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Abstract

This research investigates the static response of a circular cylindrical sandwich shell

subjected to uniform external hydrostatic pressure. The sandwich shell structure

is composed of two co-centric circular cylindrical shells interconnected with double

V-shaped ring stiffeners.

We solve the problem by using an energy methodology which utilizes particular

features of the sandwich shell structure. We formulate the complementary potential

energy of the system in terms of the unknown forces and moments, developed at

the structural joints of the sandwich shell. Identification of the structural equilibria

is achieved by minimizing the potential energy of the system. Our methodology

results in significant reduction of the dimensionality of the problem, and leads to

better understanding of the relative significance of each structural component and

their relative contribution to the strength of the sandwich structure.

We demonstrate that local deformations of the core stiffeners result in significant

reduction of the bending phenomena close to the ends of the sandwich shell. Mem:

brane forces developed along the meridian of the core stiffeners alter substantially

the axial loading of the inner and outer shell. We compare the structural behavior of

sandwich structures with first, that of monocoque cylindrical shells and second, that

of ring-stiffened cylindrical shells. This comparison demonstrates the superiority of

sandwich shell structures in the relief of significant loading close to rigid boundaries.

Finally, the loading close to the clamped ends of the outer shell can be significantly

reduced by varying the thickness distribution between the inner and outer shell.

Thesis Supervisor: C. Chryssostomidis
Title: Professor of Naval Architecture
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Chapter 1

Introduction

Sandwich cylindrical shell structures are composed of two co-centric circular cylindri

cal shells interconnected with lightweight core. Compared with monocoque cylindrical

shells, sandwich shells have the advantage that the separation of the shells increases

the second moment of area of the shell structures, thus improving their ability to

withstand bending in the circumferential direction and therefore buckling. The sand-

wich structures also provide an attractive alternative to ring-stiffened shells. The

inner shell and the core stiffeners provide an elastic support for the outer shell and

therefore reduce the severity of bending patterns developed in the structure.

The behavior of sandwich shell structures under hydrostatic pressure has not been

investigated widely. Palaninathan and Montague [1], Montague [2], used membrane

theory to estimate stresses in composite shells made of steel skins and concrete filler,

subjected to hydrostatic pressure. Flugge [3] analyzed the strength of double-walled

shells with circumferential and longitudinal ribs. He considered the limiting case of

closely and evenly spaced ribs, stiff enough to ensure that plane sections of the double

wall, orthogonal to the middle surface of the shell, remain plane after deformation.

His approach leads to relatively simple numerical evaluations of the stresses and

deformations of the structure, but it is not able to capture local phenomena associated

with the elastic interaction between the core stiffeners and the shells.

In this thesis we describe the basic features of a structural analysis methodology,

appropriate for sandwich shells subjected to axisymmetric loading. We examine the



strength of the sandwich shell structure shown in Fig. 1, with cylindrical faces and

core made of the same isotropic material. Throughout this study we assume that the

shell is perfect and the deformations remain in the elastic region. The lateral surface

of the structure is subjected to uniform external hydrostatic pressure.

The diversity of shapes allowed by the sandwich shell geometry makes them an

attractive structural device for multi-objective designs. However, it is this character

istic which makes the analysis of these structures a tedious numerical task. Due to

the large number of junctions and compatibility conditions, accurate description of

the deflection field requires dense discretization. Direct application of finite difference

or finite element methodologies results in models with some thousand degrees of free

dom. To cope with this adversity, we have developed an energy methodology which

utilizes the particular geometric features of the sandwich topology shown in Fig. 1.

In Chapter 2 we describe the response of a single isotropic shell to axisymmetric

line loads and moments in convenient closed-form expressions. These expressions sat-

isfy the boundary conditions and provide an admissible deflection field. We formulate

the complementary potential energy of the system in terms of the unknown forces and

moments, developed at the structural joints of the sandwich shell. The strain energy

of the inner and outer shell is obtained by integrating over the length of the shell. We

also determine the strain energy of the core stiffeners in terms of the same unknown

forces and moments. The potential energy of the entire system takes the form of a

quadratic function of the unknown forces and moments. It also depends on a set of

known functions representing the geometry and physical properties of the sandwich

structure. Identification of the structural equilibria is achieved by minimizing the to-

tal potential energy of the system. Constraint conditions, representing local equilibria

of the core stiffeners, must also be satisfied. Our methodology results in significant

reduction of the dimensionality of the problem. The number of unknowns, to be

determined by the minimization of the potential energy outlined before, is equal to

three times the number of joints of the core stiffeners with the inner and outer shell.

In Chapter 3 we discuss numerical results obtained by the methodology outlined

before. For a typical sandwich structure these results are in agreement with results



obtained using BOSOR4, Bushnell [4], a computer program for stress, buckling, and

vibration analysis of branched shells of revolution. Furthermore, we examine the effect

of the sandwich geometry on the bending patterns developed close to rigid boundaries

of the sandwich shell. The analysis indicates that membrane forces developed in the

flanges of the core stiffeners produce bending of the same sign to that developed at

the clamped supports of the shells. This behavior of the core stiffeners results in

significant reduction of the bending developed at the clamped ends along the inner

and outer shell. The second distinct feature of the sandwich structure is the re-

distribution of the axial loading of the inner and outer shell. Although the axial

loads applied on the inner and outer shell at the boundaries are same, membrane

forces applied from the core stiffeners to the shells alter significantly the axial loading

of the shells. This re-distribution of the axial loads is caused by the same forces

which relieve the intensity of bending close to the boundaries of the shells. We also

compare the structural behavior of sandwich structures with first, that of monocoque

cylindrical shells and second, that of corresponding ring-stiffened cylindrical shells.

Finally, we examine the sensitivity of bending phenomena as we alter the thickness

of the inner and outer shell while keeping their sum constant. The analysis indicates

that the severe loading developed at the clamped boundaries of the outer shell can

be significantly reduced by the alteration of the thicknesses.

In Chapter 4 we summarize the conclusions of our research and provide recom-

mendations for the further studies.



Chapter 2

Energy Formulation - Solution

Method

2.1 General

A typical sandwich cylindrical shell structure, comprising two co-centric circular cylin-

drical shells separated by double V-shaped core stiffeners, is shown in Fig. 1. The

shape of the core stiffeners is mainly dictated by local buckling considerations, Chrys-

sostomidis and Papadakis [13]. The central core members of the ring stiffeners provide

strong supports of the V-shaped flanges, and enable the sandwich structure to with-

stand effectively short wavelength buckling instabilities.

In this chapter we first derive closed-form expressions for the response of a semi-

infinite clamped isotropic shell, subjected to axisymmetric line loads and line mo-

ments. We next express the unknown deflection field of the sandwich shell structure

in terms of the unknown forces and moments developed at the structural joints. Sub-

sequently, the strain energy of the inner and outer shell are expressed in terms of these

forces, and a set of known functions depending on the geometry of the sandwich shell.

These expressions also include the effect of clamped boundaries, where bending of the

shell is important. Similar expressions, describing the strain energy stored in the core

members joining the inner and outer shell, are derived. Variations of the comple:

mentary potential energy can be made by changing the lateral and axial line forces.

1



and the line moments developed at the junctions connecting the core members and

the inner and outer shell. A static conservative system is in equilibrium, if its total

potential energy is stationary. Therefore, identification of the structural equilibrium

corresponding to a particular value of hydrostatic pressure, can be achieved by mini-

mizing the complementary potential energy with respect to the unknown forces and

moments developed at the junctions of the sandwich shell structure.

In contrast to the existing numerical schemes, the energy approach we outline

in this thesis provides an efficient way to represent the physical problem. Due to

the computational efficacy of the semi-analytic approach proposed, the number of

independent variables (to be determined by minimizing the potential energy) is, at

most, three times the number of the structural joints. Finally, since this approach

is based on closed-form expressions for the potential energy of the components of

the sandwich shell, it provides further physical insight on the interaction of these

members and their relative contribution to the strength of the structure.

2.2 Displacement Field of the Shells

It is known, Timoshenko and Woinowsky-Krieger [8], that the deflection w(x) of

an infinite isotropic cylindrical shell, due to axisymmetric line force P; applied at

longitudinal location x, is

Fj

w(z) = === p(B(z — z;)).

where (Bz) = eA (cos(Bz) + sin(8|z])).

(2.1)

. 2.2

In the above expressions D is the structural rigidity of the shell defined by

3

p___ ft
12(1 — v2)

2.3}



where t, £ and v are the thickness, the Young’s modulus, and the Poisson’s ratio of

the shell respectively. The geometric parameter 3 is defined by

gt _ 3(1 — v?)

R242
9 }

where R is the radius of the shell. We next derive the deflection of a semi-infinite

cylindrical shell, clamped at z = 0, due to lateral line load P; applied at z;. We

consider a shell of infinite extent subjected to two line loads of magnitude P; applied

at = +z;, and a line load of magnitude —2P;p(8z;), applied at * = 0. Employing

Eq. (2. 1) we obtain :

') p.(z,25) = olelA(z —z;)) + (B(x + z;)) — 20(Bz;)p(Bz)] (2.5

It can be verified easily that expression (2. 5) satisfies the conditions of zero deflection

and zero slope at = 0, and it can be used to describe the response of the semi-infinite

shell to the line load P;.

The displacement of the clamped semi-infinite cylindrical shell due to an axisym

metric line moment M; applied at z; can be derived using Eq. (2. 5). We first consider

the response of the shell to two line forces of identical magnitude and opposite signs,

applied at locations z; and xx. This response can be evaluated using Eq. (2. 5). We

then decrease distance A = x; — zx to zero and increase load P; to infinity, while

keeping P;A = M,. After evaluating the appropriate limits, we derive the following

expression :

0” N M;
MZ,5)=—azpl{(B(z —z;)) — (B(x + z;)) + 2((Bz;)p(Bz)],

where (Bz) = ePfl=lsin(Bx).

(2.6

(2.7,

We note that the response of the shell to axisymmetric line load or line moment



attenuates with distance from the location of the applied load, as an exponentially

damped trigonometric wave. In particular, the response of the shell is limited within

distance r from the longitudinal coordinate of the applied line load or moment, given

" T3

m

7 (28°

The displacement of the semi-infinite clamped shell due to uniformly distributed

hydrostatic pressure p is given by, Ugural [6] :

wi(z) = rill — (Be) 2.9

Within linear theory, the normal displacement of the outer shell w, can be ex-

pressed as the sum of the displacement due to the external hydrostatic pressure, and

the displacements due to the unknown line forces P;’s and moments M;’s, developed

along the structural joints of the outer shell and the core stiffeners, i. e. :

2N 2N

00 = wa + 3 wp, + 3 ng

1=1 1=1

(2.10)

where N is the number of junctions between the outer shell and the core stiffeners

within half length of the shell and

1)
[ wp, (z,z;) 1&lt;j&lt;N

Wp, (L—2,L—2;) N4+1&lt;j5&lt;2N,

 &lt; N1&lt;,&lt;

 &lt; 2N.1&lt;5&lt;
wp, (2,25) La va

(L — =z,

oh - | — Why nari

We can derive the displacement field of the outer shell by substituting Eqs (2. 5),

(2. 6) and (2. 9) into Eq. (2. 10). Finally, the displacement field of the inner shell

can be expressed in terms of the unknown line forces and moments, developed at the



junctions between the inner shell and the core stiffeners, in a similar fashion. We note

that there is no influence of the external hydrostatic pressure on the displacement field

of the inner shell.

2.3 Complementary Strain Energy of the Shells

The strain energy Ol the outer shell U, can be written in

Un — Us, 3.

the form:

2.11

where Us, is the bending energy and Us, is the stretching energy of the outer shell

In the case of an axisymmetrically loaded thin circular cylindrical shell, the strain

energy due to bending takes the form, Ugural [6] :

0%w
Up, = R,D, [ 9 Woybo = T ( or? )"dz (2.12)

where R, is the radius and D, is the structural rigidity of the outer shell. The strain

energy due to axisymmetric stretching can be written in the form, Love [7] :

Eso = Cro [ (ex + £02)’ + 20,(€21 + E22)E,dT, { 2.13)

where C,, = Plalye and v, is the Poisson’s ratio of the outer shell. Axial strains &amp;;

and £., are due to lateral displacement and axial loading. Strain &amp;.; is given by

Ww,
xl = Vo

xr 2.1 4)

Strain €5 can be written in the form (See Fig. 2)

Zr
Fj, 2
7g — vv). (2.15)



F, is the axial resultant developed in the J" element of the outer shell given by

Fi, -

F, 7-1
k=1 ko fo ] &gt; 2.

Ey 6

where V is the external axial loading due to hydrostatic pressure, and Ny, is the axial

force, applied on the outer shell, at the k** junction between the outer shell and the

core stiffeners. The circumferential strain ¢, is given by

Ww,

RB.
(2.17)

Substitution of Eqs (2. 14) to (2. 17) into Eq. (2. 13) results in

LU en — 458% R.D / 2 2rR, N°‘rR, D, | widx iid.
i + Fr 2 FZ (2.18

where [; is the length of the j* element of the shell as shown in Fig. 2. The first

term in the stretching energy formulae is due to the radial deformation of the shell.

The second term is the result of the axial compression or tension of the shell due to

axial loads applied at the boundary and the structural joints of the shell with the core

stiffeners. Expressions similar to Eqs (2. 12) and (2. 18) describe the strain energy

of the inner shell U;, in terms of its radial displacement w; and the associated axial

loading.

We next evaluate the bending and stretching energy for a finite shell of length L.

in terms of the lateral line forces, line moments, and axial forces developed at the

joints of the shell with the core stiffeners. Due to Saint-Venant’s principle the effect

of the boundary on the lateral deformation of the shell is very localized. In particular.

this effect is limited within distance r from the clamped end, where r is given by Eq

(2. 8). In the following, we assume that L &gt; 2r and, therefore, there is no interaction

between the left and right boundary of the finite shell. Furthermore, symmetry of the

problem with respect to the middle of the shell makes it necessary to consider half

length of the shell. Since deflections wp, and way, are practically zero for |[z —z;| &gt; r



the integrals required by Eqs (2. 12) and (2. 18) can be performed over half infinite

domain. Substitution of the displacement fields of the inner or outer shell into the

energy formulae, results in the following integral terms

(Up, = 4B*TRD[whds
_ © wp,

(Uh)p, = &lt;RD | (Spt)da

(Us)M, = 48*xRD | why dz

3 © Jw

(Up)M, = &lt;RD [ (=) de

(2.19)

(2.20)

(2.21)

(2.22)

where wp, wy, are given by Egs (2. 5) and (2. 6). Functions (U,)p, and (U)p,

represent the stretching and bending energy stored in the inner or outer shell, due to

axisymmetric lateral line force. Similarly, (Us)ar, and (Us)n, represent the stretching

and bending energy due to axisymmetric line moment. Evaluation of these integrals

was performed with MACSYMA, a symbolic manipulation computer program [14].

We have

(Us)p, = CpPie® (42; + 3)(cos(28z;) — 1)

_3(sin(28z;) + 1 — e28%)]

Us)p, = CpP;*e ?%[(1 — 4fz;)(cos(2Bz;) — 1)

—(sin(2fz;) + 1 — *%%1)]

Usm, = CyM;e?%[(1 + 482;)(sin(28z;) — 1)

+(cos(28z;) — 1 + €2%)]

sm, = CuM;*e™%((3 — 48z;)(sin(2Bz;) — 1)

+3(cos(28z;) — 1 + 2525),

where coefficients Cp, Cas are given JY

, TR

Cp =ompy:

(2.23)

(2.24)

(2.25)

(2.26

(2.27)

 A



Orr — TR

M = 163D
(2.28

We now discuss the dependence of the energy terms, described above, on the

longitudinal coordinate of the applied loads. Figs 3 and 4 show the energy per unit

load stored in the shell as a function of the longitudinal coordinate of the applied

load. The results have been nondimensionalized with respect to the energy stored in

the shell due to a unit line force applied far away from the boundary. When a line

force is applied close to the clamped boundary, the bending energy is larger than the

stretching energy. However, as the applied line force moves away from the boundary.

the stretching energy becomes dominant. In the case of a line moment, the bending

phenomena are dominant regardless of the longitudinal coordinate of the applied line

moment. As it is also shown in these figures, the magnitude of the strain energy due

to line force is much larger than that of the strain energy due to line moment, provided

that both loads have same numerical values. The local maxima and saddle points.

characterizing the dependence of the energy on the location of the load, should be

attributed to the mirror image effect of the clamped boundary. Finally, if the distance

between the clamped end and the longitudinal coordinate of the applied line force

or moment exceeds the value r, given by Eq. (2. 8), the energy stored in the shell is

independent of the location of the line loads.

The substitution of the displacement field given by Eq. (2. 10) into the bending

and stretching energy formulae results in the following :

(I,)p, = Cs I wp, Wp, dT

ow wp, 0*wp,
(1s) P, = G | (2 (5 )de

(Lo)m, = c. | War, Wa, dT

ht Dw, wp,
(Ww, = Cf, (a) (ga)

(I)pMm, = c. | wp, Wf, dT

0 0*wp, wp,
(Iv) p.m, = G | (Sa (52)dx

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)



(L),p. = Cs |wanda
© Jrwy. wp

or, = Co [ (Gore

(Is)pr, = Cy [wanda

© wy. O%wyy,

(ors, = Cb | (Go) (pda.

(2.35

(2.36)

(2.37)
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where C, = 83RD and Cy, = 2rRD. These integrals express the strain energy

stored in the shells due to the interactions among the line forces, line moments, and

the distributed external hydrostatic pressure. Closed-form expressions of the strain

energy associated with these interactions are presented in Appendix B. The response

of axisymmetrically loaded cylindrical shells to line force or line moment is very

localized. Hence, the energy due to the interaction between two line loads dies out

exponentially as the distance between two loads increases. Here we introduce the

parameter r (= 7/8) again and, if the distance between two line loads exceeds r, we

neglect the corresponding interaction terms in the strain energy formulae. We finally

note that the stretching and bending energy due to line forces, moments or their

interactions are quadratic functions of the loads. However, the energy components

due to the interactions between the distributed hydrostatic pressure and the line

forces or moments are linear functions of the line loads.

2.4 Strain Energy of the Core Stiffeners

The deformation patterns which contribute to the strain energy of the core stiffeners

are of global and local character. Since the dimensions of the ring stiffener are small

compared with the radius of the sandwich structure, the double V-shaped stiffener

can be considered as a thin ring undergoing global stretching and global twisting.

Furthermore, a significant part of the energy stored in the stiffener, in particular

when the stiffener is located close to the boundary, should be attributed to local

bending and local membrane deformations of the V-shaped flanges of the stiffener.

To determine the strain energy due to global stretching, the stiffener is treated as

[



a thin ring subjected to line forces developed at the joints with the inner and outer

shell. The equivalent cross section of the hypothetic ring has the same cross sectional

area as the original ring stiffener. To simplify the notation, we denote P,, P, (Ps.

P,) the unknown lateral line forces developed along the joints between the i** core

stiffener and the outer (inner) shell as shown in Fig. 5-(a). According to the theory of

thin rings, Timoshenko and Young [9], radial force resultant 7; causes hoop tension

or compression S;, given by

}
Gh -T

where TT, =P, + FP, + P; + Py.

(2.39)

2.40)

Hence, the :*" core stiffener stores strain energy due to stretching, given by

 ua TH
A"

(2.41)

where A is the cross sectional area of the ring stiffener.

We next determine the strain energy of the equivalent ring stiffener due to global

twisting of its section. Again, to simplify the notation we denote Ny, No, M;, M,

(Ns, Ny, M3, M,) the axial forces and line moments developed at the joints between

the core stiffener and the outer (inner) shell as shown in Fig. 5-(b). These unknown

forces and moments cause an unbalanced moment with respect to the center of the

stiffener. This twisting couple M;; is given by

Mss [P, — Po, + Ps — Py]dcosa+

[—Ny — Na + Ni + Ny|(dsina + &gt;) +

[M+ M, + M3 + M,]. (2.42)

Due to M,;, there must be a bending moment per unit length of the ring stiffener,

Timoshenko [10], given by

Vl. Ma RB 23
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Therefore, the i** core stiffener stores strain energy uy; given by

TR
i — =——M;?

ue Elna
2.44"

where In4 1s the second moment of area of the cross section with respect to the

neutral axis VA.

In addition to the global patterns examined before, the core stiffeners undergo

local deformations. As shown in C. Chryssostomidis and N. A. Papadakis [13], if the

central core member is much stiffer than the flanges of the core, the local buckling

performance of the sandwich structure is significantly improved. Therefore, to com-

pute the effect of the local phenomena on the strain energy of the core stiffeners, we

consider the central core members rigid, and estimate the energy stored in the core

due to the local bending and membrane deformations of the flanges. The stretching

energy stored in the flanges due to the deformation along their axes can be written

in the form

Ung

r Rd

&lt;Q :Be Fi (2.45

where s and d are the thickness and length of the flange as shown in Fig. 5-(c). Force

F.; 1s given by

F., = Pysina+ Njcosa (2.46

The unknown forces and moments, developed at the junctions between the outer

shell and the core stiffeners, cause local bending of the flanges. As shown in Fig

5-(c), the local bending moment at distance £ from the joint of the flange with the

shell is

m(€) = M; + [P; cos a — Nj sin ajé (2.47

Therefore, the strain energy of the core flange us; is

i= 50 m(e)de, (2.48)

where I is the second moment of area with respect to the unit width of the flange

)N:



= 1):

Finally, we can determine the strain energy of the core stiffening substructure

by adding the four energy components for each core stiffener and carrying out a

summation over all core stiffeners.

2 5 Minimization of the Total Potential Energy

of the Sandwich Shell

The complementary potential energy II is defined by, Shames and Dym [5].

Ll {/ — A (2.49°

where U is the complementary strain energy and W is the work of the external loads.

Identification of the structural equilibrium of the system can be achieved by vanishing

the first variation of II. 1. e. :

SOT = Vy — MW = 0 (2.50)

Since the external loads applied on the sandwich structure are prescribed on the

boundaries of the system, and no body forces are acting on the system, §)W van-

ishes identically. Accordingly, to determine unknown forces and moments at the

junctions between the shells and the core stiffeners, we only need to minimize the

complementary strain energy, 1. e. :

IN J 0 (2.51;

The complementary strain energy of the system is composed of that of the inner and

outer shell and the core stiffeners. Using the methodology outlined in the previous

sections. the complementary strain energy of the shells and the core stiffeners can

be expressed easily in terms of the unknown forces and moments developed at the

junctions between the shells and the core stiffeners. We represent the unknown forces



and moments in the vector form

 Ff —- {Po P; No Nj My, Mj}! (2.52)

We denote NN the number of structural joints between the outer or inner shell and

the core stiffeners within half length of the sandwich shell. Po (Pj), No (Nj), and

M, (M;) are N-dimensional row vectors representing the lateral line forces, axial line

forces, and the line moments developed at the joints between the outer (inner) shell

and the core stiffeners. Therefore, the complementary strain energy of the sandwich

shell takes the quadratic form :

[/
1

= U(f) = SEAS + If + const (2.53

The 6 N by 6 N matrix A is symmetric, positive definite and depends on the geometry

of the sandwich shell. Vector c¢ represents the interactions between the uniformly

distributed hydrostatic pressure and the unknown line forces or moments developed

in the outer shell.

The deflection fields of the shells and the core stiffeners automatically satisfy

local equilibrium conditions in the radial direction. However, to obtain a well defined

equilibrium, rigid body translation of the ring stiffeners along the axial direction

should be prevented. Therefore, the sum of the axial forces applied on each ring

stiffener has to vanish. i. e. :

Ni+ No+ Ns +Ny=0 (2.54),

Under the above observation. the minimization of the strain energy can be written in

the condensed form.

Main. Uf) subject to Cf =0. 2.55

where C is a Zz by 6 N unimodular matrix, representing constraints described by Eq.

(2. 54).

To complete the minimization we used the NAG Fortran Library Routine,
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E04NCF (NAG [11]). E04NCF is based on the two-phase (primal) quadratic pro-

gramming method, with features to exploit the convexity of the objective function.

The linearity of the constraint set presents a good reason for selection of this routine.

During the first phase, the method finds a feasible point by minimizing the sum of

infeasibilities (feasibility phase.) Subsequently, the method minimizes the quadratic

objective function within the feasible region (optimality phase.) Once any iterate is

feasible, all subsequent iterates remain feasible. Since F04NCF can be used in the

case that the Hessian matrix A is positive semi-definite, we can safely complete the

minimization, despite matrix A being very ill-conditioned.
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Chapter 3

Numerical Results

3.1 General

In this section we examine the strength of a typical sandwich shell structure with

cylindrical faces and core made by the same isotropic material 71-4 Al-4V. The mate-

rial properties are E = 1.6x107 psi and v = 0.32. The hydrostatic pressure p applied

on the outer shell is taken equal to 400 psi. The corresponding axial line load V.

applied at the ends of the inner and outer shell, is given by

V =pt ~~ 20000 ({bs/in) (3.1,

The notation and sign convention used for the force or moment resultants developed

in the infinitesimal shell element is shown in Fig. 6. The dimensions of the sandwich

shell are R =198¢n, L =192in,t; =t, = lin, b=10in, e = 3.1:n, ¢ = 2s = 0.81n,

d=k=4in,l=8:n, and a = 60°. (See Fig. 1)

Applying the energy method outlined in the last chapter, we can determine the

unknown line forces, line moments, and axial forces developed at the junctions be-

tween the shells and the core stiffeners and evaluate the strength of the sandwich shell

structure. Analysis of the strength of the sandwich structure was also performed using

BOSOR4 computer program [4]. Due to the dimensionality of the problem, we were

able to examine an 80 inch long shell only, in calculation by BOSOR4. Symmetry

A



of the problem with respect to the middle of the shell obviates the need to consider

half length of the sandwich shell. The 80 inch shell treated by BOSOR4 needed close

to 3000 degrees of freedom, the maximum allowed. However, for the problem under

consideration, this limitation in the length is not particularly important. As we have

seen in Chapter 2, the quantities that determine the bending of monocoque cylin-

drical shells, due to line forces and moments developed at the clamped end become

small as the distance from the end of the shell exceeds the value r. In our case, the

effect of the clamped supports on the bending of the inner and outer shell is limited

within 35 inch from the end of the shell.

3.2 Strength Analysis of the Shells

The normal displacements of the inner and outer shell are determined by linear su-

perposition of the deflections due to forces P;’s and moments M;’s. The deflections of

the inner and outer shell are almost identical, a result of the tight cooperation of the

shells enforced by the core stiffeners, as shown in Fig. 7. The slightly wavy form of the

deflection curves is due to the interaction between the cylindrical shells and the core

stiffeners. As the distance from the left clamped end exceeds r, the displacements of

the inner and outer shells converge to 0.29 inch and they remain constant until the

boundary effect of the right clamped end occurs. To justify the validity of our results.

we performed evaluation of the strength of the sandwich shell using BOSOR4. The

deflections obtained by BOSOR4 are shown in the same figure. Our method slightly

overestimates the response of the structure. This discrepancy should be attributed

to the different kinematic relations used by the two procedures. BOSO R4 program

is based on the Novoshilov-Sanders kinematic relations appropriate for moderately

large deflections.

The longitudinal bending moment M,. is given by

d*w
VM, =—-D——

dr?
\

i2)
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Substituting the displacement fields of the inner and outer shell into Eq. (3. 2).

we obtain the bending moment distributions shown in Fig. 8. The strong wavy

dependence of the bending phenomena on the longitudinal coordinate 1s caused by

the core stiffeners. The bending moment at each clamped end of the sandwich shell

reaches a value of about —9000 [bs - :n/in. The circumferential bending moments

are constant along the circumference, and their variation in the longitudinal direction

can be obtained from Fig. 8, provided that the moments read from that figure are

multiplied by the Poisson’s ratio. The longitudinal bending moment obtained using

BOSOR4 is shown in Fig. 9. Agreement between the results is seen to be quite good.

The bending moment developed at the clamped end of a monocoque cylindrical shell,

subjected to hydrostatic pressure p, is given by, Timoshenko and Woinowsky-Krieger

8]
p

M, = —

0 232
3.3

For a simple cylindrical shell with weight equal to that of the sandwich shell (i.e. of

thickness 3t), Eq. (3. 3) results in My = —74000 lbs - n/n. This reveals a significant

structural advantage of the sandwich shell structure compared with monocoque cylin:

drical shells. The sum of the resultant bending moments at both (inner and outer)

clamped ends of the sandwich shell is about } of that of the equivalent monocoque

cylindrical shell.

We next discuss the effect of the geometry of the sandwich shell on the bending

of the outer shell. The double V-shaped ring stiffeners close to the boundary develop

strong axial loads in the direction of their flanges. The distribution of these loads

along the meridian surface of the core stiffeners is given in Fig. 10. For simplicity, we

restrict attention to the stiffener lying next to the clamped boundary. The leftmost

flange of the stiffener lying next to the clamped boundary is stretched with tensile

force of 1750 Ibs/in, while its right counterpart is compressed with 4000 [bs/in. The

corresponding values obtained by BOSOR4 are 1850 [bs/in and 3900 lbs/in, respec:

tively. These forces, applied on the outer shell, produce a moment of the same sign

to the bending moment developed at the clamped end. Line moments orthogonal
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to the meridian of the core stiffeners, shown in Fig. 11, have also a similar bending

effect. For instance, the V-stiffener lying next to the clamped boundary of the outer

shell produces bending moments of about 1000 lbs - in/in and 250 [bs - in/in at its

joints with the outer shell. The values obtained by BOSOR4 are 950 Ibs - in/in and

200 [bs -in/in, respectively. These moments are in the same direction to the moment

developed at the clamped end. Therefore, the local stretching and bending of the core

stiffeners close to the boundary relieve significantly the bending of the outer shell.

The transverse shearing force (J, developed in the inner and outer shell, can be

determined by
3

Rs = _p%w
dr3

(3.4

The distribution of @)., along the longitudinal coordinate of the inner and outer shell,

is shown in Fig. 12. The discontinuities in the shear force diagram are mainly due to

the membrane forces of the core stiffeners. The maximum shearing force occurs at the

clamped boundary. Far away from the boundary, small shearing forces are developed

in the shells. The shearing forces developed at the clamped boundary of the inner and

outer shell are 2800 [bs/in and 3200 lbs/in, respectively. In the case of the equivalent

monocoque cylindrical shell the shearing force developed at the clamped end is given

by, Timoshenko and Woinowsky-Krieger [8]:

Qo=p
A

(2.5

For the equivalent monocoque cylindrical shell we obtain Qg = 7700 lbs/in. Therefore.

the sum of the resultant shearing forces at both (inner and outer) clamped ends of the

sandwich shell is decreased by 22 % compared with that of the equivalent monocoque

cylindrical shell.

We now examine the behavior of the structure in the longitudinal direction. The

axial forces developed along the meridian of the inner and outer shell are shown in

Fig. 13. Similar results obtained by BOSOR4 are plotted in Fig. 14. Close to the

boundary, the forces applied from the core stiffeners on the shells alter significantly the

axial loading of the shells. The double V-shaped stiffeners develop compression in the
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outer shell and tension in the inner shell. This interaction is intense close to the ends

of the shells, and dies out rapidly away from the boundary. In fact, close to the middle

of the shell, the longitudinal variation of the axial load in each shell is negligible. It

is important, however, that the bending close to the boundary produces a permanent

effect, the re-allocation of the compressive axial load, distributed equally in the inner

and outer shell at the boundary. The axial load in the outer shell is increased to

the value of 25000 lbs/in ; The axial load in the inner shell is decreased to 15000

Ibs/in. Therefore, the sum of the axial loads in both shells is equal to the applied

axial hydrostatic load at the boundary of the structure. Direct comparison of Fig

13 and 14 demonstrates that our results are in good agreement with those obtained

with BOSORA4.

We next consider the axial displacements of the inner and outer shell. The axial

load developed in an axisymmetrically loaded circular cylindrical shell is given by.

Timoshenko and Woinowsky-Krieger [8] :

Et du Ww

Ne= 10 —v®) 3.6)

where u is the axial displacement of the shell. Eq. (3. 6), applied for the inner and

outer shell, can be integrated along coordinate z to give the axial displacement of the

shells. Since the normal displacements of the shells are almost identical, the difference

between the axial deformations of the inner and outer shell, shown in Fig. 15, should

be attributed to the re-allocation of the axial loading of the shells.

We now consider the forces developed in the inner and outer shells in the circum-

ferential direction. Due to the Poisson’s effect, the re-distribution of the axial loads

between the inner and outer shell affects the strength of the shells in the circumfer-

ential direction as well. The circumferential force N, is given by, Ugural [6]:

Et w du
N, = ————(—— —_

v 2 FRETS (3.7)
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Combining Eq.’s (3. 6) and (3. 7) we obtain:

~- = —EY(%) + uN, (3.8.

The circumferential force resultants in the inner and outer shell are shown in Fig. 16.

At the clamped end there is no normal deformation. Therefore, the circumferential

force developed at the boundary is only due to the transmission of the axial load from

the longitudinal to the circumferential direction, due to the Poisson’s effect. As we

move away from the clamped boundary, circumferential deformations, proportional to

the normal deflections, increase significantly the circumferential force resultants. The

difference in the circumferential forces between the inner and outer shell is due to the

difference between the axial forces developed in the inner and outer shell, transmitted

in the circumferential direction because of the Poisson’s effect.

We next consider the equivalent von Mises stresses developed in the inner and

outer shell. A realistic yield criterion considers the biaxial state of stress in the shell.

Pulos and Salerno [12]. Such a criterion is the Hencky-von Mises criterion. Applying

this criterion, we obtain the von Mises stress oy as follows :

/ 2 (2.9

where 0, 0, are the longitudinal and circumferential stress respectively. The longitu:

dinal stress 0, consists of the longitudinal membrane stress o,,, and the longitudinal

bending stress 0,5. The circumferential stress o,, consists of circumferential membrane

stress o,, and circumferential bending stress o,,. These stresses can be estimated

by the following equations, Timoshenko and Woinowsky-Krieger [8] :

O, = Crm + Orb

Oub= Wy +

ag, = N

= 5
Orm

(3.10)

(3.11)

(3.12)
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Trb

0, =m =

Toh =

12M,2
t3

N,
t

12M,z
—5

(3.13)

(3.14)

(3.15)

+£ for the inner fiber of the shell
where z =

—1 for the outer fiber of the shell

The equivalent von Mises stresses developed in the inner and outer shell are given

in Fig. 17 and 18, respectively. For both shells, the maximum stress occurs in the

inner fiber at the clamped boundary, where bending effects dominate membrane phe-

nomena. Close to the boundary, bending deformations produce compressive stress

in the inner fiber and tensile stress in the outer fiber. Therefore, the stresses due

to the bending of the shell increase the axial compressive stress in the inner fiber.

and thus the equivalent von Mises stress, and reduce the corresponding stress in the

outer fiber. As we move away from the boundary, the wavy form of the longitudinal

bending moments alters the sign of the bending stresses in the inner and outer fiber,

and causes the wavy dependence of the von Mises stresses shown in Fig.’s 17 and

18. Far away from the boundary, the von Mises stresses are mainly due to mem

brane phenomena and they reach an almost constant value. The von Mises stresses

in the inner and outer fiber of the outer shell is 29000 ps:, about 3000 ps: higher

than the corresponding stresses of the inner shell. This difference is caused by the

re-distribution of the axial loading in the inner and outer shell discussed earlier in

this section. The equivalent von Mises stresses obtained by BOSOR4 are given in

Fig.’s 19 and 20. Agreement between the results obtained by two methodologies is

quite good.
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3.3 Strength Analysis of the Core Stiffeners

The light weight core interconnecting the inner and outer shell is an essential part

of the sandwich shell structure and withstands a significant part of the applied hy

drostatic pressure. The forces developed along the meridian of the core stiffeners are

shown in Fig. 10. Their role on the relief of the severe bending close to the boundary.

as well as, their substantial influence on the axial loading of the inner and outer shell,

has been discussed in the previous section. The comparison of the sandwich structure

with the equivalent monocoque cylindrical shell has also demonstrated the important

role of the core stiffeners.

We now examine the global stretching of the core stiffeners mentioned in Section

2. 4. The sum of the lateral line forces, applied on the core stiffener through the

structural joints, causes the global stretching, hoop tension or compression given

by Eq. (2. 39). In the case of the stiffener lying next to the clamped boundary.

the equivalent line force applied on the core stiffener is 113 lbs/in radially inwards.

Therefore, applying this to Eq. (2. 39) we obtain 22000 lbs of hoop compression.

As we move away from the boundary, the equivalent line forces applied on the core

stiffeners have always radially inward directions and the magnitudes of the forces are

increased to the value of about 1000 lbs/in. Therefore, far away from the boundary,

large and almost constant value of hoop compressions, the value of about 200000 [bs.

occur in the core stiffeners.

Line forces, moments and axial forces applied on the core stiffener from the inner

and outer shell cause the unbalanced moment M,;, distributed uniformly along the

circumference of the ring stiffener, as illustrated in Section 2. 4. The unbalanced

moment is given by Eq. (2. 42). For the ring stiffener next to the clamped end, the

unbalanced moment has the value of 27 lbs -in/in. Accordingly, the bending moment

per unit length of the ring stiffener is 124 lbs - in by Eq. (2. 43). The torsional

rigidity of the ring stiffeners contributes to the bending rigidity of the sandwich shell

structure and to the reduction of the bending moments developed at the clamped

ends. However, as we move away from the boundary, it converges to zero.



The bending moments developed along the meridian of the core stiffeners are

shown in Fig. 11. The stiffeners located close to the clamped boundaries develop

significant moments along the junctions with the inner and outer shell and hence, they

play an important role on the relief of the bending moments developed at the clamped

ends. We can also predict the bending moment developed along the circumference of

the core stiffeners which is the result of the transmission of the meridional bending

caused by the Poisson’s ratio.

Owing to the characteristic of our energy formulation, we can analyze each energy

component which constitutes the strain energy of the core stiffeners. We first examine

the strain energy of the core stiffeners due to local compression (or tension). From

Fig. 21 and 22, we can see that relatively large amount of local compression (or

tension) is developed in the core stiffeners close to the boundaries. Most of the

energy due to local compression (or tension) is stored in the left members of the core

stiffeners connected with the outer shell and in the right members of the stiffeners

connected with the inner shell. As we move away from the boundary, the difference

of the energy stored in the left and right members decreases and the strain energy

of the core stiffeners due to local compression (or tension) also decreases and finally

becomes negligible. The core stiffener lying next to the clamped boundary stores

14000 [bs - in of strain energy due to this phenomenon, which is 17 % of the total

strain energy stored in that stiffener. However, far away from the boundary, only

1600 Ibs - in of the energy is developed due to local compression. As shown in Fig. 27.

the total strain energy stored in the core stiffener located far away from the boundary

is approximately 230000 [bs - tn. Therefore, the contribution of the local compression

to the strain energy of the core stiffener is negligible far away from the clamped ends.

Fig. 23 and 24 illustrate the effect of the local bending of the core members on

the strain energy of the stiffeners. In the case of the core stiffener lying next to the

clamped end, 66000 [bs - in of the strain energy is developed due to local bending of

the core members, which is 80 % of the total strain energy stored in that stiffener

(See also Fig. 27). This result demonstrates the significant role of the local bending

phenomena, due to the particular geometry of the double V-shaped ring stiffeners.
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on the structural behaviors of the sandwich shell closed to the clamped boundaries

Same figures also show that the local bending effect dies out rapidly far away from

the boundaries.

Strain energy stored in each core stiffeners due to global stretching is shown in

Fig. 25. The core stiffener lying next to the clamped end stores 2200 lbs - in of the

strain energy due to this phenomena, which is only 3 % of the total energy stored

in that stiffener. However, as we move away from the boundary, global stretching

becomes dominant and almost all of the strain energy of the core stiffeners is due to

this global stretching as shown in Fig. 25 and 27.

As it is shown in Fig. 26, global twisting is limited close to the boundaries. How-

ever, only negligible portion of the strain energy is caused by the global twisting

compared with the total strain energy stored in the core stiffeners.

The stresses developed along the inner fiber of the stiffeners are shown in Fig. 28.

Close to the boundary, local stretching and local bending phenomena result in the

maximum stress of about 65000 psi. Far away from the boundary, the stresses due to

global stretching phenomena dominate, and the stresses decrease to about 20000 psz.

3.4 Comparison between Sandwich and Ring

Stiffened Shell

We now compare the typical sandwich shell structure, examined earlier in this chapter,

with an equivalent ring-stiffened cylindrical shell. We consider a single isotropic

shell with radius equal to the radius of the outer shell. The shell is reinforced with

equidistant ring stiffeners, spaced 36 inch apart. The shell and the stiffeners are made

of steel with Young’s modulus 3.0 x 107 psi and Poisson’s ratio 0.29. The thickness

of the shell is 1.15 inch. The thickness and the length of the flange (web) are 2.1

(0.88) inch and 9.3 (13.2) inch, respectively. We notice that both structures have the

same weight per unit length. To analyze the conventional hull structure, we used the

methodology presented in Chapter 2. In the case of the ring-stiffened shell, there is no

variation in the axial loading along the meridian of the shell. Furthermore, it is only
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global stretching and global twisting of the stiffeners which contribute to the strength

of the stiffeners. The flexural rigidity E Ina, which restrains the global twisting of the

ring stiffeners is, 4.4 x 10° Ibs - in?, about thirty times larger than that of the double

V-shaped ring stiffeners.

The normal displacement of the conventional hull and the sandwich shell structure

are shown in Fig. 29. Due to the concentrated line forces and moments applied

from the sparsely distributed ring stiffeners to the shell, the normal displacement

of the conventional hull structure has a pronounced wavy form. The longitudinal

bending moment and the transverse shearing force distributions are shown in Fig. 30.

31 respectively. Due to the sparsely distributed ring stiffeners, the bending moment

distribution has periodic form with period equal to the spacing of the stiffeners. Sharp

troughs occur at the structural joints, and smooth crests appear near the middle

of adjacent junctions. The maximum bending moment, developed at the clamped

boundary, is —27000 lbs-in/in, 1.5 times larger than the sum of the maximum bending

moments developed in the inner and outer shell of the sandwich shell structure.

We next consider the circumferential force resultant of the conventional hull struc

ture. The circumferential force resultant is given by Eq. (3. 8). In the case of con-

ventional hull structure, the axial force resultant N, is constant (40000 ps:) along

the longitudinal coordinate and, therefore, the variation in the circumferential force

resultant is only due to the normal displacement of the shell. As it is shown in Fig.

32. the wavy variation of the circumferential force resultant along the longitudinal

coordinate is similar to that of the normal displacement distribution, shown in Fig.

29.

The equivalent von Mises stresses developed in the inner and outer fiber of the

conventional hull structure are shown in Fig. 33. Similar to the case of sandwich shell

structure, the maximum stress occurs in the inner fiber at the clamped boundary.

where bending dominates membrane phenomena. The maximum equivalent von Mises

stress is 140000 psi, about 2 times greater than the corresponding stress developed

in the sandwich shell. This result is primarily due to the severe bending developed

at the clamped end of the traditional ring-stiffened structure.
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3.5 Strength Analysis of the Sandwich Shell ac-

cording to the Alteration of the Shell - Thick-

N§E
=

-— SES

[n this section we consider the influence of the thickness alteration of the inner and

outer shell on the sandwich shell structures. For this investigation, we keep the sum

of the thickness of the inner and outer shell constant, 2 in, 1. e. :

‘hn ’ (3.16)

First, we consider the case in which ¢,’s are 1, 1.2 and 1.4 in and the corresponding t,’s

are 1, 0.8 and 0.6 in. We next decrease the thickness of the inner shell to 1, 0.8 and

0.6 in and increase the thickness of the outer shell to 1, 1.2 and 1.4 in respectively.

The normal displacements of the inner and outer shell for each case are shown in

Figs 34 to 37. From these figures, we can see that, as the thickness of the outer shell

increases, the displacements of the inner and outer shell decrease slightly. This result

should be attributed to the different geometry of the shells and the way they sustain

the normal deflection caused by hydrostatic pressure. Furthermore, the displacement

of the thin shell is wavier. This is caused by the fact that as the thickness of the shell

is decreased, its flexibility is increased and therefore, the thin shell easily responds to

the line loads applied from the core stiffeners through the structural joints.

The longitudinal bending moments and transverse shearing forces developed in

the inner and outer shell are shown in Figs 38 to 45. It is worth paying attention to

the bending moments and shearing forces developed at the clamped boundaries of the

shells. In all cases, larger value of bending moment and shearing force are developed

in the thicker shell (whether it is inner or outer). This phenomenon is more clearly

explained in Figs 46 and 47. We can also see that, as the thickness of the inner shell is

increased, the sum of the shearing forces of the inner and outer shell which is applied

to the end boundaries (bulkheads) is decreased. This analysis indicates that we can

relieve even further the bending moment and shearing force at the clamped end of
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the outer shell and the sum of the transverse shearing resultants at the bulkhead by

properly increasing the thickness of the inner shell in comparison with that of the

outer shell.

We now examine the axial load distributions along the meridian of the shells for

each case. As shown in Figs 48 and 49, the re-distribution of the axial loading is

significantly influenced by the alteration of the thicknesses of the inner and outer

shell. In the case t; &gt; t,, as the thickness of the inner shell is increased, the difference

in the axial loading between the inner and outer shell close to the clamped ends is

decreased. Furthermore, as we move away from the boundary, the difference in the

axial loading is increased and reaches its maximum value near the z = 7/3,. However.

as we move even further away from the boundary that difference begins to decrease

and converges to some value. As it is also shown in Fig. 48, in the case that the

thickness of the outer shell is much smaller than that of the inner shell, larger axial

loading is developed in the inner shell far away from the boundary. The longitudinal

dependence of the axial loading, in the case ¢; &lt; t,, is shown in Fig. 49. As the

thickness of the inner shell is increased, the difference in the axial loading between

the inner and outer shell is increased and the behavior of the axial loading along the

meridian of the shells is similar to that of the representative case t; = t, = 1 in.
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Chapter 4

Conclusions and Further Studies

We have investigated strength of submerged sandwich shell structures which are com

posed of two co-centric circular cylindrical shells and double V-shaped ring stiffeners.

Our research is primarily focused on the structural phenomena close to the rigid

supports (king frames or bulkheads). In the following we summarize the important

results of this research and provide some recommendations for the further studies.

Our analysis is based on the energy methodology which utilizes the particular geo

metric features of sandwich shells. The potential energy of the system is decomposed

to the energy of the inner and outer shell and the energy components of the core.

To obtain the response of the system to axisymmetric external loading, the energy

function is minimized with respect to the unknown forces and moments developed

at the structural joints between the shells and core stiffeners. The first advantage

of this approach is that it provides a very efficient algorithmic process and reduces

enormously the dimensionality of the problem. Even more importantly, it provides

an indispensible tool for structural analysis and leads to better understanding of the

relative significance of each structural component and its contribution to the behavior

of sandwich shell structures.

Owing to the characteristic of our energy formulation, we can analyze the relative

significance of each energy components stored in the double V-shaped ring stiffen-

ers. Close to the rigid boundaries, local bending and local compression (or tension)

phenomena of the ring stiffeners are dominant. These two phenomena play an impor-



tant role on the relief of the significant bending developed at the clamped boundaries.

However, as we move away from the boundaries, almost all of the strain energy stored

in the core stiffeners is due to the global stretching phenomena. The reduction of the

bending moments and shearing forces developed at the rigid supports is a particularly

attractive feature of the sandwich structure. This behavior would certainly have seri-

ous dynamic implications. Since the intensity of the transmitted forces and moments

to the rigid ends is small, so must be the intensity of the motion of these ends excited

by dynamic deformation patterns propagating in the shells. Further analytic and

numerical efforts along this direction are necessary.

Due to the coupling between the axial and lateral deformations, the double V

shaped ring stiffeners produce axial compressions in the outer shell and tensions in the

inner shell through their structural joints. This out of phase axial loading of the shells

is one of the major characteristics of sandwich shell structures. Dynamic implications

of this behavior need to be further analyzed. Although the nonlinear nature of this

interaction is a source of additional analytic and computational complexity, our basic

energy formulation could be extended to examine the possibility of further reduction

of the lateral displacements and accelerations of the outer shell.

We have compared the longitudinal bending moment and the transverse shearing

force developed in the representative sandwich shell with those developed in the con-

ventional hull structure (a single shell with equidistant ring stiffeners). Since both

shell structures have the same weight per unit length and are subjected to the same

hydrostatic loading, they seem to have similar strength characteristics. However,

much smaller bending moments are developed in the sandwich shell structure.

The distribution of the bending moment and the transverse shearing force along

the inner and outer shell can be modified by altering the thickness of each shell. We

have examined the bending moments and the shearing forces developed in the shells

with the thickness of the outer (inner) shell reduced (increased) from 1.4 (0.6) to

0.6 (1.4) inches. According to the results, the bending moment and the shearing

force developed at the clamped end of the outer shell are significantly reduced as the

thickness of the outer shell is decreased. This analysis demonstrates that the weight

IR



allocation between the inner and outer shell provides an additional degree of freedom

to reduce the intensity of bending patterns propagating in the outer shell and the

transmission of energy to the surrounding environment. Finally, the out of phase

axial loading phenomena in the inner and outer shell can be significantly influenced

by the alteration of the shell-thicknesses.
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Appendix B

Evaluation of Energy Functions

assoclated with Interac.ions

between two Loads

We denote the coefficients Cp = on Cy = 5, Cpa = =i, Cop =Real and

Coss = 202.

We also denote functions X; = B(x; + z;), X; = B(z; — z;), Si

sin( X5), Cy = cos(X4), Co, = cos(X,), BE; = e~*t and FE, = eX11tX2,

{

Asp; —

(I)p., ~~

(1, IM; =

(Ly 101. =

{ iL, JPM, =

CpE1PPi[—351 + (2X3 — 3)E; — 2X3)S, + (3 + 2X,)C

+(3(E3 — 2) — 2X,)C,]

CpE\P.P,[-8, — (2X, + 1)E, — 2X,)S; — 2X,C,

+(E; + 2X, — 2)C,]

Cm EMM; (2X, + 1)5, + (Ez — 2X,)S, + C;

+((1 = 2X,)E; — 2(1 + X,))C,]

CuEIM;M;[(3 —2X,)S: + (3E; + 2X,)S, + 3C,

+((2X3 + 3) E; + 2(X: — 3))C]

Cem E\PM [X51 + (Xo —2)E, + X1 + 2)S, + (X, + 2)C,

ai



+( XE, — X1 — X; — 2)C4)

(I,)p,m: = Com EP,MX, 81 — (Xa — 2)Ey + X3 +2)S, + (X; + 2)C,

(XE, + X1 — Xa + 2)C4)

ole, = CpmErPM[—X181 — (Xo + 2)E2 + Xi — Xa + 2)S2 — (X1 — 2)C,

—(XoEy — X; — Xp + 2)C4)

Ayia, = Cpu E1PM[—X1S1 + (Xo +2)Er + Xi + Xp — 2)5, — (X= 2)C

+( XE; +X; — X; — 2)C4]

(Is)pp. =

(Io)pp. =

(Ls)pm; =

(I)pps, =

—C,peP% P[(Bz; + 2) sin(Bz;) + 2 cos(Bz;) — 2e°*

C,pe=5% P,Bz; sin(fBx;)

_ Care M[(Bz; + 3) sin(Bx;) — Bai cos(Bz;)]

CopeP=M;[(Bz;—1)sin(Bz;)—Bz;cos(Bz;)]
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