual schedule, this project had stable deliveries of 45 MW most

months for seven months. In the optimal schedule, project 𝑆𝐸𝐼 has more than

100 MW deliveries in periods 9 and 10. It is not the only project where the model

compresses the deliveries towards earlier months. Since the EPC can compress the

deliveries before the inefficiency threshold date without an added cost, the project

does not incur a cost despite receiving a high volume of panels. Figure 4-9 compares

the manual and optimal delivery schedule for project 𝑆𝐸𝐼.
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Figure 4-9: Manual and optimal schedules for 𝑆𝐸𝐼 project.

The observation that the model is pushing for earlier and larger deliveries aligns

with the categories of the costs for the optimal schedule: early deliveries and

compressed deliveries. Figure 4-10 visualizes the incurred costs based on the model

optimization.
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Figure 4-10: Costs of the optimal schedule by project and cost category.

4.2.2 Scenario: Remove one supplier’s production

As mentioned in Chapter 1, a DOC investigation of the AD/CVD circumvention

halted more than 80% of the solar panel imports in 2022. The disruption affected all

solar project developers. To understand the flexibility that the optimization model

would give NEER in a similar situation, we analyzed the results of removing all of the

volume of the 𝐸1 supplier from the system. Figure 4-11 compares the contracted and

expected production volumes of bin type 𝐸1 by plotting the contracted parameter

and making the 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 equal to zero.
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Figure 4-11: Comparison of the contracted and expected production volume of bin
type 𝐸1.

The model found the optimal solution in 752 seconds. It suggested terminating

no projects, and the costs for the optimization model were lower than those of

terminating seven projects.

In this case, we do not use the costs from a manual schedule as a baseline. We

opted to compare the model’s cost to the cost of terminating the seven projects that

used panels with bin type 𝐸1 as the baseline. While it would be unreal for NEER to

terminate that many projects, we can interpret the cost resulting from the multiple

terminations as the worst case that NEER would face in this scenario. As an audit,

the optimal schedule costs should always be less than the worst case cost. In this

instance, the costs of terminating projects MOI, MOII, WII, SEII, MA, SLI, and

SLII amount to $72.6M.

Figure 4-12 shows the costs of the optimal schedule. Most of the costs result from

change orders and buying new panels, as the projects at risk of being terminated
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need to change their bin type to avoid termination. The remaining costs are minor,

categorized as compressed and early deliveries. This result means that with significant

disruption, NEER can adapt its schedule to avoid most of the substantial costs we had

prioritized. This is relevant because such speedy results give NEER more flexibility

when making strategic decisions. Not only does it help NEER avoid costs, but it also

helps them complete projects for their customers. Figures 4-13 and 4-14 display this

scenario’s schedule in the Gantt chart.

Figure 4-12: Waterfall with costs from scenario removing 𝐸1 panels.
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Figure 4-14: Values of the 𝑥𝑝,𝑡,𝑏 variable for the second disruption scenario (Part 2 of
2).

For most projects, the model looks to reduce their delivery windows. On average,

deliveries last 4.1 periods, whereas before, the average delivery window was 5.0. There

are only three projects out of the 57 for which the delivery window increased. The

model also seeks to start deliveries later while not changing the ending delivery date.

The average time deliveries started was 15.5 compared to 14.6 on the original schedule.

The scenario’s optimal average for the ending date was 19.7, similar to the original

schedule’s 19.6. For example, project 𝑊𝑇𝐼 had contracted to start and end deliveries

in periods 17 and 27. The model finds that it can help adapt to the disruption by
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delivering in periods 24 to 29, reducing its delivery window time by half. By starting

deliveries later and compressing the delivery time, the model can deliver more volume

later, helping the projects access the additional volume of bin type 𝐺2 in the third

year. Additionally, some projects have the flexibility to complete their deliveries later

than planned. Project 𝐺𝐴, for example, ends its deliveries five periods later than

planned without incurring late delivery costs. The summarizing statistics for the

starting and ending dates, along with the length of the delivery windows for each

project for the original schedule and the optimal disruption schedule, are in Table

4.2.1.

Schedule Original schedule Remove the 𝐸𝐼 volume scenario

Metric
Started

deliveries

Finished

deliveries

Delivery

window length

Started

deliveries

Finished

deliveries

Delivery

window length

Average 14.6 19.6 5.0 15.5 19.7 4.1

Minimum 0 2 1 0 1 1

Maximum 33 36 12 33 36 14

Table 4.2.1: Summarizing statistics of delivery dates for the original and disrupted
schedules.

4.2.3 Scenario: Modify project CODs

Internal and external factors often influence project CODs, including changes in

legislation, customer requirements, and company strategies. We created this scenario

to evaluate the capacity of the model to adapt to changes in the COD of multiple

projects. In particular, Table 4.2.2 displays the changes to the CODs.
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Original periods Periods after disruption

Project 𝑝 𝑡_𝑐𝑜𝑛𝑡_𝐶𝑂𝐷𝑝 𝑡_𝑜𝑢𝑡_𝐶𝑂𝐷𝑝 𝑡_𝑐𝑜𝑛𝑡_𝐶𝑂𝐷𝑝 𝑡_𝑜𝑢𝑡_𝐶𝑂𝐷𝑝

𝑌 𝐴 24 27 30 33

𝐾𝐶 30 33 24 27

𝐺𝑅𝐸 33 36 24 27

𝑊𝑊 33 36 24 27

Table 4.2.2: COD values in the original schedule and after a disruption.

The three earlier CODs will constrain the deliveries more. This scenario’s worst

case cost was terminating the projects with the earlier deadline, 𝐾𝐶, 𝐺𝑅𝐸, and

𝑊𝑊 , which amounted to $47.2M.

The runtime for this scenario was 510 seconds. Again, the model passed the audit

of finding a solution with a much smaller cost than the worst case cost, which was

$139.9K. Figure 4-15 shows the costs resulting from the model optimization. The

costs from this disruption are mainly from compressing deliveries of project 𝐹𝑉 .
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Figure 4-15: Waterfall with costs from changing CODs.

Note that these costs are the same as those incurred in the first scenario, even if

the parameters and solutions for the scenarios are different. This means that there

are no additional costs resulting from changing the projects’ CODs to those from

the first scenario. In other words, the model did not incur costs from changing the

projects’ prioritization. It only incurred costs that were unavoidable because they

happened even without a disruption. This shows that the model has a high flexibility

when adapting to disruptions.

Additionally, this deadline shift only affected some projects. Most projects had

deliveries in the same window as they had initially anticipated. Figures 4-16 and 4-17

show the full allocation schedule.
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Figure 4-17: Values of the 𝑥𝑝,𝑡,𝑏 variable for the third disruption scenario (Part 2 of
2).

Let us zoom into the original and disrupted schedule for the projects that had the

COD change using Figure 4-12. We observe the shift in deliveries to earlier and later

dates. With the new CODs for each project in mind, we also view that all projects

are delivered before the corresponding COD, as expected.
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Figure 4-18: Contracted and allocated volume for the projects with COD changes.

Based on these results, the solar panel allocation model is a powerful tool for

producing and evaluating delivery schedules for routine operations and if a major

disruption happens. The tool can identify potential schedules that adapt to disruptions

while minimizing costs in minutes. It also uses hard-to-ideate allocations and does

not follow the team’s traditional heuristics. These schedules might require manual

review, but they help expand the possibilities of the allocations.
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Chapter 5

Future work and conclusion

5.1 Future work

As this thesis has mentioned in previous chapters, the costs from the model implementation

are directional, not precise, estimations. The model also does not capture the

non-linear nature of the costs. Upon future iterations of the model, more details

could be introduced to improve the precision of cost estimation. However, this project

prioritized using less complex techniques to promote a better understanding and an

easier adoption of the model within the organization.

Some additional areas of opportunity to expand on include adding the delivery of

other equipment, such as inverters, racking, and storage, into the schedule. As NEER

standardizes and increases its data collection, it will have more information regarding

the costs, which can also be introduced into the model.

It is worth noting that NEER currently optimizes profitability for each project,

not across the portfolio. They seek for every project to be profitable on its own

because of strategic implications. This model optimizes the costs across the entire
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portfolio, so some of the manual allocations might be more aligned with the company

strategy, even if they are sub-optimal in terms of the model in this thesis. The model

could be altered to produce results that better align with the company’s strategy.

5.2 Conclusion

This thesis introduces a mixed integer programming model that creates a viable

schedule for solar panel deliveries. The model abstracts impactful and quantifiable

costs and minimizes them to propose a realistic solution. By producing a schedule

in significantly less time than the current manual approach, the model can adapt

to disruptions in the solar panel supply chain faster. This thesis introduces three

scenarios that mimic real-world events and disruptions to prove the model’s flexibility.

In all cases, the model found a feasible solution in less than 15 minutes, which could

help NEER prepare for future disruptions.
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Appendix A

Model formulation explanations and

examples

A.1 Big-ℳ Method

As mentioned in Chapter 2, the model uses the big-ℳ method to transform non-linear

logical statements of the form if-else into linear constraints.

An example of a logical statement of this type would be the following: for positive

integer variable 𝑥 and binary variable 𝑦, if variable 𝑥 = 0, then the variable 𝑦 = 0,

else variable 𝑦 = 1. Using the big-ℳ method, this logical statement can be modeled

as:

𝑥 ≤ℳ𝑦, (A.1)

𝑥 ≥ 𝑦, (A.2)

𝑥 ∈ Z≥0, (A.3)

𝑦 ∈ {0, 1}. (A.4)
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Substitute different values of 𝑥 in the constraints to visualize how the big-ℳ

constraints work:

• If 𝑥 > 0, in (A.1), 𝑦 needs to be equal to one to validate the constraint. ℳ

needs to be multiplied by one so that the right side of the constraint can be

greater than or equal to 𝑥. Ifℳ is multiplied by zero, then the constraint will

be invalid. (A.2) is redundant because 𝑥 ≥ 1, which is the maximum value of 𝑦.

• If 𝑥 = 0, (A.1) is redundant because 𝑥 ≤ 0 ≤ ℳ𝑦. In (A.2), 𝑦 needs to be

equal to zero to validate the constraint. If 𝑦 equals one, then 𝑥 = 0 ≥ 𝑦 = 1 is

a contradiction.

Other logical statements are modeled in this thesis using the big-ℳ method and

similar constraints.

A.2 Delivery basics

A.2.1 Minimum Delivery

The model uses MW and not a number of panels as the unit for 𝑥 to avoid constraining

the solution to an integer solution. NEER has the flexibility to allocate MW in a

way that can approximate a non-integer solution.

This approximation can happen because panels within a bin type have variations

in their wattage resulting from a manufacturing process. Typically, suppliers classify

panels into bin types by 5W or 10W increments [30, 31]. For example, 300W, 310W,

and 320W are bin types in the 10W increments classification. Manufacturers round

W down to the nearest ten units, so the bin type of 300W would have panels with W

in the interval [300, 310).
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The caveat of this approximation is that it does not work with quantities close to

zero. We cannot split a solar panel into a portion. Allocating 5W (or 5× 10−6MW)

of a particular bin type is unrealistic because there are no panels with such low

MW. More broadly, suppliers send solar panels overseas using containers. Sending a

half-filled container would be costly, so it is more realistic that suppliers only send

full containers.

Recall that Subsection 3.2.2 introduced the concept of a minimum delivery to

capture these issues using the 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑎𝑚𝑜𝑢𝑛𝑡 parameter. The constraints

that accompany this parameter and enforce the minimum delivery logic are:

𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 ≥

𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑎𝑚𝑜𝑢𝑛𝑡 ·𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑏𝑖𝑛𝑎𝑟𝑦𝑝,𝑡,𝑏

∀𝑝, 𝑡, 𝑏 (A.5)

𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 ≥ 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑎𝑚𝑜𝑢𝑛𝑡 ·𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑛𝑒𝑤_𝑏𝑢𝑦_𝑏𝑖𝑛𝑎𝑟𝑦𝑝,𝑡,𝑏

∀𝑝, 𝑡, 𝑏 (A.6)

where 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑏𝑖𝑛𝑎𝑟𝑦𝑝,𝑡,𝑏 ∈ {0, 1} is the binary indicator

variable that determines if 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 > 0 and 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑛𝑒𝑤_𝑏𝑢𝑦_𝑏𝑖𝑛𝑎𝑟𝑦𝑝,𝑡,𝑏 ∈

{0, 1} is the binary indicator variable that determines if 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 > 0.

If project 𝑝 sources deliveries from a contract in time 𝑡 using panels with bin type

𝑏, 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑏𝑖𝑛𝑎𝑟𝑦𝑝,𝑡,𝑏 activates the constraints that make

𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 larger than the minimum delivery. If project 𝑝 buys deliveries

outside a contract in time 𝑡 using panels with bin type 𝑏, 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑛𝑒𝑤_𝑏𝑢𝑦_𝑏𝑖𝑛𝑎𝑟𝑦𝑝,𝑡,𝑏

activates the constraints that make 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 larger than a minimum delivery

threshold.
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Since 𝑥𝑝,𝑡,𝑏 is the sum of 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 and 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏, 𝑥𝑝,𝑡,𝑏 is also

constrained to receive at least 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑎𝑚𝑜𝑢𝑛𝑡 or zero by constraints (A.5)

and (A.6).

A.2.2 Completing Projects

In addition to the constraints that differentiate between projects that NEER completes

or terminates that we introduce in Subsection 3.2.4, we can introduce a constraint to

ensure that no project receives more than the MW it needs to complete. Since the

model minimizes costs and delivering more MW would create costs, this constraint

is not required. However, reaching optimality takes longer than reaching feasibility

when solving a model. As we may be time-constrained, we want to arrive at a feasible

solution quickly, even if it is not optimal. In these instances, we would like to have

a logical solution, and constraints like the following would help the solution be not

only feasible but realistic:

∑︁
𝑡,𝑏

𝑥𝑝,𝑡,𝑏 ≤𝑀𝑊𝑝 ∀𝑝 (A.7)

Since 𝑥𝑝,𝑡,𝑏 is the sum of 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 and 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏, constraint (A.7)

implies that
∑︀

𝑡,𝑏 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 and
∑︀

𝑡,𝑏 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 are also constrained

to receive at the most 𝑀𝑊𝑝.
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A.3 Minimum MW per bin type and form type

A.3.1 Minimum MW per bin type

To calculate if a project has the minimum MW required per bin type as introduced in

Subsection 3.3.1, the model starts by tracking when a project uses a specific bin type

to limit the number of bin types a project uses. It introduces 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 ∈ {0, 1},

the binary auxiliary variable that indicates if project 𝑝 receives any MW using panels

with bin type 𝑏. It calculates 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 with:

∑︁
𝑡

𝑥𝑝,𝑡,𝑏 ≤ℳ_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 · 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 ∀𝑝, 𝑏 (A.8)

∑︁
𝑡

𝑥𝑝,𝑡,𝑏 ≥ 𝜖_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 · 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 ∀𝑝, 𝑏 (A.9)

whereℳ_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 ∈ R+ and 𝜖_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 ∈ (0, 1).

ℳ_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 is a “big-ℳ” parameter (see Appendix A.1) that ensures the

model assigns the 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 variables to the expected binary values based on

their related constraints. 𝜖_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 is a “small-𝜖” parameter that transforms

strict inequalities into non-strict inequalities for the constraints regarding the 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏

variables. 𝜖_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 is an infinitesimal quantity that makes the left-hand

side of the (A.9) constraint be something strictly greater than zero without forcing it

to take a value more significant than presumed.

To understand how the (A.8) and (A.9) constraints behave, we review the examples:

• If
∑︀

𝑡 𝑥𝑝,𝑡,𝑏 = 10 (or any value > 0), then the only way that (A.8) can be valid

is if 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 equals 1. Recall from 2.1.3.4 that ℳ_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒

is a number large enough that it does not constrain how large
∑︀

𝑡 𝑥𝑝,𝑡,𝑏 can
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be. Since the left-hand side of (A.9) is larger than the infinitesimal value of

𝜖_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 and zero, (A.9) is always valid regardless of the value of

𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏. As such, 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 = 1.

• If
∑︀

𝑡 𝑥𝑝,𝑡,𝑏 = 0, then the left-hand side of (A.8) is always valid regardless of

the value of 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏. However, the only way that (A.9) can be valid

is if 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 equals 0. If 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 were to equal 1, then we

would have 0 ≥ 𝜖_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒, which is a contradiction since we defined

𝜖_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 as strictly greater than 0. Therefore, 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 = 0.

As such, if a project 𝑝 receives panels with bin type 𝑏 in any period, then 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 =

1. Otherwise, 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 = 0. With the 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 variables, the model

can not only track which bin types each project uses but also track and limit how

many bin types each uses.

Some exceptions to consider in this set of constraints are the following. First,

if a project requires less MW than or equal to the 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 parameter, then

even if it receives all of its volume with one bin type, the amount of MW for that

bin type will be less than the minimum. To account for this, the model establishes

different constraints for projects with less MW than or equal to the minimum and

those with more than the minimum. To differentiate the projects, the model uses

the 𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑏𝑖𝑛𝑝 ∈ {0, 1} binary auxiliary parameter, which indicates if

the MW project 𝑝 requires are greater than or equal to the 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 threshold

amount.

If a project has less MW than or equal to the 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛, then the model limits

the project to using panels with only one bin type. However, it accounts for another

exception. There might be an instance where a project had contracted panels with

more than one bin type, even when it had overall less MW than or equal to the
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𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛. The model takes the maximum between one bin type and the number

of bin types a project had contracted before. It introduces 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒𝑝,𝑏 ∈

{0, 1} as the binary parameter determining if project 𝑝 had contracted to have any

MW from bin class 𝑝 in the original schedule. The mathematical constraint looks

like this:

If 𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑏𝑖𝑛𝑝 = 0,∑︁
𝑏

𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 ≤ max

{︃
1,
∑︁
𝑏

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒𝑝,𝑏

}︃
∀𝑝 (A.10)

On the other hand, if a project has more MW than 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛, it can have panels

with multiple bin types. However, each bin type’s minimum quantity is 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛.

There is again an exception where a project might have previously contracted less MW

per bin type. In parallel to the previous constraint, the model takes the minimum

between the 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 and the amount of MW for all the bin types a project had

contracted before. The constraint that defines this logic is:

If 𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑏𝑖𝑛𝑝 = 1,∑︁
𝑡

𝑥𝑝,𝑡,𝑏 ≥ min {{𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏|𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏 > 0} ∪ {𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛}} · 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏

∀𝑝, 𝑏 (A.11)

where the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏 ∈ R≥0 parameter represents the contracted (or targeted)

amount of MW that project 𝑝 has with bin-type 𝑏, as per the original schedule. Notice

that by definition
∑︀

𝑡 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏 ∀𝑝, 𝑏. We use 𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏

when possible for simplicity.

The following examples evaluate the constraints A.10 and A.11 for different
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projects that have more or less MW than 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛. Suppose a project completes

with 30MW and 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 = 40. If it had only contracted one bin type before,

then substituting in A.10:

𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑏𝑖𝑛𝑝 = 0,∑︁
𝑏

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒𝑝,𝑏 = 1,

max

{︃
1,
∑︁
𝑏

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒𝑝,𝑏

}︃
= max {1, 1} = 1,

⇒
∑︁
𝑏

𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 ≤ 1.

So, this project could only have one bin type. Now, suppose the same project had

previously contracted panels with three different bin types. Then:

𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑏𝑖𝑛𝑝 = 0,∑︁
𝑏

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒𝑝,𝑏 = 3,

max

{︃
1,
∑︁
𝑏

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒𝑝,𝑏

}︃
= max {1, 3} = 3,

⇒
∑︁
𝑏

𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 ≤ 3.

Therefore, this project could continue to have three bin types.

Let us now suppose that there is a project that is complete with 100MW, and

it has contracted all of its MW using only one bin type. Assume 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛 = 40.
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Substituting on A.11:

𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑏𝑖𝑛𝑝 = 1,

min {{𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏|𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏 > 0} ∪ {𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛}} = {{100} ∪ {40}}

= {100, 40} = 40

⇒
∑︁
𝑡

𝑥𝑝,𝑡,𝑏 ≥ 40 · 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 ∀𝑏

This means that if the project uses a bin type, it must receive at least 40MW from

that bin type.

Now, suppose the project had previously contracted 80MW of bin type 1 and

20MW of bin type 2. Again, if we substitute on A.11:

𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑏𝑖𝑛𝑝 = 1,

min {{𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏|𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏 > 0} ∪ {𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛}} = {{80, 20} ∪ {40}}

= {80, 20, 40} = 20

⇒
∑︁
𝑡

𝑥𝑝,𝑡,𝑏 ≥ 20 · 𝑢𝑠𝑒𝑠_𝑏𝑖𝑛𝑡𝑦𝑝𝑒𝑝,𝑏 ∀𝑏

In this case, the project can have bin types that only use 20MW because it already

has a contract below the minimum quantity of 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛.

A.3.2 Minimum MW per form type

The elements related to the minimum MW per form type subsection are analogous to

the previous subsection. First, the model introduces the 𝑏𝑖𝑛_𝑓𝑜𝑟𝑚_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏,𝑓 ∈

{0, 1}, a family of binary parameters to indicate whether panels classified under bin

type 𝑏 also fall under form type 𝑓 . If a supplier classifies the panel under bin type 𝑏
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and form type 𝑓 , then 𝑏𝑖𝑛_𝑓𝑜𝑟𝑚_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏,𝑓 will be 1. It will be 0 otherwise.

Similar to the constraints on bin types, the model also introduces the 𝑢𝑠𝑒𝑠_𝑓𝑜𝑟𝑚𝑡𝑦𝑝𝑒𝑝,𝑓 ∈

{0, 1} binary auxiliary variable, which indicates if project 𝑝 receives some MW using

panels with form type 𝑓 . The model calculates the 𝑢𝑠𝑒𝑠_𝑓𝑜𝑟𝑚𝑡𝑦𝑝𝑒𝑝,𝑓 variable with:

∑︁
𝑡,𝑏

(𝑏𝑖𝑛_𝑓𝑜𝑟𝑚_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏,𝑓 · 𝑥𝑝,𝑡,𝑏) ≤ℳ_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 · 𝑢𝑠𝑒𝑠_𝑓𝑜𝑟𝑚𝑡𝑦𝑝𝑒𝑝,𝑓 ∀𝑝, 𝑓

(A.12)∑︁
𝑡,𝑏

(𝑏𝑖𝑛_𝑓𝑜𝑟𝑚_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏,𝑓 · 𝑥𝑝,𝑡,𝑏) ≥ 𝜖_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 · 𝑢𝑠𝑒𝑠_𝑓𝑜𝑟𝑚𝑡𝑦𝑝𝑒𝑝,𝑓 ∀𝑝, 𝑓

(A.13)

Notice that ℳ_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 and 𝜖_𝑢𝑠𝑒𝑠_𝑏𝑖𝑛_𝑡𝑦𝑝𝑒 are the same parameters

introduced in the previous subsection. Since the maximum MW of a specific bin type

that a project can receive is the same as the maximum MW of a particular form,

then there is no need to introduce new “big-ℳ” and “small-𝜖” parameters.

The model also introduces the parameter 𝑚𝑖𝑛𝑝𝑒𝑟_𝑓𝑜𝑟𝑚 ∈ R+, which is the

threshold parameter that establishes how many MW per form type is the minimum

that each project can have. In this case, if a project receives any MW from a form

type, it has to receive at least 𝑚𝑖𝑛𝑝𝑒𝑟_𝑓𝑜𝑟𝑚. Typically, 𝑚𝑖𝑛𝑝𝑒𝑟_𝑓𝑜𝑟𝑚 is larger

than 𝑚𝑖𝑛𝑝𝑒𝑟_𝑏𝑖𝑛.

The model distinguishes between the projects with less MW than or equal to the

minimum threshold per form type and those with at more than the minimum with

the 𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑓𝑜𝑟𝑚𝑝 ∈ {0, 1} binary auxiliary parameter. It indicates if

the MW project 𝑝 requires are greater than or equal to the 𝑚𝑖𝑛𝑝𝑒𝑟_𝑓𝑜𝑟𝑚 threshold

amount.

Next, the model introduces 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑓𝑜𝑟𝑚_𝑡𝑦𝑝𝑒𝑝,𝑓 ∈ {0, 1} as the binary
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parameter determining if project 𝑝 had contracted to have any MW from the form

class 𝑓 in the original schedule. If a project has more MW than 𝑚𝑖𝑛𝑝𝑒𝑟_𝑓𝑜𝑟𝑚, the

model restricts the project to using panels with only one form type unless the project

has previously contracted panels with more than one form type. It uses the following

constraint to do so:

If 𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑓𝑜𝑟𝑚𝑝 = 0,∑︁
𝑓

𝑢𝑠𝑒𝑠_𝑓𝑜𝑟𝑚𝑡𝑦𝑝𝑒𝑝,𝑓 ≤ max

{︃
1,
∑︁
𝑓

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑓𝑜𝑟𝑚_𝑡𝑦𝑝𝑒𝑝,𝑓

}︃
∀𝑝 (A.14)

A project with more MW than 𝑚𝑖𝑛𝑝𝑒𝑟_𝑓𝑜𝑟𝑚 can have panels with multiple bin

types. However, the minimum quantity that each form type can have is 𝑚𝑖𝑛𝑝𝑒𝑟_𝑓𝑜𝑟𝑚

unless the project has previously contracted less MW per form type. In a constraint,

it looks like:

If 𝑚𝑤_𝑔𝑒𝑞_𝑚𝑖𝑛_𝑝𝑒𝑟_𝑓𝑜𝑟𝑚𝑝 = 1,∑︁
𝑡,𝑏

(𝑏𝑖𝑛_𝑓𝑜𝑟𝑚_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏,𝑓 · 𝑥𝑝,𝑡,𝑏) ≥

min{{𝑡𝑎𝑟𝑔𝑒𝑡_𝑓𝑜𝑟𝑚𝑝,𝑓 |𝑡𝑎𝑟𝑔𝑒𝑡_𝑓𝑜𝑟𝑚𝑝,𝑓 > 0} ∪ {𝑚𝑖𝑛𝑝𝑒𝑟_𝑓𝑜𝑟𝑚}} · 𝑢𝑠𝑒𝑠_𝑓𝑜𝑟𝑚𝑡𝑦𝑝𝑒𝑝,𝑓

∀𝑝, 𝑓 (A.15)

A.4 Supplier capacities

A.4.1 Expedited contract supply

Recall that the variable 𝑐_𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒_𝑠𝑢𝑝𝑝𝑙𝑦𝑡,𝑏 is the cost per MW of expediting the

deliveries as introduced in Subsection 3.4.2. The model calculates it by multiplying
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the amount of MW projects needed to expedite times the cost coefficient parameter

𝑐𝑜𝑒𝑓𝑓_𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒_𝑠𝑢𝑝𝑝𝑙𝑦𝑡,𝑏. The 𝑐𝑜𝑒𝑓𝑓_𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒_𝑠𝑢𝑝𝑝𝑙𝑦𝑡,𝑏 ∈ R≥0 parameter is

defined as the cost per MW of having a supplier expedite its production of panels

with bin type 𝑏 so they can deliver in time 𝑡, which is before the date established in

the contract. The model introduces it using the constraint:

𝑐_𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒_𝑠𝑢𝑝𝑝𝑙𝑦𝑡,𝑏 = 𝑐𝑜𝑒𝑓𝑓_𝑒𝑥𝑝𝑒𝑑𝑖𝑡𝑒_𝑠𝑢𝑝𝑝𝑙𝑦𝑡,𝑏 · 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 ∀𝑡, 𝑏 (A.16)

where 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 ∈ R≥0 is the variable that represents the amount of MW additional to

those contracted and not yet delivered, allocated to projects in time 𝑡 using panels

with bin type 𝑏. A positive amount of 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 means NEER expedites some of the

panels associated with the contract for bin type 𝑏.

The model constrains 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 with:

𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 ≥

(︃∑︁
𝑝

𝑡∑︁
𝑖=1

𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑖,𝑏

)︃
−

(︃∑︁
𝑝

𝑡∑︁
𝑖=1

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑖,𝑏

)︃
−

(︃
𝑡−1∑︁
𝑖=1

𝑒𝑥𝑡𝑟𝑎𝑖,𝑏

)︃

for 𝑝 ∈P, ∀𝑡, 𝑏 (A.17)

We examine the 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 variable more closely in the remainder of this subsection.

It has three components:

•
∑︀

𝑝

∑︀𝑡
𝑖=1 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑖,𝑏 is the volume of bin type 𝑏 that the model has

decided to deliver to all projects up until period 𝑡.

•
∑︀

𝑝

∑︀𝑡
𝑖=1 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑖,𝑏 is the overall volume that NEER has contracted of

panels with bin type 𝑏 until period 𝑡 for all projects. It is the volume the

supplier that produces bin type 𝑏 is required to send to NEER by period 𝑡.
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•
∑︀𝑡−1

𝑖=1 𝑒𝑥𝑡𝑟𝑎𝑖,𝑏 is the cumulative sum of the 𝑒𝑥𝑡𝑟𝑎 variables from previous periods

to 𝑡.

The 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 variable assumes the difference between the volume the model allocates

to projects and the volume the supplier should have delivered to NEER. It assumes the

panels that a supplier may owe NEER panels and that NEER may wish to expedite

deliveries. Each constraint’s 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 variables are calculated using cumulative periods.

Therefore, the 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 variables corresponding to previous periods are subtracted to

avoid calculating duplicate costs. Intuitively, the model subtracts NEER’s payments

for expedited volume in prior periods to prevent double counting costs.

In other words, given a contract that serves a set of projects using panels with

bin type 𝑏, the projects can receive, without a cost, the MW they contracted for this

period plus the MW they had contracted in previous periods but did not receive.

The 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 variable will be positive if the projects allocate more than their entitled

volume. Since 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 ∈ R≥0, it cannot be negative. Nevertheless, if the calculation

of
(︁∑︀

𝑝

∑︀𝑡
𝑖=1 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑖,𝑏

)︁
−
(︁∑︀

𝑝

∑︀𝑡
𝑖=1 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑖,𝑏

)︁
−
(︀∑︀𝑡−1

𝑖=1 𝑒𝑥𝑡𝑟𝑎𝑖,𝑏
)︀

were negative, it would mean that the projects are allocated less than their entitled

volume. There is no cost for allocating less than the entitled volume, so the model

does not track negative value.

To better visualize how the model calculates 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏, suppose that a project is

complete with 160MW, and the supplier schedule is to send 40MW in periods 1 to 4.

In the first period, the model decides it is best to deliver 60MW. Since the supplier

does not owe volume to NEER, the supplier has to expedite 20MW, which will have

a cost. In the second period, the model decides to deliver 40MW. In the third period,

a disruption prevents the supplier from delivering volume. The supplier will provide

the remaining 60MW for the project in period 4 when the disruption subsides. Figure
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A-1 illustrates the example, and Table A.4.1 presents its values.

Figure A-1: Example of a simple schedule with limited and expedited deliveries.

𝑡 1 2 3 4 5

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝑏 360 360 0 360 360

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 40 40 40 40 0

𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑡,𝑏 60 40 0 60 0

Table A.4.1: Values of an example of a simple schedule with limited and expedited
deliveries.

In period 1, we would expect 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 to take the value of 20 because the model

allocated 60MW, but NEER had only contracted 40MW until that period. Replacing
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the values from Table A.4.1 in the constraint (A.17):

𝑒𝑥𝑡𝑟𝑎1,𝑏 ≥

(︃∑︁
𝑝

1∑︁
𝑖=1

𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑖,𝑏

)︃
−

(︃∑︁
𝑝

1∑︁
𝑖=1

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑖,𝑏

)︃
−

(︃
0∑︁

𝑖=1

𝑒𝑥𝑡𝑟𝑎𝑖,𝑏

)︃

for 𝑝 ∈P, ∀𝑡, 𝑏

⇒ 𝑒𝑥𝑡𝑟𝑎1,𝑏 ≥ (𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,1,𝑏)− (𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,1,𝑏)

⇒ 𝑒𝑥𝑡𝑟𝑎1,𝑏 ≥ (60)− (40)

⇒ 𝑒𝑥𝑡𝑟𝑎1,𝑏 ≥ 20

Since the model seeks to minimize costs and higher values of 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 result in higher

costs, 𝑒𝑥𝑡𝑟𝑎1,𝑏 will equal 20.

In period 2, we would expect 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 to take the value of 0 because the model

allocated 40MW, and NEER contracted 40MW. Again, replacing in the constraint

(A.17):

𝑒𝑥𝑡𝑟𝑎2,𝑏 ≥

(︃∑︁
𝑝

2∑︁
𝑖=1

𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,𝑖,𝑏

)︃
−

(︃∑︁
𝑝

2∑︁
𝑖=1

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑖,𝑏

)︃
−

(︃
1∑︁

𝑖=1

𝑒𝑥𝑡𝑟𝑎𝑖,𝑏

)︃

for 𝑝 ∈P, ∀𝑡, 𝑏

⇒ 𝑒𝑥𝑡𝑟𝑎2,𝑏 ≥ (𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,1,𝑏 + 𝑥_𝑓𝑟𝑜𝑚_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑝,2,𝑏)

− (𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,1,𝑏 + 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,2,𝑏)− (𝑒𝑥𝑡𝑟𝑎1,𝑏)

⇒ 𝑒𝑥𝑡𝑟𝑎2,𝑏 ≥ (60 + 40)− (40 + 40)− (20)

⇒ 𝑒𝑥𝑡𝑟𝑎2,𝑏 ≥ 0

Since the model seeks to minimize costs, 𝑒𝑥𝑡𝑟𝑎2,𝑏 = 0. Because the model calculates

the 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 variables using cumulative periods, it needs to remove previous 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏

variables from the current 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 variable to avoid calculating duplicate costs. We
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would have had 𝑒𝑥𝑡𝑟𝑎2,𝑏 ≥ 20 if we had not subtracted the sum of the previous

𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 variables or
(︀∑︀1

𝑖=1 𝑒𝑥𝑡𝑟𝑎𝑖,𝑏
)︀
. We have indeed allocated more MW than we

are entitled to cumulatively. However, we paid for those 20MW in period 1. So, not

removing them in period 2 would result in a duplicate payment.

We can repeat this process for the following periods and arrive at the results of

𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 ≥ 0 for 𝑡 ≥ 3. Therefore, the 𝑒𝑥𝑡𝑟𝑎𝑡,𝑏 variable correctly calculates the amount

of MW that NEER is expediting in each period.

A.5 Changes to the weeks that the EPC crew works

The most relevant variable in this section is 𝑐_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑐𝑟𝑒𝑤𝑝, which calculates the

cost of paying for additional crews to account for the additional work weeks required

to receive the MW allocated to project 𝑝, including the weeks with inefficiencies and

when commissioning needs to be accelerated. This section expands on the concepts

related to additional labor that we briefly defined in Section 3.5, including work

weeks, inefficiencies, and commissioning.

A.5.1 Work weeks

Recall from Section 3.5 that a work week is the unit that measures the number of

crews needed to receive and install a certain number of panels in one week. The costs

related to work weeks arise if one of the following situations happens:

• There is a positive change in the number of work weeks required to handle the

deliveries. For example, this cost would result from changing the schedule in

Table A.5.1 to that in Table A.5.2.

• More work weeks are required after the inefficiency threshold has begun.
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• Work weeks are required after the EPC plans to start commissioning a project.

This section builds the components required to calculate these costs and presents

examples to facilitate learning.

Starting work weeks The model uses the 𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 ∈ Z≥0 parameter to

integrate the weeks’ worth of work that project 𝑝 has contracted in time 𝑡. Additionally,

the model uses the parameter 𝑀𝑊_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 ∈ R+ as the number of

MW that one crew can receive and install at the most in one week. Since the

model can use different periods (days, weeks, months, and others), it introduces the

𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 ∈ Z+ parameter to standardize the workload into an equivalent

unit. 𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 assumes how many weeks are equivalent to one period. In

the case of this thesis, the periods are months, so we take 𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 to be

4. As such, all periods (or months) are equal in length.

We can review an example schedule that gathers the 𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡,

𝑀𝑊_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘, and 𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 parameters. Examine a project 𝑝

that receives 40MW in periods 1 to 5. The project can receive 10MW per work week

(𝑀𝑊_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 = 10) and 𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 = 4. Table A.5.1 calculates

the work weeks required in each period and overall:

𝑡 1 2 3 4 5 Total∑︀
𝑏 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 40 40 40 40 40 200

𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 4 4 4 4 4 20

Table A.5.1: Example of work week based on simple project schedule.

In this example, all the work crews are very efficient since they receive the most

MW they can each week. However, that is only sometimes the case. Let us review a
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variation where the project gets 35MW in period 1 and 45MW in period 2. Everything

else remains the same. Table A.5.2 calculates the work weeks required in each period

and overall:

𝑡 1 2 3 4 5 Total∑︀
𝑏 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 35 45 40 40 40 200

𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 4 5 4 4 4 21

Table A.5.2: Example of work weeks based on a non-efficient project schedule.

In this case, the project still receives 200MW overall. However, in period 1, the

crews received 35MW, 5MW less than before, but they still needed four work weeks

to receive them. They need three work weeks to receive 30MW and one work week

to receive the remaining 5MW. The EPC must hire a crew for the remaining 5MW

in period 1. The same happens in period 2. The preprocessing script calculates the

work weeks for which the EPC hires the crew before running the algorithm.

Additional work weeks The model differentiates between the actual deliveries for

the new schedule and the contracted deliveries using the variable 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 ∈

Z≥0. This variable estimates the number of weeks’ worth of work required to receive

the MW allocated to project 𝑝 in time 𝑡. The number of work weeks project 𝑝 requires

in period 𝑡 depends on the MW delivered to project 𝑝 in time 𝑡 and the MW one

crew can receive in one week. When compiled into a constraint, this becomes:

∑︁
𝑏

𝑥𝑝,𝑡,𝑏 ≤𝑀𝑊_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 · 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡, ∀𝑝, 𝑡 (A.18)

There is an additional consideration that impacts the number of required work

weeks. Sometimes, projects need to keep a crew on for an entire period. Keeping
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a crew means that a project must have a crew for every week in the period. For

example, if a crew is required in period 1, which is assumed to have four weeks, then

period 1 must have four work weeks.

If a project starts receiving deliveries, it must keep a crew on for the entire period

until it finishes deliveries. In other words, project 𝑝 needs to keep a crew on in period

𝑡 if it meets the following three conditions:

• Project 𝑝 is receiving a delivery in period 𝑡, or it has received a delivery before

period 𝑡.

• It still needs to finish deliveries at period 𝑡. That is, the total MW delivered

are less than the total MW the project requires for completion.

• The model decided not to terminate project 𝑝.

If project 𝑝 finished deliveries in period 𝑡, it could leave a partial crew on during that

last period. The variable 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑘𝑒𝑒𝑝𝑖𝑛𝑔_𝑐𝑟𝑒𝑤𝑝,𝑡 ∈ {0, 1} is the binary indicator

determining if project 𝑝 needs to keep a crew in time 𝑡.

For example, Table A.5.3 shows a scenario where project 𝑝 started deliveries in

period 1, paused deliveries in period 2, and finished deliveries in period 5. Assume

that 𝑀𝑊_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 = 10 and 𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 = 4.

𝑡 1 2 3 4 5 Total∑︀
𝑏 𝑥𝑝,𝑡,𝑏 15 0 35 40 20 110

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 4 4 4 4 2 16

Table A.5.3: Example of the required work weeks based on a variable project schedule.

Periods 1 and 2 need to keep a crew, so the 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 variable

equals 4, even if they are not using the crews for the entire period. In other words, if
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a project needs to keep a crew for a certain period, it must account for enough work

weeks. Since period 5 is the last period, the project has 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 = 2

because they do not need to keep on a crew for the final period.

To introduce the constraints that translate this logic into the optimization model,

we need to present some auxiliary variables:

• 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 ∈ {0, 1} is the binary variable that indicates if project 𝑝 has

deliveries in time 𝑡.

• ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 ∈ {0, 1} is the binary variable that indicates if project 𝑝 has

or will have had deliveries before time 𝑡.

• 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 ∈ {0, 1} is the binary variable that indicates if project 𝑝

finished deliveries before or in time 𝑡.

For 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡, we want the variable to take the value of 1 if project 𝑝

makes deliveries in period 𝑡 of any bin type and the value of 0 otherwise. Using logical

statements, this would be:

If
∑︁
𝑏

𝑥𝑝,𝑡,𝑏 > 0, 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 = 1

else, 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 = 0 ∀𝑝, 𝑡

However, these logical statements are non-linear since
∑︀

𝑏 𝑥𝑝,𝑡,𝑏 > 0 is the sum of

variables. Therefore, we use the big-ℳ method to turn the logical statement into
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linear equations:

∑︁
𝑏

𝑥𝑝,𝑡,𝑏 − 𝜖_𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ≥ −ℳ_𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 · (1−𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡) ∀𝑝, 𝑡

(A.19)∑︁
𝑏

𝑥𝑝,𝑡,𝑏 ≤ℳ_𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ·𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 ∀𝑝, 𝑡

(A.20)

where ℳ_𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ∈ R+ is a “big-ℳ”. It ensures that the model assigns

the 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 variables to the expected binary values based on the previous

constraints. Also, 𝜖_𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ∈ (0, 1) is a “small-𝜖” parameter that transforms

strict inequalities into non-strict inequalities for the constraints regarding the 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡

variables. We do not dive into how the “big-ℳ” constraints work to avoid repetition

(see 2.1.3.4, A.8, and A.9).

Next, a project is defined as having made a delivery if it has had positive deliveries

in previous periods. ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 will take the value of 1 if project 𝑝 made

deliveries before period 𝑡 of any bin type and the value of 0 otherwise. In a logical

statement:

If
𝑡−1∑︁
𝑖=1

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑖 ≥ 1, ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 = 1

else, ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 = 0 ∀𝑝, 𝑡

Again, the big-ℳ method turns this logical statement into linear equations, where

ℳ_ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 ∈ R+ and 𝜖_ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 ∈ (0, 1) are “big-ℳ” and “small-𝜖”
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parameters for the constraint related to the ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 variable, respectively:

𝑡−1∑︁
𝑖=1

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑖 ≥ 1−ℳ_ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 · (1− ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡)

∀𝑝, 𝑡

(A.21)
𝑡−1∑︁
𝑖=1

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑖 + 𝜖_ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 ≤ 1 +ℳ_ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 · ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡

∀𝑝, 𝑡

(A.22)

Thirdly, to have finished deliveries for a project, the cumulative MW delivered

each period must be more than the required MW. That is,

If
∑︁
𝑏

𝑡∑︁
𝑖=1

𝑥𝑝,𝑖,𝑏 ≥𝑀𝑊𝑝, 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 = 1

else, 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 = 0 ∀𝑝, 𝑡

Using the big-ℳ method:

∑︁
𝑏

𝑡∑︁
𝑖=1

𝑥𝑝,𝑖,𝑏 ≥𝑀𝑊𝑝 −ℳ_𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 · (1− 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡)

∀𝑝, 𝑡 (A.23)∑︁
𝑏

𝑡∑︁
𝑖=1

𝑥𝑝,𝑖,𝑏+𝜖_𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ≤

𝑀𝑊𝑝 +ℳ_𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 · 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡

∀𝑝, 𝑡 (A.24)
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where ℳ_𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ∈ R+ and 𝜖_𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ∈ (0, 1) are the

“big-ℳ” and “small-𝜖” parameters for the 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 variable, respectively.

Consolidating the many components into constraints to calculate 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑘𝑒𝑒𝑝𝑖𝑛𝑔_𝑐𝑟𝑒𝑤𝑝,𝑡

amounts to:

2 + 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑘𝑒𝑒𝑝𝑖𝑛𝑔_𝑐𝑟𝑒𝑤𝑝,𝑡

≥ ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 + (1− 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡) + (1− 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝) ∀𝑝, 𝑡

(A.25)

2 + 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑘𝑒𝑒𝑝𝑖𝑛𝑔_𝑐𝑟𝑒𝑤𝑝,𝑡

≥ 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 + (1− 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡) + (1− 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝) ∀𝑝, 𝑡

(A.26)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 ≥ 𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 · 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑘𝑒𝑒𝑝𝑖𝑛𝑔_𝑐𝑟𝑒𝑤𝑝,𝑡 ∀𝑝, 𝑡

(A.27)

Now, we can calculate the difference between the required work weeks and the

ones we had initially contracted. As we have seen in Chapter 3, if a project requires

more work weeks than contracted, there is a cost for the additional work weeks. In

the model, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝 ∈ Z≥0 is the additional weeks’ worth of work

required to receive the MW allocated to project 𝑝 for all periods. They are in addition

to the ones already contracted for project 𝑝. In the form of a constraint, this is:

∑︁
𝑡

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 −
∑︁
𝑡

𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 ≤ 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝

∀𝑝 (A.28)

For example, suppose project 𝑝 contracted 40MW of deliveries in periods 1
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to 5. Assume that 𝑀𝑊_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 = 10, 𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 = 4, and

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 = 0. Periods will 1 to 5 have 𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 = 4, and any other period

will have 𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 = 4. There is a disruption, so now the project receives 20MW

in period 1, no MW in period 2, 50MW in periods 3, 4, and 5, and 30MW in period 6.

Table A.5.4 calculates the 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 and 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝

variables.

𝑡 1 2 3 4 5 6 Total∑︀
𝑏 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 40 40 40 40 40 0 200

𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 4 4 4 4 4 0 20∑︀
𝑏 𝑥𝑝,𝑡,𝑏 20 0 50 50 50 30 200

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 1 0 1 1 1 1

ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 0 1 1 1 1 1

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 0 0 0 0 0 1

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑘𝑒𝑒𝑝𝑖𝑛𝑔_𝑐𝑟𝑒𝑤𝑝,𝑡 1 1 1 1 1 0

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 4 4 5 5 5 3 26

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝 6

Table A.5.4: Example of the required work weeks based on a disrupted project
schedule.

Periods 1 to 5 are required to keep a crew because they started delivering but

have not finished. Therefore, they must have at least four work crews, even if they

make no deliveries (like period 2). Periods 3 to 5 require more than four work weeks

because they need five work weeks to receive 50MW. Period 6 does not keep a crew

on because it finishes delivering in that period, requiring only three work weeks. So

overall, the project requires 26 work weeks. It amounts to 6 additional work weeks

than the project’s initially contracted.
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A.5.2 Inefficiencies in labor

While there is some flexibility to how the EPC can allocate the working crew, it has

less flexibility to do so the further along the project gets. The closer deliveries get to

the commissioning start date, the less flexibility a project has to shuffle work crews.

Additionally, having more deliveries in later periods may lead to the crews having to

work overtime. The model captures this issue by introducing a concept of inefficiency.

If a project requires more work weeks than contracted in periods after the inefficiency

threshold date and before the commissioning begins, it will need to pay for additional

crews with inefficiencies.

In particular, the model parametrizes the inefficiency threshold as 𝑡_𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑝 ∈

Z≥0, representing the period after which the EPC will work with inefficiencies. It

parametrizes the date when EPC plans to start commissioning the project 𝑝 as

𝑡_𝑐𝑜𝑚𝑚𝑝 ∈ Z+. A period has inefficiencies if 𝑡_𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ≤ 𝑡 < 𝑡_𝑐𝑜𝑚𝑚𝑝 and

requires more work weeks than were initially contracted. In the model, the variables

𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 ∈ Z≥0 calculate the number of weeks’ worth of work with

inefficiencies for project 𝑝 in month 𝑡 using the ensuing constraint:

𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 ≥ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 − 𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡

for 𝑡 > 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑡_𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑝 ≤ 𝑡 < 𝑡_𝑐𝑜𝑚𝑚𝑝, ∀𝑝 (A.29)

Notice that if the inefficiency period has passed (𝑡 > 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡), the model does not

charge any cost; instead, it assumes that NEER has already paid the past costs.

Figure A-2 presents an example that can help better visualize the concept of

inefficiency. A project planned to receive 40MW from April to August. Assume that

𝑀𝑊_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 = 10, 𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 = 4, and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 = 0. Then,
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after a disruption, the project has to receive deliveries after the inefficiency threshold

date. The window of deliveries does not change; only the delivered MW changes.

Figure A-2: Example of inefficiencies in a project schedule after a disruption.

Table A.5.5 calculates the 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,

and 𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 variables. Overall, the project requires four additional

work weeks. However, after the inefficiency threshold date, the end of June, it also

requires three more work weeks than anticipated. So, there will be one cost for the

total additional work weeks and another for the additional work week in inefficiency

periods.
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𝑡 Apr May Jun Jul Aug Total∑︀
𝑏 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 40 40 40 40 40 200

𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 4 4 4 4 4 20∑︀
𝑏 𝑥𝑝,𝑡,𝑏 20 20 50 50 60 200

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 1 1 1 1 1

ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 0 1 1 1 1

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 0 0 0 0 1

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑘𝑒𝑒𝑝𝑖𝑛𝑔_𝑐𝑟𝑒𝑤𝑝,𝑡 1 1 1 1 0

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 4 4 5 5 6 24

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝 4

𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 1 2 3

Table A.5.5: Example of the required work weeks based on a project with inefficiencies.

A.5.3 Commissioning acceleration

If a project’s deliveries continue after its commissioning is supposed to start, it will

affect the commissioning processes. First, the EPC will commission the different

parts of the project on a rolling basis determined by the sections where they have

installed solar panels. It will likely cause the crew to work overtime and to bring

additional crews in.

To account for this, the model introduces a cost for the work crews it needs to

hire after the commissioning start date. Figure A-3 presents the example where

a project plans to receive 40MW from April to August. This example can help

the reader visualize how the model calculates the crews it needs to accelerate

commissioning. We assume that 𝑀𝑊_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 = 10, 𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 =
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4, and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 = 0. In this case, after a disruption, the project has to receive

deliveries after the commissioning start date. It does not have weeks with inefficiencies.

Figure A-3: Example of accelerating commissioning in a project schedule after a
disruption.

Table A.5.6 calculates the variables related to the work weeks. Overall, the project

requires one additional work week. After the commissioning start date, five work

weeks are needed for the end of August (highlighted in red). There is an overall cost

of 1 additional work week and another cost for five work weeks when commissioning

has to be accelerated. In this case, the delivery window changes.
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𝑡 Apr May Jun Jul Aug Sep Oct Total∑︀
𝑏 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 40 40 40 40 40 0 0 200

𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 4 4 4 4 4 0 0 20∑︀
𝑏 𝑥𝑝,𝑡,𝑏 0 40 40 40 40 25 15 200

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 0 1 1 1 1 1 1

ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 0 0 1 1 1 1 1

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 0 0 0 0 0 0 1

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑘𝑒𝑒𝑝𝑖𝑛𝑔_𝑐𝑟𝑒𝑤𝑝,𝑡 0 1 1 1 1 1 0

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 0 4 4 4 4 3 2 21

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝 1

𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 0 0 0 0 0

Table A.5.6: Example of the required work weeks based on a project that needs to
accelerate its commissioning.

To solidify these concepts, we present the example in Figure A-4. The project plans

to receive 40MW from April to August, but a disruption causes both inefficiencies

and the commissioning to accelerate. We assume that 𝑀𝑊_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 = 10,

𝑤𝑒𝑒𝑘𝑠_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 = 4, and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 = 0.
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Figure A-4: Example of inefficiencies and accelerating commissioning in a project
schedule after a disruption.

Table A.5.7 calculates the variables related to the work weeks. The project

requires three additional work weeks, two inefficiency weeks, and 5 work weeks where

commissioning is accelerated.
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𝑡 Apr May Jun Jul Aug Sep Oct Total∑︀
𝑏 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 40 40 40 40 40 0 0 200

𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 4 4 4 4 4 0 0 20∑︀
𝑏 𝑥𝑝,𝑡,𝑏 0 20 40 50 50 25 15 200

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 0 1 1 1 1 1 1

ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 0 0 1 1 1 1 1

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 0 0 0 0 0 0 1

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠_𝑘𝑒𝑒𝑝𝑖𝑛𝑔_𝑐𝑟𝑒𝑤𝑝,𝑡 0 1 1 1 1 1 0

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 0 4 4 5 5 3 2 23

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘𝑠𝑝 3

𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑤𝑒𝑒𝑘𝑠𝑝,𝑡 1 1 0 0 2

Table A.5.7: Example of the required work weeks based on a project with inefficiencies
that needs to accelerate its commissioning.

If we replace these values in the (3.9) constraint, we get:

𝑐_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑐𝑟𝑒𝑤𝑝 =3 · 𝑐𝑜𝑒𝑓𝑓_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘

+ 2 · 𝑐𝑜𝑒𝑓𝑓_𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑒𝑠

+ 5 · 𝑐𝑜𝑒𝑓𝑓_𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔_𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Generally, we define 𝑐𝑜𝑒𝑓𝑓_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑤𝑜𝑟𝑘_𝑤𝑒𝑒𝑘 < 𝑐𝑜𝑒𝑓𝑓_𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑒𝑠 <

𝑐𝑜𝑒𝑓𝑓_𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔_𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛. So, for this example, the most significant

component in 𝑐_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑐𝑟𝑒𝑤𝑝 will be 5 · 𝑐𝑜𝑒𝑓𝑓_𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔_𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛.
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A.6 Compressed deliveries

Recall that projects have a maximum delivery beyond which their deliveries are

compressed. The 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ ∈ R+ parameter is the threshold of maximum

MW that a project can receive in one period without incurring a cost for a high

volume of deliveries. The model keeps track of deliveries over this threshold because

compressed deliveries result in costs. It tracks it using the 𝑎𝑚𝑜𝑢𝑛𝑡_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡 ∈

R≥0 variable, which is the amount of MW above the 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ delivered

to project 𝑝 in time 𝑡. In a mathematical constraint, it looks like this:

𝑎𝑚𝑜𝑢𝑛𝑡_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡 ≥
∑︁
𝑏

𝑥𝑝,𝑡,𝑏 − 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ ∀𝑝, 𝑡 (A.30)

A non-zero value of 𝑎𝑚𝑜𝑢𝑛𝑡_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡 means that project 𝑝 receives more volume

than 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ in time 𝑡.

As mentioned, projects have less flexibility to adapt to disruptions the closer

deliveries are to the COD. The logic of how the model calculates the cost of compressed

deliveries is very similar to how it calculates the costs of changes in the weeks that the

EPC works. In particular, if a project makes more deliveries than 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ

after the inefficiency threshold period, it must compress some of its deliveries.1 In

that case, the project will incur a cost for the amount of MW above the compressing

threshold. If a project makes deliveries after or during the commissioning start

date, it must compress all of its deliveries and incur a cost for all MW delivered.

The model calculates the cost of project 𝑝 receiving more MW in time 𝑡 than the

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ amount using the 𝑐_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡 ∈ R≥0 variable. The model
1As a reminder, we defined the inefficiency threshold period in Subsection A.5.2.
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defines the following constraints to incorporate the cost of compressed deliveries logic:

If 𝑡 >𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝,

𝑐_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡 = 𝑐𝑜𝑒𝑓𝑓_𝑡𝑟𝑒𝑛𝑐ℎ𝑖𝑛𝑔 · 𝑎𝑚𝑜𝑢𝑛𝑡_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡

for 𝑡_𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑝 ≤ 𝑡 < 𝑡_𝑐𝑜𝑚𝑚𝑝, ∀𝑝

𝑐_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡 = 𝑐𝑜𝑒𝑓𝑓_𝑡𝑟𝑒𝑛𝑐ℎ𝑖𝑛𝑔 ·
∑︁
𝑏

𝑥𝑝,𝑡,𝑏

for 𝑡 ≥ 𝑡_𝑐𝑜𝑚𝑚𝑝, ∀𝑝

else, 𝑐_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑝,𝑡 = 0, ∀𝑝

(A.31)

𝑐𝑜𝑒𝑓𝑓_𝑡𝑟𝑒𝑛𝑐ℎ𝑖𝑛𝑔𝑝 ∈ R≥0 is the cost per MW of trenching a certain number of MW

in the project 𝑝. Notice that if a period has passed before the model is run, the model

assumes that NEER paid the compressed delivery costs before running the model.

Recall that 𝑚𝑎𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑒 is the threshold of the maximum amount of MW a project

can receive in one period.2 The model uses this parameter in the following constraint:

∑︁
𝑏

𝑥𝑝,𝑡,𝑏 ≤ 𝑚𝑎𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑒 ∀𝑝, 𝑡 (A.32)

To visualize the compressed deliveries concept, we examine the example in Figure

A-5, where 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ = 50.3

2In future model enhancements, one could index the 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑡ℎ𝑟𝑒𝑠ℎ and 𝑚𝑎𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑒
parameters by project to calculate more precise costs.

3Section 3.6 showed this previously as Figure 3-7.
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Figure A-5: Example of compressed deliveries in a project schedule after a disruption.

July and August are the months after the inefficiency threshold and before the

commissioning start date. The project delivers 60MW in these months, so it must

compress 10MW. In September, the project delivers 40MW after the commissioning

start date. It will have to compress all of the 40MW. So, the project will need to

compress 60MW: 10MW in July, 10MW in August, and 40MW in September.

A.7 Late deliveries

Since a project may incur either LDs or termination penalties, the model calculates

the costs incurred due to late deliveries in the variable 𝑐_𝑙𝑎𝑡𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝. That is,

𝑐_𝑙𝑎𝑡𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝 ∈ R≥0 is the variable that calculates the cost of project p not

receiving all of the MW required by the contractual COD or the outside COD using

the ensuing constraint:

𝑐_𝑙𝑎𝑡𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝 = 𝑐_𝐿𝐷_𝑤𝑖𝑡ℎ_𝑡𝑒𝑟𝑚𝑝 + 𝑐_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑝 ∀𝑝 (A.33)
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A.7.1 Liquidated damages

We introduce the following elements in this section:

• The variable 𝑐_𝐿𝐷𝑝 ∈ R≥0 is the cost of project 𝑝 incurring in LDs.

• The parameter 𝑐𝑜𝑒𝑓𝑓_𝐿𝐷𝑝 ∈ R≥0 is the cost per period of incurring liquidated

damages for project 𝑝.

• The parameter 𝑡_𝑐𝑜𝑛𝑡_𝐶𝑂𝐷𝑝 ∈ Z+ is the established contractual COD of

project 𝑝.4

We establish that a project incurs LDs if the required MW of project 𝑝 are not

delivered at least a certain number of periods before the contractual COD. We used

a fixed two periods before the contractual COD in this model, but this number could

be parametrized if required.5 For each period later, the project will incur LDs. That

is because after finishing deliveries, the EPC still needs to do activities to complete a

project.

Additionally, if the contractual COD of a project has passed before the model is

run, then the model assumes NEER to have already paid the LDs. As such, projects

where 𝑡_𝑐𝑜𝑛𝑡_𝐶𝑂𝐷𝑝 ≤ 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 have a zero value in 𝑐_𝐿𝐷𝑝. We introduce this
4The date of the contractual COD is mapped to a period in the set T using the 𝑡_𝑐𝑜𝑛𝑡_𝐶𝑂𝐷𝑝

parameter.
5In this case, we assume that deliveries need to finish at least two periods before the contractual

COD, but the number of periods can change depending on the context of the model.
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logic using the mathematical constraints:6

If 𝑡_𝑐𝑜𝑛𝑡_𝐶𝑂𝐷𝑝 ≤ 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑐_𝐿𝐷𝑝 = 0 ∀𝑝

else,

𝑐_𝐿𝐷𝑝 ≥

𝑐𝑜𝑒𝑓𝑓_𝐿𝐷𝑝 ·

(︃
𝑡_𝑜𝑢𝑡_𝐶𝑂𝐷𝑝 −

(︃∑︁
𝑡

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 − 1

)︃
− (𝑡_𝑐𝑜𝑛𝑡_𝐶𝑂𝐷𝑝 − 2)

)︃
∀𝑝 (A.34)

A.7.2 Terminations

The logic behind the termination concept is as follows: First, we restrict deliveries of

all projects so that they do not happen after the outside COD. If we allow deliveries

after the outside COD, then projects could be completed after the outside COD. It

is illogical to have deliveries after the COD because, by definition, if not enough

MW have been delivered to a project by the outside COD, that project must be

terminated. In other words, the outside COD is the deadline for a project to receive

deliveries and avoid termination. In the model, the parameter 𝑡_𝑜𝑢𝑡_𝐶𝑂𝐷𝑝 ∈ Z+

determines the established outside COD of project 𝑝.7

We also restrict terminated projects from having future deliveries. It is an optional

constraint, as minimizing the objective function will likely result in no deliveries for

terminated projects. However, similar to constraint (A.7), we add it to improve the

performance of exercises we do not solve to optimality. The model introduces this
6These logical statements are linear equations and do not need the big-ℳ method since

𝑡_𝑐𝑜𝑛𝑡_𝐶𝑂𝐷𝑝 and 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 are both parameters.
7The date of the outside COD is mapped to a period in the set T using the 𝑡_𝑜𝑢𝑡_𝐶𝑂𝐷𝑝

parameter.
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logic in the ensuing constraint.

𝑥𝑝,𝑡,𝑏 = 0 for 𝑡 ≥ 𝑡_𝑜𝑢𝑡_𝐶𝑂𝐷𝑝 ∀𝑝, 𝑡, 𝑏 (A.35)

𝑥𝑝,𝑡,𝑏 ≤𝑀𝑊𝑝 · (1− 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝) for 𝑡 > 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∀𝑝, 𝑡, 𝑏 (A.36)

In conjunction with constraint (3.7), constraint (A.35) enforces the logic that the

model terminates a project if it cannot finish deliveries by the outside COD. A

terminated project could have positive MW if it had deliveries in past periods, or

𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡,𝑏 is positive for 𝑡 < 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 for the terminated project.

To calculate the cost of terminating a project 𝑝, we introduce the parameter

𝑐𝑜𝑒𝑓𝑓_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑝 ∈ R≥0. A project only incurs termination costs if the model

decides to terminate the project. The variable 𝑐_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑝 ∈ R≥0 captures the

cost of termination if the model terminates project 𝑝, or lack thereof if it does not

terminate it. Additionally, if the outside COD of a project has passed, then the model

assumes that NEER has already paid the termination cost. As such, projects where

𝑡_𝑜𝑢𝑡_𝐶𝑂𝐷𝑝 ≤ 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 have a zero value in 𝑐_𝐿𝐷𝑝. The constraints that the

model uses are the following:8

If 𝑡_𝑐𝑜𝑛𝑡_𝐶𝑂𝐷𝑝 ≤ 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑐_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑝 = 0 ∀𝑝

else, 𝑐_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑝 = 𝑐𝑜𝑒𝑓𝑓_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑝 · 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 ∀𝑝

(A.37)

To avoid double counting costs, we establish that a project does not incur LDs if

the model decides to terminate it. It stems from the logic that if NEER knows that

they will have to terminate a project, they will likely look to avoid other costs. The
8The logical statements are linear equations, and the model does not need to use the big-ℳ

method since 𝑡_𝑜𝑢𝑡_𝐶𝑂𝐷𝑝 and 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 are both parameters.
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model introduces the variable 𝑐_𝐿𝐷_𝑤𝑖𝑡ℎ_𝑡𝑒𝑟𝑚𝑝 ∈ R≥0 to calculate the product

between the 𝑐_𝐿𝐷𝑝 and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 variables. Using this variable helps keep track

of the actual late delivery costs since a project only incurs LDs if the model does not

terminate it at the time the algorithm runs. In the form of constraints, it looks like:

𝑐_𝐿𝐷_𝑤𝑖𝑡ℎ_𝑡𝑒𝑟𝑚𝑝 ≥ 𝑐_𝐿𝐷𝑝 −ℳ_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝐿𝐷 · 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 ∀𝑝 (A.38)

𝑐_𝐿𝐷_𝑤𝑖𝑡ℎ_𝑡𝑒𝑟𝑚𝑝 ≤ℳ_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝐿𝐷 · (1− 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝) ∀𝑝 (A.39)

whereℳ_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝐿𝐷 ∈ R+ is the “big-ℳ” parameter that ensures that the

constraints related to the 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 and 𝑐_𝐿𝐷_𝑤𝑖𝑡ℎ_𝑡𝑒𝑟𝑚𝑝 variables are linear.

A.8 Early deliveries

The parameters that keep track of the early delivery milestones are 𝑡_𝑚𝑜𝑏𝑝 and

𝑡_𝑓𝑖𝑟𝑠𝑡_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝. Explicitly, 𝑡_𝑚𝑜𝑏𝑝 ∈ Z+ is the established period to mobilize

the EPC for project 𝑝. The parameter 𝑡_𝑓𝑖𝑟𝑠𝑡_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝 ∈ Z+ is the first-period

project 𝑝 contracted deliveries. It is the earliest time 𝑡 when 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏 > 0 for

any 𝑏 for project 𝑝, and it is computed based on 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑝,𝑡,𝑏. These parameters

map actual dates to periods in the set T .

The warehouse and the laydown yard are scaled with 𝑀𝑊𝑑𝑐 as a unit. The

coefficients used to calculate the costs are 𝑐𝑜𝑒𝑓𝑓_𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑝 and 𝑐𝑜𝑒𝑓𝑓_𝑙𝑎𝑦𝑑𝑜𝑤𝑛_𝑦𝑎𝑟𝑑𝑝.

The parameter 𝑐𝑜𝑒𝑓𝑓_𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑝 ∈ R≥0 is the cost per MW of storing panels in

a warehouse for project 𝑝 if they need to be delivered before the EPC can access

the project site. The parameter 𝑐𝑜𝑒𝑓𝑓_𝑙𝑎𝑦𝑑𝑜𝑤𝑛_𝑦𝑎𝑟𝑑𝑝 ∈ R≥0 is the cost per

MW of creating a laydown yard in the project 𝑝 to store panels the suppliers

deliver before the project mobilization starts. Together, they calculate if project 𝑝
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receives deliveries in a time 𝑡 before its planned first delivery date in the variable

𝑐_𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝,𝑡 ∈ R≥0 using the constraint:

If 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝 < 𝑡 < 𝑡_𝑚𝑜𝑏𝑝,

𝑐_𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝,𝑡 = 𝑐𝑜𝑒𝑓𝑓_𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑝 ·
∑︁
𝑏

𝑡∑︁
𝑖=0

𝑥𝑝,𝑖,𝑏 ∀𝑝

else if 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝 < 𝑡 < 𝑡_𝑓𝑖𝑟𝑠𝑡_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,

𝑐_𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝,𝑡 = 𝑐𝑜𝑒𝑓𝑓_𝑙𝑎𝑦𝑑𝑜𝑤𝑛_𝑦𝑎𝑟𝑑𝑝 ·
∑︁
𝑏

𝑥𝑝,𝑡,𝑏 ∀𝑝

else, 𝑐_𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠𝑝,𝑡 = 0 ∀𝑝

(A.40)

Similar to previous constraints, if a period has passed, the model assumes that NEER

has paid the early delivery costs before implementing the algorithm.

A.9 Remobilization

Recall from Section 3.9 that the remobilization costs linearly scaled with the number

of remobilization gaps a project has.9 This part of the Appendix defines the

variables that comprise the ℎ𝑎𝑠_𝑟𝑒𝑚𝑜𝑏_𝑔𝑎𝑝𝑝,𝑡 variable. In the model’s constraints,

ℎ𝑎𝑠_𝑟𝑒𝑚𝑜𝑏_𝑔𝑎𝑝𝑝,𝑡 is calculated using:

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 + ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 + ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 ≤ 2 + ℎ𝑎𝑠_𝑟𝑒𝑚𝑜𝑏_𝑔𝑎𝑝𝑝,𝑡 ∀𝑝, 𝑡

(A.41)

9If a period has passed, the model assumes the remobilization costs as paid before the
implementation of the algorithm, and the model does not account for the period’s cost in the
overall remobilization cost.
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From this constraint, we can see that the model introduces the ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 ∈ {0, 1}

variable, which is the binary variable to indicate if project 𝑝 made no deliveries in

the past 𝛿_𝑟𝑒𝑚𝑜𝑏𝑝 periods or more before time 𝑡. The following logic defines this

variable:

If
𝛿_𝑟𝑒𝑚𝑜𝑏𝑝∑︁

𝑖=1

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡−𝑖 = 0, ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 = 1

else, ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 = 0 ∀𝑝, 𝑡

Alternatively, the following constraints translate this logic into linear equations:

𝛿_𝑟𝑒𝑚𝑜𝑏𝑝∑︁
𝑖=1

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡−𝑖 ≤ℳ_𝑟𝑒𝑚𝑜𝑏 · (1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡) ∀𝑝, 𝑡 (A.42)

𝛿_𝑟𝑒𝑚𝑜𝑏𝑝∑︁
𝑖=1

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡−𝑖 ≥ 1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 ∀𝑝, 𝑡 (A.43)

ℳ_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠 ∈ R+ is a “big-ℳ” that ensures that the model assigns the ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡

variables to the expected binary values based on the previous constraint.

In the model, 𝛿_𝑟𝑒𝑚𝑜𝑏𝑝 ∈ Z+ is the established number of periods after which

project 𝑝 incurs a remobilization cost if project 𝑝 has received a delivery and has a

gap of this number of periods between deliveries. 𝛿_𝑟𝑒𝑚𝑜𝑏𝑝 typically equals 2 months.

𝑐𝑜𝑒𝑓𝑓_𝑟𝑒𝑚𝑜𝑏𝑝 ∈ R≥0 is the cost of remobilizing project 𝑝 after stopping deliveries

for 𝛿_𝑟𝑒𝑚𝑜𝑏𝑝 periods.

The ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 variables calculate if a project did not have deliveries in the last

𝛿_𝑟𝑒𝑚𝑜𝑏𝑝 periods, but they do not calculate if there is a remobilization gap. For

example, suppose that there is a project that has yet to make deliveries until period
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3 and 𝛿_𝑟𝑒𝑚𝑜𝑏𝑝 = 2. Then, substituting in A.42 and A.43 for 𝑡 = 3, for a given 𝑝 we

have:

2∑︁
𝑖=1

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,3−𝑖 ≤ℳ_𝑟𝑒𝑚𝑜𝑏 · (1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3)

⇒ 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,2 +𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,1 ≤ℳ_𝑟𝑒𝑚𝑜𝑏 · (1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3)

⇒ 0 + 0 ≤ℳ_𝑟𝑒𝑚𝑜𝑏 · (1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3)

⇒ 0 ≤ℳ_𝑟𝑒𝑚𝑜𝑏 · (1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3)

⇒ ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3 = 1 or ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3 = 0

and
2∑︁

𝑖=1

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,3−𝑖 ≥ 1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3

⇒ 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,2 +𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,1 ≥ 1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3

⇒ 0 + 0 ≥ 1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3

⇒ 0 ≥ 1− ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3

⇒ ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3 ≥ 1

⇒ ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3 = 1

⇒ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,3 = 1

This example shows that all periods without deliveries in 𝛿_𝑟𝑒𝑚𝑜𝑏𝑝 periods will have

ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 = 1, regardless of whether the project has started deliveries. As such, we

need all the variables 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡, ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡, and ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 to equal

1, to have a remobilization gap.10

Recall that a project can have multiple remobilizations. For example, assume
10See Section 3.9 for more detail.
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a project has the delivery schedule in Table A.9.1 when 𝛿_𝑟𝑒𝑚𝑜𝑏𝑝 = 2. The

table shows the values for the 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡, ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡, ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡, and

ℎ𝑎𝑠_𝑟𝑒𝑚𝑜𝑏_𝑔𝑎𝑝𝑝,𝑡 variables.

𝑡 1 2 3 4 5 6 7 8 9 10∑︀
𝑏 𝑥𝑝,𝑡,𝑏 0 0 50 0 0 50 0 0 50 50

𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡 0 0 1 0 0 1 0 0 1 1

ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡 0 0 0 1 1 1 1 1 1 1

ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 0 0 1 0 0 1 0 0 1 0

ℎ𝑎𝑠_𝑟𝑒𝑚𝑜𝑏_𝑔𝑎𝑝𝑝,𝑡 0 0 0 0 0 1 0 0 1 0

Table A.9.1: Example of a schedule with multiple remobilization gaps.

This project has two remobilizations: one in period 6 and another in period 9. In

these columns, 𝑚𝑎𝑑𝑒_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑝,𝑡, ℎ𝑎𝑠_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡, and ℎ𝑎𝑠_𝑔𝑎𝑝𝑝,𝑡 all equal one, so

ℎ𝑎𝑠_𝑟𝑒𝑚𝑜𝑏_𝑔𝑎𝑝𝑝,𝑡 also equals one.

A.10 Bin type changes

This section handles the logic of NEER sending a different amount of solar panels of

a particular bin type to a project than the one they had contracted for that project.

These constraints include the logic of buying new panels and discarding panels because

of a terminated project.

A.10.1 Potential exchanges

Before diving into the details of the constraints, we introduce the concept of projects

exchanging solar panels. We define that a project makes an exchange if it receives
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more panels of a bin type it did not contract or if it gets fewer panels of a bin type

it contacted at the end of the solar panel allocation. The model tracks exchanges

using the 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 ∈ R≥0 variable, which is the amount of MW that project

𝑝 exchanges of panels with bin type 𝑏𝑜𝑙𝑑 in return for panels with bin type 𝑏𝑛𝑒𝑤.

We also explore the four different types of exchanges a project can make:

• A project exchanges panels of one supplier with those of another supplier.

• A project loses panels because of a disruption.

• A project discards panels because the model terminates it.

• A project procures new panels outside of its initial contract.

We describe each type of exchange below.

Exchange of panels between suppliers Let us review a straightforward example

where we have two projects, 1 and 2, and two suppliers, A and B. Project 1 contracted

360 MW worth of panels with bin type A, and Project 2 contracted 360 MW worth

of panels with bin type B. Figure A-6 visualizes the example.
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Figure A-6: Example of two projects that contracted different bin types.

As we advance, we will introduce different scenarios with disruptions. For all of

them, we use the allocation from Figure A-6 as the official contracted schedule. Then,

for the examples from now on, we have the following:

∑︁
𝑡

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑1,𝑡,𝐴 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛1,𝐴 = 360

∑︁
𝑡

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑1,𝑡,𝐵 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛1,𝐵 = 0

∑︁
𝑡

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑2,𝑡,𝐴 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛2,𝐴 = 0

∑︁
𝑡

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑2,𝑡,𝐵 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛2,𝐵 = 360

∑︁
𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝐴 = 360

∑︁
𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝐵 = 360
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Assume that after a disruption, the schedule from Figure A-6 changes, and now

Project 1 receives 240 MW of bin type A and 120 MW of bin type B, and Project 2

receives 120 MW of bin type A and 240 MW of bin type B. Figure A-7 visualizes

this new schedule.

Figure A-7: Example of projects that make an exchange between suppliers.

Additionally, the values for the 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 variables are:

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐴,𝐵 = 120

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐵,𝐴 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐴,𝐵 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐵,𝐴 = 120

In practice, what is happening is that Project 1 is not using 120 MW of bin type A

so that Project 2 can use them, and Project 2 is not using 120 MW of bin type B

so that Project 1 can use them. While we can infer which project transfers MW to
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another, we do not keep track of the interactions between projects; we just keep track

of the absolute change the projects had in panel types. Calculating the interactions

would require us to introduce a variable indexed on 𝑝1, 𝑝2, 𝑏𝑜𝑙𝑑, 𝑏𝑛𝑒𝑤, adding much

complexity to the model. The complexity outweighs the usefulness of a variable like

this.

Also, notice that the total values of each supplier and each project did not change

by looking at the total of columns and rows. Projects 1 and 2 still need to receive

the same amount of MW to complete, and suppliers A and B still produce the same

amount of MW. As such, the MW in the system remain the same. Whether there is

an exchange or not, the MW in the system will always remain the same.

Panel losses Using the scenario in Figure A-6 as a starting point, let us assume

there is a disruption where Supplier A no longer has production. Regarding the

model’s parameter,
∑︀

𝑡 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝐴 = 0. It means that there will be 360

MW less in the system. Also, assume that Project 1 has a higher priority than Project

2. Since Project 1 is a priority, the model would allocate all of the MW from Supplier

B to Project 1 and terminate Project 2. Figure A-8 presents the results from the

allocation.
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Figure A-8: Example of exchanges when a project loses MW.

Calculating the 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 variables for Project 1 follows the logic we used

in the previous example. However, to represent the decrease in MW and termination

that Project 2 had, we need to introduce a new concept. Project 2 initially had

contracted 360 MW worth of panels with bin type B, but the model now allocated

0 MW of all bin types. Intuitively, Project 2 exchanges 360 MW worth of panels

with bin type B for nothing in return. We introduce the abstract representation

of 𝑁𝑜𝑛𝑒-type panels to make this exchange through the one item set G = {𝑁𝑜𝑛𝑒}.

𝑁𝑜𝑛𝑒 can be thought of as a fictional bin type. With this in mind, we can now
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calculate the values for 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 :

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐴,𝐵 = 360

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐵,𝐴 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐴,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐵,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐴,𝐵 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐵,𝐴 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐴,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐵,𝑁𝑜𝑛𝑒 = 360

No exchanges go from 𝑁𝑜𝑛𝑒 to another panel type because all the projects start

with an allocated MW volume equal to the required volume. In other words, projects

cannot have more MW allocated than they need to be completed (recall constraint

(A.7)). In other words, a project can not gain MW overall; it can just gain MW

of a specific bin type if it loses panels of another bin type. Again, this goes back

to the logic that the MW in the system always remain the same. Therefore, for

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 , 𝑝 ∈P, 𝑏𝑜𝑙𝑑 ∈ B, and 𝑏𝑛𝑒𝑤 ∈ B ∪ G .

A project ending up with 0 MW is only one of many where exchanges with

disparate amounts can happen. We use the scenario in Figure A-6 as a starting

point and a disruption where Supplier A delivered 240 MW to Project 1 and Supplier

B delivered 240 MW to Project 2. Then, a disruption happens that results in

Supplier A being unable to provide the remaining 120 MW to Project 1. That is,∑︀
𝑡 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝐴 = 240, and there are 120 fewer MW in the system. If

Project 1 is still a priority, Supplier B would send the remaining 120 MW to Project
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1 instead of Project 2. The model would terminate Project 2. The values for the

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 variables are below, and the allocation visualization is in Figure

A-9.

Figure A-9: Another example of exchanges when a project loses MW.

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐴,𝐵 = 120

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐵,𝐴 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐴,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐵,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐴,𝐵 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐵,𝐴 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐴,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐵,𝑁𝑜𝑛𝑒 = 120
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Discarding panels The model may terminate a project even if the system has

enough MW to complete every project because the projects need to receive the MW

by a specific deadline (see constraints (3.7) and (A.35)). In these instances, a project

will exchange the panels it has yet to receive for the 𝑁𝑜𝑛𝑒-type representation. Since

no project receives these unclaimed MW, the model discarded them. Discarding the

MW of a particular bin type is equivalent to the model not allocating these MW to a

project when they have already been contracted.

We introduce the new concept of the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 abstraction to handle instances

of discarded MW while maintaining the logic that the overall volume in the system

remains the same when there are changes to the allocation. It is an abstract

representation of a location with the panels that the suppliers can produce but

that the model decides not to deliver to any project. 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 can be thought of

as a fictional project. We also introduce the item set Z = {𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑} to facilitate

managing indexes in the model when using the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 project abstraction.

To better understand the concept of the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 project abstraction, suppose a

disruption delays Supplier B’s MW by a year. Figure A-6 is the starting point, and the

model terminates Project 2. Then, the model will discard the MW Project 2 contracted

to 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑. Figure A-10 visualizes this allocation, and the 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 are

presented below.
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Figure A-10: Example of exchanges when a project discards MW.

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐴,𝐵 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐵,𝐴 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐴,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐵,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐴,𝐵 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐵,𝐴 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐴,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐵,𝑁𝑜𝑛𝑒 = 360
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Notice that there are no 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 for 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑. Unlike real projects,

𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 can receive MW even when it did not have MW allocated at the start of

an exercise through the MW that projects discard. We introduce the 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏 ∈ R≥0

variable to track the number of MW contracted using panels with bin type 𝑏, which

the supplier will no longer deliver to any project. In the example from Figure A-10,

the values of the 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏 variable are:

𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝐴 = 0

𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝐵 = 360

Buying new panels Another type of exchange happens when a project buys panels

from a supplier without a pre-existing contract using the 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 variables

defined in Subsection 3.2.1. Recall that a project could buy MW from a supplier

without a pre-existing contract if the supplier could produce it. It is capacity in the

system but not allocated to any project. As such, if a supplier has an additional

capacity to produce more MW than it is obligated to based on its contract, these

additional MW will be initially assigned to the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 abstraction. The model

can deliver these panels to projects at an extra cost. We amend the 𝑡𝑎𝑟𝑔𝑒𝑡𝑝,𝑏 variables

first presented in constraint (A.11) to be indexed over 𝑝 ∈P ∪Z and 𝑏 ∈ B.

We modify the example in Figure A-6 so Supplier A has an additional 360 MW
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of unallocated capacity. Then, the parameters for this example are:

∑︁
𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝐴 = 720

∑︁
𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡,𝐵 = 360

𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛1,𝐴 = 360

𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛1,𝐵 = 0

𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛2,𝐴 = 0

𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛2,𝐵 = 360

𝑡𝑎𝑟𝑔𝑒𝑡𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑,𝐴 = 360

𝑡𝑎𝑟𝑔𝑒𝑡𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑,𝐵 = 0

Suppose the production of Supplier B is delayed, as in the example in Figure

A-11. In that case, the model will use the unallocated 360 MW from Supplier A to

complete Project 2, as it is very costly to terminate a project. Figure A-11 visualizes

the example, and the values of the 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 and 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏 variables are

below.
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Figure A-11: Example of exchanges when a project buys new MW.
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𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐴,𝐵 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐵,𝐴 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐴,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒1,𝐵,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐴,𝐵 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐵,𝐴 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐴,𝑁𝑜𝑛𝑒 = 0

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒2,𝐵,𝑁𝑜𝑛𝑒 = 360

𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝐴 = 0

𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝐵 = 360

A.10.2 Bin type changes

A.10.2.1 Type change variables definition

We mentioned that the volume in the model remains the same after the exchanges. To

model this behavior, we first define a new variable that captures the absolute difference

between the 𝑡𝑎𝑟𝑔𝑒𝑡𝑝,𝑏 and the allocated values for each project. The differences in

examples from the previous sections were easy to calculate because we only had

two suppliers, but it is more complex when we increase the number of projects.

For instance, we can have that for a project 𝑝, 𝑡𝑎𝑟𝑔𝑒𝑡𝑝,𝐴 = 180, 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝐴,𝐵 =

100, 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝐴,𝐶 = 50, 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝐴,𝐵 = 30, and the rest of the 𝑡𝑎𝑟𝑔𝑒𝑡𝑝,𝑏 and

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 variables equal 0. We want a variable tracking that project 𝑝

received 180 less MW than it contracted, regardless of the MW from other bin types
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that it used to substitute them.

The model introduces the variable 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ∈ R to represent the increase

or decrease in MW from panels with bin type 𝑏 when comparing the project 𝑝’s

resulting schedule to its initial schedule. Positive values of 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 mean

project 𝑝 has more panels with bin type 𝑏 than initially anticipated, and negative

values mean it has less. The model assumes that a project makes a panel bin type

change if there is a difference between the target panels of the project and the panels

that the model determines to deliver in the exercise, so it is constrained by:

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 =
∑︁
𝑡

𝑥𝑝,𝑡,𝑏 − 𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑖𝑛𝑝,𝑏 ∀𝑝 ∈P, ∀𝑏 (A.44)

We also want to keep track of how the MW of the abstract location 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

changed. The model does not use 𝑥𝑝,𝑡,𝑏 variables for 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑, so 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 is

defined differently for 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 than for projects 𝑝 ∈P. Instead, the definition

for 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑,𝑏 is based on the intuition that 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 has more MW

with a bin type if projects discard some of their MW and fewer MW with a bin type

if projects procure new panels. Therefore,

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑧,𝑏 = 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏 −
∑︁
𝑝∈P

∑︁
𝑡

𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 for 𝑧 ∈ Z , ∀𝑏 (A.45)

From now on, we will use 𝑧 = 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 ∈ Z to simplify the notation of the

𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 abstraction.

Additionally, we want to differentiate the cases when 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 is positive

from the ones when it is negative. We need this distinction because if 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏

is positive, project 𝑝 must have received MW of bin type 𝑏 that other projects

contracted or the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 representation had. If it is negative, other projects
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(including the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 representation) received MW that 𝑝 contracted. Therefore,

we introduce 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 ∈ R≥0 and 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 ∈ R≥0 as the positive and

negative parts of the 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variable. A non-zero value of 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏

means that project 𝑝 receives more panels with bin type 𝑏 than initially anticipated. A

non-zero value of 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 means that project 𝑝 has fewer panels with bin type

𝑏 than initially anticipated. The model introduces the variables with the following

constraint:

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 = 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 − 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 ∀𝑝 ∈P ∪Z , ∀𝑏 (A.46)

To correctly isolate the positive and negative parts of 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏, we must

ensure that at most one of 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 and 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 is positive while the

other is zero. For example, we want to avoid a solution where

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 = 10

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 = 15

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 = 5,

because 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 is estimating that project 𝑝 received 5 more MW with bin

type 𝑏 than initially anticipated. Instead, we would want to have

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 = 10

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 = 10

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 = 0.
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Therefore, we introduce the following constraints:

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 =

ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 · 𝑏𝑖𝑛𝑎𝑟𝑦_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏

∀𝑝 ∈P ∪Z , ∀𝑏 (A.47)

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 =

ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 · (1− 𝑏𝑖𝑛𝑎𝑟𝑦_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏)

∀𝑝 ∈P ∪Z , ∀𝑏 (A.48)

where ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ∈ R+ is the “big-ℳ” parameter

and 𝑏𝑖𝑛𝑎𝑟𝑦_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ∈ {0, 1} is the binary auxiliary variable that together

ensure that at most one of 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+ and 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒− take a positive value.

We can now tie the 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variables to the 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 variables.

Notice that for a project to receive MW of a particular bin type (or 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 >

0), it must have exchanged to receive these MW. Similarly, for a project to have less

MW than intended of a particular bin type, it must have made exchanges to stop

receiving these MW. In the model constraints, this logic is established by:

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏𝑛𝑒𝑤
=
∑︁

𝑏𝑜𝑙𝑑∈B

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 ∀𝑝 ∈P, ∀𝑏𝑛𝑒𝑤 ∈ B (A.49)

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏𝑜𝑙𝑑 =
∑︁

𝑏𝑛𝑒𝑤∈B

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 ∀𝑝 ∈P, ∀𝑏𝑜𝑙𝑑 ∈ B (A.50)

We also want to tie the 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variables to the 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏 variables. To

do so, we assume that for the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 abstraction to receive MW, other projects
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must discard these MW, captured in:

𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏 = 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑧,𝑏 for 𝑧 ∈ Z , ∀𝑏 ∈ B (A.51)

Notice that constraint (A.51) also constrains
∑︀

𝑝∈P

∑︀
𝑡 𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 because

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑧,𝑏 − 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑧,𝑏 = 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏 −
∑︁
𝑝∈P

∑︁
𝑡

𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏

for 𝑧 ∈ Z , ∀𝑏

(from 𝐴.45 and 𝐴.46)

⇒ 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏 − 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑧,𝑏 = 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏 −
∑︁
𝑝∈P

∑︁
𝑡

𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏

for 𝑧 ∈ Z , ∀𝑏

(from 𝐴.51)

⇒ 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑧,𝑏 =
∑︁
𝑝∈P

∑︁
𝑡

𝑥_𝑛𝑒𝑤_𝑏𝑢𝑦𝑝,𝑡,𝑏 for 𝑧 ∈ Z , ∀𝑏

Table A.10.1 shows the values of the 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variables for the example in

Figure A-11.
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𝑝 𝑏 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏

1 A 0 0 0

1 B 0 0 0

2 A 360 360 0

2 B -360 0 360

𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 A -360 0 360

𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 B 360 360 0

Table A.10.1: Values of the type change variables for the example in Figure A-11.

The requirement we introduced in Section 3.2.2 that deliveries cannot be too small

is the base for the last constraints that define the t𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variables. Similarly,

we require panel bin type changes to be made to a specific size. In particular, panel

bin type changes must be at least 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑎𝑚𝑜𝑢𝑛𝑡 or equal to zero. The

model constrains 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 to enforce this logic:

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≤𝑀𝑊𝑝 · 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑚𝑖𝑛_𝑏𝑖𝑛𝑎𝑟𝑦𝑝,𝑏

∀𝑝 ∈P, ∀𝑏 (A.52)

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≥ 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑎𝑚𝑜𝑢𝑛𝑡 · 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑚𝑖𝑛_𝑏𝑖𝑛𝑎𝑟𝑦𝑝,𝑏

∀𝑝 ∈P, ∀𝑏 (A.53)

where 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑚𝑖𝑛_𝑏𝑖𝑛𝑎𝑟𝑦𝑝,𝑏 ∈ {0, 1} is the binary auxiliary variable that

ensures that 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 is either 0 or a positive number above the 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑎𝑚𝑜𝑢𝑛𝑡

threshold.

Since 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 = 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 when 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≥ 0 and 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 =

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 when 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≤ 0, the constraints A.52 and A.53 also
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constrain 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 and 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 to be at least 𝑚𝑖𝑛_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑎𝑚𝑜𝑢𝑛𝑡

or equal to zero.

The 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variables result from the 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 and 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑𝑏

variables, so one could argue that we could have avoided using the 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏

altogether. However, having variables that 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 simplifies the notation

and logic of many constraints we introduce next.

A.10.2.2 Fixed volume in the system

We now introduce the constraints that make the system’s MW remain unchanged

even when the model changes bin types. First, all the bin type changes that projects

make must cancel each other out. If a project stops receiving MW of a specific bin

type, the other projects (including the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 abstraction) must have more MW

of that bin type in the same amount. Conversely, suppose a project receives more

MW of a specific bin type than the target. In that case, the other projects must

receive less MW of that bin type in the same amount (in the case of the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

abstraction, we can think of it receiving less as equivalent to a project procuring new

panels). It means that if we sum all of the 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variables for a particular

𝑏, we will get zero:

∑︁
𝑝∈P∪Z

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 = 0, ∀𝑏 ∈ B (A.54)

Constraint (A.54) also enforces
∑︀

𝑝∈P∪Z 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 =
∑︀

𝑝∈P∪Z 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 ∀𝑏 ∈

B, which is logical and desired. Intuitively, it ensures that the model does not allocate

more MW to projects than those available in the system and allocates all the system’s

MW to projects despite the changes in bin types.

Similar to how we constrained the 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variables based on the projects
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having changes with a particular bin type, we have also constrained them based on

the bin type changes of a specific project. We do not add additional constraints to

the bin type changes that the 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 representation can make; it is only for

the actual projects. First, we start by constraining a terminated project’s bin type

changes. Recall that in constraint (A.36), we established that a terminated project

would not receive any more deliveries. To align the 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variables to this

logic, we enforce a constraint so that terminated projects cannot receive any MW in

exchanges:

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 ≤ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 · (1− 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝) ∀𝑝, 𝑏 (A.55)

ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ∈ R+ is the “big-ℳ” parameter that ensures the

constraint (A.55) works as expected. Based on constraint (A.55), terminated projects

will not use part or all of the MW they contracted but will not compensate this

unused volume with MW of other bin types.

For a completed project, we have that if it stops receiving panels from one bin

type, it needs to compensate them with panels of other bin types. We want the∑︀
𝑏 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 to be zero for a complete project. To do so, we introduce the

ensuing constraints:

∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≤ 0 ∀𝑝 ∈P

(A.56)∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≥ −ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 · 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 ∀𝑝 ∈P

(A.57)
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To see how the constraints A.56 and A.57 work, suppose that 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 = 0.

Then,

∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≤ 0, ∀𝑝 ∈P

and
∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≥ 0 ∀𝑝 ∈P

⇒
∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 = 0 ∀𝑝 ∈P

Now, suppose that 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 = 1. Then,

∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≤ 0, ∀𝑝 ∈P

⇒
∑︁
𝑏∈B

−𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 ≤ 0, ∀𝑝 ∈P

⇒
∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 ≥ 0, ∀𝑝 ∈P

It is always true because 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 ≥ 0 ∀𝑏 ∈ B.∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≥ −ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 · 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑝 ∀𝑝 ∈P

⇒
∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 ≥ −ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ∀𝑝 ∈P

⇒
∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 ≥ −ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ∀𝑝 ∈P

It is always true because 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒−𝑝,𝑏 ≥ 0 ∀𝑏 ∈ B

and −ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 < 0.

As such, constraints A.56 and A.57 are irrelevant to a terminated project.
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A.10.3 Costs of changing bin types

Now that we have defined the 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏 variables and their behavior, we can

use them to calculate the costs of changing the panel bin types.

A.10.3.1 Change orders

We introduce 𝑑𝑒𝑐𝑖𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝 ∈ {0, 1} as the binary auxiliary variable that indicates

if project 𝑝 has changed the number of panels for any bin type. When a specific

project 𝑝 changes a bin type, 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 will be positive for at least one b. Or,

in logical statements,

If
∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 > 0, 𝑑𝑒𝑐𝑖𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝 = 1

else, 𝑑𝑒𝑐𝑖𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝 = 0 ∀𝑝 ∈P

The big-ℳ method turns this logical statement into linear equations:

∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 − 𝜖_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑑𝑒𝑐𝑖𝑑𝑒 ≥

−ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑑𝑒𝑐𝑖𝑑𝑒 · (1− 𝑑𝑒𝑐𝑖𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝) ∀𝑝 ∈P

(A.58)∑︁
𝑏∈B

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 ≤ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑑𝑒𝑐𝑖𝑑𝑒 ∀𝑝 ∈P

(A.59)

where ℳ_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑑𝑒𝑐𝑖𝑑𝑒 ∈ R+ and 𝜖_𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑑𝑒𝑐𝑖𝑑𝑒 ∈ (0, 1) are

the “big-ℳ” and the “small-𝜖” parameters, respectively, that ensure the expected

functioning of constraints (A.58) and (A.59).
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We assume that NEER decides to change the bin types of a project right after

the algorithm runs. Therefore, we introduce the 𝑝𝑜𝑠𝑡_𝑒𝑝𝑐_𝑏𝑖𝑛𝑎𝑟𝑦_𝑝𝑎𝑟𝑎𝑚𝑝 ∈ {0, 1}

binary auxiliary parameter to indicate if the model runs after contracting an EPC for

project 𝑝. Since the decision of when to make the bin type changes informs if there are

costs, the model tracks if a project has decided to make changes and if that decision

happened after NEER hired the project’s EPC. Using 𝑝𝑜𝑠𝑡_𝑒𝑝𝑐_𝑏𝑖𝑛𝑎𝑟𝑦_𝑝𝑎𝑟𝑎𝑚𝑝

and 𝑑𝑒𝑐𝑖𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝, we calculate the new variable 𝑛𝑒𝑒𝑑𝑠_𝑐ℎ𝑎𝑛𝑔𝑒_𝑜𝑟𝑑𝑒𝑟𝑝 ∈ {0, 1},

which is the binary auxiliary variable that indicates if the algorithm is running before

having started racking for project 𝑝 and if project 𝑝 had a bin type change. The

model calculates it using the following constraint:

𝑑𝑒𝑐𝑖𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑝 + 𝑝𝑜𝑠𝑡_𝑒𝑝𝑐_𝑏𝑖𝑛𝑎𝑟𝑦_𝑝𝑎𝑟𝑎𝑚𝑝 ≤ 1 + 𝑛𝑒𝑒𝑑𝑠_𝑐ℎ𝑎𝑛𝑔𝑒_𝑜𝑟𝑑𝑒𝑟𝑝 ∀𝑝

(A.60)

Projects where 𝑛𝑒𝑒𝑑𝑠_𝑐ℎ𝑎𝑛𝑔𝑒_𝑜𝑟𝑑𝑒𝑟𝑝 = 1 will incur a change order cost. In

particular, 𝑐𝑜𝑒𝑓𝑓_𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑟𝑑𝑒𝑟𝑝 ∈ R≥0 is the cost of making a change order resulting

from delivering panels with different bin types to those contracted for project 𝑝 after

hiring the EPC.

A.10.3.2 Reracking costs

The variable 𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏 ∈ {0, 1} is the binary auxiliary variable that indicates

if project 𝑝 has more volume of panels with bin type 𝑏 than initially planned. It

indicates if 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 is greater than zero. We track this variable because if a

project has more MW of a particular bin type, it might need to modify some of its

racking to adjust to the additional volume. We do not track when a project loses a

particular bin type volume because it is irrelevant to the reracking cost. For example,
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if a project is terminated and loses MW, it will not pay for a reracking cost. The

logic behind the 𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏 variable is the following:

If 𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 > 0, 𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏 = 1

else, 𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏 = 0 ∀𝑝, 𝑏

Alternatively, using the big-ℳ method to turn the logical statement into linear

equations:

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 − 𝜖_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔 ≥ −ℳ_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔 · (1− 𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏) ∀𝑝, 𝑏

(A.61)

𝑡𝑦𝑝𝑒_𝑐ℎ𝑎𝑛𝑔𝑒+𝑝,𝑏 ≤ℳ_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔 · 𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏 ∀𝑝, 𝑏

(A.62)

whereℳ_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔 ∈ R+ and 𝜖_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔 ∈ (0, 1) are the “big-ℳ” and “small-𝜖”

parameters that ensure the model assigns 𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏 to the expected binary

value and transform strict inequalities into non-strict inequalities for the constraints

regarding the 𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏 variable.

As we did in the change order constraints, we introduce the 𝑝𝑜𝑠𝑡_𝑟𝑎𝑐𝑘_𝑏𝑖𝑛𝑎𝑟𝑦_𝑝𝑎𝑟𝑎𝑚𝑝 ∈

{0, 1} binary auxiliary parameter to indicate if the model runs after having started

racking for project 𝑝. Using 𝑝𝑜𝑠𝑡_𝑟𝑎𝑐𝑘_𝑏𝑖𝑛𝑎𝑟𝑦_𝑝𝑎𝑟𝑎𝑚𝑝 and 𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏, we

calculate the variable 𝑛𝑒𝑒𝑑𝑠_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏 ∈ {0, 1}, which is the binary auxiliary

variable that indicates if project 𝑝 needs reracking work due to the additional panels
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with bin type 𝑏 it will receive. We use the following constraint to calculate it:

𝑖𝑠_𝑔𝑎𝑖𝑛𝑖𝑛𝑔𝑝,𝑏 + 𝑝𝑜𝑠𝑡_𝑟𝑎𝑐𝑘_𝑏𝑖𝑛𝑎𝑟𝑦_𝑝𝑎𝑟𝑎𝑚𝑝 ≤ 1 + 𝑛𝑒𝑒𝑑𝑠_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏 ∀𝑝, 𝑏

(A.63)

Projects where 𝑛𝑒𝑒𝑑𝑠_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏 = 1 will incur a reracking cost.

The EPC will only make racking changes for the MW that require them. Therefore,

the reracking cost is variable and scales with the exchanged MW. The reracking cost

is also different depending on the exchanged bin types. We introduce the parameter

𝑐𝑜𝑒𝑓𝑓_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑏1,𝑏2 ∈ R≥0 to represent the cost per MW of making a racking or

hardware rework to allow for changing panels with bin type 𝑏1 to those with bin

type 𝑏2. Also, we introduce the variable 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 ∈ R≥0 to log

the amount of MW project 𝑝 needs to rerack because it changed panels with 𝑏𝑜𝑙𝑑

bin type to panels with 𝑏𝑛𝑒𝑤 bin type. Logically, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 is the

product between 𝑛𝑒𝑒𝑑𝑠_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑛𝑒𝑤 and 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 . The big-ℳ method

turns this logical statement into linear equations:

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 ≤ℳ_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔 · 𝑛𝑒𝑒𝑑𝑠_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑛𝑒𝑤

∀𝑝 ∈P, ∀𝑏𝑜𝑙𝑑, 𝑏𝑛𝑒𝑤 ∈ B (A.64)

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 ≤ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤

∀𝑝 ∈P, ∀𝑏𝑜𝑙𝑑, 𝑏𝑛𝑒𝑤 ∈ B (A.65)

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 ≥

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 −ℳ_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔 · (1− 𝑛𝑒𝑒𝑑𝑠_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑛𝑒𝑤)

∀𝑝 ∈P, ∀𝑏𝑜𝑙𝑑, 𝑏𝑛𝑒𝑤 ∈ B (A.66)

We sum the products of the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 and 𝑐𝑜𝑒𝑓𝑓_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤
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variables over all of the 𝑏𝑛𝑒𝑤 to calculate the total cost of reracking. 𝑐_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏

is the cost of the reracking work that project 𝑝 needs to do to receive panels with bin

type b in the model. Explicitly, we calculate it as:

𝑐_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑛𝑒𝑤 =
∑︁
𝑏𝑜𝑙𝑑

(𝑐𝑜𝑒𝑓𝑓_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤 · 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑟𝑒𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑝,𝑏𝑜𝑙𝑑,𝑏𝑛𝑒𝑤)

for 𝑏𝑜𝑙𝑑 ∈ B, ∀𝑝 ∈P, ∀𝑏𝑛𝑒𝑤 ∈ B (A.67)
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Appendix B

Decomposition sequential approach

As introduced in Chapter 2, the decomposition sequential approach decreases the

algorithm’s runtime. We started by introducing a subset of the constraints and solving

only for this subset. Once we had a solution, we added more constraints and initiated

the algorithm using the solution obtained before as a hot start. We repeated this

process until we added all of the constraints. If the parameters are correctly defined,

the model should always be able to find a feasible solution because the 𝑥𝑝,𝑡,𝑏 variable

is the base of all other variables. The 𝑥𝑝,𝑡,𝑏 variable can always take the value of zero

for future periods, which is the primary time range of the decision space (past periods

have a fixed volume in terms of 𝑥𝑝,𝑡,𝑏 and of the parameters). No constraints prevent

𝑥𝑝,𝑡,𝑏 from equaling zero for future periods, so 𝑥𝑝,𝑡,𝑏 = 0 for 𝑡 > 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∀𝑝, 𝑏

and 𝑥𝑝,𝑡,𝑏 = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑝,𝑡,𝑏 for 𝑡 ≤ 𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∀𝑝, 𝑏 should always be a feasible

solution. Therefore, we should always be able to use the solution from a previous

step to start the next step. We present the pseudocode to introduce the constraints

iteratively.
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Algorithm Decomposition Sequential Approach Pseudocode

Input: model, input_data, subsets 𝑐1, 𝑐2, ..., 𝑐𝑘 of set of constraints C

𝑖← 1

while 𝑖 ≤ 𝑘 do

ℎ𝑖 ← 𝑠𝑜𝑙𝑣𝑒(𝑚𝑜𝑑𝑒𝑙, 𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎,
⋃︀𝑖

𝑗=1 𝑐𝑗)

𝑖← 𝑖+ 1

return ℎ𝑘

We based the subset of constraints in Chapter 2 and Appendix A. Based on trial

and error, we found an order that reduced the runtime and produced a feasible solution

in each step. The order in which we introduced the constraints is the following:

1. Delivery basics, Minimum MW per bin type and form type, Supplier capacities,

and Compressed deliveries (Sections 3.2, 3.3, 3.4, and 3.6).

2. Late deliveries (Section 3.7).

3. Bin type changes (Section 3.10).

4. Remobilization (Section 3.9).

5. Changes to the weeks that the EPC crew works (Section 3.5).

Implementing the decomposition sequential approach helped reduce the model’s

runtime solve for the base scenario allocation from more than 2 hours to less than 8

minutes.
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Appendix C

Extended tables

Table C.0.1: Costs mapped with internal stakeholders.

Team Theme Elements that can cause expenses

Development Time of

delivery

• Size of project

• COD

∘ Renegotiation of COD

∘ Damages of not meeting COD

• Execution date

• Reprioritization based on

∘ Importance of customer

∘ Flexibility of provisions

• Termination rights

• Force majeures

• Permits

∘ Reemission

Continued on next page
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Table C.0.1: Costs mapped with internal stakeholders. (Continued)

Early Stage Panel

characteristics

• Alignment to geography

∘ Albedo

∘ Wind

∘ Slope

• Panel technology

• DC/AC ratio

• Net capacity factor

• Economic performance of the site

• Safe harbor allocation

• Optimal size of land

Procurement Panel

characteristics

• Panel types (N-type or P-type)

• Bin classes

Continued on next page
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Table C.0.1: Costs mapped with internal stakeholders. (Continued)

Panel

production

• Number of panels produced per

supplier per week per bin

• Extra capacity from

∘ Unassigned supply in MSA

∘ Safe harbor

∘ Stocking earlier at higher prices

• Lower capacity from

∘ Factory delays

∘ Government intervention

• Supplier price

• Time of purchase

• Quantity of purchase

Logistics Panel

production

• Extra capacity from

∘ Ramping production up

• Lower capacity from

∘ Port delays

∘ Truck delays

∘ Lack of labor

Time of

delivery

• Delivery routes

∘ Rerouting

Panel

reception

• Storing

∘ Extra days in ports

∘ In warehouses (short- or long-term)

Continued on next page
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Table C.0.1: Costs mapped with internal stakeholders. (Continued)

Engineering &

Construction

Panel

characteristics

• Re-engineering costs with the EPC

• Change in racking needs

• Change in cables

• Change in acreage required

Time of

delivery

• Commissioning

Panel

reception

• Offloading space

• Access to site

∘ Type

∘ Date

• Storing

∘ In laydown yard

• N1 delivery date

• Labor redistribution / addition

• Weather disruptions

• De / re-mobilization

• Extra delivery options due to

∘ Double handling

∘ Centralized offloading

∘ New access points

• Installation capacity depending on

∘ State

∘ Season
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