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ABSTRACT

Belief in misinformation has been linked in part to digital media environments promoting
reliance on intuition – which in turn has been shown to increase belief in falsehoods. Here,
I propose that this apparently irrational behavior may actually result from ecologically ra-
tional adaptations to complex environments. In a large survey experiment, I test whether
intuitive belief in misinformation may result from these rational adaptations by randomiz-
ing participants to be shown either a largely true or largely false news feed. I show that
individuals make more frequent and quicker errors on the less common headline type, and
less frequent errors on the more common headline type. After seeing many true headlines, a
participant is more likely to misidentify a subsequent false headline as true, and vice versa
after seeing many false headlines. This pattern is consistent with adaptation to the propor-
tion of true and false content (the veracity base rate). I use computational modeling to show
that these differences are driven by intuitions, which correspond to Bayesian priors, about
the veracity of the content – intuitions which then spill over into new environments. The
results, when paired with the observation that the news consumed by most Americans is
overwhelmingly true, suggest that belief in misinformation and the intuitions that underlie
it are not necessarily a failing of humans in digital environments but can be a byproduct of
rational adaptations to them.
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Chapter 1

The Formation of Intuitions and Their
Effects on Belief

1.1 Introduction

In Aesop’s The Boy Who Cried Wolf, a young boy is tasked to keep watch over his village’s
sheep. As a joke, he repeatedly yells to alert the farmers to a wolf despite there not being
one. When a wolf actually appears, the farmers dismiss his cries and the wolf terrorizes the
sheep. The moral insight, as any second grader could tell you, is to not lie as you will no
longer be believed. Yet, underpinning the implications for the boy is a model of belief on
the part of the farmers – they default to disbelief in a poor information environment.

While Aesop’s farmers seemlessly default to disbelieving the boy after his mistruths –
the prominent theories of belief suggest that individuals have an implicit and immutable
propensity to initially believe things are true. In “Spinozan” models, information is initially
believed to be true [1]–[3]. It is only, then, through a deliberative process that information
is disbelieved [4]. A competing theory – truth-default theory (TDT) – suggests that in-
dividuals default to the truth because the contexts in which they receive information over
the course of their lives are primarily true [5]. The truth-default can be overcome by cer-
tain environmental or item-level triggers which lead to additional deliberation and evidence
accumulation [6]. Importantly, the diminishing of the truth-default occurs not through a
changing of one’s intuitions but increased reliance on deliberative and skeptical processing.
Crucially, both theories assume that intuitions of belief are largely unchanged by the local
information environment but can be suppressed by deliberation, particularly deliberation
from a standpoint of skepticism.

However, these models are in tension with two extensively studied and widely applicable
theories – Bayesianism and “ecological rationality” [7]. Across a range of domains, people
have been shown to develop context-specific “ecologically rational” defaults and intuitions
[8], [9] that aid them in navigating complex environments [10], [11]. In these cases, “defaults”
are specifically tailored to an environment and are derived from environmental statistics like
the prevalence of certain pieces of information [8], [12]. Meanwhile, Bayesian theory shows
that environmental information should be incorporated as a prior in cognition, which in turn
improves accuracy [13]–[15].
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In the context of news in digital ecosystems, I explore whether there exists a reliance on
flexible and rationally-founded intuitions through drift-diffusion models [16], [17] which ex-
plain decision-making across perceptual and higher-level domains [18]–[22], and can integrate
dual-process and single-process accounts of cognition [23]. Priors and intuitions – or bias –
are identical in a DDM [23], [24] meaning I can both theoretically explore and observationally
measure reliance on intuitions [13], [23]. Taken together, intuitions should be more malleable
than suggested by other theories. In particular, I argue that belief intuitions should be highly
flexible and formed as a rational response to the local environment, particularly the veracity
base rate – the proportion of true and false content in an environment.

In this chapter, I investigate whether belief intuitions are flexible and adaptive to particu-
lar environments as suggested by (ecologically) rational theory. Participants in a large online
experiment learn and account for the veracity base rate – the proportion of true and false
content – in an environment. Participants are randomly exposed to either a highly (80%)
true or false news feed for 50 headlines in the habituation phase. After those 50 headlines,
they are switched to an evenly-split true/false evaluation news feed without their knowledge.
Using this design, I explore how quickly individuals adjust to the base rate, whether they
unlearn the initial base rate in a new environments, and the types of judgments that are
impacted by the rate of true and false content. I show that participants exposed to the high-
quality (GoodFeed) condition are more likely to mistake false items for true while those in
the low-quality (BadFeed) condition are pre-disposed to make the opposite error. These dif-
ferences in error propensity emerge early in the habituation phase and persist throughout the
evaluation phase. Errors made in the direction of the base rate are faster than errors made
in the opposite direction, as predicted by the computational model. I fit a drift-diffusion
model (a computational model of evidence accumulation; DDM) that demonstrates how the
veracity base rate primarily changes the intuitive bias that individuals have when presented
with a new piece of content. With this model, I can additionally rule out the existing theories
of belief as there is no truth-default in the DDM, and intuitions change over time between
conditions. As such, individuals seem to develop efficient intuitions and heuristics that allow
them to navigate novel information environments. However, these intuitions can lead to
an increased likelihood of errors on the less prevalent items. Surprisingly, in the American
information environment, this may lead to heightened belief in misinformation.

Previous work has speculated that the veracity base rate may change truth judgments [25]
but little work has shown this, particularly in the context of misinformation. There are three
notable exceptions. A recent working paper shows a relationship between the proportion of
true and false content and both skepticism and overconfidence but finds minimal effects
on veracity judgments [26]. Second, literature related to lie detection has shown that the
proportion of true and false content affects the diagnosticity of lie detection [5] but works
primarily through the triggering of deliberation. The most relevant work from lie detection
is the ALIED model which suggests that people flexibly trade off between context- and
individual-level cues where context-level information can diminish belief intuitions [27]–[29].
These models are focused primarily on interpersonal contexts which have richer contextual
cues than digital media environments. Finally, work in perceptual tasks has shown that
prevalence can change defaults in an evidence accumulation model [24] while [30] show that
shifting prevalence can lead to recategorization of stimuli. These perceptual tasks point
to the importance of base rates but are focused on lower-level perceptual decision-making
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rather than belief.
While I provide a novel application of ecological rationality to base rates, there is conver-

gent evidence that other adaptive intuitions and heuristics can be developed and employed
in digital information environments. For example, people account for various types of en-
vironmental information such as the number of likes a post gets [31], the number of times
a piece of information has been seen [32], and the medium of the content [33]. In recent
work, highly implausible environments have been shown to increase belief on less plausible
headlines, with the effect appearing alongside adapting one’s priors to the base rate [34]. As
such, the base rate heuristics studied here represent one important part of a toolkit used to
navigate complex digital environments.

While these distinctions may seem of only theoretical interest, we no longer live such
that a boy on a hill can alert us to the dangers of the world. Digital media environments
introduce substantial complexity where we are confronted with the dual task of believing
truths and disbelieving falsehoods with limited information about sources [35] and minimal
interpersonally-derived cues. Additionally, there can be substantial heterogeneity in expo-
sure to informational quality at the individual level by source [36], within platforms [37], [38],
when there are algorithmic changes [39], across platform [40], or between topics [41]. Devel-
oping a substantive understanding of how beliefs are formed in environments with varying
informational quality and minimal source-level information is of paramount importance to
curbing the spread of misinformation while promoting belief in true content.

What would it mean for people to account for the veracity base rate as? At the individual
level, it would mean that people incorporate the base rate into their prior beliefs about
novel content. Cognitively, this can be implemented through a bias in a drift-diffusion
model [24]. At the environmental level, an overwhelming majority of content encountered
online is true with no age group consuming more than 1% misinformation as a percentage
of their news consumption [42]. When the cognitive and environmental accounts are paired,
it suggests that individuals in almost all day-to-day information environments will have a
general intuition that information is true. While this prior can improve aggregate decision-
making, it can make the misidentification of misinformation more likely. The rational process
of developing intuitions may predispose people to believe misinformation.

Furthermore individual differences in an individual’s reliance on intuitions are one of the
strongest predictors of believing and sharing misinformation [43]. Studies have shown that
individuals who rely more on intuitions – those who score lower on the cognitive reflection
test (CRT)– or emotions – a proxy for intuitive judgment – are more likely to believe false
information [44], [45]. Conversely, those who deliberate more are less likely to believe mis-
information and prompting deliberation reduces its sharing [46]. The importance of these
intuitions have been shown to vary by person and point in the direction of belief, but the
cause and nature of these intuitions remain unexplored.

Understanding the nature and flexibility of intuitions in belief, particularly in belief
in fake news is of pressing practical importance. The results suggest that, on average,
habituation to the American information environment can lead to heightened susceptibility
to fake news, especially for those who rely more on intuitions [44], [45]. Digital media
environments also create unprecedented heterogeneity in the veracity base rate within and
across platforms [37]–[41] while providing less information about source-level credibility [35]
than interpersonal environments [5], [27]. I show that this often unobserved heterogeneity
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may be particularly concerning as people are slow to update or likely to misapply base rates
when there are hidden shifts in the environment. Finally, the results suggests that rather
than being harmful, intuitions are adaptive and interventions should carefully consider their
effect on defaults as i) inducing general skepticism can be harmful and ii) more deliberation
is not always better [8].

The remainder of the paper proceeds as follows. Section 1.2 gives an overview of the
sample and the experimental design. Section 1.3 shows that the use of base rate heuristics
is adaptive in stationary environments and considers how agents incorporating the verac-
ity base rate would navigate the task. After establishing specific theoretical predictions, I
present the empirical results in Section 1.4 and explore the role of intuition by fitting drift-
diffusion models in Section 1.5. Finally, Section 1.6 discusses the implications of this work,
including its relationship to theories of belief and digital media environments, while Section
1.7 concludes.

1.2 Experiment

1.2.1 Sample

The sample includes 5,336 nationally-representative participants on Lucid to participate in
an approximately 20 minute survey. Given the length of the study and the characteristics of
Lucid, there is a relatively high exclusion rate from the study. Of the recruited participants,
114 failed a trivial “captcha” on the first page and 609 dropped out of the survey after
being told of the expected 20 minute completion time on the second page. A further 872
participants failed a trivial attention check on the third page and were excluded from the
survey. Finally, an additional 931 participants failed to complete the remainder of the survey
leaving a final sample of 2,810.

Since a relatively high proportion of participants failed to complete the survey, I conduct
a series of tests for differential attrition. I first regress failure to complete the survey on
a dummy for treatment assignment in a logistic regression which provides no evidence of
baseline differential attrition (bGoodFeed = 0.034, z = 0.615, p = 0.54). An additional logistic
regression that includes variables for political party identification, age, gender, cognitive
reflection score, education, and device type, plus their interaction with treatment produces
no significant interaction effects indicating no predictable attrition by subgroup.

1.2.2 Design

After completing basic and political demographics, and a six-item cognitive reflection test
(CRT), participants entered the “habituation” phase. In this stage, participants were shown
50 headlines randomly presented according to a condition-specific base rate. Participants
were randomly assigned to either the GoodFeed or BadFeed condition. In the GoodFeed
condition, 80% of the headlines were true. The base rate in the BadFeed was the converse,
80% false and 20% true. After completing the habituation phase, all participants entered
the “evaluation” phase for 30 headlines where 50% of the headlines were true and 50% were
false.
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I constructed a 110 item headline set split evenly between true and false headlines. The
full set was sampled to be balanced on a range of pre-tested characteristics including parti-
sanship as recommended by [47]. Details of the sampling method can be found in Supplement
A.1. From the set of 110 headlines, participants in the GoodFeed condition were presented
with a random sample of 40 true and 10 false headlines during habituation. They were then
shown the remaining 15 true headlines and 15 randomly selected false headlines during the
evaluation stage. Conversely, participants in BadFeed were randomly shown 50 false and
25 true headlines in total. Each headline was presented with a representative image sim-
ilar to those seen on Facebook or Twitter as is standard in news identification tasks [e.g.,
44]. To reduce the risk of “lever bias,” clicking through without considering the headline,
I implemented a 3 second pause in between each headline. For each headline, participants
rated whether they thought the headline was accurate or inaccurate, providing the primary
outcome variable.

Importantly, participants were given no feedback about whether they were correctly
identifying headlines. Any intuitions about the base rate formed by participants were based
on their perceptions of headline veracity rather than information they received about the
base rate. While providing direct information about the base rate or feedback on headline
accuracy would no doubt strengthen the inferred base rate, no feedback is given to both
preserve ecological validity and avoid making the switch to the “evaluation” phase obvious.
In perceptual tasks, people learn base rates and incorporate the base rate as a prior in
Bayesian reasoning [24]. The experimental design here tests whether this type of learning
applies to more complicated information, like the veracity of news.

Furthermore, participants were not made aware of the shift in environment between the
habituation and evaluation phases. In hiding the environmental shift, I am able to provide a
naturalistic setting while testing whether strong intuitions can be undone over time in new
environments. The hidden shift to the 50/50 evaluation phase also maximizes the statistical
signal for discernment. A neutral evaluation phase is important to delineate treatment
effects as shown by [48] who placed participants playing the repeated prisoner’s dilemma in
environments that favored cooperation or defection to allow for “habituation” before being
put in a neutral one-shot anonymous game.

1.3 Theory and Hypotheses

I restrict the exploration of the cognitive implementation of veracity base rates to drift-
diffusion models (DDMs) [16], [17] – a type of sequential sampling model that has proven
useful in explaining human decision-making in both social and asocial settings including
perceptual and higher-level cognitive tasks [18]–[21], [23]. A particular upside of DDMs is
that they allow for the use of response times to measure uncertainty about a decision, which
can aid in predicting decisions [49], [50]. Sequential sampling models also have strong neural
correlates making them one of the more micro-founded cognitive models [51]–[54].

The traditional DDM [16], [17] decomposes the decision-making process into four param-
eters: i) non-decision time- the amount of time needed to begin accumulating evidence, ii)
boundary- the total amount of evidence needed to make a decision, iii) drift- the speed with
which one accumulates evidence in a given direction, iv) bias- the amount of evidence in a
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direction that one begins the decision-making process with. A decision is made when the
amount of evidence, gained through a combination of bias and drift, in favor of an option
exceeds the boundary.

DDMs have proved to be particularly useful in separating between portions of a decision
that come from intuition and deliberation [23]. The “biased” DDM can integrate both dual-
process and SSM accounts of decision-making [13], [23]. This integration of prior knowledge
into the starting point is payoff improving [13]–[15] and consistent with Bayesian principles
[24], [55]. In models with feedback, responses that consistently yield better outcomes influ-
ence the bias [14], [15] rather than other parameters like drift or boundaries [56]. In fact,
using environmental information, like the propensity of an option to generate rewards, in
the prior is the only integration consistent with Bayesian theory [55].

In the setting of evaluating news, I generalize the biased DDM to the evaluation of news
in a digital media environment where there are no rewards. I hypothesize that individuals
learn the veracity base rate over time and incorporate that information in their prior. The
evidence accumulation process will start with a bias towards the more prevalent type of
information, making a decision in that direction more likley. Second, the drift rate is a
function of the underlying plausibility of the headline being viewed, as established by [46].
In short, a participant who has seen many true headlines will be biased to think the next
headline is true but their drift will, on average, draw them towards the correct answer.

Consider the case of an individual evaluating a series of headlines. They will start off
with little information about the environment and will deliberate on the first headline until
reaching a conclusion as to whether it is true or false. After making a series of these decisions,
they will form beliefs about the base rate of true and false information in the environment. To
aid in the processing of new information, the individual will start their decision process biased
towards the more likely headline type. As certainty about the base rate grows, they will rely
more and more on this base rate heuristic. The formalisms of the model and simulations
can be found in Appendix A.3. I also show that the incorporation of the base rate as a
prior improves aggregate accuracy and cognitive costs in a news evaluation environment in
Appendix A.2.

Using simulations (Appendix A.3), I demonstrat three signs of reliance on a base rate
heuristic. First, after the base rate has been established, errors will be significantly more
likely on the less common type of headline. Errors on false headlines are differentially more
likely in GoodFeed while the converse is true for BadFeed in the evaluation phase (see Figure
A.3). Second, the difference in error rates grows throughout the habituation phase as the
base rate becomes more certain (Figure A.4). The difference in error rates will shrink in the
evaluation phase if agents become aware of the new base rate. Finally, decisions that are
made in the direction of the base rate are made more quickly than those made against the
base rate once the base rate has been established (Figure A.5).

1.3.1 Competing theories

The primary competing models of belief intuitions suggest that intuitions are inflexible and
point towards truth. The Spinozan model suggests an insensitivity to context and there
should be no differences in error rate by condition. TDT, on the other hand, suggests
that there should be greater errors on false headlines in the GoodFeed condition than the
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BadFeed condition as environmental cues may trigger additional skeptical deliberation but
there should not be be condition differences on true headlines where intuitions invariantly
point in the correct direction. In the DDMs, both models would produce no condition
differences in the starting point. Additionally, under a TDT model, participants in BadFeed
should have i) wider boundaries as they have been cued to deliberate more and ii) slower
drift rates in BadFeed as evidence accumulation should be more cautious.

It may be possible to reconcile Spinozan and TDT models with Bayesian principles by
including a hyperprior on environmental stability. In essence, since most environments are
true, one should have a prior that any given environment is true unless there is strong
evidence to suggest otherwise. Given that people have lengthy exposures to digital environ-
ments and the experiment habituates participants for 50 rounds, the normative justification
only considers the case of stable environments once the agent is calibrated to the base rate.
In other words, I present a model for when there is enough evidence to overwhelm a possible
hyperprior. Finally, a hyperprior on environments being true would predict a i) general bias
in early rounds to finding information to be true, and ii) no updating of the bias term in
GoodFeed as the environment should confirm the hyperprior.

Given that the empirical results make it clear that there is no general truth-default, even
in early rounds, I do not formally consider the normative implications of Spinozan and TDT
models. Simply put, it is unlikely that these models are normatively better as increased
deliberation is cognitively costly and the difference in signal-to-noise ratio in deliberation
would need to be incredibly high to make up for aggregate accuracy gains from using a
prior.

1.4 Empirical Results

I now turn to the empirical data to test the theoretical predictions. Participants clearly
demonstrate differences in error rates in the evaluation stage in-line with accounting for
the base rate learned in the habituation phase. Figure 1.1 shows that participants in the
GoodFeed condition are 5.6pp (CI = [4.7, 6.6], t = 11.8, p < 0.001) more likely to make
errors on false headlines than true headlines. Similarly, BadFeed participants misidentify
true information 2.8pp (CI = [1.2, 3.0], t = 4.4, p < 0.001).

Table 1.1 confirms that these differences are robust to multiple regression specifications.
Column (1) estimates a regression of a dummy variable for if a headline was incorrectly
evaluated on a dummy for assignment to the GoodFeed condition, a dummy for if the
headline is false, and the interaction of the two. Column (1) also includes a set of controls
for each subject and a measure for the difficulty of evaluating each headline.1 Column (2)
replaces headline-level covariates with a headline fixed effect while Column (3) also includes
individual fixed effects. In each specification, errors in the GoodFeed condition on False
headlines are 8pp higher (p < 0.001) than in BadFeed.

These patterns are consistent with participants learning and accounting for the veracity
base rate in the habituation phase and applying the base rate in the evaluation phase. While
the aggregate behavior over 30 rounds after seeing 50 headlines demonstrates reliance on base

1The difficulty measure is the absolute value of pre-tested plausibility minus the scale midpoint. Items
further from the midpoint are easier to evaluate.
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Figure 1.1: Effect of habituation condition on errors in the evaluation phase. The
two left bars show the error rate (y-axis) on false headlines while the right two show the
error rate on true headlines. The orange bar shows individuals who were habituated in the
BadFeed condition while the green bar shows those from GoodFeed. The mean is shown
with 95% confidence intervals.
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rates, a key prediction is that the effect will become stronger as certainty about the base
rate increases. The base rate begins to quickly influence error rates among false headlines
(Figure 1.2) with the difference in error rates being significant by the third five round block
(b = 4.4[1.6, 7.2], t = 3.1, p = 0.002). Interestingly, it takes longer for a difference to
materialize for true headlines with the first significant positive difference between BadFeed
and GoodFeed error rates appearing in the block of rounds 41-45 (b = 4.6 [1.7, 7.4], t = 3.2,
p = 0.002).

Table 1.1: Effect of habituation condition on error rates in the evaluation phase

Dependent Variable: Error
Model: (1) (2) (3)

Variables
GoodFeed -0.0298∗∗∗ -0.0306∗∗∗

(0.0095) (0.0095)
HeadlineFalse -0.0212

(0.0186)
GoodFeed × HeadlineFalse 0.0775∗∗∗ 0.0801∗∗∗ 0.0805∗∗∗

(0.0168) (0.0168) (0.0168)

Fixed-effects
Item No Yes Yes
ID No No Yes

Fit statistics
Controls Full Individual No
Observations 84,300 84,300 84,300
R2 0.02042 0.04435 0.11051
Within R2 0.01723 0.00189

Clustered (Item & ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The outcome for each regression is a dummy variable for if an individual made an error on a given
headline in the evaluation phase. The regressors are a dummy for if the individual was assigned to the

GoodFeed condition, a dummy for if the headline of interest is false, and the interaction of the two
dummies. Column (1) includes individual-level controls – CRT score, a dummy for the use of a mobile

device, age, and dummies for if the participant is white, went to college, or is female – and a control for the
plausibility of the headline. Column (2) replaces the headline control with a headline fixed effect while

column (3) has no controls and headline and individual fixed effects. Standard errors are two-way clustered
on item and individual.

In both conditions, the difference in error rates grows throughout the habituation phase,
indicating that certainty about the base rate continues to increase and influence decision-
making. The largest error rate difference between headline type in both conditions is in
rounds 46-50, the final rounds in the habituation phase. After that, error rate differences be-
gin to decline, indicating that people may be gradually learning the new base rate. However,
this learning is not enough to offset the original base rate, particularly among false items.

An essential prediction of the drift-diffusion model used in the simulations is that decisions
will be made faster in the direction of the base rate as there is less evidence that needs to
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Figure 1.2: Patterns of condition-specific errors. Each point shows the mean error rate
in 5 round blocks for either the GoodFeed (blue) or BadFeed (orange) condition on true
(bottom panel) or false (top panel) headlines. The bands show 95% confidence intervals on
each mean. The vertical line at round 50 separates the habituation and evaluation phases.

be accumulated to make a decision. In Table 1.2, Columns (1) - (3) regress response time,
excluding times over 100 seconds, on a dummy for if the item’s veracity is in-line with the
base rate. Responses made in-line with the base rate are made between 0.14 (p = 0.01) and
0.3 seconds (p < 0.001) faster than decisions on items counter to the base rate. Columns
(4) - (6) confirm the same pattern of response times using a log transformation to penalize
outliers.

While the results so far have demonstrated that people are adapting to and incorporating
the base rate on average, it is likely that there is heterogeneity in how base rate heuristics
are used. More specifically, participants who are low in cognitive reflection (CRT) should
demonstrate the base rate effect more than those who are high CRT as they rely more on
intuitions. A regression of error rate on condition assignment and CRT level confirms this
relationship. Table 1.3 shows the effect of assignment to GoodFeed on the probability of
making an error interacted with a dummy for if the individual scores at or below median
on the CRT test. Low CRT individuals in GoodFeed are significantly more likely to make
errors on false headlines by about 4pp (cols 1 - 3; p = 0.038). However, there is no difference
in the effect of condition on error rate by CRT level among true items. This analysis departs
from the pre-registered analysis which included a continuous measure of z-scored CRT rather
than a bucket. The pre-registered analysis can be found in Table A.5 Supplement ??.

While heterogeneity in effect by CRT level provides confirmation that the base rate
influences those who rely more on heuristics, another key component of how base rates
cognitively effect accuracy evaluations is the types of headlines on which the base rate has
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Table 1.2: Differences in response times by condition in the evaluation phase

Dependent Variables: Time Log Time
Model: (1) (2) (3) (4) (5) (6)

Variables
Common Headline Type -0.2929∗∗∗ -0.2933∗∗∗ -0.1394∗∗ -0.0436∗∗∗ -0.0439∗∗∗ -0.0208∗∗∗

(0.0880) (0.0879) (0.0538) (0.0104) (0.0104) (0.0049)

Fixed-effects
Item No Yes Yes No Yes Yes
ID No No Yes No No Yes

Fit statistics
Controls Full Individual No Full Individual No
Observations 83,881 83,881 83,881 82,505 82,505 82,505
R2 0.07177 0.07913 0.34955 0.16364 0.17014 0.56643
Within R2 0.07205 7.88× 10−5 0.16444 0.00029

Clustered (Item & ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Columns (1) - (3) show a regression of response time, in seconds, on a dummy for if the decision
made by the participant is in-line with the base rate. Times over 100 second are excluded. Columns (4) -
(6) show the same regression with the log transformation of time as the outcome. Columns with “Full”
controls include individual-level controls – CRT score, a dummy for the use of a mobile device, age, and
dummies for if the participant is white, went to college, or is female – and a control for the plausibility of

the headline. Columns with “Individual” controls replace the plausibility control with a headline fixed
effect. Columns without controls include headline and individual fixed effects. Standard errors are two-way

clustered for headlines and individuals.
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Table 1.3: Heterogeneous effects of habituation on evaluation phase errors by CRT level

Dependent Variable: Error
False Items True Items

Model: (1) (2) (3) (4)

Variables
GoodFeed 0.0228 0.0250∗ -0.0279∗∗ -0.0285∗∗

(0.0149) (0.0148) (0.0136) (0.0136)
Low CRT 0.0741∗∗∗ 0.0754∗∗∗ -0.0013 -0.0010

(0.0146) (0.0146) (0.0153) (0.0153)
GoodFeed × Low CRT 0.0438∗∗ 0.0432∗∗ -0.0007 -0.0011

(0.0205) (0.0204) (0.0185) (0.0186)

Fixed-effects
Item Yes Yes

Fit statistics
Controls Full Individual Full Individual
Observations 42,914 42,914 41,386 41,386
R2 0.03989 0.06857 0.01153 0.03008
Within R2 0.03937 0.00623

Clustered (Item & ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The outcome for each regression is a dummy for if the participant made an error in evaluating a
headline in the evaluation phase. The error dummy is regressed on a dummy for if the participant was

habituated in the “GoodFeed” condition, if the participant scores “Low” (at or below median) on the CRT
test, and the interaction of the two dummies. Columns (1) - (3) subset to just false items while columns (4)
- (6) restrict to only true items. Columns with “Full” controls include individual-level controls – CRT score,
a dummy for the use of a mobile device, age, and dummies for if the participant is white, went to college,
or is female – and a control for the plausibility of the headline. Columns with “Individual” controls replace

the plausibility control with a headline fixed effect. Columns without controls include headline and
individual fixed effects. Standard errors are two-way clustered for headlines and individuals.
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Figure 1.3: Differences in accuracy evaluations by condition as a function of pre-
tested headline plausibility. Each point is the fraction of times the headline was evaluated
as true in the evaluation phase by participants habituated in either the GoodFeed (blue)
or BadFeed (orange) condition. The x-axis shows the pre-tested plausibility rating of the
headline. The lines show a local polynomial (loess) regression of the accuracy dummy on
pre-tested plausibility split by condition. The bands show 95% confidence intervals.

an effect. Most importantly in this setting is the interaction of plausibility with the effect.
Figure 1.3 shows the mean of accuracy ratings in the evaluation stage split by the two
conditions as a function of underlying pre-tested headline plausibility. Even with a non-
linear regression, there is no effect of plausibility of differences in perceived accuracy by
condition. As shown in the simulations, this is expected from a drift-diffusion model with an
updating base rate intuition. Figure A.6 in Appendix A.3 demonstrates this uniform effect.

1.5 Drift-Diffusion Model Fitting

While simulations from DDMs have provided useful predictions about patterns in error rates
and response times when incorporating the veracity base rate, model fitting allows me to
explore whether the base rate effect is working specifically on intuitions. I fit two DDMs
to the data at the subject-level. The first (the evaluation model) is fit only on the last 30
rounds while the second (the habituation model) is fit for every decision. As with a standard
DDM, symmetric boundaries and non-decision time are estimated at the individual-level. I
depart from the standard DDM to better fit two components of the experiment. First, both
models estimate the drift rate as a linear function of the pre-tested plausibility without a
baseline drift as in the simulations. Second, the starting point is allowed to be different from
unbiased in the first model. Similarly, in the second model, it is allowed to be different from
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unbiased and is fit in 10 rounds blocks to track the update over time.
As in the simulations, I model the drift rate as simply:

δ = γplausibility (1.1)

where plausibility is normalized such that the scale midpoint (3.5) is 0, and γ is the sensitivity
of a participant’s drift rate to plausibility.

I fit all models in the Python package HDDM [57] which implements a hierarchical
Bayesian drift-diffusion model. I estimate the model hierarchically because there is limited
data at the participant-level, especially for fitting the bias term in 10 round blocks. The
hierarchical model allows other participants to inform the parameter estimation for an in-
dividual through a group-level posterior. However, given the computational difficulties of
fitting hierarchical Bayesian models, I use 30 person clusters. Given the information pooling
within clusters, I select these clusters to be composed of empirically similar individuals. I
first split the participant pool by both treatment and CRT score such that there can be no
crossover between treatments or CRT levels. I, then, use k-means clustering with 4 centroids
on important demographic variables that could impact decision-making – age, race, gender,
party, news consumption, education, and attention. I set the prior probability that an ob-
servation is an outlier as 0.05 and exclude observations estimated to be outliers from the
estimation.2

For interpretability, I convert the HDDM estimate of the bias term, which is the distance
between the symmetric boundary, to log odds space. This allows for a direct comparison
of bias terms across individuals with different boundaries. A bias of 0 reflects an unbiased
starting point while a positive value reflects a bias towards an item being true. A natural
interpretation of how I present bias is the total amount of evidence in a direction that the
individual begins their decision-making process with.

1.5.1 DDM Results

Figure 1.4 compares the distribution of individual-level parameter estimates by condition
for the first model. I use asymptotic two-sample Kolmogorov-Smirnov tests to compare
the distribution of DDM parameters by condition.3 There are no observable differences in
the non-decision time (D = 0.02, p = 0.92) or boundary (D = 0.03, p = 0.65) between
the GoodFeed and BadFeed conditions. The veracity drift rate is slightly higher in the
GoodFeed condition (D = 0.06, p = 0.02). However, the clear differences by condition come
in the bias term. The average bias term in the GoodFeed condition is 0.05 while it is -0.22
in the BadFeed condition. The distributions are highly different from each other (D = 0.3,
p < 0.001). Participants from both conditions begin their decision process thinking the more
prevalent headline type from the habituation phase is more likely. Given the hyperprior on
the bias term of 0.5, this is likely an underestimate of the true difference.

While these results show that there are differences in the bias term between conditions
in the evaluation stage, I am additionally interested in how the base rate is learned and

2I use the out-of-the-box outlier exclusion available in HDDM. Details are provided here: https://hddm.
readthedocs.io/en/latest/tutorial_basic_hddm.html#dealing-with-outliers.

3Importantly, the distribution is not the Bayesian posterior distribution of the group-mean but the dis-
tribution of individual-level point-estimates.
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Figure 1.4: Distribution of estimated individual-level DDM parameters split by
habituation condition. The y-axis shows the density of each distribution while the x-
axis shows the corresponding individual-level parameter estimate. The green line shows
participants from the GoodFeed condition while the orange line shows those from BadFeed.

incorporated over time. To do this, we turn to the second DDM that fits a separate bias term
for every 10 round block in the study. Figure 1.5 shows the average individual-bias parameter
in each round block split by GoodFeed and BadFeed. The estimates in the first round block
are relatively unbiased and close together with the initial divergence likely reflecting later
headlines in the block when an estimate of the base rate can already be formed. There is clear
and consistent divergence of the bias terms across the habituation phase with the largest
difference occurring in the fifth round block. Participants learn and incorporate the bias of
the environment into their decision-making process. There is a substantial convergence in
the bias term in both conditions after the switch to the 50/50 evaluation phase. Participants
do not return to unbiased but seem to be aware of the new base rate in the evaluation phase.

These two DDMs suggest that the veracity base rate is primarily incorporated into
decision-making through the initial bias that individuals have when evaluating a headline.
It is possible that the effect would only appear for high or low CRT participants. However,
the condition effects appear in the bias term for both groups. In the first DDM, the dif-
ference between the bias term in GoodFeed and BadFeed is 0.32 (p < 0.001) for low CRT
participants while it is 0.31 (p < 0.001) for high CRT participants. The veracity base rate
shifts the intuitions of participants across CRT levels.
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Figure 1.5: Updates in average individual-level bias estimates by condition. Each
point shows the average individual-level bias parameter estimate split by GoodFeed (green)
and BadFeed (orange). The parameter is estimated for each 10 round block. 95% confidence
intervals on the mean are shown. The vertical black line shows the switch from the habit-
uation to evaluation phase at round 50 while the horizontal red line shows a bias term of
0 (unbiased). Positive values show a bias towards finding items true while negative values
show a bias towards finding items to false.
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1.5.2 Model Comparison

I conduct multiple tests to ensure that the selected models provide better fits than reasonable
null models. In comparison to the first model, I consider a null model that is identical but
does not allow the bias term to differ from unbiased. For the second model, the null model
allows the drift rate to update in 10 round blocks. These null models test whether DDMs
without a flexible bias term can capture the base rate effects.

I, first, compare the deviance information criterion (DIC) of the hypothesized models
against the null models. In both cases, the hypothesized models provide a better fit to the
data than the null models. The average DIC of the clustered models is 4,765 for the proposed
evaluation phase model while it is 4,817 for the null model. Similarly, the average DIC of
the habituation model is 13,238 while it is 13,322 for the null model. In both cases, the
hypothesized models outperform the null models.

Additionally, I simulate response data from each model at the individual level to test
the fit relative to the observed data. I simulate each individual completing the same set
of headlines as the experiment using their estimated parameters 100 times. To do this, I
calculate the round-level DDM parameters and simulate both the response and response
time for each headline. I take the mean response of the 100 simulations as the probability
of selecting that a headline is accurate. I compare the average of these individual-level
probabilities to the average probability in the observed data. While the overall fit of the
models is similar, the null model is unable to explain differences between the conditions,
the quantity of interest. I calculate the RMSE of the difference in accuracy evaluations by
condition for each round in the evaluation phase. The RMSE of the hypothesized model is
0.016 while it is more than double in the null model at 0.042. A similar pattern holds for
the habituation model. The round-level RMSE over all rounds in the experiment is 0.022
while it is 0.052 for the null model. Taken together, it is clear that the hypothesized models
better fit the treatment effects than reasonable null models.

1.6 Discussion

Rational principles suggest that accounting for the base rate of true and false content in an
environment by changing one’s intuitions can aid in both increasing accuracy and reducing
cognitive burden. However, a troubling byproduct of this cognitive strategy is the misiden-
tification of the less common type of information. In low quality environments, skepticism
may become habitual causing general disbelief even in true information. On the other hand,
a high prevalence of high quality information can make individuals particularly susceptible
to fake news.

In a novel experimental design, I show that participants become habituated to skewed
information environments. In these environments, individuals make more errors on the less
prevalent type of content. These errors increase over the course of the habituation phase
as certainty about the base rate increases. However, participants become slightly better at
identifying the more prevalent headline type. Participants are able to do this while also
drastically decreasing the amount of time that they need to spend identifying headlines.
Taken together, it appears that individuals adapt to environments in ways that decrease
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cognitive costs without sacrificing accuracy.
At a general level, the results suggest that individuals quickly develop an intuition fa-

voring the more prevalent type of information in an environment in contrast to prevailing
models of belief. The results suggest that belief intuitions are learned and integrated almost
symmetrically whether they point towards content being true or false, showing there is little
evidence for a general truth-bias. I draw on justifications from ecological rationality – which
has shown that adaptive intuitions can be formed to navigate complex information envi-
ronments – and normative Bayesian theory – which has been instantiated through DDMs
to show the importance of base rates as a prior in perceptual tasks. While normatively
grounded, these findings are directly in contrast to existing belief models which suggest
there is an immutable intuition favoring that information is true.

I am also able to test alternative belief models by looking at predictions about the rela-
tionship between environmental context and deliberation. TDT suggests that environmental
cues in BadFeed should lead to i) greater deliberation in the form of wider boundaries and ii)
slower and more cautious deliberation. I find no evidence that there are condition-level dif-
ferences in DDM boundaries but weak evidence for differences in the speed of deliberation.
Additionally, truth-default should appear as i) a bias in intuitions towards truth in early
rounds and ii) no updating of intuitions in GoodFeed. However, I find a slight intuitive bias
towards finding content to be false in early rounds and strong positive intuition updates in
GoodFeed. Taken together, it is reasonable to reject both the Spinozan and TDT accounts.

Our theory most closely aligns with the ALIED model in lie detection [27]. This model, a
response to TDT, suggests that intuitions can be changed by environmental context like the
base rate [28]. However, I provide both a normative justification for the model, theoretical
underpinnings for cognitive process, and generalizable predictions about patterns of errors.
I also generalize beyond the context of interpersonal lie detection.

The results have important implications for the study and prevention of misinformation.
I show that the use of efficient heuristics and intuitions can lead to increased belief in
misinformation in high-quality information environments. I provide a cognitively-founded
and normatively-justified explanation for previous work demonstrating that intuitions can
increase belief in misinformation [44], [45] while deliberation decreases belief in fake news
[58], [59]. These relationships hold across studies that induce intuition or deliberation [e.g.,
58] or look at an individual’s general reliance on intuition in decision-making [e.g., 44].

I also demonstrate that unknown or underaccounted for heterogeneity in informational
quality, a general property of fractured digital media, can make people particularly suscep-
tible to fake news. In the experimental data, I show that participants are slow to learn a
new base rate when there is not an obvious cue that the environment has changed. There is
strong reason to think that there will be spillover even when there is an explicit market for
environmental change as environmentally-derived intuitions for cooperation are applied in
similar but not identical context [48]. These spillovers are particularly harmful when tran-
sitioning from high to low quality environments, or when bad actors are able to infiltrate or
establish high quality spaces which can be hijacked to amplify belief in misinformation [60].

While I do not directly test the relationship between intuitions and interventions, the
cognitive model suggests that the effect of interventions on intuitions should be investigated.
Models of belief with immutable intuitions silo interventions into focusing on deliberation
while also suggesting that there is no downside to prompting more deliberation. The model,
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which highlights the flexible nature of intuitions, suggests that interventions which help
people form better intuitions (e.g., highlighting the general quality of information in an
environment) or better applying their intuitions (e.g., making transitions between environ-
ments salient) can be particularly effective. Flexible and adaptive intuitions also imply that
generating skepticism, a tactic of some interventions, can harm the adaptive processes that
people use and make the identification of true information more difficult. This provides a
strong theoretical reason to evaluate interventions using discernment rather than belief or
sharing of just fake items [61].

Finally, the results suggest that researchers should be attuned to the composition of the
stimulus sets used in misinformation research. I show that the veracity base rate changes
patterns in error rates and these effects are heterogeneous, particularly by participant CRT.
This means that experimental results may be different depending on the veracity base rate
in a given stimulus set. More broadly, I show that contextual information changes the ways
that people process information which means that stimuli should not be considered to be
independent of each other in an experiment.

1.7 Conclusion

Using a novel experimental design, I show that individuals learn and account for the ve-
racity base rate in an information environment. Using a theoretical model, I show that
well-calibrated beliefs about the base rate can be incorporated as a prior in decision-making
to improve both accuracy and efficiency. Using simulations, I demonstrate that the incor-
poration of the base rate as an intuition in decision-making should lead to three identifiable
patterns. First, errors are more likely in the direction of the base rate. Second, these types
of errors should increase through the habituation phase as the base rate becomes more clear.
Third, decisions in the direction of the base rate should be made more quickly as less evidence
needs to be accumulated.

In the experimental data, I show that participants demonstrate the hypothesized pattern
of errors. Those who were exposed to a high-quality information environment are more likely
to mistake misinformation as true. Conversely, those who saw mostly false content make the
opposite error. These differences appear early in the experiment and grow as the base rate
becomes more certain. I fit a drift-diffusion model demonstrating how the veracity base
rate primarily changes the bias, or prior, that individuals employ when making a decision.
When paired with empirical results showing that low CRT participants demonstrate the base
rate effect more, there is convergent evidence that the veracity base rate appears through
intuitions. However, given that these intuitions make misidentification of the less prevalent
headline type more likely, this may lead to heightened belief in misinformation in the high-
quality American information environment.
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Appendix A

Supplementary Materials

A.1 Headlines and sampling method

A large set of 167 headlines, which originally appeared in [62], were collected using the
methodology of [47]. A set of false headlines were selected from popular fact-checking web-
sites like snopes.com and factcheck.org. True headlines were selected from reputable sources.
All headlines were pre-tested on partisanship, plausibility, surprisingness, favorability, infor-
mativeness, provocativeness, and sharing intentions. I sampled a subset of 110 of these
headlines that were selected to be balanced on these pre-tested attributes, excluding plausi-
bility.

To implement the sampling, I measured the average absolute difference between true and
false headlines in a candidate set. I placed twice as much weight on partisanship as the
other attributes. I then sampled 10,000 combinations of 55 true and 55 false headlines and
selected the combination that minimized the difference.

A.2 Rational base rates model

To illustrate the normative implications of base rates in the DDM setting, I consider a basic
theoretical setup where an agent is tasked with deciding whether a proposition is accurate
or inaccurate. In this scenario, an agent is presented with information according to a stable
environmental base rate. If 80% of information in an environment is accurate then the
unconditional likelihood that any piece of content is accurate is 80%. The agent faces two
costs. The first is the cost of making an error. The second is the cost of deliberation, which
is a function of response time. I consider a well-calibrated DDM that incorporates the base
rate compared to a DDM with an unbiased starting point.

Across a range of drift rates (parameterized here as the signal-to-noise ratio in evidence
accumulation), costs of errors, and costs of deliberation, incorporating the veracity base
rate reduces cost relative to the unbiased model (see Figure A.1). Unless there is little
to no ambiguity in the signals received during evidence accumulation, accounting for the
veracity base rate improves both accuracy and cognitive costs. Under sufficiently imperfect
deliberation, an agent should accept the higher likelihood of misidentifying the less likely
type of content as a necessary byproduct of correcting errors in deliberation.
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[63] provides an expression to calculate the expected error rate (ER) in a DDM which
follows the equation dy = Adt+ cdW with y(0) = y0 and boundaries ±z:

ER =
1

1 + e2z̃ã
−

{
1− e−2x0ã

e2z̃ã − e−2z̃ã

}
(A.1)

where z̃ = z
A

which is the ratio of boundary to the drift rate, x0 = y0
A

which is the ratio of
the starting point to the drift rate, and ã =

(
A
C

)2 which the square of the ratio of the drift
rate to noise. Here, I assume that c = 1 meaning that A is interpreted as the signal/noise
ratio of the drift term. Substituting in the definitions of ã, z̃, and x0 into Equation (A.1)
with c = 1, gives:

ER =
1

1 + e2zA
−

{
1− e−2y0A

e2zA − e−2za

}
(A.2)

I can further simplify the equation by setting z = 0.5, which puts the model into probability
space [63], giving:

ER =
1

1 + eA
−
{
1− e−2y0A

eA − e−A

}
(A.3)

An identical set of simplifications and algebraic manipulations produces the equation for
expected decision time (DT):

DT = z̃ tanh z̃ã+

{
2z̃

(
1− e−2x0ã

)
e2z̃ã−e2z̃ã

− x0

}
(A.4)

=
1

2A
tanh

A

2
+

{
1− e−2y0A

A (eA − e−A)
− y0

A

}
(A.5)

To identify the benefit given the base rate being in the (in)correct direction, B|d, from
including the base rate heuristic, I first compute the difference in ER and DT between the
base-rate model, denoted by subscript br, and a null model with no updating base rate
(y0 = 0), denoted with subscript 0. Subbing in y0 = 0 for the null model in the equation
above simplifies the equation dramatically:

B|dER = ER0 − ERbr (A.6)

= −
{
1− e−2y0A

eA − e−A

}
(A.7)

B|dDT = DT0 −DTbr (A.8)

=
y0
A

−
{

1− e−2y0A

A (eA − e−A)

}
(A.9)

Given that the equations are parameterized to compute ER rather than a directional
decision (e.g., choice A vs choice B), a base rate that points in the incorrect direction is
represented by a negative y0. I assume that the model is fully calibrated to the environment,
meaning that it knows the base rate, and that the environment is stable, meaning that the
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next option presented appears according to the base rate of the environment. Under these
assumptions, the total benefit in terms of ER and DT for adopting a heuristic is simply the
base-rate weighted average of seeing content in-line or opposite the base rate.

Let d = 1 denote that the base rate is in the correct direction. The probability of a
calibrated base rate being in the correct direction in a stable environment is simply the base
rate, P (d = 1) = b. Thus, the total benefit of using the base rate heuristic is the base rate
weighted average of the benefit from using the heuristic, where y0 is replace by −y0 when
the base rate is misaligned:

BER = P (d = 1)B|d = 1ER + (1− P (d = 1))B|D = 0ER (A.10)

= b

{
1− e−2y0A

eA − e−A

}
+ (1− b)

{
1− e2y0A

eA − e−A

}
(A.11)

BDT = P (d = 1)B|d = 1DT + (1− P (d = 1))B|D = 0DT (A.12)

= b

[
y0
A

−
{

1− e−2y0A

A (eA − e−A)

}]
+ (1− b)

[
y0
A

−
{

1− e2y0A

A (eA − e−A)

}]
(A.13)

Using these equations, I calculate the value of using the base rate as the starting point
in a DDM relative to an unbiased DDM. I construct a grid of four parameters: 1) the base
rate of information in the environment: BaseRate ∈ {0.51, 0.53, ..., 0.97, 0.99}, 2) the cost of
making an error: CostofError ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}, 3) the cost of deliberation: CD ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0}, 4) the signal to noise ratio in the drift rate: S/N ∈ {0.5, 1, 2, 5}.
The value of the prior is the difference in error rates between the biased and unbiased models
scaled by the cost of making an error plus the difference in the expected response time scaled
by the cost of deliberation. Figure A.1 shows the value of using the biased model at each
combination of these grid parameters. The biased model is preferred in almost all parts of
the parameter space, particularly at high values of the cost parameters and the base rate
parameter. When the base rate is farther away from 0.5, relying on the base rate reduces
errors and cognitive costs. Only at very high values of signal to noise in the drift rate does
reliance on the base rate become less important. In sum, deliberation needs to be highly
effective to offset the value of using the base rate as a prior.

A.3 Simulations

I simulate a set of 500 agents using a biased drift-diffusion model in the experimental task
to generate predictions. Each agent employs the same four-parameter DDM with randomly
selected parameters. The key parameters of the model are shown schematically in Figure
A.2. The model is parameterized to be in probability space such that the decision boundaries
are 0 and 1. For simplicity, there is no non-decision time. Each agent’s drift rate is a function
of their sensitivity to the veracity of a headline, which can be expressed:

δ = γveracity (A.14)

where γ is randomly drawn for each agent. Veracity is a continuous variable ranging from
−0.5 to 0.5 reflecting how true or false a headline is.
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Figure A.1: Benefit of incorporating a prior in a DDM. The figure shows the value of
relying on the base rate of content as a prior in a DDM as a function of 4 parameters: 1)
the base rate of content in a particular direction in the environment, 2) the cost of making
an error, 3) the cost of deliberating (CD), 4) the signal to noise (S/N) ratio in the drift
rate. The value of the prior is the difference in error rates between the biased and unbiased
models scaled by the cost of making an error plus the difference in the expected response
time scaled by the cost of deliberation.
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Figure A.2: Drift-diffusion model for news headline accuracy. (A) A stylized figure
reflecting the major components of the DDM model: (i) bias, (ii) non-decision time, (iii) drift,
and (iv) boundaries (true, false). (B) A hypothesized ‘truth-bias’ shift predicted to occur
after habituation in the ‘GoodFeed’ condition. The high veracity base rate is incorporated
into the prior (bias), and thus the initial decision-making process begins closer to the ‘true’
boundary. The drift rate and boundary width are unchanged. (C) A hypothesized ‘false-
bias’ shift predicted to occur after habituation in the ‘BadFeed’ condition. The low veracity
base rate is incorporated into the prior (bias), and thus the initial decision-making process
begins closer to the ‘false’ boundary. The drift rate and boundary width are unchanged.
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Each agent also incorporates their belief about the base rate of true and false content
in the environment. Since the model is in probability space, the agent’s bias is just the
posterior probability of true or false given the previous items they had seen. For simplicity, I
model the agent’s belief about the base rate using a beta-binomial distribution with initial α
and β parameters of 1, the equivalent of a uniform prior. The agent is conservative relative
to true Bayesian updating, a standard adjustment to make Bayesian models more realistic
[64], [65]. As such, the agent’s estimate of the base rate can be expressed given the perceived
veracity of the items they have encountered:

(θ|{D}) = α + s|{T}|
α + β + s [|{D}| − |{T}|]

(A.15)

where θ is the veracity base rate, α and β are shape parameters for the prior, D is the set
of headlines seen, and T is the subset of D that are evaluated as true. Meanwhile, s is a
conservatism parameter set to 0.25 for all simulations; it might also reflect uncertainty about
the veracity of previously seen content.

With this simulation framework, I am able to model agents behaving in the experimental
design. I simulate a set of 55 true and 55 false headlines with veracity drawn from a uni-
form distribution. Headline and participant randomization occurs exactly as in the actual
experiment leaving a simulated sample of 250 GoodFeed and 250 BadFeed completions with
80 responses per agent.

Simulation Results

This section presents results from the simulations, outlined above, that were used to generate
hypotheses for how reliance on base rates would appear in experimental data. Figure A.3
shows the simulated error rate on each type of headline in the evaluation phase. The error
rates are split by the condition in which the agent was habituated and the type of headline.
In both conditions, errors are more likely on the headline type that was less prevalent in
the habituation phase. As such, the spillover of the base rate heuristic to the evaluation
phase causes predictable patterns of errors. Figure 1.1 in the main text shows that a similar
pattern holds in the experimental data indicating that base rate heuristics were likely used.

Meanwhile, Figure A.4 shows how the error rate on true and false headlines changes
over time in each condition. In the first five round block, the error rates are similar between
conditions. However, as certainty about the base rate increases, errors on the more prevalent
headline type decrease while they increase for the less prevalent headline type. There is
minimal convergence after the shift to the evaluation phase as beliefs about the base rate
are relatively strong. Figure 1.2 shows a similar pattern in the experimental data.

Figure A.5 shows a similar figure to Figure A.4 but the outcome is response time. In both
conditions, as certainty about the base rate increases, decisions made in-line with the base
rate are made more quickly while those made against the base rate are made more slowly.
This pattern is confirmed in the experimental data in Table 1.2.

Finally, Figure A.6 shows the difference in the percent of evaluations indicating that
a headline is accurate as a function of underlying plausibility. The figure indicates the
more plausible headlines should be evaluated as more accurate when drift is a function of
plausibility. Second, the use of the base rate heuristic works uniformly across headlines where

40



0.0

0.1

0.2

0.3

0.4

FALSE TRUE
Headline Veracity

E
rr

or
 R

at
e

Condition
BadFeed
GoodFeed

Figure A.3: Simulated effect of habituation condition on errors in the evaluation
phase. The two left bars show the error rate (y-axis) on false headlines while the right two
show the error rate on true headlines. The orange bar shows simulations from agents who
were habituated in the BadFeed condition while the green bar shows those from GoodFeed.
The mean is shown with 95% confidence intervals. This is the simulation-based corollary of
Figure 1.1 in Section 1.4.
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Figure A.4: Simulated patterns of condition-specific errors. Each point shows the
mean error rate in 5 round blocks for either the GoodFeed (green) or BadFeed (orange)
condition on true (bottom panel) or false (top panel) headlines from simulations. The bands
show 95% confidence intervals on each mean. The vertical line at round 50 separates the
habituation and evaluation phases. This is the simulated corollary of Figure 1.2 in Section
1.4.

42



B
adF

eed
G

oodF
eed

0 20 40 60 80

6

7

8

9

6

7

8

9

Round

R
es

po
ns

e 
T

im
e

In−Line
FALSE
TRUE

Figure A.5: Simulated patterns of response times by condition. Each point shows the
mean response time in 5 round blocks for either the GoodFeed (green) or BadFeed (orange)
condition on true (bottom panel) or false (top panel) headlines from simulations. The bands
show 95% confidence intervals on each mean. The vertical line at round 50 separates the
habituation and evaluation phases. This simulation provides predictions for the results seen
in Table 1.2 in Section 1.4.
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headlines shown to agents habituated in the GoodFeed condition are uniformly higher than
the BadFeed condition. Figure 1.3 confirms this uniform effect in the experimental data.

A.4 Pre-registered analyses

This section presents pre-registered analyses that were not shown in the main text. Table
A.1 shows the same regressions as Table 1.1 but subsetting to the first 15 rounds of the
evaluation phase. The results indicate not only a robust directional effect but a nearly
identical magnitude of the effect. This indicates that the effect appears early in the evaluation
phase and persists throughout.

Table A.1: Effect of habituation condition on error rates in the first 15 items of the
evaluation phase

Dependent Variable: Error
Model: (1) (2) (3)

Variables
GoodFeed -0.0340∗∗∗ -0.0349∗∗∗

(0.0110) (0.0108)
HeadlineFalse -0.0206

(0.0189)
GoodFeed × HeadlineFalse 0.0796∗∗∗ 0.0809∗∗∗ 0.0768∗∗∗

(0.0177) (0.0176) (0.0175)

Fixed-effects
Item Yes Yes
ID Yes

Fit statistics
Controls Full Individual No
Observations 42,150 42,150 42,150
R2 0.01937 0.04419 0.14353
Within R2 0.01654 0.00172

Clustered (Item & ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The outcome for each regression is a dummy variable for if an individual made an error on a given
headline in the evaluation phase, restricting to the first 15 items shown. The regressors are a dummy for if
the individual was assigned to the GoodFeed condition, a dummy for if the headline of interest is false, and
the interaction of the two dummies. Column (1) includes individual-level controls – CRT score, a dummy

for the use of a mobile device, age, and dummies for if the participant is white, went to college, or is female
– and a control for the plausibility of the headline. Column (2) presents the pre-registered model and

replaces the headline control with a headline fixed effect while column (3) has no controls and headline and
individual fixed effects. Standard errors are two-way clustered on item and individual. This table

corresponds to Table 1.1 but restricts to the first 15 items in the evaluation phase.

Similarly, Table A.2 provides additional confirmation of the robustness of the main results
presented in Table 1.1. In this table, I include an additional variable for which round in the
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Figure A.6: Simulated differences in accuracy evaluations by condition as a func-
tion of underlying headline plausibility. Each point is the fraction of times the headline
was evaluated as true in the evaluation phase by simulated agents habituated in either the
GoodFeed (green) or BadFeed (orange) condition. The x-axis shows the underlying plau-
sibility rating of the headline. The lines show a local polynomial (loess) regression of the
accuracy dummy on pre-tested plausibility split by condition. The bands show 95% confi-
dence intervals. This is the simulated corollary of Figure 1.3 in Section 1.4.
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evaluation phase the rating occured in. I also include the interaction of this variable with
the dummy for “GoodFeed” and if the headline is false, and the triple interaction. Across
all specifications, there are stable coefficient estimates for both the errors made on both
headline types in “GoodFeed.”

I also confirm the main results presented in Table 1.1 using a Bayesian model. I model
errors as a Bernoulli random variable with a logit link where the probability of error is a
function of condition, veracity, and their interaction; with random intercepts for subject and
headline, and a random veracity slope for subject and random condition slope for item.

I present additional specifications to evaluate differences in the effect by the participant’s
CRT score. In Table A.4, I group together true and false headlines and look at differences
in error rates by the participant’s CRT score and their assigned condition. Using both a
binary classification for a low (at or below median) CRT score and the participant’s z-scored
CRT score, there are no statistically significant differences in effects by CRT. This is, likely,
due to a lack of power to detect a triple interaction. As shown in Table 1.3, low CRT
participants in “GoodFeed” are significantly more likely to misidentify false headlines. I also
use the same specifications as Table 1.3 but included z-scored CRT rather than the binary
CRT classification. The effects on false items, are negative as in Table 1.3 but the results
are only marginally significant.

Finally, I include pre-registered analyses of response times. For simplicity, Table 1.2 shows
differences in response times by whether the response in in-line with the base rate. However,
I pre-registered a version that looked at differences in response times by condition, headline
type, and whether the decision was made in error. Column (1) of Table A.6 presents the
pre-registered analysis. The regression weakly supports the hypothesis that decisions made
against the base rate would take longer. However, there are outliers in the response times. In
Column (2),Iwe restrict to responses made in less than 100 seconds, and the regression fully
confirms the hypotheses that i) decisions made with the base rate are made more quickly,
and ii) errors made in-line with the base rate are made more quickly. Column (3) confirms
this using the log transformation of response times, removing any recorded as 0.

Similarly, Table A.7 revisits the response time analysis without excluding any response
times. Exclusions of outlier response times were not pre-registered. Table A.7 shows identical
regressions to Table 1.2 without dropping or log transforming response times. Column (1)
shows no differences in response times by whether the decision was made in-line with the base
rate but introducing item fixed effects produces a negative and highly significant results. The
additional introduction of individual fixed effects increases the magnitude but the effect is
only marginally significant. Taken together, the response time results, showing that decisions
made in-line with the base rate are made more quickly, are largely robust to the inclusion of
outlier response times.
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Table A.2: Effect of habituation condition on error rates in the evaluation phase controlling
for round number

Dependent Variable: Error
Model: (1) (2) (3)

Variables
GoodFeed -0.0398∗∗∗ -0.0385∗∗∗

(0.0128) (0.0126)
HeadlineFalse -0.0267

(0.0201)
Round -0.0004 -0.0004 -0.0003

(0.0004) (0.0004) (0.0004)
GoodFeed × HeadlineFalse 0.0864∗∗∗ 0.0830∗∗∗ 0.0797∗∗∗

(0.0198) (0.0198) (0.0199)
GoodFeed × Round 0.0006 0.0005 0.0004

(0.0006) (0.0006) (0.0006)
HeadlineFalse × Round 0.0004 0.0002 6.65× 10−5

(0.0005) (0.0005) (0.0005)
GoodFeed × HeadlineFalse × Round -0.0006 -0.0002 5.03× 10−5

(0.0008) (0.0008) (0.0007)

Fixed-effects
Item Yes Yes
ID Yes

Fit statistics
Controls Full Individual No
Observations 84,300 84,300 84,300
R2 0.02044 0.04437 0.11052
Within R2 0.01724 0.00190

Clustered (Item & ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The outcome for each regression is a dummy variable for if an individual made an error on a given
headline in the evaluation phase. The regressors are a dummy for if the individual was assigned to the

GoodFeed condition, a dummy for if the headline of interest is false, a continuous control for round number
normalized such that the first round in the evaluation stage is 1, and all possible interactions. Column (1)
includes individual-level controls – CRT score, a dummy for the use of a mobile device, age, and dummies

for if the participant is white, went to college, or is female – and a control for the plausibility of the
headline. Column (2) presents the pre-registered model and replaces the headline control with a headline
fixed effect while column (3) has no controls and headline and individual fixed effects. Standard errors are

two-way clustered on item and individual. This table corresponds to Table 1.1 but includes continuous
round controls.
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Table A.3: Effect of habituation condition on error rates in the evaluation phase controlling
for round number

Error
Intercept −0.70∗

[−0.84;−0.55]
HeadlineTrue 0.22

[−0.01; 0.45]
GoodFeed 0.33∗

[0.21; 0.46]
HeadlineTrue × GoodFeed −0.51∗

[−0.70;−0.30]
∗ 0 outside 95% credible interval.

Notes: The outcome for each regression is a dummy variable for if an individual made an error on a given
headline in the evaluation phase. The regressors are a dummy for if the individual was assigned to the

GoodFeed condition, a dummy for if the headline of interest is false, a continuous control for round number
normalized such that the first round in the evaluation stage is 1, and all possible interactions. Column (1)
includes individual-level controls – CRT score, a dummy for the use of a mobile device, age, and dummies

for if the participant is white, went to college, or is female – and a control for the plausibility of the
headline. Column (2) presents the pre-registered model and replaces the headline control with a headline
fixed effect while column (3) has no controls and headline and individual fixed effects. Standard errors are

two-way clustered on item and individual. This table corresponds to Table 1.1 but includes continuous
round controls.
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Table A.4: Differences in error rates by headline type, condition, and CRT score in the
evaluation phase

Dependent Variable: Error
Model: (1) (2) (3) (4) (5) (6)

Variables
GoodFeed -0.0284∗∗ -0.0289∗∗ -0.0296∗∗∗ -0.0304∗∗∗

(0.0137) (0.0136) (0.0095) (0.0094)
Low CRT -0.0002 6.99× 10−5

(0.0153) (0.0152)
GoodFeed × Low CRT -0.0021 -0.0025

(0.0186) (0.0186)
GoodFeed × HeadlineFalse 0.0513∗∗ 0.0541∗∗ 0.0545∗∗ 0.0772∗∗∗ 0.0798∗∗∗ 0.0801∗∗∗

(0.0234) (0.0234) (0.0234) (0.0167) (0.0167) (0.0166)
Low CRT × HeadlineFalse 0.0730∗∗∗ 0.0742∗∗∗ 0.0746∗∗∗

(0.0250) (0.0250) (0.0249)
GoodFeed × Low CRT × HeadlineFalse 0.0476 0.0473 0.0473

(0.0335) (0.0335) (0.0334)
GoodFeed × Z-CRT 0.0059 0.0056

(0.0092) (0.0092)
GoodFeed × Z-CRT × HeadlineFalse -0.0226 -0.0226 -0.0226

(0.0159) (0.0158) (0.0159)

Fixed-effects
Item Yes Yes Yes Yes
ID Yes Yes

Fit statistics
Controls Full Individual No Full Individual No
Observations 84,300 84,300 84,300 84,300 84,300 84,300
R2 0.02117 0.04519 0.11312 0.02317 0.04718 0.11332
Within R2 0.01810 0.00482 0.02014 0.00504

Clustered (Item & ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The outcome for each regression is a dummy for if the participant made an error in evaluating a
headline in the evaluation phase. The error dummy is regressed on a dummy for if the participant was
habituated in the “GoodFeed” condition, a measure of the participant’s CRT score, the veracity of the

headline, and all possible interactions. Columns (1) - (3) use a dummy for if the participant scored "Low"
(at or below median) on the CRT test. Columns (4) - (6) use the participant’s z-scored CRT score.

Columns with “Full” controls include individual-level controls – CRT score, a dummy for the use of a
mobile device, age, and dummies for if the participant is white, went to college, or is female – and a control
for the plausibility of the headline. Columns with “Individual” controls replace the plausibility control with
a headline fixed effect. Standard errors are two-way clustered for headlines and individuals. Column (5) is

the pre-registered version.
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Table A.5: Heterogeneous effects of treatment by z-scored CRT in the evaluation phase

Dependent Variable: Error
False Items True Items

Model: (1) (2) (3) (4)

Variables
GoodFeed 0.0464∗∗∗ 0.0482∗∗∗ -0.0283∗∗∗ -0.0292∗∗∗

(0.0096) (0.0096) (0.0095) (0.0094)
Z-CRT -0.0505∗∗∗ -0.0507∗∗∗ -0.0090 -0.0085

(0.0068) (0.0067) (0.0073) (0.0073)
GoodFeed × Z-CRT -0.0168∗ -0.0171∗ 0.0061 0.0058

(0.0099) (0.0098) (0.0091) (0.0091)

Fixed-effects
Item Yes Yes

Fit statistics
Controls Full Individual Full Individual
Observations 42,914 42,914 41,386 41,386
R2 0.04401 0.07268 0.01170 0.03024
Within R2 0.04360 0.00639

Clustered (Item & ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The outcome for each regression is a dummy for if the participant made an error in evaluating a
headline in the evaluation phase. The error dummy is regressed on a dummy for if the participant was

habituated in the “GoodFeed” condition, the participant’s z-scored CRT score, and the interaction of the
two. Columns (1) and (2) restrict to just false headlines while columns (3) and (4) restrict to true headlines.

Columns with “Full” controls include individual-level controls – CRT score, a dummy for the use of a
mobile device, age, and dummies for if the participant is white, went to college, or is female – and a control
for the plausibility of the headline. Columns with “Individual” controls replace the plausibility control with
a headline fixed effect. Standard errors are two-way clustered for headlines and individuals. This table is
identical to Table 1.3 in Section 1.4 but using z-scored CRT rather than a binary CRT classification.
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Table A.6: Pre-registered time regressions

Dependent Variables: Time Log(Time)
Model: (1) (2) (3)

Variables
GoodFeed -0.6362 -0.4131∗∗ -0.0587∗∗∗

(0.7178) (0.2030) (0.0224)
GoodFeed × HeadlineFalse 1.840∗∗ 0.8029∗∗∗ 0.1063∗∗∗

(0.7625) (0.1768) (0.0196)
GoodFeed × Error 0.7927 0.4661∗∗ 0.0824∗∗∗

(0.7530) (0.2283) (0.0257)
HeadlineFalse × Error 0.8874 0.3770 0.0437

(0.7463) (0.2840) (0.0333)
GoodFeed × HeadlineFalse × Error -1.436 -1.056∗∗∗ -0.1649∗∗∗

(1.160) (0.3640) (0.0429)

Fixed-effects
Item Yes Yes Yes

Fit statistics
Time Restriction None < 100 > 0
Controls Individual Individual Individual
Observations 84,300 83,881 82,505
R2 0.00790 0.07942 0.17211
Within R2 0.00627 0.07234 0.16642

Clustered (Item & ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The outcome for each regression is a measurement of response time in the evaluation phase. In
column (1), the measure is the response time in seconds. In column (2), I include only response times

under 100 seconds. Finally, column (3) log transforms response times restricting to those that are positive.
The outcome is regressed on a dummy for if the participant was habituated in the “GoodFeed” condition, a

dummy for whether the decision was made on a false headline, a dummy for if the decision was made in
error, and all possible interactions. Columns with “Full” controls and a control for the plausibility of the
headline. Columns with “Individual” controls include individual-level controls – CRT score, a dummy for
the use of a mobile device, age, and dummies for if the participant is white, went to college, or is female –
and a fixed effect for the headline. Standard errors are two-way clustered for headlines and individuals.
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Table A.7: Effect of condition on response times with no exclusions

Dependent Variable: Time
Model: (1) (2) (3)

Variables
In-Line -0.4659 -0.2933∗∗∗ -0.4404∗

(0.2988) (0.0879) (0.2605)

Fixed-effects
Item Yes Yes
ID Yes

Fit statistics
Controls Full Individual No
Observations 84,300 83,881 84,300
R2 0.00609 0.07913 0.12462
Within R2 0.07205 3.89× 10−5

Clustered (Item & ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The outcome for each regression is the participant’s response time in each round in the evaluation
phase. The outcome is regressed on a dummy for if the decision is made in line with the base rate.

Columns with “Full” controls include individual-level controls – CRT score, a dummy for the use of a
mobile device, age, and dummies for if the participant is white, went to college, or is female – and a control
for the plausibility of the headline. Columns with “Individual” controls replace the plausibility control with

a headline fixed effect. Standard errors are two-way clustered for headlines and individuals.
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