
Enhancing Middle-Mile Inventory Management
Policies Through Simulation and Reinforcement

Learning
by

Matthew Robins
B.S., Applied Mathematics - Computer Science

Brown University, 2020
Submitted to the MIT Sloan School of Management and

Operations Research Center
in partial fulfillment of the requirements for the degrees of

Master of Business Administration
and

Master of Science in Operations Research
in conjunction with the Leaders for Global Operations program

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024
© Matthew Robins, 2024. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce,

preserve, distribute and publicly display copies of the thesis, or release the thesis
under an open-access license.

Author .
MIT Sloan School of Management and

Operations Research Center
May 18, 2024

Certified by. .
Georgia Perakis, Thesis Supervisor

John C Head III Dean (Interim), MIT Sloan School of Management;
Professor, Operations Management, Operations Research & Statistics

Certified by. .
Vivek Farias, Thesis Supervisor

Patrick J. McGovern (1959) Professor, Operations Management

Accepted by .
Georgia Perakis

John C Head III Dean (Interim), MIT Sloan School of Management;
Professor, Operations Management, Operations Research & Statistics

Accepted by .
Maura Herson

Assistant Dean, MBA Program, MIT Sloan School of Management

2

Enhancing Middle-Mile Inventory Management Policies

Through Simulation and Reinforcement Learning

by

Matthew Robins

Submitted to the MIT Sloan School of Management and
Operations Research Center

on May 18, 2024, in partial fulfillment of the
requirements for the degrees of

Master of Business Administration
and

Master of Science in Operations Research

Abstract

This thesis explores approaches for enhancing middle-mile inventory management
within the global supply chain of a large footwear and apparel company, referred to as
"Atlas". The first part discusses the design and implementation of a high-performance,
heuristic system to determine stock transfer order (STO) decisions between Atlas’s
distribution centers. This system employs a greedy algorithm to match supply to
demand while respecting resource constraints. As Atlas’s newly procured third-party
solution proved insufficient for testing due to slow performance, this work develops
an emulator of the production system that achieves a 30x speedup and integrates
with Atlas’s end-to-end supply chain simulation framework. This emulator enabled
Atlas to efficiently test different configurations and decision making rules on historical
and theoretical data, providing valuable insights prior to deploying the production
system. The second part investigates the potential of reinforcement learning (RL) to
augment or replace Atlas’s middle-mile decision making. A simplified supply chain
environment is modeled as a Markov Decision Process, and an RL agent is trained
and benchmarked against optimization-based and heuristic approaches. While the
RL policy does not outperform these alternatives in the simplified environment, this
work provides a foundation for Atlas to explore RL applications as they scale to more
realistic supply chain environments.

Thesis Supervisor: Georgia Perakis
Title: John C Head III Dean (Interim), MIT Sloan School of Management;
Professor, Operations Management, Operations Research & Statistics

Thesis Supervisor: Vivek Farias
Title: Patrick J. McGovern (1959) Professor, Operations Management

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

Contents

List of Figures 9

List of Tables 11

1 Introduction 13

1.1 Industry Overview . 15

1.1.1 Footwear and Apparel Market 15

1.1.2 Key Supply Chain Variables for Consideration 16

1.2 Atlas Supply Chain . 17

1.2.1 Atlas North American Supply Chain: Terminology and Network 17

1.2.2 Constraints and Objectives . 20

1.3 Problem Motivation and Approach 21

2 Overview of Inventory Management Policies 25

2.1 EOQ . 25

2.2 Beyond EOQ: Other Classical Single-Stage Inventory Policies 29

2.2.1 1. Order-Point, Order Quantity (𝑠,𝑄) System 30

2.2.2 2. Order-Point, Order-Up-to-Level (𝑠, 𝑆) System 31

2.2.3 3. Periodic-Review, Order-Up-to-Level (𝑅, 𝑆) System 31

2.2.4 4. Hybrid (𝑅, 𝑠, 𝑆) System . 32

2.3 Policy Selection in the General Case 33

2.4 A-B-C Classifications . 34

5

3 Design and Implementation of Middle-Mile Decision Engine 37

3.1 System Design Overview . 37

3.2 Demand Queue . 39

3.3 Class Architecture . 42

3.3.1 Resource . 42

3.3.2 Supply . 42

3.3.3 Four Types of Supply . 45

3.3.4 Deferred Decision Making for CDF Inflow 46

3.4 Supply Queues . 48

3.4.1 Daily Preparation of Supplies 51

3.5 Summary of Class Architecture . 51

4 Allocation Logic, Matching Supply and Demand 53

4.1 Middle-Mile Fulfillment Algorithm for Single Demand Line 53

4.2 Repack Thresholds . 56

5 Key Takeaways and Simulation Results 59

5.1 Lesson Learned from Software Procurement 59

5.2 Emulator vs Production System Run Time 60

5.3 Using the Emulator to Improve Production Logic 61

6 Building an RL Environment to Supplement Supply Chain Decision

Making 63

6.1 Problem Formulation . 63

6.2 State Space 𝒮 . 66

6.3 Action Space 𝒜 . 67

6.4 Transition Dynamics 𝑃 (𝑠′|𝑠, 𝑎) . 68

6.5 Reward Function 𝑅(𝑠, 𝑎) . 70

7 Policy Comparison for Supply Chain Decision Making 73

7.1 PPO Policy . 73

7.1.1 Implementation Details . 74

6

7.2 Model-Based Control (MPC) Policy 74

7.3 Heuristic Policies . 78

7.4 Training and Evaluation . 78

8 Policy Performance and Key Takeaways 81

8.1 Simulation Performance Comparison 81

8.2 Interpreting RL Policy Behavior . 84

8.3 Future Work and Considerations . 85

9 Conclusion 89

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

List of Figures

1-1 High-Level Illustration of Atlas Digital Supply Chain 20

2-1 Example of Two EOQ Models with Identical Demand 27

2-2 Trade-off Between Transaction and Holding Costs in EOQ Policy . . 28

2-3 Example (𝑠,𝑄) Policy; from Silver, Pyke, and Peterson [12] 30

2-4 Example (𝑅, 𝑆) Policy; from Vandeput and Makridakis [15] 32

3-1 Example of Supply Queue . 50

3-2 Class Diagram . 51

6-1 Example of Supply Chain Environment 64

6-2 Realized Demand in Simulation . 65

8-1 STO Decisions . 84

8-2 Cost Breakdown . 85

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Tables

2.1 List of Costs in EOQ Model . 26

3.1 Sample Demand Queue . 41

3.2 Resources . 43

5.1 Comparison of Run Time between Middle-Mile Production System and

Emulator . 60

5.2 Percentage Change, With Repack Compared to No-Repack Baseline . 61

6.1 Costs and Fixed Lead Times of Benchmark v1 66

7.1 Heuristic Policies for STO Decisions 78

8.1 Median Total Cost Across 30 Simulations 82

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

Chapter 1

Introduction

In the context of global merchandising, large-scale retailers are confronted with the

challenge of managing complex multi-echelon supply chains. This complexity arises

from the extensive scale and diversity of their operations, coupled with the unpre-

dictability of market demands and the need for efficiency and customer satisfaction.

The work done as part of this thesis was carried out at one such retailer, which will

be denoted as Atlas throughout, for the sake of anonymity.

One central focus of this challenge is inventory flow management, a critical process

in which a retailer monitors and controls its inventory from the manufacturer to its

distribution network and finally to the point of sale. The effectiveness of inventory

management policies plays a pivotal role in enhancing a retailer’s operational efficiency,

adaptability to market fluctuations, and overall financial performance. Traditional in-

ventory management methods, typically linear and static in nature, may be insufficient

for addressing the high-dimensional or stochastic problems faced by large retailers.

Conventional approaches may struggle to incorporate practical business constraints or

to remain robust under varying model assumptions.

Consequently, retailers are increasingly turning to advanced analytics and optimiza-

tion techniques to improve their inventory management strategies, often incorporating

elements from stochastic optimization, heuristic algorithms, and deep learning. The

decisions regarding the flow of inventory through a supply chain network can be

modeled as a Markov Decision Process (MDP). This perspective allows the sequential

13

decision-making problem of inventory flow to be approached using Reinforcement

Learning (RL) methods. Recent research in this area has shown potential in applying

RL to such problems [16].

This thesis is divided into two parts. The first part discusses the development

and implementation of a greedy heuristic decision engine for middle-mile inventory

positioning within Atlas’s supply chain. The term "middle-mile" refers to the movement

of inventory between distribution centers, as opposed to the "first-mile" (factory to

distribution center) and "last-mile" (distribution center to customer) stages. This

decision engine is specifically designed to align with Atlas’s operational constraints

and goals, making this part of the thesis a case study in the real-world application of

supply chain decision-making tools.

The second part of the thesis explores the use of RL for making middle-mile

inventory management decisions in Atlas’s North American supply chain. This

involves framing the supply chain as an RL problem, building a simplified environment

incorporating key elements of the real supply chain network, developing and training

a parametrized inventory management policy, and evaluating its performance through

simulation. A crucial aspect of this analysis is benchmarking the RL policy against

traditional heuristic and model predictive control policies, and conducting ablation

studies to understand the impact of model assumptions and environmental changes

on model performance. This will lead to an analysis on the potential application of

RL in Atlas’s operational context, including considerations for future improvements

such as better constraint incorporation, enhanced learning efficiency, and scalability.

In summary, this thesis provides an examination of heuristic and RL approaches in

the context of Atlas’s inventory management. While offering insights into the challenges

and potentials of these methods, it also acknowledges the complexities and limitations

inherent in applying advanced algorithms to real-world supply chain scenarios. This

work contributes to the broader understanding of inventory management in large-

scale retail environments and serves as a stepping stone for further exploration and

refinement in this field.

14

1.1 Industry Overview

1.1.1 Footwear and Apparel Market

In the $1.5 trillion USD global footwear and apparel [14], a pronounced shift towards

direct-to-consumer (DTC) models, spurred by e-commerce proliferation and the

COVID-19 pandemic, has necessitated a fundamental reevaluation of supply chain

strategies among leading players such as Nike, Adidas, Lululemon, Zara, and H&M.

This transition from centralized distribution to physical outlets towards a model

catering to a varied and geographically diverse consumer base introduces complex

logistical challenges.

The DTC approach, diverging from uniform bulk shipments to brick-and-mortar

stores, demands tailored inventory management capable of handling diverse, individ-

ualized consumer orders. This complexity requires advanced forecasting techniques

and dynamic replenishment strategies, striking a critical balance between inventory

holding costs and the risks of stockouts, which directly impact customer satisfaction

and digital marketplace reputation.

Additionally, heightened consumer expectations for rapid and flexible delivery have

placed a premium on optimizing "last-mile" logistics, historically the most resource-

intensive segment of the supply chain. In response, industry giants are investing

in sophisticated inventory systems that integrate data analytics, machine learning,

and artificial intelligence. These systems are designed to enhance demand prediction,

streamline inventory distribution, and improve supply chain efficiency from production

to end-user delivery.

Thus, the shift to DTC models in the footwear and apparel sector, driven by digital

integration and evolving consumer behavior, compels a strategic overhaul in inventory

management. Retailers are now tasked with developing agile, data-driven approaches

to meet the demands of a digitally connected global consumer base, ensuring efficient

product delivery that aligns with evolving market expectations and operational goals.

15

1.1.2 Key Supply Chain Variables for Consideration

In the domain of supply chain management for the global footwear and apparel

industry, a rigorous and methodical approach is required to synthesize various key

factors. Forecasting demand is a critical yet challenging component, requiring an

in-depth analysis of historical sales, market trends, and consumer behavior. This

forecasting must be adeptly aligned with supply chain dynamics, encompassing supplier

reliability, lead times, and the impact of geopolitical factors, to ensure a consistent

and responsive product flow.

Financial considerations, specifically transportation and holding costs, are closely

connected with these supply and demand dynamics. Transportation costs, influenced

by fluctuating fuel prices, carrier rates, and logistical efficiencies, must be optimized

alongside the expenses incurred in warehousing and inventory maintenance. These

costs are significant determinants of the overall supply chain budget and require

strategic management to achieve a balance that maintains high service levels without

excessive expenditure.

Product specificities, such as Global Trade Item Numbers (GTINs) or stock keeping

units (SKUs), also play a crucial role in effective supply chain management. These

identifiers not only facilitate efficient tracking and inventory management but also

assist in tailoring logistics strategies to the unique characteristics of each product,

such as size, weight, and perishability. Often times, each SKU is linked to a designated

case pack quantity or batch size, dictating that transportation and handling of these

items occur in precise, integral multiples. This requirement ensures uniformity and

efficiency in the movement of goods throughout the network.

Additionally, capacity constraints within production facilities, warehouses, and

transportation networks must be carefully evaluated. Identifying and managing these

constraints is essential to prevent bottlenecks and maintain a smooth flow of goods

through the supply chain.

In integrating these factors, supply chain optimization in the footwear and apparel

industry requires a sophisticated approach that balances operational efficiency, cost

16

management, and responsiveness to market demands. This necessitates a holistic

view of the supply chain, considering each element not in isolation but as part of an

interconnected system that drives overall business performance.

1.2 Atlas Supply Chain

The focus of this work is on Atlas’s North American supply chain. Due to long

lead times for bulk orders, long-term planning for far-out seasonal trends, and legacy

reasons, it can take at least 6 months from when an order is put in at a manufacturer

to when it actually arrives in the United States. Due to this large delay from when

units are scheduled for production to when they arrive, the supply chain decisions

in this thesis remain focused on positioning the inventory within network to best

meet key target metrics of the business. We assume the upstream decisions regarding

incoming supply are fixed and outside of our control.

1.2.1 Atlas North American Supply Chain: Terminology and

Network

In the digital supply chain of Atlas, three primary types of orders play a role in the

movement and management of inventory. These orders dictate the flow of goods

through various stages of the supply chain, from manufacturing to final delivery to

the customer.

• PO (Principle Order): Principle Orders mark the commencement of the

inventory route. They specify the products, quantities, and delivery timelines

from suppliers or manufacturers. In Atlas’s supply chain, POs are significant for

tracking the journey of inventory from the Consolidator in Asia to destinations

within the North American supply chain, which could be an CDF, CDC, or RSC

(all defined below).

• STO (Stock Transfer Order): STOs facilitate the internal movement of stock

between different Atlas facilities. They are critical for balancing inventory across

17

the network, ensuring that products are redistributed efficiently in response to

regional demand and supply dynamics.

• Fulfillment Orders: These orders pertain to the final stage of the supply

chain, focusing on last-mile customer fulfillment. They are essential for ensuring

that the end consumer receives their products in a timely and efficient manner,

directly impacting customer satisfaction and service quality.

Alongside these order types, a network of operational hubs and strategic regional

points forms the integral framework of Atlas’s digital supply chain:

• Consolidator: This facility plays a strategic role in Atlas’s supply chain, where

manufactured goods from various factories across Asia are consolidated. The

Consolidator acts as a central hub before these goods are shipped to North

America, streamlining the initial stage of the distribution process.

• CDF (Cross Dock Facility): The CDF’s primary function is the receipt,

sorting, and processing of products received from the Consolidator. This facility

operates as a sortation hub, organizing goods for distribution within the supply

chain. Importantly, the CDF is not a storage facility and does not retain

inventory overnight, functioning solely as a transitional point near the cross-

dock for inbound shipments. In this sense, the CDF is referred to as a pass-

through facility. Additionally, the use of the CDF for incoming inventory is not

compulsory; many Principle Orders (POs) are directed to bypass the CDF, with

goods shipped directly to regional or central distribution centers.

• RSC (Regional Service Center): The RSC functions as a regional warehouse

and distribution center within Atlas’s supply chain. It is responsible for managing

the distribution of products within its designated region. RSCs receive inventory

either directly from Principle Orders (POs), the CDF, or the CDC. Unlike

the CDF, RSCs are equipped for storage and play a critical role in regional

warehousing. They also handle fulfillment orders for their respective regions,

18

with ’in-region’ fulfillment to a Demand Location (DL) being a preferred option

due to its cost efficiency and shorter delivery times.

• CDC (Central Distribution Center): The CDC is at the heart of the

supply chain, managing the storage and distribution of products to retail outlets,

e-commerce channels, and to the RSCs. It is essential for maintaining inventory

levels and ensuring the timely availability of products throughout the network.

It has higher storage capacity than the RSCs.

• DL (Demand Location): A Demand Location represents a broad geographic

region within the United States in Atlas’s supply chain framework. Each DL

is associated with a specific Regional Service Center (RSC). This association

is strategic, aligning the distribution capabilities of the RSC with the demand

patterns and logistical requirements of the region it serves. Fulfillment orders

dispatched from an RSC to its associated DL are considered ’in-region’ and

are preferable due to their cost-effectiveness and the efficiency of delivery. This

structure ensures that each broad region has a dedicated distribution hub,

optimizing the supply chain’s responsiveness and agility in meeting regional

demand. In practice, Atlas has 3 DLs and corresponding RSCs.

Figure 1-1 illustrates how the Atlas digital supply chain network works. Edges A,

B, and C represent possible first-mile PO routes for inventory, and edges D, E, and F

represent possible middle-mile STO routes for inventory. The dashed lines to the end

consumer represent last-mile fulfillment to an end customer. The focus of this thesis

is on the middle-mile STO decisions. Throughout, "nodes" refers to facilities that

hold or ship inventory, "edges" or "lanes" refer to potential pathways for inventory to

flow from one node to another.

19

Figure 1-1: High-Level Illustration of Atlas Digital Supply Chain

1.2.2 Constraints and Objectives

Constraints

In optimizing Atlas’s supply chain, several constraints must be carefully considered:

• Lane Capacity Constraints: The capacity of transportation lanes is a limiting

factor, dictating the maximum volume of goods that can be moved on a given

day.

• Inbound and Outbound Processing Capacity: The capacity of facilities

to process inbound and outbound shipments imposes limits on the volume of

goods that can be handled each day.

• Receiving Storage Capacity: Storage capacity at receiving facilities restricts

the amount of inventory that can be held.

• Full Case Pack Quantity Constraints: The requirement to transport goods in

full case pack quantities introduces limitations in inventory movement, impacting

the optimization of shipment sizes and frequencies.

• Inventory Availability Constraints: A fundamental constraint is the avail-

ability of inventory on hand; the supply chain cannot distribute more inventory

than what is physically available.

20

Objectives

The primary objectives for Atlas in optimizing the supply chain revolve around cost

minimization and efficiency:

• Minimizing Transportation Costs: While Principle Order (PO) decisions

are considered fixed or sunk costs in this analysis, significant potential exists

to influence Stock Transfer Order (STO) costs directly. Additionally, effective

inventory positioning can indirectly reduce fulfillment costs by optimizing in-

region distribution.

• Maximizing In-Region Fulfillment: A key performance indicator is the

percentage of in-region fulfillment. Higher in-region fulfillment rates correlate

with reduced transportation costs and improved customer service.

• Optimizing Inventory Velocity: Metrics such as inventory turns are crucial

for evaluating the efficiency of the supply chain. Effective inventory management

aims to increase the velocity of inventory turnover, balancing the need for product

availability against the cost of holding inventory.

1.3 Problem Motivation and Approach

The transformation of Atlas’s supply chain was significantly influenced by the rise

of digital demand. Historically, supply was predominantly directed to the Central

Distribution Center (CDC) for wholesale distribution. However, the integration of

Regional Service Centers (RSCs) marked a strategic shift to better cater to digital

demand. RSCs, being closer to the customer, facilitated the breakdown of traditionally

large wholesale case packs into smaller units suitable for retail distribution.

Initially, Stock Transfer Order (STO) decisions concerning the movement of in-

ventory from the CDC to the RSCs, were predominantly manual, with managers

executing these transfers on an ad hoc basis. As Atlas’s operations evolved, the

company expanded to incorporate three RSCs and transitioned to an automated,

linear programming (LP)-based solution for making STO decisions.

21

The traditional inventory flow from the Consolidator to an RSC followed a serial

pattern: Consolidator → CDC → RSC. The introduction of the Cross Dock

Facility (CDF) and the flexibility for Principle Orders (POs) to be shipped to any

network node necessitated a revised inventory policy. To address this, Atlas acquired

a third-party middle-mile STO decision engine.

The implementation of this decision engine, scheduled for early 2024, has en-

countered several challenges and open questions, partially addressed through this

work:

1. Lack of Testing Environment: The third-party provider did not offer a testing

sandbox or substantial integration support, leaving Atlas without a means to

assess the engine’s impact on key operational metrics in a production environment.

Furthermore, this product does not integrate with Atlas’s comprehensive end-to-

end supply chain simulator, which includes both first-mile and last-mile decision

aspects.

2. Complex Configuration: The third-party decision engine involves numerous

parameters affecting STO logic. Identifying optimal settings for these parameters

is a challenge, even with a simulation environment.

3. Runtime Performance Issues: The third-party decision engine requires

up to six hours to generate a single day’s STO decisions. This inefficiency

poses significant hurdles for integration with Atlas’s supply chain simulator; for

instance, simulating long periods would have exorbitant run time, impeding the

ability to rapidly test configurations and assess impact on performance metrics.

To address these issues, this work proposes the development of a high-performance,

exact logical replica of the middle-mile decision engine (the "Emulator"), and its

integration into Atlas’s end-to-end supply chain simulation framework. The primary

contribution of this study lies in the practical implementation of this decision engine,

which not only significantly reduced run times but also enabled Atlas to test various

configurations. This testing process was instrumental in uncovering and addressing

22

critical unexpected behaviors in the decision engine that, if left undetected, could have

led to significant operational challenges in a live production environment.

The design and implementation of this decision engine will constitute the first part

of the thesis. The second part will explore how RL might be used to augment or replace

Atlas’s middle-mile decision making policy in the future. By framing the supply chain

as an RL problem, we aim to build a simplified environment that incorporates key

elements of the real supply chain network. Within this environment, we will develop

and train a parametrized inventory management policy and evaluate its performance

through simulation. A crucial aspect of this analysis will be benchmarking the RL

policy against traditional heuristic and model predictive control policies, as well as

conducting ablation studies to understand the impact of model assumptions and

environmental changes on model performance. This will lead to an analysis of the

potential application of RL in Atlas’s operational context, including considerations

for future improvements such as better constraint incorporation, enhanced learning

efficiency, and scalability.

Contributions

This thesis aims to provide valuable contributions to the practical application of

advanced decision-making techniques within the context of a large-scale retailer’s

supply chain operations. By developing a high-performance emulator for simulating

Atlas’s middle-mile supply chain decisions, we achieved a 30x speedup compared to the

existing system. This enables efficient testing of various scenarios and configurations,

empowering Atlas to make data-driven decisions and optimize their supply chain

operations. The development of an internal RL library tailored to Atlas’s supply chain

environment allows for the exploration of RL-based approaches in enhancing inventory

management policies. The library is designed to be benchmarked against traditional

heuristic methods and optimization-based approaches, providing a comprehensive

evaluation of its performance and suitability.

Through extensive simulations using the middle-mile emulator, we tested various

configurations and uncovered critical unexpected behaviors in the decision engine.

23

This process prevented potential operational challenges that could have arisen in a live

production environment, demonstrating the value of thorough testing and validation

in real-world supply chain settings. Furthermore, the development and training of a

parametrized inventory management policy using RL within a simplified supply chain

environment showcase the potential of applying advanced decision-making techniques

to complex supply chain problems. The performance of this policy was evaluated

through simulation and benchmarked against traditional heuristic and model predictive

control policies, providing insights into the relative strengths and weaknesses of these

approaches.

Our work also includes an analysis of the potential application of RL in Atlas’s

operational context, considering factors such as constraint incorporation, learning

efficiency, and scalability. This analysis provides a foundation for future improvements

and the integration of RL-based approaches into Atlas’s supply chain decision-making

processes, highlighting the potential benefits and challenges of adopting these tech-

niques in a real-world setting. By presenting a case study of Atlas’s supply chain

challenges and the application of advanced decision-making techniques, this thesis

contributes to the broader understanding of inventory management in large-scale retail

environments. This work demonstrates the importance of combining domain expertise

with data-driven approaches to optimize supply chain operations and drive business

value, serving as a valuable reference for practitioners and researchers in the field.

24

Chapter 2

Overview of Inventory Management

Policies

This chapter begins with a review of inventory management policies, focusing on

key dimensions relevant to the field, including deterministic versus stochastic models,

supply chain network structure, inventory review frequency, and push versus pull

strategies. It explores classic inventory management models along with their underlying

assumptions. A discussion of Atlas’s own supply chain follows, specifically examining

its adaptation to these models and strategies in light of their own practical challenges.

This includes an analysis of Atlas’s approach to managing the complexities of its

multi-echelon network, its use of both deterministic and stochastic forecasting methods,

and the review systems within its global distribution framework.

2.1 EOQ

The seminal Economic Order Quantity (EOQ) model, established by Ford W. Harris

in 1913, stands as a pivotal foundation in the field of inventory management. This

model addresses the formulation of a replenishment strategy for a single item as it

traverses through one inventory location, such as a retailer or warehouse, to meet

demand.

While section 2.3 of our study delves into more sophisticated models from the

25

literature, which are characterized by relaxed or different assumptions, it is this section

that offers a derivation of the EOQ model. This derivation is not only instructive in

understanding the underlying mechanics of the EOQ model but also serves as a critical

stepping stone in appreciating the nuances and complexity of inventory management

more generally.

The model considers the following costs

Cost Variable Definition
𝐾 Fixed cost per order
𝑐 Variable cost per order, incurs 𝑐 cost per unit
ℎ Holding cost, incurs ℎ cost per unit per unit time

Table 2.1: List of Costs in EOQ Model

and relies on the assumptions that demand is deterministic and constant, that

there is no order lead time, and that no shortages are allowed [6]. Non-integral order

quantities are also allowed. Since ordered units instantaneously arrive at the inventory

location due to the zero lead time assumption, it would not make sense for any policy

to place an order before using up all units of on-hand inventory to fulfill demand;

otherwise, unnecessary holding costs would be incurred. Additionally, since demand

is constant and stationary, any optimal policy will put in replenishment orders for

some fixed amount of units 𝑄. For large 𝑄, the facility will need to put in orders less

frequently because it will have more inventory to fulfill demand before depletion. This

reduction in the number of orders reduces the fixed order costs accrued but increases

the holding costs since there will be more inventory at the facility on average. This

trade-off is at the heart of the EOQ model, and the key result is finding an optimal

𝑄 = 𝑄* to minimize total cost. The parametrization of such a policy leads to the

classic "sawtooth" pattern that can be seen in Figure 2-1.

By way of example let us consider two EOQ policies, each facing a demand of

600 units per year, both shown in Figure 2-1. The red policy orders 150 units upon

inventory depletion whereas the blue policy orders 200 units. Including orders put

in at time 𝑡 = 0, observe that the blue policy places 3 orders whereas the red policy

places 4 over the first 12 months, incurring costs of 3(𝐾 + 200𝑐) and 4(𝐾 + 150𝑐),

26

Figure 2-1: Example of Two EOQ Models with Identical Demand

respectively. Additionally, observe that the blue policy has greater average inventory

than the red policy over the 12 month period, 100 units versus 75 units, respectively,

which can be found by taking the average area under each curve. Thus, the holding

costs over the period for the blue policy and red policy are 100ℎ and 75ℎ, respectively.

The blue policy achieves lower total cost whenever

3(𝐾 + 200𝑐) + 100ℎ < 4(𝐾 + 150𝑐) + 75ℎ

=⇒ 25ℎ < 𝐾

As we can see, which EOQ policy is preferred in this example depends on the

holding cost and fixed order cost, but not the variable cost per order 𝑐. As will be seen,

this is true in general as solving for the optimal 𝑄* will only depend on 𝜆,𝐾, and ℎ.

For arbitrary 𝑄, to fulfill all demand over one unit of time, this requires placing 𝜆
𝑄

orders. Moreover, the total amount of units ordered over one unit of time will equal

the total demand 𝜆. The average inventory position over one unit of time is 𝑄
2

as the

inventory level linearly decreases from 𝑄 to 0. Altogether, this gives us a total cost

27

(TC) function:

𝑇𝐶(𝑄) = 𝑐𝜆⏟ ⏞
Variable Transaction Cost

+
𝜆

𝑄
𝐾⏟ ⏞

Fixed Transaction Cost

+
𝑄

2
ℎ⏟ ⏞

Holding Cost

.

Differentiating and setting to zero gives us

𝑄* =

√︂
2𝜆𝐾

ℎ
,

and by examining the second derivative of 𝑇𝐶(𝑄) at 𝑄* one would indeed find 𝑄* is

the minimizer of total cost.

Figure 2-2, from Vandeput [15], depicts the general graph of the 𝑇𝐶 curve and

decomposes them into the aggregate transaction and holding cost curves.

Figure 2-2: Trade-off Between Transaction and Holding Costs in EOQ Policy

While the EOQ model presented here applies to a deterministic one product setting

without capacity constraints, many approaches have been taken to weaken or remove

these assumptions, as shall be seen over the next few sections.

28

2.2 Beyond EOQ: Other Classical Single-Stage Inven-

tory Policies

This section highlights other classical single-stage inventory policies in a context

different from the deterministic demand assumption of the EOQ model. We follow

the discourse in Silver, Pyke, and Peterson [12] which covers four typical policy

parametrizations; this is meant to be representative but not exhaustive. These policies

account for stochastic demand and allow for nonzero lead times, necessitating a buffer

inventory, or safety stock (𝑆𝑆) level, to mitigate uncertainties. The safety stock serves

as a safeguard against stockouts caused by unpredictable demand fluctuations or

supply delays. Its goal is to balance consistent service levels with the costs of holding

extra inventory and the risks of lost sales or reduced customer satisfaction from stock

unavailability. Determining the right 𝑆𝑆 level requires analyzing demand and supply

variability, transaction costs, and holding costs. This involves a trade-off similar to

the EOQ model: higher 𝑆𝑆 levels reduce stock-out risks but increase holding costs.

The models also consider the order placement frequency, defined by the parameter

𝑅. An 𝑅 value of 0 implies continuous review (orders can be placed anytime), while

an 𝑅 value greater than 0 indicates periodic review (orders placed at intervals of 𝑅

time units).

Additionally, both net stock (NS) and inventory position (IP) are important con-

cepts in understanding inventory management policies. Net stock is defined as the

physical inventory on hand minus any backordered or unmet demand. This is a

critical measure as it reflects the actual available inventory, considering both the items

physically in the warehouse and any existing commitments to fulfill unmet customer

orders. In mathematical terms, net stock can be represented as:

Net Stock = On-hand Inventory− Backordered Demand

The inventory position, in contrast, is a more comprehensive metric. It represents

the anticipated future inventory level, factoring in both the current net stock and any

29

outstanding orders yet to be delivered. Formally, the inventory position is expressed

as:

Inventory Position = Net Stock + Outstanding Orders

2.2.1 1. Order-Point, Order Quantity (𝑠,𝑄) System

This inventory management system is a continuous review policy that activates when

inventory levels drop to or below a predetermined threshold, denoted as 𝑠. Upon

reaching this critical level, an order of a fixed quantity 𝑄 is placed.

In Figure 2-3 below, an (𝑠,𝑄) policy with parameters 𝑠 = 40, 𝑄 = 60 is shown.

Note that as soon as the inventory level reaches 40 units, a new order of 60 units is

placed, causing the IP to increase to 100. The difference between the the dashed line

representing NS, and the solid line representing IP, is the outstanding orders; these

two lines converge once the lead time has elapsed and the order has been received.

Figure 2-3: Example (𝑠,𝑄) Policy; from Silver, Pyke, and Peterson [12]

30

2.2.2 2. Order-Point, Order-Up-to-Level (𝑠, 𝑆) System

Similar to the (𝑠,𝑄) system, the (𝑠, 𝑆) system is also a continuous review policy

whereby an order is triggered when the inventory level falls to the reorder point 𝑠.

Unlike the (𝑠,𝑄) system, the order quantity is not fixed but varies to replenish stock

up to a pre-defined upper level 𝑆.

In the (𝑠, 𝑆) system, the order quantity is dynamically determined based on the

current inventory level when it reaches the reorder point. The main objective is to

restore the inventory to the upper level 𝑆, thus the ordered quantity will be 𝑆 minus

the current inventory level. This flexibility allows the system to adapt to varying

demand patterns and inventory levels more effectively than the (𝑠,𝑄) system, but

at the cost of losing standardization. For example, Atlas and many retailers require

shipping in full case packs so variable order quantities are not always feasible.

Consider an example where an order comes in that takes the on-hand inventory

level below 𝑠. In the (𝑠,𝑄) system, a fixed quantity 𝑄 would be ordered regardless

of how much below 𝑠 the inventory falls, so the NS would increase to 𝑠 + 𝑄 upon

reorder. However, in the (𝑠, 𝑆) system, the order quantity would be calculated as

𝑆 − current inventory level, so the net stock would increase to 𝑆 upon reorder.

2.2.3 3. Periodic-Review, Order-Up-to-Level (𝑅, 𝑆) System

The (𝑅, 𝑆) system involves reviewing inventory at fixed intervals, 𝑅, and placing orders

to raise the inventory level to a predetermined point, 𝑆. This method is particularly

suitable in contexts where lead times are relatively predictable and consolidating

orders is advantageous. Additionally, setting the target inventory level 𝑆 necessitates

a careful assessment of demand variability, the cost implications of holding excess

inventory, and the potential for lost sales due to stock shortages.

In the figure below, the lead-time 𝐿 is assumed to be fixed, and the reorder is put

in every 𝑅 units of time.

31

Figure 2-4: Example (𝑅, 𝑆) Policy; from Vandeput and Makridakis [15]

2.2.4 4. Hybrid (𝑅, 𝑠, 𝑆) System

The hybrid (𝑅, 𝑠, 𝑆) system merges elements of continuous and periodic review strate-

gies. Inventory is assessed at regular intervals 𝑅, but orders are placed only if levels

fall below a specific point 𝑠. The order size adjusts to achieve a desired upper inven-

tory level 𝑆. This model provides a versatile approach but practically finding the

parameters to optimize this system may be significantly more complex than the other

models[12].

32

2.3 Policy Selection in the General Case

Once a class of inventory models has been chosen, a key question remains of how

to best select the policy parameters. Additionally, one might ask if such a policy

is provably optimal. The class of policies discussed so far are all single-stage; i.e.,

there is only one decision point in the system, typically at the most downstream node.

For single-stage systems under fairly weak assumptions, the (𝑠, 𝑆) system is indeed

optimal [9].

In a multi-echelon system, however, decisions need to be made at each stage

or echelon, taking into account the inventory levels and demand patterns at the

downstream stages. Echelon base-stock policies are a class of policies designed for

multi-echelon systems. In these policies, each stage in the network maintains a base-

stock level, which is the target inventory level for that stage. The base-stock level

at each stage depends on the base-stock levels and the demand at the downstream

stages.

When a demand occurs at the most downstream stage, it triggers a sequence of

orders upstream. Each stage orders enough to bring its echelon inventory position (the

sum of the inventory at that stage and all downstream stages, plus any outstanding

orders) up to its base-stock level. The key feature of echelon base-stock policies is that

they take into account the inventory levels and demand at all downstream stages when

making ordering decisions at each stage. This is in contrast to single-stage policies,

which only consider the inventory level and demand at the most downstream stage.

Echelon base-stock policies have been shown to be optimal in certain multi-echelon

systems, such as serial systems with certain assumptions on the demand process

and cost structure [2], [4]. In the general case, however, base-stock policies need

not be optimal, and the optimal policy may be unknown or highly complex [13].

Indeed, Bertsimas and Thiele [1] give a simple example of a two-echelon supply chain

network structure whose optimal policy is not base-stock. In more complex networks,

heuristic or simulation-based methods may be the only viable option, especially with

the introduction of constraints such as batch size requirements, "fair-share" rules

33

for inventory distributions, and network capacity limitations [13] all of which are

critical in Atlas’s supply chain. It is therefore unsurprising that Atlas chose to build a

parameterized heuristic approach to their middle-mile supply chain decision making,

whereby simulation efforts could help tune the parameters.

2.4 A-B-C Classifications

Another important consideration in inventory management is the classification of

items based on their importance or value. The A-B-C classification, also known as

the Pareto principle or the 80/20 rule, is a widely used approach for this purpose. In

this classification, items are divided into three categories:

A items: These are the most important items, typically constituting about 20% of

the total inventory items but accounting for about 80% of the total value or importance.

B items: These are items of intermediate importance, usually making up about 30%

of the total inventory items and accounting for about 15% of the total value. C items:

These are the least important items, constituting about 50% of the total inventory

items but accounting for only about 5% of the total value. The A-B-C classification

helps in focusing managerial attention and resources on the most important items. A

items require tight control and frequent monitoring, while C items can be managed

with simpler, less time-consuming methods. B items fall in between and require a

moderate level of control.

Silver, Pyke, and Peterson [12] discuss the A-B-C classification in detail and provide

guidelines for its application in inventory management. Their literature review finds

that the classification should be based on the annual dollar usage of each item, which

is the product of the annual demand and the unit cost, or other criticality measures

[5], [3]. It is also recommended to perform periodic review of the classification, as the

importance of items may change over time.

In the context of Atlas’s supply chain, the A-B-C classification can be a useful tool

for prioritizing inventory management efforts. By identifying the most critical items,

Atlas can ensure that these items are closely monitored and that their inventory levels

34

are carefully controlled. This can help to prevent stockouts of these critical items,

which could have a significant impact on Atlas’s operations and customer satisfaction.

In the context of middle-mile allocation decisions, Atlas may seek to position its

A products in distribution centers closer to its retail customers because of its high

confidence in the ability to sell those items. Conversely, less critical or lower volume

products should not take up valuable space in facilities close to end consumers, so

those may be routed to a cheaper, central storage facility instead.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

Chapter 3

Design and Implementation of

Middle-Mile Decision Engine

This section outlines the design and implementation of Atlas’s inventory management

policy for middle-mile STO decisions. It begins with the a detailed description of the

software architecture, including the data inputs and parameters that get fed into the

system, as well as the sequential decision making logic performed through simulation.

3.1 System Design Overview

Atlas’s middle-mile STO (Stock Transfer Order) decision engine adopts a heuristic,

rules-based approach for inventory management. This system is designed to simulate

supply chain dynamics over some time horizon, using forecasted assumptions about

demand, capacities, and lead times to sequentially roll out an STO plan. The actual

logic of the system were presented as requirements by the business; the focus of this

work is in a more generic heuristic implementation.

In some ways, the approach is similar to a model predictive control (MPC) frame-

work where the solution to an optimization problem over some time horizon gives the

control actions, all based on a model of the environment. The optimization problem

to find the control actions, or STO decisions, that minimize total cost and meet

demand requirements over thousands of SKUs during the simulation time horizon

37

may be formulated as an integer program. In practice, the high dimensionality of this

problem, coupled with additional (potentially nonlinear) constraints such as fair-share

distribution requirements, led Atlas to adopt a heuristic, rules-based decision engine

instead. That being said, optimization-based methods may be preferable to the

rules-based system required by the business, so building out a benchmark policy based

on optimization may be beneficial future work. Nevertheless, Atlas decided to use a

heuristic sequential decision making algorithm rather than an optimization algorithm

to produce a feasible set of actions to take. The details of this approach are covered

in this chapter.

In this work, Atlas’s model of its supply chain environment is assumed to be

deterministic in all aspects except realized demand. That is, on a given day all

lead times, incoming supply, and capacity limitations are assumed to be known and

fixed. Point estimates for SKU level demand in each demand location are used in

the allocation strategy, but a safety stock parameter controls how much additional

inventory to position to ensure adequate service levels.

On each day, the engine evaluates the current state of the supply chain, taking

into account the existing inventory levels and capacities, anticipated supply deliveries,

full case pack requirements, and the demand forecasts for the immediate future.

Using this information and certain input parameters, the system applies heuristic

rules to sequentially allocate inventory. As such, the system may be described as

a parameterized deterministic lookahead policy for sequential decision making [7].

These decision rules, covered in detail in chapter 4, are designed to strike a balance

between various supply chain objectives, such as minimizing stockouts, reducing

transportation costs, and ensuring fair distribution across demand lcoations. The

decision process is iterative; the system continuously adapts to the daily fluctuations

in demand and supply. The day’s STO decisions are then executed, translating

the theoretical allocation into actual inventory movements across the network. The

following day, this decision-making cycle repeats, with the engine incorporating the

latest data on demand realization, supply changes, and inventory levels. This approach

allows for a responsive adaptation to the market, aligning inventory distribution with

38

real-time operational realities. By eschewing the complexity of solving a full stochastic

optimization problem daily, Atlas’s heuristic approach provides a pragmatic and fast

solution to its middle-mile STO decisions.

3.2 Demand Queue

The system’s architecture is predicated on a push-based operational model, wherein a

structured demand queue orchestrates the sequential allocation of inventory through

simulation. This model is designed to anticipate and meet consumer demand by

proactively distributing resources across the network.

The demand queue is a dataset that delineates the anticipated requirements across

various dimensions. Each item or row in the queue specifies the number of units of a

SKU that are demanded at a DL on a given day of the simulation. Moreover, each row

includes an indicator field as to whether the demanded units are to meet immediate

customer demand that day or are to meet desired safety stock levels. Unless explicitly

stated otherwise, the term "demand" encompasses both types.

Within the theoretical framework of inventory categorization, the system employs a

proprietary segmentation strategy, classifying products into distinct segments—𝐴,𝐵,𝐶, . . .

and 𝑇 (Tail)—based on their respective demand attributes, specifically forecast accu-

racy and volume. This stratification is akin to the established 𝐴−𝐵 − 𝐶 inventory

management methodology, wherein 𝐴 items are characterized by high value but low

turnover, 𝐵 items by moderate value and turnover, and 𝐶 items by low value but

high turnover. The 𝑇 segment in Atlas’s system encapsulates Tail products, which

are identified by their low volume and infrequent demand.

These product segments are used to order the demand queue and also serve as

inputs for the system’s algorithmic logic, which will be expounded upon in subsequent

sections. Within this logic, products categorized within the Tail segment are typically

allocated to the central distribution center (CDC), a strategy that mitigates the

risk of excess inventory within the supply network. In contrast, products in the 𝐴

segment—those with high volume and forecast confidence—are preferentially routed

39

to regional service centers (RSCs). This targeted approach seeks to position high-

confidence closer to consumption points to expedite fulfillment and enhance service

levels.

The construction of the demand queue incorporates a "slicing" mechanism that

breaks down the forecasted demand for each SKU into smaller equal segments. The

demand queue’s slicing mechanism ensures equitable inventory distribution by dividing

the forecasted demand for each SKU into 𝑁 equal segments by unit volume, where

𝑁 is a configurable system parameter, and assigning each slice a number 1 through

𝑁 . Next, the mechanism sorts all slices across all demand, so slices labeled 1 appear

first in the queue, and slices labeled 𝑁 appear last. This approach prevents inventory

monopolization by any single Demand Location (DL) based on demand volume alone.

To give an example, consider a scenario where we have inventory of 100 units of a

product and two DLs with demands of 150 units (DL1) and 50 units (DL2). Let us

assume the system slices these demands into five segments (𝑁 = 5). Without slicing,

DL1’s higher demand might secure all 100 units. However, with slicing, DL1 has

segments of 30 units each and DL2 has segments of 10 units each. The system allocates

inventory to satisfy each DL’s first segment before proceeding to the next, thus DL1

and DL2 would receive 20 and 10 units respectively from the first segment. This

process continues until all inventory is allocated, ensuring both DLs receive inventory

despite the difference in demand, with neither dominating due to their size alone.

In this way, the push-based system maintains approximate service level equilibrium

across all nodes of the supply network, adhering to the principles of fairness and

strategic fulfillment for Atlas.

Over the course of the simulation, a new demand queue is constructed each day

then sequentially fulfilled via certain decision making rules. Unlike many sequential

decision making algorithms where actions are made during some policy roll out which

affect and update present state, we took a decidedly different approach. As we step

through each line item in the demand queue, our actions dictating how demand gets

fulfilled may be made retroactively and actually impact past state. If {𝑎1, 𝑎2, . . . , 𝑎𝑛}

are a temporally ordered sequence of decisions made up to some time 𝑡, then we may

40

Table 3.1: Sample Demand Queue

Is Safety Slice Demand Product Product Segment
Stock? Location Code Division

N 1 A_DL 1901 B 0.5
N 1 A_DL 1902 A 1.5
N 1 B_DL 1901 B 1
N 1 B_DL 1902 A 2
N 2 A_DL 1901 B 0.5
...
Y 1 A_DL 1903 T 11.5

make some new decision 𝑎′ at time 𝑡′ ≤ 𝑡 to fulfill the next line item in the demand

queue so long as the decision sequence {𝑎1, 𝑎2, . . . , 𝑎′, . . . , 𝑎𝑛} remains valid (i.e. does

not violate any constraints or consume more resources than available).

Consider the scenario presented by the third line item in Table 3.1, which specifies

a demand for 1 unit of product code 1901 at demand location 𝐴_𝐷𝐿. Given the

operational framework of the system, the fulfillment process must account for the

lead time associated with transferring inventory from a source node to the demand

location. For illustrative purposes, let us assume a lead time of two days for transfers

from the central distribution center (CDC) to the demand location 𝐴_𝐷𝐿.

In this context, the system’s decision-making algorithm retrospectively evaluates

the possibility of initiating a stock transfer order (STO) from the CDC to 𝐴_𝐷𝐿

two days prior to the current simulation day. This retrospective assessment allows for

the dynamic reallocation of resources to meet emergent demand patterns effectively.

If, on reviewing the inventory status and transportation capacity two days ago, it

is determined that sufficient resources were available and no constraints would be

violated by the allocation of this STO, the system then proceeds to integrate decision

𝑎′—representing the STO for product code 1901 to 𝐴_𝐷𝐿—into the temporal sequence

of decisions {𝑎1, 𝑎2, . . . , 𝑎′, . . . , 𝑎𝑛}.

This integration is contingent upon maintaining the validity of the entire decision

sequence, ensuring that subsequent actions do not result in resource overconsumption

or breach operational constraints. The next section covers the abstractions that allow

the decision engine to efficiently track and manage these resources and constraints as

41

the decision sequence gets built.

3.3 Class Architecture

This subsection covers a few high-level abstractions used in the decision engine design.

3.3.1 Resource

At the most atomic level, we have a resource object. A resource is any quantity,

expressed in inventory units, that constrains one’s ability to move inventory around

the network. Each resource has a unique identifier, or key. For example, a lane

capacity resource would have a key including the source node code, destination node

code, and date. The number of units associated with this resource would reflect the

outstanding capacity that Atlas has to STO inventory from the source to destination.

The list of resources relevant to the decision engine are shown below:

Throughout, a resource map refers to a database or map, indexed by the key

specified in Table 3.2.

3.3.2 Supply

Supply objects are abstract representations of how demanded units of a SKU in a

demand location get fulfilled. Each supply can be represented by a collection of

resources and has a unique supply identifier (sid).

The structure of a supply object includes several key components:

• Unique Identifier (SID): A composite key formed from relevant attributes,

enabling specific identification.

• Resource Collections: Categorized into product-independent and product-

dependent. The supply object stores the relevant resource keys for lookup.

42

Name Key Description
Inventory (SKU, Node, Date) Tracks inventory units of a SKU at a

specific node on a certain date.
Pass-Through Inventory (SKU, Node, Date) Tracks inventory units of a SKU at a

pass-through node on a certain date. A
pass-through node is a node that cannot
store inventory overnight, so unlike an
Inventory resource, a Pass-Through
Inventory resource cannot get carried
over from one day to the next.

Lane Capacity (Src, Dest, Date) Represents the capacity of a transporta-
tion route between source (Src) and des-
tination (Dest) nodes on a specific date,
facilitating the movement of goods.

Inbound Processing Capacity (Node, Date) The maximum quantity of goods a node
can receive and process for a given day.

Outbound Processing Capacity (Node, Date) The maximum quantity of goods a node
can dispatch and process for shipment
on a given day.

Receiving Node Storage Capacity (Node, Date) The maximum quantity of goods a re-
ceiving node can store as of a specific
date, accounting for space limitations
and inventory levels.

Table 3.2: Resources

– Product-Independent Resources: Include capacities and constraints

not varying with product specifics, e.g., lane capacity and inbound

processing capacity.

– Product-Dependent Resources: Tied to specific SKUs, such as inventory

and pass-through inventory.

Since the number of products can be very high and the actual product SKUs in

the network can vary over time, supply objects employ a dynamic key generation

strategy for product-dependent resources. This method involves storing partial

keys (e.g., date and node) and dynamically appending the product-specific

component at runtime.

• Excess Inventory: When a supply object procures or consumes inventory in

43

predetermined quantities (e.g., case packs), but the actual demand requires less

than this quantity, the remainder is recorded as excess inventory. The excess

inventory lookup table has each key represent a product and its associated value,

initialized at 0, indicates the excess quantity of units for that product held by

the supply object. For instance, if a supply object uses a full case pack of 12

units to fulfill a demand for 10 units, the remaining 2 units are stored within

the excess inventory tracker. If the supply object is called on to fulfill additional

units of demand for this product, it should first use these 2 excess units before

consuming more of its resources.

The Supply object includes two key methods: available and consume.

Available Method The available method calculates the available quantity of

a given product by considering both product-independent and product-dependent

resources.

Algorithm 1 Pseudocode for available
1: procedure available(𝑝𝑟𝑜𝑑𝑢𝑐𝑡)
2: 𝑚𝑖𝑛_𝑎𝑣𝑎𝑖𝑙←∞
3: for all (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑦𝑝𝑒, 𝑘𝑒𝑦) in resource collections do
4: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑚𝑎𝑝← 𝑔𝑒𝑡(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑦𝑝𝑒) // Retrieves access to global data

store
5: if 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑦𝑝𝑒 is product-dependent then
6: 𝑎𝑣𝑎𝑖𝑙← 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑚𝑎𝑝[𝑘𝑒𝑦, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡]
7: else
8: 𝑎𝑣𝑎𝑖𝑙← 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑚𝑎𝑝[𝑘𝑒𝑦]
9: end if

10: if 𝑎𝑣𝑎𝑖𝑙 ≤ 0 then
11: return 0 // Early stopping improves performance
12: end if
13: 𝑚𝑖𝑛_𝑎𝑣𝑎𝑖𝑙← 𝑚𝑖𝑛(𝑚𝑖𝑛_𝑎𝑣𝑎𝑖𝑙, 𝑎𝑣𝑎𝑖𝑙)
14: end for
15: return 𝑚𝑖𝑛_𝑎𝑣𝑎𝑖𝑙
16: end procedure

44

Consume Method Decrements the resources used to fulfill quantity of demand

using the supply object.

Algorithm 2 Pseudocode for consume
procedure consume(𝑞𝑡𝑦, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡)

2: for all (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑦𝑝𝑒, 𝑘𝑒𝑦) in resource collections do
if 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑡𝑦𝑝𝑒 is product-dependent then

4: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑚𝑎𝑝[𝑘𝑒𝑦, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡]− = 𝑞𝑡𝑦
else

6: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑚𝑎𝑝[𝑘𝑒𝑦]− = 𝑞𝑡𝑦
end if

8: end for
end procedure

3.3.3 Four Types of Supply

The decision engine incorporates various types of supply objects, each tailored to

specific logistics and inventory management scenarios within the network. The four

primary types of supply objects are OHSupply, STOSupply, CDFDivertSupply, and

CDFPushSupply. All inherit the supply base class attributes and methods mentioned

previously.

1. OHSupply (On-Hand Supply) The OHSupply object represents fulfilling

demand with inventory that is immediately available at a node. It is characterized by

having inventory on-hand at a specific location (node) and date. This type of supply is

crucial for meeting immediate demand without the need for additional transportation

or processing, thus minimizing lead times and costs. As we shall see in later sections,

the heurstic algorithm will always prefer to use on-hand supply to meet demand before

searching through other supply objects. The only resource associated with this supply

object is the inventory at the fulfilling node.

2. STOSupply (Stock Transfer Order Supply) STOSupply objects represent

fulfilling demand with inventory that is moved from one node to another within the

network, typically from a CDC to an RSC. These supply objects consider the lead

time required to transport goods from the src node to rcv node.

45

3. CDFDivertSupply (CDF Divert Supply) The CDFDivertSupply is a

specialized form, or subclass, of STOSupply designed for direct transfers to destination

nodes from the cross dock facility. Since the CDF is a pass-through facility and

cannot store inventory overnight, any inventory units received by the CDF that

do not have a specified target destination get automatically "pushed" to the CDC

(see CDFDefaultSupply below). On the other hand, the CDFDivertSupply allows

demanded units of inventory to be met by routing arrived units at the CDF to a rcv

node via STO, overriding the default behavior.

Importantly, this supply object has a pass-through inventory resource, which

does not carry over its units each day. Roughly speaking, this ensures that if node 𝑣

demands 𝑥 units of product 𝑃 on day 𝑡, the demand can be fulfilled by CDF supplies,

but only if the CDF receives at least 𝑥 units of product 𝑃 on day 𝑡− 𝑙𝑡{𝐶𝐷𝐹,𝑣} where

𝑙𝑡{𝐶𝐷𝐹,𝑣} is the lead time between the CDF and 𝑣. Additionally, this supply object

excludes outbound processing capacity considerations to reflect that all goods received

by the CDF on a given day must be sent out.

4. CDFDefaultSupply (CDF Default Supply) The CDFDefaultSupply is

also a specialized form, or subclass, of STOSupply. It facilitates the fulfillment of

demand at a DL in a two-stage process: first inventory gets pushed to the CDC from

the CDF, then gets routed to an RSC. Similar to the CDFDivertSupply, this object

contains a pass-through inventory resource. The key difference, however, is the

CDFDefaultSupply object represents a multi-leg fulfillment of demand. Therefore, it

contains resources associated with the second leg of transportation as well, including

source outbound capacity at the CDC, receiving inbound capacity at the RSC, receiving

storage at the CDC, and lane capacity.

3.3.4 Deferred Decision Making for CDF Inflow

The architecture of supply objects within our system, notably CDFDivertSupply

and CDFDefaultSupply, draws inspiration from the concept of ‘lazy evaluation’ in

orchestrating the inflow of inventory at the CDF. We strategically defer the decision-

making related to inventory processing paths at the CDF. Upon daily arrival, inventory

46

at the CDF is presented with two primary destinational pathways: redirection to a

Regional Service Center (RSC) via an STO, or, in the absence of a pre-determined

destination, default forwarding to the CDC. The determination of these pathways is

intentionally postponed, reliant on a assessment of demand and logistical evaluations

conducted at future points within the simulation timeline. Inventory at the CDF exists

in a provisional state—simultaneously tagged for CDC transfer while available for RSC

redirection—until a conclusive decision is executed in simulation. This provisional

state is maintained until either the simulation concludes (in which case the remaining

unallocated CDF units get pushed to the CDC) or a specific demand during simulation

catalyzes a retrospective allocation to a node.

This methodology facilitates an adaptable recalibration of inventory flows, respon-

sive to the evolving landscape of demand patterns and logistical constraints during

simulation. For instance, the decision to allocate inventory units arriving at the CDF

on day 𝑡 to an RSC (𝑣) through an STO is predicated on a retroactive evaluation

performed on day 𝑡+ 𝑙𝑡{𝐶𝐷𝐹,𝑣}, where 𝑙𝑡{𝐶𝐷𝐹,𝑣} signifies the lead time from the CDF

to node 𝑣. Similarly, the decision to STO inventory arriving at the CDF to the

CDC and then to an RSC is predicated on a retroactive evaluation performed on

day 𝑡+ 𝑙𝑡{𝐶𝐷𝐹,𝐶𝐷𝐶} + 𝑙𝑡{𝐶𝐷𝐶,𝑣}. In practice, out of the two options, it would always

be preferable to directly transfer inventory to the RSC from the CDF as this would

bring lower transportation costs (by triangle inequality, loosely speaking). The issue

is, because the CDF cannot store inventory overnight, fulfilling demand at node 𝑣

directly from the CDF is only feasible when demanded units at time 𝑡 arrive at the

CDF exactly at 𝑡− 𝑙𝑡{𝐶𝐷𝐹,𝑣}. On the other hand, the CDC serves as a storage buffer,

so the multi-leg route can feasibly meet demand as long as inventory units arrive at

the CDF at any time 𝑡′ ≤ 𝑡− 𝑙𝑡{𝐶𝐷𝐹,𝐶𝐷𝐶} − 𝑙𝑡{𝐶𝐷𝐶,𝑣}.

Note that for RSC (𝑢) and RSC (𝑣) (not necessarily distinct), there is no guarantee

that 𝑙𝑡{𝐶𝐷𝐹,𝐶𝐷𝐶} + 𝑙𝑡{𝐶𝐷𝐶,𝑢} > 𝑙𝑡{𝐶𝐷𝐹,𝑣}. Consider a scenario whereby a demand line

at the DL serviced by 𝑢 comes earlier than a demand line at the DL serviced by 𝑣, for

an identical product. If indeed 𝑙𝑡{𝐶𝐷𝐹,𝐶𝐷𝐶} + 𝑙𝑡{𝐶𝐷𝐶,𝑢} ≤ 𝑙𝑡{𝐶𝐷𝐹,𝑣} it may be possible

that the first demand line is fulfilled via a multi-leg CDFDefaultSupply, consuming

47

CDF inventory, and making it impossible for the second demand line to be met via

a direct transfer CDFDivertSupply. This example illustrates the heuristic allocation

strategy prioritizes meeting demand sequentially in the simulation, and that there can

be a tension between meeting earlier demand and minimization transport costs. This

retroactive decision-making allows the system to perform inventory distribution by

leveraging information and insights that were not available at the original time 𝑡.

3.4 Supply Queues

In addition to the demand queue, the system also utilizes supply queues, which together

give matchings between demand locations and available supply sources through a

coordinated allocation process. These queues can be thought of as priority queues

which dictate the sequential order in which supply objects are evaluated and utilized

to meet demand at a DL. Each priority queue is dynamically constructed based on a

mapping that takes into account the specific DL, the nature of the demand (whether

it is for safety stock or actual demand), and the product segment (categorized as A,

B, C, ... T for tail).

Supply Priority Mapping The supply priority queue for each demand scenario is

mapped as follows:

(𝐷𝐿,Demand Type,Product Segment)⏟ ⏞
Demand Scenario

→ Ordered List of Supply Objects

This mapping ensures that for any given demand scenario, there exists a pre-defined,

ordered list of supply objects to be sequentially tested for their ability to fulfill the

demand. The algorithm traverses through this list, starting with the most preferred

supply source and moving to the next option only if the current source cannot fully

meet the demand. Ultimately, this is a greedy sequential matching with resource

constraints.

48

Construction of the Supply Priority Queue The construction of the supply

priority queue follows a deliberate order, prioritizing the use of on-hand inventory

at the servicing RSC (OHSupply) as the first option. This preference aligns with the

objective to minimize lead times and transportation costs by first utilizing inventory

that is immediately available. Should the on-hand inventory at the RSC be insufficient

or non-existent, the system then considers other avenues to fulfill demand.

Generally, for each demand scenario, two configurable inputs are used to construct

the supply priority queue. The first is a prioritized list of fulfillment nodes for each DL,

and the second is a prioritized list of supply objects used by each fulfilling node. For

example, assume our demand scenario is characterized by actual demand (not safety

stock) in some demand location 𝐷𝐿𝐴 for a non-tail product. Let 𝐷𝐿𝐴 be serviced by

two fulfilling nodes, primarily by RSC𝐴 and secondarily by the CDC. Our inputs may

look like the following:

1. Fulfilling Node Priority List for DL:

• First preference: RSC𝐴

• Second preference: CDC

2. Supply Object Priority List for each Fulfilling Node:

• For RSC𝐴:

(a) On-Hand Supply at RSC𝐴 (OHSupply)

(b) Inventory transferred from CDC to RSC𝐴 (STOSupply)

(c) Inventory diverted from CDF to RSC𝐴 (CDFDivertSupply)

(d) Inventory pushed from CDF to CDC and then to RSC𝐴 (CDFDefaultSupply)

• For CDC:

(a) On-Hand Supply at CDC (OHSupply)

This example configuration indicates that the system first attempts to fulfill

demand in the demand scenario with inventory already available at RSC𝐴. If this

49

is insufficient, it sequentially considers inventory transfers from the CDC to RSC𝐴,

directly diverting inventory from CDF to RSC𝐴, or using inventory that was initially

pushed from CDF to CDC and then transferred to RSC𝐴. The CDC serves as a last

resort, utilizing its on-hand inventory to fulfill the demand directly. This outputted

supply queue can be visualized in Figure 3.1 below.

Figure 3-1: Example of Supply Queue

For each demand line with the demand scenario described above, the algorithm

will traverse supply options [1.1, 1.2, 1.3, 1.4, 2.1] (as depicted in figure) and consume

resources in each until demand is fulfilled or supplies are exhausted. For safety-stock

demand scenarios, the fulfilling node will typically only consist of the respective RSC.

Unlike in an actual demand scenario where the CDC can serve as a fulfillment node of

last resort, demand for safety stock at a DL can only be fulfilled by an RSC. Beyond

demand types, different product segments or DLs may have different supply queues.

The actual inputs and construction of each supply queue is proprietary but Figure 3-1

provides a high-level illustration of "typical" behavior.

50

3.4.1 Daily Preparation of Supplies

At the start of each simulation day, a snapshot is taken of the state of all resources

at the beginning of that day. This snapshot serves as a global shared data store of

resources referenced by all supply objects. Iterating through each demand scenario,

we construct the respective supply queues based on the input configurations; however,

because the same supply object may appear in the supply queues of multiple demand

scenarios, we make sure to pass shallow copies to preserve shared state. This will be

necessary to track available resources as the sequential allocation progresses through

different demand scenarios at different points in time.

3.5 Summary of Class Architecture

Figure 3-2: Class Diagram

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

Chapter 4

Allocation Logic, Matching Supply

and Demand

Now that the high-level software design underpinning the supply chain representation

has been discussed, we move onto the core middle-mile fulfillment algorithm, which

will match supply to demand while respecting all resource constraints. This section

covers how the greedy matching algorithm functions, emphasizing the mechanisms

through which each demand line is assessed against a prioritized queue of supply

options, the nuances of handling excess inventory, and the implications of full case

pack logic. The algorithm returns a proposed list of fulfillments each day, where a

fulfillment is defined as a mapping of a demand line to a collection of supply objects

used to meet said demand, including the quantity contributed by each. This section

will also cover how the proposed fulfillments get post-processed after each simulation

day and converted into realized fulfillment decisions.

4.1 Middle-Mile Fulfillment Algorithm for Single De-

mand Line

This section outlines the demand and supply matching logic given a demand line and

the supply queue corresponding to the demand scenario. To speed up the compute,

53

any time a demand line cannot be successfully fulfilled by a collection of supply objects,

a shortage is logged for the specific (DL, SKU) pair. This allows future demand lines

with the same (DL, SKU) pair to perform early stopping and skip the search over the

supply queue. By construction, actual customer demand is always prioritized in the

demand queue before safety stock demand, and the set of supply objects that can

fulfill safety stock demand is always a subset of the supply objects that can fulfill

actual demand. Therefore, the set of supply objects able to fulfill for a (DL, SKU)

pair can only decrease as we iterate through the demand queue, and indeed the early

stopping approach is valid.

Additionally, the matching may take into account full case pack requirements.

These requirements specify the integer multiple quantity of a product that must be

sent together during an STO. It may be the case that an STO sends more than a

demand line requests due to case pack rounding, which leads to excess inventory being

transferred, or that a facility has inventory but not enough to send in a full case pack

quantity. In the case when excess inventory is sent via an STO to fulfill a demand

line, for future demand lines, if applicable, we will always prefer to use the excess

sent before iterating through additional supplies. In the matching algorithm, source

consumption is differentiated from receiving consumption, where the difference will

be logged as excess. For fulfillments done using on-hand supplies, case pack multiple

requirements do not apply.

54

Algorithm 3 Demand Fulfillment Process for Single Demand Line
1: procedure Fulfill Demand(demand line, supply queue, shortages)
2: Initialize an empty collection of fulfillments, 𝐹 .
3: Let quantity demanded from demand line be 𝑄.
4: if shortage of (DL, SKU) > 0 then
5: Early stop, exit.
6: else
7: for each supply in the supply queue do
8: 𝐸 := supply.excess_inventory(SKU)
9: 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 := max(0, Q-E)

10: 𝑄 = 𝑄− 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 ◁ Reduce qty demanded by excess used
11: 𝐴 = supply.available(SKU)
12: Adjust quantities based on case pack sizes:
13: Let full case pack quantity from demand line be 𝑃 .
14: 𝐴−

𝑐𝑎𝑠𝑒_𝑝𝑎𝑐𝑘_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = 𝑃 * ⌊𝐴/𝑃 ⌋ ◁ Round down to nearest case pack
15: 𝑄+

𝑐𝑎𝑠𝑒_𝑝𝑎𝑐𝑘_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = −𝑃 * ⌊−𝑄/𝑃 ⌋ ◁ Round up to nearest case pack
16: 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 = min{𝑄+

𝑐𝑎𝑠𝑒_𝑝𝑎𝑐𝑘_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒, 𝐴
−
𝑐𝑎𝑠𝑒_𝑝𝑎𝑐𝑘_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒} ◁ Consumed at src

17: supply.excess_inventory(SKU) += max{𝐶𝑠𝑜𝑢𝑟𝑐𝑒 −𝑄, 0}
18: 𝐶𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 = min{𝐶𝑠𝑜𝑢𝑟𝑐𝑒, 𝑄}
19: if 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 > 0 or 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 > 0 then
20: supply.consume(𝐶𝑠𝑜𝑢𝑟𝑐𝑒, SKU)
21: 𝑄 = 𝑄− 𝐶𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 ◁ Reduce qty demanded by consumed at rcv
22: Log fulfillment to 𝐹 .
23: end if
24: if 𝑄 = 0 (all demand is fulfilled) then
25: Exit the loop.
26: end if
27: end for
28: if 𝑄 > 0 (not all demand could be fulfilled) then
29: Increment shortage of (DL, SKU) by remaining unmet demand 𝑄.
30: end if
31: Return the fulfillments, 𝐹 .
32: end if
33: end procedure

55

Algorithm 3 gives us the matching logic for a single demand line, and it what

follows, we outline the demand fulfillment process for a single simulation day.

Algorithm 4 Demand Fulfillment Process
1: Initialize a mapping for shortages, 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑠.
2: Read in data to initialize resources.
3: for each date in simulation horizon do
4: Take snapshot of resources and build supply queues and demand queue.
5: for each demand line in the demand queue do
6: FulfillDemand(demand line, supply queue, shortages)
7: Collect fulfillment details.
8: end for
9: Update resources based on today’s fulfillments.

10: end for
11: *Post-process collected fulfillments to get STO decisions for start day.

The final post-process step converts the collection of fulfillments over the entire

simulation into the actionable STO decisions to be made at the start date of the

simulation. In the production system, these will dictate the real STO decisions on

the ground. The post-processing groups similar STO fulfillments together. The final

recommended STOs from the algorithm consist of all the simulated STOs with send

date equal to the simulation start date, as well as any leftover CDF inventory that

will automatically get pushed to the CDC.

4.2 Repack Thresholds

One formal business requirement in the production system, was the introduction of a

decision parameter called "repack thresholds." At a high level, repack thresholds are

used to determine whether it is viable to proceed with an STO as initially planned

or if adjustments are necessary to align with packaging or shipment size constraints

and the operational thresholds for repacking at different nodes within the network.

These thresholds are especially important in scenarios where the demand for a product

falls below the case pack sizes, and due to case pack rounding, may lead to potential

inefficiencies in shipping and handling. For example, if there is 0.5 units of predicted

demand at a DL, but a case pack is 24 units, the matching algorithm may create

56

an STO of 24 units which indeed satisfies demand, but may leave undesirable excess

units at the receiving node that may accrue inventory holding costs. The business

requirements stipulated for a post-processing step to the outputted STOs, whereby

repack thresholds may modify or cancel these decisions.

The approach considers several scenarios for applying repack thresholds:

1. Demand Lower Than Repack Threshold and Case Pack Size: If the

quantity demanded of an item is less than both the repack threshold and the case

pack size, the system may cancel the STO or adjust the quantity, particularly if

the source is an CDF. This decision is based on whether repacking is feasible or

economically justifiable at the CDF. If not, such STOs might be redirected to

the CDC or adjusted to avoid small, inefficient shipments that do not meet the

repack threshold.

2. Repack Threshold Lower Than Demand But Demand Lower Than

Case Pack Size: In situations where the demand is greater than the repack

threshold but still below the case pack size, the algorithm might round down the

STO quantity to the nearest repack threshold if repacking is an option at the

source. If the source is the CDF and repacking is applied, any excess quantity

not meeting the repack threshold may need to be pushed to the CDC due to the

CDF’s operational constraints on storing goods.

While a more holistic optimization framework taking into account inventory holding

costs directly would likely be a more appropriate long term solution, the business

considered this heuristic method of modifying STOs as a viable alternative. As will

be seen in the following chapter, the simulation framework built to reproduce the

production logic will lead to valuable insights into the behavior of repack parameters

as well as other configurations of the middle-mile decision making process.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

Chapter 5

Key Takeaways and Simulation

Results

The framework outlined in Chapters 3 and 4 gave Atlas the capabilities to quickly

emulate the middle-mile decision making behavior of the production system prior

to it going live. Upon completion, we integrated the middle-mile emulator into the

company’s end-to-end supply chain simulation framework which includes a much

more granular last mile decision engine. While the middle-mile emulator seeks to

fulfill aggregate demand in each DL during its rollout, the end-to-end simulator has a

last mile fulfilment decision engine that fulfills at the individual digital order level.

Therefore, in the final end-to-end testing simulations, the middle-mile emulator would

still roll out a plan to determine each days’ STO decisions, but the customer fulfillment

component would much more closely resemble reality. Altogether, the end-to-end

system would finally inform the company on key performance metrics under the new

middle-mile STO policy, at least in simulation.

5.1 Lesson Learned from Software Procurement

Ideally, Atlas would have been able to test the production middle-mile system directly;

however, this was not possible as testing support was not offered by the third-party

provider, and we did not have access to the production source code. One key takeaway

59

is the importance of carefully considering how how to mitigate technical risk while

transitioning to a new software system, especially one built externally. Since Atlas

is a large customer with bespoke requirements, it is understandable that a vendor

might not have a readily accessible testing environment to match Atlas’s business

requirements. Nevertheless, Atlas would have benefited greatly from negotiating these

terms upfront to include them as part of the deal. In general, any outsourcing results

in some form of dependence, and by not securing an adequate level of support, the

company was forced to built its own in-house emulation of the production system,

resulting in an inefficient use of resources.

That being said, by starting from the ground up, we were able to build a much faster

version of the emulator than the production system, and one that was interoperable

with Atlas’s end-to-end simulation framework.

5.2 Emulator vs Production System Run Time

System Run Time for Single Day’s STO Decisions
Middle-Mile Production System 5-6 hours
Middle-Mile Emulator 5-10 minutes

Table 5.1: Comparison of Run Time between Middle-Mile Production System and
Emulator

As seen in Table 5.1, we achieved a 30x speedup over the production system. Even

if we were to integrate the production system into Atlas’s end-to-end supply chain

simulator, it would be much too slow to be useful. When our middle-mile emulator

was integrated into the end-to-end simulator, we were able to simulate each day’s

decisions in about 30 minutes, which includes granular last-mile fulfillment decisions in

addition to the middle-mile STO decision making process. Thus, Atlas would be able

to run different 6 month simulations on historical data with the new middle-mile logic

in under a week, for example. This was fast enough to allow Atlas to test different

configurations and measure performance.

It is unclear why we were able to achieve such a performance advantage versus the

60

production system, as we did not have access to the latter. Notably, by continuously

identifying the performance bottleneck using profiling tools, we were able to iterate on

the emualtor to achieve speed gains. For example, early stopping during supply search,

pruning out depleted supplies from the search tree, and moving away from Pandas

dataframes, whose lookups are relatively expensive, to simple Python dictionaries, all

helped improve performance. As a deterministic sequential decision making problem,

very little of the problem could be parallelized. The performance issues boiled down

to how to sequentially execute the logical and arithmetic operators as fast as possible,

in accordance with the decision making rules. The emulator speed could be improved

further if rewritten in a compiled language, as opposed to raw Python, but for the

business’s time and maintainability requirements, the emulation time achieved was

sufficient.

5.3 Using the Emulator to Improve Production Logic

One key example of how the emulator was used to test and improve production logic

was an analysis of the repack threshold, as described in section 4.2. A baseline scenario,

which did not include any repack logic, was compared to a scenario with repack logic.

The performance metrics collected in simulation are summarized in Table 5.2 below.

Metric % Change
RSC Network Utilization -2.0pp
RSC In-Region Fulfillment -1.7pp
Total Cost +0.6%
Last Mile Cost +0.9%
CO2 (kg) +1.6%
Split Orders +4.2%
Ground Units -0.1%
Air Units +0.8%
Units Processed -0.1%
Total Shipments +0.6%
Multi-order count -0.1%
Backlog qty over capacity qty +24.7%

Table 5.2: Percentage Change, With Repack Compared to No-Repack Baseline

61

We see that with the repack configuration turned on, in-region fulfillment and

capacity utilization got worse. Additionally, costs, carbon emissions, and split orders

increased. Overall, this analysis was used to identify shortcomings with the repack

logic that might have otherwise gone undetected. Based on this analysis, Atlas and

the third-party vendor were able to modify the production logic accordingly to avoid

these deleterious effects.

In general, Atlas can use the simulation framework to test different configurations

of the middle-mile decision engine. Any of the parameters, such as how many slices

to use in the demand queue, product segmentation strategy, and more can now be

tested in simulation, and the aggregate performance impact can be captured, both on

historical and theoretical data.

62

Chapter 6

Building an RL Environment to

Supplement Supply Chain Decision

Making

6.1 Problem Formulation

Looking forward, Atlas sought to build out their internal capabilities and knowledge

of RL systems to determine how they could be used in supply chain decision making

problems. A natural candidate to begin this exploration was to frame the middle-mile

STO decision problem within the context of an RL framework. We took a simplified

version of the real supply chain dynamics to create an environment and train an agent.

The Atlas Supply Chain Environment is conceptualized as a Markov Decision

Process (MDP), formalized by the tuple (𝒮,𝒜, 𝑃, 𝑅), where 𝒮 denotes the state

space, 𝒜 the action space, 𝑃 : 𝒮 × 𝒜 × 𝒮 → [0, 1] the transition probabilities, and

𝑅 : 𝒮 ×𝒜 → R the reward function, all of which will be defined in detail later in this

section.

At a high-level, the supply chain network architecture (i.e. which nodes and lanes

are present) is configurable in the construction of the environment. Additionally, the

environment can be initialized with any number of SKUs, 𝑑; it is assumed the SKUs

63

are known and fixed prior to runtime. Each time step in the environment corresponds

to a single day. We chose to start with a simplified model depicted in Figure 7-1 below.

Throughout, we refer to this model as Benchmark v1.

Figure 6-1: Example of Supply Chain Environment

The Benchmark v1 environment for the supply chain model includes the following

key assumptions:

• There are two SKUs (𝑑 = 2), denoted as 𝑋 and 𝑌 .

• The network consists of a single manufacturer, a source node (Cross Dock Facility,

CDF), two Regional Service Centers (RSCs), and a Central Distribution Center

(CDC).

• The supply from the manufacturer to the CDF is deterministic, with 100 units

supplied each day for each product.

• The demand for each SKU at each DL follows a Poisson distribution whose

rate parameter follows sinusoidal variations to reflect seasonal demand patterns.

Conditioned on a SKU and time, the demand at each DL is identically indepen-

dently distributed. Overall, the total expected demand, per day, over a one year

period for every SKU is equal to the total daily supply of 100 units. Below is

64

an example realization of the two products’ aggregate demand over time in a

simulation.

Figure 6-2: Realized Demand in Simulation

• Each lane has an associated cost for shipping per unit, capacity limitations on

outbound processing on a given day, and predetermined fixed lead times, as

shown in Table 7.1. The lead time of 0 from the manufacturer to the CDF is

simply representing the idea that units will instaneously appear at the CDF

according to the supply distribution, which in this case is a fixed 100 units.

Notably, the 1 day lead time for each other lane represents the idea that an

STO triggered on day 𝑡 will be immediately reflected as inventory at the next

time step, on day 𝑡+ 1. However, the environment setup is flexible enough to

consider arbitrary lead times, and this could be a path for future exploration.

The costs here are meant to reflect the idea that in-region fulfillment should be

the cheapest option, followed by fulfillment from the central distribution center, then

followed by cross-region transfers which are most expensive.

65

Table 6.1: Costs and Fixed Lead Times of Benchmark v1

Lane Cost per Unit Capacity Lead Time (days)

Manufacturer to CDF (First Mile) $0 ∞ 0
CDF to CDC (Middle Mile) $0 50 1
CDF to Node "A" (Middle Mile) $0 ∞ 1
CDF to Node "B" (Middle Mile) $0 ∞ 1
Node "C" to Node "A" (Middle Mile) $2 ∞ 1
Node "C" to Node "B" (Middle Mile) $2 ∞ 1
Node "A" to Demand Location "A" (Last Mile) $0 ∞ 1
Node "B" to Demand Location "A" (Last Mile) $5 ∞ 1
Node "C" to Demand Location "A" (Last Mile) $8 ∞ 1
Node "A" to Demand Location "B" (Last Mile) $8 ∞ 1
Node "B" to Demand Location "B" (Last Mile) $0 ∞ 1
Node "C" to Demand Location "B" (Last Mile) $5 ∞ 1

6.2 State Space 𝒮

To simplify the model, the real-world case pack and integrality constraints are ignored,

and the state space is represented by a continuous domain capturing the inventory

levels across the network for each SKU. Let us assume we have 𝑑 SKUs in the model

which are all known and fixed prior to runtime. At a given time 𝑡, each node has a

𝑑-dimensional state vector where each element represents the number of units of a

particular SKU. Similarly, for each lane connecting two nodes 𝑢 and 𝑣 with lead time

𝑙𝑡𝑢,𝑣 > 1, there exists a 𝑑-dimensional state vector for each 𝑠, 1 ≤ 𝑠 < 𝑙𝑡𝑢,𝑣, where each

element represents the number of units of a particular SKU 𝑠-days along in its transit

journey from 𝑢 to 𝑣. Then 𝒮 is the concatenation of all such state vectors across

node-level and transit-level inventories, which can be thought of as a 𝑘 × 𝑑 matrix

for some 𝑘. Given the network configuration, the state space 𝒮 can be represented as

follows, where each row corresponds to an SKU (X or Y), and each column corresponds

to the inventory position at the node or in transit location:

66

𝒮 =

Source (CDF) Node A (RSC) Node B (RSC) Node C (CDC)[︃]︃
Product X 𝑆𝐶𝐷𝐹,𝑋 𝑆𝐴,𝑋 𝑆𝐵,𝑋 𝑆𝐶,𝑋

Product Y 𝑆𝐶𝐷𝐹,𝑌 𝑆𝐴,𝑌 𝑆𝐵,𝑌 𝑆𝐶,𝑌

Additionally, 𝒮 contains 14 day forecasts of supply for each SKU and of demand

for each (SKU, DL) pair. As implemented currently, these forecasts are simply the

point estimates of the underlying sampling distributions which are assumed to be

known. These forecasts may help the agent better plan for shifting demand dynamics.

In extensions to Benchmark v1, when the environment has lead times greater than

1 day, the columns may also include in-transit units at each day along each lane. As

the state space scales linearly with the number of products, future implementations

may want to take an approach to the state space that better scales with 𝑑. Lastly, we

note the inventory at the manufacturer is assumed to be unlimited and thus is not

explicitly modeled in the state space.

6.3 Action Space 𝒜

The action space 𝒜 is a continuous, multi-dimensional space where each action 𝑎 ∈ 𝒜

dictates the percentage of inventory outflow from a source node (CDF or any node

holding inventory) to one or multiple destination nodes (RSCs or CDC). Actions

are normalized to ensure that the total percentage of inventory allocated from a

source to all destinations sums to 1, maintaining the conservation of mass within the

system. Given the CDF’s role as a pass-through facility without the capability to

store inventory overnight, all inventory at the CDF must be allocated to subsequent

nodes within the same time step.

An example of the action space matrix for two products, 𝑋 and 𝑌 , across six

possible lanes is illustrated below:

67

𝒜 =

CDF→ A CDF→ B CDF→ C C→ A C→ B C→ C (CDC)[︃]︃
Product X 𝛼𝑋,CDF→A 𝛼𝑋,CDF→B 𝛼𝑋,CDF→C 𝛼𝑋,C→A 𝛼𝑋,C→B 𝛼𝑋,C→C

Product Y 𝛼𝑌,CDF→A 𝛼𝑌,CDF→B 𝛼𝑌,CDF→C 𝛼𝑌,C→A 𝛼𝑌,C→B 𝛼𝑌,C→C

Where 𝛼𝑆𝐾𝑈,source→destination represents the fraction of inventory for a given SKU

dispatched from the source node to the destination node. For example, 𝛼𝑋,CDF→A

denotes the percentage of product X’s inventory moving from the CDF to node "A"

(RSC). It is important to note that the sum of the actions across all outgoing lanes from

the CDF must equal 1, reflecting the full allocation of inventory from this pass-through

node. On the other hand, inventory at node "C" (CDC) can either be distributed

to RSCs or remain at the CDC, hence the inclusion of the 𝛼𝑆𝐾𝑈,C→C term, which

represents the percentage of inventory that remains at the CDC.

6.4 Transition Dynamics 𝑃 (𝑠′|𝑠, 𝑎)

The transition dynamics within the environment capture the supply chain’s evolution

from one state to the next, incorporating both deterministic and stochastic elements.

In Benchmark v1, the supply arriving at the CDF is deterministic, modeled as a fixed

number of units for each SKU. In contrast, demand at each Demand Location (DL) is

stochastic, following a Poisson distribution for each product at each DL.

At each time step 𝑡, the following events occur in sequence:

• Supply Arrivals: A fixed quantity, specifically 100 units, of each SKU is added

to the CDF’s inventory, representing incoming supply at end of day 𝑡− 1.

• In-Transit Advancements: STOs that were triggered in previous time steps

(on 𝑡− 1 or earlier) advance through the lanes with fixed lead times. STOs that

reach their destination are added to the respective node’s inventory.

• STO Triggers: Based on the agent’s actions, new STOs are triggered, moving

68

inventory from source nodes to destination nodes or redistributing within the

CDC. These are assumed to be set at the start of day 𝑡 and occur before demand,

and the corresponding fulfillment is realized throughout day 𝑡.

• Last Mile Fulfillment: Lastly, the environment’s last mile fulfillment algorithm

allocates units from RSCs and the CDC to meet the stochastic demand at the

DLs. This algorithm functions independently of the agent’s actions and operates

in a greedy, sequential manner, as elaborated below.

Last Mile Fulfillment Algorithm The last mile fulfillment is not explicitly

modeled within the action space. Instead, after the agent’s actions are applied and the

in-transit inventory is updated, a greedy sequential fulfillment algorithm is invoked.

This algorithm prioritizes fulfilling customer demand at each DL using the following

steps:

1. Compile a list of orders for each SKU based on the realized demand at each

DL, which in Benchmark v1 is just a sampling from Poisson(𝑡) where 𝑡 varies

seasonally. Aggregate all orders and randomly shuffle them.

2. Sort the available lanes to each DL by cost, in ascending order, to prioritize

cheaper fulfillment options.

3. For each order, sequentially fulfill customer demand from the cheapest lane,

using available inventory, until all orders are satisfied or inventory is exhausted.

4. If inventory at a node is insufficient to fulfill an order, the algorithm continues

to the next best lane option.

5. This process continues until either all orders are fulfilled or there are no more

lanes with available inventory to fulfill the remaining orders.

6. Orders that cannot be fulfilled result in missed sales, which can potentially

impact the reward negatively depending on the reward design.

69

6.5 Reward Function 𝑅(𝑠, 𝑎)

The reward function 𝑅(𝑠, 𝑎) quantifies the immediate cost or benefit incurred by

taking action 𝑎 in state 𝑠. In the context of our environment, the reward function is

designed to capture the key objectives of the supply chain. Like many RL problems,

reward design can have a large influence on agent’s behavior, and the reward design

in our environment is configurable to prioritize different objectives.

The reward at each time step may take the following into consideration:

• Transportation Costs: A cost is incurred for each unit of product shipped

between nodes, which is subtracted from the reward. This cost is lane-specific

and is proportional to the number of units shipped and the cost per unit of each

lane.

• Penalties for Lane Capacity Violations: If the triggered STOs exceed the

capacity of a lane, an additional penalty is applied, which is proportional to the

excess volume shipped and a violation penalty factor. This relaxes the capacity

constraints by turning them into costs in the reward function.

• Sales Revenue: A positive reward may accrue for each unit of product suc-

cessfully delivered to a demand location, scaled by a sales reward factor. This

factor can be tuned to represent the profit margin or the importance of sales

revenue in the overall optimization objective. Note that last mile fulfillment

occurs automatically as part of the transition dynamics of the environment and

as such we do not need to explicitly promote fulfillment via a reward to see such

behavior. Additionally, the incoming supply is exogenous to our STO decisions,

so it may be unfair to penalize for missed sales as insufficient inventory under

this framework is primarily a result of the random demand coming in above

supply, which is outside of the agent’s control. In Benchmark v1, we set the sales

reward factor to 0 to focus on transportation costs associated with STOs, but

we mention such a reward to showcase how this framework might be extended

to include different facets of the overall supply chain objective, especially if we

70

were to modify the action space to include first or last mile decisions as well.

For Benchmark v1, our reward on each step may be calculated as:

∑︁
𝑙∈𝐿Middle-Mile

∑︁
𝑝∈𝑃

𝑐𝑙 × 𝑓𝑙,𝑝⏟ ⏞
Middle Mile Costs

+
∑︁

𝑙∈𝐿Last-Mile

∑︁
𝑝∈𝑃

𝑐𝑙 × 𝑓𝑙,𝑝⏟ ⏞
Last Mile Costs

+
∑︁
𝑙∈𝐿

𝜑× 𝛿𝑙

where

• 𝑐𝑙 : unit cost of transporting on lane 𝑙

• 𝑓𝑙,𝑝 : number of units sent of product SKU 𝑝 through lane 𝑙

• 𝜑 : lane violation penalty per unit over capacity

• 𝛿𝑙 : units over capacity for lane 𝑙, 0 when under capacity (including when capacity

is infinite).

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

Chapter 7

Policy Comparison for Supply Chain

Decision Making

In this section we outline three classes of policies used to train on the Benchmark v1

environment and extensions.

7.1 PPO Policy

The first class of policies we explore for training on the Benchmark v1 environment

is based on Proximal Policy Optimization (PPO) by Schulman et al. [10], a type of

policy gradient method for reinforcement learning. PPO has gained popularity for its

effectiveness in a wide range of environments and its relative simplicity compared to

other algorithms. We employ the standard implementation from the Stable Baselines

library, utilizing an MLP (Multi-Layer Perceptron) architecture for the policy network.

PPO operates by optimizing a surrogate objective function, which allows for

multiple epochs of minibatch updates while ensuring the policy does not diverge too

much from its previous iteration. This is achieved through the use of clipping in the

objective function, which penalizes changes to the policy that move the ratio of the

new policy probability to the old policy probability too far from 1.

73

7.1.1 Implementation Details

For the PPO policy, we configure the agent as follows:

• Neural Network Architecture: The policy and value functions are represented

by separate MLPs, each consisting of two hidden layers with 64 units each. The

activation function used is ReLU (Rectified Linear Unit) for hidden layers, with

a linear activation for the output layer of the value network and a softmax

activation for the policy network’s output layer.

• Learning Rate: The learning rate is set to 3 × 10−4, a common choice for

PPO implementations that balances the trade-off between convergence speed

and stability.

• Clip Range: The PPO clip range, which controls the clipping of the policy

update ratios, is set to 0.2. This follows the standard practice in PPO imple-

mentations to prevent excessive policy updates that could lead to performance

degradation.

• Optimizer: We use the Adam optimizer for training the neural networks, as it

automatically adjusts the learning rate during training, providing a more stable

and efficient optimization process.

The full set of default parameters for this implementation can be found in the

Stable-Baselines3 documentation [8].

The PPO agent is trained over a series of episodes, each representing a sequence

of decisions and transition steps within the Benchmark v1 environment. The goal

is to maximize the cumulative reward, which in this context involves minimizing

transportation costs and lane violation penalties.

7.2 Model-Based Control (MPC) Policy

The Model-Based Control (MPC) approach formulates the decisions needed to optimize

our objective over a planning horizon as an LP. As the supply and demand distributions

74

on each day are assumed to be known, even though the actual quantities are random,

we take the expected values of these distributions as our inputs into the LP. We

iteratively perform the following steps: solve the LP over some fixed planning horizon,

apply the STO decisions given on the first day of the solution, realize actual supply and

demand (sampled from our distributions), and apply the transition dynamics of our

environment. At each decision step, this method seeks to minimize the expected total

cost over the planning horizon. The optimization problem is subject to constraints that

ensure actions are feasible with respect to the action space and the state transitions

adhere to the supply chain dynamics.

The MPC policy is particularly powerful in an environment like ours, where

the dynamics are partially known and predictable, allowing for effective planning.

However, the computational complexity of solving the optimization problem at each

step can be significant, especially as the planning horizon and the dimensionality of

the action space increase (such as by including more SKUs). Below, we write out the

full formulation.

Decision Variables

• inv𝑑,𝑛,𝑝: Inventory level of product 𝑝 at node 𝑛 on day 𝑑.

• 𝑓𝑑,𝑠,𝑟,𝑝: Number of units sent of product 𝑝 through lane from source node 𝑠 to

receiving node 𝑟 on day 𝑑. Can be thought of as a network flow. The optimized

middle-mile flow variables for the first day represent the STO decisions that will

get input into the environment.

• 𝛿𝑑,𝑠,𝑟: Units over capacity for lane from source node 𝑠 to receiving node 𝑟 on day

𝑑, 0 when under capacity. Can be thought of as a slack variable.

• fulfilled𝑑: Total product quantities fulfilled on day 𝑑. Auxiliary variable used

to simplify the reward formulation.

75

Parameters and Constants

• init_inv𝑛,𝑝: Initial inventory level of product 𝑝 at node 𝑛. Will be set to same

starting inventory as environment.

• supply𝑑,𝑝: Forecasted daily supply of product 𝑝 on day 𝑑, determined by taking

the expected value under the environment’s supply distribution.

• demand𝑑,𝐷𝐿,𝑝: Forecasted daily demand of product 𝑝 on day 𝑑, determined by

taking the expected value under the environment’s demand distribution.

• 𝑐𝑠,𝑟: Unit cost of transporting goods from source node 𝑠 to receiving node 𝑟.

• lane_capacity𝑠,𝑟: Capacity of the lane from source node 𝑠 to receiving node 𝑟.

• 𝛽: Reward for fulfilling a unit of product.

• 𝜑: Lane violation penalty per unit over capacity.

Objective Function

The objective is to maximize the total fulfillment reward minus transportation costs

and penalties for lane capacity violations.

Maximize 𝛽 ·
∑︁
𝑑

fulfilled𝑑 −
∑︁
𝑑,𝑠,𝑟,𝑝

𝑐𝑠,𝑟 · 𝑓𝑑,𝑠,𝑟,𝑝 −
∑︁
𝑑,𝑠,𝑟

𝜑 · 𝛿𝑑,𝑠,𝑟

Note that this is identical to the objective in the PPO formulation described in

[6.5], except for the fulfillment reward. This is because the PPO agent operates directly

on the environment where last mile fulfillment is built into the transition dynamic

step, and as such, does not need a fulfillment reward term to exhibit this behavior.

Conversely, the LP-based approach includes last mile fulfillment as part of the decision

variables as it builds out a plan over the horizon timeline, and to encourage fulfillment,

we must reward this behavior by choosing a sufficiently large 𝛽. Without this reward,

the LP-approach would simply not flow any products through the network to avoid

all transportation and capacity violation costs.

76

Constraints

1. Initial Inventory Constraints:

∀𝑛,∀𝑝, inv0,𝑛,𝑝 = init_inv𝑛,𝑝

2. Flow Conservation: Difference in inventory must equate to inflow minus

outflow.

∀𝑛,∀𝑑,∀𝑝, inv𝑑+1,𝑛,𝑝 − inv𝑑,𝑛,𝑝 =
∑︁
𝑠

𝑓𝑑+1−𝑙𝑡𝑠,𝑛,𝑠,𝑛,𝑝 −
∑︁
𝑟

𝑓𝑑,𝑛,𝑟,𝑝

where 𝑙𝑡𝑠,𝑛 represents the lead time from source 𝑠 to node 𝑛.

3. Outflow Limitation: Cannot send out more than available.

∀𝑛,∀𝑑,∀𝑝, inv𝑑,𝑛,𝑝 ≥
∑︁
𝑟

𝑓𝑑,𝑛,𝑟,𝑝

4. Supply Distribution: All incoming supply must be fully distributed to nodes,

as CDF cannot store inventory.

∀𝑑,∀𝑝, supply𝑑,𝑝 =
∑︁
𝑟

𝑓𝑑,𝑆,𝑟,𝑝

5. Fulfillment Calculation: Auxilliary variable storing total fulfilled units each

day.

∀𝑑, fulfilled𝑑 =
∑︁
𝐷𝐿

∑︁
𝑠𝑟𝑐

∑︁
𝑝

𝑓𝑑,𝑠𝑟𝑐,𝐷𝐿,𝑝

6. Regional Demand Fulfillment: Cannot fulfill more than demand for each

DL.

∀𝐷𝐿, ∀𝑑,∀𝑝,
∑︁
𝑠𝑟𝑐

𝑓𝑑,𝑠𝑟𝑐,𝐷𝐿,𝑝 ≤ demand𝑑,𝐷𝐿,𝑝

7. Lane Capacity: Lower bounds capacity overage. The objective penalizes

77

capacity overage so any optimal solution will indeed be set to this lower bound.

∀𝑠,∀𝑟,∀𝑑,
∑︁
𝑝

𝑓𝑑,𝑠,𝑟,𝑝 − lane_capacity𝑠,𝑟 ≤ 𝛿𝑑,𝑠,𝑟

∀𝑠,∀𝑟,∀𝑑, 𝛿𝑑,𝑠,𝑟 ≥ 0

7.3 Heuristic Policies

Heuristic policies may rely on simple, rule-based strategies to make decisions within

the supply chain environment. Unlike the PPO and MPC policies, which either learn

from interaction with the environment or optimize based on predictions, heuristic

policies follow predetermined rules designed to capture domain-specific knowledge or

intuition about effective strategies. The Benchmark v1 environment is simple enough

to create reasonable rules-based approaches for STO decision making, described below:

Table 7.1: Heuristic Policies for STO Decisions

STO Policy 1 Policy 2 Policy 3
S → A 25% 33% 0%
S → B 25% 33% 0%
S → C 50% 33% 100%
C → A 50% 33% 50%
C → B 50% 33% 50%
C → C 0% 33% 0%

Heuristic policies can be quickly implemented and provide a baseline against which

the performance of more complex policies like PPO and MPC can be compared.

7.4 Training and Evaluation

Training of the PPO agent involves iteratively improving its policy by interacting

with the environment, collecting trajectories of states, actions, and rewards, and

then updating the policy network based on the observed returns. We evaluate the

performance of the PPO policy both during and after training by measuring the

78

average cumulative reward over a set of evaluation episodes. This allows us to track

the agent’s learning progress and assess its ability to make cost-effective supply chain

decisions.

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

Chapter 8

Policy Performance and Key

Takeaways

The policies mentioned in the previous chapter will each be run on the same Benchmark

v1 environment. The results will be presented and discussed. Additionally, this chapter

will discuss key findings and potential generalizations of our RL approach.

8.1 Simulation Performance Comparison

To compare the performance of the PPO RL policy, MPC policy, and three heuristics,

as described in Chapter 7, we ran 30 one-year simulations for each policy in our

environment. The PPO agent was trained prior to the test simulations on the same

environment. While each policy may have different reward functions (or none at

all in the case of heuristics), the evaluation metric will be on total cost incurred by

transportation and lane violation penalties, as accrued in the actual environment. We

can also convert this performance metric to cost on a unit basis by dividing total cost

by the number of units supplied into the system. In the Benchmark v1 environment,

over 1 year, we expect 2× 365× 100 = 73, 000 units to enter the supply chain, so we

arrive at an approximate unit cost by dividing total simulation cost by this figure.

The results of the simulation are summarized in Table 8.1.

Additionally, a box plot of all 30 runs is shown below, demonstrating low variance

81

Table 8.1: Median Total Cost Across 30 Simulations

MPC Heuristic 1 Heuristic 2 Heuristic 3 RL
Median Total Cost $84,935 $101,768 $129,285 $208,404 $115,211
Median Unit Cost (approx.) $1.16 $1.39 $1.77 $2.85 $1.58

in policy performance.

The MPC policy performed best, followed by Heuristic 1, which sends 50% of supply

to the CDC and 25% to each CDC. Since the lane capacities from the CDF to each

RSC are taken to be 50 units in Benchmark v1, and 200 total units are supplied across

both products in expectation each day, it is sensible that about 50
200

=25% of inventory

should be diverted to each RSC to minimize transportation costs without violating lane

capacity. Ignoring lane capacities, in this environment, it is almost always preferable to

bypass the CDC completely and ship directly to RSCs to achieve lower cost in-region

fulfillment. The sole, and rare, exception would be when a large deviation above

expected demand is realized at one region, depleting its in-region inventory, resulting

in fulfillment from the other region, which is more expensive than fulfillment from the

82

CDC. So in this case, having some safety stock at the CDC may provide an effective

buffer and reduce expensive cross-region fulfillment. Nevertheless, for the parameters

and distributional assumptions chosen in Benchmark v1 environment, Heuristic 1

seems to perform reasonably well, and most closely matches human intuition.

Unlike the simple heuristics, the MPC policy can take the current inventory state

and supply and demand forecasts into account when making STO decisions. As such,

it is perhaps unsurprising that this policy outperforms all heuristics. Conversely, the

"black-box" PPO policy does not build out a plan over some time horizon or have

"intuition" about the right rules to apply, like a good heuristic might. Considering

the lack of interpretability and worse performance than the MPC and Heuristic 1 in

simulation, Atlas employees rightfully asked whether RL-based methods were viable

for their supply chain problems. While the answer to this is unclear and will require

additional work at the company, it is important to note that on simple problems with

a low amount of uncertainty and simple transition dynamics, RL-based approaches

may not fully exploit the known information and underperform very basic policies.

For example, consider the game of Tic-Tac-Toe. While RL-approaches could certainly

learn an optimal strategy for this game, it is readily clear to anyone who has played,

that a rules-based approach is sufficient to play optimally. For a game like chess,

however, with much greater complexity, deep reinforcement learning techniques, such

as those used by Alpha Zero[11], provide greater performance than any rules-based

approach. Point being, while Benchmark v1 is an interesting minimally sufficient

environment to resemble the true problem and test different policies, it would be

interesting to see how these different approaches scale as the environment gets more

realistic and complex.

For example, with thousands of SKUs and dozens of constraints, it is unclear what

a good heuristic policy might look like. The LP-based approach may face performance

issues if scaled to the full problem, depending on modelling assumptions. Assuming a

supply chain network has 10 edges, lead times of 5 days between nodes, 1,000 products,

and a 100 day time horizon, this gives us on the order of 5 million decision variables,

which may certainly be feasible with modern solvers, but additionally complexities,

83

such as integrality constraints, fair-share distribution requirements, stochastic lead

times, or new constraints, may prove less tractable.

8.2 Interpreting RL Policy Behavior

One might be interested to see the emergent behaviors of the PPO agent as it trains.

Initially, we hypothesize the large negative penalty term for lane capacity violations

dominates and causes the agent to favor sending inventory directly to the CDC which

is uncapacitated. However, as the agent continues to learn, it then starts to ship

roughly 25% of inbound volume to each RSC, as done in Heuristic 1.

Figure 8-1: STO Decisions

The idea that the agent first minimizes lane penalty cost is reflected in Figure 8.2

below. The three components of cost, middle-mile transport, last-mile transport, and

lane violation penalty, are shown, along with aggregate cost.

84

Figure 8-2: Cost Breakdown

Building analytical tools to capture policy decisions throughout training has been

a value-add to Atlas as they continue to experiment with this technology. These tools

may provide greater interpretability to the agent’s decision making. Moreover, the art

of reward design becomes more approachable when such tools allow a decision maker

to view the behavioral and reward impacts of their reward function.

8.3 Future Work and Considerations

There is still a great deal of work to be done in incorporating constraints into the

RL formulation. The simple penalty approach here may not scale to additional

constraints, and future work should consider formulations which directly respect

resource constraints or dynamically tune cost parameters during training. Moreover,

the state and action space scale linearly with the number of products, and for thousands

of SKUs, the agent may suffer from a curse of dimensionality. Multi-agent RL with

partially shared state of the supply chain may be an interesting avenue to explore.

Additionally, the action space chosen here may not be the most appropriate to model

85

STO decision making; rather than considering the percentage of inventory that should

be allocated to each node, perhaps an action space that models unit flow directly or

some other parametrization would give better performance.

Going forward, Atlas has a solid foundation to build upon with the environment

and agent developed in this work. This baseline provides a valuable starting point

for further exploration and refinement of RL-based approaches in the context of their

supply chain.To fully leverage the potential of RL, Atlas should consider the following

steps:

1. Continual benchmarking: Regularly compare the performance of the RL agent

against existing heuristic methods and other optimization techniques. This will

help identify areas where the RL approach is providing superior results and

where it may need improvement.

2. Iterative refinement: Based on the benchmarking results, iteratively refine the

RL model. This may involve adjusting the state and action spaces, reward

functions, or model architectures to better capture the nuances of Atlas’s supply

chain and decision-making processes.

3. Explainable AI: Invest in techniques to make the RL agent’s decisions more

interpretable and explainable. This will help build trust in the model and allow

supply chain managers to gain insights from the agent’s learned strategies.

4. Hybrid approaches: Explore hybrid approaches that combine the strengths of

RL with traditional optimization methods. For example, RL could be used to

learn high-level strategies while optimization techniques handle the detailed

allocation decisions.

5. Simulation and stress-testing: Utilize the RL environment to simulate various

scenarios and stress-test the agent’s performance under different conditions.

This can help identify potential weaknesses and improve the robustness of the

decision-making process.

86

6. Gradual deployment: Gradually integrate the RL agent into the decision-making

process, starting with low-risk decisions and progressively increasing its respon-

sibilities as it demonstrates reliable performance. By following these steps, Atlas

may potentially use RL to uncover novel strategies and emergent behaviors

that may lead to improvements in supply chain performance. The insights

gained from the RL agent can complement and enhance existing decision-making

processes, ultimately driving better outcomes for Atlas and its customers.

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

Chapter 9

Conclusion

The landscape of supply chain management has undergone a significant transformation

in recent years, driven by the rapid growth of e-commerce, the increasing complexity

of global networks, and the need for agility in the face of market volatility. As a

result, large-scale retailers like Atlas are seeking innovative solutions to optimize

their inventory management policies and streamline their operations. This thesis has

explored the application of advanced decision-making techniques, specifically focusing

on the development of a high-performance emulator for middle-mile supply chain

decisions and the potential of reinforcement learning (RL) in enhancing inventory

management strategies.

The first part of this thesis addressed the challenges encountered by Atlas in

implementing a third-party middle-mile Stock Transfer Order (STO) decision engine.

The lack of a testing environment, complex configurations, and runtime performance

issues prompted the development of a high-performance, exact logical replica of the

decision engine. By integrating this emulator into Atlas’s end-to-end supply chain

simulation framework, we achieved a notable 30x speedup compared to the existing

system. This enhancement enables Atlas to efficiently test various configurations,

uncover critical unexpected behaviors, and make data-driven decisions to optimize their

supply chain operations. The practical implementation of this decision engine not only

significantly reduced run times but also allowed Atlas to proactively address potential

operational challenges that could have arisen in a live production environment.

89

The second part of this thesis explored the potential of RL in augmenting or

replacing Atlas’s middle-mile decision-making policy. By framing the supply chain as

an RL problem and building a simplified environment that incorporates key elements

of the real supply chain network, we developed and trained a parametrized inventory

management policy. The performance of this RL policy was evaluated through

simulation and benchmarked against traditional heuristic and model predictive control

policies. While the RL policy did not outperform these alternatives in the simplified

environment, this work provides a foundation for Atlas to explore RL applications as

they scale to more realistic supply chain environments. As Atlas continues to explore

the integration of RL-based approaches into their decision-making processes, they

will need to address the challenges of incorporating complex constraints, improving

learning efficiency, and ensuring scalability to handle the high dimensionality of their

supply chain network.

In conclusion, this work aims to provide a valuable case study of the practical

application of advanced decision-making techniques in a large-scale retail environment.

We hope to contribute to the growing body of knowledge on the practical implemen-

tation of advanced decision-making techniques in real-world business settings. As

retailers navigate the challenges of an increasingly complex and dynamic supply chain

landscape, the insights and methodologies presented in this thesis may serve as a

useful reference for practitioners and researchers alike.

90

Bibliography

[1] Dimitris Bertsimas and Aurélie Thiele. “A Robust Optimization Approach
to Inventory Theory”. en. In: Operations Research 54.1 (Feb. 2006), pp. 150–
168. issn: 0030-364X, 1526-5463. doi: 10.1287/opre.1050.0238. url:
https://pubsonline.informs.org/doi/10.1287/opre.1050.0238 (visited
on 05/12/2024).

[2] Andrew J. Clark and Herbert Scarf. “Optimal Policies for a Multi-Echelon
Inventory Problem”. en. In: Management Science 6.4 (July 1960), pp. 475–
490. issn: 0025-1909, 1526-5501. doi: 10.1287/mnsc.6.4.475. url: https:
/ / pubsonline . informs . org / doi / 10 . 1287 / mnsc . 6 . 4 . 475 (visited on
05/12/2024).

[3] Benito E. Flores and D.Clay Whybark. “Implementing multiple criteria ABC
analysis”. en. In: Journal of Operations Management 7.1-2 (Oct. 1987), pp. 79–
85. issn: 0272-6963, 1873-1317. doi: 10.1016/0272- 6963(87)90008- 8.
url: https://onlinelibrary.wiley.com/doi/10.1016/0272-6963%2887%
2990008-8 (visited on 05/13/2024).

[4] Stephen C. Graves. “A Multiechelon Inventory Model with Fixed Replenishment
Intervals”. en. In: Management Science 42.1 (Jan. 1996), pp. 1–18. issn: 0025-
1909, 1526-5501. doi: 10.1287/mnsc.42.1.1. url: https://pubsonline.
informs.org/doi/10.1287/mnsc.42.1.1 (visited on 05/12/2024).

[5] James A G Krupp. “Measuring inventory management performance”. In: Produc-
tion and inventory management journal : the journal of the American Production
and Inventory Control Society, Inc. 35.4 (Dec. 1994). Place: Falls Church, VA :
Publisher: The Society, pp. 1–. issn: 0897-8336.

[6] Steven Nahmias and Tava Lennon Olsen. Production and operations analysis:
strategy, quality, analytics, application. eng. Seventh edition. One learns by
doing. Long Grove, Illinois: Waveland Press, Inc, 2015. isbn: 978-1-4786-2306-9.

[7] Warren B. Powell. “Designing Lookahead Policies for Sequential Decision
Problems in Transportation and Logistics”. In: IEEE Open Journal of In-
telligent Transportation Systems 3 (2022), pp. 313–327. issn: 2687-7813. doi:
10.1109/OJITS.2022.3148574. url: https://ieeexplore.ieee.org/
document/9702124/ (visited on 05/13/2024).

91

https://doi.org/10.1287/opre.1050.0238
https://pubsonline.informs.org/doi/10.1287/opre.1050.0238
https://doi.org/10.1287/mnsc.6.4.475
https://pubsonline.informs.org/doi/10.1287/mnsc.6.4.475
https://pubsonline.informs.org/doi/10.1287/mnsc.6.4.475
https://doi.org/10.1016/0272-6963(87)90008-8
https://onlinelibrary.wiley.com/doi/10.1016/0272-6963%2887%2990008-8
https://onlinelibrary.wiley.com/doi/10.1016/0272-6963%2887%2990008-8
https://doi.org/10.1287/mnsc.42.1.1
https://pubsonline.informs.org/doi/10.1287/mnsc.42.1.1
https://pubsonline.informs.org/doi/10.1287/mnsc.42.1.1
https://doi.org/10.1109/OJITS.2022.3148574
https://ieeexplore.ieee.org/document/9702124/
https://ieeexplore.ieee.org/document/9702124/

[8] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning
Implementations”. In: Journal of Machine Learning Research 22.268 (2021),
pp. 1–8. url: http://jmlr.org/papers/v22/20-1364.html.

[9] Herbert Scarf. The Optimality of (S,s) Policies in the Dynamic Inventory
Problem. Technical Report 11. Stanford University, Office of Naval Research,
Apr. 1959.

[10] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: (2017).
Publisher: [object Object] Version Number: 2. doi: 10.48550/ARXIV.1707.
06347. url: https://arxiv.org/abs/1707.06347 (visited on 05/13/2024).

[11] David Silver et al. “Mastering the game of Go without human knowledge”. en. In:
Nature 550.7676 (Oct. 2017), pp. 354–359. issn: 0028-0836, 1476-4687. doi: 10.
1038/nature24270. url: https://www.nature.com/articles/nature24270
(visited on 05/13/2024).

[12] Edward Silver, David Pyke, and Rein Peterson. “Inventory Management and
Production Planning and Scheduling (Third Edition)”. In: Journal of The
Operational Research Society - J OPER RES SOC 52 (Jan. 2001), pp. 845–845.

[13] David Simchi-Levi and Yao Zhao. “Performance Evaluation of Stochastic Multi-
Echelon Inventory Systems: A Survey”. en. In: Advances in Operations Research
2012 (2012), pp. 1–34. issn: 1687-9147, 1687-9155. doi: 10.1155/2012/126254.
url: http://www.hindawi.com/journals/aor/2012/126254/ (visited on
05/12/2024).

[14] Statista - Apparel & Shoes. en. url: https://www.statista.com/markets/
415/topic/466/apparel-shoes/ (visited on 05/12/2024).

[15] Nicolas Vandeput and Spyros G. Makridakis. Data science for supply chain
forecasting. eng. 2nd edition. Business & economics. Berlin Boston: De Gruyter,
2021. isbn: 978-3-11-067110-0.

[16] Yimo Yan et al. “Reinforcement learning for logistics and supply chain man-
agement: Methodologies, state of the art, and future opportunities”. In: Trans-
portation research. 162 (June 2022). Place: Exeter, England : Publisher: Elsevier
Science Ltd, issn: 1366-5545.

92

http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://www.nature.com/articles/nature24270
https://doi.org/10.1155/2012/126254
http://www.hindawi.com/journals/aor/2012/126254/
https://www.statista.com/markets/415/topic/466/apparel-shoes/
https://www.statista.com/markets/415/topic/466/apparel-shoes/

	List of Figures
	List of Tables
	Introduction
	Industry Overview
	Footwear and Apparel Market
	Key Supply Chain Variables for Consideration

	Atlas Supply Chain
	Atlas North American Supply Chain: Terminology and Network
	Constraints and Objectives

	Problem Motivation and Approach

	Overview of Inventory Management Policies
	EOQ
	Beyond EOQ: Other Classical Single-Stage Inventory Policies
	1. Order-Point, Order Quantity (s,Q) System
	2. Order-Point, Order-Up-to-Level (s,S) System
	3. Periodic-Review, Order-Up-to-Level (R,S) System
	4. Hybrid (R,s,S) System

	Policy Selection in the General Case
	A-B-C Classifications

	Design and Implementation of Middle-Mile Decision Engine
	System Design Overview
	Demand Queue
	Class Architecture
	Resource
	Supply
	Four Types of Supply
	Deferred Decision Making for CDF Inflow

	Supply Queues
	Daily Preparation of Supplies

	Summary of Class Architecture

	Allocation Logic, Matching Supply and Demand
	Middle-Mile Fulfillment Algorithm for Single Demand Line
	Repack Thresholds

	Key Takeaways and Simulation Results
	Lesson Learned from Software Procurement
	Emulator vs Production System Run Time
	Using the Emulator to Improve Production Logic

	Building an RL Environment to Supplement Supply Chain Decision Making
	Problem Formulation
	State Space S
	Action Space A
	Transition Dynamics P(s'|s,a)
	Reward Function R(s, a)

	Policy Comparison for Supply Chain Decision Making
	PPO Policy
	Implementation Details

	Model-Based Control (MPC) Policy
	Heuristic Policies
	Training and Evaluation

	Policy Performance and Key Takeaways
	Simulation Performance Comparison
	Interpreting RL Policy Behavior
	Future Work and Considerations

	Conclusion

